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Abstract

High-throughput sequencing techniques generate large volumes of DNA sequencing data at ultra-
fast speed and extremely low cost. Therefore, sequencing techniques have become ubiquitous
in biomedical research and are used in hundreds of genomic applications. Efficient data
structures and algorithms have been developed to handle the large datasets produced by these
techniques. The prevailing method to index DNA sequences in those data structures and

algorithms is by k-mers (k-long substrings) known as minimizers.

Minimizers are the smallest k-mers selected in every consecutive window of a fixed length in a
sequence, where the smallest is determined according to a predefined order, e.g., lexicographic.
Recently, a new k-mer order based on a universal hitting set (UHS) was suggested. While several
studies have shown that orders based on a small UHS have improved properties, the utility of
using a small UHS in high-throughput sequencing analysis tasks has not been demonstrated to
date.

Here, we demonstrate the practical benefit of UHSs for the first time, in the genome assembly
task. Reconstructing a genome from billions of short reads is a fundamental task in high-
throughput sequencing analyses. De Bruijn graph construction is a key step in genome assembly,
which often requires very large memory and long computation time. A critical bottleneck in this
process is the partitioning of DNA sequences into bins. The sequences in each bin are assembled
separately, and the final de Bruijn graph is constructed by merging the bin-specific subgraphs.
We incorporated a UHS-based order in the bin partition step of the Minimum Substring
Partitioning algorithm of Li et al. (2013). Using a UHS-based order instead of lexicographic or
random-ordered minimizers produced lower density minimizers with more balanced bin

partitioning, which led to a reduction in both runtime and memory usage.



1. Introduction

Large amounts of DNA sequencing data are generated today in almost any biological or clinical
study. Due to the low cost of sequencing, it has become standard to probe and measure
molecular interactions and biomarkers using DNA read quantities [1]. Technologies based on
high-throughput sequencing (HTS) have been developed for the major genomics tasks: genetic
and structural variation detection, gene expression quantification, epigenomic signal
guantification, protein binding measurements, and many more [2].

A first step in utilizing all these data types is the computational analysis of HTS data. Key
challenges include read mapping to a reference genome, read compression, storing reads in a
data structure for fast querying and finding read overlaps. As a result, many computational
methods were developed to analyze HTS data, and the development of new methods is ongoing
[3].

Many methods for analyzing HTS data use minimizers to obtain speed-up and reduce memory
usage [4]- [6]. Given integers w and k, the minimizer ofan L = w + k — 1-long sequence is the
smallest k-mer among the w contiguous k-mers in it, where the smallest is determined based on
a predefined order, e.g., lexicographic [7]. For a sequence longer than L, all L-long windows are
scanned, and the minimizer is selected in each one (Figure 1a).

Using the minimizers to represent the L-long windows has three key advantages:

(i) The sampling interval is small.
(ii) The same A-mers are often selected from overlapping windows.
(iii) Identical windows have the same minimizer.



Minimizers help design algorithms that are more efficient in both runtime and memory usage by
reducing the amount of information that is processed while losing little information. Minimizers
were shown to be helpful and are used in many different settings, such as partitioning input

sequences [5], [8], [9] generating sparse data structures [10], [11], and sequence classification

[6].
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Figure 1: lllustrations of Minimizers and de Bruijn graph. (A) Minimizers scheme (k =
4,w = 9).The input sequence is broken into windows of lengthL = w + k — 1 = 12,
and the minimizer in each window is selected. Consecutive windows tend to select the same
minimizer. The positions of the selected k-mers constitute a sampling of the original
sequence. (B) De Bruijn graph of order 3 for three DNA sequences. The vertices are the 3-
mers contained in the set of sequences. Edges connect two vertices if the 4-mer they
represent is contained in a sequence in the set.

Recently, the concept of a universal hitting set (UHS) was introduced as a way to improve
minimizers [12]. For integers k and L, a set of k-mers Uy, is called a UHS if every possible
sequence of length L contains at least one k-mer from Uy ; as a contiguous substring. It was

shown that by using a UHS of small size, one can design an order for a minimizer scheme that



results in fewer selected k-mers compared to the orders commonly used in current applications
(i.e., lexicographic or random orders) [13]. Therefore, using UHSs has the potential to provide
smaller signatures than currently used orders, and as a result reduce runtime and memory usage
of sequencing applications.

