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Abstract 

Cancer is the second leading cause of death worldwide. It is characterized by abnormal cell 

proliferation, potentially followed by spreading into surrounding tissue and body organs. Cancer 

is challenging to treat since it is very heterogeneous: even tumors originating from the same 

organ can greatly vary in their biological mechanism, survival risk, and response to treatment.  

Recent years have shown the emergence of large cancer genomic projects, providing detailed 

multi-omic profiles together with clinical information for thousands of cancer samples. In line 

with the vision of precision medicine, integration of omic and clinical data using statistical and 

algorithmic methods allows us to computationally identify clinically distinct subgroups that may 

have a profound impact on diagnosis, drug discovery, and treatment. 

In this work, we developed a methodology for improving the classification of cancers based on 

high-throughput omic data and applied it to both breast and skin cancers. Our analysis of the 

breast cancer cohort revealed a significant heterogeneity within the luminal-A subtype and 

partitioned its samples into prognostic subgroups based on expression and methylation patterns. 

Our analysis of the skin cancer cohort identified a group of poor-prognosis melanoma samples 

characterized by melanogenesis genes. We also suggested a simple three-gene classifier for 

predicting melanoma subtypes.  Lastly, we describe PROMO, an interactive software tool we 

developed for multi-omic cancer data analysis and subtyping that generalizes the methodology 

used in the breast and skin cancer projects. 
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1.  Introduction 
 

1.1. Cancer 

1.1.1. Introduction to cancer 

Cancer is a large group of diseases characterized by uncontrolled proliferation of the body cells, 

with the potential of spreading into surrounding tissues. Cancer is the second leading cause of 

death worldwide [1]. In 2018, about 1 in 6 deaths worldwide occurred due to cancer, with 

estimates of 9.6 million deaths and 18.1 million incidents of cancer occurring globally [2][3]. 

Cancer can occur in all body parts, but lung, breast, and colorectal cancers are the most common 

types of cancer worldwide (Figures 1.1-1.3) [2]. Lung cancer was the most common cancer in 

men worldwide. For women, breast cancer was the most frequently diagnosed cancer in most 

countries, as well as the most frequent cause of death from cancer. As the world population is 

growing and aging, global cancer incidents are on the rise and projected to increase by more 

than 60% by the year 2040, making cancer a significant health and economic burden worldwide 

[2].  

 

Figure 1.1: Estimated number of worldwide incidents and deaths from different types of cancer. Image 

source: [2] 
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Figure 1.2: Estimated worldwide age-standardized incidence rates of cancer. Image source: [2].  

 

 

Figure 1.3: Top cancer site per country in 2018. Breast cancer is the most frequent top cancer sites, followed by 

prostate and cervix uteri cancers. Image source: [2] 
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Cancer develops through a multi-step process by which normal cells transform into malignant 

cells in a sequence of genetic and epigenetic changes (Figure 1.4). These changes allow the 

transformed cells to increase their proliferation rate and acquire new properties. The growing 

mass of transformed cells is initially localized to their site of origin (also called a primary or an in 

situ cancer). However, additional changes occurring within the proliferating tumor cells may 

cause them to break away from the primary tumor and invade healthy tissues or enter the blood 

or lymph. These invading cells may travel through the bloodstream or lymphatic system to set 

up new colonies of cancer in distant sites, called metastases. Most deaths associated with cancer 

result from metastases, as the invading cells damage healthy tissues and compromise organ 

functions [4]. 

 

Figure 1.4: The development of a malignant tumor (cancer). Tumors develop from normal cells through a 

series of genetic alternations that enable them to increase their proliferation rate and acquire new 

properties. The localized mass of altered cells is called an in situ cancer. Additional changes in the cells may 

cause them to break away from the tumor and invade normal tissues or enter the blood or lymph. These 

invading cells may set up new colonies of cancer (called metastases) at distant sites. Source: [4].   

In a seminal paper published in 2000, D. Hanahan and R. Weinberg attempted to reduce the 

complexity of the body of knowledge regarding the changes occurring during tumor 

development into six underlying principles, which they called "The hallmarks of cancer" (Figure 

1.5A) [5]. The hallmarks that the authors define in the paper are (1) Cancer cells acquire the 

ability to stimulate their own growth ("self-sufficiency in growth signals"); (2) They become 

resistant to inhibitory signals that might otherwise stop their growth ("insensitivity to anti-

growth signals"); (3) They evade their programmed cell death ("evading apoptosis"); (4) They 

acquire the ability to multiply indefinitely ("limitless replicative potential"); (5) They stimulate 

the growth of blood vessels to support further growth of the tumor by supplying nutrients 

https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Self-sufficiency_in_growth_signals
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Insensitivity_to_anti-growth_signals
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Insensitivity_to_anti-growth_signals
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Evading_programmed_cell_death
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Limitless_replicative_potential
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("sustained angiogenesis"); (6) They invade local tissue and spread to distant sites ("tissue 

invasion and metastasis"). Highlighting a small number of underlying principles common to many 

cancers is essential because it provided an organizational framework of cellular properties 

uncovered during tumorigenesis [6]. This framework improved the understanding of cancer 

biology and, in a sense, portrayed different types of cancer according to their hallmark 

characteristics.  

A decade letter, Hanahan and Weinberg published a second, related paper that added two 

emerging hallmarks: reprogramming energy metabolism and evading immune response, and 

two enabling characteristics: genome instability and mutation, and tumor-promoting 

inflammation (Figure 1.5B). Of particular interest to us and of relevance to this thesis, was the 

emphasis on the interplay between cancer and the adaptive immune system, as an association 

between immune gene expression and cancer variability, as well as patient survival, was evident 

in our cancer data analyses.  By the theory of cancer immunoediting, the interaction between 

the evolving tumor and its host's immune system is composed of three phases: elimination, 

equilibrium, and escape [7]. Whereas during the elimination phase, a competent immune system 

is still capable of destroying transformed cells, in the equilibrium phase, sporadic tumor cells 

evade destruction by the immune system and undergo immunoediting, which allows the tumor 

to evolve under immune selection. Finally, the immunologically sculpted tumors manage to 

escape the immune attack, which allows them to establish an immunosuppressive tumor 

microenvironment, to increase their proliferation rate, and finally also to metastasize [8].  As 

various routes are available through the process of immunoediting, even tumors of the same 

type may significantly differ in their immunogenicity, which is the ability of a substance to induce 

an immune response [9]. Further, the activity of the immune system in cancer patients, such as 

the presence of tumor-infiltrating lymphocytes (TILs) was shown to correlate with prognosis and 

with the response to treatment in several types of cancer [10][11]. 

  

 

 

 

https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Sustained_angiogenesis
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Tissue_invasion_and_metastasis
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Tissue_invasion_and_metastasis
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Figure 1.5: The hallmarks of cancer (A) The six hallmarks of cancer as defined by Hanahan and Weinberg, 

2000 [5]  (B) additional emerging hallmarks and enabling characteristics as defined by Hanahan and 

Weinberg., 2011 [12]. Image source: [5] [12] 

  

A 

B 
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Classic treatments for cancer include surgery, radiation, chemotherapy, or a combination of two 

or more of these. Recent advancements in cancer treatment introduced new treatments such as 

immunotherapy (boosting the responsiveness of the patient's immune system to fight the tumor 

more effectively), hormone therapy (slowing down hormone-dependent tumors such as breast 

or prostate cancers) and targeted therapies (targeting specific cancer deregulated proteins) [11]. 

With the advancements of our understanding of the variability within each cancer type, it is 

hoped that new subtype-specific treatment will be developed as part of the precision medicine 

approach.  The development of such subtype-specific drugs depends on our ability to define 

clinically distinct tumor subtypes and to accurately classify tumors into subtypes based on 

informative biomarkers. 

1.1.2. Breast cancer 

Breast cancer is a heterogeneous disease exhibiting high tumor variability in terms of the 

underlying biological mechanisms, response to treatment, and overall survival rate [13].  

Originally, therapeutic decisions in breast cancer were guided by clinicopathological parameters 

like tumor size, presence of lymph-node/remote metastases and histological grade.  In addition, 

the status of three immunohistochemistry biomarkers - estrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER2/ERBB2) allowed the 

development of targeted therapies and proved predictive of treatment response [14].  

With the emergence of global molecular profiling techniques, large genomic datasets became 

available for subtype discovery using unsupervised algorithms.  By this methodology, breast 

samples are partitioned into subgroups using clustering algorithms, such as hierarchical 

clustering [15] or K-Means, and then subgroup significance is evaluated using the clinical data 

associated with the samples.   

Initially, microarray data were used to define four molecular breast cancer subtypes (basal-like, 

HER2-enriched, luminal and normal-like) based on characteristic gene expression signatures in 

correlation with clinical data [16]. These molecular subtypes showed a reasonable correlation 

with the immunohistochemistry biomarker-based classification. Thus, basal-like samples are 

mostly triple-negative (ER-/PR-/Her2-), luminal samples are mostly ER+, and Her2 tumors are 

characterized by amplification and high expression of the ERBB2/HER2 gene [17][18]. 

Subsequent analysis conducted on a larger dataset separated the luminal subtype into two 

distinct subgroups named luminal-A and luminal-B. Luminal-B cancers have a higher expression 

of proliferation genes including Ki-67, and confer worse prognosis [19][20][21]. Moreover, 
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luminal-B cancers respond better to chemotherapy, while patients with luminal-A cancers 

benefit most from antiestrogen treatment [22].    

As the partitioning of breast tumors into five molecular subtypes gained acceptance and 

popularity, several expression-based predictors have been developed. A central predictor is 

PAM50, which maps a tumor sample to one of the five subtypes based on the gene expression 

pattern of 50 genes [23]. Though expected to be more robust than traditional classification 

systems that rely only on a few biomarkers, the separation between luminal-A and luminal-B by 

the various predictors is not consistent, suggesting that these molecular subtypes may not 

represent distinct coherent sample groups [24].  

