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Abstract  

High-throughput sequencing techniques generate large volumes of DNA sequencing data at ultra-

fast speed and extremely low cost.  Therefore, sequencing techniques have become ubiquitous 

in biomedical research and are used in hundreds of genomic applications. Efficient data 

structures and algorithms have been developed to handle the large datasets produced by these 

techniques. The prevailing method to index DNA sequences in those data structures and 

algorithms is by 𝑘-mers (𝑘-long substrings) known as minimizers.  

Minimizers are the smallest 𝑘-mers selected in every consecutive window of a fixed length in a 

sequence, where the smallest is determined according to a predefined order, e.g., lexicographic. 

Recently, a new 𝑘-mer order based on a universal hitting set (UHS) was suggested.  While several 

studies have shown that orders based on a small UHS have improved properties, the utility of 

using a small UHS in high-throughput sequencing analysis tasks has not been demonstrated to 

date.  

Here, we demonstrate the practical benefit of UHSs for the first time, in the genome assembly 

task.  Reconstructing a genome from billions of short reads is a fundamental task in high-

throughput sequencing analyses.  De Bruijn graph construction is a key step in genome assembly, 

which often requires very large memory and long computation time.  A critical bottleneck in this 

process is the partitioning of DNA sequences into bins.  The sequences in each bin are assembled 

separately, and the final de Bruijn graph is constructed by merging the bin-specific subgraphs. 

We incorporated a UHS-based order in the bin partition step of the Minimum Substring 

Partitioning algorithm of Li et al.  (2013). Using a UHS-based order instead of lexicographic or 

random-ordered minimizers produced lower density minimizers with more balanced bin 

partitioning, which led to a reduction in both runtime and memory usage. 
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1.  Introduction 

Large amounts of DNA sequencing data are generated today in almost any biological or clinical 

study. Due to the low cost of sequencing, it has become standard to probe and measure 

molecular interactions and biomarkers using DNA read quantities [1]. Technologies based on 

high-throughput sequencing (HTS) have been developed for the major genomics tasks: genetic 

and structural variation detection, gene expression quantification, epigenomic signal 

quantification, protein binding measurements, and many more [2]. 

A first step in utilizing all these data types is the computational analysis of HTS data. Key 

challenges include read mapping to a reference genome, read compression, storing reads in a 

data structure for fast querying and finding read overlaps. As a result, many computational 

methods were developed to analyze HTS data, and the development of new methods is ongoing 

[3]. 

Many methods for analyzing HTS data use minimizers to obtain speed-up and reduce memory 

usage [4]– [6]. Given integers 𝑤 and 𝑘, the minimizer of an 𝐿	 = 	𝑤 + 𝑘 − 1-long sequence is the 

smallest 𝑘-mer among the 𝑤 contiguous 𝑘-mers in it, where the smallest is determined based on 

a predefined order, e.g., lexicographic [7]. For a sequence longer than 𝐿, all 𝐿-long windows are 

scanned, and the minimizer is selected in each one (Figure 1a).  

Using the minimizers to represent the 𝐿-long windows has three key advantages: 

(i) The sampling interval is small. 

(ii)  The same 𝑘-mers are often selected from overlapping windows. 

(iii)  Identical windows have the same minimizer. 
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Minimizers help design algorithms that are more efficient in both runtime and memory usage by 

reducing the amount of information that is processed while losing little information. Minimizers 

were shown to be helpful and are used in many different settings, such as partitioning input 

sequences [5], [8], [9] generating sparse data structures [10], [11], and sequence classification 

[6]. 

 

 

Figure 1: Illustrations of Minimizers and de Bruijn graph.  (A) Minimizers scheme (𝑘	 =
	4, 𝑤	 = 	9). The input sequence is broken into windows of length 𝐿	 = 	𝑤	 + 	𝑘	 − 	1	 = 	12, 
and the minimizer in each window is selected. Consecutive windows tend to select the same 
minimizer. The positions of the selected 𝑘-mers constitute a sampling of the original 
sequence.  (B) De Bruijn graph of order 3 for three DNA sequences. The vertices are the 3-
mers contained in the set of sequences. Edges connect two vertices if the 4-mer they 
represent is contained in a sequence in the set. 

 

Recently, the concept of a universal hitting set (UHS) was introduced as a way to improve 

minimizers [12]. For integers 𝑘 and 𝐿, a set of 𝑘-mers 𝑈!,# is called a UHS if every possible 

sequence of length 𝐿 contains at least one 𝑘-mer from 𝑈!,#  as a contiguous substring. It was 

shown that by using a UHS of small size, one can design an order for a minimizer scheme that 
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results in fewer selected 𝑘-mers compared to the orders commonly used in current applications 

(i.e., lexicographic or random orders) [13]. Therefore, using UHSs has the potential to provide 

smaller signatures than currently used orders, and as a result reduce runtime and memory usage 

of sequencing applications.  

We and others recently developed algorithms to generate small UHSs [12], [13], but so far, the 

prevailing methods in HTS analysis employ a lexicographic or random order. To date, only one 

method has been developed to take advantage of the improved properties of UHSs and applied 

them to a 𝑘-mer counting application [14]. 

In this study we demonstrate the practical benefit of UHSs on a main HTS analysis task: de Bruijn 

graph construction for genome assembly by a disk-based partition method. We introduce a UHS 

into the graph construction step of the Minimum Substring Partition assembly algorithm [15]. 