We and others recently developed algorithms to generate small UHSs [12], [13], but so far, the
prevailing methods in HTS analysis employ a lexicographic or random order. To date, only one
method has been developed to take advantage of the improved properties of UHSs and applied
them to a k-mer counting application [14].

In this study we demonstrate the practical benefit of UHSs on a main HTS analysis task: de Bruijn
graph construction for genome assembly by a disk-based partition method. We introduce a UHS
into the graph construction step of the Minimum Substring Partition assembly algorithm [15].
The introduction of the UHS into the algorithm defines a new minimizers ordering, substantially
changing the execution of all the steps of the algorithm but producing exactly the same final
output. In tests on several genomic datasets, the new method had lower memory usage, shorter
runtime and more balanced disk partitions. The code of our method is publicly available at

github.com/Shamir-Lab/MSP_UHS.

A preliminary version of this study was published in the Proceedings of the ACM-BCB Conference 2021
(16]
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2. Biological Background

2 A. Genomics

DNA (Deoxyribonucleic acid) is a molecule composed of nucleotides (A -Adenine, G- Guanine, C-
Cytosine, and T- Thymine) that carries all the genetics information and instructions for the
development, function, reproduction and growth of all known organisms. Genes are a basic unit
of heredity. They are segments along the DNA molecule that encode for the synthesis of a gene
product, an RNA sequence, which can later be translated to protein. The genome is the total
genetic material of an organism and includes both the genes and non-coding sequences. The
Genomics field focuses on the sequence, function, evolution, mapping, and editing of genomes.
Using high-performance computing and bioinformatics applications, genomics researchers
analyze enormous amounts of DNA sequences to find variations that affect health, disease, drug

response and more.

2 B. DNA sequencing

DNA sequencing is the process of determining the order of the nucleotides in a DNA sequence. A
variety of methods and technologies are used to determine the order of the four bases. Genomics
involves the sequencing and analysis of genomes through uses of DNA sequencing to assemble
and analyze the function and structure of entire genomes. DNA sequencing information is used
for numerous applications in molecular biology, evolutionary biology, metagenomics, medicine

and many more fields.
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2 C. High-throughput sequencing technologies

High-throughput sequencing technologies, also known as next-generation sequencing (NGS), are
DNA sequencing techniques developed in the last fifteen years, which have completely
revolutionized genome analysis. In 1977 the first sequencing method, Sanger sequencing, was
developed. Around the year 2000, the whole human genome was sequenced for the first-time
using Sanger sequencing. Only a few years later high-throughput sequencing techniques started
to emerge and changed “the rules of the game” in Biology and Medicine. The major advantage
of these techniques is the ability to sequence massively, cheaply and in parallel. These techniques
create dozens to hundreds of gigabytes consisting of short DNA sequences in a single experiment,
at ultrafast speeds and extremely low cost. As a result, they have become ubiquities in biomedical
research. There is no doubt that high-throughput sequencing technologies accelerated the
biological and biomedical research.

Since high throughput sequencing technologies generate very large amounts of data, they
represent great challenges in data analyses, storage, transfer and more. These challenges have
been answered by creation of hundreds of bioinformatics applications to date. These applications
include read alignment, genome assembly, read mapping, single nucleotide variant detection,
and many more. Ongoing improvement to the algorithms is needed as high throughput

sequencing continue to develop and create more data.

2 D. Genome assembly

DNA sequencing technologies cannot read a whole chromosome in one go, but rather can read

only small pieces of between 20 and 30,000 nucleotides, depending on the technology. The

12



location of the segments within the genome is lost in the sequencing process. Hence, sequence
assembly is needed to put together and merge fragments in order to reconstruct the original
genome. A main challenge in the assembly task is that it requires a huge amount of memory and

very long processing time, especially for large genomes.

3. Computational Background and Definitions

Basic definitions

A read is a string over the DNA alphabet ¥ = {4,C, G, T}.

A k-mer is a string of length k over X.

Given a read s, |s| = n, s[i,j] denotes the substring of s from the i-th character to the j-th
character, both inclusive. (Here and throughout, substrings are assumed to be contiguous.)

s contains n — k + 1 k-mers: s[0,k — 1], s[1,k] ... s[n —k,n—1].