Other attempts to classify breast tumors were based on other profiling technologies such as 

miRNA arrays [25][26], copy number variations [27] or a combination of several different 

technologies [28][29]. The various studies show different levels of agreement with the 

expression-based molecular subtypes, but taken together, they strongly indicate the existence 

of additional, more subtle subtypes than the PAM50 subtypes[30].  

Epigenetic modifications such as DNA methylation arrays, which measure the methylation status 

of thousands of CpG sites across the genome [31], were also used for breast cancer classification.  

DNA methylation changes were shown to play a pivotal role in cancer initiation and progression 

[32]-[33]. Particularly, promoter hyper-methylation was associated with the silencing of tumor 

suppressor genes [34]. Several studies associated breast cancer molecular subtypes with specific 

methylation patterns [35], while others showed that methylation data might reveal additional 

complexity not captured on the expression level, possibly identifying finer patient groups of 

clinical importance [36].  

Further improving the classification of breast tumors into clinically significant subtypes as well 

as accurate identification of the unique biological features characterizing each subtype is pivotal 

for improving our understanding of the disease, identifying subtype-specific biomarkers, 

targeted drug development and better prediction of response to treatment. 
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1.1.3. Cutaneous melanoma 

Cutaneous melanoma is the most lethal form of skin cancer, showing a continuous rise in 

worldwide incidence over the past several decades [37][38][39]. Melanoma tumors develop by 

uncontrolled proliferation of melanocytes, the pigment-producing cells of the skin [40]. Primary 

melanoma tumors are regularly localized to the skin and are usually curable by excision when 

detected early [41]. However, melanoma tumors tend to metastasize rapidly into surrounding 

tissues and distant organs and are therefore considerably more challenging to cure at later stages 

[42].  

Melanoma tumors are heterogeneous and show high diversity in their biological characteristics, 

metastatic potential, survival risk, and response to treatment [43]. Therefore, the stratification 

of melanoma tumors into clinically distinct, prognostic subtypes is crucial for accurate diagnosis, 

treatment guidance, and subtype-specific drug development. For the past 40 years, a 

clinicopathological system has been used to classify primary melanomas into four major 

subtypes (superficial spreading, nodular, lentigo maligna, and acral lentiginous) based on clinical 

and pathological features [44][45]. Although beneficial for diagnosis, this classification showed 

limited clinical relevance, especially for prognosis and treatment guidance [44].  

With the emergence of high-throughput genomic technologies, several commonly mutated 

genes that play a central role in melanoma tumorigenesis and metastasis, such as BRAF, NRAS, 

and NF1, were identified. These findings significantly advanced the understanding of melanoma 

progression and led to the development of targeted therapies that have improved patient 

survival [46][47]. 

In 2015, The Cancer Genome Atlas (TCGA) reported on a study of 331 melanoma patients using 

six different high-throughput omic technologies [48]. The study partitioned melanoma tumors 

(both primary and metastatic) based on the pattern of the most prevalent mutated genes into 

four subtypes: BRAF, NRAS, NF1, and WT [48]. While this mutation-based classification has 

proven beneficial for highlighting key potential subtype-specific drug targets, it provides little 

prognostic value.  

The same study also suggested a transcriptomics-based classification, which divided melanoma 

tumors (both primary and metastasis) into three prognostic groups: high-immune, keratin, and 

MITF-low [48]. The high-immune group showed the best 10-year survival and was characterized 

by the over-expression of many immune genes. The keratin group contained most of the primary 

tumors, conferred the worst survival (possibly due to a bias of large primary-tumor thickness in 

the TCGA cohort), and was characterized by over-expression of keratin, pigmentation, and 
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epithelial genes. Lastly, the MITF-low group showed medium survival and was characterized by 

the under-expression of keratin and pigmentation genes. Interestingly, these three 

transcriptomic sample groups showed little agreement with the mutation-based groups. 

Moreover, the keratin transcriptomic group showed low consistency in terms of both the 

expression-profiles and the clinical labels of its comprising samples, possibly suggesting the need 

for a more refined transcriptomic tumor classification.  

For improving the survival of metastatic melanoma, a better understanding of its development 

as well as of its various subtypes is required, in addition to identifying informative biomarkers 

capable of predicting patient prognosis and response to specific treatments.  
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1.2. The era of omics and personalized medicine 

1.2.1. High-throughput omic technologies and the multi-omics era 

The "central dogma of molecular biology", stated by Francis Crick in 1957, is a framework for 

describing the flow of genetic information between DNA, RNA, and proteins in biological systems 

[49][50] (Figures 1.6 and 1.7). The framework includes three general information transfers that 

describe the normal flow of biological information: DNA can be copied to DNA (DNA replication), 

DNA information can be copied into mRNA (transcription or gene expression), and mRNA can be 

used as a template for synthesizing proteins (translation or protein expression). The framework 

also includes three special information transfers that occur only under specific conditions in case 

of some viruses or in a laboratory: RNA can be copied from RNA (RNA replication), DNA can be 

synthesized from an RNA template (reverse transcription), and proteins can be synthesized 

directly from a DNA template without the use of mRNA [51]. Several exceptions to the dogma 

have been discovered in time (such as Prions, which are self-replicating proteins[52]), but the 

dogma is still useful in organizing our knowledge of genetic information flow.  

  

Figure 1.6: Left: Crick’s first outline of the central dogma, from an unpublished note made in 1956. 

Source: [50], Credit: Wellcome Library, London. Right: Crick speaking at the 1963 Cold Spring Harbor 

Symposium. Source: [50], Credit: Cold Spring Harbor Laboratory. 

In recent decades, several high-throughput technologies have been developed for interrogating 

the information captured in biological molecules such as DNA, RNA, Protein, and others [50]. 

These high-throughput technologies allow the simultaneous measurement of multiple biological 

features in a given biological sample. They are collectively called "Omic" technologies, as this 

suffix is common to the many types of large scale data they interrogate (genomics, 

transcriptomics, epigenomics, proteomics, metabolomics and others). See Figures 1.7 and 1.8. 
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Central Dogma of Molecular Biology Omics 

 

 

Genomics 

 

 Transcriptomics 

 

Proteomics 

Figure 1.7: The connection between the "Central dogma of molecular biology" and the type of omic 

data obtained from each molecule 

 

 

Figure 1.8: Types of omics data for interrogating the genome, epigenome, transcriptome, proteome and the 

metabolome. Image source: [53] 
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The various high-throughput omic technologies interrogate different levels of biological 

regulation at unprecedented speed, generating large datasets describing the examined samples 

in great detail, thus transforming biomedical research into an information-based field (Table 1.1). 

In Genomics, genotype arrays [54] and next-generation sequencing (NGS) for whole-genome 

sequencing [55], and exome sequencing [56][57] are the main technologies currently used for 

interrogating DNA sequences. In Transcriptomics, probe-based microarrays [58] were the first 

widely used method for measuring genome-wide mRNA abundance levels and allowed the 

generation of large scale datasets used to explore gene expression variability and dynamics in 

different tissues and disease states. More accurate measurement of mRNA levels became 

possible with the introduction of RNA‐Seq technology [59][60]. Unlike microarrays, RNA-Seq 

profiling is not restricted to known genes, and also has a higher larger dynamic range. RNA-Seq 

applied NGS technologies to qualitatively and quantitatively profile all types of RNA molecules 

such as mRNAs, small RNAs and other non-coding RNAs [59][61][62]. In Epigenomics, genome-

wide characterization of DNA methylation and histone acetylation is interrogated using 

methylation arrays [31] or by NGS [63]. In Proteomics, mass-spectrometry [64] and reverse-

phase protein arrays (RPPA)[65] can be used to quantify peptide abundance in a given sample. 

Lastly, mass-spectrometry is also utilized to measure the abundance and relative ratios of 

metabolites in Metabolomics [66]. Additional omics, as well as their associated technologies, 

exist, and many more are expected to be developed in the next decade as the field is advancing 

rapidly. 

The result of most omic experiments can generally be represented as a matrix whose columns 

represent samples, and rows represent biological features (such as genes, transcripts, CpGs, 

peptides or metabolites). The matrix entries indicate the existence or abundance of a specific 

feature in a specific sample. For convenience, we will call this matrix an "expression matrix", and 

will interchangeably use the terms genes and features.  

An extensive array of computational methods is available for downstream analysis of large omic 

datasets. Several of the methods are reviewed later in this chapter. Briefly, in the context of 

cancer research, omic datasets can be used to identify groups of similar samples and similar 

features using unsupervised methods. If additional external information is available, such as 

clinical labels describing the samples ('Phenome'), or gene annotations describing the features, 

then supervised methods can be used to statistically characterize the identified sample and 

feature groups, to identify differentially expressed features, and to identify label-specific 

biomarkers [67].  Further, integrative multi-omic analysis, which combines data from more than 
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a single omic type (such as mRNA and miRNA, or mRNA and DNA methylation) may provide 

additional insights and reveal interactions between features of different types [68][69][70]. 

Analysis of large omic datasets might be challenging for several reasons. Firstly, the dataset can 

be huge in size, posing computational challenges in terms of storage, computing speed, required 

analysis skills, and the limited number of visualization methods suited for large-scale datasets. 

Secondly, the features generated by different omic technologies can significantly vary. The 

number of features in the resulting matrix, their biological meaning, their value distribution and 

the way they are correlated to features in other omics, can greatly differ between omic 

technologies, requiring the adjustment of the analysis workflow and the statistical methods 

used.   

 Assay Goal Platform  Main advantages and 

disadvantages  

Genomics Identify nucleotide 

variants (SNPs) in the 

whole genome 

associated with clinical 

traits (GWAS) 

Genotyping arrays, 

whole-exome 

sequencing 

SNP variability is stable 

during life; provides limited 

information in complex 

diseases due to several loci 

implicated 

Transcriptomics Quantify expression 

levels of cellular 

transcripts (e.g. mRNA) 

Expression arrays, RNA 

sequencing 

Widely used due to its high 

information content on cell 

status; differences in mRNA 

expression do not imply 

differences in proteins; does 

not take into account post-

transcriptional modifications 

Epigenomics Determine 

modifications in DNA 

and small RNA that 

interfere with gene 

expression 

DNA methylation 

analysis with arrays 

(Infinium 

MethylationEPIC 850K; 

Illumina, San Diego, CA, 

USA), next-generation 

sequencing, small RNA 

sequencing, arrays, etc. 