The introduction of the UHS into the algorithm defines a new minimizers ordering, substantially 

changing the execution of all the steps of the algorithm but producing exactly the same final 

output. In tests on several genomic datasets, the new method had lower memory usage, shorter 

runtime and more balanced disk partitions. The code of our method is publicly available at 

github.com/Shamir-Lab/MSP_UHS. 

A preliminary version of this study was published in the Proceedings of the ACM-BCB Conference 2021 
[16] 
  



 

11 

 

 

 

2. Biological Background 

2 A. Genomics  

DNA (Deoxyribonucleic acid) is a molecule composed of nucleotides (A -Adenine, G- Guanine, C- 

Cytosine, and T- Thymine) that carries all the genetics information and instructions for the 

development, function, reproduction and growth of all known organisms. Genes are a basic unit 

of heredity. They are segments along the DNA molecule that encode for the synthesis of a gene 

product, an RNA sequence, which can later be translated to protein. The genome is the total 

genetic material of an organism and includes both the genes and non-coding sequences. The 

Genomics field focuses on the sequence, function, evolution, mapping, and editing of genomes. 

Using high-performance computing and bioinformatics applications, genomics researchers 

analyze enormous amounts of DNA sequences to find variations that affect health, disease, drug 

response and more. 

 

2 B. DNA sequencing 

DNA sequencing is the process of determining the order of the nucleotides in a DNA sequence. A 

variety of methods and technologies are used to determine the order of the four bases. Genomics 

involves the sequencing and analysis of genomes through uses of DNA sequencing to assemble 

and analyze the function and structure of entire genomes. DNA sequencing information is used 

for numerous applications in molecular biology, evolutionary biology, metagenomics, medicine 

and many more fields.  
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2 C. High-throughput sequencing technologies  

High-throughput sequencing technologies, also known as next-generation sequencing (NGS), are 

DNA sequencing techniques developed in the last fifteen years, which have completely 

revolutionized genome analysis.  In 1977 the first sequencing method, Sanger sequencing, was 

developed. Around the year 2000, the whole human genome was sequenced for the first-time 

using Sanger sequencing. Only a few years later high-throughput sequencing techniques started 

to emerge and changed “the rules of the game” in Biology and Medicine. The major advantage 

of these techniques is the ability to sequence massively, cheaply and in parallel. These techniques 

create dozens to hundreds of gigabytes consisting of short DNA sequences in a single experiment, 

at ultrafast speeds and extremely low cost. As a result, they have become ubiquities in biomedical 

research. There is no doubt that high-throughput sequencing technologies accelerated the 

biological and biomedical research.  

Since high throughput sequencing technologies generate very large amounts of data, they 

represent great challenges in data analyses, storage, transfer and more. These challenges have 

been answered by creation of hundreds of bioinformatics applications to date. These applications 

include read alignment, genome assembly, read mapping, single nucleotide variant detection, 

and many more. Ongoing improvement to the algorithms is needed as high throughput 

sequencing continue to develop and create more data. 

 

 

2 D. Genome assembly 

DNA sequencing technologies cannot read a whole chromosome in one go, but rather can read 

only small pieces of between 20 and 30,000 nucleotides, depending on the technology. The 
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location of the segments within the genome is lost in the sequencing process. Hence, sequence 

assembly is needed to put together and merge fragments in order to reconstruct the original 

genome. A main challenge in the assembly task is that it requires a huge amount of memory and 

very long processing time, especially for large genomes.  

 

3. Computational Background and Definitions 

Basic definitions 

A read is a string over the DNA alphabet Σ = {𝐴, 𝐶, 𝐺, 𝑇}. 

A 𝑘-mer is a string of length 𝑘 over Σ. 

Given a read 𝑠, |𝑠| = 𝑛, 𝑠[𝑖, 𝑗] denotes the substring of 𝑠 from the 𝑖-th character to the 𝑗-th 

character, both inclusive. (Here and throughout, substrings are assumed to be contiguous.) 

𝑠 contains  𝑛 − 𝑘 + 1		𝑘-mers:  𝑠[0, 𝑘 − 1], 𝑠[1, 𝑘]	… 	𝑠[𝑛 − 𝑘, 𝑛 − 1]. 

Two 𝑘-mers in 𝑠 that overlap in 𝑘 − 1 letters, i.e., 𝑠[𝑖, 𝑘 + 𝑖 − 1] and 𝑠[𝑖 + 1, 𝑘 + 𝑖] are called 

adjacent in 𝑠. 

 

3 A. Minimizers schemes 

Minimizers schemes are methods for selecting the smallest 𝑘-mer substrings from a sequence 

using predefined order, e.g., lexicographic. In an era of exponential data growth, these methods 

are in use in many bioinformatics due to their ability to yield a sub-linear representation of 

sequences, enabling sequence comparison in reduced space and time. A key property of the 

minimizer method is that if two sequences share a substring of a specified length, then they can 

be guaranteed to have a matching minimizer.  
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An order 𝑜 on Σ!  is a one-to-one function 𝑜 : Σ!   → {1, 2, ..., |Σ|!}. 𝑘-mer 𝑚$ is smaller than 𝑘-

mer 𝑚%according to order 𝑜 if: 𝑜	(𝑚$) 	< 	𝑜	(𝑚%).	In other words, an order is a permutation on 

the set of all 𝑘-mers.  

A minimizer for a triplet (𝑠, 𝑜, 𝑘) is the smallest 𝑘-long substring 𝑚 in sequence 𝑠 according to 

order 𝑜. We also call 𝑚 the 𝑜-minimizer 𝑘-mer in 𝑠.  

