
Tel-Aviv University

Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Dataset-adaptive minimizer order reduces

memory usage in k-mer counting

Thesis submitted in partial fulfillment of graduate requirements for

The degree ”Master of Sciences” in Tel-Aviv University

School of Computer Science

By

Dan Flomin

Prepared under the supervision of

Prof. Ron Shamir

March 2022

1

Acknowledgments

I want to thank to all the people that helped me reach this moment in my academic

path, and helped me achieve a meaningful experience in researching in the field of

Bioinformatics.

I want to thank Prof. Ron Shamir, who welcomed me into his research group and

supervised over our research. Ron helped me greatly in exploring different research

fields, and in finding the topic which I found very fascinating to research. The

path we explored together ignited an eager wish to deepen my understanding in my

research and to make it meaningful to other researchers in the field as well. One time

after the other Ron pushed me to broaden our understanding, and to write a research

paper in a very high standard. The last two years with Ron developed myself as a

researcher and as a person, and I thank him dearly for this opportunity.

I want to thank David Pellow, my fellow lab mate and researcher. David mentored

me from the very first moments as a member of the lab. At first, he helped me

understand complex academic materials, and later on when I already started to

research myself, he helped and advised me in my research. At some point during

my research, I knew that joining forces with David in my research could be very

meaningful to the research, and a lot more fun. David is a humble, kind, smart and

amazing person, and I had the best time researching with him, learning from him. I

thank him a lot and appreciate the opportunity to research with him.

Early in my time as a lab member, I joined Yael Ben-Ari in her research. I learned

a great deal besides Yael as a very young researcher. I want to thank Yael for her

part in me becoming a researcher, her welcoming me warmly to her research, and for

our friendship.

I want to thank Nimrod Rappoport for always being there for me when I needed

is help and advice. Nimrod had a great impact on me as a TA and has a great part

in me wanting to research in Bioinformatics and pursuing to join Ron’s lab.

I want to thank my lab members: Lianrong, Tom, Dan, Hagai, Hadar, Naama,

Omer, Yonatan, Eran, Ron, Roi and Maya. All of them took a great part in the last

two years, academically and as friends.

2

Gilit Zoher-Oren supported me at all times, with any matter, and I thank her

very much for doing so, and doing so very kindly.

Last but not least, I want to thank for my parents Orit and Dror. They raised

me to be the person I am today, who was able to take part in academic research and

to make the best out of it. They supported me in every path I chose for myself, and

drive me towards excellence in my own way and terms. Thank you.

3

Abstract

The rapid, continuous growth of deep sequencing experiments requires development

and improvement of many bioinformatics applications for analysis of large sequencing

datasets, including k -mer counting and assembly. Several applications reduce RAM

usage by binning sequences. Binning is done by employing minimizer schemes, which

rely on a specific order of the minimizers. It has been demonstrated that the choice

of the order has a major impact on the performance of the applications. Here we

introduce a method for tailoring the order to the dataset. Our method repeatedly

samples the dataset and modifies the order so as to flatten the k -mer load distribution

across minimizers. We integrated our method into Gerbil, a state-of-the-art memory

efficient k-mer counter, and were able to reduce its memory footprint by 30% - 50%

for large k, with only minor increase in runtime. Our tests also showed that the

orders produced by our method produced superior results when transferred across

datasets from the same species, with little or no order change. This enables memory

reduction with essentially no increase in runtime.

4

Contents

1 Introduction 1

2 Biological background 3

2.1 DNA and Genomics . 3

2.2 DNA sequencing and next generation sequencing 5

2.3 Genome assembly . 6

2.4 k-mer counting . 6

3 Computational background 9

3.1 Basic definitions . 9

3.2 Minimizers . 9

3.3 m-mer orders . 12

3.4 Partitions, bins and unevenness . 13

3.5 k-mer counting algorithms . 14

3.6 Genome assembly algorithms . 16

3.7 Mapping minimizers to bins in Gerbil and KMC3 18

4 Methods 20

4.1 AdaOrder . 20

4.2 Mapping minimizers to bins . 20

4.3 DGerbil . 21

4.4 FGerbil . 22

4.5 Source code . 23

5 Results 24

5.1 AdaOrder reduces maximum load and unevenness 24

5.2 The effect of R, N and p on maximum load and unevenness 27

5.3 Transferring the order across datasets 28

5.4 DGerbil reduces memory usage . 30

5

6 Discussion 34

S1 Accuracy of sampling-based load estimation 42

S2 The Effect of sampling depth on accuracy of load estimation 44

S3 Recommended parameters for AdaOrder 45

S4 Implementation details . 45

S5 Additional methods and results . 47

6

1 Introduction

High-throughput sequencing (HTS) has enabled rapid progress in biological and

clinical research through efficient and cheap sequencing of large genomic and tran-

scriptomic samples. Analyzing the sequences from large HTS experiments presents

computational and algorithmic challenges due to the high volume of data and the

fragmented sequences generated. k-mer counters are a fundamental building block

in some of the most basic tasks in analyzing HTS data, including genome assem-

bly (Idury and Waterman, 1995), repeat detection (Benson and Waterman, 1994),

and multiple sequence alignment (Carrillo and Lipman, 1988).

Over the past few years, several k-mer counters were developed. A main paradigm

to speed up and reduce memory footprint of k-mer counting is binning (Chikhi et al.,

2016; Deorowicz et al., 2015; Erbert et al., 2017; Li et al., 2015, 2013). Such methods

partition the entire dataset into several bins, and then process each bin independently

(possibly in parallel) before combining the results into the final output. Gerbil (Er-

bert et al., 2017) and KMC3 (Kokot et al., 2017) are popular k-mer counting tools

that use binning, but differ in their counting approach: KMC3 sorts each bin, while

Gerbil employs hash tables. BCALM2 (Chikhi et al., 2016) is a genome assembly

tool that uses a k-mer counter similar to KMC2 (Deorowicz et al., 2015), an earlier

version of KMC3, as a pre-process to its assembly phase.

Minimizers (Roberts et al., 2004) have been broadly used to speed up sequence

analysis algorithms and to reduce disk space and memory. Given integers k and m,

the minimizer of a k-long sequence (k-mer) is the smallest among the k − m + 1

contiguous m-mers in it, where the smallest is determined based on a predefined

order (e.g., lexicographic or random). For a longer sequence, all k-long contiguous

substrings are scanned and the minimizer is selected in each one.

In sequencing applications, the k-mers in the dataset are partitioned using their

minimizers as the key, i.e., each k-mer is assigned to the partition corresponding to

its minimizer. Since the same m-mer is often selected from overlapping windows,

partitioning with the minimizer as key helps compress the data by representing sev-

eral overlapping k-mers with the same minimizer as a longer super-k-mer in the

minimizer’s partition (Li et al., 2013). Often, partitions are subsequently grouped

into a smaller number of bins.

Minimizer schemes have their limitations. Certain minimizers tend to appear

much more than others in biological data, leading to highly unbalanced bin sizes.

For example, the bin containing the minimizer AA...AA tends to be very large when

using a lexicographic order. Several applications tried to overcome this problem by

proposing alternative orders. KMC2 (Deorowicz et al., 2015) proposed the signature

order, which tries to avoid certain m-mers such as AA..A. The Minimap2 read

mapper (Li, 2018) uses a random order of the minimizers. Defining an order based

on minimizers taken from a universal hitting set (UHS) was demonstrated to reduce

density and increase mean distance between selected minimizer positions (Marçais

et al., 2017). That order was shown to reduce memory in genome assembly (Ben-Ari

et al., 2021).

Some methods introduced minimizer orders based on the statistics of the par-

ticular sequences of interest. Chikhi et al. (2015) showed that ordering m-mers by

increasing frequency in the data dramatically reduced memory usage in assembly

graph construction compared to both lexicographic and random orders. In Nyström-

Persson et al. (2021), the UHS order was combined with the frequency based order

to balance bin sizes and lower memory in distributed k-mer counting. In the Win-

nowmap read mapper (Jain et al., 2020) the most frequent m-mers in the dataset

are moved to appear later in the order.

The number of distinct k -mers associated with a minimizer in a particular dataset

is known as the load of the minimizer (Ben-Ari et al., 2021). In applications that

partition the data based on minimizers, hash multiple partitions into bins, and pro-

cess each bin separately, it is desirable to have bins with smaller load, in order to

ensure low RAM usage, as has been argued by Li et al. (2013).

In this study we introduce a new approach for adapting the minimizer order to the

target sequence data. The method, called AdaOrder (Adaptive Order), iteratively

updates the minimizer order based on an estimate of the minimizer loads in the data

in order to reduce the maximum load. We demonstrated its ability to lower the

maximum load compared to all predefined orders, except the frequency based order.

2

We integrated our new order into Gerbil (Erbert et al., 2017), a leading k-mer

counter, which uses signature order, and was consistently the most memory-efficient

in a recent benchmark (Manekar and Sathe, 2018). In tests on several datasets, our

implementation, called DGerbil, achieved a reduction of up to 50% in memory usage

for large values of k, with only slightly higher running times compared to Gerbil.

Our tests also showed that the orders produced by our method produced superior

results when transferred across datasets from the same species, with little or no order

change. This enables memory reduction with essentially no increase in runtime. We

also implemented Gerbil with the frequency based order (Chikhi et al., 2015), and

showed that DGerbil required significantly less memory.

The code of AdaOrder and DGerbil, as well as orders produced for the studied

datasets and species, are publicly available at github.com/Shamir-Lab/AdaOrder.

