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Abstract

Recent advances in experimental biology allow creation of datasets where several genome-

wide data types (called omics) are measured per sample. Integrative analysis of multi-omic

datasets in general, and clustering of samples in such datasets specifically, can improve our

understanding of biological processes and discover different disease subtypes. In this work

we present MONET (Multi Omic clustering by Non-Exhaustive Types), which presents a

unique approach to multi-omic clustering. MONET discovers modules of similar samples,

such that each module is allowed to have a clustering structure for only a subset of the

omics. This approach differs from most existent multi-omic clustering algorithms, which

assume a common structure across all omics, and from several recent algorithms that

model distinct cluster structures. We tested MONET extensively on simulated data, on an

image dataset, and on ten multi-omic cancer datasets from TCGA. Our analysis shows that

MONET compares favorably with other multi-omic clustering methods. We demonstrate

MONET’s biological and clinical relevance by analyzing its results for Ovarian Serous Cysta-

denocarcinoma. We also show that MONET is robust to missing data, can cluster genes in

multi-omic dataset, and reveal modules of cell types in single-cell multi-omic data. Our work

shows that MONET is a valuable tool that can provide complementary results to those pro-

vided by existent algorithms for multi-omic analysis.

This is a PLOS Computational Biology Methods paper.

Introduction

Modern experimental methods can measure a myriad of genome-wide molecular parameters

for a biological sample. Each type of such parameters is called "omic" and is measured by a dif-

ferent method. Analysis of omic data improved our understanding of biological processes and

human disease, and is now used in therapeutic decisions [1]. While each experiment usually

measures only one omic, several experiments can be performed on the same biological sample,

resulting in multi-omic datasets. Large consortia such as TCGA and ICGC collected multi-

omic data from tens of thousands of tumors [2,3]. Analysis of these data can further improve

our understanding of cancer biology and suggest novel treatments.
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Many algorithms have been developed in recent years to analyze multi-omic data, and most

prominently, to detect subtypes of cancer, a task termed multi-omic clustering [4,5]. The vast

majority of multi-omic clustering algorithms assume that a common underlying structure exists

across all omics, and use all omic datasets to reveal this structure. Among the algorithms devel-

oped under this assumption are SNF and NEMO [6,7], as well as matrix factorization based

methods such as MOFA+ [8], iClusterBayes [9] and MultiNMF [10]. However, this assump-

tion does not always hold. For example, expression and mutation data do not seem to share

the same structure. Even more closely related omics, such as expression and methylation, dif-

fer. This is demonstrated by the low agreement in clustering solutions that are produced based

on different omics [11,12], and was also shown in a number of recent papers [13,14]. More-

over, in a recent benchmark we performed, we observed that solutions based on single omics

can sometimes be more clinically relevant than solutions based on multiple omics [5]. Algo-

rithms that can cluster patients while accounting for the disagreement between omics are there-

fore required.

Several recent methods addressed the distinct structure in different omics by using Bayesian

statistics and modeling the different omics and their correlations. Savage et al. performed clus-

tering on two omics, while allowing samples to be fused or unfused [15]. A fused sample

belongs to a cluster spanning both omics, while unfused samples can belong to different clus-

ters in the two omics. PSDF extended this framework to support feature selection [16].

MDI supports more than two omics [17]. Each omic has its own clustering, but clusters in

different omics match each other. The probability that a sample will belong to matching clus-

ters in two different omics has a prior that is higher the more these two omics are similar. In

TWL [14], as in MDI, each omic also has its own clustering, and clusters in different omics

match each other. A prior is placed such that samples are more likely to belong to the same

cluster in different omics. BCC assumes a model with a global clustering and a clustering for

each omic separately, and the global clustering serves as a Bayesian prior for each omic-specific

clustering [18]. Clusternomics represents the global clustering as a Cartesian product of the

omic-specific clusters, and can also map several such clusters into the same global cluster [13].

These methods have several limitations. MDI and TWL include only omic specific clusters,

without providing a global clustering solution, and leave it to the user to choose between mul-

tiple clustering solutions. MDI, TWL and BCC further require that clusters in different omics

match each other. Clusternomics’ approach of representing global clusters as a Cartesian prod-

uct of omic-specific clusters is less suited to find signals that are weak but consistent across

many omics, and results in a high number of clusters. All methods except PSDF require a sam-

ple to belong to a coherent cluster in each of the omics, and PSDF is limited to only two omics.

Furthermore, all available methods are based on Bayesian statistics, which requires explicit

modeling of each omic, and is slow to optimize.

Here we present MONET (Multi Omic clustering by Non-Exhaustive Types), an algorithm

for detection of patient modules for multi-omic cancer data. MONET uses ideas from

MATISSE [19], an algorithm to detect gene modules, and generalizes its algorithmic approach

to multi-omic data. In MONET’s unique approach to multi-omic clustering, the goal is to

form patient modules, such that each module can use only a subset of the omics. Thus,

MONET can find patient modules with a common structure across some omics, and disregard

other omics in that module, allowing different omic subsets for different modules. Note that

this differs from ignoring an omic altogether, because an omic that is not used for one patient

module can be used for other modules. MONET’s solution allows outlier patients, who do not

belong to any module.

