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ABSTRACT 

Spatiotemporal gene expression patterns are governed to a large extent by the activity of 

enhancer elements, which engage in physical contacts with their target genes. Identification 

of enhancer-promoter (EP) links that are functional only in a specific subset of cell types is a 

key challenge in understanding gene regulation. We introduce CT-FOCS, a statistical inference 

method that uses linear mixed effect models to infer EP links that show marked activity only 

in a single or a small subset of cell types out of a large panel of probed cell types. Analyzing 

808 samples from FANTOM5, covering 472 cell lines, primary cells, and tissues, CT-FOCS 

inferred such EP links more accurately than recent state-of-the-art methods. Furthermore, we 

show that strictly cell type-specific EP links are very uncommon in the human genome. 

INTRODUCTION 

Understanding the effect of the noncoding part of the genome on gene expression in specific 

cell types is a central genomic challenge (1). Cell identity is, to a large extent, determined by 

transcriptional programs driven by lineage-determining transcription factors (TFs; reviewed in 

(2)). TFs mostly bind to enhancer elements located distally from their target promoters (3). 

Furthermore, the expression of a gene can be regulated by different enhancers in different 

cell types. For example, TAL1 transcription is regulated by three enhancers, two of which are 

active in different cell types (HUVEC and K562)(4). To find enhancer-promoter (EP) links that 

are active in only very few cell types (hereafter, referred to as ct-links), one has to compare 

links across multiple and diverse cell types. 3D chromatin conformation data, which can 

identify ct-links, e.g., ChIA-PET (5), HiChIP (6) and Hi-C (7, 8), are still not available for many 

cell types and tissues (7–12). Consequently, there is a high need for computational methods 

that predict ct-links based on other data. A key resource for such prediction is large-scale 

epigenomic data, which are available for a variety of human cell types and tissues, and enable 

quantification of both enhancer and promoter activities.  
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A key challenge is to identify which of the numerous candidate EP links are actually (1) 

functional (or active) and (2) show their activity only in a specific small subset of cell types of 

interest. Ernst et al. (13) predicted ct-links based on correlated cell type-specific enhancer and 

promoter activity patterns from nine chromatin marks across nine cell types. Similarly, the 

Ripple method (14) predicted ct-links in five cell types. The cell-type specificity of the inferred 

EP links was quantified by comparison of their occurrence in other cell types. Additional 

methods that predicted EP links that are specifically active in a low number of cell types are 

IM-PET (15) and TargetFinder (16). All these methods used data of multiple chromatin marks 

and gene expression data for the studied cell types. The JEME algorithm finds global and cell 

type-active EP links (but not necessarily cell type-specific), using one to five different types of 

omics data (17). Each EP link reported by JEME is given a score for its tendency to be active in 

a given cell type. JEME reported an average of 4,183 active EP links per cell type, and many of 

these may show a broad activity profile. Fulco and Nasser et al. (18, 19) recently introduced 

the Activity-By-Contact (ABC) score for inferring cell type-specific functional EP links in 131 

human biosamples with an average of 48,441 EP links per biosample. The ABC score was 

calculated using read counts of DNase Hypersensitive Site (DHS) and H3K27ac chromatin 

immunoprecipitation sequencing (ChIP–seq) at enhancer elements, and Hi-C contact 

frequency between enhancers and promoters. 

Evidence of several sources suggests that while each cell type manifests tens of thousands of 

EP links, most of them are not unique and are shared across cell types. In a recently published 

compendium of EP chromatin interactions across 27 human cell types (20), the number of EP 

loops that were unique to a specific cell type was rather low (a median of 630 unique EP links, 

compared to a median of 31,250 total EP links per cell type) (Methods). In line with these 

numbers, comparing 3D genome architecture between neuronal progenitor cells (NPC) and 

mature neurons, Rajarajan et al. (21) identified 1,702 and 442 NPC- and neuron- specific 

chromatin loops linked to 386 and 385 genes, respectively. Similarly, the portion of EP links 
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identified by JEME and ABC models in only one cell type was low (~30% and ~32%, 

respectively). 

Here, we develop a novel statistical method for inferring ct-links from large-scale compendia 

of cell types measured by a single omics technique. We take advantage of linear mixed effect 

models to estimate cell-type activity coefficients based on replicates available for each cell 

type. We compared the results to those of extant methods in terms of concordance with 

experimentally derived chromatin interactions and cell specificity of gene expression. 

MATERIALS AND METHODS 

FANTOM5 and ENCODE data preprocessing 

Please refer to the Supplemental Methods in the Supplemental Material for ‘FANTOM5 CAGE 

data preprocessing’ and ‘ENCODE DHS data preprocessing’ sections. 

CT-FOCS model Implementation 

Our model for promoter 𝑝 (Fig. 1) includes its 𝑘 closest enhancers. The activity of the promoter 

across the 𝑛 samples is denoted by the 𝑛-long vector 𝑦𝑝, and the activity level of the enhancers 

across the samples is summarized in the matrix 𝑋𝑒 of dimensions 𝑛 × (𝑘 + 1), with the first 

column of ones for the intercept and the next k columns corresponding to the candidate 

enhancers. There are 𝐶 < 𝑛 cell types and each sample is labeled with a cell type. 𝑘 = 10 was 

used. 

To find ct-links based on the global links identified by FOCS, CT-FOCS starts with the full (that 

is, non-regularized) promoter model. We use the non-regularized promoter model as 

regularization reduces the overall model variance needed for making inferences. In principle, 

one could apply ordinary least squares regression with the cell types as additional coefficients 

to estimate cell type specificity. However, such models will perform poorly when the sample 
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size is not much larger than the number of coefficients (e.g., in FANTOM5 we have 808 

samples and a total of 483 coefficients: 472 cell types + k=10 enhancers + intercept). By using 

LMM, we can treat the cell type group level as a random effect coefficient, splitting the 

samples (replicates) based on their cell type of origin, at the cost of assuming a random effect 

distribution. 

The application of an appropriate mixed effects model to the data depends on the distribution 

of the promoter and enhancer activities. We observed that FANTOM5 data have normal-like 

distribution and ENCODE data have zero-inflated negative binomial (ZINB) distribution 

(Supplementary Fig. S1). For FANTOM5, we applied regular linear mixed effect regression.  

For ENCODE, we applied generalized linear mixed effect regression (GLMM).   

For each promoter, we defined a null model and 𝑘 + 1 alternative models, each 

corresponding to a single random effect (i.e., random slope for enhancer or random intercept 

for the promoter). We defined the null model as the simple linear regression 𝑦𝑝 = 𝑋𝑒𝛽 + 𝜖, 

and each of the alternative models as the LMM model 𝑦𝑝 = 𝑋𝑒𝛽 + 𝑍𝑙𝛾𝑙 + 𝜖, where 𝑋𝑒𝛽 is 

the fixed effect,  𝑍𝑙𝛾𝑙  is the random effect, and 𝜖 is a random error. 𝑙 ∈ {1, … , 𝑘 + 1} is one 

of the variables (enhancer or the intercept). 𝛾𝑙  is a 𝐶-long vector of random effects to be 

predicted. 𝑍𝑙  is a 𝑛𝑥𝐶 design matrix that groups the samples by their cell types, namely: 

𝑍𝑙[𝑖, 𝑗] = {
𝑋𝑒[𝑖, 𝑙] 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We applied a likelihood ratio test between the residuals of the 𝑘 + 1 alternative models and  

the null model, and got 𝑘 + 1 p-values. Such p-values were calculated for each of the |𝑃| 

promoters, and corrected together for multiple testing using FDR (22), with the number of 

tests performed  |𝑃| ∙ (𝑘 + 1).  

