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Abstract 

The COVID-19 pandemic has been spreading worldwide since December 2019, 

presenting an urgent threat to global health. Due to the limited understanding of disease 

progression and of the risk factors for the disease, it is a clinical challenge to predict 

which hospitalized patients will deteriorate. Moreover, several studies suggested that 

taking early measures for treating patients at risk of deterioration could prevent or 

lessen condition worsening and the need for mechanical ventilation. We developed a 

predictive model for the early identification of patients at risk for clinical deterioration 

by retrospective analysis of electronic health records of COVID-19 inpatients at the two 

largest medical centers in Israel. Our model employs machine learning methods and 

uses routine clinical features such as vital signs, lab measurements, demographics, and 

background disease. Deterioration was defined as a high NEWS2 score adjusted to 

COVID-19. In the prediction of deterioration within the next 7–30 h, the model 

achieved an area under the ROC curve of 0.84 and an area under the precision-recall 

curve of 0.74. The model achieved sensitivity of 44% with a positive predictive value 

of 87%. In external validation on data from a different hospital, it achieved values of 

0.76 and 0.7, respectively. 

  



4 
 

Table of Content 

Abstract 

1. Introduction  

2. Clinical Background 

2.1. COVID-19 

2.2. Electronic Health Records 

2.3. Early Warning Scores 

3. Computation Background  

3.1. Machine Learning 

3.1.1. Algorithms 

3.1.2. Regularization 

3.1.3. Model Evaluation and Tuning 

3.1.3.1.    Data Partition 

3.1.3.2.    Cross-Validation 

3.1.3.3.    Evaluation Metrics 

3.1.3.4.    Hyperparameters Tuning 

3.2. Feature Selection 

3.3. Data Imputation 

3.4. Anomaly Detection 

4. Methods           

4.1. Cohort Description        

4.2. Inclusion and Exclusion Criteria       

4.3. Outcome Definition 

4.4. Outlier Removal 

4.5. Data Imputation 



5 
 

4.6. Feature Engineering 

4.7. Model Development and Feature Selection 

4.8. Evaluation Approach 

5. Results 

5.1. Cohort Description 

5.2. COVID-19 Deterioration Model 

5.3. External Validation 

6. Discussion  

7. References 

8. Supplementary Material 

  



6 
 

1. Introduction 

The coronavirus disease 2019 (COVID-19) emerged in  China in December 2019, and 

since then has spread rapidly around the world. In March 2020, the World Health 

Organization declared the COVID-19 outbreak as a global pandemic [1]. As of March 

2022, worldwide cases exceeded 450 million and more than six million died [2].  The 

extent of the disease varies from asymptomatic to severe, characterized by respiratory 

and/or multi-organ failure and death [3], [4]. Healthcare systems worldwide have faced 

an overwhelming burden of patients with COVID-19. At the same time, there is limited 

understanding of disease progression, risk factors for deterioration, and the long-term 

outcomes for those who deteriorate. Moreover, early treatments such as antiviral 

medications may prevent clinical deterioration in COVID-19 patients [5]. Therefore, 

early warning tools for COVID-19 deterioration are required. Tools that predict 

deterioration risk in individuals can also improve resource utilization in the clinical 

facility and its wards, by aggregating risk scores of patients for anticipating expected 

changes in patient load [6].  

Prognostic scores for clinical deterioration of patients are widely used in medicine, 

particularly in critical care. The National Early Warning Score 2 (NEWS2), the quick 

Sequential Organ Function Assessment (qSOFA), and CURB-65 [7]–[9] are commonly 

used clinical risk scores for early recognition of patients with severe infection. The 

NEWS2 score incorporates pulse rate, respiratory rate, blood pressure, temperature, 

oxygen saturation, supplemental oxygen, and level of consciousness or new confusion. 

Liao et al. [10] suggested an early warning score for COVID-19 patients termed 

“modified-NEWS2” (mNEWS2). It adds to the NEWS2 formula the factor age≥65 
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years, reflecting the observation that older age is associated with elevated risk for severe 

illness (Supplementary Table 1).  

Machine learning methods integrate statistical and mathematical algorithms that enable 

the analysis of complex signals in big-data environments [11], [12]. In recent years, 

such methods were shown to be highly effective for data-driven predictions in a 

multitude of fields, including healthcare [12]. They enable rapid analysis of large 

electronic health records (EHRs) and can generate tailored predictions for each patient . 

Consequently, machine learning methods have great potential to help improve COVID-

19 care. 

In this thesis, we developed a machine learning model for early prediction of 

deterioration of COVID-19 inpatients, defined as mNEWS2 score ≥ 7. The model was 

developed by analyzing longitudinal EHRs of COVID-19 inpatients in Sheba Medical 

Center (Sheba), the largest hospital in Israel. To validate the generalizability of its 

performance, we applied our model on EHRs of inpatients diagnosed with COVID-19 

from the second largest hospital in Israel, the Tel-Aviv Sourasky Medical Center 

(TASMC).  

The results of this study were recently published in the journal Scientific Reports [13]. 

The thesis is organized as follows: Chapter 2 provides basic clinical background, and 

Chapter 3 provides the main required computational background. Chapter 4 describes 

our methods, including cohort description, data processing, model development and 

evaluation approach. Chapter 5 describes the results and Chapter 6 contains our 

discussion. Additional information is provided in the supplement. 
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2. Clinical Background 

2.1. COVID-19 

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel virus emerged in  

Wuhan, China, in December 2019, and since then has spread rapidly worldwide. The 

World Health Organization (WHO) declared the COVID-19 outbreak as a global 

pandemic in March 2020 [1]. The impact of the disease is immense, with worldwide 

cases exceeding 450 million and more than six million dead as of March 2022 [2].  

The disease manifestations range from asymptomatic to a severe condition, 

characterized by respiratory distress, multi-organ failure, or death [3], [4]. The 

symptoms are highly variable between individuals and along time. In addition, the 

effect of the disease varies among individuals, with some continuing to experience a 

range of symptoms for months after recovery (long COVID) [14]. While most infected 

are asymptomatic or experience mild symptoms, others require hospitalization and 

medical monitoring and treatment. The hospitalization criteria depend on the clinical 

presentation and vary along time periods. The symptoms can deteriorate within hours 

during the hospitalization, leading to oxygen support requirement or to intensive care 

unit (ICU) administration [15], [16]. The extent and variability of the disease have 

resulted in an overwhelming burden of COVID-19 patients in healthcare systems 

around the world. Consequently, appropriate clinical decisions and efficient utilization 

of medical resources may be impaired. In addition, even though the understanding of 

COVID-19 is evolving, there is still limited understanding of the risk factors for 

deterioration and the long-term outcomes for those who deteriorate.  
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Early treatments such as antiviral medications may prevent clinical deterioration in 

COVID-19 patients [5]. Hence, tools for early identification of patients at high risk for 

COVID-19 deterioration are required. Such tools are helpful not only for individual 

medical decision-making, regarding follow-up or treatment strategies, but can also 

improve resource utilization at the ward level, by anticipating the expected changes in 

patient load [6]. 

 

2.2. Electronic Health Records 

An electronic health record (EHR) is a digital collection of a patient’s health 

information that is systematically gathered as part of the clinical setting, typically over 

time. It may contain various types of health data, including patient demographics, 

laboratory test results, vital signs, medical history, medication, clinical images, and 

nursing notes. The data is stored and maintained in the hospital EHR systems, enabling 

the examination of the patient’s health over time. In recent years, the utilization of EHR 

has increased dramatically. The abundance of data and the high-dimensional clinical 

features can be leveraged for unique healthcare studies and applications at both 

individual and population levels. In recent years, a growing number of studies have 

applied machine learning methods on EHR data, for various healthcare applications 

[17]–[20]. The utilization of complex models for EHR data raises unique opportunities 

to improve healthcare, e.g., by improving disease diagnosis, predicting individual risks, 

or guiding treatment strategies.  
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2.3. Early Warning Scores 

An Early Earning Score (EWS) is a tool used by medical services to assess the severity 

of a patient's condition. These tools typically assign numeric values to several 

physiological variables (e.g., heart rate, oxygen saturation, respiratory rate, etc.) to 

produce a score that can identify a patient at risk of deterioration. A range of early 

warning scores has been developed to meet different clinical needs. These include the 

National Early Warning Score 2 (NEWS2), the quick Sequential Organ Function 

Assessment (qSOFA), and CURB-65 [7]–[9], which are commonly used clinical risk 

scores for early recognition of patients with severe infection. In particular, the NEWS2 

score was developed by the Royal College of Physicians to provide a standard for early 

warning scores in the United Kingdom, and it is widely used worldwide in healthcare 

settings. The NEWS2 score incorporates pulse rate, respiratory rate, blood pressure, 

temperature, oxygen saturation, supplemental oxygen, and level of consciousness or 

new confusion. The calculation is done by assigning points to each physiological 

parameter according to its condition (between 0 to 3), such that a high score indicates 

that the parameter is further from the normal range. Summing the points for each 

parameter results in a total score, with a higher score representing higher risk and vice 

versa. After the pandemic emerged, Liao et al. [10] adjusted the NEWS2 score for 

COVID-19 patients, by adding the factor age≥65 years to the formula (Supplementary 

Table 1). The score, termed “modified-NEWS2” (mNEWS2), now reflects the 

observation that older age is associated with elevated risk for severe illness.  
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3. Computational Background 

3.1. Machine Learning 

Machine learning is a subfield of Artificial Intelligence (AI), in which data is being 

leveraged to build models with learning capabilities in order to make predictions or 

decisions. Machine learning methods integrate statistical and mathematical algorithms 

that enable the analysis of complex signals in big-data environments [11], [12]. In 

recent years, many applications have been developed using machine learning in various 

fields, such as banking, social media, or healthcare. There are primarily three types of 

machine learning: Supervised, Unsupervised, and Reinforcement learning. In next the 

sections, we will mainly cover supervised algorithms, due to their relevance to this 

study. 