We show that MONET finds biologically and clinically relevant patient modules in several

datasets, giving results that compare favorably to those obtained from existent multi-omic
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clustering methods. Furthermore, we show that MONET is useful for other biomedical tasks,

as it successfully finds modules of genes, and of cells in single-cell data.

Methods

Overview

The input to MONET is a set of L omic matrices. Matrix l has n samples and pl features. The out-

put is a set of modules, where each module is a subset of the samples. Modules are disjoint, and

not all samples necessarily belong to a module. Samples not belonging to a module are called

lonely. Each module M is characterized by its samples, denoted samples(M), and by a set of omics

that it covers, denoted omics(M). Intuitively, samples(M) are similar to one another in omics(M).

MONET works in two phases. It first constructs an edge-weighted graph per omic, such

that nodes are samples and weights correspond to the similarity between samples in that omic.

In the second phase, it detects modules by looking for heavy subgraphs common to multiple

omic graphs.

Omic graphs

MONET constructs a graph Gl for each omic l separately. Gl is a full graph on n nodes. Denote

by siml(u, v) some similarity measure between samples u and v in omic l. The weight assigned

to edge (u, v) in omic l, denoted by wl(u, v), is given by a function of the similarity between

these two samples which we term "weighting scheme". This function is denoted f:

wlðu; vÞ ¼ fðsimlðu; vÞÞ

Fig 1. Actions performed by MONET when detecting heavy modules. Dots represent samples, and enclosing circles represent modules. The colors of

the enclosing circle represent the omics covered by the module. Panel E shows the current state–two modules, where the left module (α) is covered by two

omics and the right module (β) by one. An additional sample is lonely, i.e., does not belong to any module. Each other panel shows one action. B: the grey

sample is added to module α. C: the grey sample is removed from module α. F: the grey sample moves into module β. I: module β is split. H: an omic is

added to module β. G: an omic is removed from module α. D: modules α and β are merged. A: module α is discarded. In the shown case one of its samples

is added to module β, and the other two become lonely. Actions for splitting module with omic or by adding omic are not shown.

https://doi.org/10.1371/journal.pcbi.1008182.g001
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The weight of a module is defined as:

weightðMÞ ¼ Sl2omicsðMÞSu;v2samplesðMÞwlðu; vÞ

The optimization problem

MONET’s objective function is to find a disjoint set of modules M1,M2. . . maximizing

Siweight(Mi).

Importantly, we require that the weighting scheme returns values that are both positive and

negative. High positive values indicate that the two samples are similar and should belong to

the same module for omic l, while low negative values indicate the converse. A module with a

positive weight therefore contains samples that are on average highly similar in the omics cov-

ered by the module. If all edge weights are positive, modules will always improve their scores

by adding more samples and omics. Note that we present MONET here as a combinatorial

optimization problem, but for some weighting schemes, the weight of each edge has a probabi-

listic interpretation. In such cases, the weight of a module is interpreted as the score for a log-

likelihood ratio test for whether samples(M) form a module on omics(M), under the simplify-

ing assumption that modules and sample pairs are independent. More details on this probabi-

listic formulation are in the appendix.

To construct the omics graphs, any weighting scheme can be used. The scheme we used here is

as follows. We first apply NEMO [7], a multi-omic clustering algorithm we recently developed, to

each omic separately R times, each time on randomly selected 80% of the samples. We set cr
l ðu; vÞ

to 1 if samples u and v clustered together in the r’th run on omic l, and to 0 otherwise. Denote by

avgðcr
l Þ the average value of the cr

l matrix, and by R(u, v) the set of NEMO executions in which

both u and v were sampled. We set wlðu; vÞ ¼ meanr2Rðu;vÞðcr
l ðu; vÞ � avgðcr

l ÞÞ � C. The constant

C controls the balance between modules that cover one omic (higher C value) and modules that

cover multiple omics (lower C value). Here we used C = 0.2 and R = 100. For the classification

experiments we used a different weighting scheme, which is based on a Gaussian mixture model.

Its full details are in the appendix.

Heavy module detection

Given all the omic graphs, MONET now detects modules with high weight by maximizing the

objective function SMweight(M). There is no constraint on the number of modules, or an

upper bound on module sizes, so the weighting scheme must create both positive and negative

edges, otherwise the trivial optimal solution is a single module containing all patients and cov-

ering all omics. The problem of detecting heavy subgraphs in this setting is NP-hard even for

the case of a single graph [19]. We therefore developed an iterative greedy heuristic for detect-

ing heavy modules. The algorithm is initialized with a set of modules termed seeds. After seed

finding, at every iteration MONET considers several possible actions, described below, that

can increase the objective function. It then performs an action that provides the greatest

improvement.