Each predicted random effect vector 𝛾𝑙 = (𝛾1
𝑙 , … , 𝛾C

𝑙 )  of the alternative models was 

normalized using the median absolute deviation (MAD), i.e., 𝛾′𝑖
𝑙  =  | 𝛾𝑖

𝑙  −  𝑚𝑒𝑑𝑖𝑎𝑛( 𝛾𝑙) |/

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

𝑚𝑎𝑑( 𝛾𝑙),  where 𝑚𝑎𝑑(𝛾𝑙) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝛾𝑙 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝛾𝑙)|) is calculated over all cell types 

together. If 𝛾′𝑖
𝑙 > 2.5  then enhancer 𝑙 (or the promoter, if 𝑙 = 1) was regarded as having an 

outlier activity in cell type 𝑖. We chose a moderately conservative MAD threshold, 2.5, as 

suggested in (23). We chose to use the MAD statistic since the mean and the standard 

deviation are known to be sensitive to outliers (23).  

Finally, we defined cell type-specific EP links (abbreviated ct-links) as those that had: (1) 

significant random effect intercept of the promoter (P), (2) significant random effect slope of 

the enhancer (E), both with q-value < 0.1, and (3) E and P were identified as outliers in the 

same cell type according to the MAD criterion. 

 

Figure 1.  Outline of the CT-FOCS algorithm. Let 𝑦𝑝 denote the observed activity of 

promoter p, and 𝑋𝑒 be the activity matrix of the 𝑘 = 10 closest enhancers to 𝑝. If 
𝑙 ∈ {1, … , 𝑘 + 1} is one of the variables (enhancer or promoter, i.e. the intercept), 
then 𝑍𝑙[𝑖, 𝑗] equals to 𝑋𝑒[𝑖, 𝑙] if sample 𝑖 belongs to cell type 𝑗 and 0 otherwise (see 
Methods). First, a robust global promoter model is inferred by applying the leave-
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cell-type-out cross validation step in FOCS (see Hait et al. 2018 for details).  Second, 

a linear mixed effects model (LMM) is built on all samples using 𝑦𝑝,  𝑋𝑒, and 𝑍𝑙. The 

LMM includes the component 𝑍𝑙𝛾𝑙 where 𝛾𝑙 is a vector of the predicted random 
effect values for each variable (i.e., enhancer or promoter) per cell type. Then, the 
algorithm performs two tests for every 𝑙: (1) log-likelihood ratio test (LRT) to 
compare the simple linear regression and the LMM model. The test is carried out 
eleven times (testing the 10 enhancers and the intercept).  The p-values for these 
LRTs are adjusted for multiple testing (q-values). (2) The 𝛾𝑙 values produced by the 
LMM are standardized using the Median Absolute Deviation (MAD) technique and 
positive outliers (red dots) are identified. A cell type-specific EP link (ct-link) is called 
if: (1) both enhancer and promoter (i.e., the intercept) have q-value <0.1 (marked 
in red), and (2) the enhancer and the promoter are found as positive outliers in the 
same cell type. In the FCRLA gene given as an example, the promoter 𝑝 and 
enhancers 𝑒1, 𝑒10 are significant and are commonly found as positive outliers in B-
cells. Therefore, E1p and E10p are called by CT-FOCS as B-cell-specific EP links. 

 

MAD-FOCS model 

MAD-FOCS takes the global EP links predicted by FOCS, before shrinkage (24). Then, for every 

global EP link, MAD-FOCS calculates the E and P median activity values across the multiple 

replicates per cell type. Last, it normalizes the median activities across cell types using the 

median absolute deviation (MAD) method. EP links are identified as ct-links in a certain cell 

type if both E and P are positive outliers in that cell type using MAD cutoff > 2.5. 

Filtered EP links sets 

1. CT-JEME model 

JEME reports a classification score (between 0.3 to 1) for every EP link representing how active 

the EP link is in each cell type. To make a fair comparison between the predictions of CT-FOCS 

and JEME on the FANTOM5 dataset, we created a filtered set of JEME EP links called cell-type 

JEME (CT-JEME). For cell type j in FANTOM5 with 𝑛 CT-FOCS ct-links, we chose the top 𝑛 

scoring EP links of JEME as the predicted CT-JEME  solution for that cell type. For cell types in 

which JEME included a lower number of EP-links than CT-FOCS, we included all JEME’s EP links 

for that cell type in CT-JEME.  
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2. CT-MAD-FOCS model 

To allow a fair comparison between the predictions of CT-FOCS and MAD-FOCS, we created a 

filtered set of MAD-FOCS EP links called cell type MAD-FOCS (CT-MAD-FOCS), as decribed for 

CT-JEME above. We sorted the EP links by their 𝑙𝑜𝑔𝐸𝑃 signal. 

3. CT-TargetFinder and CT-ABC models 

Data for ABC model was taken from 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus15

0.ForABCPaperV3.txt.gz. Among the 131 biosamples analyzed in ABC, 75 were taken from 

ENCODE and Roadmap epigenomics consortia (25, 26) and 8 of them were also present in the 

CT-FOCS database and used for comparison (GM12878, HeLa-S3, K562, HCT-116, HepG2, A549 

and H1-hESC). As for TargetFinder, we applied the program 

(https://github.com/shwhalen/targetfinder) on five cell types from ENCODE (GM12878, HeLa-

S3, HUVEC, NHEK and K562) for which preprocessed multi omics data was available on the 

TargetFinder website, using as input candidate DHS sites representing enhancers and 

promoters from ENCODE  DHS data. For each cell type in ENCODE with 𝑛 CT-FOCS ct-links, we 

chose the top 𝑛 scoring EP links of TargetFinder (by classification score) and of the ABC model 

(by ABC score) as the predicted solutions for that cell type for the two models. Statistics on 

the analyzed data are summarized in Supplemental Table 1A. 

External validation of predicted EP links using ChIA-PET, HiChIP and PCHi-C loops 

We used 3D chromosome conformation capture loops to evaluate the performance of CT-

FOCS and of other methods for EP linking. We downloaded ChIA-PET data of GM12878 cell 

line (GEO accession: GSE72816; ~100 bp resolution) assayed with POLR2A (12), HiChIP data of 

Jurkat, HCT-116, and K562 cell lines (GEO accession: GSE99519; 5 kb resolution) assayed with 

YY1 (27), and PCHi-C data across 27 tissues (GEO accession: GSE86189; 5 kb resolution) (20). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
https://github.com/shwhalen/targetfinder
https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Each loop identifies an interaction between two genomic intervals called its anchors. In ChIA-

PET data, to focus on high confidence interactions, we filtered out loops with anchors' width 

>5kb or overlapping anchors.  Loop anchors were resized to 1kb (5kb in HiChIP and PCHi-C) 

intervals around the anchor's center position. We filtered out loops crossing topologically 

associated domain (TAD) boundaries, as functional links are usually confined to TADs (9, 28–

30). For this task, we downloaded 3,019 GM12878 TADs (31), which are largely conserved 

across cell types (8), and used them for filtering ChIA-PET and PCHi-C loops from all cell types. 