 

Supervised Learning 

Let us start with fundamental machine learning terminology. The input to the 

supervised problem is a collection of pairs (𝒙𝒊, 𝑦𝑖) where 𝒙𝒊 ∈ 𝒳 and 𝑦𝑖 ∈ 𝒴. 𝒳 is called 

the input space and 𝒴  is the output space. A typical example is where 𝒳 = 𝑅𝑛 and 

𝒴={-1, 1}. 𝑥𝑖 is called an example and its coordinates are called the feature values. 𝑦𝑖 

is called the label of 𝑥𝑖. Given such labeled examples, the goal is to develop an 

algorithm to predict the labels of new unlabeled ones. The process of building the 

algorithm is called training and the process of applying it to new data is called 

inference.  
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Training means learning or fitting the model to the input examples. That is, the model 

gradually learns the relationships between features and labels. Formally, given the 

training set, a collection of 𝑁 labeled examples {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁 , the goal is to learn a 

function 𝑓: 𝒳 → 𝒴 such that 𝑓(𝑥) is a “good” predictor of 𝑦. More precisely, we 

assume that each pair (𝒙𝒊, 𝑦𝑖) is drawn i.i.d. from a joint probability distribution 𝑃(𝑥, 𝑦). 

The true distribution 𝑃 is unknown and the goal is to try to estimate it by the empirical 

distribution of the observed data. A fundamental element of learning and optimization 

is the loss function 𝐿(𝑓(𝑥), 𝑦), a non-negative real-valued function, which estimates 

the distance between the model’s output and the true label. If the model’s prediction is 

perfect, the loss is zero, and it is greater otherwise. Therefore, learning algorithms aim 

to minimize the expected loss, also known as the risk 𝑅(𝑓) of function 𝑓, given by: 

𝑅(𝑓) = 𝔼[𝐿(𝑓(𝑥), 𝑦)] = ∫ 𝐿(𝑓(𝑥), 𝑦) 𝑑𝑃(𝑥, 𝑦) 

However, since the true distribution 𝑃 is unknown, 𝑅(𝑓) cannot be computed. If the 

training set is representative of 𝑃, the expected loss can be estimated by the empirical 

loss, as follows: 

𝑅𝑒𝑚𝑝(𝑓) =
1

𝑁
∑ 𝐿(𝑓(𝑥𝑖), 𝑦𝑖)

𝑖

 

Supervised machine learning algorithms attempt to find a model that minimizes the 

empirical loss. This process is known as empirical risk minimization. 

In inference, we use the learned model and apply it to unlabeled examples for making 

predictions. Machine learning models aim to predict well when applied to new unseen 

data. This is the basis for the fundamental partition of a dataset into two subsets: a 

training set, the labeled data used to train the model, and a testing set, a disjoint set of 
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samples on which we test the learned model. Sections 3.1.3.1-3.1.3.2 discuss workflows 

for data partition and model training. 

Supervised learning can be further divided into classification and regression problems, 

where the former is used when the output 𝑦 is categorical variable, and the latter is used 

when 𝑦 is continuous. In section 3.1.1, we mainly focus on classification, since this is 

the type of supervised learning problem that arises in our study. 

 

Classification 

The goal of classifications is to assign a set of labels {1, … , 𝐾} to input 𝒙. For instance, 

in clinical application, 𝒙 could be patients’ variables extracted from EHRs systems, and 

the labels could represent future disease conditions. In what follows, we focus on binary 

classification due to its simplicity  and relevance to our goals. Specifically, we will 

consider 𝑁 training samples {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where 𝒙𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ {0,1}. Extensions to 

multiple-class classification are possible, but the principles are similar to the binary 

case. We discuss various classification models in section 3.1.1. 

 

Unsupervised learning 

The goal of unsupervised learning is to learn the underlying patterns in unlabeled data. 

Learning in this context is called unsupervised as there are no ground truth labels to 

guide the learning process. Common unsupervised learning algorithms include 

clustering, anomaly detection, and approaches for learning latent variable models. We 

discuss anomaly detection in detail in section 3.4. 
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3.1.1. Models 

In the machine learning area, the problem of our study can be formulated as a 

multivariate time-series classification problem. We have considered several supervised 

ML models to address this problem, including both linear and non-linear classifiers. 

This section briefly presents the algorithms of interest.  

 

Naïve Bayes 

Naïve Bayes is a statistical classifier based on Bayes theorem. It is a conditional 

probability model that calculates the conditional probability 𝑝(𝑦𝑖|𝑥) for each instance 

𝑥 and for each of the 𝐾 possible classes 𝑦𝑖 ∈ {1, … , 𝐾}. The predicted class label is: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖∈{1,...,𝐾}𝑝(𝑦𝑖|𝑥) 

In other words, the goal of Naïve Bayes is to find the class 𝑦𝑖 that maximizes the 

posterior probability for a given test sample 𝑥. In practice, this is estimated using Bayes’ 

theorem with strong (naive) independence assumptions between the features.  

 

Linear Regression 

Linear regression [21], [22] is a model that assumes a linear relationship between the 

input 𝑥 and the output 𝑦 (see Figure 1a). Mathematically this is written as: 

𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏 
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Where 𝑤 ∈ ℝ𝑑 represents the weights and 𝑏 ∈ ℝ represents the bias. The objective of 

linear regression is to find the regression line that best fits the training dataset, with the 

goal of minimizing the total distance between the predicted and true values. It can be 

applied for binary classification by assigning a threshold for separating two classes. 

However, as the predicted value is continuous, it is usually less suitable for 

classification and logistic regression is preferred (see next section).  

 

Logistic Regression 

Logistic regression [23] is named after the function used at the core of the method, the 

logistic function, or the sigmoid function: 

𝑓(𝑥) =
1

𝑥 + 𝑒−𝑥
 

Which outputs values between 0 and 1. The goal of logistic regression is to find the 

model that best describes the relationship between the dependent and the independent 

variables. The dependent variable is dichotomous in nature, so it can be suitable for 

binary classification. See illustration in Figure 1b.  

                   (a)                                                  (b) 

 

Figure 1: Linear regression (a) and logistic regression (b) fitted to a 2D dataset (Figure source: 

www.javatpoint.com/linear-regression-vs-logistic-regression-in-machine-learning).  

 



16 
 

Support Vector Machine (SVM) 

Support-vector machines (SVMs) [24] are supervised machine learning models that can 

be used for classification, regression, or other tasks like anomaly detection. SVM 

performs binary classification by constructing a 𝑑-dimensional hyperplane (𝑑 is the 

number of features) that separates the space into two half-spaces and thereby the data 

into two categories. Many hyperplanes might classify the data. A good separation, in 

terms of generalization, is achieved by the hyperplane that has the maximal margin to 

the nearest training data points. By margin, we mean the minimal distance between the 

separator and any data point 𝒙𝒊. The data points that are closest to the separating 

hyperplane are called support vectors, and they influence the position and orientation 

of the hyperplane. An illustration of SVM for binary classification in linearly separable 

data can be seen in Figure 2a.  

In addition to linear classification, SVMs can efficiently perform non-linear 

classification using non-linear kernel functions. A kernel function implicitly maps the 

input 𝒙 into a higher dimensional feature space 𝜙(𝒙), where the data is linearly 

separable. In the new high dimensional space, SVM can be easily applied. The function 

𝜙 has the property that dot products can be computed efficiently without computing 𝜙 

explicitly. This is called the kernel trick (see Figure 2b). Different types of kernels can 

be used for this mapping, including linear, polynomial, sigmoid and radial basis 

function (RBF). 
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(a)                                    (b) 

  

Figure 2: (a) Linear SVM in 2D data. Colors represent the ground truth labels (𝑦), and the solid 

line represents the separating hyperplane. (b) Kernel SVM: mapping the complex 2D input data 

into higher dimension space (here 3D) enables linear separation (Figure source: 

towardsdatascience.com/svm-feature-selection-and-kernels-840781cc1a6c). 

 

Random Forest (RF) 

Decision trees (DTs) [25] are non-parametric supervised machine learning models used 

for both classification and regression. The key idea is that the examples are repeatedly 

partitioned according to simple decision rules inferred from the features. Each tree 

consists of a root note, several branches, and leaf nodes. An internal node represents a 

subset of examples and a test on a particular feature. The examples in the subset are 

assigned to the node’s children according to the test result.  The leaf nodes, or terminal 

nodes, represent classification or decision, where the node’s class is that of the majority 

of the samples assigned to the leaf. Classification of a new sample is done by going 

down the tree according to the test values of the sample and the class is that of the leaf 

node reached. An illustration of a decision tree for binary classification of 2D input data 

can be seen in Figure 3a. 
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A Random Forest (RF) [26] is an ensemble of decision trees used for classification and 

regression. RF fits a number of decision trees on sub-samples of the training set with 

randomly selected subsets of features. For a test sample, the outcome is determined 

based on applying to it all the trees and aggregating the predictions, using a majority 

vote for classification or average for regression (see illustration in Figure 3b).  