◼ Seed finding: Seeds are found iteratively. The first seed is determined by constructing a

graph where edge weights are the sum of the edge weights in all individual omics, randomly

selecting a first sample, and constructing a module containing all omics, which contains the

first sample and its k neighbors with highest positive edge weights. All samples that were

assigned to a module are removed from the graph, and the next seed module is sought. The

procedure ends once S seeds were found. In this work we used S = 15 seeds for all datasets, and

k ¼ floor n
15

� �
.
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◼Optimization actions: Once a set of seeds is found, MONET improves the modules itera-

tively in a greedy manner. In each iteration, a module M0 is selected at random, and MONET

calculates the gain in the objective function from a set of possible actions concerning the mod-

ule. It then chooses the action with maximal gain. It stops when no action provides a gain in

any module. The actions considered are (see Fig 1):

- Add a sample to M0. All lonely samples are considered. Since we observed that this action

is commonly chosen in initial iterations when S and k are both small, we allowed up to 10 (or
n
50

if n>1000) samples to be added in a single action, to reduce the number of iterations.

- Remove a sample from M0.
- Move sample from module M0 to another module, or move a sample from another module

to M0. All possible samples and modules are considered. Similarly to adding samples, we allow

up to 10 (or n
50

if n>1000) sample switches in a single action.

- Add an additional omic to a module. All omics are considered.

- Remove an omic from a module. All the covered omics of the module are considered.

- Merge modules M0 and M@. The set of samples for the new module is samples(M0)[sam-
ples(M@). The omics for the new module are one of the following: 1. omics(M0)[omics(M@) 2.

omics(M0)\omics(M@) 3. omics(M0) 4. omics(M@). All four options are considered.

- Split M0 into two modules. For this action, a graph is constructed with nodes samples(M0),
and where the weight of the edge between u and v is Sl2omics(M0)wl(u, v). In this graph we find a

heavy subgraph M@, and create two modules, M@ and M\M@. The omics of both modules are

omics(M0).
- Discard M0. Each sample u in M0 is moved to the module M@ with the highest sum of

weights from u to M@ using omics(M@). If all these sums are negative, u is made lonely.

- Create a new module using all lonely samples. MONET finds a heavy subgraph in each

omic separately, and a module is created from the heaviest subgraph found.

- Split M0 by adding an omic. For every omic l=2omics(M0), MONET looks at the subgraph

induced by samples(M0) on Gl, denoted Gl[samples(M0)], and detects in it a heavy subgraph.

Denote the nodes of the heavy subgraph by U. We then split M0 into two modules. In one mod-

ule the nodes are U, and the omics are omics(M0)[{l}. In the second module the nodes are sam-
ples(M0)\U and the omics are omics(M0).

- Split M0 with an omic. As in the previous action, a heavy subgraph with nodes U is found

in Gl[samples(M0)], but here for every l2omics(M0). Two modules are constructed. In one the

nodes are samples(M0)\U and omics are omics(M0). In the other samples are U and the only

omic is l that produced the heavy subgraph.

MONET uses a parameter η for the minimum module size. Actions that reduce the number

of samples below η are not executed, and module splits are considered under this restriction.

Here we used Z ¼ max round n
30

� �
; 10

� �
.

To find a heavy subgraph in a graph, we use a heuristic based on Charikar’s 2-approxima-

tion to the problem of maximum density subgraph [20]. We iteratively find the node with low-

est (weighted) degree and remove it from the graph, until no node is left. We then choose the

heaviest of the sequence of subgraphs obtained during this process. The complexity of the heu-

ristic on an n-node weighted full graph is O(n2).

The MONET algorithm is guaranteed to converge to a local maximum, because the sum of

weights within all modules is increasing in each iteration. The algorithm stops when no action

on any module improves the objective.

In each iteration, all actions that do not involve finding heavy subgraphs consider each edge

in each of the omic graphs a constant number of times. The complexity of all these actions is

therefore O(Sl(n+|El|)), where El is the number of edges in Gl. The complexity of splitting a
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module and of creating a new module involves finding a heavy subgraph and is thus O(Sl(n+|

El|)+n2). For the last two actions, for the same reason, the same complexity is needed for each

omic considered for the split, and the overall complexity is O(L(Sl(n+|El|)+n2)), which is there-

fore the overall complexity of each iteration. For full graphs, this gives a worst case complexity

of O(L2n2). The space complexity is O(Ln2).

In a post-processing step we perform empirical significance testing to filter modules. Given

a module, we sample 500 modules of the same size and omics, and only keep the module if its

weight is in the highest 1%. In practice we only performed the testing for modules of minimal

size (η = 10 here), as we never found larger non-significant modules. Samples that do not

belong to any module after filtering are marked as lonely.

Since the algorithm for finding heavy modules is only guaranteed to converge to a local

maximum, the algorithm is repeated multiple times, and the best solution is returned. Unless

otherwise specified, we used 15 repeats for the analyses performed in this work.

