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Abstract. Bacteriophages and plasmids usually coexist with their host
bacteria in microbial communities and play important roles in micro-
bial evolution. Accurately identifying sequence contigs as phages, plas-
mids, and bacterial chromosomes in mixed metagenomic assemblies is
critical for further unravelling their functions. Many classification tools
have been developed for identifying either phages or plasmids in metage-
nomic assemblies. However, only two classifiers, PPR-Meta and viralVer-
ify, were proposed to simultaneously identify phages and plasmids in
mixed metagenomic assemblies. Due to the very high fraction of chro-
mosome contigs in the assemblies, both tools achieve high precision in the
classification of chromosomes but perform poorly in classifying phages
and plasmids. Short contigs in these assemblies are often wrongly classi-
fied or classified as uncertain.
Here we present 3CAC, a new three-class classifier that improves the
precision of phage and plasmid classifications. 3CAC starts with an ini-
tial three-class classification generated by existing classifiers and further
improves the classification of short contigs and contigs with low confi-
dence classification by using proximity in the assembly graph. Evaluation
on simulated metagenomes and on real human gut microbiome samples
showed that 3CAC outperformed PPR-Meta and viralVerify in both pre-
cision and recall, and increased F1-score by at least 10 percentage points.

Keywords: Metagenome · Three-class Classification · Assembly Graph
· Phages · Plasmids.
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1 Introduction

The metagenomes of microbial communities are mainly composed of bacte-
rial chromosomes and the associated extrachromosomal mobile genetic elements
(eMGEs), such as plasmids and bacteriophages (phages). These eMGEs carry
genes related to antibiotic resistance [6, 36, 19], virulence factors [14, 30] and aux-
iliary metabolic pathways [11, 28, 12]. They can frequently move between species
in the microbial community [32, 8] and enable their hosts to rapidly adapt to
environmental changes [35, 33]. Despite their important roles in horizontal gene
transfer events and in antibiotic resistance, our understanding of these eMGEs
is still limited. Part of the difficulty is the challenge of identifying such elements
efficiently from mixed metagenomic assemblies [3, 16, 1, 2, 24, 34, 38].

Multiple algorithms have been developed for identifying either phages or
plasmids from metagenomic assemblies in recent years. VirSorter and VirSorter2
identify viral metagenomic fragments by searching for reference homologs and
testing enrichment of virus-like proteins [29, 10]. These knowledge-based tools
have high precision in virus classification but poor ability to identify novel
viruses, due to reference database-associated bias. Other tools, such as deep-
VirFinder [27], Seeker [4], and VIBRANT [12], use machine learning to learn
k-mer signatures of viral sequences and perform better on novel virus classifi-
cation, since they are more loosely linked to annotation databases. cBar is the
first tool designed primarily for plasmid identification in metagenomes [40]. More
recently, two supervised-learning approaches, PlasFlow [15] and PlasClass [23],
were shown to classify plasmid fragments better from metagenomic assemblies.
Although both phages and plasmids are commonly found in the metagenomes
of microbial communities, all of these tools identify either only phages or only
plasmids from metagenomic assemblies.

Currently, only two published tools, PPR-Meta [7] and viralVerify [2], can
identify phages and plasmids simultaneously from metagenomic assemblies. How-
ever, due to the overwhelming abundance of chromosome fragments in the as-
semblies (usually ≥ 70%), both tools achieve high precision in chromosome clas-
sification but very low precision in classification of phages and plasmids [7, 2].
Moreover, classification of short contigs is challenging for all the existing classi-
fiers, as they analyze each contig independently [2, 7, 15, 29, 26]. Here we present
3CAC (3-Class Adjacency based Classifier), an algorithm that employs existing
two-class and three-class classifiers to generate an initial three-class classifica-
tion with high precision, and then improves the classification of short contigs
and of contigs classified with lower confidence by taking advantage of classifica-
tion of their neighbors in the assembly graph. Evaluation on simulated and real
metagenome datasets with short and long reads showed that 3CAC improved
both precision and recall, and increased F1-score by at least 10 percentage points.