 

(a) 

 

(b) 

 

Figure 3: (a) Decision Tree classifier. The tree splits the input space according to its features 

(right) and generates decision boundaries (left), used to assign class labels to the examples. (b) 

Random Forest classifier (Figure source: www.mdpi.com/2071-1050/11/21/6159).  
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Gradient Boosted of Decision Trees  

Gradient boosting is a machine learning technique that uses an ensemble of weak 

learners to improve the performance of a machine learning model. The term weak 

learners refers to simple models that perform only slightly better than random, and they 

are usually decision trees models. In gradient boosting, the weak learners are built 

sequentially, such that each model tries to improve on the error of the previous model 

(in contrast to bagging, where the models are fitted in parallel). It is a powerful 

ensemble algorithm that became highly popular in recent years. There are various 

implementations of gradient boosting decision trees, such as XGBoost [27] or CatBoost 

[28], each with slightly different extensions. The idea of gradient boosting is illustrated 

in Figure 4. 

 

Figure 4: A simple example of gradient boosting decision trees on 2D data. The shapes 

represent the ground truth labels, and the goal is to perform binary classification. To improve 
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the predictions, in each iteration, higher weights are assigned to the errors of the previous step 

(that is, to the misclassified data points).  

 

Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) or Neural Networks (NNs) are powerful 

computational models that are used extensively in recent years [29]. Their architecture 

is inspired by the biological neural networks, consisting of a collection of neurons (or 

nodes) organized in layers, such that each connection (directed edge) between neurons 

can transmit a signal to other neurons. Edges are weighted according to the connection 

strength. The basic architecture of a neural network consists of an input layer, one or 

more hidden layers, and an output layer (Figure 5a). The input to the network is often 

the feature values of a sample of the dataset. The output of each neuron is calculated by 

the weighted sum of its inputs, which is then passed through a nonlinear activation 

function (Figure 5b). The number of hidden layers and the number of neurons in each 

layer are hyperparameters of the network that should be pre-specified (see section 

3.1.3.4 for more details about hyperparameter tuning).  

There are various NN architectures used for different tasks, including feed-forward 

neural network, recurrent neural network (RNN) [30], and convolutional neural 

network (CNN) [31]. In general, NNs were shown to be capable of performing a broad 

spectrum of tasks, including classification, regression, data processing, reinforcement 

learning, etc. For their superior performance, NNs usually require abundant training 

data, which is not always feasible in real-world scenarios.   
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(a)  

 

(b) 

 

Figure 5: The building blocks of an ANN. (a) An illustration of a 3-layer feed-forward neural 

network. Circles represent nodes and arrows represent connections. Each layer contains a 

varying number of nodes. The connections are between nodes across layers, but not within a 

layer. (b) A Node in the network. The output of a node is computed as 𝑓(𝑏 + ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 ) where 

𝑥𝑖 are the inputs, 𝑤𝑖 are the weights, 𝑏 is the bias and 𝑓 is non-linear activation function (Figure 

source: medium.com/swlh/activation-functions-in-artificial-neural-networks-8aa6a5ddf832). 

 

3.1.2. Regularization 

Regularization is a technique used to reduce errors and avoid overfitting in machine 

learning models. In most cases, it refers to modifying the loss function to penalize large 

values of the learned weights 𝑤 and eliminate unimportant features from the final 

model. Formally, using the loss function 𝐿(𝑤), the new objective is to minimize: 

𝐿(𝑤) + 𝜆𝑅(𝑤) 
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Where 𝑅(𝑤) is the regularization term and 𝜆 controls the regularization strength. The 

commonly used regularization methods include L1 and L2 regularization.  

L1 regularization. The regulizer is the L1 norm, formally:  

𝑅(𝑤) = ‖𝑤‖1 

A linear regression model that uses L1 regularization is often called Lasso (Least 

Absolute Shrinkage and Selection Operator) regression [21].  

L2 regularization. The regulizer is the squared L2 norm, that is: 

𝑅(𝑤) = ‖𝑤‖2
2 

A linear regression model that uses L2 regularization is often called Ridge regression 

[22]. 

 

3.1.3. Model Evaluation and Tuning  

3.1.3.1. Data Partition 

In the introduction of this section (3.1) we introduced the basic partition of a dataset 

into training and testing sets. This enables to first train the model on the training set, 

and then test it on a distinct set, which was not used in the training phase, allowing the 

evaluation of the model on an unseen dataset. If the model’s performance is not 

satisfying, we could repeatedly tweak the model hyperparameters, fit and evaluate it, 

and finally select the model that best performs on the testing set. However, this way the 

testing set is used when finalizing the model, introducing the risk of overfitting, where 

a model performs well on the training set, but does poorly on new data. This problem 
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can be solved by splitting the data into three subsets: training, validation, and testing 

sets (Figure 6a). This way, we can use the validation set to evaluate and tune the model 

repeatedly. The best model is selected based on the performance on the validation set. 

Then, the testing set can be used to evaluate the model’s performance on unseen data. 

 

3.1.3.2. Cross-Validation 

Cross-validation (CV) is a resampling technique used to evaluate ML models. The goal 

of cross-validation is to test to model’s ability to generalize to unseen data, and to tackle 

problems such as overfitting or selection bias. It uses different data splits of the original 

training set, for training and testing the models on different subsets in an iterative 

fashion. The model performance on these splits allows tuning the model 

hyperparameters while keeping the testing set completely unseen for final evaluation. 

There are various types of cross-validation, including K-fold, stratified K-fold and 

Leave-one-out. 

In K-fold cross-validation, the entire training set is partitioned into K folds of roughly 

equal size (Figure 6b). Then, we iteratively train the model on K-1 folds and use the 

remaining fold as the test fold. The process is repeated K times, where in each time, a 

different fold is left out. The performance measure of this process is then the average 

of the performance values computed (various metrics for performance evaluation are 

detailed in section 3.1.3.3). Leave-one-out cross validation is a special case of K-fold 

cross-validation with 𝐾 = 𝑁, where 𝑁 is the number of training examples. 
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(a) 

  

(b) 

 

Figure 6: A schematic illustration of data partition and cross-validation. (a) The original dataset 

(orange) is partitioned into training (gray), validation (green), and testing (blue) sets. (b) K-fold 

cross-validation with subdivision of the training set into k=5 folds. In each iteration, a model is 

trained on 4 folds (gray) and evaluated on the remaining fold (green). 

 

3.1.3.3. Performance Metrics 

In this section, we discuss various performance metrics for ML models. We will focus 

on metrics for classification models, due to their relevance to this study. Recall that the 

goal of classification is to correctly assign a new data point to a particular class. First, 

let us define some notation. Let 𝑃 and 𝑁 be the number of positive and negative cases 

in the real data, respectively. In the binary classification, there are four cases to consider 

when estimating the total performance of a model (Figure 7): 

• True Positives (TP): The number of cases in which the model correctly predicts 

the positive class.  
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• True Negatives (TN): The number of cases where the model correctly predicts the 

negative class. 

• False Positives (FP): The number of cases in which the model incorrectly predicts 

the positive class. 

• False Negatives (TN): The number of cases in which the model incorrectly predicts 

the negative class. 

 

Figure 7: A confusion matrix of binary classification. It summarizes the performance of a 

binary classifier, accounting for its four outcomes: TP, FP, TN, and FN. (Figure source: 

academic.oup.com/bib/article/9/3/198/255891?login=true).  

 

With these cases in mind, we now describe commonly used metrics:  

Accuracy. Accuracy (ACC) describes how the model performs across all classes. It is 

the proportion of correct predictions (for both positive and negative cases) among the 

total number of cases:  

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Although widely used, classification accuracy can be inappropriate for imbalanced 

datasets (e.g., where P<<N). For example, high accuracy can be achieved by predicting 

the majority class for all samples.  
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Precision. Precision, or positive predictive value (PPV), is the fraction of the true 

positive cases among the selected cases (i.e., predicted positive). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall. Recall, sensitivity, or True Positive Rate (TPR) refer to the fraction of correctly 

identified positive examples (e.g., how many patients with the disease were correctly 

identified as having a disease). Formally: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity. Specificity or True Negative Rate (TNR) refer to the fraction of correctly 

identified negative examples: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 1 − 𝐹𝑃𝑅 

Where 𝐹𝑃𝑅 is the False Positive Rate. 

 

Receiver Operating Characteristic (ROC) curve. ROC curve plots the true positive 

rate (or sensitivity) against the false positive rate (1-Specificity) for varying 

discrimination thresholds (see Figure 8a). It describes the ability of a binary classifier 

to discriminate between positive and negative cases. The Area Under Receiver 

Operating Characteristic curve (AUROC) is calculated as the area under the ROC curve 

and is often used to evaluate classification models. It can be shown that the AUROC 

equals to the probability that a randomly selected positive sample will have a higher 

predicted probability of being positive (e.g., a higher predicted risk score in clinical risk 

prediction model) than a randomly selected negative one. An AUROC of 0.5 
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corresponds to a random guess while an AUROC of 1 corresponds to a perfect 

classifier. 

 

Precision-recall curve. Precision-recall curve plots the precision (or PPV) against the 

recall (or TPR) for different thresholds (See Figure 8b). Similarly to AUROC, the area 

under the precision-recall curve (AUPR) summarizes this information into a single 

performance value. In general, the higher AUPR is, the better the classifier performs.  

 

    (a)                                                                   (b) 

 

Figure 8: Examples of ROC (a) and (b) Precision-recall curves (Figure source: 

www.karger.com/Article/Abstract/492574). 