Provides additional 

information to 

transcriptomics; related to 

exposures; more expensive 

than transcriptomics; 

sequencing-based 

approaches have 

computational tools in active 

development 

Proteomics Characterize protein 

expression levels of 

cells/samples 

MS-based approaches Expected to be closer to the 

phenotype; not widely used, 

expensive and more 

cumbersome analysis 

Metabolomics Characterize 

abundance profile of 

metabolites and their 

relative ratios 

MS-based approaches Representatives of the 

cellular status; applicable to 

many biological fluids 

(i.e. breath, blood, 

urine, etc.); not widely used 

Table 1.1: Common omic data types. Source: [71]  
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1.2.2. Omic-based profiling and the vision of precision medicine in 

cancer 

Tumors, even those of the same type, show great heterogeneity on the molecular level. The 

molecular makeup of each tumor prominently determines its proliferation rate, tendency to 

metastasize and its response to specific drugs. Even today, for many cancer types, subtype 

diagnosis is imprecise, as it is determined based on a limited number of fuzzy clinicopathological 

parameters. Also, traditional treatments like chemotherapy, radiotherapy and surgery, are still 

largely unspecific and do not take into account the concrete genetic makeup of the patient's 

tumor, thus often leading to treatment inefficiency, drug toxicity and significant side effects. In 

contrast to this "one size fits all" approach employed by traditional cancer medicine, the vision 

of precision medicine is that patients will receive precisely tailored treatments that target 

specific malfunctioning molecular pathways identified in their tumor [72][73].    

The wealth of high-resolution biological data provided by large-scale omic technologies as well 

as their dropping costs lie at the basis of fulfilling the vision of precision medicine. Promoting 

precision medicine in cancer depends on the following efforts, all utilizing large-scale omics data 

of different types: 

1. Identifying distinct groups of similar patients based on omic profiling and characterizing 

the prognosis, response to treatment and other clinical attributes of each group. 

2. Characterizing the malfunctioning biological pathways in each patient group, and using 

this information to guide targeted drug development. 

3. Identifying informative biomarkers that will allow classifying new patients into one of 

the known subtypes.    

The evolution of breast cancer treatment over the past several decades demonstrates the 

dependency of treatment efficiency on accurate patient stratification into clinically distinct 

subgroups, which in turn depends on the resolution of profiling technologies (Figure 1.9). As new 

technologies emerged, the resolution by which tumors are interrogated increased, and finer 

ways to stratify the patients as well as relevant biomarkers were identified [74]. 

Eventually, precision medicine is envisioned to ensure that patients get the right treatment at 

the right dose at the right time, with minimum side-effects and maximum efficacy [75]. However, 

to achieve this ambitious aim, several challenges must be overcome: (1) Acquisition, storage, and 

analysis of even larger amounts of omics data are required for identifying even finer patient 

groups [76], (2) Translation of the knowledge gained from omics data analysis to practical use 
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into the clinic [77]  (3) Development and regulatory approval of new targeted drugs aimed at 

treating small groups of patients [78].  

 

Figure 1.9: Evolution of breast cancer subtyping and personalization of treatment. Image source: [74] 

 

1.2.3. The Cancer Genome Atlas project (TCGA) 

The Cancer Genome Atlas (TCGA) [79] project is an American public-funded project, aimed to 

discover major cancer-causing genomic alterations and create a comprehensive “atlas” of cancer 

genomic profiles [80]. The project involved 20 collaborating intuitions across the US and Canada, 

responsible for collection and sample processing, followed by high-throughput sequencing and 

bioinformatics data analyses. During the years of its activity (2005-2016), the project has 

generated, analyzed, and made publicly available 2.5 Petabytes of genomic sequence, 

expression, methylation, and copy number variation data on more than 11,000 tumor samples 

that represent 33 different types of cancer [81].  

Most TCGA samples were measured using several different omic technologies, including next-

generation sequencing (DNA-Seq, RNA-Seq, and microRNA-Seq) and microarray (mRNA, DNA 

methylation, SNP, and Protein) based technologies (Figures 1.10 and Table 1.2). TCGA also 

provided detailed clinical information for each sample, which included parameters like age, 

gender, tumor stage, results of lab tests, treatment history and follow-up data. The data were 

used in the past decade by both TCGA researchers and by many other researchers around the 

world to advance the understanding of cancer development and cancer subtyping, and to 

identify the aberrations in different omics that characterize different subtypes of cancer [82]. 



21 

 

Due to its unprecedented scope, resolution and multi-dimensional nature, TCGA's database was 

also used to trigger multiple computational approaches and served as a playground for testing 

new data mining and machine learning algorithms [80][83]. 

 

 

Figure 1.10: The Cancer Genome Atlas (TCGA). A multi-cancer multi-omic database. Source: [84] 

 

 

Table 1.2: Omic technologies (platforms) included in TCGA's database. Source: [85] 
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1.3. Computational methods 

1.3.1. Identification of distinguishing features 

Analysis of biomedical high-throughput data often aims to identify genes (or other biological 

features) that are differentially regulated across different sample classes [86]. Differentially 

expressed genes (DEGs) are characterized by having significantly different expression means on 

two (or more) samples classes. Therefore, they can be used as biomarkers to distinguish between 

the sample classes, to reveal dysregulation of biological pathways among sample classes, and 

also to identify informative genes for downstream analysis.  

The Student's t-test and Wilcoxon rank-sum test (Mann–Whitney U test) can be used to identify 

genes that are differentially expressed between two sample classes (such as experiment and 

control or two disease subtype) [86].  The t-test is a parametric test that assumes that the data 

are normally distributed, and it has higher statistical power than the rank-sum test, which does 

not make that assumption. The rank-sum test aims to detect differences of variable values 

between two samples based on ranking, and therefore it is less sensitive to outliers and can also 

be performed when the only available data are those relative ranks [87]. For identifying 

differentially expressed genes among more than two sample classes (such as multiple disease 

subtypes or experiment time points), the parametric ANOVA (analysis of variance) test or the 

non-parametric, ranking-based Kruskal-Wallis ANOVA test are appropriate [88][89].  

The null hypothesis made by the four tests mentioned above is that there is no difference in 

expression between the classes. After a test statistic was computed by one of the tests, for each 

gene separately, it can be converted into a p-value, which represents the probability of having 

observed our data (or more extreme data) when the null hypothesis is true [90]. When the p-

value is below a certain cut-off (0.05 is often used), we reject the null hypothesis and the result 

is considered statistically significant [88]. Since typical analyses for identifying differentially 

expressed genes in modern high-throughput datasets may include many thousands of 

simultaneous hypothesis testing, we must account for the multiple testing problem [91]. The 

problem refers to the situation where the expected number of false discoveries becomes large 

relative to the number of true discoveries. The problem was originally addressed by methods to 

control the family-wise type I error rate (FWER), such as the Bonferroni correction method [92], 

and later by the less conservative method of FDR (False Discovery Rate), which controls the 

family-wise error rate [93][94].  
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Lastly, Fold-change is a simple metric for comparing gene expression levels between two sample 

classes. Fold-change is the ratio between expression averages in the two sample classes. Fold 

change is applied mainly as a measure of effect size, and nowadays it is considered inadequate 

inference statistic because it does not incorporate variance and offers no associated level of 

confidence.  

Altogether, these methods allow for the generation of lists of differentially expressed genes 

which can then be associated with biological function by performing a gene enrichment analysis 

on the list genes, as described below. 

1.3.2. Clustering analysis 

Clustering analysis is an unsupervised method, used to discover relations between objects by 

grouping them into disjoint groups based on a defined similarity metric [95]. Ideally, objects 

assigned to each group will have markedly higher similarity to objects in the same group, 

compared to their similarity to objects assigned to other groups. Similarly to other unsupervised 

methods, clustering attempts to find previously unknown patterns in a given dataset without 

using any preexisting labels [96][97].  

Clustering is a very useful method in the exploratory biomedical analysis of high-dimensionality 

data, as it enables to reveal high-level structures in large datasets [98][99][100]. Given an 

expression matrix representing the expression levels of F features on S tumor samples taken 

from patients (such as the one in Figure 1.11), clustering can be applied in two different but 

complementary ways: 

1. Clustering the dataset samples (the columns in Figure 1.11) identifies groups of similar 

samples, that share a similar genomic signature and may correspond to disease subtypes 

[101]. 

2. Clustering the dataset features (the rows in Figure 1.11) identifies groups of similar 

features that may correspond to co-regulated genes [102].  
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Figure 1.11: An example of a two-way clustered expression matrix. Clustering of the matrix samples 

(columns) identifies groups of similar samples that may correspond to disease subtypes, whereas 

clustering the features (rows) identifies groups of correlated features that may represent co-regulated 

genes.  

Many different clustering algorithms have been proposed in the literature. There are several 

ways to categorize them based on the way they operate [103][104], including hierarchy-based 

(such as hierarchical-clustering [15]), partition-based (such as K-means[105]), density-based 

(such as DBSCAN[106]), and graph-theory-based (such as CLICK [107]). Table 1.3 lists several 

common clustering algorithms by category. The algorithms may greatly differ in their time 

complexity, sensitivity to noise or outliers, input parameters and fit to specific applications. Many 

clustering algorithms function based on a distance (or similarity) function by which object 

similarity is calculated (common distance functions are listed in Table 1.4). Other common inputs 

are the number of desired groups (such as K in K-means) or other parameters for determining 

group granularity (such as dendrogram cutoff thresholds in hierarchical clustering or the 

homogeneity threshold in CLICK). Virtually all the clustering formulations give rise to NP-hard 

problems [108][109][110]. Determining an optimal (or "true") number of clusters in a given 

dataset is a fundamental and unsolved problem in clustering analysis [111]. In practice, obtaining 

a satisfactory solution may require repeated attempts (and application of multiple algorithms) 

and reliance on measures for clustering goodness as described below [112]. 
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Table 1.3: Categories of clustering algorithms and typical examples of specific algorithms in each category. 