2 Methods

3CAC accepts as input a set of contigs and its associated assembly graph, uses the
classification result of existing tools as a starting point, and repeatedly improves
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the classification using the assembly graph. Its output is a classification of each
contig in the input as phage, plasmid, chromosome, or uncertain. The details of
the algorithm are described below.

2.1 Generating the initial classification

3CAC exploits existing two-class and three-class classifiers to generate an initial
three-class classification as follows.

(1) Generating a three-class classification. The algorithm runs either
viralVerify or PPR-Meta on the set of the input contigs and classifies each con-
tigs as phage, plasmid, chromosome, or uncertain. viralVerify was designed to
classify contigs as viral, non-viral or uncertain. Moreover, for non-viral contigs,
viralVerify can further classify them as plasmid or non-plasmid using -p op-
tion. Here, we used -p option of viralVerify to classify each of the input contigs
as viral, plasmid, chromosome, or uncertain. PPR-Meta calculates three scores
representing the probabilities of a contig to be classified as a phage, plasmid, or
chromosome. By default, PPR-Meta classifies a contig into the class with the
highest score. If a specified score threshold is provided and no score passes the
threshold, the sequence will be classified as uncertain. Here, we ran PPR-Meta
with a score threshold of 0.7.

(2) Improving plasmid classification. To improve the precision of plas-
mid classification, PlasClass is run on contigs classified as plasmids in step (1).
PlasClass outputs for each contig the probability that it originated from a plas-
mid. By default, PlasClass classifies a contig as plasmid if it has a probability
> 0.5 and as chromosome otherwise. To assure high precision, here we iden-
tify contigs with probability ≥ 0.7 as plasmids. Contigs with probability ≤ 0.3
are moved to the chromosome class. The remaining contigs are reclassified as
uncertain.

(3) Improving phage classification. Similarly, in order to improve the
precision of phage classification, we run deepVirFinder on all contigs classified
as phages in step (1). deepVirFinder generates a score and a p-value for each
input contig. Contigs with higher scores or lower p-values are more likely to be
viral sequences. Here, a contig is kept in the phage class if its p-value ≤ 0.03 and
moved to the chromosome class if its p-value > 0.03 and its score ≤ 0.5. The
remaining contigs are reclassified as uncertain.

We will denote the algorithm up to this step Initial(vV) and Initial(PM)
if viralVerify or PPR-Meta were used in step (1), respectively.

2.2 Refining the classification using the assembly graph

In genomics and metagenomics, assembly graphs, such as de Bruijn graphs [18,
25] and string graphs [21, 31], are used as the core data structure to combine
overlapped reads (or k-mers) into contigs. Nodes in an assembly graph repre-
sent contigs and edges represent subsequence overlaps between contigs. Existing
classifiers take contigs as input and classify each of them independently based
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on its sequence. The overlap information between neighboring contigs in the as-
sembly graphs was ignored by all the existing classifiers. However, recent studies
showed that neighboring contigs in an assembly graph are more likely to come
from the same taxonomic group [5, 20]. Based on this insight, here we exploit
the assembly graph to improve the classification by the following two steps.

(1) Correction of classified contigs. Scan all the classified contigs in
the assembly graph in random order. If a classified contig has ≥ 2 classified
neighbors and all of them belong to same class, while this contig was classified
into a different class, we reason that this contig was wrongly classified and correct
its classification to match that of its classified neighbors. This step is repeated
until no change was made.

(2) Propagation of the classification to uncertain contigs. Scan all
the uncertain contigs in the assembly graph in random order. If an uncertain
contig has one or more classified neighbors and all of them belong to same class,
we classify this contig into the same class as its classified neighbors. We repeat
this step until no uncertain contigs could be classified.

Figure 1 shows the result of applying steps (1) and (2) in a small assembly
graph, which is part of the graph generated by assembling simulated long reads
(Sim4; see details in the Results section).

We will use the names 3CAC(vV) and 3CAC(PM) for the full 3CAC
algorithms initialized with viralVerify and PPR-Meta solutions, respectively.