A minimizers scheme is a function 𝑓!,&  that selects the start position of a minimizer 𝑘-mer in 

every sequence of length 𝐿	 = 	𝑤	 + 	𝑘	 − 	1,  i.e.,  𝑓: Σ&'!($ → [0:𝑤 − 1] (Figure 1a). 

 

 

3 B. De Bruijn graph 

Given a set of 𝑚 strings 𝑆	 = 	 {𝑆), 𝑆$, 𝑆%, . . .		 , 𝑆*($, } over 𝛴 and an integer 𝑘	 ≥ 	2, the de Bruijn 

graph of 𝑆 of order 𝑘 (Figure 1b) is a directed graph 𝑑𝐵𝐺! 	(𝑆) 	= 	 (𝑉, 𝐸) where: 

𝑉 = 𝑣 ∈ 	Σ! 	|	∃𝑗 ∈ {0, 1, … ,𝑚 − 1}	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑣	𝑖𝑠	𝑎	𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔	𝑜𝑓	𝑆+ . 

	𝐸 = (𝑢, 𝑣)	|	𝑢 = 𝑆+[𝑖, 𝑘 + 𝑖 − 1], 𝑣 = 𝑆+[𝑖 + 1, 𝑘 + 𝑖]	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑗	𝑎𝑛𝑑	𝑖. 

Modern genome assembly algorithms are based on de Bruijn graph construction. This process 

breaks each input read into 𝑘-mers (vertices in the graph) and then connects adjacent 𝑘-mers 

according to their overlap relations in the reads (edges). The graph represents the reconstructed 

genome. This process can assemble very large quantities (even billions) of reads. In genome 

assembly algorithms, the de Bruijn graph construction step is the most memory consuming and 

time-intensive part [15]. 
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3 C. Ordering schemes 

The original minimizers scheme compares 𝑘-mers using the lexicographic ordering. However, 

lexicographic ordering was shown to be problematic for some applications involving DNA 

sequences, due to over-representation of As and runs of As in the sequence. Hence, many 

alternatives were suggested for ordering schemes in genomic applications. One common 

alternative is an order determined by a random permutation of the k-mers. In Kraken application 

[9], for example, as a form of randomization, the authors perform bitwise XOR of the 𝑘-mers with 

a random value and order the resulting binary numbers lexicographically.  

 

3 D. Particular density 

We denote the set of selected positions of a scheme 𝑓!,& on a string 𝑆 by 

𝑀,,!,&(𝑆) = {𝑖 + 𝑓!,&(𝑆[𝑖, 𝑖 + 𝑘 + 𝑤 − 2]) where 0 ≤ 𝑖 ≤ |𝑆| − 𝑤 − 𝑘 + 1}  

(These are the positions marked by asterisks in Figure 1a). 

 The particular density of a scheme 𝑓𝑘,𝑤  on a string S  is the proportion of 𝑘-mers selected: 

𝑑,,!,&(𝑆) =
^𝑀,,!,&(𝑆)^
|𝑆| − 𝑤 + 1 

Particular density was used in previous works (e.g., [7]) as a measure of efficiency of the scheme 

on a particular sequence. The trivial upper and lower bounds for the density are:  $
&
≤ 𝑑,,!,& ≤

1, where $
&

 corresponds to scanning the sequence from left to right and selecting exactly one 

position in every new non-overlapping window, and 1 corresponds to selecting every position 

[17]. In general, lower density can lead to greater computational efficiency and is therefore 

desirable. 
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3 E. Universal Hitting Sets 

We say that a set of 𝑘-mers 𝑀 hits sequence 𝑆 if there exists a 𝑘-mer in 𝑀 that is a substring in 

𝑆. A universal hitting set (UHS) 𝑈!,# is a set of 𝑘-mers that hits every 𝐿-long string over Σ.  A trivial 

UHS always exists by taking all |Σ|! 𝑘-mers. A UHS 𝑀 can be used in a minimizers scheme as 

follows: 

- Define an order on 𝑀’s 𝑘-mers. 

- For any 𝐿-long window, select the minimum 𝑘-mer from 𝑀 in the window according to 

the pre-defined order.  

The universality of 𝑀 guarantees that there will always be at least one 𝑘-mer from 𝑀 in any 𝐿-

long window.  

 

3 E (i) DOCKS and PASHA algorithms 

A key challenge is finding a minimum cardinality UHS, since smaller UHSs will tend to have smaller 

number of k-mers as minimizers on a particular sequence. It was proven that the problem of 

hitting a given set of 𝐿-long sequences is a NP-hard problem [18]. DOCKS and PASHA are 

heuristics that address the problem of finding a minimum-size UHS: They find a compact but not 

necessarily optimal universal 𝑘-mer set that hits any set of 𝐿-long sequences. 

 

DOCKS  

The DOCKS (Design Of Compact universal 𝑘-mer hitting Set) algorithm [12] takes as input a list of 

parameters (𝛴, 𝑘, 𝐿) and outputs a list of 𝑘-mers, the UHS 𝑈!,#. The algorithm has two phases: 
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(i) Finding a minimum-size 𝑘-mer set that hits every infinite sequence (and in particular 

every cycle. For that reason, the set is called a decycling set). This problem can be solved 

to optimality in polynomial time [19] 

(ii) Greedily adding 𝑘-mers that hit many remaining 𝐿-long sequences until no such 

sequences remain. This process is heuristic and is done iteratively using dynamic 

programming. 