Source: [113]. 

 

Table 1.4: Common distance metrics used in clustering analysis. Source: [113]. 
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K-means and Hierarchical clustering are two of the most widely used clustering algorithms, 

especially in the field of biomedical research [98]. Both are simple, widely implemented and their 

results can be easily visualized and understood. K-Means assumes that the number of clusters is 

k. It starts by choosing k data objects at random as cluster centers. The distance function is then 

used to assign each dataset object to the closest center. This partitions all objects into k groups. 

Next, the cluster centers are updated to be the centroid (mean) of the groups. Iteration of this 

process continues until a minimal decrease in squared error is reached. K-means is well suited 

for identifying size-balanced disease subtypes, as using centroids has the advantage of a clear 

geometric and statistical meaning while keeping the algorithm insensitive to data ordering. 

However, k-means is sensitive to data noise and outliers, can only work with numerical features, 

and the number of clusters k must be specified in advance [98][100][114]. Hierarchical clustering 

produces a dendrogram, i.e. a rooted tree with edge lengths where all objects are leaves and all 

root-leaf distances are equal. The tree-distance of two objects in the tree is the length of the 

path between them. Given pairwise input distances of objects, the goal is to build a tree such 

that the tree-distances will match the input distances as much as possible.  Having created the 

dendrogram, clusters of different granularity can later be produced by thresholding pairwise 

tree-distances. The algorithm can work for any type of data and does not make any assumptions 

about the underlying data distribution. However, the algorithm is less scalable to large datasets 

and performs poorly when the clusters vary considerably in shape, density, or size [114][115]. 

Several methods are available for validating the goodness of a clustering result [116]: 

a. Internal cluster validation methods (such as the Silhouette coefficient or the 

Dunn index) use only the clustered data itself without any external information, 

to evaluate the tradeoff between clusters compactness (intra-cluster similarity) 

and separation (inter-cluster similarity).  

b. External cluster validation methods use external information for comparing the 

resulting clusters to class labels using statistical tests for enrichment (such as 

hypergeometric test or Chi-square test).  

c. Relative cluster validation methods explore a variation of the clustering 

parameters until reaching a stable cluster structure (example: testing various 

values for the number of clusters k). 

In this study, clusters were mainly validated using external information, as described in the next 

section about enrichment analysis. 
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1.3.3. Enrichment analysis 

Gene enrichment analysis 

Gene enrichment analysis is often used in biomedical research for interpreting the biological 

meaning of gene groups [117]. The gene groups commonly originate from a clustering operation 

performed on the genes of an expression matrix, or from a supervised test identifying the top 

differentially expressed gene among two or more sample classes. For characterizing the 

biological meaning of each gene group, the group can be tested for enrichment for an array of 

known gene classes using statistical methods such as the hypergeometric test, Fisher’s exact test, 

chi-square test and binomial probability [117].  The result of such analysis usually takes the form 

of a list of gene classes ranked by decreasing significance of enrichment on the gene group. Due 

to the large number of enrichment tests conducted in a typical gene enrichment analysis, 

resulting p-values must be corrected by a method such as FDR[93]. Gene annotation databases 

such as Gene Ontology (GO) [118], Kyoto encyclopedia of genes and genomes (KEGG) pathways 

[119], Wiki-Pathways [120], chromosomal location annotations and catalogs of tumor 

suppressor genes, are commonly used as gene classes for enrichment analysis.  

The gene enrichment analyses performed in this thesis were conducted using several tools, 

including TANGO (which is part of the Expander tool) [121]-[122], PROMO [123], and GOrilla 

[124]. The GOrilla tool, as well as other tools like GSEA [125], can identify enrichment of gene 

classes in a list of ranked genes, preventing the need to decide on a significance cutoff for the 

list of differentially expressed genes. These methods perform well when genes are easily ranked 

but may be suboptimal when lack of information prevents reliable ranking of the genes [126].  

Sample enrichment analysis 

A major effort in promoting precision medicine in cancer is to stratify the patients of a certain 

cancer type into clinically distinct subgroups. To this end, a clustering algorithm is first applied 

on the dataset samples (taken from patients), based on the genomic data only, and then the 

clinical labels are used for external validation of the clusters.  Cancer datasets often include a 

wealth of clinical sample-labels of various types: Numeric (e.g., age, tumor size and the number 

of cigarettes smoked per day), Categorical (e.g., gender, histological type, and receptor status), 

Ordinal (e.g., pathological stage, metastasis stage) and Survival (overall survival, recurrence-free 

survival, etc.). These labels can be used to statistically characterize each of the sample subgroups 

by employing an appropriate test for label type. The enrichment of sample clusters for 

categorical labels can be tested using the hypergeometric or the chi-square tests. Differences of 

numeric and ordinal labels between sample-subgroups can be tested using t-test and ANOVA for 
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normally distributed values or using the Wilcoxon rank-sum test and the Kruskal-Wallis tests, 

which are non-parametric [87][127][128][90]. Survival labels can be used to prognostically 

characterize the sample-groups using survival specific tests as described in the next section. 

Evaluation of the most significant enrichments for clinical labels found for each sample group 

allows us to clinically characterize the sample groups and determine their relation to previously 

known labeling of the samples.   

1.3.4. Survival analysis 

Survival analysis is a collection of methods for comparing the risks for an event such as death or 

disease recurrence, for groups of patients, where the risk changes over time [129]. The patient 

groups can be formed by disease subtypes, by different treatments administered to patients in 

a clinical trial, or by partitioning of the patients based on a certain biomarker. Survival analysis 

methods are suited for analyzing censored longitudinal data, which include incomplete data for 

patients who did not experience an event by the time their follow-up ended (either since the 

study ended or since they left the trial earlier). The censored longitudinal data underestimate 

the true (but unknown) time to event, but still, hold valuable information taken into 

consideration by the various survival analysis methods [130]. Kaplan–Meier (KM) plots, log-rank 

tests, and Cox (proportional hazards) regression are the most commonly used methods for 

survival analysis in cancer research [129][130].  

The Kaplan-Meier (KM) method plots the empirical survival probability based on observed 

survival times [130][131].  The KM survival curve is a plot of the KM survival probability as a 

function of time, and is often used to visually compare the estimated survival function of two or 

more groups. The difference between curves can be tested statistically, most commonly using 

the log-rank test. Two issues are important when interpreting KM curves: (1) the validity of the 

curve depends on the assumption that censoring is unrelated to prognosis and that the survival 

probabilities are the same for subjects recruited at any stage of the study.(2) The statistical 

precision diminishes as follow‐up increases because the curve is based on a smaller number of 

patients [132].    

The log-rank (Mantel-Haenzel) test [133][134] is a nonparametric statistical test used for 

statistically comparing the survival curves of two or more groups. It is used to test the null 

hypothesis that there is no difference between the population survival curves. Several variations 

to the log-rank test exist [135][136][137], and all of them make the same assumptions as those 

for interpreting KM curves, namely independence of censoring from the outcome and time 

homogeneity. The tests produce a p-value indicating the significance of the difference between 
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the tested curves. For a more detailed examination of survival differences between survival 

curves, the log rank tests can be applied for comparing the groups with one another, but then 

the resulting p-values must be adjusted for multiple comparisons [138].  

The Cox proportional hazards model is a semiparametric regression model that is commonly 

used to test the association between the survival time of patients and one or more explanatory 

variables  [139][140][141]. Unlike the KM method and the log-rank test, the COX proportional 

hazards model supports more than a single explanatory variable and can test for either univariate 

or multivariate associations of both categorical and numerical variables to survival. The model 

calculates a Hazard Ratio (HR) for each explanatory variable where values equal, greater or lower 

than 1 represent no effect, increased or reduction in hazard, respectively. 

In this work, we extensively used the three survival analysis methods described above for testing 

the clinical significance and prognostic value of patient subgroups we identified and of genomic 

signatures and biomarkers we suggested.  
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2. Breast cancer subtypes 

The large breast cancer dataset developed and provided by The Cancer Genome Atlas project 

(TCGA [142]) includes more than a thousand breast tumor samples characterized by various 

modern high throughput genomic technologies. This dataset constitutes a significant leap 

forward compared to the older microarray-based data. mRNA abundance levels are measured in 

TCGA's dataset using RNA-Seq technology. This technology shows increased sensitivity and a 

higher dynamic range compared to microarrays [20][21]. DNA-methylation arrays applied on the 

same samples can help decipher biological tumor variability by epigenetic modifications not 

manifested on the gene expression level.  

The aim of this project was to improve the classification of breast tumors based on the extensive 

TCGA expression and methylation data that have recently become available. We utilized these 

datasets to re-visit the current classification of breast tumors into biologically distinct subgroups.  

Our initial question was whether unsupervised clustering of all TCGA breast samples using the 

RNA-Seq data would reconstruct the partition defined by PAM50. As the luminal samples showed 

the highest level of variability in our global clustering, we also asked how the luminal samples 

would cluster into two groups based on the RNA-Seq data, how the resulting sample groups 

would compare to PAM50's partition into luminal-A and luminal-B, and whether that partition 

would have a clinical advantage over PAM50's partition of the luminal samples.  Looking into the 

internal structure of the highly variable luminal-A samples, we asked whether this PAM50 group 

can be further partitioned into finer subgroups showing biological distinctness and clinical 

significance. We then used enrichment analysis to explore the biological mechanisms underlying 

the new luminal-A subgroups. 