Additional MONET features

◼Partial datasets: MONET can handle datasets where only a subset of the omics were mea-

sured for some samples. Such samples are added to all omic graphs, but in omics where these

samples were not measured their nodes have no edges. This way, omics in which no data were

measured for a sample do not affect the decision of assigning the sample to a module.

◼Sample classification after clustering: Once modules were calculated from the data,

MONET can naturally classify new samples into modules. For each module M, MONET calcu-

lates the gain in weight(M) from adding the new sample u to M: Sv2samples(M)wl(u, v), and clas-

sifies the sample to the module with maximal gain. If the gain is always negative, the sample is

not classified to any module. This computation takes O(nL) given that the edge weights were

already calculated.

Testing methodology

We applied MONET and several other algorithms to simulated, image and cancer datasets that

are described later. Here we outline the way we evaluated the results.

Clustering assessment. To assess a clustering solution where the true clustering of the

data is known, we used the Adjusted Rand Index (ARI) [21]. Note that the ARI can compare

solutions with different number of clusters and different cluster sizes. On cancer datasets from

TCGA we performed survival analysis to assess the distinction in survival between the different

groups of samples, and tested enrichment of known clinical parameters. For the survival analy-

sis we used a permutation-based approach to perform the log-rank test, since the widely used

asymptotical version of this test tends to overstate significance, and specifically for TCGA data

[22–24]. We also used permutation testing to assess the enrichment of clinical parameters [5].

The clinical parameters we considered were gender, age at diagnosis, pathological stage and

pathologic M, N and T. In addition we considered known subtype definitions—PAM50 for

breast cancer [25] and the French-American-British classification (FAB) for AML [26].

Partial datasets experiments. For cancer datasets, we sampled 40% of the patients, parti-

tioned them into three equal groups, and removed every group from one of the omics. For the

image dataset we removed 20% of the samples in each omic independently. We then applied

MONET to the data and calculated ARI with MONET’s solution on all data. We repeated this

experiment 10 times.

Classification experiments. to perform experiments on a dataset we first applied

MONET to it. Denote MONET’s solution by Solall. We then partitioned the samples in the

dataset into 10 equal folds. For every fold i, we applied MONET to all samples except those in
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the fold, and denote the solution by Soli. We define the stability of the fold to be ARI(Solall,Soli)
where the ARI is computed using only samples that appear in both Solall and Soli. We then clas-

sified the held out samples to the modules from Soli, and denote the solution after classification

by ^Soli . We define the Rand Index following classification (RFC) of the fold to be

ARIðSolall; ^SoliÞ, where the ARI is now measured across all samples. For datasets where the

ground truth is known we also measured ARI(ground_truth,Soli), and ARIðground truth; ^Soli),
and term them the pre-classification accuracy (preCA) and post-classification accuracy
(postCA) respectively.

Simulations. The simulations are described in the appendix.

Ovarian cancer analysis. To check the clustering solution for enrichment of clinical

parameters we used chi-squared test for discrete features (e.g. tumor stage) and Kruskal-Wallis

for numeric ones (e.g. age). We also used chi-square to test for enrichment of mutations and

used Benjamini-Hochberg to correct for multiple hypotheses. To find genes and miRNAs that

are highly expressed in a module, we performed a one sided t-test (with α = 0.05) comparing

the expression level in the module and the rest of the samples (after log normalization) and

corrected for multiple hypotheses with Benjamini-Hochberg. Survival analysis was performed

as described for the other TCGA datasets. To determine differential survival while controlling

for the age and stage, we fitted a Cox multivariate proportional hazard model.

Results

Simulated datasets

We first performed two simulations to test MONET’s approach to multi-omics clustering. In

the first, we simulated 300 samples from five equal-size modules in two omics. Module 1 cov-

ers only the first omic, module 2 only the second omic, and modules 3–5 cover both omics

(Fig A in S1 Appendix). We added five outlier samples that do not belong to any module.

MONET correctly identified the modules (ARI = 0.92) and their corresponding omics (Fig B

in S1 Appendix). In another experiment, we simulated 150 samples from five modules in

three omics (Fig C in S1 Appendix). Module 1 covers all omics. Modules 2–5 cover all omics,

are indistinguishable in omic 1, but belong to different clusters in omics 2 and 3. Only a small

number of features separate the modules in omic 2, so the signal in omic 2 is weak. When pre-

sented with only omics 1 and 2, MONET identified module 1 but chose to treat modules 2–5

as one module that only covers the first omic (Fig D in S1 Appendix). When faced with omic

3 as well, the ARI equaled 1, and MONET identified these samples as coming from different

modules that cover all omics (except for one module whose samples were very different in

omic 2, which does not cover that omic) (Fig E in S1 Appendix). These simulations highlight

MONET’s approach to multi-omic integration, where sample modules can cover only a subset

of the omics, based on the strength of the clustering structure in these omics. Full details on

the simulations are in the appendix.