Two k-mers in s that overlap in k — 1 letters, i.e., s[i,k +i — 1] and s[i + 1,k + i] are called

adjacentin s.

3 A. Minimizers schemes

Minimizers schemes are methods for selecting the smallest k-mer substrings from a sequence
using predefined order, e.g., lexicographic. In an era of exponential data growth, these methods
are in use in many bioinformatics due to their ability to yield a sub-linear representation of
sequences, enabling sequence comparison in reduced space and time. A key property of the
minimizer method is that if two sequences share a substring of a specified length, then they can

be guaranteed to have a matching minimizer.
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An order 0 on ¥ is a one-to-one function 0 : ¥ > {1, 2, ..., ||*}. k-mer m, is smaller than k-
mer m,according to order o if: 0 (m;) < o (m,). In other words, an order is a permutation on
the set of all k-mers.

A minimizer for a triplet (s, 0, k) is the smallest k-long substring m in sequence s according to
order 0. We also call m the o-minimizer k-mer in s.

A minimizers scheme is a function f; ,, that selects the start position of a minimizer k-mer in

every sequenceoflengthL = w + k — 1, i.e.,, f:Z%Wtk~1 - [0:w — 1] (Figure 1a).

3 B. De Bruijn graph

Givenasetof mstringsS = {S,, S1, Su, ... ,Sm_1,}over XY andanintegerk > 2,the de Bruijn

graph of S of order k (Figure 1b) is a directed graph dBGj, (S) = (V,E) where:
V=ve 2¥|3j€{0,1,..,m— 1} such that v is a substring of ;.
E=wv)|u=Slik+i-1],v=S5][i+ 1,k +i] for somejand i.

Modern genome assembly algorithms are based on de Bruijn graph construction. This process
breaks each input read into k-mers (vertices in the graph) and then connects adjacent k-mers
according to their overlap relations in the reads (edges). The graph represents the reconstructed
genome. This process can assemble very large quantities (even billions) of reads. In genome
assembly algorithms, the de Bruijn graph construction step is the most memory consuming and

time-intensive part [15].
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3 C. Ordering schemes

The original minimizers scheme compares k-mers using the lexicographic ordering. However,
lexicographic ordering was shown to be problematic for some applications involving DNA
sequences, due to over-representation of As and runs of As in the sequence. Hence, many
alternatives were suggested for ordering schemes in genomic applications. One common
alternative is an order determined by a random permutation of the k-mers. In Kraken application
[9], for example, as a form of randomization, the authors perform bitwise XOR of the k-mers with

a random value and order the resulting binary numbers lexicographically.

3 D. Particular density

We denote the set of selected positions of a scheme f} ,, on a string S by
Meyew(S) = {i + fiw(Sli,i+k+w—2])where0<i<|S|-w—k+1}
(These are the positions marked by asterisks in Figure 1a).

The particular density of a scheme /%, on a string S is the proportion of k-mers selected:

M S

dy(s) = O
" S| —w+1

Particular density was used in previous works (e.g., [7]) as a measure of efficiency of the scheme

on a particular sequence. The trivial upper and lower bounds for the density are: — < d;,, <

g|m

1 . . .
1, where ” corresponds to scanning the sequence from left to right and selecting exactly one

position in every new non-overlapping window, and 1 corresponds to selecting every position
[17]. In general, lower density can lead to greater computational efficiency and is therefore

desirable.
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3 E. Universal Hitting Sets

We say that a set of k-mers M hits sequence S if there exists a k-mer in M that is a substring in
S. A universal hitting set (UHS) Uy ;. is a set of k-mers that hits every L-long string over X. A trivial
UHS always exists by taking all |Z|* k-mers. A UHS M can be used in a minimizers scheme as
follows:

- Define an order on M’s k-mers.

- For any L-long window, select the minimum k-mer from M in the window according to

the pre-defined order.

The universality of M guarantees that there will always be at least one k-mer from M in any L-

long window.

3 E (i) DOCKS and PASHA algorithms

A key challenge is finding a minimum cardinality UHS, since smaller UHSs will tend to have smaller
number of k-mers as minimizers on a particular sequence. It was proven that the problem of
hitting a given set of L-long sequences is a NP-hard problem [18]. DOCKS and PASHA are
heuristics that address the problem of finding a minimum-size UHS: They find a compact but not

necessarily optimal universal k-mer set that hits any set of L-long sequences.