To overcome the sparseness of the ChIA-PET loops, and the 8kb minimum distance between 

loop anchors (11, 12), we combined loops into two-step loop sets (TLSs) as follows: for every 

reference loop, x, its TLS is defined as the set of anchors of all loops that overlap with at least 

one of x's anchors by at least 250 bp (Fig. 2A). We used the igraph R package (32) for this 

analysis. 
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Figure 2. ChIA-PET TLSs support predicted ct-links. The two-step connected loop 
set (TLS) of reference loop x is defined as the set of all loops that have an anchor 
overlapping one of x’s anchors including loop x. (A) Examples of TLSs. Loop x’s 
anchors overlap with at least one of the anchors of loops A, B, and C, and, therefore, 
the TLS of x is composed of loops A, x, B, C. Similarly, the TLS of y is composed of 
loops B, y, and D. (B) (1) A 70kb region of Chromosome 1 showing ChIA-PET loops 
detected in cell type GM12878. (4) A ct-link predicted by CT-FOCS. (2) The same 
region showing only loops that have anchors overlapping the anchors of the ct-link. 
Pink: loops overlapping the enhancer; blue: loops overlapping the promoter. (3) A 
TLS that supports the predicted ct-link. The ct-link in (4) is validated by the TLS, but 
not by any single ChIA-PET loop. (5) Gene annotations. (6) Gene expression (RNA-
seq) and epigenetics signals (DHS-seq and selected histone modifications) for the 
region. Tracks are shown using UCSC Genome Browser for data from GM12878 and 
K562 cell lines. The data supports the link in GM12878 but not in K562. 

 

To evaluate if a ct-link is confirmed by the ChIA-PET data, we checked if both the enhancer 

and the promoter fall in the same TLS. Specifically, we defined 1kb genomic intervals (±500 bp 
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upstream/downstream; 5kb genomic intervals: ±2.5kb upstream/downstream in HiChIP and 

PCHi-C) for the promoters (relative to the center position; relative to the TSS in FANTOM5 

dataset) and the enhancers (relative to the enhancer's center position) as their genomic 

positions. Both inter- and intra- TAD predicted EP-links were included in the validation. An EP 

link was considered supported by a TLS if the genomic intervals of both its promoter and 

enhancer overlapped different anchors from the same TLS (Fig. 2B and Supplemental Fig S2).  

We used randomization in order to test the significance of the total number of supported EP 

links by ChIA-PET single loops. We denoted that number by 𝑁𝑡. We performed the test as 

follows: (1) For each predicted EP link, we randomly matched a control EP link, taken from the 

set of all possible EP pairs that lie within 9,274 GM12878 TADs from Rao et al. (8),  with similar 

linear distance between E and P center positions. We restricted the matching to the same 

chromosome in order to account for chromosome-specific epigenetic state (33). The matching 

was done using MatchIt R package (method='nearest', distance='logit', replace='FALSE') (34). 

This way, the final set of matched control EP links had the same set of linear interaction 

distances as the original EP links. (2) We counted 𝑁𝑟, the number of control EP links that were 

supported by ChIA-PET single loops. We repeated this procedure for 1,000 times. The 

empirical p-value was 𝑃 =
#(𝑁𝑟≥𝑁𝑡)

1000
 , or 𝑃<0.001 if the numerator was zero. A similar empirical 

p-value was computed for the validation rate obtained by using single loops and TLSs. 

We used the following formula to calculate the GM12878 ChIA-PET TLS support ratio: 

𝑟𝑎𝑡𝑖𝑜 (
𝐺𝑀12878

𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒
) =

%𝐺𝑀12878 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐸𝑃𝑠 𝑖𝑛 𝐺𝑀12878 𝑇𝐿𝑆

%𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐸𝑃𝑠 𝑖𝑛 𝐺𝑀12878 𝑇𝐿𝑆
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Calling cell-type specific active EP loops reported in a capture Hi-C study  

We wished to identify cell-type specific EP links reported in capture Hi-C data (20). We 

downloaded 906,721 promoter-other (PO) capture Hi-C loops generated across 27 tissues 

(GEO accession: GSE86189) (20). These loops involve a known gene's promoter and a non-

promoter region, which may be an enhancer. To define a set of strictly ct-specific loops, we 

retained PO loops that were detected in exactly one cell type.  We set the PO anchors to 1kb 

intervals around their center positions. This analysis detected a median of 630 EP loops that 

were unique to a specific cell type.  

To call promoter and enhancer regions, we downloaded 474,004 enhancer and 33,086 

promoter regions predicted by a 15-state ChromHMM model on Roadmap epigenetic data 

across 127 tissues (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/enh/15/state_calls.RData; 

https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/prom/15/state_calls.RData) (26). We kept the enhancers of 

state Enh or EnhG (genic enhancers) in any of 127 Roadmap tissues. Similarly, we kept the 

promoters of state TssA (active TSS) or TssAFlnk (Flanking Active TSS). Then, we resized each 

region to a 1kb interval around its center position. We called the resulting sets active 

promoters and enhancers. A retained PO loop whose P and O anchors had at least 250 bp 

overlap with active ChromHMM promoter and enhancer, respectively, was considered as cell 

type-specific active EP loop.  

Cell type specificity score 

We quantified the intensity of an EP link in a given sample by log2 𝑎 + log2 𝑏 where 𝑎 and 𝑏 

are the enhancer and promoter activities in that sample. The EP signal of the link for a 

particular cell type is the average of the signal across the samples from that cell type. Define 
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𝑥𝑐 = (𝑥𝑐1, … , 𝑥𝑐𝑛) as the vector of signals in cell type 𝑐, where 𝑛 is the total number of EP 

links discovered in cell type 𝑐, and define 𝑑𝑐,𝑖 as the Euclidean distance between the vectors 

of cell types 𝑐 and 𝑖, both with the same EP links from cell type 𝑐. Following the definition of 

(35), the specificity score of EP links predicted in cell type 𝑐 is: 

𝑆𝑐 =
1

∑ 𝑑𝑐,𝑖𝑖≠𝑐
∑ 𝑑𝑐,𝑖 ∑(𝑥𝑐,𝑘 − 𝑥𝑖,𝑘)

𝑛

𝑘=1𝑖≠𝑐

 

Similarly, cell-type specificity can be computed for the expression values of the genes 

annotated with EP links, or on the overrepresentation factors of TFs found at enhancers and 

promoters. 

Statistical methods, visualization and tools  

All computational analyses and visualizations were done using the R statistical language 

environment (36). To correct for multiple testing we used the p.adjust() function 

(method=’BY’). We used ‘GenomicRanges’ package (37) for finding overlaps between genomic 

intervals. We used ‘rtracklayer’ (38) and ‘GenomicInteractions’ (39) packages to 

import/export genomic positions. Linear mixed effect regression models were created using 

lme R function from nlme package (40). Generalized linear mixed effect with zero inflated 

negative binomial models were created using glmmTMB R function from glmmTMB package 

(41). Counting reads in genomic intervals was done using BEDTools (42). Graphs were created 

using graphics (36), ggplot2 (43), gplots (44), ComplexHeatmap (45), and the UCSC Genome 

Browser (https://genome.ucsc.edu/). 

RESULTS 

The CT-FOCS algorithm 

We developed a novel method called CT-FOCS (Cell Type FOCS) for inferring ct-links. The 

method utilizes a single type of omics data (e.g., CAGE or DHS) from large-scale datasets.  
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The input to CT-FOCS is enhancer and promoter activity profiles for a set of cell types. The 

output is the set of ct-links called for each cell type. Note that the enhancers or promoters 

involved in ct-links can be broadly active separately. In contrast to methods that seek global 

correlations between the activity profiles of enhancers and promoters, the aspect emphasized 

and detected by CT-FOCS is the specificity of the link between the two elements: that is, links 

reported by CT-FOCS highlight the few cell types in which the enhancer and promoter are 

predicted to functionally interact.  

CT-FOCS builds on FOCS (24), which discovers global EP links showing correlated enhancer and 

promoter activity patterns across many samples. FOCS performs linear regression on the 

levels of the 10 enhancers that are closest to the target promoter, followed by two non-

parametric statistical tests for producing initial promoter models, and regularization to 

retrieve the most informative enhancers per promoter model. CT-FOCS starts with the full 

(non-regularized) FOCS promoter model (Methods), and uses a linear mixed effect model  

(LMM), utilizing groups of replicates available for each cell type to adjust a distinct regression 

curve per cell-type group in one promoter model (Fig. 1; Methods). We call a ct-link in a 

certain cell type if it meets the following criteria: (1) both the enhancer (E) and the promoter 

(P) show markedly positive activity levels in that cell type compared to other cell types, and 

(2) both P and E have significantly high random effect coefficients, reflecting an advantage of 

the LMM over the global FOCS model (Methods). The second criterion increases our 

confidence that the high activity detected by the first is specific to this cell type. 

