

Tel-Aviv University

Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Improving the efficiency of de Bruijn graph construction using

compact universal hitting sets

Thesis submitted in partial fulfillment of graduate requirements for

The degree "Master of Sciences" in Tel-Aviv University

School of Computer Science

By

Yael Ben-Ari

Prepared under the supervision of

Prof. Ron Shamir

Dr. Yaron Orenstein

October 2021

2

3

Acknowledgements

I would like to use this short note to express my deep gratitude to the people who accompanied

me on this journey, those that I have worked with and those who supported me and helped to

make it happen.

First and foremost, I would like to thank my outstanding supervisor, Prof. Ron Shamir, for

supporting me in this journey. I am honored and feel fortunate to have been advised by a living

legend like Ron, an exceptional researcher, a great teacher and a kind-hearted person. I felt

inspired every day from his high professionalism, persistence and thoroughness.

Thank you, Ron, for believing in me and for giving me the opportunity to learn from you in the

last few years.

Secondly, I would like to thank Dr. Yaron Orenstein for his great contribution to this research and

for sharing with me his exceptional knowledge and experience.

Thirdly, special thanks to Dr. Lianrong Pu and Dan Flomin, who in addition to being great friends,

collaborated with me in this research and helped me to make it happen. You are awesome.

 I would also like to deeply thank to the rest of the lab members: Ron Z., Dvir, David, Tom, Nimrod,

Hagai, Naama, Omer, Hadar, Yonatan, Eran, Roi, and Maya for being my mates during my

scientific way. I am grateful for the journey we went together.

A special thanks to Gilit Zohar-Oren for her endless support that always came with a smile.

I would like to thank the agencies that supported my thesis research: the Israeli Science

Foundation grant 1339/2018, and grant No. 3165/19, within the Israel Precision Medicine

Partnership program, the German-Israeli Project DFG RE 4193/1-1, and Edmond J. Safra Center

for Bioinformatics at Tel-Aviv University.

And last but not the least, I would like to thank my dear family: my parents Riva and Ofer and

my brothers Guy and Shani. You know this would never have happened without you.

4

5

Table of Contents

Abstract ... 7

1. Introduction ... 8

2. Biological Background .. 11

2 A. Genomics ... 11

2 B. DNA sequencing ... 11

2 C. High-throughput sequencing technologies .. 12

2 D. Genome assembly ... 12

3. Computational Background and Definitions ... 13

3 A. Minimizers schemes .. 13

3 B. De Bruijn graph .. 14

3 C. Ordering schemes .. 15

3 D. Particular density .. 15

3 E. Universal Hitting Sets .. 16

3 E (i) DOCKS and PASHA algorithms .. 16

3 F. Relevant high-throughput sequencing applications .. 18

3 F (i). Assembly algorithms .. 18

3 F (ii). Minimum Substring Partitioning (MSP) .. 18

6

4. Methods and Materials .. 21

4 A variant of MSP that uses a UHS .. 21

4 A (i) Partitioning ... 22

4 A (ii) Mapping and Merging ... 23

4 C Biological datasets .. 25

5. Results ... 26

5 A Particular density comparison .. 27

5 B Performance comparison ... 28

5 B (i) Runtime .. 28

5 B (ii) Memory usage ... 30

5 B (iii) Maximum load .. 30

5 B iv. Test of robustness with different random orders .. 30

5 C The effect of parameters 𝑘, 𝐿 and 𝑏 ... 31

5 D Resource usage in each step of the algorithm ... 33

6. Discussion .. 36

7. References ... 38

7

Abstract

High-throughput sequencing techniques generate large volumes of DNA sequencing data at ultra-

fast speed and extremely low cost. Therefore, sequencing techniques have become ubiquitous

in biomedical research and are used in hundreds of genomic applications. Efficient data

structures and algorithms have been developed to handle the large datasets produced by these

techniques. The prevailing method to index DNA sequences in those data structures and

algorithms is by 𝑘-mers (𝑘-long substrings) known as minimizers.

Minimizers are the smallest 𝑘-mers selected in every consecutive window of a fixed length in a

sequence, where the smallest is determined according to a predefined order, e.g., lexicographic.

Recently, a new 𝑘-mer order based on a universal hitting set (UHS) was suggested. While several

studies have shown that orders based on a small UHS have improved properties, the utility of

using a small UHS in high-throughput sequencing analysis tasks has not been demonstrated to

date.

Here, we demonstrate the practical benefit of UHSs for the first time, in the genome assembly

task. Reconstructing a genome from billions of short reads is a fundamental task in high-

throughput sequencing analyses. De Bruijn graph construction is a key step in genome assembly,

which often requires very large memory and long computation time. A critical bottleneck in this

process is the partitioning of DNA sequences into bins. The sequences in each bin are assembled

separately, and the final de Bruijn graph is constructed by merging the bin-specific subgraphs.

We incorporated a UHS-based order in the bin partition step of the Minimum Substring

Partitioning algorithm of Li et al. (2013). Using a UHS-based order instead of lexicographic or

random-ordered minimizers produced lower density minimizers with more balanced bin

partitioning, which led to a reduction in both runtime and memory usage.

8

1. Introduction

Large amounts of DNA sequencing data are generated today in almost any biological or clinical

study. Due to the low cost of sequencing, it has become standard to probe and measure

molecular interactions and biomarkers using DNA read quantities [1]. Technologies based on

high-throughput sequencing (HTS) have been developed for the major genomics tasks: genetic

and structural variation detection, gene expression quantification, epigenomic signal

quantification, protein binding measurements, and many more [2].

A first step in utilizing all these data types is the computational analysis of HTS data. Key

challenges include read mapping to a reference genome, read compression, storing reads in a

data structure for fast querying and finding read overlaps. As a result, many computational

methods were developed to analyze HTS data, and the development of new methods is ongoing

[3].

Many methods for analyzing HTS data use minimizers to obtain speed-up and reduce memory

usage [4]– [6]. Given integers 𝑤 and 𝑘, the minimizer of an 𝐿	 = 	𝑤 + 𝑘 − 1-long sequence is the

smallest 𝑘-mer among the 𝑤 contiguous 𝑘-mers in it, where the smallest is determined based on

a predefined order, e.g., lexicographic [7]. For a sequence longer than 𝐿, all 𝐿-long windows are

scanned, and the minimizer is selected in each one (Figure 1a).

Using the minimizers to represent the 𝐿-long windows has three key advantages:

(i) The sampling interval is small.

(ii) The same 𝑘-mers are often selected from overlapping windows.

(iii) Identical windows have the same minimizer.