DOCKS
The DOCKS (Design Of Compact universal k-mer hitting Set) algorithm [12] takes as input a list of

parameters (X, k, L) and outputs a list of k-mers, the UHS U, ;. The algorithm has two phases:

16



(i) Finding a minimum-size k-mer set that hits every infinite sequence (and in particular
every cycle. For that reason, the set is called a decycling set). This problem can be solved
to optimality in polynomial time [19]

(ii) Greedily adding k-mers that hit many remaining L-long sequences until no such
sequences remain. This process is heuristic and is done iteratively using dynamic
programming.

The software and solution sets are freely available at acgt.cs.tau.ac.il/docks/.

PASHA

PASHA [18] is a randomized parallel algorithm for finding small UHSs. The authors build on the
DOCKS algorithm and improve the calculation of the k-mer hitting number in a de Bruijn graph,
the number of L-long strings containing the k-mer. They leveraged advanced theoretical and
architectural techniques to parallelize and decrease memory usage in calculating k-mer hitting
numbers. As a result, PASHA can handle larger values of k than DOCKS. The authors empirically
showed that PASHA produces sets that are slightly larger than those of serial deterministic
algorithms like DOCKS.

The software and solution sets are freely available at github.com/ekimb/pasha.

17



3 F. Relevant high-throughput sequencing applications

3 F (i). Assembly algorithms

One of the main challenges in high-throughput sequencing is assembling a massive number of
short reads that were extracted from DNA segments (see the review in [18]). De novo
assembly approaches particularly focus on grouping short reads into significant contigs and
assembling these contigs into bins to reconstruct the original, previously unknown genomic DNA.
One popular approach to assemble large genomes is by constructing a de Bruijn graph. The de
Bruijn graph approach breaks short reads into k-mers and then connects k-mers according to
their overlap relations in short reads. It can assemble large quantities (even billions) of short
reads. Despite the broad usage of de Bruijn graphs in genome assembly applications, the large
memory usage and long runtime are still a critical challenge in the de Bruijn graph construction

task.

3 F (ii). Minimum Substring Partitioning (MSP)

The Minimum Substring Partitioning (MSP) method is a memory efficient and fast algorithm for
de Bruijn graph construction [15]. MSP breaks reads into multiple bins so that the k-mers in each

bin can be loaded into memory, processed individually to form the corresponding de Bruijn

18



graph, and later merged with other bins to form the full de Bruijn graph. The lexicographically

smallest k-mer in each sequence window (i.e., the minimizer) is used as key for that window.

MSP partitions L-long windows into multiple disjoint bins, in a way that tends to retain adjacent

L-mers in the same bin. This has two advantages:

(i) Consecutive L-mers are combined into super L-mers (substrings of length > L), which
reduces the space requirements.

(ii) Local assembly can be performed on the bins in parallel, and later all assemblies are

merged to generate a global assembly.

MSP is motivated by the fact that adjacent L-mers tend to share the same minimizer k-mer, since
there is an overlap of length L — 1 between them. Figure 2 shows an example of the
partitioning step of MSP with L = 10 and k = 3. In this example, the first four L-mers share
the minimizer AAC and the last four L-mers share the minimizer AAA. In this case, instead of
generating all seven L-mers separately, MSP generates only two super L-mers. The first four L-
mers are combined into TGGCGAACGTAA, and this super L-mer is assigned to the bin labeled
AAC. Similarly, the last four L-mers are combined into a super L-mer GAACCGTAAAGT, and this
super L-mer is assigned to the bin labeled AAA.

In general, given a read r = ry1y...1,_4, if the j adjacent L-mers from r [i,i + L — 1] to
rli +j — 1,i +j + L — 2] share the same minimizer m (and j is maximal with regard to
that property), then the super L-mer 7;7;41...7i4 41— is assigned to the bin labeled m without
breaking it into j individual L-mers. This procedure reduces memory usage as instead of keeping
J - L characters in memory, only j + L — 1 characters are kept. If j tends to be large, this

strategy dramatically reduces memory usage.