Digits dataset

We next tested MONET in a dataset where the ground truth is known. The dataset [27] con-

tains six types of features ("omics") of 2000 images of the handwritten digits 0–9. For most

tests, we used 400 images. See additional details in the appendix.

We applied MONET and seven other methods to the data. We chose BCC, MDI, Cluster-

nomics and TWL, which model disagreement between omics. We also chose SNF and NEMO

to represent general multi-omic clustering methods. SNF is widely used, and we recently

showed NEMO’s high performance [7]. We also included MOFA+ [8], a widely used multi-
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omic dimension reduction method. While MOFA was not developed specifically to cluster

samples, its low dimensional representation can be used to cluster samples. Each method clus-

tered the data into 10 groups. Note that MONET cannot get as input the number of modules,

so we instead shifted the edge weights of the omic graphs to encourage about 10 modules (see

details in the appendix). Fig 2A shows that MONET outperformed the other methods that

model omic disagreement, and was comparable to SNF and NEMO. When ignoring lonely

samples, MONET was slightly better than SNF and NEMO. Several modules found by

MONET covered only a subset of the omics, suggesting a different structure in different omics

(Fig E in S1 Appendix). Methods modeling omic disagreement were much slower than SNF,

NEMO and MONET, which required a few seconds or minutes (Fig 2B).

In order to test MONET’s scalability to thousands of samples, we also executed MONET on

all 2000 images in the dataset. MONET took almost six hours to run, compared to less than

ten minutes on 400 images. This was mainly due to increased runtime per iteration, but also

because more iterations were required for convergence (Fig G in S1 Appendix). The perfor-

mance was largely unchanged, with the ARI decreasing from 0.79 to 0.78.

Cancer datasets

We next executed the same eight methods on real cancer datasets from TCGA, each containing

three omics: mRNA expression, DNA methylation and miRNA expression. We used ten cancer

types: Acute Myeloid Leukemia (AML), Breast Invasive Carcinoma (BIC), Colon Adenocarci-

noma, Glioblastoma Multiforme (GBM), Kidney Renal Clear Cell Carcinoma (KRCCC), Liver

Hepatocellular Carcinoma, Lung Squamous Cell Carcinoma (LUSC), Skin Cutaneous Mela-

noma, Ovarian serous cystadenocarcinoma and Sarcoma. Dataset sizes ranged from 170 to 621

patients. Full details on the datasets are available in our recent benchmark [5]. We used differ-

ential survival between clusters as an assessment criterion for the quality of a clustering solution

(see Methods). MONET’s modules for all cancer datasets are available in S1 Supporting Data.

As we can see in Fig 2C, MONET and NEMO had the highest number of cancer types with

significantly different survival (at significance level 0.05), with 6 such types. MDI came next

with 5, and the other methods had 3–4. Remarkably, in our recent benchmark, eight other

multi-omic clustering methods, including the factorization-based methods iClusterBayes and

MultiNMF, achieved significance for at most five cancer types. NEMO and MONET were also

the best performers in terms of the number of subtypes with enriched clinical parameters (Fig

2D). The cancer types for which MONET and NEMO obtained a significant difference in sur-

vival were not identical. While both had different survival in AML, GBM, liver hepatocellular

carcinoma and Sarcoma, NEMO found differential survival in BIC and melanoma, and

MONET in KRCCC and ovarian cancer. Such a difference was also evident in the clinical

parameters: NEMO found an enrichment in melanoma, while MONET found in LUSC. These

results suggest that NEMO and MONET can be used complementarily. In terms of runtime,

SNF and NEMO required seconds per dataset, MONET and MOFA+ a few minutes, and the

remaining methods were an order of magnitude slower (Fig 2E).

The number of clusters chosen varied considerably among algorithms (Fig H in S1 Appen-

dix). SNF had a mean of 2.8, TWL 3.4, NEMO, MONET and BCC 4–5, MOFA+ 5.7, MDI 8.9

and Clusternomics 26.5. The high numbers of MDI and Clusternomics are possibly due to

attempting to model clustering in each individual omic. The log-rank p-value, number of

enriched clinical labels, running time and number of clusters for each method and dataset are

presented in Tables A-D in S1 Appendix.

MONET discovered modules that use different combinations of omics (Fig 2F). Most of

the modules were based on only a single omic, and for several cancer types all modules covered
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only one omic. For some cancer types, this omic was the same for all modules, signifying a

strong clustering structure in that omic. In none of the cancer types the solution contained

only modules that covered all omics. These results suggest that different omics may have dif-

ferent structures, and that MONET reveals such differences. MONET also reported several

(between 0 and 14) lonely samples per cancer (Fig I in S1 Appendix).