We asked similar questions regarding breast tumor variability on the epigenetic level. We 

evaluated the methylation-based partition of all breast tumors, all the luminal samples, and the 

highly heterogeneous luminal-A, and compared the resulting partitions to PAM50. To examine 

the biological characteristics of differentially methylated CpGs (DMCs) separating the new 

methylation-based luminal-A subgroups, we conducted an enrichment analysis. Finally, we 

performed a multivariate Cox survival analysis to determine whether these subgroups have 

independent prognostic value. Our improved and refined classification may contribute to the 

precision of diagnosis and thus to more personalized treatment. 

  



31 

 

2.1. Results 

2.1.1. Separation of luminal-A and luminal-B samples is not 

reconstructed by RNA-Seq unsupervised analysis 

We started by evaluating the global sample structure within the RNA-Seq gene expression data 

obtained from TCGA. We applied unsupervised analysis on both tumor (n=1035) and normal 

(n=113) breast samples using the K-Means clustering algorithm over the top 2000 variable genes. 

Since our initial goal was to compare the resulting partition to the four intrinsic molecular types, 

we used K=5 (corresponding to the four types represented by PAM50 label classes in addition to 

Normal). The results are shown in Figure 2.1. 

The resulting clusters exhibited moderate correspondence with PAM50 labels: Most basal-like, 

normal and HER2-enriched samples fell into three different clusters (numbers 4, 5, and 3 

respectively, listed in decreasing levels of homogeneity), whereas the luminal samples exhibited 

a much greater variability. Importantly, most luminal-A samples were split between two different 

clusters - a homogenous luminal-A cluster (cluster 2), and a cluster composed of a mix of luminal-

A and luminal-B samples (cluster 1).   

Furthermore, the samples assigned to cluster 2 exhibited a very distinct expression pattern, over-

expressing 1184 genes compared to cluster 1 (out of 1421 differentially expressed genes, see 

"Methods"). Cluster 1 samples over-expressed only 229 genes compared to cluster 2 (See Figure 

S1.1E for per-cluster distribution and Figure S1.1F for results of differential gene expression 

analysis).  

According to these results, the variability within the luminal samples is not sufficiently captured 

by the PAM50 luminal-A and luminal-B subtypes. Specifically, they suggest that luminal-A 

samples can be further partitioned into finer subgroups, possibly having clinical meaning. 
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Figure 2.1: Global unsupervised clustering of 1148 breast samples using RNA-Seq data. Applying the K-Means 

algorithm using K=5 on the RNA-Seq dataset yielded a partition exhibiting moderate agreement with PAM50 labels 

and the three IHC markers. Notably, luminal-A samples were split between a rather homogenous cluster 2 and 

cluster 1 which is composed of luminal-A and luminal-B mix. (A) K-Means clusters (B) PAM50 calls (C) Estrogen 

receptor status (D) Progesterone receptor status (E) HER2 status.   
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2.1.2. Unsupervised partition of luminal samples predicts survival and 

recurrence better than PAM50 

To further investigate the variability among luminal samples, we clustered the 737 luminal 

samples (534 luminal-A and 203 luminal-B samples based on PAM50 labels) into two groups. The 

results are shown in Figure 2.2A. Similar to the global analysis, the luminal-A samples were 

divided between a luminal-A mostly homogenous cluster (cluster 2) and a cluster composed of 

both luminal-A and luminal-B samples (cluster 1). 

Survival analysis performed on the two luminal partitions (the PAM50 luminal-A/luminal-B 

partition, and the two K-Means clusters shown in Figure 2.2A) showed that the RNA-Seq-based 

clustering partition outperforms the luminal-A/luminal-B distinction in terms of both survival and 

recurrence (5-year survival plots are shown in Figure 2.2B; also see Figure S1.2A for overall 

survival plots). Hence, the signal identified by our unsupervised analysis of the RNA-Seq data 

translates into a clinically relevant partition of the luminal samples that has better predictive 

power than PAM50's luminal-A/luminal-B partition in terms of both survival and recurrence. 
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 RNA-SEQ clusters PAM50 

5-Year 

SURVIVAL 

 

p-value=0.002 

 

p-value=0.044 

5-Year 

RECURRENCE 

 

p-value=0.032 

 

p-value=0.927 

Figure 2.2: Unsupervised analysis of luminal breast samples using RNA-Seq data. (A) Applying the K-Means 

algorithm on the 737 luminal samples using K=2 split the samples into two subgroups exhibiting better five-year 

prognostic value than the PAM50's luminal-A/luminal-B partition. (B) Five-year survival and recurrence Kaplan-Meier 

plots for the two luminal breast cancer partitions. The partition into two RNA-Seq based clusters outperforms PAM50 

partition of the luminal samples in both survival and recurrence. P-values were calculated using the log-rank test. 

A 

B 
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2.1.3. Luminal-A samples show two distinct classes exhibiting clinical 

significance 

As the luminal-A samples displayed the highest level of variability by consistently falling into two 

major subgroups in previous steps, we focused on this PAM50 class in an attempt to explore its 

underlying substructures. To this end, we re-clustered only the 534 luminal-A samples into two 

groups (Figure 2.3A). As the resulting clusters were found to be significantly enriched for various 

clinical variables, we designated them as LumA-R1 (n=258) and LumA-R2 (n=276). 

The most apparent property of the resulting partition was the general over-expression pattern 

exhibited by LumA-R2 samples compared to LumA-R1 samples. Indeed, out of the 2000 genes 

selected for clustering, 1276 were differentially expressed and 1068 of them were over-

expressed in LumA-R2 samples (based on FDR corrected rank-sum test). A highly similar partition 

(Chi-Square p=1.1e-40) with a parallel over-expression pattern was identified on a microarray 

gene expression dataset also available from TCGA for a subset of the luminal-A samples 

used here (n=265). This supports the conclusion that the partition and distinct 

over-expression pattern we observed are not an artifact originating from RNA-Seq measurement 

technology or from any normalization protocols applied on the dataset (See Supplementary 

Information, section S1.4). 

Recurrence analysis performed on these two luminal-A subgroups associated LumA-R2 samples 

with a significantly reduced 5-year recurrence rate (p=0.0076, Figure 2.3B). Enrichment analyses 

on additional clinical information available for the samples revealed that LumA-R1 and LumA-R2 

subgroups are enriched with ductal (p=2.1-05) and lobular (p=9.7e-12) histological types, 

respectively. LumA-R1 samples were associated with a higher proliferation score (p=8.9e-25), 

older age (p=2.6-05), and a slight but significant decrease in normal cell percent (p=2.8e-08) 

accompanied by an increase in tumor nuclei percent (p=2.6e-12) compared with LumA-R2 

samples (see Table 2.1).  

Comparing the luminal-A partition shown in Figure 2.3A to the groups formed when clustering 

all the luminal samples (Figure 2.2A), we note that almost all LumA-R2 samples are contained 

within cluster 2 (composed of mainly luminal-A samples) whereas most LumA-R1 are contained 

within cluster 1 (composed of a luminal-A-luminal-B mixture). See the second label bar in Figure 

2.3A. This suggests that LumA-R1 samples are more similar in their expression profile to luminal-

B samples compared with LumA-R2 samples.  
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Figure 2.3: Unsupervised analysis of luminal-A breast samples. (A) Clustering of 534 RNA-Seq profiles 

partitions the data into two groups exhibiting distinct expression profiles. The clusters also show significant 

enrichment for clinical variables including recurrence, proliferation score, age and histology. The bars 

below the heatmap show, from top to bottom, the partition of the samples, the designation of the samples 

according to the clustering of all luminal samples (Figure 2.2), histological type and proliferation scores. (B) 

Five-year survival and recurrence analysis for the two luminal-A subgroups. LumA-R2 samples exhibit a 

significantly reduced five-year recurrence rate compared with LumA-R1. 
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Group Characteristic LumA-R1 LumA-R2 p-value 

Recurrence free survival Increased 

recurrence 

Reduced 

recurrence  

7.6e-3 

Histology 

Enrichment p-values for each group 

Ductal  

(p=2.1e-05) 

Lobular  

(p=9.7e-12) 

 

Age average 61.5 57.4 2.6e-05 

Proliferation score -0.4 -0.6   8.9e-25 

Tumor nuclei percent 80% 73%  2.6e-12 

Normal cell percent 2.9% 6.1%  2.8e-08 

Gene overexpression 194 1068  

Table 2.1: The main distinguishing characteristics between the luminal-A subgroups LumA-R1 and 

LumA-R2. Average values are shown for each group where relevant. Gene overexpression is computed 

with respect to the 2000 genes used for clustering. 

2.1.4. Luminal-A subgroups exhibit distinct immune system 

expression profiles  

In order to identify genes that distinguish best between LumA-R1 and LumA-R2 samples, we 

created a list of the 1000 most differentially expressed genes (see "Methods"). In agreement 

with the general expression pattern described earlier, all genes in the list were over-expressed 

in LumA-R2 compared to LumA-R1 samples. The most significant categories in the enrichment 

analysis performed on this list were related to the immune system regulation. The more specific 

category of T cell receptor signaling genes appeared consistently in analyses based on various 

annotation databases (Gene Ontology: "T Cell activation" p=1e-05, KEGG Pathway: "T Cell 

receptor signaling pathway" p=3e-07, Wiki-Pathway: "T Cell receptor (TCR) Signaling Pathway" 

p=1.09e-07). Other enrichments of interest included the KEGG Pathways "Cytokine-cytokine 

receptor interaction" (p=2.13e-13), "Chemokine signaling pathway" (p= 1.14E-09) and Wiki-

Pathway "B Cell Receptor Signaling Pathway" (p=1.72e-06). See Table 2.2 for a list of the most 

significant categories, and Supplementary Information, section S1.5 for the full list. 

Careful examination of the gene list revealed that LumA-R2 samples over-express genes that are 

typically expressed by various immune system cells (e.g., the leukocyte marker CD45/PTPRC, T 

Cell marker CD3 and B-Cell marker CD19) [143] [144] [145] [146]. A significant number of over-

expressed genes are related to the T Cell receptor (CD3D, CD3E, CD3G, and CD247) and the 

upstream part of its signaling pathway (ZAP70, LCK, FYN, LAT, PAK, ITK) [147] (Figure 2.4). 
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Interestingly, the over-expressed genes were related to T Cell or Natural Killer (NK)-mediated 

cytotoxic activities (GZMA, GZMB, GZMH, GZMM, PRF1) [148]-[149].  