Fig. 1. An example of improving the classification using the assembly graph.
Vertices with color red, blue, green, and grey represent contigs classified as phages,
plasmids, chromosomes, and uncertain, respectively. (a) The result of Initial(vV). (b)
After the correction step. The four contigs encircled in (a) were corrected. (c) After
the propagation step.

3 Results

We tested 3CAC on both simulated and real metagenomic assemblies and com-
pared it to PPR-Meta and viralVerify.
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3.1 Evaluation criteria

3CAC, viralVerify and PPR-Meta were evaluated based on precision, recall, and
F1 score, calculated as follows.

– Precision: the fraction of correctly classified contigs among all classified
contigs. Note that uncertain contigs were not included in the calculation.

– Recall: the fraction of correctly classified contigs among all contigs.
– F1 score: the harmonic mean of the precision and recall, which can be

calculated as: F1 score = (2 ∗ precision ∗ recall)/(precision + recall).

Following [23, 7], the precision, recall, and F1 score here were calculated by
counting the number of contigs and did not take into account their length. The
precision and recall were also calculated separately for phage, plasmid and chro-
mosome classification. For example, the precision of phage classification was
calculated as the fraction of correctly classified phage contigs among all contigs
classified as phages, and the recall of phage classification was calculated as the
fraction of correctly classified phage contigs among all phage contigs.

3.2 Performance on simulated metagenome assemblies

We generated two short-read and two long-read metagenome samples as fol-
lows. Sequences of complete bacterial genomes were randomly selected from the
NCBI database along with their associated plasmids. The abundance of bacte-
rial genomes was modeled by the log-normal distribution and the copy numbers
of plasmids were simulated by the geometric distribution as in [23]. The phage
genomes and their abundance profiles were sampled from [26]. Two metage-
nomic datasets of different complexities were designed. For each of the datasets,
150bp-long short reads were simulated from the genome sequences using InSil-
icoSeq [9] and assembled by metaSPAdes [22]. Long reads were simulated from
the genome sequences using NanoSim [39] and assembled by metaFlye [13]. The
error rate of long reads was 9.8% and their average length was 14.9kb. For each
assembly, contigs were matched to the reference genomes used in the simulation
by minimap2 [17]. Contigs having matches to a reference genome with ≥ 90%
mapping identity along ≥ 80% of the contig length were assigned to the class of
that reference, and these assignments were used as the gold standard to test the
classifiers. Table 1 presents a summary of the simulated metagenome assemblies.

Table 1. Properties of the simulated and the real metagenome datasets
and of their assemblies. The number of genome references for the real human gut
metagenomes is the number of all complete phage, plasmid and chromosome genomes
in NCBI database.

Read type Number of # of genome references # of assembled contigs Short contigs
reads chromosome plasmid phage chromosome plasmid phage (< 1kb)

Sim1 MiSeq 61M 50 193 200 12,494 1,699 696 8,991
Sim2 MiSeq 100M 100 410 500 40,412 5,350 2,926 33,640
Sim3 Nanopore 0.5M 50 193 200 890 166 175 45
Sim4 Nanopore 1M 100 410 500 2,491 395 413 152

Gut microbiome HiSeq 53.8M 19,053 20,838 13,903 130,252 943 383 110,128
Gut microbiome Pacbio 14.7M 19,053 20,838 13,903 4,671 64 8 723
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Figure 2 shows the performance of PPR-Meta, viralVerify and the first phase
of 3CAC on these simulated metagenome assemblies. Both PPR-Meta and vi-
ralVerify had high precision in chromosome classification, but their precision in
phage and plasmid classification was usually low. Further analysis revealed that
both of the algorithms distinguished well between phages and plasmids. Their
low precision in phage and plasmid classification was due to contamination from
chromosome contigs (Supplementary Table A.1). Utilizing two-class classifiers,
PlasClass and deepVirFinder, the first phase of 3CAC improved markedly the
precision in phage and plasmid classification, while it decreased a little bit the
precision in chromosome classification (Figure 2, Supplementary Table A.2). In
contrast, recall decreased in phage and plasmid classification, but increased in
chromosome classification (Supplementary Figure B.1).