 

3.1.3.4. Hyperparameter Tuning 

Hyperparameters refer to parameters of a model or algorithm that are set before training 

and control the learning process, while learnable parameters are learned and derived 
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during the training process (e.g., weights and biases). They can be, for example, the 

number of trees in random forest, or the kernel function of SVM. The process of finding 

the optimal set of hyperparameters that maximizes the model performance is called 

hyperparameter tuning or hyperparameter optimization. The hyperparameters can be 

manually chosen according to background knowledge. However, there exist automated 

methods for optimizing this process, including random search and grid search. In both 

methods, we first create a grid of possible values for each hyperparameter. In grid 

search, all the hyperparameter combinations are examined, by training and testing the 

model with each combination. Alternatively, in random search, rather than exhaustively 

examining all the possible combinations, the combinations are randomly sampled. 

Then, the combination that yields the best result is selected. Cross-validation is used to 

estimate the models’ performance in this process. 

 

3.2. Feature Selection 

Feature selection is the process of selecting a subset of features to be used in a ML 

model. Reducing the number of input features in high-dimensional space can improve 

model performance by removing irrelevant features and decrease computational cost. 

In addition, it could ease the interpretation of some model outputs. The final feature set 

used for training has a huge impact on the model performance. There are various 

common approaches for feature selection. Here we shortly describe two techniques.  

Variance threshold. Variance threshold is a natural approach that can be used for both 

supervised and unsupervised learning. It removes all low-variance features, assuming 

that they are less informative for the model. By default, it removes all zero-variance 

features, as they have the same value in all observations.   
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Tree-based feature selection. Tree-based models can be used to calculate feature 

importance scores, based on how significant they are for the predictions. These scores, 

in turn, can be used to select the most important features for the model.  

 

3.3. Data Imputation 

Missing data is a major challenge in many practical domains, with a significant effect 

on data interpretation and analysis. The problem arises when values of one or more 

variables in the dataset are missing is some samples. The causes of missingness vary 

between and within fields. In healthcare, for instance, some patients undergo more 

comprehensive tests than others according to their medical conditions, patients might 

avoid particular tests or personal questions, or, information could be simply mis-

recorded in the hospital EMR systems. This missingness can lead to biased estimates 

[32] and limit our ability to study and draw conclusions from the data. Furthermore, 

common machine learning models (e.g., decision trees, neural networks, support vector 

machines, etc.) can be applied only on complete datasets. This has driven the 

development of a variety of techniques for dealing with missing data. 

Data imputation methods deal with the missing values problem, by filling in, or 

imputing, the missing data with artificial values. Such methods offer powerful tools for 

addressing missing data in large datasets with complex data patterns. Once the missing 

values are imputed, the completed dataset can be analyzed with standard algorithms 

and machine learning models. 

Various imputation methods have been successfully applied to medical data. One of the 

powerful and commonly used methods is the Multivariate Imputation by Chained 
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Equations (MICE) [33]. MICE imputes the missing data through an iterative series of 

predictive models. In each iteration, each variable with missing values is imputed using 

the other variables in the dataset. This process is repeated until a desired level of 

convergence is met. MICE is a multiple imputation method, that is, it can be used to 

generate multiple imputed datasets for further analysis. 

 

3.4. Anomaly Detection 

Anomalies or outliers are datapoints that deviate from the expected behavior of the data. 

Anomaly detection is the task of successfully identifying these data points in a dataset. 

Various applications utilize anomaly detection, such as fraud detection and disease 

diagnosis. The presence of anomalous datapoints can be caused by measurement errors 

or data flaws, which in turn could lead to biased analysis and misleading results. 

Therefore, a common objective of anomaly detection is to eliminate the anomalies. For 

such cases, anomaly detection is often used in preprocessing to identify and remove the 

anomalous datapoints from the dataset. An alternative objective of anomaly detection 

is to focus on the anomalies, as they could carry significant information, such as fraud 

activity or an extreme health condition. In this study, we used anomaly detection 

techniques in feature engineering, to generate features that estimate how much each 

patient’s observation is irregular. The unsupervised techniques used in this study are 

one-class SVM, Local Outlier Factor (LOF), and Isolation Forest (IF). 
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One-Class SVM 

One-class SVM (OCSVM) [34] is a version of SVM that can be used in an unsupervised 

setting for anomaly detection. While standard SVM looks for a hyperplane that best 

separates the datapoints into two classes, one-class SVM maps the input data into a high 

dimensional space using a kernel function and tries to find a separating hyperplane of 

maximal margin between the samples and the origin. It learns a decision function that 

is either positive (+1) for the samples or negative (-1) for the origin. Only a small 

fraction of data points is allowed to be negative, namely, to lie on the origin’s side. 

Those data points are considered as outliers. The model uses the hyperparameter 𝜈, 

known as the outlier function, the expected proportion of outliers in the data. An 

illustration can be seen in Figure 9. 

 

Figure 9: Illustration of One-class SVM in a 2D data set. The solid line represents the decision 

boundary, separating positive (training instances) and negative (anomalous) data points (Figure 

source: publications.waset.org/13827/one-class-support-vector-machines-for-protein-protein-

interactions-prediction). 

 

Isolation Forest 

Isolation Forest [35] is an unsupervised method that is based on an ensemble of decision 

trees. The algorithm tries to split the data points such that each data point is isolated 
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from the others. To isolate a data point, the algorithm recursively generates partitions 

by randomly selecting a feature and then randomly selecting a split value for that feature 

within the feature values range. The key idea is that anomalous instances in a dataset 

tend to be easier to isolate (i.e., separate from the rest of the data), compared to normal 

points, in terms of the number of partitions required. This idea is illustrated in Figure 

10. The number of partitions required is equivalent to the path length from the root node 

to the terminating node, in the representative tree structure. Accordingly, an anomaly 

score is assigned to each data point based on its average depth in the ensemble of 

isolation trees. 

(a)                                             (b) 

            

Figure 10: An example of isolating points in a 2D data set, using the Isolation Forest algorithm. 

(a) Isolating a normal point 𝑥𝑖 requires a high number of random splits. (b) Isolating the 

anomalous point 𝑥𝑜 requires less random splits (Figure source: Liu et al. [35]).  

 

Local Outlier Factor (LOF) 

The Local Outlier Factor (LOF) [36] algorithm is an unsupervised anomaly detection 

method that calculates the local density deviation of a given data point with respect to 

the local densities of its neighbors. The basic idea is that an outlier has a substantially 
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lower density than its neighbors (see illustration in Figure 11). The local density is 

estimated using additional measures, termed k-distance and reachability distance, 

which are used to calculate the 𝐿𝑂𝐹𝑘(𝑥) scores for each datapoint 𝑥 and for any choice 

of 𝑘. 𝐿𝑂𝐹𝑘~1 indicates similar density as neighbors. 𝐿𝑂𝐹𝑘 < 1 indicates higher density 

than neighbors, and 𝐿𝑂𝐹𝑘 > 1  indicates lower density than neighbors, that is, an 

outlier. 

 

Figure 11: Illustration of the idea of LOF. The local density of point A is lower than the local 

densities of its neighbors. (Figure source: en.wikipedia.org/wiki/Local_outlier_factor).  
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4. Methods 

4.1. Cohort Description 

We conducted a retrospective study on two cohorts. The development cohort consisted 

of EHRs of all COVID-19 positive adults admitted to Sheba between March and 

December 2020. The validation cohort consisted of EHRs of all COVID-19 positive 

patients admitted to TASMC between March and September 2020. The study was 

reviewed and approved by the Sheba Medical Center Institutional Review Board 

(number 20-7064) and by the Tel Aviv Sourasky Medical Center Institutional Review 

Board (number 0491-17), and conformed to the principles outlined in the declaration 

of Helsinki. All methods were performed in accordance with the relevant guidelines 

and regulations. Patient data was anonymized. The IRBs approved the waiver of 

informed consent.  

The data used was extracted from longitudinal EHRs and included both time-

independent (static) and temporal (dynamic) features from the entire hospitalization 

period. The static features were age, sex, weight, BMI and background diseases. The 

background diseases included hypertension, diabetes, cardiovascular diseases, chronic 

obstructive pulmonary disease (COPD), chronic kidney disease (CKD), cancer, 

hepatitis B and human immunodeficiency virus (HIV). The dynamic features include 

measurement of vital signs (including oxygen saturation), complete blood count (CBC), 

basic metabolic panel (BMP), blood gases, coagulation panel and lipids panel, 

including kidney and liver function tests, and inflammatory markers (Supplementary 

Table 2). Features with more than 40% missing values or with zero variance were 

excluded. The temporal data was discretized to hourly intervals and multiple values 
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measured within the same hour were aggregated by mean. We use the term observation 

for the vector of hourly aggregated feature values of the patient. An observation was 

formed if at least one measurement was recorded in that hour. 

While our goal was to predict individual positive observations, in order to provide early 

warning, a closely related question is the prevalence of continuously deteriorating 

patients. To answer this question, we defined continuously deteriorating patients as 

those who had a period of 12 consecutive hospitalization hours with at least two 

mNEWS2 measurements, the majority of which had scores ≥ 7. 25.2% and 21.1% of 

the patients in Sheba and TASMC, respectively, satisfied this criterion. Notably, the 

correlation between mortality and deterioration according to this criterion was ~0.5 in 

both datasets. 

 

4.2. Inclusion and Exclusion Criteria 

Inclusion criteria: Adult patients (age≥18) with at least one mNEWS2 score. 

Exclusion criteria: Patients who were in a severe state upon their admission, defined as 

having mNEWS2 score≥7 in the first 12 hours after admission (n=156 patients). 