The software and solution sets are freely available at acgt.cs.tau.ac.il/docks/. 

 

PASHA  

PASHA [18] is a randomized parallel algorithm for finding small UHSs. The authors build on the 

DOCKS algorithm and improve the calculation of the k-mer hitting number in a de Bruijn graph,  

the number of  𝐿-long strings containing  the 𝑘-mer.	They leveraged advanced theoretical and 

architectural techniques to parallelize and decrease memory usage in calculating 𝑘-mer hitting 

numbers. As a result, PASHA can handle larger values of 𝑘 than DOCKS. The authors empirically 

showed that PASHA produces sets that are slightly larger than those of serial deterministic 

algorithms like DOCKS.  

The software and solution sets are freely available at  github.com/ekimb/pasha. 
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3 F. Relevant high-throughput sequencing applications 

 

3 F (i). Assembly algorithms 

One of the main challenges in high-throughput sequencing is assembling a massive number of 

short reads that were extracted from DNA segments (see the review in [18]). De novo 

assembly approaches particularly focus on grouping short reads into significant contigs and 

assembling these contigs into bins to reconstruct the original, previously unknown genomic DNA. 

One popular approach to assemble large genomes is by constructing a de Bruijn graph. The de 

Bruijn graph approach breaks short reads into	𝑘-mers and then connects 𝑘-mers according to 

their overlap relations in short reads. It can assemble large quantities (even billions) of short 

reads. Despite the broad usage of de Bruijn graphs in genome assembly applications, the large 

memory usage and long runtime are still a critical challenge in the de Bruijn graph construction 

task.  

 

3 F (ii). Minimum Substring Partitioning (MSP) 

The Minimum Substring Partitioning (MSP) method is a memory efficient and fast algorithm for 

de Bruijn graph construction [15].  MSP breaks reads into multiple bins so that the 𝑘-mers in each 

bin can be loaded into memory, processed individually to form the corresponding de Bruijn 



 

19 

 

 

graph, and later merged with other bins to form the full de Bruijn graph. The lexicographically 

smallest 𝑘-mer in each sequence window (i.e., the minimizer) is used as key for that window.  

MSP partitions 𝐿-long windows into multiple disjoint bins, in a way that tends to retain adjacent 

𝐿-mers in the same bin. This has two advantages: 

(i) Consecutive 𝐿-mers are combined into super 𝐿-mers (substrings of length ≥ 	𝐿), which 

reduces the space requirements. 

(ii)  Local assembly can be performed on the bins in parallel, and later all assemblies are 

merged to generate a global assembly. 

 

MSP is motivated by the fact that adjacent 𝐿-mers tend to share the same minimizer 𝑘-mer, since 

there is an overlap of length 𝐿	 − 	1 between them.  Figure 2 shows an example of the 

partitioning step of MSP with 𝐿	 = 	10 and 𝑘	 = 	3.  In this example, the first four 𝐿-mers share 

the minimizer 𝐴𝐴𝐶 and the last four 𝐿-mers share the minimizer 𝐴𝐴𝐴.  In this case, instead of 

generating all seven 𝐿-mers separately, MSP generates only two super 𝐿-mers. The first four 𝐿-

mers are combined into 𝑇𝐺𝐺𝐶𝐺𝐴𝐴𝐶𝐺𝑇𝐴𝐴, and this super 𝐿-mer is assigned to the bin labeled 

𝐴𝐴𝐶. Similarly, the last four 𝐿-mers are combined into a super 𝐿-mer 𝐺𝐴𝐴𝐶𝐶𝐺𝑇𝐴𝐴𝐴𝐺𝑇, and this 

super 𝐿-mer is assigned to the bin labeled 𝐴𝐴𝐴.  

In general, given a read 𝑟	 = 	 𝑟)	𝑟$. . . 𝑟.($, if the 𝑗 adjacent 𝐿-mers from 𝑟	[𝑖, 𝑖	 + 	𝐿	 − 	1] to 

𝑟	[𝑖	 + 	𝑗	 − 	1, 𝑖	 + 	𝑗	 + 	𝐿	 − 	2] share the same minimizer 𝑚 (and 𝑗 is maximal with regard to 

that property), then the super 𝐿-mer 𝑟/	𝑟/'$. . . 𝑟/'+'#(% is assigned to the bin labeled 𝑚 without 

breaking it into 𝑗 individual 𝐿-mers.  This procedure reduces memory usage as instead of keeping 

𝑗 · 𝐿 characters in memory, only 𝑗	 + 	𝐿	 − 	1 characters are kept. If 𝑗 tends to be large, this 

strategy dramatically reduces memory usage.  
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To reduce the number of bins, MSP warps the bins using a hash function into a user-defined 

number of bins 𝑏. 

Li et al. argued that the maximum number of distinct 𝑘-mers contained by a partition determines 

the peak memory. Following this reasoning, we define a bin’s load to be the number of distinct 

𝑘-mers in it, and will measure the maximum bin load, namely the highest load of any bin, as a 

criterion for peak memory usage. 

 

 

 

 

 

 

Figure 2: The partitioning step of the MSP method. A read is scanned in windows of length 

10. The 3-mer minimizer in each window is marked with the rectangles. 
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4. Methods and Materials  

 

4 A variant of MSP that uses a UHS 

The original MSP algorithm uses a minimizers scheme with a lexicographic order [15]. We 

denote this method here Lexico_MSP. 