Fig. 2. Precision of the initial classification of 3CAC compared to PPR-Meta
and viralVerify. See supplementary Figure B.1 for recall.

Figure 3 shows the results of initial phase of 3CAC on the short-read simu-
lated metagenome assemblies for different contig lengths. Short contigs tended to
have lower recall in the initial classification of 3CAC, while precision was not sen-
sitive to the contig length. When the initial classification of 3CAC was generated
based on PPR-Meta solution, recall decreased sharply for contigs with length <
1kb. When viralVerify solution was used, recall was even lower for contig shorter
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than 1kb and improvement with size was roughly linear. We reasoned that these
classifiers classified each of the input contigs independently, and so short contigs
could not be classified reliably. However, Table 1 shows that more than half of
the contigs assembled from short reads are shorter than 1kb. To assist in the
classification of these short contigs, 3CAC was designed to take advantage of
the longer contigs with confident classification and that are neighbors of these
short contigs in the assembly graph. Figure 3 shows that 3CAC significantly
increased recall for all contigs with almost no loss of precision. Remarkably, the
recall for contigs shorter than 1kb increased from < 0.2 to ≥ 0.8. For contigs
assembled from long reads, 3CAC not only improved the recall substantially but
also slightly improved the precision (Figure 4).

Fig. 3. Performance on contigs assembled from simulated short reads. Results
are shown for contigs of lengths < 1 kb, 1-2 kb, ...,9-10 kb, ≥ 10kb .

The analysis above shows that the two phases of 3CAC algorithm improved
the precision and recall for the three-class classification. Evaluation of PPR-
Meta, viralVerify and 3CAC on these simulated metagenome assemblies showed
that 3CAC performed the best in all the assemblies (Figure 5). 3CAC out-
performed PPR-Meta and viralVerify in both precision and recall. For contigs
assembled from short reads (Sim1 and Sim2), the recall and F1 scores of vi-
ralVerify were more than doubled by 3CAC. We also calculated the precision,
recall and F1 scores for phage, plasmid, and chromosome classification sepa-
rately (Supplementary Table A.3). 3CAC(vV) had the best F1 scores on all the
datasets and the highest precision in classification of phages and plasmids. Note
that PPR-Meta here was run with default setting. Running PPR-Meta with 0.7
score threshold (as done in Initial(PM)) resulted in higher precision but lower
recall and lower F1 score. Supplementary Table A.4 shows that 3CAC also out-
performed PPR-Meta with 0.7 score threshold.
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Fig. 4. Performance on contigs assembled from simulated long reads. Results
are shown for contigs of lengths < 1 kb, 1-2 kb, ...,9-10 kb, ≥ 10kb .

Fig. 5. Performance of three-class classifiers on the simulated metagenome
assemblies.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.05.467408doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.05.467408
http://creativecommons.org/licenses/by-nd/4.0/


3CAC 9

3.3 Performance on human gut microbiome samples

Five publicly available human gut microbiome samples with short-read sequenc-
ing datasets (NCBI accession numbers: ERR12976697, ERR1297651, ERR1297751,
ERR1297845, ERR1297770) were selected and assembled together using metaS-
PAdes [22]. Another set of five human gut microbiome samples with long-read
sequencing datasets (NCBI accessions: SRX2529348, SRX2529347, SRX2529346,
SRX2529341, SRX2529340) were selected from [34] and assembled together us-
ing metaFlye [13]. To identify the class of contigs in the real metagenome as-
semblies, we downloaded all complete phage, plasmid and chromosome genomes
from NCBI database and mapped contigs to all the reference genomes using min-
imap2 [17]. A contig was considered matched to a reference sequence if it had ≥
80% mapping identity along ≥ 80% of the contig length. Contigs that matched
to reference genomes of two or more classes were excluded to avoid ambiguity.
Overall, 131,578 out of 469,022 contigs in the short-read assembly and 4,743 out
of 12,541 contigs in the long-read assembly had matches to a single class and
were used as the gold standard to test the classifiers. Table 1 summarizes the
properties of the datasets and the assemblies.