Since MONET is only guaranteed to converge to a local optimum, we experimented with

using different numbers of restarts. In addition to the above results, which used 15 restarts, we

also executed MONET with 1 and 50 restarts. For both 1 and 50 restarts, 6 cancer datasets

were significantly associated with survival. The number of datasets with enriched clinical labels

was 8 for one restart, and increased from 8 to 9 for 50 restarts, suggesting that MONET may

benefit from more iterations. However, the clustering results of different restarts were gener-

ally similar to one another (Fig J in S1 Appendix).

Additional analysis of the cancer results

We examined in more detail the clustering solution of MONET on the 287-patient ovarian

cancer dataset. MONET found four modules in this dataset, with sizes 22, 63, 77 and 115,

named M1-M4, and identified 10 samples as outliers (see Fig K in S1 Appendix for the feature

heatmaps). While SNF and MDI seek to integrate structure across all omics (Fig 3A), MONET

chooses the omics covered by each module. In its solution all modules cover the gene expres-

sion omic, and M1 also covers miRNA expression (Fig 3B). To assess the clinical relevance of

MONET’s modules, we examined the distribution of different clinical parameters across the

modules. The modules showed significant differential survival (p = 0.036, Fig 3C), with M2

showing significantly better survival than the others (p = 4e-3). The modules showed differen-

tial survival even after correcting for age at diagnosis and clinical stage (p = 2e-4 using a Cox

proportional hazards model). None of the other clustering algorithms found a solution with a

significant difference in survival (Fig 3D). The modules were not significantly dependent of

the clinical stage (0.056, chi-square test, 0.08 for Kruskal-Wallis), and they were enriched for

Fig 2. Performance results. A-B: Digits dataset. A: ARI of methods for multi-omic clustering. B: Run time. C-F: Results on ten TCGA cancer datasets. C: Number of

cancer subtypes for which each method found a clustering with statistically different survival. D: Number of cancer subtypes for which each method found a clustering

with an enrichment of a known clinical label. E: Run time. F: Number of MONET modules that cover each subset of omics.

https://doi.org/10.1371/journal.pcbi.1008182.g002
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venous invasion status (8e-4, chi-square test, Table E in S1 Appendix) and for age at initial

diagnosis (p = 7e-3 by Kruskal-Wallis, Fig L in S1 Appendix). No module was enriched for

any mutation from a list of known driver mutations reported in TCGA’s analysis of ovarian

cancer [11] (see Table F in S1 Appendix).

We next characterized each module in more detail using clinical parameters and GO

enrichment analysis (performed with Gorilla [28]) of differentially expressed genes with high

module expression (see Methods). M1 had younger patients (p = 0.02, Wilcoxon test). It was

the only module that included the miRNA omic. We found 21 miRNAs that were highly differ-

entially expressed in M1’s patients (Fig 3E, Table G in S1 Appendix), including mir-514,

which was far higher on samples in M1 compared to all other samples (Fig 3F). It was recently

reported to regulate proliferation and cisplatin chemoresistance in ovarian cancer [29]. M2

had significantly better survival, and its highly expressed genes were enriched for immune

response. M3 was characterized by older samples (p = 4e-3, Wilcoxon test) without venous

invasion (p = 2e-4, chi-square), and upregulation of genes involved in microtubule-based pro-

cess (e.g. TUBB2B, TUBB4A). Finally, samples in M4 were enriched for venous invasion

(p = 0.02, chi-square) and high expression of immune response and extracellular matrix orga-

nization related genes (e.g. MMP9 and multiple collagen subunits).

To understand the differences between M2 and M4, we found genes differentially expressed

between them. M4 had higher expression of genes related to cell adhesion (e.g. collagen sub-

units), extracellular matrix (ECM) organization, and regulation of developmental process (e.g.

WNT7A, WNT7B). Both the extracellular matrix and WNT signaling were previously reported

to regulate ovarian cancer progression [30,31], and may explain the difference in venous inva-

sion and survival between the modules. The high expression of ECM proteins may link M4

with the previously reported Mesenchymal subtype [11].

We also executed NEMO and MONET on each individual omic in the ovarian cancer data.

MONET found a significant separation in survival for each omic individually (p-value 0.04–

Fig 3. Analysis of ovarian cancer. A. t-sne [32] visualization of the solutions obtained by SNF, MDI and MONET on the data. Samples are colored by their assigned

module. In MONET’s panels, lonely samples are black. B. Omics covered by each MONET module. Columns are omics and rows are modules. C. Kaplan-Meier plot for

the different MONET modules. D. p-value of the log-rank test for the clustering solutions of different methods. E. Comparison of miRNA expression for samples in

MONET’s Module 1 (x axis) and other samples (y axis). Genes that are significantly highly expressed in Module 1 are colored in red. F. Distribution of mir-514

expression in samples in Module 1 (red) and in other samples (black).

https://doi.org/10.1371/journal.pcbi.1008182.g003
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0.05 in all omics), while NEMO did not find such separation for any. This shows MONET’s

effectiveness as a single-omic clustering approach (in this setting it is very similar to Matisse).