Previous studies have shown that 𝑘-mers from a small UHS are more evenly distributed along 

the genome than lexicographic or random minimizers [12]. Hence, we reasoned that using a small 

UHS in the MSP algorithm would lead to a flatter distribution of bin sizes and thus reduce memory 

usage and runtime. We modified MSP to employ a minimizers scheme with a UHS-based order, 

where the order that is applied to the UHS 𝑘-mers is pseudo-random. By the definition of a UHS, 

a minimizers scheme based on this order selects only 𝑘-mers from 𝑈!,# as minimizers for any 𝐿-

long window, so the order of 𝑘-mers not in 𝑈!,# is immaterial. We call such an order a UHS-based 

minimizer order. 

We denote this algorithm UHS_MSP. The UHSs that we used for the algorithm were generated 

by DOCKS [12] for 𝑘 ≤ 13		and PASHA [21] for 𝑘	 = 	14, and were taken from these algorithms’ 

websites. 

We also tested a variant of MSP where the lexicographic order is replaced by a pseudo-random 

order. Our reasoning was that a pseudo-random order was shown to have better properties than 

lexicographic order when used in a minimizers scheme [13]. We denote this variant 

Random_MSP. 
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UHS_MSP receives as input a set of reads and generates a corresponding de Bruijn graph by the 

following steps. A pseudo-code of the algorithm can be found in Algorithm 1. 

 

 

 

4 A (i) Partitioning 

This step uses a pre-generated UHS 𝑈!,#. By default, we used  𝑘	 = 	12 and 𝐿	 = 60.  We saved 

𝑈!,# in an array of size |Σ|!  bits, with the values ́1ʹ for the 𝑘-mers that are in 𝑈!,# and ́0ʹ otherwise.  

Reads are broken into segments (super 𝐿-mers) that are placed in bins as follows:  For each read, 

all 𝐿-long windows are scanned, and their minimizers are found. The minimizer of the currently 

scanned window is denoted as 𝑐𝑢𝑟𝑟𝑀𝑖𝑛 and its start position is denoted as 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠. The 

scanning is done by sliding an 𝐿-long window to the right one symbol at a time, until the end of 

the read. After each slide, UHS_MSP checks whether 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠 is still within the range of the 

current window. If not, it re-scans the window to find the current minimizer and updates 

𝑐𝑢𝑟𝑟𝑀𝑖𝑛 and 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠. Otherwise, it tests whether the last 𝑘-mer in the current window is 

smaller than 𝑐𝑢𝑟𝑟𝑀𝑖𝑛  based on the UHS-based minimizer order. If so, the last 𝑘-mer is set as 

𝑐𝑢𝑟𝑟𝑀𝑖𝑛 and its start position as 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠. 

 

To enable fast comparison of 𝑘-mers in 𝑈!,#, the pseudo-random order is implemented using a 

2𝑘-long bit vector 𝑥 (the seed), with bits selected independently and equiprobably to be 0	𝑜𝑟	1. 

For 𝑚 ∈ 𝑈!,#  define 𝛽(𝑚) 	= 	𝑏(𝑚)	⊕ 	𝑥, where 𝑏(𝑚)	is the binary representation of 𝑘-mer 𝑚 

and “ ⊕ " is the bit-wise xor operation. The order 𝑜 of 𝑚 is defined as the number whose binary 
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representation is 𝛽(𝑚). Hence, deciding if 𝑜(𝑚) 	< 	𝑜(𝑚′) is done by two xor operations and 

one comparison. 

Each time a new minimizer is selected, a super 𝐿-mer is generated by merging all the 𝐿-long 

windows sharing the previous minimizer, and the label of that super 𝐿-mer is its minimizer (Figure 

2).  

To obtain the prescribed number 𝑏 of bins, a hash function is used to map the labels to a space of 

size 𝑏. 

A unique ID is assigned to each 𝐿-mer when scanning the reads. As a result, identical 𝐿-mers in 

different positions in the data are assigned different IDs. Those will be merged in the next step. 

 

4 A (ii) Mapping and Merging  

These steps are the same as in [15]. We briefly outline them here for completeness, sine the 

changes we introduce in the partitioning step affect their efficiency.  In the mapping step, each 

bin is loaded separately into the memory and identical 𝐿-mers in different positions in the bin 

are combined to have the same unique integer vertex ID. This process is done by generating an 

ID replacement table per bin.  Since we expected the change in the partitioning step to create 

bins with sizes that are more uniformly distributed, we reasoned that the maximum bin size and 

the maximum memory would decrease as well.   

The merging step merges the ID replacement tables of all bins and generates a global ID 

replacement table. The algorithm outputs sequences of IDs. Each ID is a vertex in the graph (𝐿-

mer) and two adjacent IDs represent an edge in the graph.  This way, each read is represented 

by a sequence of the consecutive vertices of its 𝐿-mers in the graph, while identical 𝐿-mers have 

the same ID.  
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Note that the final assembled graphs of the Lexico_MSP, Random_MSP and UHS_MSP methods 

are identical. The differences in time and space performance are due to the particular schemes, 

which produce different bin size and load distributions. 
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4 C Biological datasets  

We used in our experiments four real-life datasets. Their characteristics are summarized in Table 

1. 