We also observed that the over-expression of immune receptor genes in LumA-R2 samples was 

accompanied by over-expression of several chemokine genes (CCL5, CCL17, CCL19+CCL21) and 

their corresponding receptors (CCR5, CCR4, CCR7). Topping the list of overexpressed genes in 

Lum-A-R2 samples (ranked by p-value) is the Interleukin-33 (IL-33) gene, which drives Th2 

responses [150]. 

In summary, LumA-R2 samples exhibit better prognosis based on several clinical parameters 

while over-expressing a significant number of genes related to the immune system. 

 

 

Figure 2.4: LumA-R2 over-expressed genes in the T Cell receptor signaling pathway. The list of top 1000 

differentially expressed genes between LumA-R1 and LumA-R2 samples was found to be significantly 

enriched for the pathway genes (p=1.3e-07). Genes marked in red are over-expressed in LumA-R2 

samples. Pathway and graphics were taken from the KEGG database. 
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Enrichment 

Type 

Term #Genes P-VALUE 

Gene Ontology 

 

regulation of immune system process 152 3.74E-50 

immune system process 201 3.65E-47 

regulation of leukocyte activation  71 2.37E-28 

regulation of multicellular organismal process 183 2.89E-28 

cell activation 91 4.59E-28 

regulation of response to external  73 8.18E-27 

regulation of biological quality 218 1.82E-26 

leukocyte activation 67 1.95E-26 

positive regulation of cell activation 56 5.13E-24 

T cell activation 45 4.93E-22 

regulation of cell proliferation 128 1.83E-21 

KEGG Pathways Cytokine-cytokine receptor interaction 56 4.76E-22 

Hematopoietic cell lineage 29 1.50E-17 

Cell adhesion molecules (CAMs) 30 4.08E-13 

Primary immunodeficiency 16 8.70E-13 

Chemokine signaling pathway 31 1.14E-09 

Complement and coagulation cascades 17 1.36E-08 

T cell receptor signaling pathway 20 1.30E-07 

Allograft rejection 11 6.44E-07 

Natural killer cell mediated cytotoxicity 20 5.66E-06 

Pathways in cancer 34 1.49E-05 

Wiki-Pathways TCR Signaling Pathway 10 1.55E-09 

B Cell Receptor Signaling Pathway 10 1.72E-06 

Focal Adhesion 11 5.88E-05 

Complement Activation, Classical Pathway 6 8.38E-05 

Chromosomal 

Location 

11q23 18 1.84E-05 

Xq23 8 4.99E-05 

Table 2.2: The most enriched functional categories among the 1000 genes most differentially expressed between 

LumA-R1 and LumA-R2 samples. All the genes on the list showed significantly higher expression on the LumA-R2 

samples compared to LumA-R1 samples. 
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2.1.5. Analysis of DNA methylation identifies a luminal subgroup 

characterized by hyper-methylation and a significantly poorer 

outcome  

The luminal-A tumors proved to be the most heterogeneous in our gene expression analysis. To 

further identify and characterize clinically meaningful subgroups within the luminal-A group, we 

explored breast tumor variability on the epigenetic level as well.  

Using the Methylation 450K array dataset available from TCGA, we started our analysis as in the 

expression data, by clustering all 679 tumor samples into four groups, corresponding to the 

number of PAM50 classes. The resulting clusters (Figure 2.5A) show modest agreement with the 

expression based PAM50 classes; All basal-like samples were assigned to a single cluster 

exhibiting a distinct hypo-methylation pattern (cluster 4), whereas HER2-enriched samples were 

scattered over three different clusters, indicating that this subtype has reduced manifestation 

on the methylation level. Notably, most luminal samples were assigned to three different 

clusters (1-3) showing methylation level gradation on the top 2000 variable CpGs. Cluster 1 

exhibited a strong hyper-methylation pattern, contained the highest ratio of luminal-B samples 

and was associated with significantly poorer survival compared to the three other clusters 

(p=0.0001).  Cluster 3, on the other hand, exhibited opposite characteristics: lower methylation 

levels, the lowest ratio of luminal-B samples and a better outcome (p=0.0129). 

Similar results were obtained when we clustered only the 513 luminal A and B samples (Figure 

2.5B). Here we used the top 2000 variable genes within these samples, in order to remove the 

effect of the other two subtypes on the clustering. Importantly, out of the 127 samples 

comprising the hyper-methylated cluster 1, which was associated with reduced survival (p=2.6e-

05), 76 samples were labeled as luminal-A, a subtype usually associated with good survival. In 

other words,  approximately 20% of the 378 luminal-A samples (as called by the expression-

based PAM50) included in the analysis, could actually be assigned to a higher risk group based 

on methylation data (See Supplementary Information, section S1.7 for more details). 

The three-way partition by methylation levels and its association with differential survival risk 

also appeared when we repeated the analysis in the group of 378 luminal-A samples, using the 

top 2000 variable CpGs on these samples (Figure 2.5C). The three methylation-based luminal-A 

clusters were designated LumA-M1, LumA-M2 and LumA-M3. The 84-sample LumA-M1 cluster 

(composing ~22% of the luminal-A samples) was associated with significantly reduced five-year 

survival (p=0.0031).  



41 

 

Furthermore, the methylation-based partitioning of the luminal-A samples (LumA-M1/2/3) 

correlated significantly with the expression-based partitioning (LumA-R1/2, Chi-Square p = 4.4E-

08). The LumA-M2 cluster was enriched for LumA-R1 samples (p = 1.4E-06) and the LumA-M3 

cluster was enriched for LumA-R2 samples (p=1.6E-08), showing that the expression and the 

methylation-based patterns are related (See lower bar on Figure 2.5C). 

Overall, we identified a poorer outcome subgroup within the luminal-A subtype, which is 

distinguished by robust hyper-methylation pattern.  
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Figure 2.5: Unsupervised analysis of breast cancer tumors using DNA Methylation data. Samples were clustered by K-

Means based on correlation using the top 2000 variable CpGs over each sample subset. (A) All 679 tumors (B) 579 samples 

identified as luminal-A and luminal-B by PAM50 classification, (C) 378 luminal A samples only. The first bar below each 

expression-matrix shows the assignment of the samples to methylation-based clusters. The second bar on A and B shows 

PAM50 calls for the samples. The second bar on C presents the RNA-Seq based LumA-R1/2 subgroups defined in section 

3.3. The right panels show five-year Kaplan-Meier survival plots for the resulting groups. 
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2.1.6. Analysis of differentially methylated CpGs between the LumA-

M1 and LumA-M3 subgroups and their correlation to gene 

expression  

To uncover the biological features characterizing the distinct methylation patterns observed in 

the luminal-A subgroups, we examined the 1000 top DMCs (see "Methods") between the hyper-

methylated LumA-M1 (n=84) and the hypo-methylated LumA-M3 (n=171). These two sample 

subgroups represent the two extremes of the methylation gradient observed on the luminal-A 

samples. Of note, all 1000 top DMCs (representing 483 genes) were hyper-methylated on the 

LumA-M1 samples compared to LumA-M3. 

Gene enrichment analysis associated these 483 genes hyper-methylated on LumA-M1 samples 

with GO terms related to development, signaling, cell differentiation and transcription regulation 

(p<1E-15).  The genes were also enriched for the "homeobox" InterPro term (p=3.6E-35), in line 

with previous reports describing the methylation of homeobox genes during breast 

tumorigenesis [151] [152] [153] . Further, the 483 genes were enriched for tumor suppressor 

genes according to the TSGene catalog [154] (p=1.5E-03), including 48 such genes. See column 1 

in Table 2.3. Analysis for CpG features of the top 1000 DMCs showed significant enrichment for 

enhancer elements, tissue-specific promoters and cancer-specific DMRs (See column 1 in Table 

2.4). 

As DNA-methylation is known to regulate gene expression and as hyper-methylation of 

promoters was associated with gene silencing in cancer [155], we focused on LumA-M1 hyper-

methylated CpGs that affect the expression of their corresponding genes. To this end, we used 

the RNA-Seq based expression data available from TCGA for the same 378 analyzed samples to 

generate a second list of CpGs that are both hyper-methylated on LumA-M1 samples (differential 

methylation p<0.01, median difference of 0.2) and whose methylation level is inversely 

correlated to the expression level of their corresponding gene (Spearman correlation R < -0.2). 

As can be seen in Table 2.4, the 586 CpGs that passed this filter (corresponding to 340 genes) 

showed significant over-representation of upstream parts of their corresponding genes (UCSC 

RefGene Group: TSS and 1st-Exon p<=4.4E-05) and under-representation of gene body (p=1.43E-

16) and 3'UTR (p=5.83E-04). In terms of the Regulatory Feature Group, these 586 CpGs showed 

over-representation of "Promoter Associated Cell type specific" elements (p=1.40E-04) 

accompanied by highly significant under-representation of "Promoter Associated" elements 

(p=2.94E-31), suggesting that the observed hyper-methylation pattern involves tissue specific 

promoters.  Among the 340 under-expressed genes containing the 586 hyper-methylated CpGs 
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, there were several tumor suppressor genes whose under-expression was previously observed 

in breast cancer, such as L3MBTL4 [156], ID4 [157], RUNX3 [158][159], PROX1 [160], SFRP1 [161] 

and others. Gene and CpG level enrichments for the negative correlations are shown in column 

2 of Tables 2.3 and 2.4 respectively. 

Interestingly, the 212 LumA-M1 hyper-methylated CpGs that exhibited positive correlation to 

expression (Spearman R > 0.2) had higher enrichments of development-related GO terms 

compared with negatively correlated CpGs ("pattern specification process" p=1.07E-13, 

"embryonic morphogenesis" p=1.05E-10, "cell fate commitment" p=5.49E-10). In contrast to the 

negatively correlated CpGs, they showed high over-representation of "gene body" and under-

representation of "TSS" regions (UCSC RefGene Group, p=9.48E-20 and p=7.28E-14 respectively). 