The results of this thesis were accepted for publication in Journal of Computa-

tional Biology (Flomin et al., 2022).

2 Biological background

2.1 DNA and Genomics

The genetic information of living organisms is coded in DNA (deoxyribonucleic acid)

molecules. The DNA molecule is composed of two intertwined chains (strands)

of nucleic acids, which forms the well-known double helix structure of the DNA

molecule (Crick et al., 1954). The nucleic acids, also called bases, that constitute

the DNA molecule are cytosine, guanine, adenine or thymine, which are denoted

as C, G, A and T, respectively. The bases A and T are complementary to each

other, and similarly the bases C and G are complementary. In the two chains of the

DNA double helix, matched bases in the two sequences are complementary. In other

words, base A (C) in one chain can match (form a bond) only with base T (G) on

the other chain, and vice versa. The two chains have opposite orientations, thus each

one is reverse-complementary of the other. As a result of the complementarity, the

3

github.com/Shamir-Lab/AdaOrder

Figure 1: DNA structure
Source: https://www.ashg.org/discover-genetics/building-blocks/

sequence of one chain completely determines the other chain. A schematic figure of

DNA is shown in Figure 1. The genetic information coded in the DNA determines

the instructions to produce RNA molecules and proteins, which are building blocks

for the functionality of the living organism.

The totality of DNA sequence of an organism is called its genome. Genomes

vary in scale: The human genome is about 3 billion bases long, and consists of

23 chromosome pairs. The smallest recorded DNA-viral genome Circovirus SFBeef

has only 859 bases. Most sequenced bacterial genomes are 0.5-5 million bases long.

Genomics is the study of the genomes of organisms. With the rise of new technologies

for analyzing DNA and RNA, the field of genomics has leaped forward with numerous

advancements and discoveries (Shendure and Ji, 2008).

4

2.2 DNA sequencing and next generation sequencing

DNA sequencing is the process of determining the sequence of bases in continuous

sub-sequences of an organism’s genome. After performing DNA sequencing, using

any relevant method, the genomic data produced is used in studies and applications in

molecular biology, bioinformatics, genomics, etc. In medicine, genomic sequences of

individuals are used for diagnosing genetic diseases, assessing the risk of getting sick

with a disease, and predicting the response of patients to treatments (Dewey et al.,

2012) etc. In agriculture, sequencing of plants and animals allows the identification

of desirable and undesirable traits. By genetic engineering of crops, better, cheaper

and safer crops are developed (Purugganan and Jackson, 2021).

Next Generation Sequencing (NGS) refers to novel high throughput sequencing

(HTS) technologies that were developed over the last fifteen years. These technologies

revolutionized the field of genomics, by allowing to produce massive genomic datasets

in a short time and very cheaply (Shendure and Ji, 2008). An older method for

sequencing, Sanger sequencing, was used to sequence the first human genome over

the course of a decade, while nowadays using NGS technologies it can be done in a

single day, and for about one millionth of the cost.

Sequencing technologies produce numerous short contiguous genomic segments,

called reads. Each read is a subsequence of the genome, possibly with some errors.

The location of each read along the genome as well as its strandedness (straight or

reverse-complement) are random and unknown. Some NGS technologies allow to

sequence short segments (e.g., 50-200 contiguous bases) while other sequence much

longer segments (e.g., 10000 contiguous bases) (Goodwin et al., 2016). There are ad-

vantages and down-sides to each technology. For instance, technologies that produce

short reads are usually less prone to sequencing errors, compared to technologies that

produce long reads. On the other hand, long read techniques make assembly much

easier (more on this below).

Since NGS is so fast and cheap, it has been adopted very broadly and is now

ubiquitous in biology and medical research. In translational medicine, it allows to

integrate genomic analysis in clinical practice, and to broaden the diagnosis and

5

treatment possibilities for patients.

2.3 Genome assembly

Reconstructing the full genome of a species (animal, plant, microbe, virus, etc.) is

often a difficult task. With the sequencing technologies available today, one cannot

directly sequence the genome in ”one shot”. The current approaches sequence many

reads from the genome, obtained from random unknown locations in it, and together

covering the genome multiple times (30-50). Afterwards one needs to reconstruct the

full genome from the these reads, in a process akin to putting together a puzzle from

its pieces.The high coverage creates overlaps between reads, which are the key to the

reconstruction process. This task is called genome assembly. A schematic figure of

this process is shown in Figure 2. Some central assembly algorithms are described

in Section 3.6.

2.4 k-mer counting

A k-mer in a sequence is a contiguous sub-sequence of k letters in it. k-mer counting

is the process of determining how many times each k-mer appeared in an input

dataset. Figure 3 presents a schematic diagram of this process. k-mer counting of

sequenced reads is a useful tool for both computational and biological analysis, with

numerous applications in biology and medicine. For viruses, it was shown by Alam

and Chowdhury (2020) that the k-mer abundance of a sample can accurately classify

the type of a RNA virus. For humans, Annalora et al. (2018) showed that the

k-mer abundance in cancer cells from the Ewing’s family of tumors can help in

drug discovery targeting this specific cancer type. In metagenomic analysis, k-mer

counting and analysis enables metagenomic classification (Breitwieser et al., 2018).

Some central k-mer counting algorithms are described in Section 3.5.

6

Figure 2: Genome assembly using overlapping reads
Source: https://stringfixer.com/files/16274765.jpg

7

Figure 3: k-mer counting.
Source: https://www.semanticscholar.org/paper/K-mer-
Counting%3A-memory-efficient-strategy%2C-parallel-Xiao-
Li/02563dbd80c0a157cbf7202f31be3b2db391457b/figure/0

8

3 Computational background

In this section we provide background on computational concepts and algorithms

used in this study. We start with basic definitions and then describe key relevant

algorithms.

3.1 Basic definitions

Natural m-mer mapping: A mapping of m-mers to natural numbers is defined

as follows. We treat each m-mer as a number in base 4, with the following DNA

base encoding: A = 0, C = 1, G = 2, T = 3. For example, with m = 4, AAAA =

(0000)4 = 0, TTTT = (3333)4 = 255, ACGT = (0123)4 = 27. This mapping is

called the natural mapping and denoted as Natural : Σm −→ {0, ..., 4m−1}. We refer

to m-mers and values in {0, ..., 4m − 1} interchangeably.

Reverse complement and canonical form: Given an m-mer x, its reverse

complement is constructed by reversing the order of the bases in x and taking

their complements. The complements of bases A,C,G, T , are T,G,C,A respec-

tively. Given an m-mer x, x̄ denotes its reverse complement. For example, ACCG =

CGGT .

The canonical form of an m-mer x is the smaller of x and x̄ with respect to the

natural mapping. We denote x’s canonical form by Canonical(x). For example,

Canonical(CGGT) = ACCG.

We refer to the set of all canonical m-mers as cm = {Canonical(x)|x ∈ Σm}.
m-mer orders: An order o on Σm is a function o : Σm −→ R. An order o can

be normalized to onorm : Σm −→ {0, 1, ..., |Σ|m − 1}, with some rule for breaking ties

consistently. We further elaborate on m-mer orders in Section 3.3.

3.2 Minimizers

A minimizer of a sequence s with respect to order o is the smallest m-long contiguous

substring z in s according to o (Roberts et al., 2004; Schleimer et al., 2003). We also

call z the o-minimizer m-mer in s.

9

Within a sequence, m-mer x is smaller than m-mer y according to an order o if:

(i) o(x) < o(y); or (ii) o(x) = o(y) and Natural(x) < Natural(y); or (iii) o(x) = o(y)

and Natural(x) = Natural(y) and x occurs to the left of y in s. In other words,

we break ties according to Natural, and if needed also by choosing the leftmost

appearance of the least m-mer in the sequence.

A minimizer scheme is a function fo,m,k : Σk → [0 : k −m] that selects the start

position of the o-minimizer m-mer in every sequence of length k.

Minimizers are used to partition a sequence as follows (Compare Figure 4).

The sequence is scanned from left to right, and in every window of length k the

minimizer m-mer is chosen. The k-mer is assigned to the partition labeled with the

minimizer. Since the strandedness of the sequence within the genome is unknown, it

is undistibuishable from its reverse-complement, and therefore the canonical mapping

is used. Applying a minimizer scheme fo,m,k over a dataset partitions its k-mers into

at most |cm| partitions, where each partition corresponds to a specific minimizer.

Two important metrics in the evaluation of a minimizer scheme and its partition-

ing quality are particular density and load.

The particular density of a sequence or a set of sequences is defined to be the

number of selected positions of minimizers divided by the number of possible m-mer

positions, using a specific minimizer order. A low particular density implies that

a relatively small number of minimzers were chosen. A low particular density is

preferable in several applications that use minimizers, e.g., read mapping and reads

binning and compression.

Load is a metric used for evaluating the quality of a minimizer order which is

mainly relevant to k-mer counters and genome assembly algorithms. The load of

a minimizer x over a dataset and a fixed k, is the number of distinct k-mers that

their minimizer is x. More precisely, given a minimizer scheme fo,m,k and a dataset

D, the load of x ∈ cm is the number of distinct k-mers in D for which x is the

minimizer (Ben-Ari et al., 2021). We denote it by l(x,D). Similarly, when binning

is used, we define the bin’s load to be the number of distinct k-mers in it.