Dataset 
Size 

(GB) 

Avg. read 

length 

No. of 

reads 

Reference Accession no. Source 

E. coli 2.9 101 20.3M [22] PRJNA431139 SRA 

Human chr14 9.4 101 36.5M [23] - GAGE 

Bee 93.8 124 303M [23] - GAGE 

Human 432 100 2B [24] PRJNA29429 SRA 

 

Table 1: Characteristics of the four benchmark datasets. All datasets were generated by the 

Illumina platform. The human chr14 and bee datasets were downloaded from the GAGE database 

(gage.cbcb.umd.edu/data/index.html). 
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5. Results 

We compared UHS_MSP to the original MSP method (Lexico_MSP) and to MSP with random 𝑘-

mer order (Random_MSP) in terms of speed, memory usage, particular density and maximum 

load on the four real-life datasets described in Table 1. The bee dataset was also used in the 

original MSP paper [15], but the other datasets used in that study were unavailable. We used the 

same parameters as in [15] for comparison, i. e. , 𝑘	 = 	12, 𝐿	 = 	60, and 𝑏	 = 	1000. UHS_MSP 

was used with the seed-based random ordering within the UHS. The use of UHS with 

lexicographic ordering produced inferior results and was not tested further - see Table 3. 

 

Table 3: Performance of MSP using UHS and lexicographic ordering compared to the other 

three algorithms on the bee dataset. The right column shows the results of MSP using UHS and 

lexicographic ordering. 

The results correspond only to the MSP runs, and do not include the generation of the UHS, a 

one-time process for any values of 𝑘 and 𝐿. All the experiments were measured on Intel(R) 

Xeon(R) CPU E5-2699 v4 @ 2.20GHz server with 44 cores and 792 GB of RAM. 

To exclude the impact of parallelization, all measurements were done on a single core.  

On the human data set, only UHS_MSP terminated successfully and passed all the three stages 

 

Lexico_UHS 

 

UHS_MSP 

 

Random_MSP 

 

Lexico_MSP 

 

Method 

 

40,246 

 

25,443 

 

30,498 

 

36,603 

 

Runtime (sec) 

 

17.7 

 

14.98 

 

16.9 

 

17.2 

 

Maximum Memory(GB) 
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without failing. Thus, only partial results are available and reported for the other two algorithms. 

We note that similar problems with running MSP were reported in [19]. 

 

5 A Particular density comparison 

We calculated the particular density of the MSP algorithms on the four datasets by counting the 

number of selected positions (unique 𝑚𝑖𝑛𝑃𝑜𝑠 in the partitioning step of the algorithm) and 

dividing it by the number of all possible positions. UHS_MSP achieved lower density than 

Lexcio_MSP and Random_MSP on all four datasets (Table 2). This is in accordance with the results 

of Marçias et al. on other genomes [13]. Lexico_MSP had the highest density. This result reaffirms 

the potential of UHS_MSP to achieve reduced memory usage and faster runtimes compared to 

the other two algorithms. 

 

 

Dataset Lexico_MSP Random_MSP UHS_MSP 

E. Coli 0.041 0.034 0.031 

Human chr14 0.073 0.065 0.062 

Bee 0.059 0.056 0.053 

Human 0.057 0.056 0.055 

 

Table 2: particular density results  
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5 B Performance comparison 

We compared the three algorithms in terms of three main performance criteria:  

(1) Runtime - the total CPU time (user time + system time).   

(2) Maximum memory - the maximum amount of cache memory the method used.  

(3) Maximum load. 

 

5 B (i) Runtime 

Figure 3a presents the runtime of the three algorithms in seconds per GB of input data.  

On all datasets where comparison was possible, UHS_MSP was the fastest.  
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Figure 3: Tested metrics performance. (a) Runtime in seconds per GB of input data. (b) Maximum 

memory usage in GB. (c) Maximum load. Numbers are in 100 MB for E. coli and chr14 datasets, and in 

GB for the bee and human datasets. For the human dataset, the original and randomized MSP did not 

terminate, so runtimes and memory are not available. The reported load results are based on the 

partitioning and mapping steps only. 
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5 B (ii) Memory usage 

Figure 3b displays the maximum memory used by each algorithm. UHS_MSP used substantially 

less memory than Lexico_MSP and achieved comparable results to Random_MSP.  

 

5 B (iii) Maximum load 

Figure 3c display the maximum load value. UHS_MSP also had the lowest maximum load on all 

datasets.  

 

The results show that UHS_MSP achieved a substantial improvement over the other algorithms 

in all three main aspects. We also measured two additional criteria: the largest bin size and the 

total disk space. The results for these criteria are presented in Figure 6. They present consistent 

advantage to UHS_MSP over both Random_MSP and Lexico_MSP. 

 

5 B iv. Test of robustness with different random orders 

As an additional test of the robustness of UHS_MSP, we wished to gauge the effect of the pseudo-

random order of the 𝑘-mers on the results. We ran Random_MSP and UHS_MSP, which use 

randomized orders, on the four datasets with five different seeds, corresponding to different 

pseudo-random orders (Section 3). The results are presented in Table 3. While both algorithms 

showed substantial performance variance across orders, overall, the results were in line with 

those presented in Figure 3. 
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Table 3: Performance across different pseudo-random 𝒌-mer orders. Average and standard 

deviation over five runs with different seeds are shown for the two algorithms that use a 

random order, alongside the original MSP results. On the human dataset, the original MSP as 

well as its pseudo-random order version did not terminate successfully.  

 

 

 

5 C The effect of parameters 𝑘, 𝐿 and 𝑏  

We tested the three methods on the bee data in a range of values for the parameters 𝑘, 𝐿 and 𝑏. 