To demonstrate the difference between the linear and LMM predictions, Supplemental Fig S3 

shows, for the same promoter (P), two links involving distinct enhancers (E1 and E2), one 

predicted by CT-FOCS (E1P) and the other (E2P) by FOCS. The link between E1 and P is active 

only in neurons, while the link between E2 and P is active over a wider range of cell types of 
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distinct lineages (amniotic membrane cells, whole blood cells, fibroblasts, endothelial cells 

and preadipocytes). 

We applied CT-FOCS on FANTOM5 cap analysis of gene expression (CAGE) profiles, which 

include 808 samples from 225 cell lines, 157 primary cells, and 90 tissues (46) (Methods). 

CAGE quantifies the activity of both enhancers and promoters, and overall this dataset covers 

42,656 enhancers and 24,048 promoters (mapped to 20,597 Ensembl protein-coding genes). 

For some analyses, we also applied CT-FOCS to ENCODE's DNase Hypersensitive Site (DHS) 

profiles (25, 47), which cover 106 cell types, each with typically 2 replicates. This dataset 

includes measurements for 36,056 promoters (mapped to 13,464 Ensembl protein-coding 

genes) and 658,231 putative enhancers (Methods). Unlike the FANTOM5 dataset, open 

genomic regions identified by DHS do not necessarily mark functionally active enhancers and 

promoters. Thus, EP maps inferred using the ENCODE dataset may be less reliable, and we 

focus our analyses mainly on the FANTOM5 dataset. 

Overall, CT-FOCS identified 195,232 ct-links in FANTOM5 dataset (Table 1), with an average of 

414 ct-links per cell type (median 594, Table 1; Supplemental Fig S4A). These results are in 

line with the low number of ct-links observed experimentally by the abovementioned studies, 

including for NPC and neurons (21, 48), and further indicate that the EP links specific to a cell 

type constitute only a small portion of the EP links that are active in it. The EP links called by 

CT-FOCS were on average shared across 2.5 cell types (Supplemental Fig S4B). CT-FOCS 

predicted both proximal and distal interactions, with an average EP distance of ~160kb 

(median ~110kb; Supplemental Fig S4C).  The complete set of predicted ct-links for each cell 

type is available at http://acgt.cs.tau.ac.il/ct-focs. 
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Table 1. Statistics on the number of CT-FOCS predictions per cell type 

Dataset Avg.  
ct- links 

Avg. 
enhancers 

Avg. 
promoters 

Avg. 
genes* 

Tot. ct- 
links 

Cell type with 
maximum ct-links 

FANTOM5 414 318 146 134 195,232 Temporal lobe 
(13,354) 

ENCODE 167 158 86 82 17,672 Caco-2 (1,572) 

 (*) Ensembl protein-coding genes   
 

Since EP links are expected to function mostly within topologically associated domains (TADs) 

(49, 50), we next tested if ct-links detected by CT-FOCS are enriched for intra-TAD genomic 

intervals. As TADS are largely cell-type invariant (8), we used for these tests the 9,274 TADs 

reported by Rao et al. in GM12878 (8). Indeed, comparison with randomly matched EP links 

demonstrated that predicted ct-links tend to lie within TADs (Supplemental Fig S5).  

Inferred ct-links correlate with cell type-specific gene expression 

To evaluate the specificity of the CT-FOCS predictions, we compared the activity of the set of 

ct-links inferred for a particular cell type with their activity in all other cell types. We defined 

the activity of an EP link in a cell type as the logarithm of the product of the enhancer and 

promoter activities in that cell type. We used these measures to compute the cell-type 

specificity for the set of ct-links detected in each cell type, using a score akin to (35) (Methods). 

As an example, CT-FOCS called 340 ct-links on the GM12878 lymphoblastoid cell line. We 

scored the cell-type specificity of these 340 ct-links for each cell type. Reassuringly, GM12878 

was the top scoring cell type, and other high scoring cell types were enriched for related 

lymphocyte cells (other B-cells and T-cells; Fig. 3A, C). GM12878 was also ranked first in cell 

type-specificity scores calculated separately for the promoters and enhancers of these 340 ct-

links (Supplemental Fig S6; see Supplemental Fig S7 for additional example for neurons cells).  

Next, we examined how the effect of ct-links is reflected by cell-type specific expression of the 

linked genes (Methods). The 340 ct-links called by CT-FOCS in GM12878 involve 197 genes. 

We examined their expression profiles over 112 cell types using an independent gene 
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expression (GE) dataset (51). In this analysis, we now scored each of the 112 cell types for the 

specificity in the expression of these 197 genes. Notably, here too, the lymphocyte group (B- 

and T-cells) showed the highest expression levels (Fig. 3B) with GM12878 ranking first by GE 

specificity (Fig. 3D). Overall, these results show that for GM12878, the ct-links predicted by 

CT-FOCS based on CAGE data are correlated with lymphocyte-specific GE programs. 

 

Figure 3. Specificity of ct-links predicted for GM12878 cell line. (A) Heatmap of EP 
signals for 340 ct-links predicted on GM12878 cells. Rows – EP links, columns – cell 
types, color – z-score of EP signal. Cell types related to lymphocytes (B/T-cells) are 
highlighted in color. (B) Heatmap of gene expression (GE) for 197 genes involved in 
the predicted ct-links. Rows – genes, columns – cell types, color – z-score of GE. (C) 
Cell type specificity scores based on the EP signals. (D) Cell type specificity scores 
based on expression for the gene set in B (Methods). In A and C, 109 cell types with 
at least 3 replicates are included in the analysis; in B and D, 112 cell types with 
ENCODE GE data are included (51). 
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Comparison of CT-FOCS to other methods 

We compared CT-FOCS predictions on the FANTOM5 dataset with those made by four 

alternative methods: (1) JEME (17), which predicts EP links that are active in a particular cell 

type but are not necessarily cell type-specific. (2) A naive variant of FOCS, which takes the 

shrunken promoter models from FOCS, and predicts ct-links by detecting cell types in which 

the promoter and any of the model’s enhancers show exceptionally high activity, based on 

the median absolute deviation (MAD) index. We call this variant MAD-FOCS (Methods). (3-4) 

Variants of JEME and MAD-FOCS with filtering of the reported links to produce sets of cell-

type specific links of the same size  as the ones detected by CT-FOCS (Methods). We call these 

variants cell-type-JEME (CT-JEME) and cell-type-MAD-FOCS (CT-MAD-FOCS), respectively. 

Supplemental Fig S4 shows basic properties of the solutions provided by the five methods. EP 

links predicted by JEME and MAD-FOCS were, on average, shared across 11 and 12 cell types 

(median=3 and 13 respectively; Supplemental Fig S4B). In contrast, the CT-FOCS, CT-MAD-

FOCS and CT-JEME EP links were, on average, shared across <4 cell types (Median=2, 2 and 1, 

respectively), demonstrating that they identified EP links that are more specific. The same 

number of predicted links allows fair comparison between CT-FOCS, CT-MAD-FOCS and CT-

JEME.   