19



To reduce the number of bins, MSP warps the bins using a hash function into a user-defined

number of bins b.
Li et al. argued that the maximum number of distinct k-mers contained by a partition determines
the peak memory. Following this reasoning, we define a bin’s load to be the number of distinct

k-mers in it, and will measure the maximum bin load, namely the highest load of any bin, as a

criterion for peak memory usage.

TGGCGAACCGTAAAGGT

TGGCGAACCG
GGCGAACCGT SUPEr: f-mek
GCGAACCGTA
CGAACCGTAA
GAACCGTAAA
AACCGTAAAG
ACCGTAAAGG
| CCGTAAAGGT
TGGCGAACGTAA —

bin

AAC

Figure 2: The partitioning step of the MSP method. A read is scanned in windows of length

10. The 3-mer minimizer in each window is marked with the rectangles.
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4. Methods and Materials

4 A variant of MSP that uses a UHS

The original MSP algorithm uses a minimizers scheme with a lexicographic order [15]. We
denote this method here Lexico_MSP.

Previous studies have shown that k-mers from a small UHS are more evenly distributed along
the genome than lexicographic or random minimizers [12]. Hence, we reasoned that using a small
UHS in the MSP algorithm would lead to a flatter distribution of bin sizes and thus reduce memory
usage and runtime. We modified MSP to employ a minimizers scheme with a UHS-based order,
where the order that is applied to the UHS k-mers is pseudo-random. By the definition of a UHS,
a minimizers scheme based on this order selects only k-mers from Uy, ; as minimizers for any L-
long window, so the order of k-mers not in Uy, ; isimmaterial. We call such an order a UHS-based
minimizer order.

We denote this algorithm UHS_MSP. The UHSs that we used for the algorithm were generated
by DOCKS [12] for k < 13 and PASHA [21] for k = 14, and were taken from these algorithms’
websites.

We also tested a variant of MSP where the lexicographic order is replaced by a pseudo-random
order. Our reasoning was that a pseudo-random order was shown to have better properties than
lexicographic order when used in a minimizers scheme [13]. We denote this variant

Random_MSP.

21



UHS_MSP receives as input a set of reads and generates a corresponding de Bruijn graph by the

following steps. A pseudo-code of the algorithm can be found in Algorithm 1.

4 A (i) Partitioning

This step uses a pre-generated UHS Uy, ;. By default, we used k = 12 and L = 60. We saved

Uy, in an array of size |Z|* bits, with the values ‘1 for the k-mers that are in Uy, and ‘0’ otherwise.

Reads are broken into segments (super L-mers) that are placed in bins as follows: For each read,
all L-long windows are scanned, and their minimizers are found. The minimizer of the currently
scanned window is denoted as cu77Mi7n and its start position is denoted as cur7MinPos. The
scanning is done by sliding an L-long window to the right one symbol at a time, until the end of
the read. After each slide, UHS_MSP checks whether cur7MinPos is still within the range of the
current window. If not, it re-scans the window to find the current minimizer and updates
currMin and currMinPos. Otherwise, it tests whether the last k-mer in the current window is
smaller than cu77Min based on the UHS-based minimizer order. If so, the last k-mer is set as

currMin and its start position as currMinPos.

To enable fast comparison of k-mers in Uy, ;, the pseudo-random order is implemented using a
2k-long bit vector x (the seed), with bits selected independently and equiprobably to be 0 or 1.
Form € Uy define f(m) = b(m) @ x, where b(m) is the binary representation of k-mer m

and “ @ " is the bit-wise xor operation. The order o of m is defined as the number whose binary
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representation is §(m). Hence, deciding if o(m) < o(m') is done by two xor operations and
onhe comparison.

Each time a new minimizer is selected, a super L-mer is generated by merging all the L-long
windows sharing the previous minimizer, and the label of that super L-mer is its minimizer (Figure
2).
To obtain the prescribed number b of bins, a hash function is used to map the labels to a space of
size b.

A unique ID is assigned to each L-mer when scanning the reads. As a result, identical L-mers in

different positions in the data are assigned different IDs. Those will be merged in the next step.

4 A (ii) Mapping and Merging

These steps are the same as in [15]. We briefly outline them here for completeness, sine the
changes we introduce in the partitioning step affect their efficiency. In the mapping step, each
bin is loaded separately into the memory and identical L-mers in different positions in the bin
are combined to have the same unique integer vertex ID. This process is done by generating an
ID replacement table per bin. Since we expected the change in the partitioning step to create
bins with sizes that are more uniformly distributed, we reasoned that the maximum bin size and

the maximum memory would decrease as well.