We also define the relative load of x ∈ cm over dataset D to be x’s load divided

by the total number of distinct k-mers in the dataset. We denote it by r(x,D). The

10

GCATCGACTAGCAA

AGCATCGACTAGCA

TAGCATCGACTAGC

TTAGCATCGACTAG

ATTAGCATCGACTA

GATTAGCATCGACT

CGATTAGCATCGAC

ACGATTAGCATCGA

TACGATTAGCATCG

GTACGATTAGCATC

AGTACGATTAGCAT

AAGTACGATTAGCA

Sequence

AAGTACGATTAGCATCGACTAGCAA

* * * *

*Start positions of selected minimizers

Window Bin

ACT

AGC

ACG

AAG

Super k-mer

GATTAGCATCGACTAGCAA

CGATTAGCATCGAC

AGTACGATTAGCATCGA

AAGTACGATTAGCA

Figure 4: Illustration of a minimizer scheme and binning. Here k = 12
and m = 3. The input sequence is broken into windows of length k, and in each
window the m-long minimizer according to the lexicographic order (shown in bold)
is selected. The k-mer is assigned to the partition whose label is the minimizer.
Consecutive windows tend to select the same minimizer, and the concatenation of
the consecutive windows forms the super-k-mer that is stored in the bin.

11

maximum (relative) load is the (relative) load of the minimizer with the highest (rel-

ative) load. Maximum (relative) load is defined analogously for bins. For example,

a low maximum load is preferable for an economic memory usage in k-mer counting

applications.

Both particular density and load were investigated in recent studies and were

shown to provide meaningful measures of the performance of a minimizer scheme

within a bioinformatic application (Orenstein et al., 2017; Marçais et al., 2017;

Nyström-Persson et al., 2021; Ben-Ari et al., 2021). For example, Ben-Ari et al.

(2021) showed that a small particular density and maximum load improves the effi-

ciency of genome assembly using de Bruijn graphs in the MSP algorithm (Li et al.,

2013).

3.3 m-mer orders

The order used in minimizer schemes is crucial to its efficiency in k-mer counting and

genome assembly algorithms. We will now describe several popular m-mer orders.

We define the lexicographic order to be: olexico(x) = Natural(x).

The following signature order was proposed in Deorowicz et al. (2015) as an

alternative to the lexicographic order. Each m-mer that either starts with AAA or

ACA or contains AA as a substring is called bad. The rest of the m-mers are called

good. The good m-mers are ordered lexicographically, and all of them are defined

to be smaller than the bad m-mers. The bad m-mers are not ordered and are all

mapped to the same value.

We define a variant of the signature order as follows:

osig(x) =

olexico(x) x is good

olexico(x) + 4m x is bad

Note that unlike in Deorowicz et al. (2015) we do order the bad m-mers.

We define a pseudo-random order by performing a xor operation between the

binary representations of a random integer mask α and of the lexicographic order of

12

m-mers. We denote ⊕ as the bitwise xor operation. The random order is formally

defined as follows:

orandom(s, α) ≡ oα(s) = olexico(s)⊕ α

The xor operation is a bijection, and therefore if s ̸= s′ then oα(s) ̸= oα(s′).

The frequency order is a minimizer order based on statistics collected from a spe-

cific dataset (Chikhi et al., 2015). It orders the m-mers in increasing order according

to their frequency in the dataset. For our analysis we defined it as follows: Given a

dataset D, we count m-mer appearances in it, and set

ofrequency(D, x) = count(D, x)

where count is the number of times x appeared in D.

3.4 Partitions, bins and unevenness

In minimizer partitioning each k-mer in the input dataset is assigned to a partition

(e.g., a file on disk) according to its minimizer. Each partition corresponds to only

one minimizer and vice versa. When the number of partitions is too large, partitions

are often combined into a smaller number B of groups called bins, where each bin

contains the k-mers of several minimizers, and each minimizer corresponds to only

one bin. The size of a partition or a bin is the total number of characters in all

k-mers in it.

Several consecutive k-mers that share the same minimizer can be compressed

together. A super-k-mer is the longest substring for which all k-mers have the same

minimizer (Li et al., 2013). Figure 4 shows an example of partitions and super-k-

mers.

Unevenness aims to describe how balanced a minimizer scheme is over a particular

dataset. Given a minimizer scheme fo,m,k and a dataset D, we define its unevenness

13

to be:

U(fo,m,k, D) =
1

|cm|
·
∑
i∈cm

(
r(i,D)− 1

|cm|

)2

.

Recall that |cm| is the number of possible m-long minimizers, and thus the uneven-

ness is the mean squared difference from the uniform distribution of k-mers across

minimizers.

3.5 k-mer counting algorithms

Since k-mer counting is a common process in many bioinformatic applications, many

k-mer counter algorithms were developed in recent years. A naive k-mer counting

algorithm is shown in Algorithm 1.

Current state-of-the-art k-mer counters are Gerbil (Erbert et al., 2017) and

KMC3 (Kokot et al., 2017). Gerbil and KMC3 are similar in their first step and

different in their second step. First, they both distribute the reads dataset into bins

for processing each bin independently. Then, for each bin, KMC3 performs counting

using a sorting mechanism, while Gerbil employs a hash table in order to count the

k-mer appearances.

Algorithm 1 k-mer counting

Input: A set of reads D = (S1, S1, . . . , SM), where |Si| ≥ k.
Output: A mapping containing a key for each k-mer in D with the number of its

appearances in D as value.
1: A ←− a mapping of k-mers to integers
2: for i from 1 to M do
3: for each k-mer s in Si do
4: if s is a key in A then
5: A[s]←− A[s] + 1
6: else
7: A[s]←− 1

8: return A

KMC3 is an improvement of KMC2, which employs the same two stages (Kokot

14

et al., 2017; Deorowicz et al., 2015). It uses a bin mapping algorithm to achieve

more balanced bins, and it uses a better sorting algorithm, which improves runtime

and memory usage. The bin mapping algorithm samples the data, estimates the size

of each minimizer partition, then packs several minimizers into the same bin while

trying to keep the bins balanced. In the first stage, the algorithm distributes the input

reads dataset into bins using the signature order on minimizers. Then it processes

each bin independently. Each bin’s k-mers are sorted and then duplicates are removed

while maintaining a counter for each k-mer. This process outputs the k-mer counts

of the reads dataset. An outline of the algorithm is described in Algorithm 2.

Algorithm 2 KMC3

Input: A set of reads D = (S0, S1, . . . , SM−1), where |Si| ≥ k. m - minimizer length,
B - number of bins.

Output: k-mer counts
1: Distribute k-mers into B bins using the pre-created minimizer-bin mapping
2: for b from 1 to B do
3: Sort bin b in-memory
4: Count k-mer appearances by removing duplicates

5: Merge the k-mer counts of each of the bins
6: Return the unified k-mer count

Gerbil is a memory efficient k-mer counter (Erbert et al., 2017). In a paper that

benchmarked several k-mer counters over several datasets, Gerbil outperformed all

other methods in peak memory usage (Manekar and Sathe, 2018). Gerbil works in

two stages. First it distributes the reads into bins using a minimizer scheme with

the signature order. The distribution heuristic aims to create evenly-sized bins, and

is described in Section 3.7. Each thread in Gerbil loads reads into memory one-by-

one, breaks it into super-k-mers using minimizers with the signature order, yielding

super-k-mers that have only one minimizer in them. It stores the k-mers in the

bins in a memory-efficient manner as super-k-mers and with a 2-bit encoding for the

bases. Each k-mer is distributed to the bin corresponding to its minimizer. Then

Gerbil iterates over the bins. For each bin it loads the stored k-mers sequentially,

and inserts them into a dedicated hash table for the processed bin. The second step

15

creates a k-mer counts for each bin. The counts from all the bins are summed to

yield the k-mer counts for the entire dataset. An outline of the algorithm is shown

in Algorithm 3.

Algorithm 3 Gerbil

Input: A set of reads D = (S1, S2, . . . , SM), where |Si| ≥ k. B - number of bins.
Output: k-mer counts
1: Compute minimizer to bin mapping
2: for i from 1 to M do
3: Break Si into super-k-mers and put each one in the bin corresponding to its

minimizer
4: for i from 1 to B do
5: Count k-mer appearances in bin i

6: Combine the k-mer counts from each bin
7: Return k-mer counts

3.6 Genome assembly algorithms

Many genome assembly algorithms were developed over the years (Idury and Wa-

terman, 1995; Myers et al., 2000; Zerbino and Birney, 2008; Chikhi et al., 2016; Li

et al., 2013; Ben-Ari et al., 2021). Some algorithms perform assembly from scratch

(de novo), while others try to assemble the genome via mapping sequences into an

existing partially assembled genome. We will focus on de novo genome assemblers.

Older genome assemblers used the overlap-layout-consensus (OLC) paradigm in

order to perform assembly, while most modern algorithms use de Bruijn graphs or

similar variations of it in order to perform it (Li et al., 2011). The latter paradigm

is considered to be superior in terms of memory and running time. We will now

elaborate on the two different approaches for genome assembly.

The OLC paradigm consists of 3 stages as its name suggests: (i) Overlap; (ii) Lay-

out (iii) Consensus. The overlap step finds overlaps between all reads: For each read

is finds all the other reads whose prefix overlaps with its suffix. This action creates

a graph with vertices corresponding to reads and directed edges between reads cor-

respond to an overlap relation. The layout step tries to merge adjacent reads in the

16

overlap graph, to create long contigs, a long string composed of multiple reads. The

merging of reads into contigs is a delicate task, since a merge action of two reads

must take into account all neighbors of both reads, so the merge action wouldn’t

contradict the overlap relation with other reads. The consensus step tries to correct

sequence errors in contigs. Sequencing errors are common, and therefore this step

makes the assembly’s result more reliable. Upon finishing the three stages, the long

corrected contigs are the result of the genome assembly.