Next, we calculated cell-type specificity scores for the EP links called by CT-FOCS, CT-MAD-

FOCS and CT-JEME on the 274 FANTOM5 cell types. For each cell type, we used the ct-links 

called on it to compare the specificity score of each cell type and ranked the scores. We expect 

the given cell type to score the top. In this analysis, CT-MAD-FOCS and CT-FOCS performed 

similarly, and significantly better than CT-JEME (Supplementary Fig. S8A). In terms of GE of 

the genes associated with the EP links, examining the four cell types that were present in both 

FANTOM5 and the independent GE data of 112 cell types of (51)(GM12878, K562, HepG2 and 

MCF-7), CT-FOCS was the only method which ranked 1st all the four cell type (Supplementary 
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Fig. S8B). Overall, these three methods seem to capture ct-links with highly specific EP and GE 

signals.  

Next we ranked the cell types according to cell-type specificity scores obtained when 

considering separately the signals of the linked enhancers and promoters. The median rank of 

the enhancers was 1st by all methods, possibly because enhancers tend to be cell type specific. 

However, the median rank of CT-JEME's promoters was 23rd while it was 1st for CT-FOCS and 

CT-MAD-FOCS. The low ranks of CT-JEME's linked promoters can explain why its predicted ct-

links ranked lower compared to CT-FOCS and CT-MAD-FOCS. 

Last, we compared the CT-FOCS predictions on ENCODE's DHS dataset with those obtained by 

six other methods: (1-2) CT-MAD-FOCS and MAD-FOCS. (3) TargetFinder (16), which predicts 

EP links based on features in enhancer, promoter and the window between them using 

GradientBoosting trees. (4) ABC score model (18, 19), which inferred cell type-specific 

functional EP links in 131 human biosamples. (5-6) Variants of TargetFinder and ABC model 

having a similar number of predictions as CT-FOCS (Methods). We call these variants CT-

TargetFinder and CT-ABC, respectively. Note that the comparisons on the FANTOM5 data 

were done on 274 cell types that had at least 50 predicted EP links in all methods. On the 

ENCODE dataset, the comparisons were done only on 5-10 cell types  (Methods). Overall, CT-

FOCS, CT-MAD-FOCS and ABC ranked first most cell types by specificity of the ct-link signals, 

better than the other methods. On the basis of GE specificity, CT-FOCS, ABC and CT-ABC 

ranked first most cell types, better than the other methods (Supplemental Table 1B). 

Introducing two-step connected loop sets in 3D chromatin conformation assays for 

evaluation of ct-links  

We validated the ct-links predicted on GM12878 using both POLR2A-mediated ChIA-PET loops 

and promoter-capture (PC) Hi-C loops recorded in this cell line (12, 20). The direct way to 
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validate a predicted ct-link is to check whether the E and P regions overlap the two anchors 

of the same loop. However, as loops indicate 3D proximity of their anchors, overlapping 

anchors of different loops indicate proximity of their other anchors as well (52, 53). 

Furthermore, ct-links that span a linear distance of < 20kb, where ChIA-PET loops may perform 

poorly (54), may not be supported by that assay. Thus, for the validation, we broadened the 

set of anchors that are considered to be proximal as follows: We define the two-step 

connected loop set (TLS) of a loop as the set of anchors of all loops that overlap with at least 

one of its anchors (Fig. 2A). We consider a predicted ct-link as validated if its enhancer and 

promoter regions overlap different anchors from the same TLS (Fig. 2B; see Supplemental Fig 

S2 for an additional example; Methods). 

Out of the 340 ct-links inferred by CT-FOCS in GM12878, 10% were supported by ChIA-PET  

single loops, and 33% were supported by TLSs. For PCHi-C loops, the numbers were 7.6% and 

15%, respectively. Although these rates might seem low, in the next section we show that 

most methods predicting EP links have a low support from 3D conformation data. To test the 

significance of the observed validation rate, we generated random sets of 340 intra-TAD links 

having the same linear distances between E and P regions as the ct-links predicted by CT-FOCS 

(Methods). In 1,000 random sets, TLSs supported, on average, 9.4% (32 out of 340) and at 

most 14% (46 out of 340) (Supplemental Fig S9A), and the number of predicted ct-links 

supported by ChIA-PET data was significant with P<0.001. Similar significance was achieved 

when validating the predicted ct-links directly against single loops (Supplemental Fig S9C).  

The same tests for PCHi-C loops gave an average overlap of matched random loops with PCHi-

C TLSs of 8.5% (29 out of 340) and at most 12.4% (42 out of 340), with P=0.003 for TLS 

(Supplemental Fig 9B, P=0.048 for single loops; Supplemental Fig S9D). 
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Validating predicted links by 3D conformation data 

We compared the links predicted by CT-FOCS, CT-JEME and CT-MAD-FOCS to experimentally 

measured 3D chromatin loops, defined as the positive set. We chose the CT versions of these 

algorithms, which make the same number of calls, in order to allow fair comparison. In 

GM12878, CT-JEME achieved the best precision (21%) followed by CT-MAD-FOCS (19%) and 

CT-FOCS (10%). In K562, CT-FOCS achieved the best precision (17.5%) followed by CT-MAD-

FOCS (14%) and CT-JEME (3.45%). The low precision shows that single loops do not support 

the majority of the links predicted by any method. 

Repeating the comparison using TLSs instead of single loops resulted in 2-3 fold increase in 

precision compared to single loop validation in all methods. On GM12878 loops, precision was 

54%, 50% and 30% in CT-JEME, CT-MAD-FOCS and CT-FOCS, respectively.  On K562 loops, 

precision was 33%, 28% and 22% in CT-FOCS, CT-MAD-FOCS and CT-JEME, respectively. Again, 

the precision obtained by TLS validation for all methods was still low. 

We repeated the same analysis on the ENCODE DHS dataset, comparing CT-FOCS to CT-

TargetFinder and CT-ABC. Here, CT-FOCS performed markedly better in validation based on 

single loops and on TLSs. For example, on GM12878 with single-loop validation, CT-FOCS 

achieved 31% precision while CT-TargetFinder and CT-ABC model achieved 10% and 13%, 

respectively. With TLS validation, CT-FOCS had 66% precision while CT-TargetFinder and CT-

ABC model achieved 30% and 47%, respectively. Similarly, on K562 with single loop validation, 

CT-FOCS had 54% precision, CT-ABC 30% and CT-TargetFinder 1.4 %. With TLS validation, CT-

FOCS had 74% precision, CT-ABC 43% and CT-TargetFinder 3.7%.  

Overall, ct-links predicted by all methods had low support from 3D chromatin loops. CT-FOCS 

tended to achieve higher precision than the other tested methods.  
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Assessing cell type-specificity via 3D experimental loops 

As an additional test, we checked to what extent ct-links called on different cell types are 

supported by GM12878's POLR2A ChIA-PET TLS loops. If ct-links called on GM12878 are 

indeed highly specific, we expect GM12878 to show the highest support rate in this analysis. 

To quantify this, we defined for each cell type, the logarithm of the ratio between the 

validation rate observed in GM12878 and the validation rate observed for that cell type. For 

most cell types we expect to obtain values>0. Indeed, CT-FOCS ct-links predicted for GM12878 

showed significantly higher support rate compared to the ct-links that were predicted in most 

other cell types (median log2(ratio) ~1.7; Fig. 4A). Moreover, the six cell types that showed 

higher validation rate than GM12878 (that is, had log2(ratio)<0; Fig. 4A: CT-FOCS boxplot) 

were all biologically related to GM12878 (e.g., B cell line and Burkitt's lymphoma cell line). CT-

MAD-FOCS and MAD-FOCS performance was significantly lower (median log2(ratio) ~1.1), 

followed by CT-JEME (~0.7) and JEME (~0.6). Note that in this analysis too, the comparisons 

between CT-FOCS, CT-MAD-FOCS and CT-JEME are more proper, since these methods have a 

similar number of predictions per cell type (and thus, comparable recall). The results for MAD-

FOCS and JEME are added only for reference. We obtained similar results when validating 

against ChIA-PET single loops (Fig. 4B), and when using HiChIP from K562 (Fig. 4C). When using 

PCHi-C, HiChIP and ChIA-PET for eight individual tissues, CT-FOCS performed best overall (Fig. 