9

Minimizers help design algorithms that are more efficient in both runtime and memory usage by

reducing the amount of information that is processed while losing little information. Minimizers

were shown to be helpful and are used in many different settings, such as partitioning input

sequences [5], [8], [9] generating sparse data structures [10], [11], and sequence classification

[6].

Figure 1: Illustrations of Minimizers and de Bruijn graph. (A) Minimizers scheme (𝑘	 =
	4, 𝑤	 = 	9). The input sequence is broken into windows of length 𝐿	 = 	𝑤	 + 	𝑘	 − 	1	 = 	12,
and the minimizer in each window is selected. Consecutive windows tend to select the same
minimizer. The positions of the selected 𝑘-mers constitute a sampling of the original
sequence. (B) De Bruijn graph of order 3 for three DNA sequences. The vertices are the 3-
mers contained in the set of sequences. Edges connect two vertices if the 4-mer they
represent is contained in a sequence in the set.

Recently, the concept of a universal hitting set (UHS) was introduced as a way to improve

minimizers [12]. For integers 𝑘 and 𝐿, a set of 𝑘-mers 𝑈!,# is called a UHS if every possible

sequence of length 𝐿 contains at least one 𝑘-mer from 𝑈!,# as a contiguous substring. It was

shown that by using a UHS of small size, one can design an order for a minimizer scheme that

10

results in fewer selected 𝑘-mers compared to the orders commonly used in current applications

(i.e., lexicographic or random orders) [13]. Therefore, using UHSs has the potential to provide

smaller signatures than currently used orders, and as a result reduce runtime and memory usage

of sequencing applications.

We and others recently developed algorithms to generate small UHSs [12], [13], but so far, the

prevailing methods in HTS analysis employ a lexicographic or random order. To date, only one

method has been developed to take advantage of the improved properties of UHSs and applied

them to a 𝑘-mer counting application [14].

In this study we demonstrate the practical benefit of UHSs on a main HTS analysis task: de Bruijn

graph construction for genome assembly by a disk-based partition method. We introduce a UHS

into the graph construction step of the Minimum Substring Partition assembly algorithm [15].

The introduction of the UHS into the algorithm defines a new minimizers ordering, substantially

changing the execution of all the steps of the algorithm but producing exactly the same final

output. In tests on several genomic datasets, the new method had lower memory usage, shorter

runtime and more balanced disk partitions. The code of our method is publicly available at

github.com/Shamir-Lab/MSP_UHS.

A preliminary version of this study was published in the Proceedings of the ACM-BCB Conference 2021
[16]

11

2. Biological Background

2 A. Genomics

DNA (Deoxyribonucleic acid) is a molecule composed of nucleotides (A -Adenine, G- Guanine, C-

Cytosine, and T- Thymine) that carries all the genetics information and instructions for the

development, function, reproduction and growth of all known organisms. Genes are a basic unit

of heredity. They are segments along the DNA molecule that encode for the synthesis of a gene

product, an RNA sequence, which can later be translated to protein. The genome is the total

genetic material of an organism and includes both the genes and non-coding sequences. The

Genomics field focuses on the sequence, function, evolution, mapping, and editing of genomes.

Using high-performance computing and bioinformatics applications, genomics researchers

analyze enormous amounts of DNA sequences to find variations that affect health, disease, drug

response and more.

2 B. DNA sequencing

DNA sequencing is the process of determining the order of the nucleotides in a DNA sequence. A

variety of methods and technologies are used to determine the order of the four bases. Genomics

involves the sequencing and analysis of genomes through uses of DNA sequencing to assemble

and analyze the function and structure of entire genomes. DNA sequencing information is used

for numerous applications in molecular biology, evolutionary biology, metagenomics, medicine

and many more fields.

12

2 C. High-throughput sequencing technologies

High-throughput sequencing technologies, also known as next-generation sequencing (NGS), are

DNA sequencing techniques developed in the last fifteen years, which have completely

revolutionized genome analysis. In 1977 the first sequencing method, Sanger sequencing, was

developed. Around the year 2000, the whole human genome was sequenced for the first-time

using Sanger sequencing. Only a few years later high-throughput sequencing techniques started

to emerge and changed “the rules of the game” in Biology and Medicine. The major advantage

of these techniques is the ability to sequence massively, cheaply and in parallel. These techniques

create dozens to hundreds of gigabytes consisting of short DNA sequences in a single experiment,

at ultrafast speeds and extremely low cost. As a result, they have become ubiquities in biomedical

research. There is no doubt that high-throughput sequencing technologies accelerated the

biological and biomedical research.

Since high throughput sequencing technologies generate very large amounts of data, they

represent great challenges in data analyses, storage, transfer and more. These challenges have

been answered by creation of hundreds of bioinformatics applications to date. These applications

include read alignment, genome assembly, read mapping, single nucleotide variant detection,

and many more. Ongoing improvement to the algorithms is needed as high throughput

sequencing continue to develop and create more data.

2 D. Genome assembly

DNA sequencing technologies cannot read a whole chromosome in one go, but rather can read

only small pieces of between 20 and 30,000 nucleotides, depending on the technology. The

13

location of the segments within the genome is lost in the sequencing process. Hence, sequence

assembly is needed to put together and merge fragments in order to reconstruct the original

genome. A main challenge in the assembly task is that it requires a huge amount of memory and

very long processing time, especially for large genomes.

3. Computational Background and Definitions

Basic definitions

A read is a string over the DNA alphabet Σ = {𝐴, 𝐶, 𝐺, 𝑇}.

A 𝑘-mer is a string of length 𝑘 over Σ.

Given a read 𝑠, |𝑠| = 𝑛, 𝑠[𝑖, 𝑗] denotes the substring of 𝑠 from the 𝑖-th character to the 𝑗-th

character, both inclusive. (Here and throughout, substrings are assumed to be contiguous.)

𝑠 contains 𝑛 − 𝑘 + 1		𝑘-mers: 𝑠[0, 𝑘 − 1], 𝑠[1, 𝑘]	… 	𝑠[𝑛 − 𝑘, 𝑛 − 1].

Two 𝑘-mers in 𝑠 that overlap in 𝑘 − 1 letters, i.e., 𝑠[𝑖, 𝑘 + 𝑖 − 1] and 𝑠[𝑖 + 1, 𝑘 + 𝑖] are called

adjacent in 𝑠.

3 A. Minimizers schemes

Minimizers schemes are methods for selecting the smallest 𝑘-mer substrings from a sequence

using predefined order, e.g., lexicographic. In an era of exponential data growth, these methods

are in use in many bioinformatics due to their ability to yield a sub-linear representation of

sequences, enabling sequence comparison in reduced space and time. A key property of the

minimizer method is that if two sequences share a substring of a specified length, then they can

be guaranteed to have a matching minimizer.