The merging step merges the ID replacement tables of all bins and generates a global ID
replacement table. The algorithm outputs sequences of IDs. Each ID is a vertex in the graph (L-
mer) and two adjacent IDs represent an edge in the graph. This way, each read is represented
by a sequence of the consecutive vertices of its L-mers in the graph, while identical L-mers have

the same ID.

23



Note that the final assembled graphs of the Lexico_MSP, Random_MSP and UHS_MSP methods
are identical. The differences in time and space performance are due to the particular schemes,

which produce different bin size and load distributions.

Algorithm 1 UHS Minimum Substring Partitioning.

Input: A set of strings S = (So, S1,...,Sm—1), where |S;| = readLen, integers k, L, b,
a UHS-based order o for a UHS Uy,

Output: The partition - b bins with the set of super L-mers in each one.

1: for j from 0 to m — 1 do
2 currMin = the o-minimum k-mer of S;[0, L — 1]

3 currMinPos = the start position of currMin in S;

4 currStart = 0 /* the start position of the current super L-mer */
5 for i from 1 to readLen — L do

6: if ¢ > currMinPos then

7 generate a super L-mer sLmer = Sj[currStart,i + L — 2]
8 currStart =i

9 write sLmer in bin number hash(currMin)

10: currMin = the o-minimum k-mer of S;[i,i + L — 1]

11: currMinPos = the start position of currMin in S;

12: else

13: if the last k-mer of S;[i,i + L — 1] is in Uy, and smaller than currMin then
14: generate a super L-mer sLmer = Sj[currStart,i + L — 2]

15: currStart =i

16: write sLmer in bin number hash(currMin)

17: currMin = the last k-mer of S;[i,i+ L — 1]

18: currMinPos = the start position of currMin in S;
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4 C Biological datasets

We used in our experiments four real-life datasets. Their characteristics are summarized in Table

1.
Size Avg.read No. of Reference Accession no. Source
Dataset
(GB) length reads
E. coli 2.9 101 20.3M [22] PRINA431139  SRA
Human chrl4 9.4 101 36.5M [23] - GAGE
Bee 93.8 124 303M [23] - GAGE
Human 432 100 2B [24] PRINA29429 SRA

Table 1: Characteristics of the four benchmark datasets. All datasets were generated by the
[lumina platform. The human chr14 and bee datasets were downloaded from the GAGE database

(gage.cbcb.umd.edu/data/index.html).
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5. Results

We compared UHS_MSP to the original MSP method (Lexico_MSP) and to MSP with random k-
mer order (Random_MSP) in terms of speed, memory usage, particular density and maximum
load on the four real-life datasets described in Table 1. The bee dataset was also used in the
original MSP paper [15], but the other datasets used in that study were unavailable. We used the
same parameters as in [15] for comparison, i. e.,k = 12,L = 60,and b = 1000. UHS_MSP
was used with the seed-based random ordering within the UHS. The use of UHS with

lexicographic ordering produced inferior results and was not tested further - see Table 3.

Method Lexico MSP Random MSP UHS _MSP Lexico UHS
Runtime (sec) 36,603 30,498 25,443 40,246
Maximum Memory(GB) 17.2 16.9 14.98 17.7

Table 3: Performance of MSP using UHS and lexicographic ordering compared to the other
three algorithms on the bee dataset. The right column shows the results of MSP using UHS and

lexicographic ordering.

The results correspond only to the MSP runs, and do not include the generation of the UHS, a
one-time process for any values of k and L. All the experiments were measured on Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20GHz server with 44 cores and 792 GB of RAM.

To exclude the impact of parallelization, all measurements were done on a single core.

On the human data set, only UHS_MSP terminated successfully and passed all the three stages
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without failing. Thus, only partial results are available and reported for the other two algorithms.

We note that similar problems with running MSP were reported in [19].

5 A Particular density comparison

We calculated the particular density of the MSP algorithms on the four datasets by counting the
number of selected positions (unique minPos in the partitioning step of the algorithm) and
dividing it by the number of all possible positions. UHS_MSP achieved lower density than
Lexcio_MSP and Random_MSP on all four datasets (Table 2). This is in accordance with the results
of Margias et al. on other genomes [13]. Lexico_MSP had the highest density. This result reaffirms
the potential of UHS_MSP to achieve reduced memory usage and faster runtimes compared to

the other two algorithms.