4D and Supplemental Table 2). 

We repeated the analysis on CT-FOCS, CT-MAD-FOCS, CT-TargetFinder and CT-ABC on 

ENCODE dataset (Supplemental Table 1C). Interestingly, CT-MAD-FOCS obtained the highest 

precision and TLS support on GM12878. On K562 cell type, across all cell types, all methods 

had low TLS support (log2(𝑟𝑎𝑡𝑖𝑜) ≃ 0). Note, however, that the number of cell types 

compared was very low (5-10 cell types, compared to 265 for FANTOM5), so these results are 

anecdotal. 
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Overall, on FANTOM5 dataset, the particularity of the links of CT-FOCS was higher than those 

of CT-MAD-FOCS and CT-JEME. 

 

Figure 4. The particularity of each algorithm's predictions as measured by ChIA-
PET, HiChIP, and PCHi-C assays.  (A-B) Each algorithm was applied to each cell type, 
and the predicted links were benchmarked against GM12878 ChIA-PET loops and 
TLSs. Comparison included 265 FANTOM5 cell types that had at least 50 predicted 
EP links in CT-FOCS, MAD-FOCS, CT-MAD-FOCS, JEME and CT-JEME. The plots show 
for each cell type the distribution of the ratios between the percentage of predicted 
EP links on GM12878 that had GM12878 ChIA-PET support and the percentage of 
predicted links in that cell type that had GM12878 ChIA-PET support (Methods). (A) 
ChIA-PET TLS support. (B) ChIA-PET single loop support. (C) The same analysis as in 
(A) for K562 cell line compared to TLSs derived from K562 HiChIP assay. (D) The 
same analysis as in (A) but here using TLSs derived from PCHi-C in four additional 
cell types and tissues. All comparisons are summarized in Supplemental Table 2. p-
values are based on one sided Wilcoxon paired test. 

 

DISCUSSION 

In this study we investigated the cell type-specificity of predicted EP links by state-of-the-art 

methods and introduced CT-FOCS, a novel method for inferring cell type-specific EP links (ct-

links) based on activity patterns derived from a single type of omics data. We applied CT-FOCS 

on CAGE profiles from FANTOM5 (46). The resulting compendium of 195,232 ct-links for 472 
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cell types and the program are available for use at http://acgt.cs.tau.ac.il/ct-focs and enable 

further inquiry on gene regulation. 

We compared the cell type-specificity of links predicted by each method on FANTOM5 data. 

We computed cell type-specificity scores by using either EP signals or target gene expression 

(Supplementary Fig. S8; Supplemental Table 1A-B; Methods). We found that CT-FOCS and 

CT-MAD-FOCS achieve similar and slightly better cell type-specificity ranks compared to CT-

JEME on EP signal and target GE (Supplementary Fig. S8). Additionally, we introduced the two-

step loop set (TLS) support ratio for benchmarking predicted ct-links against chromatin-

interaction datasets (Fig. 4; Supplemental Tables 1-2; Methods). Using this criterion, we 

showed that the cell-type particularity of ct-links predicted by CT-FOCS was significantly higher 

than those of CT-JEME and CT-MAD-FOCS in 5-6 out of 8 examined cell types with available 

3D conformation data (Fig. 4; Supplemental Table 2).  

Several comments are in order regarding our inferred ct-links. First, a common naïve practice 

is to map enhancers to their nearest gene. Among the CT-FOCS predicted EP links, on average 

per cell type, only ~10% of the enhancers mapped to the nearest gene. While this proportion 

is lower than observed in previous reports (~74% in FOCS and ~40% in FANTOM5 (46)), it may 

have been affected by the relatively low number of FANTOM5 reported enhancers (~43k) due 

to lower sensitivity of detecting enhancers using CAGE data (55). FANTOM5 enhancers tend 

to be located in intergenic regions, possibly reducing the correlation of the enhancers with 

the nearest gene, which is more apparent for intragenic enhancers located within introns of 

the target genes. As a result, fewer EP links are identified using correlation-based techniques 

(e.g., linear regression). On the other hand, low-distance links were reported to have poor 

validation results in ChIA-PET and Hi-C 3D loops and eQTL data (17). Second, an average of 

~60% of the predicted ct-links involve intronic enhancers, similar to the report by FOCS (70%). 

Third, the average number of predicted ct-links per cell type was rather modest: 414 in 
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FANTOM5 (Table 1). This relatively low number is in line with the small number of ct-links 

reported previously in experiments on NPC, neuron, and K562 cells (21, 48), suggesting that 

only a small portion of the EP links that are active in a cell type are specific for it. Fourth, on 

average, per cell type, promoters were linked by ct-links to ~2 (and a maximum of 9) 

enhancers. 

In terms of methodology, CT-FOCS uses linear mixed models to account for two effects. The 

first is the joint contribution of multiple enhancers to the promoter activity, which was shown 

to predict gene expression more accurately than to pairwise enhancer-gene correlations (17). 

The second is the contribution of distinct cell-type groups to promoter activity. By considering 

the cell-type effect, prediction of promoter activity can be done separately for each cell-type 

group. Thus, the estimated regression coefficient will not be the same for all samples but 

rather adjusted according to their cell type. In this way, ct-links are inferred based on the 

difference in the regression coefficients estimated for different cell type groups.  

FOCS predictions are based on leave-cell-type-out cross validation. As such, by design, it 

cannot infer models that are strictly cell type-specific (24) (that is, EP pairs that are active in 

only one specific cell type and have completely null activity in all the rest). As CT-FOCS is built 

upon FOCS predictions, this limitation is true for CT-FOCS predictions as well. However, we 

confirmed in the broad epigenomic datasets that we analyzed, that cases in which an 

enhancer is active in only one cell type are very rare (Supplemental Results – ' Loops involving 

enhancers active in a single cell type'). Nevertheless, CT-FOCS EP links show very high cell-type 

specificity: they were shared, on average, by not more than three cell types (Supplemental 

Fig S4B), and >44% of them were called in a single cell type. The links identified by CT-FOCS 

correspond to much more prevalent (and therefore, biologically more relevant) cases, in 

which an enhancer shows activity in several (typically, highly related) cell types, but its impact 

on the activity on the target promoter is markedly more prominent in one or very few of them.  
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A limitation of CT-FOCS is that it considers only the ten closest enhancers to each promoter 

when building the models. A possible future improvement to CT-FOCS is to include all 

enhancers within a window of 1Mb around each promoter, e.g., by using Bayesian hierarchical 

models, considering possible confounders and a-priori information such as ChIA-PET and PCHi-

C loops and eQTLs. 

CT-FOCS can be useful for multiple genomic inquiries. For example, it can improve 

identification of known and novel cell type-specific TFs and enhance our understanding of key 

transcriptional cascades that determine cell fate decisions. Furthermore, the integration of 

protein-protein interactions (PPIs) with TF identification in predicted ct-links may help identify 

cell type-specific PPI modules (56). These modules may contain additional new proteins (e.g., 

co-factors and proteins that are part of the mediator complex) that shape the 3D chromatin 

in a cell type-specific manner. Overall, the new method we introduced and the compendium 

of ct-links can advance our understanding of cell type-specific genome regulation. 
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(https://github.com/Shamir-Lab/CT-FOCS). 