The OLC method requires great computational power, as the overlap graph re-

quires the comparison of all reads with all the other reads. The size of the overlap

graph is potentially very large, requiring a large amount of memory and CPU.

We will now outline the de Bruijn graph assembly method. A de Bruijn graph

(DBG) is a directed graph data structure with a special restrictions over its vertices

and edges. Firstly, we define an alphabet Σ and fix k. Each vertex corresponds to

a k-mer over Σ, and each k-mer is represented at most once in the graph. Each

edge connects two vertices if and only if the corresponding k-mers overlap in k − 1

characters. More precisely, (u, v) ∈ E if and only if the last k− 1 characters of u are

v’s k − 1 first.

When using a de Bruijn graph for assembly, reads are broken into overlapping

k-mers, and each k-mer is introduced into the graph. Upon building the graph it

is common to compact it by merging long non-branching paths (i.e., a path whose

vertices have an in- and out-degree of 1).

The use of de Bruijn graphs in genome assembly was first suggested by Idury

and Waterman (1995), and prompted the fast improvement and evolution of genome

assembly algorithms. It allowed the design and development of faster and more

memory efficient algorithms. Moreover, since de Bruijn graphs have a restricted

structure and bounded in-and-out-degrees, it is easier to work with compared to the

huge overlap graphs produced by the OLC paradigm.

In recent years, Chikhi et al. (2016) developed BCALM2, and Holley and Melsted

(2020) developed Bifrost. These algorithms are considered to be the state algorithms

for compacting the de Bruijn graph.

The minimum substring partitioning (MSP) algorithm constructs the de Bruijn

17

graph for a given reads dataset (Li et al., 2013). MSP consists of three stages:

partitioning, mapping and merging. Partitioning is the distribution of the input

dataset into bins, using minimizers and hashing of minimizers to bins. The mapping

step creates, for each bin independently, a de Bruijn graph of its sequences. The

merging step merges these graphs into the final de Bruijn graph of the whole dataset.

BCALM2 is an algorithm for constructing the compacted de Bruijn graph quickly

and in low memory (Chikhi et al., 2016). The algorithm’s input is the set of all k-mers

in the dataset (i.e., it does not work directly on the reads dataset), thus requiring

to run a k-mer counter prior to its own run. The use of the most economic k-mer

counter prior to running BCALM2 will allow for further reduction in the overall time

and memory requirements of the process of creating the compacted de Bruijn graph.

3.7 Mapping minimizers to bins in Gerbil and KMC3

k-mer counters use a small, fixed number of bins (e.g., 512 in Gerbil) and assign

multiple partitions to the same bin. The mapping of minimizers into bins could

be performed randomly (e.g., using a random hash), but many k-mer counters use

heuristics that aim to balance the loads of the bins better. We note that achieving an

optimal distribution of minimizers to bins is equivalent to the NP-Hard problem of

optimal identical machines scheduling with minimum makespan (Garey and Johnson,

1979). There exist complex heuristics and polynomial time approximation schemes

for this problem (Vazirani, 2003). However, in practice k-mer counting tools use

simple heuristics without guarantees, in the interest of runtime and simplicity.

Gerbil tries to group together minimizers that appear earlier in the order (and

thus are intuitively likely to have higher load) with those that appear later. Specif-

ically, minimizers are handled in increasing signature order and the next k-mer is

added to the next bin. The order of the bins to which minimizers are added is

reversed each time a minimizer has been added to every bin.

KMC3 samples a portion of the dataset in order to estimate the partition size

of each minimizer (Kokot et al., 2017). After collecting the statistics it adds 1000

to each partition size and then sorts the minimizers by their sampled counts from

18

the largest to the smallest. Minimizers are mapped to the current bin until its size

exceeds the average remaining bin size, and then a new bin is opened, and the process

continues in that bin. An outline of the process is described in Algorithm 2.

19

4 Methods

We developed an algorithm called AdaOrder that constructs a minimizer order with

low maximum load for a given dataset, based on statistics collected on the dataset.

We also implemented a sampling process that estimates the total size of each par-

tition. These estimates are used to determine an efficient mapping of minimizers

to bins, similar to KMC3. The process is schematically as follows: (i) Compute a

minimizer order using AdaOrder; (ii) Estimate the minimizer partition sizes by sam-

pling; (iii) Map minimizers to bins using the estimates from (ii). We integrated this

process into Gerbil and call the modified algorithm DGerbil.

4.1 AdaOrder

AdaOrder is a heuristic that aims to produce a minimizer order with low maximum

minimizer load in a given dataset. AdaOrder starts with the scheme foinit,m,k and

works in R rounds. In each round it samples N k-mers from the dataset in order to

capture a minimizer with a large load. A single round proceeds as follows: (i) Iterate

over the dataset’s reads sequentially; (ii) For each read scan through all of its k-

mers and identify minimizers; (iii) Compute the load of each minimizer according to

the sampled k-mers; (iv) After sampling at least N k-mers identify the minimizer z

with the highest sample load. In case of ties, choose the lexicographically smallest

minimizer. Alter the current order by increasing the rank of z by p · 4m, where p is

a penalty factor. This makes z less likely to be chosen as a minimizer, thus lowering

its load. Algorithm 4 describes AdaOrder.

In our implementation of AdaOrder some optimizations were introduced to Al-

gorithm 4 for a faster running time. See Supplementary Section S4 for details.

4.2 Mapping minimizers to bins

We first estimate each partition size through sampling (Supplementary Algo-

rithm S1), and then map minimizers to bins using these estimates. The bin mapping

algorithm is shown in Algorithm 5; it heavily relies on KMC3’s implementation.

20

Algorithm 4 AdaOrder

Input: A set of reads D = (S0, S1, . . . , SM−1), where |Si| ≥ k.
A minimizer scheme foinit,m,k. R - number of rounds, N - number of samples per
round, p - penalty factor.

Output: A minimizer scheme fo′,m,k.
1: read ←− 0
2: o ←− oinit
3: for round from 1 to R do
4: sampled ←− 0
5: for all m-mers y do Hy ←− an empty hash table

6: while sampled < N do
7: for i from 0 to |Sread| − k do
8: x ←− the o-minimum m-mer of Sread(i)
9: Insert Canonical(Sread(i)) into Hx

10: sampled ←− sampled + 1

11: read ←− read + 1

12: z ←− m-mer with largest |Hz|
13: o(z)←− o(z) + p · 4m

14: Return fo,m,k

The only differences are: (i) counts are not modified, and (ii) k-mers with zero count

are spread evenly across the bins.

4.3 DGerbil

DGerbil is a variant of the memory efficient k-mer counter Gerbil. It integrates

AdaOrder initialized with signature order and our bin mapping algorithm into Gerbil.

The use of AdaOrder aims to lower the maximum bin load, in order to lower the

RAM usage. The algorithm for DGerbil is shown in Algorithm 6. Gerbil’s binning

method and counting method are described in Section 3.5.

21

Algorithm 5 BinMapping

Input: Dataset D. M - minimizer length. B - number of bins.
Output: A mapping of the partitions to bins.
1: Sample D and obtain a count c(m) for each minimizer m
2: Map minimizers with c(m) = 0 evenly across B bins
3: Sort minimizers with c(m) ̸= 0 in decreasing order of c(m)
4: nb = B; Tot =

∑
m c(m) ▷ #remaining bins; total size of remaining partitions

5: m = 1 ▷ the minimizer with largest size that is still unmapped
6: for bin from 1 to B do
7: Mean = Tot/nb ▷ mean size of the remaining bins
8: size = 0 ▷ filled size of the current bin
9: while size < Mean do
10: add c(m) to size, map m to bin bin and increase m by 1

11: Tot = Tot− size; nb = nb− 1

12: Return the mapping of partitions to bins and the filled bin sizes

Algorithm 6 DGerbil

Input: A set of reads D = (S0, S1, . . . , SM−1), where |Si| ≥ k. m - minimizer length,
R - number of rounds, N - number of samples per round, p - penalty factor, B -
number of bins, E - number of k-mers to sample.

Output: k-mer counts
1: Generate minimizer ordering, order, using AdaOrder initialized with osig

(Algorithm 4)
2: Collect minimizer partition sizes, stats, using MinimizerStats (Algorithm S1)

and order
3: Create a mapping of minimizers to bins, mapping, using BinMapping

(Algorithm 5) and stats
4: Apply Gerbil’s binning method over D using order and mapping
5: Use Gerbil’s counting method to count k-mers in each bin
6: Return k-mer counts

4.4 FGerbil

For the sake of comparison, we also implemented a variant of Gerbil that uses fre-

quency order, called FGerbil. It first counts how many times each m-mer appeared

in the dataset, and orders m-mers by their frequency. It then uses the resulting

22

frequency order within Gerbil, and performs bin mapping as DGerbil does.

4.5 Source code

The methods and code base to run AdaOrder and DGerbil are available at github.

com/Shamir-Lab/AdaOrder. AdaOrder is coded in Java, while DGerbil is a modifi-

cation of Gerbil’s C++ code.