Observations from the six hours period prior to a deterioration event, as we wish to 

predict at least six hours in advance (n=28,069 observations), and observations from 

the eight hours after the deterioration event (n=5,157 observations). These two 

exclusions criteria defined the blocked prediction period during which no predictions 

are made (Figure 12). Observations where no mNEWS2 score was available in the next 

30 hours, for which predictions could not be compared to the true outcome (n=9,812 

observations). Patients with no laboratory results for BMP, CBC and coagulation 
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during their entire hospitalization, since our model is based mainly on laboratory 

features (n=15 patients). Patients' observations with ≥60% of the feature values missing 

(424 observations).  

 

 

Figure 12: Patient timeline from symptoms to deterioration. Data from the entire 

hospitalization period was utilized for model prediction, starting from the hospital admission. 

The green interval is when the deterioration predictions are made. Red areas represent blocked 

prediction periods during which no predictions are made: the six hours period prior to the 

deterioration event, and the eight hours period afterward. The length of the prediction window 

and the blocked prediction periods were predefined with clinical experts and can be easily 

tailored to fit other clinical settings. 

 

4.3. Outcome Definition 

The mNEWS2 scores were routinely calculated and updated in the EHR systems, as 

part of clinical care (see calculation protocol in Supplementary Table 1). The mean 

time period between two consecutive mNEW2 records was ~2.7 hours in the 

development set before applying the inclusion and exclusion criteria, and ~2.5 hours 

afterward. Observations with mNEWS2 score ≥ 7 recorded in the next 7-30 hours were 

called positive, and the rest were called negative. Notably, observations where no 

mNEWS2 score was available in the next 30 hours were excluded (see section 4.2).  
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4.4. Outlier Removal 

To remove grossly incorrect measurements due to manual typos or technical issues, we 

manually defined with clinicians a range of possible values (including pathological 

values) per each feature (Supplementary Table 3) and removed values outside this 

range. In total, 43,507 values were excluded.   

 

4.5. Data Imputation 

Missing values were observed mainly in lab tests and vital signs. We used linear 

interpolation for imputing missing data. The remaining missing data (e.g., missing 

values in observations that occurred before the first measurement of a feature, or 

features that were not measured for a patient at all) were imputed using the multivariate 

Iterative Imputer algorithm, implemented in the scikit-learn library in Python [37], 

which was inspired by MICE (Multivariate Imputation by Chained Equation) [33]. The 

Iterative Imputer uses regression to model each feature with missing values as a 

function of other features, in a round-robin fashion. In each round, each of the features 

is imputed in this way. The dataset obtained in the final round serves as the imputed 

dataset. 

 

4.6. Feature Engineering 

We created summary statistics over time windows of varying sizes to capture the 

temporal behavior of the data. The summary statistics were generated for 21 dynamic 
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features that were reported as risk factors for severe COVID-19 in previous studies 

[38]–[42]  (Supplementary Table 3). We defined two time windows covering the last 

24 and 72 hours. For each time window, the summary statistics extracted were the 

mean, difference between the current value and the mean, standard deviation, minimum 

and maximum values. In addition, we extracted the same summary statistics based on 

the entire hospitalization period so far, with the addition of the linear regression slope 

(the regression coefficient). To capture recent data patterns, the difference and trend of 

the last two observed values ((𝑣2 − 𝑣1) and 
𝑣2−𝑣1

𝑡2−𝑡1
 for values 𝑣1, 𝑣2 recorded in times 

𝑡1, 𝑡2 respectively) were generated as well. In addition, to capture interactions between 

pairs of variables, we generated features for the ratios of each pair of variables in the 

risk factors subset (for example, neutrophils to lymphocytes ratio). 

As imputation masks the information about the measurement frequency, we added 

features that capture the time since the last non-imputed measurement. While these 

features indeed improved our performance, the intensity of monitoring of a patient may 

reflect her medical condition (a deteriorating patient will tend to have more frequent 

measurements). As we aimed to predict deterioration when it is not yet anticipated, we 

chose not to include these features in the developed model, since they can create bias 

due to measurement intensity. 

We also added to the model features that aimed to estimate how much an observation 

is irregular. We applied three anomaly detection approaches, One-Class SVM [34], 

Isolation Forest [35], and local outlier factor (LOF) [36] to each hourly observation. 

Eventually, none of the anomaly features was included in the final model after the 

feature selection. 
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4.7. Model Development and Feature Selection 

We performed a binary classification task for every hourly observation to predict 

deterioration in the next 7-30 hours. Deterioration was defined as mNEWS2≥7. As 

deterioration can usually be predicted by the physician several hours in advance, based 

on signs and symptoms, observations from the six hours prior to the deterioration event 

were excluded (Figure 12). Once deterioration has occurred, no predictions were made 

in the next 8 hours, and observations during that period were excluded. The length of 

the prediction window (30 hours) and the blocked prediction windows (six hours before 

and eight hours after the event) were predefined with our clinical experts. These lengths 

can be easily tuned to fit other clinical settings. The predictions start with data collection 

(namely, on hospital admission), as long as the available data so far meet the inclusion 

and exclusion criteria, in terms of missing rate, blocked prediction windows and 

additional considerations (see “Inclusion and Exclusion Criteria”).  

We evaluated ten supervised machine learning models for this prediction task: linear 

regression [21], [22], logistic regression [23], naïve Bayes, SVM [24], random forest 

[26] and several algorithms for gradient boosting of decision trees, including XGBoost 

[27] and CatBoost [28]. The hyperparameters of the models were determined using grid 

search over predefined ranges of possible values. The hyperparameter settings are listed 

in Supplementary Table 4. Data standardization was performed prior to model 

training when needed (for example, for SVM).  

To handle the high dimension of our data after the feature engineering process, we 

examined two strategies or feature selection. The first selected the 100 features with the 

highest correlation with the target. The second used feature importance as calculated 

by XGBoost. Cross-validation of all algorithms was performed, where, in each 
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iteration, the top 100 features, according to each strategy, were used in training. Based 

on the cross-validation results, we chose the second strategy. We trained XGBoost on 

the full imputed training dataset and used the computed feature importance scores to 

select the top 100 features for training the final model (Supplementary Table 5). 

 

4.8. Evaluation Approach 

We partitioned the development dataset into 80% training and 20% testing sets (Figure 

13). To avoid bias resulting from changes in clinical practice over time, the partition 

was done randomly across the hospitalization dates.  

To estimate the robustness of the models on different patients and time periods, we used 

20-fold cross-validation over the training set, and measured model performance using 

the area under the receiver-operator characteristics curve (AUROC) and the area under 

the precision-recall curve (AUPR). The testing set was used to evaluate the final model 

performance within the same cohort.   

Finally, we used the validation dataset (TASMC) for external evaluation.  
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Figure 13: Outline of the data partition and model development. First, the development dataset 

(Sheba) was split into 80% training and 20% testing subsets (1). To estimate the performance 

of 14 machine learning models, 20-fold cross-validation over the training set was performed 

(2). Then, the final model was trained over the entire training set (3) and evaluated on the testing 

set (4). External validation was done on the validation set (TASMC) (5). 
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5. Results 

5.1. Cohort Description 

The development dataset  consisted of all patients admitted to Sheba between March 

and December 2020 that tested positive for SARS-CoV-2. The validation dataset 

consisted of all patients admitted to TASMC between March and September 2020 who 

tested positive for SARS-CoV-2. The data used was extracted from structured 

longitudinal EHRs covering the entire hospitalization period, starting from the hospital 

admission. The data included both time-independent (static) and temporal (dynamic) 

features, such as demographics, background disease, vital signs and lab measurements 

(Supplementary Table 2). We use the term observation for the vector of hourly 

aggregated feature values of a patient. A new observation was formed whenever at least 

one measurement was recorded in that hour. 

After applying the inclusion and exclusion criteria (see "Methods"), the development 

set contained 25,105 hourly observations derived from 662 patients; the validation set 

had 7,737 observations derived from 417 patients. The characteristics of the first 

measurements upon admission of the datasets are described in Supplementary Table 

2. 

We defined the deterioration outcome as a recorded high mNEWS2 score (≥7), and 

aimed to predict such outcomes 7-30 hours in advance (Figure 12). Higher mNEWS2 

scores were associated with higher mortality and ICU admissions rates in the 

development dataset (Supplementary Figure 1). 
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5.2. COVID-19 Deterioration Model 

Our models predict the risk of deterioration for each hour that contains a new 

measurement. The development set was split into a training and testing subsets (Figure 

13), where the training set consisted of 20,029 hourly observations derived from 530 

patients, of which 6,349 (~31%) were labeled positive (mNEWS2≥7 in the next 7-30 

hours). We trained 14 models on the training set. 

Figure 14 summarizes the performance of 14 classifiers in cross-validation on the 

training set. Classifiers based on an ensemble of decision trees (CatBoost, XGBoost, 

Random Forest) performed best overall. We chose CatBoost as our final prediction 

model and trained it on the entire training set. Its results on the development testing set 

are shown in Figure 15. It had good discrimination and achieved AUROC of 0.84 and 

AUPR of 0.74. To estimate the robustness of the model, we performed a bootstrap 

procedure with 100 iterations, where, in each iteration, a sample with size half of the 

testing set was randomly selected from the testing set with replacement. The mean and 

standard deviation of the AUROC and the AUPR over these experiments achieved 

comparable results to those of the total testing set (Figure 15a-b). Figure 15c presents 

a calibration curve of the model, showing good agreement between the predicted and 

observed probabilities for deterioration.  
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(a) 

 

(b) 

 

Figure 14: Performance of 14 machine learning models that predict mNEWS2≥7. Comparison 

of machine learning methods using 20-fold cross-validation over the training set within the 

development dataset. (a) AUPR. (b) AUROC. The horizontal line indicates the median, and the 

white circle indicates the mean. The models are sorted by the mean AUC. 
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 (a)                                                (b)                                               (c) 

  

Figure 15: Performance of the final model on the testing set within the development set.  (a) 

AUROC. (b) AUPR. Solid curves were computed on the total set. Dashed curves were 

computed with a bootstrap procedure with 100 iterations, where, in each iteration, a number of 

observations equals to half of the testing set was sampled from the testing set with replacement. 