FUNDING 

The study is supported in part by the German-Israeli Project DFG RE 4193/1-1 (to R.S. and 

R.E.), Israel Science Foundation (grant No. 1339/18 to R.S.), ISF grant No. 3165/19, within the 

Israel Precision Medicine Partnership program (to R.S.), the Koret-UC Berkeley-Tel Aviv 

University Initiative in Computational Biology and Bioinformatics (to R.E. and R.S.), Len 

Blavatnik and the Blavatnik Family foundation (to R.S), and by The Raymond and Beverly 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

http://acgt.cs.tau.ac.il/ct-focs
http://acgt.cs.tau.ac.il/ct-focs
https://github.com/Shamir-Lab/CT-FOCS
https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Sackler Chair in Bioinformatics, Tel Aviv University (to R.S.). T.A.H. is supported in part by a 

fellowship from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University. R.E. is a 

Faculty Fellow of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. This 

work was carried out in partial fulfillment of the requirements for the Ph.D. degree at The 

Blavatnik School of Computer Science at Tel Aviv University of T.A.H. 

CONFLICT OF INTEREST 

The authors declare no competing financial interests. 

REFERENCES 

1. Gloss,B.S. and Dinger,M.E. (2018) Realizing the significance of noncoding functionality in 

clinical genomics. Exp. Mol. Med., 50, 97. 

2. Heinz,S., Romanoski,C.E., Benner,C. and Glass,C.K. (2015) The selection and function of cell 

type-specific enhancers. Nat. Rev. Mol. Cell Biol., 16, 144–154. 

3. Bulger,M. and Groudine,M. (2010) Enhancers: the abundance and function of regulatory 

sequences beyond promoters. Dev. Biol., 339, 250–257. 

4. Heinz,S., Romanoski,C.E., Benner,C. and Glass,C.K. (2015) The selection and function of cell 

type-specific enhancers. Nat. Rev. Mol. Cell Biol., 16, 144–154. 

5. Fullwood,M.J. and Ruan,Y. (2009) ChIP-based methods for the identification of long-range 

chromatin interactions. J. Cell. Biochem., 107, 30–39. 

6. Mumbach,M.R., Rubin,A.J., Flynn,R.A., Dai,C., Khavari,P.A., Greenleaf,W.J. and Chang,H.Y. 

(2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. 

Nat. Methods, 13, 919. 

7. Lieberman-aiden,E., Berkum,N.L. Van, Williams,L., Imakaev,M., Ragoczy,T., Telling,A., 

Amit,I., Lajoie,B.R., Sabo,P.J., Dorschner,M.O., et al. (2009) Comprehensive Mapping of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Long-Range Interactions Reveals Folding Principles of the Human Genome. Science, 326, 

289–293. 

8. Rao,S.S.P., Huntley,M.H., Durand,N.C., Stamenova,E.K., Bochkov,I.D., Robinson,J.T., 

Sanborn,A.L., Machol,I., Omer,A.D., Lander,E.S., et al. (2014) A 3D Map of the Human 

Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell, 159, 1665–

1680. 

9. Dixon,J.R., Selvaraj,S., Yue,F., Kim,A., Li,Y., Shen,Y., Hu,M., Liu,J.S. and Ren,B. (2012) 

Topological domains in mammalian genomes identified by analysis of chromatin 

interactions. Nature, 485, 376–380. 

10. Jin,F., Li,Y., Dixon,J.R., Selvaraj,S., Ye,Z., Lee,A.Y., Yen,C.-A., Schmitt,A.D., Espinoza,C.A. and 

Ren,B. (2013) A high-resolution map of the three-dimensional chromatin interactome in 

human cells. Nature, 503, 290–294. 

11. Li,G., Ruan,X., Auerbach,R.K., Sandhu,K.S., Zheng,M., Wang,P., Poh,H.M., Goh,Y., Lim,J., 

Zhang,J., et al. (2012) Extensive promoter-centered chromatin interactions provide a 

topological basis for transcription regulation. Cell, 148, 84–98. 

12. Tang,Z., Luo,O.J., Li,X., Zheng,M., Zhu,J.J., Szalaj,P., Trzaskoma,P., Magalska,A., 

Wlodarczyk,J., Ruszczycki,B., et al. (2015) CTCF-Mediated Human 3D Genome 

Architecture Reveals Chromatin Topology for Transcription. Cell, 163, 1611–1627. 

13. Ernst,J., Kheradpour,P., Mikkelsen,T.S., Shoresh,N., Ward,L.D., Epstein,C.B., Zhang,X., 

Wang,L., Issner,R., Coyne,M., et al. (2011) Mapping and analysis of chromatin state 

dynamics in nine human cell types. Nature, 473, 43–49. 

14. Roy,S., Siahpirani,A.F., Chasman,D., Knaack,S., Ay,F., Stewart,R., Wilson,M. and 

Sridharan,R. (2015) A predictive modeling approach for cell line-specific long-range 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

regulatory interactions. Nucleic Acids Res., 43, 8694–8712. 

15. He,B., Chen,C., Teng,L. and Tan,K. (2014) Global view of enhancer-promoter interactome 

in human cells. Proc. Natl. Acad. Sci., 111, E2191–E2199. 

16. Whalen,S., Truty,R.M. and Pollard,K.S. (2016) Enhancer – promoter interactions are 

encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48, 488. 

17. Cao,Q., Anyansi,C., Hu,X., Xu,L., Xiong,L., Tang,W., Mok,M.T.S., Cheng,C., Fan,X., 

Gerstein,M., et al. (2017) Reconstruction of enhancer-target networks in 935 samples of 

human primary cells, tissues and cell lines. Nat. Genet., 201, 7. 

18. Fulco,C.P., Nasser,J., Jones,T.R., Munson,G., Bergman,D.T., Subramanian,V., 

Grossman,S.R., Anyoha,R., Doughty,B.R., Patwardhan,T.A., et al. (2019) Activity-by-

contact model of enhancer--promoter regulation from thousands of CRISPR 

perturbations. Nat. Genet., 51, 1664–1669. 

19. Nasser,J., Bergman,D.T., Fulco,C.P., Guckelberger,P., Doughty,B.R., Patwardhan,T.A., 

Jones,T.R., Nguyen,T.H., Ulirsch,J.C., Lekschas,F., et al. (2021) Genome-wide enhancer 

maps link risk variants to disease genes. Nature, 593, 238–243. 

20. Jung,I., Schmitt,A., Diao,Y., Lee,A.J., Liu,T., Yang,D., Tan,C., Eom,J., Chan,M., Chee,S., et al. 

(2019) A compendium of promoter-centered long-range chromatin interactions in the 

human genome. Nat. Genet., 51, 1442–1449. 

21. Rajarajan,P., Borrman,T., Liao,W., Schrode,N., Flaherty,E., Casiño,C., Powell,S., 

Yashaswini,C., LaMarca,E.A., Kassim,B., et al. (2018) Neuron-specific signatures in the 

chromosomal connectome associated with schizophrenia risk. Science, 362, eaat4311. 

22. Benjamini,Y. and Yekutieli,D. (2001) The control of the false discovery rate in multiple 

testing under dependency. Ann. Stat. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

23. Leys,C., Ley,C., Klein,O., Bernard,P. and Licata,L. (2013) Detecting outliers: Do not use 

standard deviation around the mean, use absolute deviation around the median. J. Exp. 

Soc. Psychol., 49, 764–766. 

24. Hait,T.A., Amar,D., Shamir,R. and Elkon,R. (2018) FOCS : a novel method for analyzing 

enhancer and gene activity patterns infers an extensive enhancer-promoter map. 

Genome Biol., 19, 59. 

25. Consortium,E.P. and others (2012) An integrated encyclopedia of DNA elements in the 

human genome. Nature, 489, 57–74. 