23

github.com/Shamir-Lab/AdaOrder
github.com/Shamir-Lab/AdaOrder

Dataset Size (109 bytes) Avg. read length Species
HS1 292 151 H. sapiens
HS2 347 202 H. sapiens
AT 72.7 4804 A. Thaliana
FW 406 300 Fresh water metagenome
FV 14.1 508 F. vesca
NC 45.9 7778 N. crassa
DM 10.7 152 D. melanogaster
MB 198 101 M. balbisiana

Table 1: Characteristics of the benchmark datasets. Note that the SRA toolkit
merges pair-end reads into a single read by default when downloading, and therefore
the pair-end reads of HS2, MB, DM, FV and FW were merged and the reported read
length is after the merge.

5 Results

We tested the performance of AdaOrder and several popular orders on multiple

datasets, and also compared the performance of DGerbil (which uses AdaOrder),

FGerbil (which uses frequency), and the original Gerbil.

We used eight datasets; seven were those used in a recent k-mer counter bench-

mark (Manekar and Sathe, 2018); the eighth was a large freshwater metagenomic

dataset (FW (Mehrshad et al., 2018), SRR6787039). See Table 1 for the properties

of the datasets. Both AT and NC are long reads datasets collected using the PacBio

technology.

Throughout this section, the default parameters used for AdaOrder, unless stated

otherwise, were oinit = osig, R = 104, N = 105, and p = 0.01. The choice of these

parameters is discussed in Supplementary Section S3. For the frequency order

we collected statistics over the entire dataset. Minimizer length was always m = 7.

5.1 AdaOrder reduces maximum load and unevenness

We applied the lexicographic, signature, random, frequency and AdaOrder orders on

four large datasets for k = 28 and 55. We used the same values of k as in Manekar

24

Dataset k Lexicographic Random Signature AdaOrder Frequency

HS1
28 78.5 20.1 14.6 5.7 3.0
55 157.1 51.7 36.7 10.2 4.8

HS2
28 83.7 22.1 15.6 5.8 3.1
55 175.3 60.0 41.7 9.9 5.1

FW
28 58.1 54.0 27.1 11.0 5.3
55 112.3 70.2 58.8 19.0 8.6

AT
28 35.1 4.7 12.0 0.6 0.5
55 6.0 1.2 3.7 0.8 0.3

Table 2: Maximum load ×10−6

and Sathe (2018). In the random order we used a different random mask for each

generated order. Maximum load and unevenness results are shown in Table 2 and

Table 3, respectively. Frequency order consistently had the lowest maximum load

and unevenness followed by AdaOrder, while the predefined orders were substantially

worse.

We also calculated the distribution of load across minimizers for each order. In

Figure 5a we plot the load of the 1000 minimizers with the highest load on HS2

using k = 55 for the different orders. AdaOrder and frequency distributed the k-mers

much more evenly across these minimizers than the other orders, in line with the

results in Table 2 and Table 3. Figure 5b shows the cumulative distribution of the

load for all minimizers. AdaOrder and frequency order did a good job in balancing

the top loads compared to the other orders. For example, when using signature,

∼ 20% of k-mers were covered by the top 20 minimizers, while AdaOrder used the

100 top minimizers to cover ∼ 20% of the k-mers.

The number of minimizers used also differed substantially between orders: 7731

for frequency, 4940 for AdaOrder, 4939 for signature, 2694 for lexicographic and 3828

for the random order. Interestingly, AdaOrder achieved much lower and more even

maximum loads than the signature order while still using a very similar number of

minimizer partitions, whereas frequency order used many more minimizers to achieve

better performance.

25

(a)

(b)

Figure 5: Distribution of loads across minimizers. Results are for HS2 with k =
55. (a) Load of the 1000 minimizers with highest load. (b) Cumulative distribution
of the load of all minimizers. In both figures minimizers were sorted in decreasing
load for each order.

26

Dataset k Lexicographic Random Signature AdaOrder Frequency

HS1
28 4.6 2.6 2.5 1.0 0.4
55 11.4 4.5 5.2 1.6 0.6

HS2
28 4.6 2.0 2.5 1.0 0.4
55 11.6 3.7 5.2 1.5 0.5

FW
28 1.8 2.1 1.8 0.9 0.3
55 4.2 4.4 3.8 1.9 0.6

AT
28 18.0 3.1 4.0 0.7 0.2
55 168.5 15.9 63.4 5.7 2.2

Table 3: Unevenness ×107

5.2 The effect of R, N and p on maximum load and uneven-

ness

We explored the impact of each of the input parameters R, N , and p of AdaOrder

on the maximum load and unevenness. This analysis can help in the choice of

parameters in AdaOrder. In Supplementary Section S1 we performed a statistical

analysis of the accuracy of sampling-based load estimation, which sheds light on the

recommended size of N . We tested various combinations of R, N and p. In each test

we fixed two parameters to their default values and varied the third. All the tests

were performed on the HS2 dataset with k = 55. We chose HS2 for this experiment

since it is a large dataset and since we were particularly interested in the performance

for H. sapiens.

Figure 6a shows the effect of varying R. We observe that both maximum load

and unevenness drop drastically from the baseline within relatively few rounds (note

that the x axis is logarithmic). The load plateaus after around 104 rounds, while

unevenness keeps decreasing slowly. The trends are similar for sample size 100, 000

and 1, 000, 000.

Figure 6b shows the effect of varying N , the sample size per round. Both max-

imum load and unevenness decrease consistently until N = 100, 000., with smaller

and less clear decrease for larger N . This demonstrates the benefit of choosing a

large sample.

27

Figure 6c shows the effect of varying p, the penalty factor. The load decreases

first as p increases, but no clear trend is observed for p ≥ 0.1, where substantial jumps

are observed in the load. A similar trend but with lower variability is observed

for unevenness. The trends are similar when using 5000 and 10000 rounds. The

high variability for high values of p is likely due to large changes in the order in

the final rounds after all the top loads have already been made relatively even.

Supplementary Figure S1 shows a similar analysis for N = 104−108 and different

number of rounds.

Based on the analysis above and the theoretical analysis in Supplementary

Section S1 we established recommended parameters for running AdaOrder. See

Supplementary Section S3 for details.

5.3 Transferring the order across datasets

We wished to see whether an order produced on one dataset can assist in creating

good orders for other datasets from the same species, either by running it as is, or by

using it as a starting order in the optimization for the other datasets. We reasoned

that if this is the case, then it could speed up the process of producing good orders

for other datasets from the same species.

Suppose we have a source dataset src and a destination dataset dst. We apply

AdaOrder on src and use that order on dst. We performed two experiments: One

where src was HS1 and dst was HS2, and another where src was HS2 and dst was

HS1. We ran AdaOrder with k = 28 and k = 55 over src and tested the efficiency of

the minimizer order it produced over dst. We also ran AdaOrder over dst, initialized

with the order produced by AdaOrder for src.

The results are shown in Figure 7 and Figure 8. We see that transferring the

order works similarly to the AdaOrder results produced for the destination dataset

independently of src (the dashed green line). Moreover, starting from the src order,

the algorithm can improve unevenness and maximum load within far fewer optimiza-

tion rounds compared to running AdaOrder for dst from scratch (< 1000 vs. 104).

We conclude that the order can be transferred across datasets from the same species,

28

(a)

(b)

(c)

Figure 6: Maximum load and unevenness when varying parameters R, N
and p in AdaOrder. Each graph shows the performance when varying a single
parameter. (a) Impact of varying R, the number of rounds. The dashed red line
corresponds to the maximum load and unevenness value of the signature order with
which it is initialized. (b) Impact of changing the sample size N . (c) Impact of the
penalty factor p.

29

saving most of the running time and preserving the order quality.

5.4 DGerbil reduces memory usage

We compared the performance of Gerbil, DGerbil and FGerbil. All algorithms were

run with 512 bins and k = 28, 55, 70, 90 on each dataset (28 and 55 were used in

Manekar and Sathe (2018)). All the experiments were measured on a 128-core server

with 64 3.35 GHz CPUs and 1000GB of RAM (AMD EPYC 7702). We ran all

algorithms with 12 threads, the same number of threads as in Manekar and Sathe

(2018). The storage used in our experiments is an external NFS storage, and all IO

operations were performed against it (e.g., reading datasets and writing temporary

and output files). The RAM usage of AdaOrder was externally limited to a maximum

of 1.6GB (we used Java’s Xmx flag to limit the program’s heap size). The goal of

the limit was to keep memory small enough while allowing AdaOrder to run fast.

The results for the four datasets with the highest RAM usage are shown in Fig-

ure 9. The results for the other four datasets are in Supplementary Figure S2.

The figures show the runtime and RAM usage on each dataset. For DGerbil the time

of AdaOrder is shown separately. Similarly, for FGerbil, the time of computing the

frequency order is shown separately. DGerbil used consistently lower RAM except

for the smallest value of k (28), where Gerbil was more memory-efficient. All tools

tended to use more memory as k increased. Similar RAM trends were observed for

the other datasets (Supplementary Figure S2) though absolute numbers were

lower.

In terms of time, it took an average of 6m 50s to run AdaOrder and to collect

statistics for binning. This runtime was roughly constant as the sampling process

does not depend on the dataset size. For frequency it took on average about 39

minutes to finish collecting statistics for the order and for the binning. For the

smaller datasets shown in Supplementary Figure S2 the runtime of Gerbil was

already very low and therefore the time to run AdaOrder or frequency dominated

that of the k-mer counting.

30

(a) Maximum load

(b) Unevenness

Figure 7: Order transfer from HS1 to HS2. The value at round 0 corresponds
to applying the HS1 order as is on HS2. The dashed lines correspond to the values
obtained by running AdaOrder on HS2 with the default initialization, for different
number of rounds.