14

An order 𝑜 on Σ! is a one-to-one function 𝑜 : Σ! → {1, 2, ..., |Σ|!}. 𝑘-mer 𝑚$ is smaller than 𝑘-

mer 𝑚%according to order 𝑜 if: 𝑜	(𝑚$) 	< 	𝑜	(𝑚%).	In other words, an order is a permutation on

the set of all 𝑘-mers.

A minimizer for a triplet (𝑠, 𝑜, 𝑘) is the smallest 𝑘-long substring 𝑚 in sequence 𝑠 according to

order 𝑜. We also call 𝑚 the 𝑜-minimizer 𝑘-mer in 𝑠.

A minimizers scheme is a function 𝑓!,& that selects the start position of a minimizer 𝑘-mer in

every sequence of length 𝐿	 = 	𝑤	 + 	𝑘	 − 	1, i.e., 𝑓: Σ&'!($ → [0:𝑤 − 1] (Figure 1a).

3 B. De Bruijn graph

Given a set of 𝑚 strings 𝑆	 = 	 {𝑆), 𝑆$, 𝑆%, . . .		 , 𝑆*($, } over 𝛴 and an integer 𝑘	 ≥ 	2, the de Bruijn

graph of 𝑆 of order 𝑘 (Figure 1b) is a directed graph 𝑑𝐵𝐺! 	(𝑆) 	= 	 (𝑉, 𝐸) where:

𝑉 = 𝑣 ∈ 	Σ! 	|	∃𝑗 ∈ {0, 1, … ,𝑚 − 1}	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑣	𝑖𝑠	𝑎	𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔	𝑜𝑓	𝑆+ .

	𝐸 = (𝑢, 𝑣)	|	𝑢 = 𝑆+[𝑖, 𝑘 + 𝑖 − 1], 𝑣 = 𝑆+[𝑖 + 1, 𝑘 + 𝑖]	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑗	𝑎𝑛𝑑	𝑖.

Modern genome assembly algorithms are based on de Bruijn graph construction. This process

breaks each input read into 𝑘-mers (vertices in the graph) and then connects adjacent 𝑘-mers

according to their overlap relations in the reads (edges). The graph represents the reconstructed

genome. This process can assemble very large quantities (even billions) of reads. In genome

assembly algorithms, the de Bruijn graph construction step is the most memory consuming and

time-intensive part [15].

15

3 C. Ordering schemes

The original minimizers scheme compares 𝑘-mers using the lexicographic ordering. However,

lexicographic ordering was shown to be problematic for some applications involving DNA

sequences, due to over-representation of As and runs of As in the sequence. Hence, many

alternatives were suggested for ordering schemes in genomic applications. One common

alternative is an order determined by a random permutation of the k-mers. In Kraken application

[9], for example, as a form of randomization, the authors perform bitwise XOR of the 𝑘-mers with

a random value and order the resulting binary numbers lexicographically.

3 D. Particular density

We denote the set of selected positions of a scheme 𝑓!,& on a string 𝑆 by

𝑀,,!,&(𝑆) = {𝑖 + 𝑓!,&(𝑆[𝑖, 𝑖 + 𝑘 + 𝑤 − 2]) where 0 ≤ 𝑖 ≤ |𝑆| − 𝑤 − 𝑘 + 1}

(These are the positions marked by asterisks in Figure 1a).

 The particular density of a scheme 𝑓𝑘,𝑤 on a string S is the proportion of 𝑘-mers selected:

𝑑,,!,&(𝑆) =
^𝑀,,!,&(𝑆)^
|𝑆| − 𝑤 + 1

Particular density was used in previous works (e.g., [7]) as a measure of efficiency of the scheme

on a particular sequence. The trivial upper and lower bounds for the density are: $
&
≤ 𝑑,,!,& ≤

1, where $
&

 corresponds to scanning the sequence from left to right and selecting exactly one

position in every new non-overlapping window, and 1 corresponds to selecting every position

[17]. In general, lower density can lead to greater computational efficiency and is therefore

desirable.

16

3 E. Universal Hitting Sets

We say that a set of 𝑘-mers 𝑀 hits sequence 𝑆 if there exists a 𝑘-mer in 𝑀 that is a substring in

𝑆. A universal hitting set (UHS) 𝑈!,# is a set of 𝑘-mers that hits every 𝐿-long string over Σ. A trivial

UHS always exists by taking all |Σ|! 𝑘-mers. A UHS 𝑀 can be used in a minimizers scheme as

follows:

- Define an order on 𝑀’s 𝑘-mers.

- For any 𝐿-long window, select the minimum 𝑘-mer from 𝑀 in the window according to

the pre-defined order.

The universality of 𝑀 guarantees that there will always be at least one 𝑘-mer from 𝑀 in any 𝐿-

long window.

3 E (i) DOCKS and PASHA algorithms

A key challenge is finding a minimum cardinality UHS, since smaller UHSs will tend to have smaller

number of k-mers as minimizers on a particular sequence. It was proven that the problem of

hitting a given set of 𝐿-long sequences is a NP-hard problem [18]. DOCKS and PASHA are

heuristics that address the problem of finding a minimum-size UHS: They find a compact but not

necessarily optimal universal 𝑘-mer set that hits any set of 𝐿-long sequences.

DOCKS

The DOCKS (Design Of Compact universal 𝑘-mer hitting Set) algorithm [12] takes as input a list of

parameters (𝛴, 𝑘, 𝐿) and outputs a list of 𝑘-mers, the UHS 𝑈!,#. The algorithm has two phases:

17

(i) Finding a minimum-size 𝑘-mer set that hits every infinite sequence (and in particular

every cycle. For that reason, the set is called a decycling set). This problem can be solved

to optimality in polynomial time [19]

(ii) Greedily adding 𝑘-mers that hit many remaining 𝐿-long sequences until no such

sequences remain. This process is heuristic and is done iteratively using dynamic

programming.

The software and solution sets are freely available at acgt.cs.tau.ac.il/docks/.

PASHA

PASHA [18] is a randomized parallel algorithm for finding small UHSs. The authors build on the

DOCKS algorithm and improve the calculation of the k-mer hitting number in a de Bruijn graph,

the number of 𝐿-long strings containing the 𝑘-mer.	They leveraged advanced theoretical and

architectural techniques to parallelize and decrease memory usage in calculating 𝑘-mer hitting

numbers. As a result, PASHA can handle larger values of 𝑘 than DOCKS. The authors empirically

showed that PASHA produces sets that are slightly larger than those of serial deterministic

algorithms like DOCKS.