26. Kundaje,A., Meuleman,W., Ernst,J., Bilenky,M., Yen,A., Kheradpour,P., Zhang,Z., Heravi-

Moussavi,A., Liu,Y., Amin,V., et al. (2015) Integrative analysis of 111 reference human 

epigenomes. Nature, 518, 317. 

27. Weintraub,A.S., Li,C.H., Zamudio,A. V., Sigova,A.A., Hannett,N.M., Day,D.S., Abraham,B.J., 

Cohen,M.A., Nabet,B., Buckley,D.L., et al. (2017) YY1 Is a Structural Regulator of 

Enhancer-Promoter Loops. Cell, 171, 1573-1579.e28. 

28. Hou,C., Li,L., Qin,Z.S. and Corces,V.G. (2012) Gene density, transcription, and insulators 

contribute to the partition of the Drosophila genome into physical domains. Mol. Cell, 

48, 471–484. 

29. Nora,E.P., Lajoie,B.R., Schulz,E.G., Giorgetti,L., Okamoto,I., Servant,N., Piolot,T., van 

Berkum,N.L., Meisig,J., Sedat,J., et al. (2012) Spatial partitioning of the regulatory 

landscape of the X-inactivation centre. Nature, 485, 381. 

30. Sexton,T., Yaffe,E., Kenigsberg,E., Bantignies,F., Leblanc,B., Hoichman,M., Parrinello,H., 

Tanay,A. and Cavalli,G. (2012) Three-dimensional folding and functional organization 

principles of the Drosophila genome. Cell, 148, 458–472. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

31. Mifsud,B., Tavares-Cadete,F., Young,A.N., Sugar,R., Schoenfelder,S., Ferreira,L., 

Wingett,S.W., Andrews,S., Grey,W., Ewels,P.A., et al. (2015) Mapping long-range 

promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet., 47, 598. 

32. Csardi,G. and Nepusz,T. (2006) The igraph software package for complex network 

research. InterJournal, Complex Sy, 1695. 

33. Xi,W. and Beer,M.A. (2018) Local epigenomic state cannot discriminate interacting and 

non-interacting enhancer-promoter pairs with high accuracy. PLoS Comput. Biol., 14, 

e1006625. 

34. Ho,D.E., Imai,K., King,G. and Stuart,E.A. (2011) MatchIt: nonparametric preprocessing for 

parametric causal inference. J. Stat. Softw., 42, 1–28. 

35. Javierre,B.M., Burren,O.S., Wilder,S.P., Kreuzhuber,R., Hill,S.M., Sewitz,S., Cairns,J., 

Wingett,S.W., Várnai,C., Thiecke,M.J., et al. (2016) Lineage-specific genome architecture 

links enhancers and non-coding disease variants to target gene promoters. Cell, 167, 

1369–1384. 

36. R Core Team (2018) R: A Language and Environment for Statistical Computing. R Found. 

Stat. Comput. 

37. Lawrence,M., Huber,W., Pagès,H., Aboyoun,P., Carlson,M., Gentleman,R., Morgan,M.T. 

and Carey,V.J. (2013) Software for Computing and Annotating Genomic Ranges. PLOS 

Comput. Biol., 9, e1003118. 

38. Lawrence,M., Gentleman,R. and Carey,V. (2009) rtracklayer: an R package for interfacing 

with genome browsers. Bioinformatics, 25, 1841–1842. 

39. Harmston, N., Ing-Simmons, E., Perry, M., Baresic, A., Lenhard and B. (2015) 

GenomicInteractions: An R/Bioconductor package for manipulating and investigating 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

chromatin interaction data. BMC Genomics, 16, 963. 

40. Pinheiro,J., Bates,D., DebRoy,S., Sarkar,D. and R Core Team (2018) nlme: linear and 

nonlinear mixed effects models. 

41. Brooks,M.E., Kristensen,K., van Benthem,K.J., Magnusson,A., Berg,C.W., Nielsen,A., 

Skaug,H.J., Maechler,M. and Bolker,B.M. (2017) glmmTMB balances speed and flexibility 

among packages for zero-inflated generalized linear mixed modeling. R J., 9, 378–400. 

42. Quinlan,A.R. and Hall,I.M. (2010) BEDTools : a flexible suite of utilities for comparing 

genomic features. Bioinformatics, 26, 841–842. 

43. Wickham,H. (2009) ggplot2: elegant graphics for data analysis Springer. 

44. Warnes,G.R., Bolker,B., Bonebakker,L., Gentleman,R., Liaw,W.H.A., Lumley,T., 

Maechler,M., Magnusson,A., Moeller,S., Schwartz,M., et al. (2016) gplots: various R 

programming tools for plotting data. 

45. Gu,Z., Eils,R. and Schlesner,M. (2016) Complex heatmaps reveal patterns and correlations 

in multidimensional genomic data. Bioinformatics. 

46. Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I., Bornholdt,J., Boyd,M., Chen,Y., 

Zhao,X., Schmidl,C., Suzuki,T., et al. (2014) An atlas of active enhancers across human 

cell types and tissues. Nature, 507, 455–461. 

47. Thurman,R.E., Rynes,E., Humbert,R., Vierstra,J., Maurano,M.T., Haugen,E., Sheffield,N.C., 

Stergachis,A.B., Wang,H., Vernot,B., et al. (2012) The accessible chromatin landscape of 

the human genome. Nature, 489, 75–82. 

48. Gasperini,M., Hill,A.J., McFaline-Figueroa,J.L., Martin,B., Kim,S., Zhang,M.D., Jackson,D., 

Leith,A., Schreiber,J., Noble,W.S., et al. (2019) A genome-wide framework for mapping 

gene regulation via cellular genetic screens. Cell, 176, 377–390. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

49. Krijger,P.H.L. and de Laat,W. (2016) Regulation of disease-associated gene expression in 

the 3D genome. Nat. Rev. Mol. Cell Biol., 17, 771–782. 

50. Pombo,A. and Dillon,N. (2015) Three-dimensional genome architecture: players and 

mechanisms. Nat. Rev. Mol. Cell Biol., 16, 245–257. 

51. Sheffield,N.C., Thurman,R.E., Song,L., Safi,A., Stamatoyannopoulos,J.A., Lenhard,B., 

Crawford,G.E. and Furey,T.S. (2013) Patterns of regulatory activity across diverse human 

cell types predict tissue identity, transcription factor binding, and long-range 

interactions. Genome Res., 23, 777–788. 

52. Olivares-Chauvet,P., Mukamel,Z., Lifshitz,A., Schwartzman,O., Elkayam,N.O., Lubling,Y., 

Deikus,G., Sebra,R.P. and Tanay,A. (2016) Capturing pairwise and multi-way 

chromosomal conformations using chromosomal walks. Nature, 540, 296. 

53. Song,W., Sharan,R. and Ovcharenko,I. (2019) The first enhancer in an enhancer chain 

safeguards subsequent enhancer-promoter contacts from a distance. Genome Biol., 20, 

197. 

54. Kumasaka,N., Knights,A.J. and Gaffney,D.J. (2019) High-resolution genetic mapping of 

putative causal interactions between regions of open chromatin. Nat. Genet., 51, 128. 

55. Core,L.J., Martins,A.L., Danko,C.G., Waters,C.T., Siepel,A. and Lis,J.T. (2014) Analysis of 

nascent RNA identifies a unified architecture of initiation regions at mammalian 

promoters and enhancers. Nat. Genet., 46, 1311. 

56. Duren,Z., Chen,X., Jiang,R., Wang,Y. and Wong,W.H. (2017) Modeling gene regulation from 

paired expression and chromatin accessibility data. Proc. Natl. Acad. Sci., 114, E4914–

E4923. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2021. ; https://doi.org/10.1101/707158doi: bioRxiv preprint 

https://doi.org/10.1101/707158
http://creativecommons.org/licenses/by-nc-nd/4.0/