Dataset Lexico_MSP Random_MSP UHS_MSP
E. Coli 0.041 0.034 0.031
Human chr14 0.073 0.065 0.062
Bee 0.059 0.056 0.053
Human 0.057 0.056 0.055

Table 2: particular density results
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5 B Performance comparison

We compared the three algorithms in terms of three main performance criteria:
(1) Runtime - the total CPU time (user time + system time).
(2) Maximum memory - the maximum amount of cache memory the method used.

(3) Maximum load.

5 B (i) Runtime
Figure 3a presents the runtime of the three algorithms in seconds per GB of input data.

On all datasets where comparison was possible, UHS_MSP was the fastest.
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Figure 3: Tested metrics performance. (a) Runtime in seconds per GB of input data. (b) Maximum
memory usage in GB. (c) Maximum load. Numbers are in 100 MB for E. coli and chr14 datasets, and in
GB for the bee and human datasets. For the human dataset, the original and randomized MSP did not
terminate, so runtimes and memory are not available. The reported load results are based on the

partitioning and mapping steps only.
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5 B (ii) Memory usage

Figure 3b displays the maximum memory used by each algorithm. UHS_MSP used substantially

less memory than Lexico_MSP and achieved comparable results to Random_MSP.

5 B (iii) Maximum load

Figure 3c display the maximum load value. UHS_MSP also had the lowest maximum load on all

datasets.

The results show that UHS_MSP achieved a substantial improvement over the other algorithms
in all three main aspects. We also measured two additional criteria: the largest bin size and the
total disk space. The results for these criteria are presented in Figure 6. They present consistent

advantage to UHS_MSP over both Random_MSP and Lexico_MSP.

5 B iv. Test of robustness with different random orders

As an additional test of the robustness of UHS_MSP, we wished to gauge the effect of the pseudo-
random order of the k-mers on the results. We ran Random_MSP and UHS_MSP, which use
randomized orders, on the four datasets with five different seeds, corresponding to different
pseudo-random orders (Section 3). The results are presented in Table 3. While both algorithms
showed substantial performance variance across orders, overall, the results were in line with

those presented in Figure 3.
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Runtime (sec) Maximum memory (GB) Max load (10°)
Data Lexico Random UHS Lexico Random UHS Lexico Random UHS
E. coli 207 206 +35.6 148 +5.54 6.96 6+1.3 4 +0.5 5.04 4.05+3.8 1.3+0.7
Human chr14 1371 1349+38.2 1189 +68.13 6.66 5.55+0.83 5.12+0.73 11.8 2.3+0.9 2.36%0.07
Bee 36603 28159+12815 24114+10836 17.2 15.94+1.02 15.63+0.44 58.4 51.3+19 37.91+9.1
Human NA NA 77528 +3536 NA NA 28 +0.9 431 69.3+3 749 +2.3

Table 3: Performance across different pseudo-random k-mer orders. Average and standard
deviation over five runs with different seeds are shown for the two algorithms that use a
random order, alongside the original MSP results. On the human dataset, the original MSP as

well as its pseudo-random order version did not terminate successfully.

5 C The effect of parameters k,L and b

We tested the three methods on the bee data in a range of values for the parameters k, L and b.
In each run, we kept two of the three parameters at their default values and varied the third. The
results are summarized in Figure 4. Changing the number of bins shows consistent advantage to
UHS_MSP, with a tendency to improve as the number of bins increases (a-c).
Changing L shows a similar advantage to UHS_MSP (d-f). Changing k has a less consistent effect
(g-i). Figure 7 shows the effect of changing each of the three parameters on the largest bin size.
Again, UHS_MSP was consistently better across the tested values of L and b, and less so when
changing k.

Li et al. also tested on Lexico_MSP the impact of changing k and L [20]. The impact of varying k
was consistent with what we observed here for that algorithm (Figure 4g-i) with reduction of
resources needed as k increases. They also reported a similar reduction when L increases, unlike

a less consistent picture observed here (d-f). Note however that they tested the range L =
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31 — 63 while we tested a broader range of higher values L = 60 — 120. While varying the
number of bins was not tested before, our tests here (a-c) show improved performance with
increasing b, and a similar trend (with leveling off at high values) by the two other algorithms as
well.