The software and solution sets are freely available at github.com/ekimb/pasha.

18

3 F. Relevant high-throughput sequencing applications

3 F (i). Assembly algorithms

One of the main challenges in high-throughput sequencing is assembling a massive number of

short reads that were extracted from DNA segments (see the review in [18]). De novo

assembly approaches particularly focus on grouping short reads into significant contigs and

assembling these contigs into bins to reconstruct the original, previously unknown genomic DNA.

One popular approach to assemble large genomes is by constructing a de Bruijn graph. The de

Bruijn graph approach breaks short reads into	𝑘-mers and then connects 𝑘-mers according to

their overlap relations in short reads. It can assemble large quantities (even billions) of short

reads. Despite the broad usage of de Bruijn graphs in genome assembly applications, the large

memory usage and long runtime are still a critical challenge in the de Bruijn graph construction

task.

3 F (ii). Minimum Substring Partitioning (MSP)

The Minimum Substring Partitioning (MSP) method is a memory efficient and fast algorithm for

de Bruijn graph construction [15]. MSP breaks reads into multiple bins so that the 𝑘-mers in each

bin can be loaded into memory, processed individually to form the corresponding de Bruijn

19

graph, and later merged with other bins to form the full de Bruijn graph. The lexicographically

smallest 𝑘-mer in each sequence window (i.e., the minimizer) is used as key for that window.

MSP partitions 𝐿-long windows into multiple disjoint bins, in a way that tends to retain adjacent

𝐿-mers in the same bin. This has two advantages:

(i) Consecutive 𝐿-mers are combined into super 𝐿-mers (substrings of length ≥ 	𝐿), which

reduces the space requirements.

(ii) Local assembly can be performed on the bins in parallel, and later all assemblies are

merged to generate a global assembly.

MSP is motivated by the fact that adjacent 𝐿-mers tend to share the same minimizer 𝑘-mer, since

there is an overlap of length 𝐿	 − 	1 between them. Figure 2 shows an example of the

partitioning step of MSP with 𝐿	 = 	10 and 𝑘	 = 	3. In this example, the first four 𝐿-mers share

the minimizer 𝐴𝐴𝐶 and the last four 𝐿-mers share the minimizer 𝐴𝐴𝐴. In this case, instead of

generating all seven 𝐿-mers separately, MSP generates only two super 𝐿-mers. The first four 𝐿-

mers are combined into 𝑇𝐺𝐺𝐶𝐺𝐴𝐴𝐶𝐺𝑇𝐴𝐴, and this super 𝐿-mer is assigned to the bin labeled

𝐴𝐴𝐶. Similarly, the last four 𝐿-mers are combined into a super 𝐿-mer 𝐺𝐴𝐴𝐶𝐶𝐺𝑇𝐴𝐴𝐴𝐺𝑇, and this

super 𝐿-mer is assigned to the bin labeled 𝐴𝐴𝐴.

In general, given a read 𝑟	 = 	 𝑟)	𝑟$. . . 𝑟.($, if the 𝑗 adjacent 𝐿-mers from 𝑟	[𝑖, 𝑖	 + 	𝐿	 − 	1] to

𝑟	[𝑖	 + 	𝑗	 − 	1, 𝑖	 + 	𝑗	 + 	𝐿	 − 	2] share the same minimizer 𝑚 (and 𝑗 is maximal with regard to

that property), then the super 𝐿-mer 𝑟/	𝑟/'$. . . 𝑟/'+'#(% is assigned to the bin labeled 𝑚 without

breaking it into 𝑗 individual 𝐿-mers. This procedure reduces memory usage as instead of keeping

𝑗 · 𝐿 characters in memory, only 𝑗	 + 	𝐿	 − 	1 characters are kept. If 𝑗 tends to be large, this

strategy dramatically reduces memory usage.

20

To reduce the number of bins, MSP warps the bins using a hash function into a user-defined

number of bins 𝑏.

Li et al. argued that the maximum number of distinct 𝑘-mers contained by a partition determines

the peak memory. Following this reasoning, we define a bin’s load to be the number of distinct

𝑘-mers in it, and will measure the maximum bin load, namely the highest load of any bin, as a

criterion for peak memory usage.

Figure 2: The partitioning step of the MSP method. A read is scanned in windows of length

10. The 3-mer minimizer in each window is marked with the rectangles.

21

4. Methods and Materials

4 A variant of MSP that uses a UHS

The original MSP algorithm uses a minimizers scheme with a lexicographic order [15]. We

denote this method here Lexico_MSP.

Previous studies have shown that 𝑘-mers from a small UHS are more evenly distributed along

the genome than lexicographic or random minimizers [12]. Hence, we reasoned that using a small

UHS in the MSP algorithm would lead to a flatter distribution of bin sizes and thus reduce memory

usage and runtime. We modified MSP to employ a minimizers scheme with a UHS-based order,

where the order that is applied to the UHS 𝑘-mers is pseudo-random. By the definition of a UHS,

a minimizers scheme based on this order selects only 𝑘-mers from 𝑈!,# as minimizers for any 𝐿-

long window, so the order of 𝑘-mers not in 𝑈!,# is immaterial. We call such an order a UHS-based

minimizer order.

We denote this algorithm UHS_MSP. The UHSs that we used for the algorithm were generated

by DOCKS [12] for 𝑘 ≤ 13		and PASHA [21] for 𝑘	 = 	14, and were taken from these algorithms’

websites.

We also tested a variant of MSP where the lexicographic order is replaced by a pseudo-random

order. Our reasoning was that a pseudo-random order was shown to have better properties than

lexicographic order when used in a minimizers scheme [13]. We denote this variant

Random_MSP.

22

UHS_MSP receives as input a set of reads and generates a corresponding de Bruijn graph by the

following steps. A pseudo-code of the algorithm can be found in Algorithm 1.

4 A (i) Partitioning

This step uses a pre-generated UHS 𝑈!,#. By default, we used 𝑘	 = 	12 and 𝐿	 = 60. We saved

𝑈!,# in an array of size |Σ|! bits, with the values ́1ʹ for the 𝑘-mers that are in 𝑈!,# and ́0ʹ otherwise.