31

(a) Maximum load

(b) Unevenness

Figure 8: Order transfer from HS2 to HS1. The value at round 0 corresponds
to applying the HS2 order as is. The dashed lines correspond to the values obtained
by running AdaOrder on HS1 with the default initialization, for different number of
rounds.

32

(a) RAM usage
(b) Runtime

Figure 9: Performance of Gerbil, FGerbil and DGerbil. (a) RAM usage. (b)
Runtime. For DGerbil and FGerbil, AdaOrder and Frequency times for creating the
order and collecting binning statistics are shown separately.

33

6 Discussion

We developed AdaOrder, an algorithm for creating an improved minimizer order

on a given dataset by repeatedly adjusting the order to reduce the maximum load.

AdaOrder significantly reduced maximum load and unevenness compared to the

signature order and to other predefined orders. The load and unevenness of the fre-

quency order were even better, but they did not translate to a better k-mer counting

algorithm (see below). AdaOrder was integrated into the k-mer counter Gerbil to-

gether with a k-mer sampling method in order to map minimizers into bins. This

reduced memory usage of Gerbil by 30-50% for medium and large k.

AdaOrder has a roughly constant runtime of under seven minutes regardless of

the size of the dataset. For small datasets the absolute reduction in the memory

usage is minor, and the running time of AdaOrder dominates the k-mer counting

process, so using AdaOrder is not advantageous. The main advantage of AdaOrder

is on larger datasets, especially when longer k-mers are used. In these cases the

memory savings are substantial, while the additional time required to run AdaOrder

is relatively minor.

DGerbil outperformed Gerbil in memory, but required a bit more time. We

demonstrated that by transferring an order precomputed by AdaOrder on another

dataset of the same species, most or all of this time can be saved, thus matching

Gerbil’s time and cutting memory by 30%− 50% on large k values.

Interestingly, applying only one of our modifications to Gerbil individually –

using AdaOrder instead of signature order, or mapping minimizers to bins based

on k-mer sampling statistics – actually increased the memory usage (results not

shown). Hence, we suspect that multiple factors (maximum load, the algorithm

for bin mapping, and details of the implementation) together determine the actual

memory usage of Gerbil.

Specific implementation details of Gerbil may also explain some of the other

results we observed. For example, Gerbil decides in advance what hash table size

to use for a bin based on the number of k-mers written to it, and on the ratio of

distinct k-mers to total k-mers in the previous bin. Choosing a hash table size that

34

is too big wastes memory, while choosing one that is too small increases running

time. Since this heuristic and its parameters were optimized in Gerbil, this may

explain why Gerbil has better performance for the smallest k values tested (k = 28).

Similar considerations may explain why the frequency order fails to improve Gerbil:

The distribution of minimizer loads is very different from what Gerbil expects and

is implemented to optimize.

Several areas for improvement and open questions remain. First, can one improve

AdaOrder by dynamically choosing values for the parameters R, N , and p? (i) Our

analysis suggests that the number of samples per round should not be fixed through-

out the entire process, as it depends both on the maximum relative load and on the

difference between the top relative loads, both of which decrease as the algorithm

progresses. (ii) Having a stopping condition for the entire process instead of a fixed

number of rounds could be beneficial, as we observed that AdaOrder continues to

alter the order even after it is no longer beneficial. (iii) One may want to penalize

the maximum load minimizer in a round as a function of how large the estimated

maximum relative load is (i.e., if the maximum load is larger then we would like p

to be larger). (iv) Is maximum load the best metric to measure the performance of

a minimizer scheme when optimizing an order to a dataset? We know that without

binning of partitions, the maximum load upper bounds the peak memory usage in

hash table based k-mer counters, and therefore is near optimal. But is maximum

load efficient in pointing which minimizer should be punished in AdaOrder? Is there

a better metric to use in the iterative punishment of AdaOrder? Together, some or

all of these ideas could improve the algorithm further.

Second, most existing methods that employ minimizers and orders to partition

datasets in k-mer counting and genome assembly algorithms are not based on the

properties of the dataset of interest. As far as we know, only Chikhi et al. (2015) with

the frequency order and Nyström-Persson et al. (2021) with the universal frequency

order, have tried to improve the efficiency of the minimizer algorithm using statistics

of the target dataset. Both obtained superior performance in comparison to exist-

ing predefined orders. Our approach using AdaOrder had reaffirmed that sequence

target-based orders outperform predefined orders. Unlike the previous studies, we

35

used an iterative optimization of the order and did not create it in one pass over

the dataset. Both the iterative and the one pass approach have caveats and are not

optimal with respect maximum load. Further research on minimizers and orders is

needed to uncover better and perhaps even optimal methods for creating a minimizer

order. As all sequence target-based methods for creating datasets are heuristic and

do not have a rigorous mathematical basis for their efficiency, further research into

the problem of optimizing a minimizer order is required.

Of the two sequence target-based orders we tested, the frequency order achieved

superior maximum load and unevenness results compared to AdaOrder. However, its

use in Gerbil required more RAM compared to DGerbil. This raises another question

- can we design a new k-mer counter, whose performance matches the performance of

a minimizer scheme it uses? Designing such a k-mer counter may be the missing piece

in achieving a very time and memory efficient application. Leveraging frequency’s

potential in such a k-mer counter may lead to extraordinary results.

In summary, we have demonstrated the utility of directly optimizing the maxi-

mum load of a minimizer order in binning applications. Using AdaOrder in Gerbil

further improved its RAM usage, especially for longer k-mers. This approach has

potential to reduce the memory footprint of other sequence analysis algorithms on

large datasets.

36

References

M. N. U. Alam and U. F. Chowdhury. Short k-mer abundance profiles yield robust

machine learning features and accurate classifiers for RNA viruses. PLOS ONE,

15(9):1–23, 09 2020. doi: 10.1371/journal.pone.0239381. URL https://doi.org/

10.1371/journal.pone.0239381.

A. J. Annalora, S. O’Neil, J. D. Bushman, J. E. Summerton, C. B. Marcus, and

P. L. Iversen. A k-mer based transcriptomics approach for antisense drug discovery

targeting the ewing’s family of tumors. Oncotarget, 9:30568 – 30586, 2018.

Y. Ben-Ari, D. Flomin, L. Pu, Y. Orenstein, and R. Shamir. Improving the effi-

ciency of de Bruijn graph construction using compact universal hitting sets. In

Proceedings of the 12th ACM Conference on Bioinformatics, Computational Bi-

ology, and Health Informatics, BCB ’21, New York, NY, USA, 2021. Association

for Computing Machinery. ISBN 9781450384506. doi: 10.1145/3459930.3469520.

URL https://doi.org/10.1145/3459930.3469520.

G. Benson and M. S. Waterman. A method for fast database search for all k -

nucleotide repeats. Nucleic Acids Research, 22(22):4828–4836, 11 1994. ISSN

0305-1048. doi: 10.1093/nar/22.22.4828. URL https://doi.org/10.1093/nar/

22.22.4828.

F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. Krakenuniq: confident and fast

metagenomics classification using unique k-mer counts. Genome Biology, 19(1):

198, Nov 2018. ISSN 1474-760X. doi: 10.1186/s13059-018-1568-0. URL https:

//doi.org/10.1186/s13059-018-1568-0.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology.

SIAM Journal on Applied Mathematics, 48(5):1073–1082, 1988. doi: 10.1137/

0148063. URL https://doi.org/10.1137/0148063.

R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev. On the

37

https://doi.org/10.1371/journal.pone.0239381
https://doi.org/10.1371/journal.pone.0239381
https://doi.org/10.1145/3459930.3469520
https://doi.org/10.1093/nar/22.22.4828
https://doi.org/10.1093/nar/22.22.4828
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1137/0148063

representation of de Bruijn graphs. Journal of Computational Biology, 22(5):336–

352, 2015.

R. Chikhi, A. Limasset, and P. Medvedev. Compacting de Bruijn graphs from

sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208,

06 2016. ISSN 1367-4803. doi: 10.1093/bioinformatics/btw279. URL https:

//doi.org/10.1093/bioinformatics/btw279.

F. H. C. Crick, J. D. Watson, and W. L. Bragg. The complementary structure of de-

oxyribonucleic acid. Proceedings of the Royal Society of London. Series A. Math-

ematical and Physical Sciences, 223(1152):80–96, 1954. doi: 10.1098/rspa.1954.

0101. URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.

1954.0101.

S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz. KMC 2: fast and

resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

F. Dewey, S. Pan, M. Wheeler, S. Quake, and E. Ashley. DNA sequencing: Clinical

applications of new DNA sequencing technologies. Circulation, 125:931–44, 02

2012. doi: 10.1161/CIRCULATIONAHA.110.972828.

M. Erbert, S. Rechner, and M. Müller-Hannemann. Gerbil: a fast and memory-

efficient k-mer counter with GPU-support. Algorithms for Molecular Biology, 12

(1):9, Mar 2017. ISSN 1748-7188. doi: 10.1186/s13015-017-0097-9. URL https:

//doi.org/10.1186/s13015-017-0097-9.

D. Flomin, D. Pellow, and R. Shamir. Dataset-adaptive minimizer order reduces

memory usage in k-mer counting. To appear in J. Computational Biology, 2022.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W.

H. Freeman, first edition, 1979. ISBN 0716710455. URL http://www.amazon.

com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/

dp/0716710455.