(c) Calibration plot for the relationship between the predicted and observed probabilities for 

COVID-19 deterioration. The dashed diagonal line represents an ideal calibration. The purple 

line represents the actual model performance in five discretized bins. The blue histogram is the 

distribution of the risk predictions.  

 

When using a classification threshold of 0.7 in the final model (namely, classifying as 

positive all observations with risk score > 0.7, and the rest as negative), it achieved an 

accuracy of 80% with a positive predictive value (PPV) of 87% on the testing set. 

Performance metrics for various classification thresholds are shown in Table 1. 

To assess the contribution of each feature to the final model prediction, we used SHAP 

values [43]. The top 20 important features of the model are summarized in Figure 16. 

Age, arterial oxygen saturation, maximal LDH value and the standard deviation of body 

temperature were the most important features for predicting deterioration. An 

evaluation of feature importance as calculated by the CatBoost algorithm gave similar 

results (Supplementary Figure 2). 
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Threshold Accuracy Sensitivity Specificity PPV NPV 
      

0.1 0.66 0.88 0.56 0.48 0.91 

0.2 0.74 0.78 0.71 0.56 0.87 

0.3 0.77 0.69 0.80 0.62 0.84 

0.4 0.79 0.60 0.87 0.69 0.82 

0.5 0.79 0.55 0.91 0.73 0.81 

0.6 0.79 0.48 0.94 0.79 0.80 

0.7 0.80 0.44 0.97 0.87 0.79 

0.8 0.78 0.34 0.98 0.90 0.76 

0.9 0.73 0.17 0.99 0.93 0.72 
 

Table 1: Performance metrics of the final model on the testing set for different thresholds. 

PPV: positive predictive value, NPV: negative predictive value. 

 

 

Figure 16: 20 features with highest mean absolute SHAP values. Features (rows) are ordered 

in decreasing overall importance to the prediction. The plot for each feature shows the SHAP 

value for each observation on the x-axis, with color representing the value of the feature from 

low (blue) to high (red). The absolute value indicates the extent of the contribution of the 

feature, while its sign indicates whether the contribution is positive or negative. SD: standard 

deviation; /:  the ratio between two features. 24h,72h: time windows within the statistic was 

computed. If not mentioned, the statistics is calculated on the entire hospitalization period so 

far. 
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5.3. External validation 

 The dataset from TASMC was used for external validation of the final model. The 

results (Figure 17) show good performance with AUC 0.76 and AUPR 0.7, albeit less 

than in the development dataset. A certain reduction in performance is expected when 

validating a predictor on an independent data source. The slight decrease in 

performance here can be explained, in part, by the lower temporal resolution of the 

TASMC dataset, as well as by the higher rate of missing values.  

 

          (a)                                                             (b) 

 

Figure 17: External validation of the final model on the TASMC data. (a) AUROC. (b) 

AUPRC. 
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6. Discussion 

We utilized machine learning models for predicting a deterioration event in the next 7-

30 hours based on EHR data of adult COVID-19 inpatients. Deterioration was defined 

as a high COVID-19 early warning score (mNEWS2≥7). On held-out data, the model 

achieved AUROC of 0.84 and AUPR of 0.74. The model was tested on an independent 

patient cohort from a different hospital and demonstrated comparable performance, 

with only a modest decrease. The TASMC data had less frequent measurements than 

Sheba's. The slightly lower performance of the model on the TASMC cohort can be 

explained by its lower density and by the hourly discretization, which was chosen based 

on the Sheba data. Using our predictor, we could anticipate deterioration of patients 7-

30 hours in advance. Such early warning can enable timely intervention, which was 

shown to be beneficial [5]. 

Several previous studies have assessed the utility of machine learning for predicting 

deterioration in COVID-19 patients [38], [44]–[47]; see also [48] for a review. Most 

studies used strict criteria as their primary outcomes, such as mechanical ventilation, 

ICU admission, and death. However, the mNEWS2 score provides a more dynamic 

measure for clinical deterioration, allowing to trace patient conditions throughout the 

hospitalization. Since the mNEWS2 score is broadly adopted as a yardstick of COVID-

19 inpatient status in medical centers around the world, we believe that demonstrating 

early prediction of high scores could provide valuable insights to physicians and bring 

to their attention particular patients that are predicted to be at high risk to deteriorate in 

the near future. Notably, our model can be readily adapted to other criteria for 

deterioration, e.g., mechanical ventilation or other mNEWS2 cutoffs. 
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Consistently with previous studies [38], [39], [44]–[47] , we confirmed the importance 

of known medical and inflammatory markers for severe COVID-19, such as age, body 

temperature, oxygen saturation, LDH and albumin. While most previous studies used 

only raw variables as features, our work emphasizes the importance of including 

summary statistics, such as the standard deviation of body temperature, for predicting 

the risk of COVID-19 deterioration. We note that, despite its previously reported 

importance [38]–[40], [47], C-reactive protein was excluded from our analysis since it 

was not consistently available in our data.  

Most previous works that predicted deterioration utilized only baseline data, obtained 

on admission or a few hours thereafter [38], [44]–[47]. Thus, they sought to predict the 

risk of a single deterioration event, possibly several days before its occurrence. 

Razavian et al. used data from the entire hospitalization period, but for prediction of 

favorable outcomes [49]. The novelty of our methodology lies in the fact that our model 

generates repeatedly updated predictions for each patient during the hospitalization, 

using both baseline and longitudinal data. This enables the identification of patients at 

risk throughout the hospitalization, while accounting for the temporal dynamics of the 

disease, allowing adjusted patient therapy and management. All predictions refer to 

events at least seven hours in advance, enabling early detection of patients at risk. 

Moreover, unlike many other prediction models, (see [48]), our method was validated 

on data from a different center.  

The final model used in this work was CatBoost, an algorithm for gradient boosting on 

decision trees. Such models have been successfully applied to various clinical 

applications [20], [50]–[52]. They are often best performers for relatively small 

datasets, and have the additional advantage of being easily interpretable, an important 

factor in using machine learning models in the clinical setting [53]. Deep learning 
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approaches often do better when powered by massive amounts of data [54]-[56]. With 

a larger sample size, we intend to take advantage of deep architectures in future work, 

including variants of recurrent neural network (RNN).  

Our study has several limitations. First, it is retrospective, and model development was 

done based on data from a single center, which may limit its generalizability to external 

cohorts, especially considering the high variability of COVID-19 outcomes. Second, 

the mNEWS2 scores present a noisy signal, with frequent changes in the severity 

condition during the hospitalization. This impairs the score’s ability to be used as a 

robust predictor, compared to other approaches for predicting deterioration [45], [57] , 

which use other signals, such as initiation of mechanical ventilation or death.  

A potential concern is that a deteriorating patient will tend to have more frequent 

mNEWS2 measurements. This may bias our model and impair its adaptability to a 

general population of patients. To mitigate bias due to measurement intensity, we chose 

to exclude features that capture measurement frequency, although including them can 

improve performance. In addition, the training data had a majority of negative 

observations (~69%), showing that mild and modest conditions are well represented in 

the data. Furthermore, by summarizing measurements per hour we mask the 

measurement intensity within the same hour. Future work could examine time 

discretization over longer time windows and utilization of balancing techniques. 

It is a major challenge to develop a model that is robust to the changes in clinical care 

or in the characteristics of the disease over time. Our current model was developed on 

data collected over ten months. Its partition into training and testing subsets was done 

randomly across the hospitalization dates, to avoid the bias resulted from clinical 

changes over time. In order to evaluate the model robustness and generalizability across 



51 
 

the different pandemic periods, we are currently evaluating a cross-validation 

procedure adjusted for waves, termed wave-fold cross-validation. The wave-fold cross 

validation can be used to evaluate machine learning models for longitudinal time-series 

data over different periods, in addition to the traditional cross validation (see illustration 

in Supplementary Figure 3). Future work might utilize data collected from additional 

pandemic periods and evaluate the model using wave-fold cross-validation. 

Future work should examine additional data imputation approaches for handling 

missing data. Such methods could have a large effect on the performance of a predictive 

model [58]. Various imputation methods are commonly used today, but when it comes 

to individualized time-series clinical data, some of the popular approaches are limited. 

Instead of incorporating data imputation as an integral pre-processing step, it can be 

treated as a hyperparameter and tuned in cross-validation. 

To date, only a few prognostic COVID-19 models have been prospectively validated 

or implemented in clinical practice [49], [59]. The adoption of a model into clinical 

workflows requires the completion of several steps. First, to avoid site-specific 

learning, the model should be validated across several healthcare centers. Second, the 

model should be integrated into the institution’s EHR system, so that each variable is 

extracted from the database and fed into the pipeline in real time. Third, prospective 

validation should be performed to assess the performance of the deployed model. Our 

study was done with future deployment in mind on several levels. It spanned two 

centers, with one used for validation only, and we plan to extend the study to additional 

centers. Collaborating with our clinical experts, we incorporated clinical standards into 

model development, for example when defining the inclusion and exclusion criteria and 

by addressing potential biases. In addition, by using SHAP values, we provided a 

decision support tool that could be interpretable to clinicians. Furthermore, the 
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deterioration threshold (mNEWS2 cutoffs) and the prediction window (the time interval 

in the future for which the predictions are made), can be easily tuned, enabling tailored 

alarm policy for clinical setting (e.g., how often the alarm is raised). Future prospective 

validation is needed to assess the impact of the deployed model on patient outcomes. 