Reads are broken into segments (super 𝐿-mers) that are placed in bins as follows: For each read,

all 𝐿-long windows are scanned, and their minimizers are found. The minimizer of the currently

scanned window is denoted as 𝑐𝑢𝑟𝑟𝑀𝑖𝑛 and its start position is denoted as 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠. The

scanning is done by sliding an 𝐿-long window to the right one symbol at a time, until the end of

the read. After each slide, UHS_MSP checks whether 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠 is still within the range of the

current window. If not, it re-scans the window to find the current minimizer and updates

𝑐𝑢𝑟𝑟𝑀𝑖𝑛 and 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠. Otherwise, it tests whether the last 𝑘-mer in the current window is

smaller than 𝑐𝑢𝑟𝑟𝑀𝑖𝑛 based on the UHS-based minimizer order. If so, the last 𝑘-mer is set as

𝑐𝑢𝑟𝑟𝑀𝑖𝑛 and its start position as 𝑐𝑢𝑟𝑟𝑀𝑖𝑛𝑃𝑜𝑠.

To enable fast comparison of 𝑘-mers in 𝑈!,#, the pseudo-random order is implemented using a

2𝑘-long bit vector 𝑥 (the seed), with bits selected independently and equiprobably to be 0	𝑜𝑟	1.

For 𝑚 ∈ 𝑈!,# define 𝛽(𝑚) 	= 	𝑏(𝑚)	⊕ 	𝑥, where 𝑏(𝑚)	is the binary representation of 𝑘-mer 𝑚

and “ ⊕ " is the bit-wise xor operation. The order 𝑜 of 𝑚 is defined as the number whose binary

23

representation is 𝛽(𝑚). Hence, deciding if 𝑜(𝑚) 	< 	𝑜(𝑚′) is done by two xor operations and

one comparison.

Each time a new minimizer is selected, a super 𝐿-mer is generated by merging all the 𝐿-long

windows sharing the previous minimizer, and the label of that super 𝐿-mer is its minimizer (Figure

2).

To obtain the prescribed number 𝑏 of bins, a hash function is used to map the labels to a space of

size 𝑏.

A unique ID is assigned to each 𝐿-mer when scanning the reads. As a result, identical 𝐿-mers in

different positions in the data are assigned different IDs. Those will be merged in the next step.

4 A (ii) Mapping and Merging

These steps are the same as in [15]. We briefly outline them here for completeness, sine the

changes we introduce in the partitioning step affect their efficiency. In the mapping step, each

bin is loaded separately into the memory and identical 𝐿-mers in different positions in the bin

are combined to have the same unique integer vertex ID. This process is done by generating an

ID replacement table per bin. Since we expected the change in the partitioning step to create

bins with sizes that are more uniformly distributed, we reasoned that the maximum bin size and

the maximum memory would decrease as well.

The merging step merges the ID replacement tables of all bins and generates a global ID

replacement table. The algorithm outputs sequences of IDs. Each ID is a vertex in the graph (𝐿-

mer) and two adjacent IDs represent an edge in the graph. This way, each read is represented

by a sequence of the consecutive vertices of its 𝐿-mers in the graph, while identical 𝐿-mers have

the same ID.

24

Note that the final assembled graphs of the Lexico_MSP, Random_MSP and UHS_MSP methods

are identical. The differences in time and space performance are due to the particular schemes,

which produce different bin size and load distributions.

25

4 C Biological datasets

We used in our experiments four real-life datasets. Their characteristics are summarized in Table

1.

Dataset
Size

(GB)

Avg. read

length

No. of

reads

Reference Accession no. Source

E. coli 2.9 101 20.3M [22] PRJNA431139 SRA

Human chr14 9.4 101 36.5M [23] - GAGE

Bee 93.8 124 303M [23] - GAGE

Human 432 100 2B [24] PRJNA29429 SRA

Table 1: Characteristics of the four benchmark datasets. All datasets were generated by the

Illumina platform. The human chr14 and bee datasets were downloaded from the GAGE database

(gage.cbcb.umd.edu/data/index.html).

26

5. Results

We compared UHS_MSP to the original MSP method (Lexico_MSP) and to MSP with random 𝑘-

mer order (Random_MSP) in terms of speed, memory usage, particular density and maximum

load on the four real-life datasets described in Table 1. The bee dataset was also used in the

original MSP paper [15], but the other datasets used in that study were unavailable. We used the

same parameters as in [15] for comparison, i. e. , 𝑘	 = 	12, 𝐿	 = 	60, and 𝑏	 = 	1000. UHS_MSP

was used with the seed-based random ordering within the UHS. The use of UHS with

lexicographic ordering produced inferior results and was not tested further - see Table 3.

Table 3: Performance of MSP using UHS and lexicographic ordering compared to the other

three algorithms on the bee dataset. The right column shows the results of MSP using UHS and

lexicographic ordering.

The results correspond only to the MSP runs, and do not include the generation of the UHS, a

one-time process for any values of 𝑘 and 𝐿. All the experiments were measured on Intel(R)

Xeon(R) CPU E5-2699 v4 @ 2.20GHz server with 44 cores and 792 GB of RAM.

To exclude the impact of parallelization, all measurements were done on a single core.

On the human data set, only UHS_MSP terminated successfully and passed all the three stages

Lexico_UHS

UHS_MSP

Random_MSP

Lexico_MSP

Method

40,246

25,443

30,498

36,603

Runtime (sec)

17.7

14.98

16.9

17.2

Maximum Memory(GB)

27

without failing. Thus, only partial results are available and reported for the other two algorithms.

We note that similar problems with running MSP were reported in [19].

5 A Particular density comparison

We calculated the particular density of the MSP algorithms on the four datasets by counting the

number of selected positions (unique 𝑚𝑖𝑛𝑃𝑜𝑠 in the partitioning step of the algorithm) and

dividing it by the number of all possible positions. UHS_MSP achieved lower density than

Lexcio_MSP and Random_MSP on all four datasets (Table 2). This is in accordance with the results

of Marçias et al. on other genomes [13]. Lexico_MSP had the highest density. This result reaffirms

the potential of UHS_MSP to achieve reduced memory usage and faster runtimes compared to

the other two algorithms.

Dataset Lexico_MSP Random_MSP UHS_MSP

E. Coli 0.041 0.034 0.031

Human chr14 0.073 0.065 0.062

Bee 0.059 0.056 0.053

Human 0.057 0.056 0.055

Table 2: particular density results

28

5 B Performance comparison

We compared the three algorithms in terms of three main performance criteria:

(1) Runtime - the total CPU time (user time + system time).

(2) Maximum memory - the maximum amount of cache memory the method used.

(3) Maximum load.

5 B (i) Runtime

Figure 3a presents the runtime of the three algorithms in seconds per GB of input data.

On all datasets where comparison was possible, UHS_MSP was the fastest.

29

Figure 3: Tested metrics performance. (a) Runtime in seconds per GB of input data. (b) Maximum

memory usage in GB. (c) Maximum load. Numbers are in 100 MB for E. coli and chr14 datasets, and in

GB for the bee and human datasets. For the human dataset, the original and randomized MSP did not

terminate, so runtimes and memory are not available. The reported load results are based on the

partitioning and mapping steps only.