Fig. 6. Performance of three-class classifiers on contigs assembled from
short-read sequencing of human gut microbiome samples. (a) performance
on all contigs; (b) performance on non-isolated contigs in the assembly graph.

Figures 6(a) and 7(a) show the results of PPR-Meta, viralVerify and 3CAC on
the short-read and long-read assemblies, respectively. On the long-read assembly,
3CAC(vV) and 3CAC(PM) had comparable performance. 3CAC was best in
precision, recall and F1 score (Figure 7).

Interestingly, on the short-read assembly, 3CAC(PM) and PPR-Meta had
higher F1 score than 3CAC(vV) (Figure 6 (a)). Further analysis revealed that
this was due to a large number of isolated contigs in the short-read assembly
graph. The second phase of 3CAC was only performed on contigs that have
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neighbours in the assembly graph. However, 59% of the contigs assembled from
short reads were isolated and had no neighbors in the assembly graph, while the
fraction on the long-read assembly was only 21%. Figures 6 (b) and 7 (b) show
the results on the non-isolated contigs in the assembly graph. For both long
read and short read assemblies, 3CAC(PM) and 3CAC(vV) had comparable
performance and outperformed PPR-meta and viralVerify in precision, recall,
and F1 score.

Supplementary Figure B.2 shows the precision, recall and F1 score separately
for phage, plasmid and chromosome classification in both short-read and long-
read assemblies. In classification of phages and plasmids, PPR-Meta had the
highest recall, but its precision was as low as 0.02. Compared to PPR-Meta,
3CAC had higher precision in classification of phages and plasmids, at the cost
of lower recall and tended to have better F1 scores. In chromosome classification,
3CAC performed the best in the long-read assembly while PPR-Meta performed
slightly better in the short-read assembly.

Fig. 7. Performance of three-class classifiers on contigs assembled from long-
read sequencing of human gut microbiome samples. (a) performance on all
contigs; (b) performance on non-isolated contigs in the assembly graph.

3.4 Software and Resource usage

3CAC uses classifications generated by existing classifiers, and so the running
time of its first phase depended on the classifiers used. On our datasets, PPR-
Meta, PlasClass and deepVirFinder were fast and required less than an hour.
viralVerify took up to 4-5 hours for the real metagenome assemblies with 8
threads. The second phase of 3CAC is fast and took less than 30 minutes in
a single thread for all the datasets we tested. Performance was measured on a
44-core, 2.2 GHz server with 792 GB of RAM. 3CAC will be freely available
under Shamir-Lab on Github soon.
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4 Discussion and Conclusion

Classification of phages and plasmids from mixed metagenome assemblies is im-
portant for further unravelling and understanding the functions of these mobile
genetic elements in microbiome communities. Many two-class classifiers has been
developed in recent years to identify either phages or plasmids from metagenome
assemblies. A naive way to identify phages and plasmids simultaneously from
mixed metagenome assemblies is by using phage classifiers and plasmid clas-
sifiers to identify phages and plasmids respectively, and then combining the
classification result. However, this is impractical since phage sequences are of-
ten arbitrarily classified as plasmids or chromosomes by plasmid classifiers, and
so are the plasmid sequences in phage classifiers. In this work, we first exploit
three-class classifiers to accurately separate plasmids from phages and then uti-
lize two-class classfiers to further improve the precision of phage and plasmid
classification. The key improvement by 3CAC is obtained by utilizing the struc-
ture of the assembly graph to assist the classification of short and uncertain
contigs. This leads to significant improvement of the recall and almost no loss
of the precision.

Evaluation the performance of classifiers on real metagenome assemblies re-
mains challenging due to the lack of gold standard. By mapping contigs to all
the available reference genomes, we are able to identify the class of a fraction of
the contigs. However, as shown in previous studies [7], some plasmid genomes
are quite similar to their host bacterial chromosomes. Thus, many contigs from
metagenome assemblies have matches to both plasmid and chromosome refer-
ence genomes, and it is hard to identify their classes. Additionally, many contigs
with no matches to the reference database may represent novel species, but
they were excluded from our evaluation. Keeping in mind these shortcomings of
the gold standard for real metagenome assemblies, 3CAC outperformed existing
three-class classifiers substantially.