We observed that in several cases MONET used omics that were especially relevant for a

specific dataset. For example, MONET’s solution on GBM used only methylation in all mod-

ules. We executed spectral clustering and NEMO on each GBM omic separately and both algo-

rithms found a solution with significant difference in survival only for the methylation dataset

(p-value < 0.001 in both cases). Note however that MONET’s solution often uses multiple

omics (see Fig 2F for all cancer datasets and Figs M-N in S1 Appendix for the solutions on

BIC and Sarcoma).

One of the main advantages of Bayesian methods is that they associate a posterior probabil-

ity for each sample to belong to each cluster. MONET also provides a quantitative measure for

the association between a sample and a module: the sum of weights between the sample and all

the module’s samples across all omics covered by the module. A similar association score can

also be calculated for each omic separately (see Fig O in S1 Appendix for the scores for the

ovarian cancer dataset). These scores can assist in better understanding of the data, on top of

the binary module memberships. For example, Fig O in S1 Appendix shows that M1 has a

weak structure in both the omics it covers, while the three other modules differ greatly in gene

expression. The score also suggests that M3 samples have some similarity in methylation, as is

also suggested by Fig K in S1 Appendix, though this level of similarity is not sufficient for M3

to cover the methylation omic. These observations appear consistent with the t-SNE plot for

the data (Fig 3A).

Partial datasets

Often in multi-omic datasets, some samples have measurements for only a subset of the omics.

Such datasets are called partial. MONET can address such datasets by assigning edge weight 0

to samples in the omics that were not measured. We tested this ability using the Sarcoma data-

set, which had modules covering all omics, and using the digits dataset. In each dataset we ran-

domly removed samples from some omics (see Methods), applied MONET, and compared its

solution to the solution using all samples, and to the ground truth in case of the digits dataset.

The results are presented in Fig 4A and Fig 4B.

MONET’s output on the digits dataset was quite robust, with only a slight deterioration in

performance. The Sarcoma results were stable as well, but the stability highly varied between

the omics from which samples were removed. Samples removed from the gene expression

omic had lower ARI compared to samples removed from other omics, possibly indicating that

MONET’s solution is highly affected by that omic for that dataset. The ARI slightly differed for

samples in the digits dataset as well depending on the omic from which they were removed

(Fig P in S1 Appendix). These results suggest that MONET can be robustly applied to partial

datasets.

Classification

Given a clustering solution, MONET supports classification of new samples into modules (see

Methods). We tested MONET’s robustness and classification on the Sarcoma and digits data-

sets. For each dataset we performed an unsupervised version of 10-fold cross validation. We

define the stability of a fold as the ARI between MONET’s solution on all samples and MON-

ET’s solution for the current fold (which excludes 10% of the samples). We define the Rand
Index following classification (RFC) of a fold as the ARI between MONET’s solution on all sam-

ples and its solution on the fold following the classification of the 10% held out samples (see

Methods). For the digits dataset, we also compared the result of every fold to the ground truth,
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with and without the 10% of held out samples, and term them the pre-classification accuracy
(preCA) and post-classification accuracy (postCA). Note that we used here the Gaussian mix-

ture weighting scheme (which is described in the appendix), as in order to perform classifica-

tion MONET calculates the edge weights for the new samples.

The results are presented in Fig 4C and Fig 4D. In the runs on the digits dataset, both the

stability and RFC are high. 45 (11%) of the images were not classified to a module, as no mod-

ule with positive classification score was found for them. In the runs on the Sarcoma dataset

the results are only moderately stable, but the RFC is as high as the stability. This suggests that

the classification is accurate, and that decrease in performance stems largely from the different

clustering structure that is obtained from sampling the datasets. All samples were classified in

this dataset. Overall, these results show that MONET’s framework can be used to perform clas-

sification given new samples.

Fig 4. Performance of MONET on partial datasets and in classification. A. ARI on a partial version of the digits dataset compared to

its solution on the full dataset and to the ground truth. B. ARI on a partial version of the Sarcoma dataset compared to its solution on

all samples. Shown is the ARI for samples that were dropped from each one of the omics (three left boxplots), and for all the samples in

the dataset (rightmost boxplot). C. Performance in classification experiments on the digits dataset. See Methods for the assessment

criteria. D. Performance in classification experiments on the Sarcoma dataset. All boxplots are distributions over 10 random runs.

https://doi.org/10.1371/journal.pcbi.1008182.g004
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Other biological tasks: Gene and single cell clustering

We next tested MONET on additional biological tasks. We used MONET to cluster 1532

genes measured by both RNA-seq and microarrays of the BIC TCGA dataset that exhibited

high variance in both these omics. We used BIC because of its large sample size, and to demon-

strate MONET’s utility for in-depth analysis on an additional cancer type. MONET reported

five main gene modules (Fig 5A, Fig Q in S1 Appendix). We used Gorilla [28] to perform

enrichment analysis for these gene modules. Reassuringly, we found enrichment of biological

processes that vary across breast cancer patients in several modules, including "mitotic cell

cycle process", "immune system process", and "extracellular matrix organization". As expected,

all gene modules covered both omics.