30

5 B (ii) Memory usage

Figure 3b displays the maximum memory used by each algorithm. UHS_MSP used substantially

less memory than Lexico_MSP and achieved comparable results to Random_MSP.

5 B (iii) Maximum load

Figure 3c display the maximum load value. UHS_MSP also had the lowest maximum load on all

datasets.

The results show that UHS_MSP achieved a substantial improvement over the other algorithms

in all three main aspects. We also measured two additional criteria: the largest bin size and the

total disk space. The results for these criteria are presented in Figure 6. They present consistent

advantage to UHS_MSP over both Random_MSP and Lexico_MSP.

5 B iv. Test of robustness with different random orders

As an additional test of the robustness of UHS_MSP, we wished to gauge the effect of the pseudo-

random order of the 𝑘-mers on the results. We ran Random_MSP and UHS_MSP, which use

randomized orders, on the four datasets with five different seeds, corresponding to different

pseudo-random orders (Section 3). The results are presented in Table 3. While both algorithms

showed substantial performance variance across orders, overall, the results were in line with

those presented in Figure 3.

31

Table 3: Performance across different pseudo-random 𝒌-mer orders. Average and standard

deviation over five runs with different seeds are shown for the two algorithms that use a

random order, alongside the original MSP results. On the human dataset, the original MSP as

well as its pseudo-random order version did not terminate successfully.

5 C The effect of parameters 𝑘, 𝐿 and 𝑏

We tested the three methods on the bee data in a range of values for the parameters 𝑘, 𝐿 and 𝑏.

In each run, we kept two of the three parameters at their default values and varied the third. The

results are summarized in Figure 4. Changing the number of bins shows consistent advantage to

UHS_MSP, with a tendency to improve as the number of bins increases (a-c).

Changing 𝐿 shows a similar advantage to UHS_MSP (d-f). Changing 𝑘 has a less consistent effect

(g-i). Figure 7 shows the effect of changing each of the three parameters on the largest bin size.

Again, UHS_MSP was consistently better across the tested values of 𝐿 and 𝑏, and less so when

changing 𝑘.

Li et al. also tested on Lexico_MSP the impact of changing 𝑘 and 𝐿 [20]. The impact of varying 𝑘

was consistent with what we observed here for that algorithm (Figure 4g-i) with reduction of

resources needed as 𝑘 increases. They also reported a similar reduction when 𝐿 increases, unlike

a less consistent picture observed here (d-f). Note however that they tested the range 𝐿	 =

32

	31	 − 	63 while we tested a broader range of higher values 𝐿	 = 	60	 − 	120. While varying the

number of bins was not tested before, our tests here (a-c) show improved performance with

increasing 𝑏, and a similar trend (with leveling off at high values) by the two other algorithms as

well.

Previous studies also tested for the impact of the minimizer’s length 𝑘 in similar minimum-

substring-partitioning applications, and recommended values such as [21], [22] and [23]. Our

experiments also tested for 𝑘 values twice as large.

33

Figure 4: The effect of changing the number of bins, the window size and the 𝑘-mer size on

performance. Results are for the bee dataset. (a-c) Effect of the number of bins. (d-f) Effect of

the window size 𝐿. (g-i) Effect of 𝑘. For each parameter, the runtime, maximum memory and the

maximum load are shown.

5 D Resource usage in each step of the algorithm

To appreciate where the saving is achieved, we measured the resources consumed by each of

the three MSP steps: partitioning, mapping and merging. Figure 5 summarizes the results on the

34

bee dataset. The mapping step required most memory, taking an order of magnitude more

memory than the partitioning and 3-5-fold more than the merging step. In all three algorithms,

the mapping step was also the most time-demanding one, taking on average 67% of the time.

The merging step required 20% of the time, on average, and the partitioning step was the least

demanding one, taking 13% of the time. Remarkably, even though we explicitly changed only the

partitioning step of the algorithm, that change led to substantial reduction in the time and

memory of the mapping step. The merging step was less affected. In comparison to the original

MSP algorithm, UHS_MSP required 4% more time in the partitioning step, due to the extra work

required for UHS-related computations but was 20% faster in the mapping step. Note that for

the sake of our tests, we did not utilize the possibility of parallelizing the mapping step. Future

work can thus focus on improvements to the mapping step.

Figure 5: Resources taken by each algorithm and each step of the algorithm on the bee dataset.

(a) Maximum Memory. (b) Runtime.

35

Figure 6: Additional tested metrics performance. (a) Total bins size. The total size of the bins

stored on the disk is shown. Numbers are in 5MB for E.coli dataset and in GB for chr14, bee and

human datasets. (b) Largest bin size. Numbers are in 100 MB for E. coli and chr14 datasets, and

in GB for the bee and human datasets.

Figure 7: The effect of changing the number of bins, the window size and the 𝑘-mer size on the

largest bin size. Results are for the bee dataset. (a) Effect of the number of bins. (b) Effect of the

window size 𝐿. (c) Effect of 𝑘.

36

6. Discussion

In this study, we incorporated a UHS-based minimizers scheme in a fundamental HTS task: de

Bruijn graph construction. By creating partitions based on fewer	𝑘-mers and with better

statistical properties, we achieved speedups and reduced memory usage in genomic assembly.

To the best of our knowledge, this is the first demonstration of the practical advantage of using

UHSs in a genome assembly application.

Our study raises several open questions: to what extent can further improvements in the

generation of smaller UHSs improve the de Bruijn graph construction? Currently the complexity

of minimum size UHS still remains an open problem, though closely related problems were shown

to be computationally hard [12], [13]. Can one express the expected amount of resources needed

by the UHS_MSP algorithm (and by its separate steps), as a function of the key parameters 𝑘, 𝐿

and 𝑏? Obtaining such an estimate, even under a simple model such as the random string mode,

can guide one to optimize the combination of parameter values, which as we have seen tend to

interact in a rather complex way (Figure 4). What is the relation between the largest bin size and

the maximum memory usage? Can one improve the mapping of multiple minimizers into a bin?

Some applications (e.g., [8]) sample the input data in order to map minimizers to bins more

efficiently. Integrating such a method into MSP can improve memory and runtime performance.