38

https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1954.0101
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1954.0101
https://doi.org/10.1186/s13015-017-0097-9
https://doi.org/10.1186/s13015-017-0097-9
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455

S. Goodwin, J. Mcpherson, and W. McCombie. Coming of age: Ten years of next-

generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351, June

2016. ISSN 1471-0056. doi: 10.1038/nrg.2016.49.

G. Holley and P. Melsted. Bifrost: highly parallel construction and indexing of

colored and compacted de Bruijn graphs. Genome Biology, 21:249, 09 2020. doi:

10.1186/s13059-020-02135-8.

R. M. Idury and M. S. Waterman. A new algorithm for DNA sequence assembly.

Journal of computational biology, 2(2):291–306, 1995.

C. Jain, A. Rhie, H. Zhang, C. Chu, B. P. Walenz, S. Koren, and A. M. Phillippy.

Weighted minimizer sampling improves long read mapping. Bioinformatics, 36

(Supplement 1):i111–i118, 07 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/

btaa435. URL https://doi.org/10.1093/bioinformatics/btaa435.

M. Kokot, M. D lugosz, and S. Deorowicz. KMC 3: counting and manipulating k-mer

statistics. Bioinformatics, 33(17):2759–2761, 05 2017. ISSN 1367-4803. doi: 10.

1093/bioinformatics/btx304. URL https://doi.org/10.1093/bioinformatics/

btx304.

H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34

(18):3094–3100, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty191.

URL https://doi.org/10.1093/bioinformatics/bty191.

Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan, and S. Suri. Memory efficient min-

imum substring partitioning. In Proceedings of the VLDB Endowment. VLDB

Endowment, 2013.

Y. Li et al. MSPKmerCounter: a fast and memory efficient approach for k-mer

counting. arXiv preprint arXiv:1505.06550, 2015.

Z. Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li, X. Hu, B. Liu,

B. Yang, and W. Fan. Comparison of the two major classes of assembly algorithms:

overlap–layout–consensus and de-Bruijn-graph. Briefings in Functional Genomics,

39

https://doi.org/10.1093/bioinformatics/btaa435
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/bty191

11(1):25–37, 12 2011. ISSN 2041-2649. doi: 10.1093/bfgp/elr035. URL https:

//doi.org/10.1093/bfgp/elr035.

S. C. Manekar and S. R. Sathe. A benchmark study of k-mer counting meth-

ods for high-throughput sequencing. GigaScience, 7(12), 10 2018. ISSN 2047-

217X. doi: 10.1093/gigascience/giy125. URL https://doi.org/10.1093/

gigascience/giy125. giy125.

G. Marçais, D. Pellow, D. Bork, Y. Orenstein, R. Shamir, and C. Kingsford. Im-

proving the performance of minimizers and winnowing schemes. Bioinformatics,

33(14):i110–i117, 2017.

M. Mehrshad, M. M. Salcher, Y. Okazaki, S.-i. Nakano, K. Šimek, A.-S. Andrei, and

R. Ghai. Hidden in plain sight—highly abundant and diverse planktonic freshwater

chloroflexi. Microbiome, 6(1):1–13, 2018.

E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,

S. A. Kravitz, C. M. Mobarry, K. H. J. Reinert, K. A. Remington, E. L. Anson,

R. A. Bolanos, H.-H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M.

Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern,

M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, and J. C. Venter. A

whole-genome assembly of ¡i¿drosophila¡/i¿. Science, 287(5461):2196–2204, 2000.

doi: 10.1126/science.287.5461.2196. URL https://www.science.org/doi/abs/

10.1126/science.287.5461.2196.

J. Nyström-Persson, G. Keeble-Gagnère, and N. Zawad. Compact and evenly dis-

tributed k-mer binning for genomic sequences. Bioinformatics, 03 2021. ISSN

1367-4803. doi: 10.1093/bioinformatics/btab156. URL https://doi.org/10.

1093/bioinformatics/btab156. btab156.

Y. Orenstein, D. Pellow, G. Marçais, R. Shamir, and C. Kingsford. Designing small

universal k-mer hitting sets for improved analysis of high-throughput sequencing.

PLoS Computational Biology, 13(10):e1005777, 2017.

40

https://doi.org/10.1093/bfgp/elr035
https://doi.org/10.1093/bfgp/elr035
https://doi.org/10.1093/gigascience/giy125
https://doi.org/10.1093/gigascience/giy125
https://www.science.org/doi/abs/10.1126/science.287.5461.2196
https://www.science.org/doi/abs/10.1126/science.287.5461.2196
https://doi.org/10.1093/bioinformatics/btab156
https://doi.org/10.1093/bioinformatics/btab156

M. D. Purugganan and S. A. Jackson. Advancing crop genomics from lab to field.

Nature Genetics, 53(5):595–601, May 2021. ISSN 1546-1718. doi: 10.1038/

s41588-021-00866-3. URL https://doi.org/10.1038/s41588-021-00866-3.

M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Reducing

storage requirements for biological sequence comparison. Bioinformatics, 20(18):

3363–3369, 2004.

S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for

document fingerprinting. In Proceedings of the 2003 ACM SIGMOD International

conference on Management of data, pages 76–85. ACM, 2003.

J. Shendure and H. Ji. Next-generation DNA sequencing. Nature Biotechnology, 26

(10):1135–1145, Oct 2008. ISSN 1546-1696. doi: 10.1038/nbt1486. URL https:

//doi.org/10.1038/nbt1486.

V. V. Vazirani. Minimum makespan scheduling. In Approximation Algorithms, pages

79–83. Springer, 2003.

D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome research, 18(5):821–829, 2008.

41

https://doi.org/10.1038/s41588-021-00866-3
https://doi.org/10.1038/nbt1486
https://doi.org/10.1038/nbt1486

Supplementary information

S1 Accuracy of sampling-based load estimation

A key parameter in AdaOrder is N , the number of k-mers it samples in each round. If

N is too small, then the penalized minimizer may not actually have a true high load.

If it samples too many k-mers then the output minimizer scheme may be superior, but

RAM usage and running time will increase. Here we provide a theoretical analysis to

guide the choice of N so as to balance AdaOrder’s resource usage and the performance

of the output minimizer scheme.

We bound the probability of deviation of an estimated load from its true value

as a function of N as follows. Let x be a minimizer with true relative load r on

dataset D. Let S ⊆ D be a subset with N sampled k-mers. Since k is long and N is

relatively small compared to the number of possible k-mers, we make the assumption

that the sampled k-mers are distinct. Assume that the sampling process is binomial,

namely, x has probability r to be the minimizer of a k-mer. Then for a large enough

N we expect x’s sample load to be

l(x, S) ≈ r ·N

We are interested in choosing N so that the difference from the true relative load is

less than δ. The probability of that event is

P [(1− δ) ·N · r ≤ l(x, S) ≤ (1 + δ) ·N · r] ≥
⌊(1+δ)·N ·r⌋∑

j=⌈(1−δ)·N ·r⌉

(
N

j

)
· rj · (1− r)N−j

The expression on the left describes the chance that a sampled load differs by at

most a factor of δ from the expected sampled load. We lower-bounded this probability

by the binomial sum on the right, denoted as ρ(N, r, δ). This bound can guide us

in choosing a value for N , by computing it for typical r values, and a small enough

value for δ.

Our empirical results showed that for m = 7, maximum load m-mers have rel-

42

r 0.05 0.01 0.002
N 10000 10000 50000 50000 100000

ρ(N, r, δ) 0.97 0.68 0.97 0.68 0.84

Table S1: Sampling estimation accuracy for different values N , r and for
δ = 0.1.

ative load of ∼ 0.01 − 0.06 for pre-defined orders used in practice (e.g., signature

or lexicographic). For example, in human dataset HS2 with k = 55 the maximum

load was 0.056 for lexicographic and 0.013 for signature. Table S1 provides values

for ρ(N, r, δ) using different combinations of N and r, with a fixed δ = 0.1. We see

that N = 50000 − 100000 gives a high probability to estimate the load of m-mers

accurately for realistic loads. (For m > 7 we expect the maximum relative load to

be smaller, requiring larger values of N .)

The above bound is for the load estimate of a single minimizer, but is not nec-

essarily accurate for the maximum load. How good the estimate of the maximum

load minimizer is depends on how close the second highest load is: if it is close to

the maximum, then the identified maximum load minimizer may be incorrect, while

if it is far from the maximum, then we can likely estimate the correct maximum

minimizer with high accuracy.

In AdaOrder, by design, the top loads decrease and get closer to each other as

the iterations progress. We therefore want to have a low probability for a minimizer

with a small relative load to end up with the largest count when sampling in an

iteration. We do not necessarily expect AdaOrder to detect the exact minimizer

with the highest load, but rather a minimizer with a high relative load (e.g., with

one of the n highest relative loads). Therefore we wish to bound the probability that

a minimizer with a low true relative load r̂ that is smaller than the top n relative

loads will mistakenly have an estimated sample load X larger than all of the top n

loads.

Assume that the relative loads for the top n minimizers are r1 ≥ r2 ≥ ... ≥ rn,

with corresponding sample loads X1, ..., Xn. Assuming the estimates are independent

43

(since N is very large), we get:

ξ = P (X ≥ X1 ∧X ≥ X2 ∧ ... ∧X ≥ Xn) =
n∏

i=1

P (X ≥ Xi) ≤ (1)

n∏
i=1

P (X ≥ Xn) = P (X ≥ Xn)n (2)

We evaluated this expression for n = 10, using the loads observed in the last round of

AdaOrder in the HS2 dataset with k = 55: The maximum load was 0.00318, and the

10th largest load was 0.00279. Suppose r̂ equals 80% of the maximum relative load

in our example (0.00254). We empirically evaluated P (X ≥ Xn) by sampling 105

times from the binomial distribution with parameters 0.00279 and N = 105 trials,

obtaining P (X ≥ Xn) = 0.136 and

ξ ≤ P (Xr̂ ≥ X10)
10 ≈ 0.13610 = 2.29 · 10−9

This calculation suggests that for N = 105 there is a very low chance of a gross

mistake in the identification of a minimizer with a high load.