In conclusion, machine learning-based prognostic tools have great potential for both 

care decisions and resource utilization in hospital wards. We described the development 

and validation of a model for the prediction of deterioration of COVID-19 inpatients 

within the next 7-30 hours. In spite of the fact that the disease is novel and of high 

complexity, our model provides useful predictions for risk of deterioration, with good 

discrimination. Early detection and treatment of COVID-19 patients at high risk of 

deterioration can lead to improved treatment and to reduction in mortality. Further 

validation of this vision is needed. 
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8. Supplementary Material 

Supplementary Figure 1: Death and ICU admission rates as a function of the maximal 

mNEWS2 score during hospitalization in the development dataset.  
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Supplementary Figure 2: Feature importance calculated by CatBoost 

(“PredictionValuesChange” metric). Features (rows) are ordered in decreasing overall 

importance. The importance score of a feature (x axis) is determined by how much on 

average the prediction changes when the feature value changes. A bigger change in the 

prediction value implies a higher importance. SD: standard deviation; /:  the ratio 

between two features. 24h,72h: time windows within the statistic was computed. When 

the time window is not mentioned, the measure refers to the entire hospitalization 

period up to the prediction time. 
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Supplementary Figure 3: Cross-validation procedures for model evaluation across 

different COVID-19 waves. The original data is partitioned into k distinct folds 

representing k waves (here k=3), each fold contains all patients admitted during the 

corresponding wave. Gray boxes represent training folds and blue boxes represent 

validation folds. (a) Each fold is used once for validation while the k-1 remaining folds 

are used as the training set. (b) In the k-th iteration, the first k folds are used as training 

set, and the (k+1)-th fold is used as test set. (c) In the k-th iteration, the k fold is used 

as training set, and the (k+1)-th fold as test set. 

 

(a) K-fold                           (b) Sequential folds              (c) Next-fold 
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Supplementary Table 1: The mNEWS2 score. Scores are computed by summing the 

points for each category. This is an adapted version of the NEWS2 score, with the 

addition of 3 points for patients with age≥65 [10].  

 

Points 3 2 1 0 1 2 3 
        

Age    <65   ≥65 

Respiratory Rate ≤8  9-11 12-20  21-24 ≥25 

Oxygen Saturation ≤91 92-93 94-95 ≥96    

Supplemental Oxygen  Yes  No    

Systolic BP ≤90 91-100 101-110 111-219   ≥220 

Heart Rate ≤40  41-50 51-90 91-110 111-130 ≥131 

Consciousness    Alert   

Drowsiness 

Lethargy 

Coma 

Confusion 

Temperature ≤35.0  35.1-36.0 36.1-38.0 38.1-39.0 ≥39.1  

 

Score Risk Grading 
  

0 - 

1-4 Low 

5-6 or 3 in one parameter Medium 

≥7 High 
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Supplementary Table 2: Table of Characteristics. Population characteristics for the 

two datasets used to develop and test the model. Characteristics of both static features 

and first measurements of dynamic features are presented. P-values were calculated 

using Fisher's exact test and T-test for categorical and numerical values, respectively, 

and Bonferroni corrected for multiple comparisons. ’AR’ and ’V’ refer to arterial and 

venous blood, respectively. 

 

Variable 
Development (Sheba Hospital) Validation (TASMC) 

P-Value 
N (%) Mean ± SD N (%) Mean ± SD 

Overall 662  417   

Age 662 (100.0%) 65.91 ± 16.86 417 (100.0%) 67.16 ± 18.01 1 

Gender   1 

Male 391 (59.06%)  241 (57.79%)   

Female 271 (40.94%)  176 (42.21%)   

Morality 144 (21.75%)  73 (17.51%)  1 

BMI 497 (75.08%) 28.21 ± 7.51 234 (56.12%) 27.37 ± 5.88 1 

Weight 507 (76.59%) 81.11 ± 19.76 245 (58.75%) 77.25 ± 18.48 0.5385 

Hypertension   <0.0001 

Yes 287 (43.35%)  60 (14.39%)   

No 375 (59.65%)  357 (85.61%)   

Diabetes   0.0046 

Yes 195 (29.46%)  83 (19.9%)   

No 467 (70.54%)  334 (80.1%)   

Cancer   0.0008 

Yes 91 (13.75%)  26 (6.24%)   

No 571 (86.25%)  391 (93.76%)   

Hepatitis B   1 

Yes 5 (0.76%)  3 (0.72%)   

No 657 (99.24%)  414 (99.28%)   

CKD   1 

Yes 43 (6.5%)  27 (6.47%)   

No 619 (93.5%)  390 (93.53%)   

HIV   1 

Yes 1 (0.15%)  1 (0.24%)   

No 661 (99.85%)  416 (99.76%)   

CVD   0.0046 

Yes 149 (22.51%)  58 (13.91%)   

No 513 (77.49%)  359 (86.09%)   

COPD   1 

Yes 26 (3.93%)  22 (5.28%)   

No 636 (96.07%)  395 (94.72%)   

HBA1C (#) 108 (16.31%) 45.34 ± 15.92 39 (9.35%) 54.11 ± 20.1 0.3497 

HBA1C (%) 108 (16.31%) 6.3 ± 1.46 39 (9.35%) 7.1 ± 1.84 0.3629 

Albumin 658 (99.4%) 35.81 ± 5.44 377 (90.41%) 38.35 ± 4.85 <0.0001 

ALT 660 (99.7%) 33.02 ± 29.06 412 (98.8%) 37.47 ± 72.29 1 

AST 661 (99.85%) 46.63 ± 43.84 378 (90.65%) 43.44 ± 35.46 1 

BUN 662 (100.0%) 23.42 ± 16.66 417 (100.0%) 22.8 ± 19.15 1 

Calcium 662 (100.0%) 8.82 ± 0.64 379 (90.89%) 8.67 ± 0.59 0.0098 

CPK 644 (97.28%) 219.57 ± 595.46 380 (91.13%) 232.15 ± 451.02 1 

Creatinine 662 (100.0%) 1.18 ± 0.98 417 (100.0%) 1.2 ± 1.36 1 

Direct bilirubin 359 (54.23%) 0.28 ± 0.54 385 (92.33%) 0.26 ± 0.34 1 

D-dimer 627 (94.71%) 3.22 ± 4.81 371 (88.97%) 2.19 ± 3.88 0.0244 

Ferritin 471 (71.15%) 641.34 ± 1094.3 348 (83.45%) 799.82 ± 1280.3 1 

Fibrinogen 577 (87.16%) 500.56 ± 174.18 320 (76.74%) 524.01 ± 145.45 1 
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Glucose 662 (100.0%) 135.34 ± 59.23 417 (100.0%) 128.16 ± 66.65 1 