Li et al. [15] argued that the maximum load determines the peak RAM consumption. Our results

were not consistent with this claim. (For example, see the results on the bee data in Figure 3 and

Figure 4 (d-f)). Further investigation revealed that some of the incoherence is due to Java’s

garbage collector. Changing Java’s limit for the heap size reduced memory consumption

substantially. For example, when running the chr14 dataset with a limit of 4GB, the peak memory

37

went down from 6.6 GB to 2.7 GB, with no increase in running time. In other runs even larger

peak memory changes were observed depending on the limit, but at the expense of longer

runtimes. Since the measured memory of a Java process is not reliable, and depends on the

machine and on Java’s memory flags, an implementation in a language with explicit memory

management (e.g. c++) is preferable.

In parallel to our study, a work by Nystrom-Persson et al. [14] also implemented UHS in a

sequencing application. The authors combined UHS and frequency counts in a k-mer counting

application and achieved substantial memory saving. The improvement now achieved by UHSs in

two different sequencing applications is encouraging. It is tempting to believe that practical

improvements can be achieved in other applications that utilize minimizers, e.g. 𝐵𝐶𝐴𝐿𝑀2 [24]

(which utilizes frequency-based minimizers, given the results in [25]), applications that perform

partitioning of sequences as a preprocessing step for efficient parallel processing and storage

[21], [24], [26], sequence similarity estimation [27], [28], and others.

38

7. References

[1] J. A. Reuter, D. v. Spacek, and M. P. Snyder, “High-Throughput Sequencing Technologies,”

Molecular Cell, vol. 58, no. 4. Cell Press, pp. 586–597, May 21, 2015. doi:

10.1016/j.molcel.2015.05.004.

[2] W. Huber et al., “Orchestrating high-throughput genomic analysis with Bioconductor,” Nature

Methods, vol. 12, no. 2, 2015, doi: 10.1038/nmeth.3252.

[3] S. Anders, P. T. Pyl, and W. Huber, “HTSeq-A Python framework to work with high-throughput

sequencing data,” Bioinformatics, vol. 31, no. 2, 2015, doi: 10.1093/bioinformatics/btu638.

[4] G. Kucherov, “Evolution of biosequence search algorithms: a brief survey,” Bioinformatics, 2019.

[5] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke, “Reducing storage requirements

for biological sequence comparison,” Bioinformatics, vol. 20, no. 18, pp. 3363–3369, 2004.

[6] D. E. Wood and S. L. Salzberg, “Kraken: ultrafast metagenomic sequence classification using

exact alignments,” Genome Biology, vol. 15, no. 3, p. R46, 2014.

[7] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local algorithms for document

fingerprinting,” in Proceedings of the 2003 ACM SIGMOD International conference on

Management of data, 2003, pp. 76–85.

[8] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “KMC 2: fast and resource-

frugal k-mer counting,” Bioinformatics, vol. 31, no. 10, pp. 1569–1576, 2015.

[9] M. Roberts, B. R. Hunt, J. A. Yorke, R. A. Bolanos, and A. L. Delcher, “A preprocessor for

shotgun assembly of large genomes,” Journal of Computational Biology, vol. 11, no. 4, pp. 734–

752, 2004.

[10] S. Grabowski and M. Raniszewski, “Sampling the suffix array with minimizers,” in International

Symposium on String Processing and Information Retrieval, 2015, pp. 287–298.

39

[11] C. Ye, Z. S. Ma, C. H. Cannon, M. Pop, and W. Y. Douglas, “Exploiting sparseness in de novo

genome assembly,” in BMC Bioinformatics, 2012, vol. 13, no. 6, p. S1.

[12] Y. Orenstein, D. Pellow, G. Marçais, R. Shamir, and C. Kingsford, “Designing small universal k-

mer hitting sets for improved analysis of high-throughput sequencing,” PLoS Computational

Biology, vol. 13, no. 10, p. e1005777, 2017.

[13] G. Marçais, D. Pellow, D. Bork, Y. Orenstein, R. Shamir, and C. Kingsford, “Improving the

performance of minimizers and winnowing schemes,” Bioinformatics, vol. 33, no. 14, pp. i110–

i117, 2017.

[14] J. Nyström-Persson, G. Keeble-Gagnère, and N. Zawad, “Compact and evenly distributed k-mer

binning for genomic sequences,” Bioinformatics, Sep. 2021, doi: 10.1093/bioinformatics/btab156.

[15] Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan, and S. Suri, “Memory efficient minimum substring

partitioning,” in Proceedings of the VLDB Endowment, 2013, vol. 6, no. 3, pp. 169–180.

[16] Y. Ben-Ari, D. Flomin, L. Pu, Y. Orenstein, and R. Shamir, “Improving the efficiency of de Bruijn

graph construction using compact universal hitting sets,” in Proceedings of the 12th ACM

Conference on Bioinformatics, Computational Biology, and Health Informatics, 2021, pp. 1–9.

[17] Y. Li and others, “MSPKmerCounter: a fast and memory efficient approach for k-mer counting,”

arXiv preprint arXiv:1505.06550, 2015.

[18] Y. Orenstein, D. Pellow, G. Marçais, R. Shamir, and C. Kingsford, “Compact universal k-mer

hitting sets,” in International Workshop on Algorithms in Bioinformatics, 2016, pp. 257–268.

[19] J. Mykkeltveit, “A proof of Golomb’s conjecture for the de Bruijn graph,” Journal of

Combinatorial Theory, Series B, vol. 13, no. 1, pp. 40–45, 1972, doi: https://doi.org/10.1016/0095-

8956(72)90006-8.

[20] J. Sohn and J.-W. Nam, “The present and future of de novo whole-genome assembly,” Briefings

in bioinformatics, vol. 19, no. 1, pp. 23–40, 2018.

40

[21] B. Ekim, B. Berger, and Y. Orenstein, “A randomized parallel algorithm for efficiently finding

near-optimal universal hitting sets,” bioRxiv, 2020, doi: 10.1101/2020.01.17.910513.

[22] N. I. Johns et al., “Metagenomic mining of regulatory elements enables programmable species-

selective gene expression,” Nature methods, vol. 15, no. 5, pp. 323–329, 2018.

[23] S. L. Salzberg et al., “GAGE: A critical evaluation of genome assemblies and assembly

algorithms,” Genome research, vol. 22, no. 3, pp. 557–567, 2012.

[24] D. R. Bentley et al., “Accurate whole human genome sequencing using reversible terminator

chemistry,” nature, vol. 456, no. 7218, pp. 53–59, 2008.

[25] S. C. Manekar and S. R. Sathe, “A benchmark study of k-mer counting methods for high-

throughput sequencing,” GigaScience, vol. 7, no. 12, Sep. 2018, doi: 10.1093/gigascience/giy125.

[26] J. A. Reuter, D. v Spacek, and M. P. Snyder, “High-throughput sequencing technologies,”

Molecular Cell, vol. 58, no. 4, pp. 586–597, 2015.