In Supplementary Section S2 we show the effect of varying the number of

samples, N , in different rounds of AdaOrder, demonstrating the effect described.

S2 The Effect of sampling depth on accuracy of load esti-

mation

We tested how the sampling depth and the number of rounds affect AdaOrder. We

used dataset HS2 with p = 0.01. Supplementary Figure S1 shows the relative

load as a function of the sample size, for different rounds of the order optimization

process. Namely, for each N , the minimizer that would have been selected if sampling

stopped after N k-mers, and its relative load, are shown. Results are shown for the

first, 1000th and 104th round. We see that in the first round the identity and relative

load of the maximum load minimizer could be estimated with only 2 · 104 samples.

However, in later rounds, as the loads get more even, the load of the chosen minimizer

44

improves even after 105 samples, and it takes even more samples for the identity of

the minimizer to stabilize.

S3 Recommended parameters for AdaOrder

We selected the default parameters of R = 104, N = 105, p = 0.01 for AdaOrder.

These parameters were chosen to limit the runtime of AdaOrder while still achieving a

good ordering with low maximum loads (and potentially low RAM usage in DGerbil).

According to Figure 6a, increasing R above 104 had little effect on the maxi-

mum load. The same figure also suggests that N = 105 did not have a notably worse

maximum load than N = 106. Lower values of N performed worse, as shown in

Figures 6b and S1. In fact, Supplementary Figure S1 seems to indicate that

more samples are needed in the later rounds compared to the initial rounds, since

the maximum relative load is getting smaller as AdaOrder progresses (see Supple-

mentary Table S1). N = 105 thus gives a good balance between runtime and

maximum load.

The penalty factor p = 0.01 is a conservative choice. Values smaller than 0.01

gave high load and unevenness. Values greater than 0.1 gave unstable load and

unevenness. Alternatively, one can choose 0.01 < p ≤ 0.1, in combination with lower

R, as Figure 6c suggests that somewhat higher p can still lead to more efficient

flattening of the order, and thus require fewer rounds.

S4 Implementation details

In Algorithm 4 (AdaOrder), we write on line 8 that we assign x to be the o-minimum

m-mer of Sread(i). Finding the minimum can be found by scanning the entire string,

but instead, by saving the index of the last o-minimum m-mer, in most cases we can

just check whether the new m-mer (the last one in Sread(i)) is o-smaller than the

last o-minimum m-mer we found. This optimization affects only the running time of

AdaOrder.

45

(a)

(b)

(c)

Figure S1: Effect of the sample size and round number on the estimate of
maximum load minimizer. (a) 1st round. (b) 1000th round. (c) 104th round.
Each dot shows the minimizer to be selected based on the corresponding sample size.
The y-axis is the relative load of the selected minimizer. The numbers assigned as
minimizer labels are irrelevant, but the same color indicates a repeated minimizer.

46

S5 Additional methods and results

Algorithm S1 MinimizerStats

Input: A set of reads D = (S0, S1, . . . , SM−1), where |Si| ≥ k.
A minimizer scheme fo,m,k. E - number of k-mers to sample.

Output: Array of length 4m with the total size of the super-k-mers in the sample for
each m-mer.

1: read ←− 0
2: sampled ←− 0
3: A ←− zeroed array of length 4m

4: while sampled < E do
5: minMmer ←− the o-minimum m-mer of Sread(0)
6: A[minMmer] ←− A[minMmer] + k
7: sampled ←− sampled + 1
8: i ←− 1
9: while i ≤ |Sread| − k do
10: lastMmer ←− the m-mer that starts at k −m in Sread(i)
11: lastMmerIndex ←− k −m + i
12: if start index of minMmer < i then
13: minMmer ←− the o-minimum m-mer of Sread(i)
14: A[minMmer] ←− A[minMmer] + k
15: else if lastMmer is o-smaller than minMmer then
16: minMmer ←− lastMmer
17: A[minMmer] ←− A[minMmer] + k
18: else A[minMmer] ←− A[minMmer] + 1

19: sampled ←− sampled + 1
20: i ←− i + 1

21: read ←− read + 1

22: return A

47

(a) RAM usage
(b) Runtime

Figure S2: Performance of Gerbil, FGerbil and DGerbil. (a) RAM usage. (b)
Time. In (b), for DGerbil and FGerbil, AdaOrder and Frequency times for creating
the order and collecting binning statistics are shown separately.

48

1

 תקציר

ויש לספור את מספר ההופעות , kקלט שהוא אוסף רצפי דנא וקבוע ניםנתו (k-mers)יות -kבבעיית ספירת

הרצפים פיצול ידי על בניתוחים רבים של רצפים. הוא ממומשזהו תהליך נפוץ מאוד יה בקלט.-kשל כל

כך שתתאפשר ספירה יעילה בנפרד בכל תא ואחר כך איחוד הספירות. שונים bins)תאים)למקטעים ב

האפשריות שנקרא סדר מינימייזרים יות-m-ל הכ של סדרב שימושמבוסס על לתאים הפיצול

(minimizer order) .אורך ב מקטע לכלk ה ,רצףב-m-שבו שהיא בעלת המיקום הגבוה ביותר בסדר יה

מספר רב של אלגוריתמים פותחו .המקטע ישוייךלאיזה תא תקובע המקטע והיא של המינימייזר נקראת

 משלו.מינימייזרים סדר ולכל אלגוריתם ם שהיא דורשת, לבעייה בשל חשיבותה והמשאבים הרבי

פיתחנו אלגוריתם היוריסטי יות. -kמטרת המחקר שלנו היתה לייעל את צריכת הזיכרון בתהליך ספירת

יות -k-עומס של מינימייזר מוגדר כמספר הה .ים עבור קלט נתוןסדר מינימייזר שמייצר ,AdaOrderשנקרא

להוריד את העומס מעדכן איטרטיבית את הסדר במטרההאלגוריתם . השונות המשוייכות לאותו מינימייזר

הגדול ביותר עומס מחפש את המינימייזר עם ההאלגוריתם . בכל איטרציה של מינימייזר כלשהו המקסימלי

של עומס, ומשנה את המיקום שלו בסדר כך שיהיה פחות מתועדף. בכך אנו מגדילים את הסיכוי שהכרגע

 יקטן. אותו מינימייזר

סדר : מוכרים בספרותההשוואה לסדרים אחרים ב שלנו בכמה דרכים AdaOrderבחנו את היעילות של

סדר מבוסס תדירות .המותאם למאפייני דנא ,מבוסס תדירות וכן סדר חתימהסדר אקראי, סדר לכסיקוגרפי,

בבדיקות שביצענו, ושניהם היו טובים משמעותית AdaOrderר של נמוך יותר מהסדהשיג עומס מקסימלי

 במגוון קריטריונים לעומת הסדרים האחרים .

 הלצמצם את הזיכרון של נווהצלח כיום, יות-kהתוכנה המובילה לספירת , Gerbil-בשילבנו את השיטה שלנו

 ההטמעה של הריצה., עם עלייה קלה בלבד בזמן על מגוון רצפים אמיתיים גדול kעבור 50% - 30%-ב

מאשר ההטמעה של סדר מבוסס נמוכה יותר צריכת זיכרוןהובילה ל Gerbil -ב AdaOrderהסדר של

 תדירות.

 הופעלו םהניבו תוצאות מעולות כשהעל קלט מסויים טה שלנו שהופקו בשי סדרים הבדיקות שלנו גם הראו כי

כזה שימוש. ומהירל עם שינוי ק או בסדרכלשהו , ללא שינוי (species) מאותו מיןעל רצפי קלט אחרים

 עלייה בזמן הריצה.כל ללא זיכרוןבהפחתה את הלהשיג מאפשר

2

 אוניברסיטת תל אביב

 הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

 בית הספר למדעי המחשב ע"ש בלווטניק

בחירת סדר יות ברצף דנא באמצעות -kספירת בתהליך הזיכרון הפחתת

 מינימייזרים המבוסס על הקלט

 חיבור זה הוגש כעבודת גמר לתואר 'מוסמך אוניברסיטה'

 על ידי בבית הספר למדעי המחשב

 פלומיןדן

 בהנחיית

 פרופ' רון שמיר

 בתשפ" ניסן

	Introduction
	Biological background
	DNA and Genomics
	DNA sequencing and next generation sequencing
	Genome assembly
	k-mer counting

	Computational background
	Basic definitions
	Minimizers
	m-mer orders
	Partitions, bins and unevenness
	k-mer counting algorithms
	Genome assembly algorithms
	Mapping minimizers to bins in Gerbil and KMC3

	Methods
	AdaOrder
	Mapping minimizers to bins
	DGerbil
	FGerbil
	Source code

	Results
	AdaOrder reduces maximum load and unevenness
	The effect of R, N and p on maximum load and unevenness
	Transferring the order across datasets
	DGerbil reduces memory usage

	Discussion
	Accuracy of sampling-based load estimation
	The Effect of sampling depth on accuracy of load estimation
	Recommended parameters for AdaOrder
	Implementation details
	Additional methods and results