For gene and CpG level enrichments for the positive correlations see column 3 in Tables 2.3 and 

2.4, respectively. 

The differential methylation pattern distinguishing LumA-M1 from LumA-M3 samples could, 

therefore, be characterized by hundreds of CpGs that are hyper-methylated on the LumA-M1 

samples. Distinct subsets of these CpGs show negative and positive correlation with the 

expression of developmental genes. 
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 (1) 

Hyper Meth. CpGs  

(2) 

Neg: R < -0.2 

(3) 

Pos: R > 0.2  

 1000 CpGs, 483 genes 586 CpGs, 340 Genes 212 CpGs, 125 Genes 

 Term p-value Term p-value Term p-value 

Gene 

ontology 
anatomical structure 

development 

6.1E-28 developmental 

process 

7.8E-06 pattern 

specification 

process 

1.1E-13 

developmental process 2.0E-25 single organism 

signaling 

2.4E-05 regionalization 1.1E-12 

multicellular organismal 

process 

9.6E-24 signaling 1.8E-05 anatomical 

structure 

development 

2.2E-11 

single-multicellular 

organism process 

1.6E-22 cellular 

developmental 

process 

1.4E-05 single-organism 

developmental 

process 

1.9E-11 

single organism 

signaling 

1.7E-21 single-organism 

developmental 

process 

2.3E-05 anatomical 

structure 

morphogenesis 

1.8E-11 

signaling 1.9E-21 anatomical 

structure 

development 

8.0E-05 developmental 

process 

1.7E-11 

cell-cell signaling 1.7E-21 cell-cell signaling 1.8E-04 embryonic 

morphogenesis 

1.1E-10 

neuron differentiation 1.2E-20 cell differentiation 2.2E-04 cellular 

developmental 

process 

1.8E-10 

single-organism 

developmental process 

1.4E-19 synaptic 

transmission 

4.4E-04 organ 

development 

5.3E-10 

regulation of 

transcription from RNA 

polymerase II promoter 

1.2E-16 anatomical 

structure 

morphogenesis 

6.1E-04 single-

multicellular 

organism process 

5.6E-10 

INTERPRO  Homeobox 3.6E-35 Homeobox 1.1E-04 Homeobox 2.1E-31 

Tumor 

Suppressor 

Genes 

(TSGene 

2.0) 

AHRR, AKR1B1, BMP2, 

C2orf40, CDH4, CDO1, 

CDX2, CNTNAP2, CSMD1, 

DLK1, DSC3, EBF3, EDNRB, 

FAT4, FOXA2, FOXC1, 

GALR1, GREM1, GRIN2A, 

ID4, IRF4, IRX1, LHX4, MAL, 

MIR124-2, MIR124-3, 

MIR125B1, MIR129-2, 

MIR137, MIR9-3, 

ONECUT1, OPCML, PAX5, 

PAX6, PCDH8, PHOX2A, 

PRKCB, PROX1, PTGDR, 

RASL10B, SFRP1, SFRP2, 

SHISA3, SLIT2, SOX7, TBX5, 

UNC5D, ZIC1 

1.5E-03 

(48 

genes) 

 

AKR1B1, ASCL1, BIN1, 

BMP4, CCDC67, CDK6, 

CDO1, EBF3, GSTP1,  

ID4, IRX1, L3MBTL4, 

LRRC4, MAP4K1, MME, 

NTRK3, PCDH10, 

PDLIM4, PROX1, 

PTGDR, 

RUNX3, SCGB3A1, 

SFRP1, SLC5A8, SLIT2, 

UBE2QL1, UNC5B, 

VIM, 

WT1 

9.7E-02 

(29 

genes) 

 

AMH, GATA4, HOPX, 

HOXB13, LHX4, 

LHX6, MAP4K1, 

ONECUT1, PAX5, 

RASAL1, TBX5,  

TP73, WT1, ZIC1 

5.5E-02 

(14 

genes) 

Table 2.3: Gene enrichments on the various subsets of differentially methylated CpGs between LumA-M1 and LumA-

M3 subgroups.  GO, INTERPRO and TSG 2.0 databases were used to test the hyper-methylated genes for enrichments. 

Group 1 is composed of the 1000 top DMCs with a mean difference of at least 0.2. All the CpGs on this list showed 

significant hyper-methylation on the LumA-M1 samples compared to LumA-M3 samples. Group 2 is composed of the 

586 CpGs which a differential methylation p-value<0.01, methylation mean difference>0.2 and spearman based 

correlation with expression that is lower than 0.2. Group 3 is composed of 212 CpGs with a differential methylation p-

value<0.01, methylation mean difference>0.2 and spearman based correlation with expression that is higher than 0.2. 
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(1) 

Hyper Meth. 

CpGs 

(2) 

Neg: R < -0.2 

(3) 

Pos: R > 0.2 

Label Term 

Over-

representati

on p-value 

Under-

representati

on p-value 

Over-

representa

tion p-

value 

Under-

representat

ion p-value 

Over-

representa

tion p-

value 

Under-

representati

on p-value 

UCSC RefGene 

Group 

1stExon 1.E-04 1.E+00 1.E-07 1.E+00 1.E+00 3.E-02 

3'UTR 1.E+00 2.E-03 1.E+00 6.E-04 2.E-02 1.E+00 

5'UTR 1.E+00 8.E-01 3.E-01 1.E+00 1.E+00 2.E-02 

Body 1.E+00 7.E-05 1.E+00 1.E-16 9.E-20 1.E+00 

TSS 2.E-02 1.E+00 4.E-05 1.E+00 1.E+00 7.E-14 

Regulatory 

Feature Group 

Gene Associated 1.E+00 2.E-01 1.E+00 5.E-01 1.E+00 1.E+00 

Gene Associated Cell type 

specific 
1.E+00 5.E-02 1.E+00 2.E-01 2.E-01 1.E+00 

NonGene Associated 1.E+00 3.E-01 1.E+00 1.E-01 1.E+00 8.E-01 

NonGene Associated Cell 

type specific 
3.E-03 1.E+00 5.E-01 1.E+00 2.E-01 1.E+00 

Promoter Associated 1.E+00 2.E-146 1.E+00 3.E-31 1.E+00 4.E-34 

Promoter Associated Cell 

type specific 
1.E+00 5.E-02 1.E-04 1.E+00 1.E+00 7.E-02 

Unclassified 1.E+00 4.E-01 6.E-04 1.E+00 1.E+00 1.E+00 

Unclassified Cell type specific 9.E-35 1.E+00 4.E-06 1.E+00 1.E-10 1.E+00 

Unassigned 7.E-52 1.E+00 5.E-06 1.E+00 2.E-09 1.E+00 

Differentially 

Methylated 

Region (DMR) 

CDMR (Cancer-DMR) 2.E-16 1.E+00 4.E-03 1.E+00 1.E-13 1.E+00 

DMR 9.E-183 1.E+00 2.E-75 1.E+00 1.E-15 1.E+00 

RDMR (Reprogramming-

DMR) 
2.E-04 1.E+00 2.E-01 1.E+00 2.E-11 1.E+00 

Unassigned 1.E+00 2.E-205 1.E+00 2.E-75 1.E+00 5.E-40 

Enhancer  1.E-09 1.E+00 8.E-06 1.E+00 2.E-04 1.E+00 

DHS (DNAse 

hypersensitive 

site)  

1.E-07 1.E+00 2.E-03 1.E+00 2.E-05 1.E+00 

 

Table 2.4: Feature enrichments on the various subsets of differentially methylated CpGs between LumA-M1 and 

LumA-M3 subgroups. CpG enrichment tests show that hyper-methylated CpGs exhibiting negative correlation to 

gene expression are enriched for upstream gene parts, while positively correlated CpGs are enriched for gene body. 

All three hyper-methylated CpG groups are enriched for informatically determined enhancer elements and 

experimentally determined differentially methylated regions and DNAse hypersensitive sites. The p-values represent 

hypergeometric based over or under-representation and are FDR corrected (significant p-values are marked in bold). 
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2.1.7. Cox Survival Analysis 

In previous sections, we presented two different partitions of luminal-A tumors based on 

genomic profiles, with prognostic value: The LumA-R2 group (characterized by high expression 

of immune-related genes) was associated with a reduced chance of five-year recurrence, while 

the LumA-M1 group (characterized by hyper-methylation of CpGs located in developmental 

genes) was associated with poorer survival. To determine the prognostic contribution of the two 

partitions while adjusting for other relevant explanatory variables, we performed multivariate 

Cox survival analysis on both LumA-R and LumA-M partitions (see Table 2.5). Patients belonging 

to the LumA-M1 group exhibited 6.68 fold higher estimated five-year death hazard compared 

with the other groups in the COX multivariate model, after adjustment for age, pathological 

stage, ER status, PR status and HER2 status. Patients belonging to the LumA-R2 group had a 

decreased recurrence hazard of 0.06 (that is, 94% decrease) compared with LumA-R1 patients, 

after similar adjustment. The results reaffirm the independent prognostic value of the LumA-R2 

and the LumA-M1 classes (see Supplementary Information, section S1.10 for univariate analysis). 