[27] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “KMC 2: Fast and resource-

frugal k-mer counting,” Bioinformatics, vol. 31, no. 10, 2015, doi: 10.1093/bioinformatics/btv022.

[28] M. Erbert, S. Rechner, and M. Müller-Hannemann, “Gerbil: A Fast and Memory-Efficient k-mer

Counter with GPU-Support,” CoRR, vol. abs/1607.06618, 2016, [Online]. Available:

http://arxiv.org/abs/1607.06618

[29] M. Kokot, M. Długosz, and S. Deorowicz, “KMC 3: counting and manipulating k-mer statistics,”

Bioinformatics, vol. 33, no. 17, pp. 2759–2761, Sep. 2017, doi: 10.1093/bioinformatics/btx304.

[30] R. Chikhi, A. Limasset, and P. Medvedev, “Compacting de Bruijn graphs from sequencing data

quickly and in low memory,” Bioinformatics, vol. 32, no. 12, 2016, doi:

10.1093/bioinformatics/btw279.

[31] J. Nyström-Persson, G. Keeble-Gagnère, and N. Zawad, “Compact and evenly distributed k-mer

binning for genomic sequences,” bioRxiv. bioRxiv, p. 2020.10.12.335364, Oct. 12, 2020. doi:

10.1101/2020.10.12.335364.

41

[32] Y. Li and X. Yan, “MSPKmerCounter: A Fast and Memory Efficient Approach for K-mer

Counting,” 2015. Accessed: Mar. 25, 2021. [Online]. Available:

http://www.cs.ucsb.edu/∼yangli/MSPKmerCounter

[33] C. Jain, A. Dilthey, S. Koren, S. Aluru, and A. M. Phillippy, “A fast approximate algorithm for

mapping long reads to large reference databases,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol.

10229 LNCS. doi: 10.1007/978-3-319-56970-3_5.

[34] B. D. Ondov et al., “Mash: Fast genome and metagenome distance estimation using MinHash,”

Genome Biology, vol. 17, no. 1, p. 132, Jun. 2016, doi: 10.1186/s13059-016-0997-x.

 תונוכת .תוצובקל רתוי תנזואמ הקולח םעו רתוי הכומנ תופיפצב םירזיימינימ רצי יארקא רודיס וא יפרגוקיסקל

 .םונגה תבכרה ךילהתב ןורכיזה תכירצב ןהו הצירה ןמזב ןה רופישל וליבוה ולא תורפושמ

 תירבעב ריצקת

 ךומנ ריחמבו הרידא תוריהמב ףצורמה ימונג עדימ לש תורידא תויומכ תורציימ שדחה רודהמ אנד ףוציר תוטיש

 םימושיי תואמ םויכ םנשי .םייאופר-ויב םירקחמב בחרנ שומישב תואצמנ ולא תוטיש ,ךכ תוכזב .דואמ

 לש המוצעה תומכה םע דדומתהל ידכ .שדחה רודהמ ףוציר תוטיש תרזעב רצונש ימונג עדימב םישמתשמה

 ירגתא םע םידדומתמה םיליעי םינותנ ינבמו םימתירוגלא וחתופ ,הלא ףוציר תוטישב ורצונש עדימה ירגאמ

 .דועו ותרבעה ,עדימה חותינ ,עדימה ןוסחאה

-ק"(k ךרואב תוזורחמ תרזעב איה וללה םימתירוגלאבו םינותנה ינבמב אנד יפצר חתפמל רתויב הצופנה ךרדה

 רחבנ חותפמה ךרוצל .וב רתויב ןטקה רמ-קה אוה טסקטב ןולח לש רזיימינימה .״םירזיימינימ״ תוארקנה)"םירמ

 רודיס ,לשמל(שארמ עבקנש רודיס ידי לע עבקנ םירמ-קה ךרע .ףצרב עובק לודגב בקוע ןולח לכב רזיימינימ

 .)יפרגוקיסקל

 Universal Hitting(תילסרבינוא יוסיכ תצובק לש גשומה לע ססובמה םירמ-ק לש שדח רודיס עצוה הנורחאל

Set(. הז רודיס לש תלעותה ,םירפושמ םינייפאמ שי הזה גוסהמ רודיסל יכ וארה םירקחמ טעמ אלש תורמל

 לש תוישומישהו ןורתיה תא הנושארל ןאכ םיגיצמ ונחנא .םויה דע החכוה אל בר ימונג עדימ םיחתנמה םימושייב

 .םונגה תבכרהל םתירוגלאב תילסרבינוא יוסיכ תצובק לע ססובמה רודיס

 תוטיש תרזעב רצונה עדימה תזילנאב תיזכרמו תיסיסב המישמ איה םירצק םיעטקמ ידראיליממ םונגה תבכרה

 דואמ הלודג תומכ שרוד בורלש ,םונגה תבכרהב יזכרמ בלש הניה ןייורב הד ףרג תיינב .שדחה רודהמ ףוצירה

 תינמז-וב אצמיי עדימה לכש תורשפא ןיא ,המוצע עדימ תומכב רבודמש ללגב .בר בושיח ןמז םע דחי ןורכיז לש

 םיפצרה .דרפנב ןורכיזל הלעת הצובק לכש ידכ תונוש תוצובקל א"נדה יפצר לש הקולח תעצבתמ ןכלו ,ןורכיזב

 .תוצובקה לכמ םיפרגה יתת גוזימ ידי לע הנבנ יפוסה ןייורב הדה ףרגו דרפנ ףרג תתל םיבכרומ הצובק לכב

 יוסיכ תצובק ססובמ רודיס ונבליש ,ונתדובעב .]MSP]13 אוה הזכ ךילהתב ןייורב הד ףרג תיינבל ליבומ םתירוגלא

 רודיס םוקמב הז גוסמ רודיסב שומישה .MSP םתירוגלאב תוצובקל םיפצרה תקולח ךילהתב תילסרבינוא

 ביבא-לת תטיסרבינוא

 רלקאס ילרבבו דנומייר ש"ע םיקיודמ םיעדמל הטלוקפה

קינטוולב ש"ע בשחמה יעדמל רפסה תיב

 ןייורב הד ףרג תיינב לש תוליעיה רופיש

 תילסרבינוא יוסיכ תצובק תרזעב

הטיסרבינוא ׳ךמסומ' ראותל רמג תדובעכ שגוה הז רוביח

ידי לע בשחמה יעדמל רפסה תיבב

ירא-ןב לעי

לש היחנהה תחת השענ

רימש ןור רוספורפ

ןייטשנרוא ןורי ר״ד

 21 רבוטקוא

	Blank Page