Previous studies also tested for the impact of the minimizer’s length k in similar minimum-
substring-partitioning applications, and recommended values such as [21], [22] and [23]. Our

experiments also tested for k values twice as large.
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Figure 4: The effect of changing the number of bins, the window size and the k-mer size on
performance. Results are for the bee dataset. (a-c) Effect of the number of bins. (d-f) Effect of
the window size L. (g-i) Effect of k. For each parameter, the runtime, maximum memory and the

maximum load are shown.

5 D Resource usage in each step of the algorithm

To appreciate where the saving is achieved, we measured the resources consumed by each of

the three MSP steps: partitioning, mapping and merging. Figure 5 summarizes the results on the



bee dataset. The mapping step required most memory, taking an order of magnitude more
memory than the partitioning and 3-5-fold more than the merging step. In all three algorithms,
the mapping step was also the most time-demanding one, taking on average 67% of the time.
The merging step required 20% of the time, on average, and the partitioning step was the least
demanding one, taking 13% of the time. Remarkably, even though we explicitly changed only the
partitioning step of the algorithm, that change led to substantial reduction in the time and
memory of the mapping step. The merging step was less affected. In comparison to the original
MSP algorithm, UHS_MSP required 4% more time in the partitioning step, due to the extra work
required for UHS-related computations but was 20% faster in the mapping step. Note that for
the sake of our tests, we did not utilize the possibility of parallelizing the mapping step. Future

work can thus focus on improvements to the mapping step.
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Figure 5: Resources taken by each algorithm and each step of the algorithm on the bee dataset.
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6. Discussion

In this study, we incorporated a UHS-based minimizers scheme in a fundamental HTS task: de
Bruijn graph construction. By creating partitions based on fewer k-mers and with better
statistical properties, we achieved speedups and reduced memory usage in genomic assembly.
To the best of our knowledge, this is the first demonstration of the practical advantage of using
UHSs in a genome assembly application.

Our study raises several open questions: to what extent can further improvements in the
generation of smaller UHSs improve the de Bruijn graph construction? Currently the complexity
of minimum size UHS still remains an open problem, though closely related problems were shown
to be computationally hard [12], [13]. Can one express the expected amount of resources needed
by the UHS_MSP algorithm (and by its separate steps), as a function of the key parameters k, L
and b? Obtaining such an estimate, even under a simple model such as the random string mode,
can guide one to optimize the combination of parameter values, which as we have seen tend to
interact in a rather complex way (Figure 4). What is the relation between the largest bin size and
the maximum memory usage? Can one improve the mapping of multiple minimizers into a bin?
Some applications (e.g., [8]) sample the input data in order to map minimizers to bins more
efficiently. Integrating such a method into MSP can improve memory and runtime performance.
Li et al. [15] argued that the maximum load determines the peak RAM consumption. Our results
were not consistent with this claim. (For example, see the results on the bee data in Figure 3 and
Figure 4 (d-f)). Further investigation revealed that some of the incoherence is due to Java’s
garbage collector. Changing Java’s limit for the heap size reduced memory consumption

substantially. For example, when running the chr14 dataset with a limit of 4GB, the peak memory
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went down from 6.6 GB to 2.7 GB, with no increase in running time. In other runs even larger
peak memory changes were observed depending on the limit, but at the expense of longer
runtimes. Since the measured memory of a Java process is not reliable, and depends on the
machine and on Java’s memory flags, an implementation in a language with explicit memory
management (e.g. c++) is preferable.

In parallel to our study, a work by Nystrom-Persson et al. [14] also implemented UHS in a
sequencing application. The authors combined UHS and frequency counts in a k-mer counting
application and achieved substantial memory saving. The improvement now achieved by UHSs in
two different sequencing applications is encouraging. It is tempting to believe that practical
improvements can be achieved in other applications that utilize minimizers, e.g. BCALM?2 [24]
(which utilizes frequency-based minimizers, given the results in [25]), applications that perform
partitioning of sequences as a preprocessing step for efficient parallel processing and storage

[21], [24], [26], sequence similarity estimation [27], [28], and others.
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