Finally, we applied MONET to single-cell data. Argelaguet et al. recently developed scNMT,

a method that measured gene expression, DNA methylation and DNA accessibility at single

cell resolution, and applied it to mouse embryos at embryonic days 4.5–7.5 [33]. We applied

MONET to the gene expression and promoter methylation data of 619 single cells (Fig 5B and

5C). The modules obtained were highly enriched for specific cell types and embryonic days of

development (Tables H-J in S1 Appendix). Several modules, across different cell types and

stages of development, covered both omics, reflecting the widespread changes in expression

and methylation during the onset of gastrulation [34,35]. Other modules used only gene

expression, suggesting an overall stronger distinction between cell types at the expression level.

One module covered only DNA methylation. This module comprised cells from different cell

Fig 5. Using MONET to cluster genes and single cells. A. Gene clustering. t-sne visualization of MONET’s gene modules on the BIC dataset. Genes are colored by

MONET’s output. Lonely samples are colored in black. B-C. Single cell clustering based on gene expression and DNA methylation of promoters, using the scNMT

mouse embryonic development dataset. B. Like A, for MONET’s solution on the dataset. C. Module omics identified by MONET. Rows represent modules and

columns correspond to omics. Colored panels indicate that the module covers the omic.

https://doi.org/10.1371/journal.pcbi.1008182.g005
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types at E7.5, including cells from all germ layers, again highlighting that while the transcrip-

tional signatures of different cell types differ at that stage, the promoter methylation profile of

the different germ layers is still quite similar [33]. Overall, these results demonstrate that

MONET can be applied and lead to insights in diverse biological scenarios.

Discussion

We presented MONET, a novel multi-omic clustering algorithm. MONET can identify mod-

ules with structures present in some of the omics, without imposing these structures on other

omics. MONET can also identify samples that do not fit any detected module. State-of-the-art

methods that seek clusters across all omics often perform quite well, and structures that span

all omics have been observed in many studies. We view these approaches as complementary to

MONET, and suggest using both for multi-omic analysis. That is, data analysis can benefit

from using both MONET as well as other algorithms that seek a common structure, and each

of these approaches will reveal different aspects of the data.

It is challenging to interpret omics data and its clustering in the face of disagreement

between omics. From a data analysis point of view, as we noted before, one can use different

tools for the analysis. Methods that assume agreement between omics can be used, together

with different formulations for omic disagreement: omic-specific clusters, omic-specific devia-

tions from a global clustering solution, or clusters that apply in only a subset of the omics.

From a biological point of view, a different structure between omics can reveal insight on bio-

logical regulation and disease. For example, for biological regulation, it is interesting to dis-

cover gene modules that are co-expressed but are not highly correlated on the protein level. As

another example, in disease, the GBM G-CIMP subtype is associated with IDH mutations and

a characteristic methylation phenotype, while its expression profile does not define the subtype

as distinctly [36].

The edge weighting in MONET’s omic graphs can be done by schemes tailored to the omic

and data, allowing flexibility in the analysis. The weighting schemes used here to cluster

patients, genes, and single-cells show MONET’s ability in different biomedical domains. The

weighting scheme can also shift the balance between modules with single or multiple omics, or

place more emphasis on one particular omic.

Most multi-omic analysis methods assume that samples are present in all omics. This is

rarely the case in datasets available today, such as TCGA. It is also likely that partial datasets

will be prevalent in single-cell analysis, where measuring multiple omics from a cell is just

beginning and is experimentally challenging. MONET’s ability to analyze partial datasets will

make it valuable in this setting.

MONET has several limitations. Using different weighting schemes allows flexibility, but it

can be challenging to choose one that balances finding omic-specific signals and signals rein-

forced by different omics. The optimization problem MONET solves is NP-hard, so the algo-

rithm is heuristic. Adding new actions to MONET’s heavy subgraph algorithm can improve its

output. While MONET is faster than methods modeling disagreement between omics and can

easily be run on today’s datasets, which contain hundreds of samples, it is currently not scal-

able to more than a few thousand samples. Future work can improve MONET’s runtime, for

example by removing edges in the omic graphs, or by discretizing the edge weights, which

allows a more efficient implementation of Charikar’s algorithm. The potential of MONET for

classification warrants further validation in the cancer context. Finally, as MONET does not

model the features in the dataset, understanding the molecular differences between modules

requires additional analysis.
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Code availability

Code for MONET and for reproducing all results in this paper is in Github: https://github.

com/Shamir-Lab/MONET.

Supporting information

S1 Appendix. Additional implementation details, and supporting figures and tables.

(DOCX)

S1 Supporting data MONET’s clustering results on the TCGA and scNMT datasets.

(ZIP)
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