In each run, we kept two of the three parameters at their default values and varied the third. The 

results are summarized in Figure 4. Changing the number of bins shows consistent advantage to 

UHS_MSP, with a tendency to improve as the number of bins increases (a-c).  

Changing 𝐿 shows a similar advantage to UHS_MSP (d-f). Changing 𝑘 has a less consistent effect 

(g-i). Figure 7 shows the effect of changing each of the three parameters on the largest bin size. 

Again, UHS_MSP was consistently better across the tested values of 𝐿 and 𝑏, and less so when 

changing 𝑘. 

Li et al. also tested on Lexico_MSP the impact of changing 𝑘 and 𝐿  [20]. The impact of varying 𝑘 

was consistent with what we observed here for that algorithm (Figure 4g-i) with reduction of 

resources needed as 𝑘 increases. They also reported a similar reduction when 𝐿 increases, unlike 

a less consistent picture observed here (d-f). Note however that they tested the range 𝐿	 =
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	31	 − 	63 while we tested a broader range of higher values 𝐿	 = 	60	 − 	120. While varying the 

number of bins was not tested before, our tests here (a-c) show improved performance with 

increasing 𝑏, and a similar trend (with leveling off at high values) by the two other algorithms as 

well. 

Previous studies also tested for the impact of the minimizer’s length 𝑘 in similar minimum-

substring-partitioning applications, and recommended values such as  [21], [22] and  [23]. Our 

experiments also tested for 𝑘 values twice as large. 
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Figure 4: The effect of changing the number of bins, the window size and the 𝑘-mer size on 

performance.  Results are for the bee dataset.  (a-c) Effect of the number of bins. (d-f) Effect of 

the window size 𝐿. (g-i) Effect of 𝑘. For each parameter, the runtime, maximum memory and the 

maximum load are shown. 

 

5 D Resource usage in each step of the algorithm 

To appreciate where the saving is achieved, we measured the resources consumed by each of 

the three MSP steps: partitioning, mapping and merging.  Figure 5 summarizes the results on the 
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bee dataset. The mapping step required most memory, taking an order of magnitude more 

memory than the partitioning and 3-5-fold more than the merging step. In all three algorithms, 

the mapping step was also the most time-demanding one, taking on average 67% of the time. 

The merging step required 20% of the time, on average, and the partitioning step was the least 

demanding one, taking 13% of the time. Remarkably, even though we explicitly changed only the 

partitioning step of the algorithm, that change led to substantial reduction in the time and 

memory of the mapping step. The merging step was less affected. In comparison to the original 

MSP algorithm, UHS_MSP required 4% more time in the partitioning step, due to the extra work 

required for UHS-related computations but was 20% faster in the mapping step. Note that for 

the sake of our tests, we did not utilize the possibility of parallelizing the mapping step. Future 

work can thus focus on improvements to the mapping step. 

 

 

Figure 5: Resources taken by each algorithm and each step of the algorithm on the bee dataset.  

(a) Maximum Memory.  (b) Runtime. 
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Figure 6: Additional tested metrics performance. (a) Total bins size. The total size of the bins 

stored on the disk is shown. Numbers are in 5MB for E.coli dataset and in GB for chr14, bee and 

human datasets. (b) Largest bin size. Numbers are in 100 MB for E. coli and chr14 datasets, and 

in GB for the bee and human datasets. 

 

 

Figure 7: The effect of changing the number of bins, the window size and the 𝑘-mer size on the 

largest bin size. Results are for the bee dataset. (a) Effect of the number of bins. (b) Effect of the 

window size 𝐿. (c) Effect of 𝑘. 
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6. Discussion  

In this study, we incorporated a UHS-based minimizers scheme in a fundamental HTS task: de 

Bruijn graph construction. By creating partitions based on fewer	𝑘-mers and with better 

statistical properties, we achieved speedups and reduced memory usage in genomic assembly. 

To the best of our knowledge, this is the first demonstration of the practical advantage of using 

UHSs in a genome assembly application. 

Our study raises several open questions: to what extent can further improvements in the 

generation of smaller UHSs improve the de Bruijn graph construction? Currently the complexity 

of minimum size UHS still remains an open problem, though closely related problems were shown 

to be computationally hard [12], [13]. Can one express the expected amount of resources needed 

by the UHS_MSP algorithm (and by its separate steps), as a function of the key parameters 𝑘, 𝐿 

and 𝑏? Obtaining such an estimate, even under a simple model such as the random string mode, 

can guide one to optimize the combination of parameter values, which as we have seen tend to 

interact in a rather complex way (Figure 4). What is the relation between the largest bin size and 

the maximum memory usage? Can one improve the mapping of multiple minimizers into a bin? 

Some applications (e.g., [8]) sample the input data in order to map minimizers to bins more 

efficiently. Integrating such a method into MSP can improve memory and runtime performance. 

Li et al. [15] argued that the maximum load determines the peak RAM consumption.  Our results 

were not consistent with this claim. (For example, see the results on the bee data in Figure 3 and 

Figure 4 (d-f)). Further investigation revealed that some of the incoherence is due to Java’s 

garbage collector. Changing Java’s limit for the heap size reduced memory consumption 

substantially. For example, when running the chr14 dataset with a limit of 4GB, the peak memory 
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went down from 6.6 GB to 2.7 GB, with no increase in running time. In other runs even larger 

peak memory changes were observed depending on the limit, but at the expense of longer 

runtimes. Since the measured memory of a Java process is not reliable, and depends on the 

machine and on Java’s memory flags, an implementation in a language with explicit memory 

management (e.g. c++) is preferable. 