3CAC is initialized with solutions of PPR-Meta or viralVerify. Their overall
performance was comparable, with initialization with PPR-Meta doing slightly
better in the short read real data, and initialization with viralVerify slightly
better on long read real data and in all simulations. PPR-Meta could be run
with different score thresholds, and a higher score threshold results in higher
precision and lower recall. In our experiments, we tried the score thresholds 0.7
and 0.8, and the difference in the results was minor.

3CAC has some limitations. The propagation step of 3CAC can greatly im-
prove the recall, but it can only be performed on non-isolated contigs in the
assembly graph. The recall of isolated contigs is still limited by the performance
of existing classifiers. 3CAC also relies on current 2-class and 3-class classifiers.
In the future, we plan to extend 3CAC to a stand-alone classification tool with-
out relying on existing classifiers. Currently, 3CAC scans contigs in the assembly
graph in random order, in both the correction and the propagation steps. That
order may affect the results, and a more judicious order may improve the classifi-
cation. Finally, there is room for extending 3CAC to a four-class algorithm that
would be able to classify also eukaryotic contigs in metagenome assemblies [37].
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Supplementary Material

A Supplementary tables

Table A.1. Performance of viralVerify and PPR-Meta on simulated metage-
nomic assemblies. PPR-Meta was run with a score threshold ≥ 0.7 to assure high
precision.

True Category # contigs viralVerify classification PPR-Meta classification
phage plasmid chromosome uncertain phage plasmid chromosome uncertain

phage 696 279 6 1 410 572 1 1 122
Sim1 plasmid 1,699 23 380 58 1,238 80 452 43 1,124

chromosome 12,494 224 231 2,624 9,415 696 442 3,749 7,607

phage 2,926 737 7 3 2,179 1,919 14 2 991
Sim2 plasmid 5,350 53 652 60 4,585 158 1,351 71 3,770

chromosome 40,412 462 572 5,448 33,930 1,926 1,520 9,568 27,398

phage 175 163 2 0 10 164 0 0 11
Sim3 plasmid 166 9 124 12 21 1 88 5 72

chromosome 890 58 84 485 263 55 62 366 407

phage 413 376 4 0 33 362 1 0 50
Sim4 plasmid 395 6 301 16 72 2 197 4 192

chromosome 2,491 114 337 1,161 879 142 196 889 1,264

Table A.2. Performance of Initial(vV) and Initial(PM) on simulated metage-
nomic assemblies.

True Category # contigs Initial(vV) Initial(PM)
phage plasmid chromosome uncertain phage plasmid chromosome uncertain

phage 696 249 3 8 436 442 0 8 246
Sim1 plasmid 1,699 7 310 88 1,294 10 372 75 1,242

chromosome 12,494 69 90 2,797 9,538 137 284 3,936 8,137

phage 2,926 653 4 35 2,234 1,136 9 45 1,736
Sim2 plasmid 5,350 18 499 132 4,701 33 964 213 4,140

chromosome 40,412 165 213 5,803 34,231 363 842 10,092 29,115

phage 175 139 1 11 24 145 0 9 21
Sim3 plasmid 166 3 108 22 33 0 82 9 75

chromosome 890 16 37 540 297 18 31 407 434

phage 413 321 2 34 71 318 0 23 87
Sim4 plasmid 395 2 262 36 103 1 175 14 213

chromosome 2,491 38 153 1,280 1012 50 114 970 1,349
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Table A.3. Classification of phages, plasmids and chromosomes on simulated
metagenome assemblies. PPR-Meta and PPR-Meta(0.7) represent running PPR-
Meta on default setting and with a score threshold of 0.7, respectively.