HCO3 597 (90.18%) 24.62 ± 3.78 341 (81.77%) 24.35 ± 4.33 1 

HGB 662 (100.0%) 12.67 ± 2.14 417 (100.0%) 13.2 ± 1.94 0.0022 

INR 656 (99.09%) 1.13 ± 0.21 416 (99.76%) 1.08 ± 0.21 0.0078 

Lactate 600 (90.63%) 2.07 ± 1.07 178 (42.69%) 2.07 ± 1.33 1 

LDH 656 (99.55%) 353.77 ± 215.99 367 (88.01%) 565.31 ± 269.78 <0.0001 

Lymphocytes (#) 660 (99.7%) 1.18 ± 0.83  417 (100.0%) 1.18 ± 0.95 1 

Lymphocytes (%) 662 (100.0%) 18.3 ± 11.77 417 (100.0%) 17.6 ± 12.02 1 

Neutrophils (#) 662 (100.0%) 5.59 ± 3.86 417 (100.0%) 6.09 ± 4.27 1 

Neutrophils (%) 662 (100.0%) 71.7 ± 14.19 417 (100.0%) 73.12 ± 13.49 1 

NRBC 98 (14.8%) 1.24 ± 0.97 416 (99.76%) 0.2 ± 0.38 <0.0001 

Osmolality (urine) 25 (3.78%) 368.0 ± 158.68 47 (11.27%) 451.17 ± 186.09 1 

PO2 (AR) 56 (8.46%) 74.69 ± 27.7 341 (81.77%) 40.04 ± 36.73 <0.0001 

PO2 (V) 596 (90.03%) 36.44 ± 27.54 81 (19.42%) 34.89 ± 35.42 1 

PCO2 (AR) 56 (8.46%) 49.83 ± 11.69 342 (82.01%) 42.15 ± 9.08 <0.0001 

PCO2 (V) 598 (90.33%) 43.12 ± 8.95 76 (18.23%) 42.67 ± 11.0 1 

PH 541 (81.72%) 7.37 ± 0.08 341 (81.77%) 7.38 ± 0.07 1 

Platelet 662 (100.0%) 208.46 ± 99.93 417 (100.0%) 202.05 ± 82.31 1 

Potassium 661 (99.85%) 4.16 ± 0.61 417 (100.0%) 4.04 ± 0.59 0.0758 

PTT 649 (98.04%) 30.88 ± 9.79 416 (99.76%) 32.32 ± 6.42 0.4093 

RBC 662 (100.0%) 4.48 ± 0.75 417 (100.0%) 4.48 ± 0.69 1 

RDW 662 (100.0%) 14.83 ± 2.23 417 (100.0%) 14.43 ± 1.68 0.0874 

Sodium 662 (100.0%) 136.05 ± 5.69 417 (100.0%) 136.0 ± 5.74 1 

Saturation O2 (AR) 592 (89.43%) 57.34 ± 24.21 247 (59.23%) 64.32 ± 26.61 0.0119 

Total bilirubin 661 (99.85%) 0.67 ± 0.68 412 (98.8%) 0.6 ± 0.48 1 

Triglycerides 367 (55.44%) 162.83 ± 118.33 309 (74.1%) 135.95 ± 67.14 0.0217 

Troponin 575 (86.86%) 98.5 ± 950.41 412 (98.8%) 51.92 ± 319.07 1 

VB12 312 (47.13%) 610.9 ± 421.27 292 (70.02%) 852.07 ± 511.04 <0.0001 

WBC 662 (100.0%) 7.55 ± 4.48  417 (100.0%) 8.85 ± 14.28 1 

Temperature 662 (100.0%) 37.016 ± 1.91 417 (100.0%) 37.63 ± 0.92 <0.0001 

Pulse 662 (100.0%) 86.23 ± 16.66 417 (100.0%) 87.59 ± 17.23 1 

Respiratory Rate 513 (77.49%) 19.84 ± 9.0 113 (27.1%) 20.98 ± 9.74 1 

SBP 662 (100.0%) 131.7 ± 24.65 417 (100.0%) 136.94 ± 23.69 0.0295 

DBP 662 (100.0%) 75.53 ± 13.23 417 (100.0%) 75.96 ± 15.34 1 

Saturation 110 (16.62%) 94.7 ± 5.92 415 (99.52%) 92.75 ± 7.31 0.5151 
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Supplementary Table 3: Minimum and maximum accepted values of the dynamic 

features. Feature engineering was applied for the bolded features. ’AR’ and ’V’ refer 

to arterial and venous blood, respectively. 

Feature Min Max Units Feature Min Max Units 

        

HBA1C (#) 0 240 mmol/mol Lymphocytes 

(%) 

0.2 100 % 

HBA1C (%) 0 24 % Neutrophils (#) 0.1 60 10e3/µL 

Albumin  0 100 g/L Neutrophils (%) 0.2 100 % 

ALT  0 20000 U/L NRBC 0 100 % 

AST  0 20000 U/L Osmolality 

(urine)  

50 2000 mosmo/kg 

Indirect bilirubin 0 20 mg/dL PO2 (AR)  0 1000 mmHg 

Direct bilirubin  0 20 mg/dL PO2 (V) 0 1000 mmHg 

BNP 0 10000 PG/ML PCO2 (AR) 0 150 mmHg 

Respiratory rate 1 100 BPM PCO2 (V) 0 150 mmHg 

BUN  2 200 mg/dL PH 6.6 7.8  

Calcium 0 20 mg/dL Platelet 0 1000 10e3/µL 

CKMB 0 10000 U/L Potassium 1 10 mmol/L 

CPK 0 10000 U/L PTT  5 200 Sec 

CRP 0 1000 mg/L Pulse 10 300 BPM 

Creatinine  0 20 mg/dL RBC 1 8 10e6/µL 

DBP 20 240 mmHG RDW 5 40 % 

D-dimer 0 50 FEU 

mg/L 

SBP 40 250 mmHG 

Ferritin  0 20000 ng/ml Sodium 110 200 mmol/L 

Fibrinogen  0 1500 mg/dL Saturation O2 

(AR) 

5 100 % 

Glucose  0 2000 mg/dL Saturation  5 100 % 

HCO3 0 100 mmol/L Total bilirubin 0 20 mg/dL 

HGB 2 25 g/dL Temperature  20 43 C° 

INR 0.5 5  Triglycerides  10 2000 mg/dL 

Lactate 0.2 15 mmol/L Troponin  1 40000 ng/L 

LDH  0 50000 U/L Vitamin B12 100 2500 pg/ml 

Lymphocytes (#)   0 20 10e3/µL WBC  0.2 100 10e3/µL 
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Supplementary Table 4: Hyperparameters used in the models. Hyperparameter 

search grid and fixed hyperparameters used for the predictive models. The 

hyperparameter combinations were evaluated on each fold in the cross-validation and 

the average performance was computed. The optimal values used for the final model 

(CatBoost) appear in bold type. ‘poly’: polynomial kernel function; ‘rbf’: Radial basis 

function.  

 

Model Hyperparameter Grid / Fixed value 

   

CatBoost 

Maximum number of trees 1,000 

Maximum depth  [6, 8, 10] 

Learning rate  [0.001, 0.01, 0.03, 0.1, 0.3] 

L2 Regularization coefficient [1, 3, 5] 

XGBoost 

Number of trees 100 

Maximum depth  [6, 8, 10] 

Learning rate  [0.001, 0.01, 0.03, 0.1, 0.3] 

colsample_bytree  1 

GBT 

Number of trees 100 

Maximum depth [6, 8, 10] 

Learning rate [0.001, 0.01, 0.03, 0.1, 0.3] 

Random Forest 
Number of trees 100 

Maximum depth  [6, 8, 10] 

Logistic Regression Regularization [L1, L2] 

Linear Regression Regularization [L1, L2] 

SVM Kernel [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’] 

NB N/A N/A 
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Supplementary Table 5: Top 100 features in importance as calculated by 

XGBoost. SD: standard deviation; /: ratio between two features. 24h,72h: time 

windows in which the statistic was computed. If the time window is not mentioned, the 

statistics is calculated on the entire hospitalization period up to the prediction time. 

Age Fibrinogen delta mean Neutrophils (#) min 

BMI Fibrinogen delta mean 24h Neutrophils (#) min 72h 

Lactate Fibrinogen max 72h Neutrophils (#) / Glucose 

Neutrophils (%) Fibrinogen mean Neutrophils (#) / Platelet 

Sodium Glucose mean Neutrophils (#) trend 

Saturation O2 - arterial blood Glucose min 72h Neutrophils (%) max 

Albumin mean 24h Glucose / Troponin Neutrophils (%) max 24h 

Albumin min 24h Glucose SD Neutrophils (%) max 72h 

Albumin min 72h LDH max Neutrophils (%) min 

Albumin / PTT LDH max 72h Neutrophils (%) min 72h 

Albumin SD LDH mean Neutrophils (%) / ALT 

Albumin SD 72h LDH mean 72h Neutrophils (%) / AST 

ALT / Fibrinogen LDH min 72h Neutrophils (%) / D-dimer 

AST min 72h LDH / Albumin Platelet delta 

AST / Platelet LDH / ALT Platelet SD 24h 

AST SD 72h LDH / Platelet Platelet SD 72h 

BUN lr slope LDH SD 72h PTT lr slope 

BUN delta mean 72h Lymphocytes (#) min PTT max 24h 

BUN min Lymphocytes (#) / D-dimer PTT mean 72h 

BUN / ALT Lymphocytes (#) / Ferritin PTT min 24h 

BUN / Ferritin Lymphocytes (#) / PTT Temperature max 

BUN / Troponin Lymphocytes (#) SD 72h Temperature mean 72h 

BUN SD Lymphocytes (%) max Temperature min 

D-dimer max Lymphocytes (%) max 24h Temperature min 24h 

D-dimer max 72h Lymphocytes (%) mean 72h Temperature min 72h 

D-dimer min Lymphocytes (%) / AST Temperature SD 

D-dimer min 72h Lymphocytes (%) / D-dimer Temperature SD 72h 

D-dimer / Albumin Lymphocytes (%) / Fibrinogen Troponin delta mean 

D-dimer / AST Lymphocytes (%) / PTT Troponin SD 72h 

D-dimer / Ferritin Lymphocytes (%) SD WBC min 24h 

D-dimer / Fibrinogen Lymphocytes (%) SD 24h WBC / D-dimer 

D-dimer / Platelet Neutrophils (#) max WBC SD 

D-dimer SD Neutrophils (#) max 72h  

Ferritin / Troponin Neutrophils (#) mean  
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 תקציר

. בשל הציבור על בריאותבהול , ומהווה איום  2019מתפשטת ברחבי העולם מאז דצמבר  פת הקורונהמגי

, זהו אתגר קליני לחזות אילו חולים  שלהההבנה המוגבלת של התקדמות המחלה ושל גורמי הסיכון 

העלו כי נקיטת אמצעים מוקדמים לטיפול בחולים בסיכון  קודמים מאושפזים ידרדרו. יתרה מכך, מחקרים 

 . תמכניהנשמה ואת הצורך בהחמרת המצב למנוע או להפחית את עשויה להידרדרות 

פיתחנו מודל חיזוי לזיהוי מוקדם של חולים בסיכון להידרדרות קלינית על ידי ניתוח  זו ודהבעב

בשני המרכזים  מאושפזים שהיו  COVID-19חולי של  רשומות רפואיות דיגיטליותרטרוספקטיבי של 

במאפיינים  תוך שימוש שיטות למידת מכונה מתבסס על בישראל. המודל שלנו ביותר הרפואיים הגדולים 

דמוגרפיה ומחלות רקע. הידרדרות הוגדרה  נתוני מעבדה, בדיקות סימנים חיוניים,    קליניים שגרתיים כמו

 .  COVID-19-תאם להמו  NEWS2 גבוה של כציון

ושטח   0.84של  ROCהשעות הבאות, המודל השיג שטח מתחת לעקומת   7-30עבור הידרדרות ניבוי ב

של  PPVעבור  44%בפרט, המודל השיג רגישות של  .0.74של  precision-recallמתחת לעקומת 

השיג ערכים של המודל על נתונים מבית חולים אחר,  (external validationאימות חיצוני )ב .87%

  ., בהתאמה0.7-ו 0.76
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