In parallel to our study, a work by Nystrom-Persson et al. [14] also implemented UHS in a 

sequencing application. The authors combined UHS and frequency counts in a k-mer counting 

application and achieved substantial memory saving. The improvement now achieved by UHSs in 

two different sequencing applications is encouraging. It is tempting to believe that practical 

improvements can be achieved in other applications that utilize minimizers, e.g. 𝐵𝐶𝐴𝐿𝑀2 [24] 

(which utilizes frequency-based minimizers, given the results in [25]), applications that perform 

partitioning of sequences as a preprocessing step for efficient parallel processing and storage 

[21], [24], [26], sequence similarity estimation [27], [28], and others. 
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 תונוכת .תוצובקל רתוי תנזואמ הקולח םעו רתוי הכומנ תופיפצב םירזיימינימ רצי יארקא רודיס וא יפרגוקיסקל

 .םונגה תבכרה ךילהתב ןורכיזה תכירצב ןהו הצירה ןמזב ןה רופישל וליבוה ולא תורפושמ



 תירבעב ריצקת

 ךומנ ריחמבו הרידא תוריהמב ףצורמה ימונג עדימ לש תורידא תויומכ תורציימ שדחה רודהמ אנד ףוציר תוטיש

 םימושיי תואמ םויכ םנשי .םייאופר-ויב םירקחמב בחרנ שומישב תואצמנ ולא תוטיש ,ךכ תוכזב .דואמ

 לש המוצעה תומכה םע דדומתהל ידכ .שדחה רודהמ ףוציר תוטיש תרזעב רצונש ימונג עדימב םישמתשמה

 ירגתא םע םידדומתמה םיליעי םינותנ ינבמו םימתירוגלא וחתופ ,הלא ףוציר תוטישב ורצונש עדימה ירגאמ

  .דועו ותרבעה ,עדימה חותינ ,עדימה ןוסחאה

-ק"(  k ךרואב תוזורחמ תרזעב איה וללה םימתירוגלאבו םינותנה ינבמב אנד יפצר חתפמל רתויב הצופנה ךרדה

 רחבנ חותפמה ךרוצל .וב רתויב ןטקה רמ-קה אוה טסקטב ןולח לש רזיימינימה .״םירזיימינימ״ תוארקנה )"םירמ

 רודיס ,לשמל( שארמ עבקנש רודיס ידי לע עבקנ םירמ-קה ךרע .ףצרב עובק לודגב בקוע ןולח לכב רזיימינימ

 .)יפרגוקיסקל

 Universal Hitting( תילסרבינוא יוסיכ תצובק לש גשומה לע ססובמה םירמ-ק לש שדח רודיס עצוה הנורחאל

Set(. הז רודיס לש תלעותה ,םירפושמ םינייפאמ שי הזה גוסהמ רודיסל יכ וארה םירקחמ טעמ אלש תורמל 

 לש תוישומישהו ןורתיה תא הנושארל ןאכ םיגיצמ ונחנא .םויה דע החכוה אל בר ימונג עדימ םיחתנמה םימושייב

 .םונגה תבכרהל םתירוגלאב תילסרבינוא יוסיכ תצובק לע ססובמה רודיס

 תוטיש תרזעב רצונה עדימה תזילנאב תיזכרמו תיסיסב המישמ איה םירצק םיעטקמ ידראיליממ םונגה תבכרה

 דואמ הלודג תומכ שרוד בורלש ,םונגה תבכרהב יזכרמ בלש הניה ןייורב הד ףרג תיינב   .שדחה רודהמ ףוצירה

 תינמז-וב אצמיי עדימה לכש תורשפא ןיא ,המוצע עדימ תומכב רבודמש ללגב  .בר בושיח ןמז םע דחי ןורכיז לש

 םיפצרה .דרפנב ןורכיזל הלעת הצובק לכש ידכ תונוש תוצובקל א"נדה יפצר לש הקולח תעצבתמ ןכלו ,ןורכיזב

 .תוצובקה לכמ םיפרגה יתת גוזימ ידי לע הנבנ יפוסה ןייורב הדה ףרגו דרפנ ףרג תתל םיבכרומ הצובק לכב

 יוסיכ תצובק ססובמ רודיס ונבליש ,ונתדובעב .]MSP  ]13 אוה הזכ ךילהתב ןייורב הד ףרג תיינבל ליבומ םתירוגלא

 רודיס םוקמב הז גוסמ רודיסב שומישה  .MSP םתירוגלאב תוצובקל םיפצרה תקולח ךילהתב תילסרבינוא



  



 

 

 

 

 ביבא-לת תטיסרבינוא

  רלקאס ילרבבו דנומייר ש"ע םיקיודמ םיעדמל הטלוקפה

קינטוולב ש"ע בשחמה יעדמל רפסה תיב  

 

  ןייורב הד ףרג תיינב לש תוליעיה רופיש

 תילסרבינוא יוסיכ תצובק תרזעב

 

הטיסרבינוא ׳ךמסומ' ראותל רמג תדובעכ שגוה הז רוביח  

ידי לע בשחמה יעדמל רפסה תיבב  

ירא-ןב לעי  

 

לש היחנהה תחת השענ  

רימש ןור רוספורפ  

ןייטשנרוא ןורי ר״ד  
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