Tool Phage Plasmid Chromosome
precision(%) recall(%) F1 score(%) precision(%) recall(%) F1 score(%) precision(%) recall(%) F1 score(%)

viralVerify 53.04 40.09 45.66 61.59 22.37 32.82 97.8 21.0 34.58
3CAC(vV) 63.06 92.24 74.91 71.51 63.98 67.54 96.42 86.67 91.28

Sim1 PPR-Meta(0.7) 42.43 82.18 55.97 50.5 26.6 34.85 98.84 30.01 46.04
3CAC(PM) 63.58 92.82 75.47 56.68 65.39 60.73 96.35 83.1 89.24
PPR-Meta 19.06 94.54 31.72 25.97 57.74 35.83 95.31 58.43 72.45

viralVerify 58.87 25.19 35.28 52.97 12.19 19.81 98.86 13.48 23.73
3CAC(vV) 74.34 92.79 82.55 68.46 49.78 57.64 95.44 77.72 85.68

Sim2 PPR-Meta (0.7) 47.94 65.58 55.39 46.83 25.25 32.81 99.24 23.68 38.23
3CAC(PM) 66.55 92.21 77.31 46.81 52.93 49.68 94.82 75.45 84.03
PPR-Meta 21.83 90.46 35.17 24.31 61.7 34.88 95.86 54.53 69.52

viralVerify 70.87 93.14 80.49 59.05 74.7 65.96 97.59 54.49 69.94
3CAC(vV) 91.08 81.71 86.14 80.0 74.7 77.26 95.39 86.07 90.49

Sim3 PPR-Meta (0.7) 74.55 93.71 83.04 58.67 53.01 55.70 98.65 41.12 58.05
3CAC(PM) 87.57 84.57 86.05 74.83 66.27 70.29 96.42 78.76 86.70
PPR-Meta 60.63 99.43 75.33 42.04 84.34 56.11 97.38 66.85 79.28

viralVerify 75.81 91.04 82.73 46.88 76.2 58.05 98.64 46.61 63.30
3CAC(vV) 90.32 81.36 85.61 68.76 77.47 72.86 96.49 83.98 89.80

Sim4 PPR-Meta (0.7) 71.54 87.65 78.78 50.0 49.87 49.94 99.55 35.69 52.54
3CAC(PM) 81.59 79.42 80.49 61.47 52.91 56.87 97.04 75.07 84.65
PPR-Meta 60.3 98.55 74.82 33.17 84.05 47.57 97.47 63.51 76.91

Table A.4. Performance of three-class classifiers on simulated metagenomic
assemblies. PPR-Meta and PPR-Meta(0.7) represent running PPR-Meta on default
setting and with a score threshold of 0.7, respectively.

Dataset Evaluation Criteria viralVerify 3CAC(vV) PPR-Meta(0.7) 3CAC(PM) PPR-Meta

Precision 85.81% 91.2% 79.08% 88.28% 60.04%
Sim1 Recall 22.05% 84.34% 32.06% 81.54% 60.04%

F1 score 35.08% 87.64% 45.62% 84.77% 60.04%

Precision 85.53% 90.94% 77.67% 85.23% 57.47%
Sim2 Recall 14.04% 75.56% 26.37% 73.98% 57.47%

F1 score 24.12% 82.54% 39.37% 79.21% 57.47%

Precision 82.39% 92.65% 83.4% 91.95% 73.84%
Sim3 Recall 62.71% 83.92% 50.2% 77.9% 73.84%

F1 score 71.22% 88.06% 62.68% 84.34% 73.84%

Precision 79.4% 91.59% 80.76% 90.18% 70.35%
Sim4 Recall 55.71% 82.87% 43.89% 72.96% 70.35%

F1 score 65.48% 87.01% 56.87% 80.66% 70.35%

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.05.467408doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.05.467408
http://creativecommons.org/licenses/by-nd/4.0/


3CAC 3

B Supplementary figures

Fig. B.1. Recall of the initial classification of 3CAC compared to PPR-Meta
and viralVerify.
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Fig. B.2. Performance of three-class classifiers on real human gut samples
with short-read and long-read assemblies.
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