   

 
Survival Recurrence 

Variable HR p-value HR p-value 

LumA-R (1 vs 2) 0.56 0.36991 0.06 0.00693 

LumA-M (2,3 vs 1) 6.68 0.00484 3.04 0.07028 

Age (<60 vs.>=60 years) 11.20 0.0037 1.03 0.96530 

Pathologic stage (I,II vs. III,IV) 2.12 0.25519 1.93 0.26992 

ER Status 7.17 0.18095 0.00 0.99575 

PR Status 0.47 0.50039 0.29 0.29092 

Her2 Status 1.48 0.72659 0.64 0.68789 

Table 2.5: Multivariate Cox analysis of luminal-A subgroups for five-year survival and five-year 

recurrence. Significant p values are marked in boldface. ER estrogen receptor, PR progesterone receptor, 

Her2 human epidermal growth factor receptor 2. 
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2.2. Methods 

2.2.1. Data acquisition and preprocessing 

TCGA data on invasive carcinoma of the breast were downloaded from UCSC Cancer Browser 

web site [162] together with accompanying clinical information. The downloaded RNA-Seq gene 

expression dataset (Illumina HiSeq platform, gene level RSEM-normalized [163], log2 

transformed) included 1215 samples of which 11 male, 8 metastatic and 30 unknown tissue 

source samples were filtered out. PAM50 calls (obtained directly from UNC, including PAM50 

proliferation scores) were available for 1148 of the filtered samples, and distributed as follows: 

183 basal-like, 78 Her2, 534 luminal-A, 203 luminal-B and 150 normal-like.  

We also downloaded DNA methylation profiles (Illumina Infinium Human Methylation 450K 

platform, beta values [31]) containing 872 samples of which 8 male, 5 metastatic and 19 

unknown tissue source samples were filtered out. We used only 679 tumor samples for which 

PAM50 calls were available, including 124 basal-like, 42 Her2, 378 luminal-A, and 135 luminal-B 

samples. Our analysis used only the 107,639 probes of the Infinium-I design type for which a 

gene symbol was available. This allowed us to bypass the bias of the two probe designs included 

on the array, to focus on differentially methylated sites that are associated with known genes 

and also to reduce the number of analyzed features.  

2.2.2. Unsupervised analysis of the tumor samples 

Unsupervised analysis of the various sample subsets was executed by clustering the samples 

based on the 2000 features (genes or CpGs) showing the highest variability over the samples 

included in each analysis. Clustering was performed using correlation distance. We used the k-

means clustering algorithm implementation in Matlab (release 2015a). This implementation uses 

the k-means++ algorithm by David and Vassilvitskii [164], which improves the initialization of the 

cluster seeds. To improve the quality of the resulting clustering solution, we generated 100 

clustering replicates and selected the replicate that minimized the sum of point-to-centroid 

distances as the final clustering solution.  Due to the high variability among sample subgroups in 

the breast cancer datasets, reselecting the top variable genes for the analysis of each sample set 

(and renormalizing accordingly) is crucial to ensure the use of the features most relevant to that 

set. Each feature was independently centered and normalized over the analyzed samples prior 

to clustering. 
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Cohort descriptions for the samples used in each analysis appear in the Supplementary 

Information (Tables S1.1C, S1.2A, S1.3A for the RNA-Seq analyses and Tables S1.6B, S1.7A and 

S1.8A for the DNA methylation analysis).  

 

2.2.3. Sample cluster enrichment and survival analysis 

To evaluate the clinical relevance of the sample clusters obtained in each unsupervised analysis, 

we used the extensive clinical information available from TCGA for each sample. Enrichment 

significance of sample clusters for categorical variables (such as PAM50 subtype or histological 

type) was calculated using false discovery rate (FDR) corrected hypergeometric test. For numeric 

variables (such as age, tumor nuclei percent and others) difference between sample groups was 

evaluated using the Wilcoxon rank-sum test (Mann–Whitney U test). 

Survival and recurrence-free survival curves were plotted using the Kaplan-Meier estimator [131] 

and p-values for the difference in survival for each group versus all other groups were calculated 

using the log-rank (Mantel-Haenzel) test [133][134]. Cox univariate and multivariate survival 

analyses were conducted using Matlab implementation; p-values were corrected using FDR. The 

analysis and visualization scripts are publicly available as an interactive graphical tool named 

PROMO [165][123] (thoroughly presented in Results, section 4). 

2.2.4. Analysis of differentially expressed genes and gene enrichment 

A list of genes that have the highest differential expression between the two RNA-Seq-based 

sample groups LumA-R1 and LumA-R2 was generated by applying the Wilcoxon rank-sum test on 

all dataset genes exhibiting non-zero variance (n=19913) after flooring all dataset values to 1 and 

ceiling to 14. We selected the 1000 genes exhibiting the most significant p-value that also have 

a median difference of at least 0.5 (log2 transformed RSEM expression values). All genes on the 

list showed significantly higher expression on the LumA-R2 sample group (lowest p-Value was 

8.1e-28). 

Gene enrichment tests were performed on these 1000 genes against a background all genes 

included in the rank-sum test. The Expander software suite [121]-[122] was used to detect 

significant enrichments for Gene Ontology (GO) [118], Kyoto encyclopedia of genes and genomes 

(KEGG) pathways [119], Wiki-Pathways [120] and chromosomal location enrichments. GO tests 

were also performed using the GOrilla tool [124].   
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2.2.5. Analysis of differentially methylated CpGs, correlation to 

expression and CpG enrichment 

To identify CpGs that are differentially methylated between LumA-M1 and LumA-M3 samples 

we applied the rank-sum test on all CpGs that survived our preprocessing and also had non-zero 

variability on the relevant samples (n=93,880).  We then selected the 1000 CpGs showing the 

highest significance and having a minimal median difference of 0.2 (in Beta-values). All selected 

CpGs had significantly higher mean methylation on group LumA-M1 compared to the LumA-M3 

group.  

To focus on DMCs whose genes show concomitant expression changes, we calculated for each 

CpG its Spearman correlation with the expression profile of its associated gene based on 

Illumina's probe-set annotation. The correlation values enabled the identification of 586 DMCs 

(rank-sum p-value<0.01, median difference>0.2) negatively correlated to expression (R < -0.2) 

and a second smaller group of 212 DMCs showing positive correlation (R > 0.2) to expression.  

We used the array CpG annotations provided by Illumina to calculate enrichments of each one 

of the three CpG lists (top 1000 DMCs, 586 negatively correlated DMCs, and 212 positively 

correlated DMCs) for features like differentially methylated regions (DMRs), Enhancer regions, 

UCSC RefGene Groups and Regulatory Feature Groups. Gene enrichment analysis was performed 

on the unique genes composing each CpG list, using the Expander and Gorilla tools as described 

above. Enrichment for InterPro [166] terms was calculated using David [167].  Enrichment for 

tumor suppressor genes was calculated by the hypergeometric test based on the TSGene [154] 

catalog.  
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3. Skin cancer subtypes 

In this study, we set out to explore whether the transcription-based subtype classification can 

be improved based on the larger number of 469 melanoma samples currently available from 

TCGA. We reasoned that larger datasets might allow for the identification of new prognostic 

subtypes or improve the characterization of previously described subtypes. We also aimed at 

identifying a minimal set of informative prognostic biomarkers that can be used to stratify 

patients into clinically relevant subtypes.  Finally, we performed a set of experimental tests on 

human melanoma specimens to validate our computational discoveries.   

3.1. Results 

3.1.1. Unsupervised analysis identifies four distinct melanoma 

subgroups 

In order to identify groups of similar melanoma tumors, we applied unsupervised analysis on 469 

RNA-Seq expression profiles obtained from TCGA’s melanoma dataset.  The dataset contained a 

mixture of primary (n=104) and metastasis samples (n=365). The clustering of the samples based 

on the 2000 most variable genes resulted in four distinct sample clusters showing significantly 

different 5-year survival rates (see Figure 3.1A, 3.1B, and Table S2.1). Gene ontology enrichment 

analysis identified active gene signatures that were used to characterize each sample group 

(Figure S2.1). Finally, we used the clinical information available for the samples in order to 

clinically characterize each sample group (see Figure 3.1C and Figure S2.2). 

Cluster 2, with the lowest survival rate, was mainly composed of primary melanomas showing 

significantly high Breslow depths and high pathologic T values. This cluster was associated with 

over-expression of cornification, epidermis development, and keratin related genes, all of which 

are characteristic of differentiated keratinocytes that form the outermost skin barrier[168]. We 

attributed the poor survival in this cluster to the bias in the TCGA cohort for thick primary tumors 

[48]. The other three clusters were mainly composed of metastatic melanomas. Cluster 1, which 

conferred the highest survival rate, was enriched for lymph node metastases and showed 

significantly high values for several immune scores that correlate with lymphocyte infiltration. 

Cluster 1 was also associated with the overexpression of adaptive immune response genes. 

Cluster 3 showed relatively good survival and was found to be marginally enriched for regional 

cutaneous tissue sites, whereas cluster 4 showed relatively poor survival and was found to be 

marginally enriched for metastasis to distant tissue sites. Interestingly, what distinguished the 
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relatively poor prognosis cluster 4 from the relatively good prognosis cluster 3 was an expression 

pattern enriched for melanin biosynthesis genes (gene cluster 1) whose over-expression was 

correlated with poor survival.  

We compared our four-cluster partition to TCGA's three transcriptomic subtypes (Figures 3.1A3 

and S2.3). We found that the two partitions largely correspond (Chi-Square p-value=1.6e-79) - 

sample clusters 1 and 3 were significantly enriched for TCGA's Immune and MITF-Low 

transcriptomic subtypes, respectively. TCGA's keratin subtype was split into two distinct clusters 

– the primary-enriched worst outcome cluster 2 and the bad outcome metastasis-enriched 

cluster 4. Overall, our analysis revealed a partition of the metastatic samples into the high-

immune, best survival (cluster 1), low-melanogenesis good survival (cluster 3, corresponding to 

TCGA's MITF-low subtypes), and a new metastasis enriched subgroup, characterized by poor 

survival and by significant overexpression of melanogenesis genes (cluster 4). We named the 

four identified melanoma subgroups accordingly: 1: "Immune", 2: "Keratin", 3: "Melanogenesis-

low" and 4: "Melanogenesis-high". Table 3.1 summarizes the characteristics of the four 

subgroups and their relation to TCGA's subgroups. 
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Figure 3.1: Clustering of TCGA’s RNA-Seq melanoma dataset. (A) A heat map representing the clustering of 469 

melanoma samples (matrix columns) into four groups based on the 2000 genes with the most variable expression 

profiles (matrix rows). Each sample cluster represents a group of similar melanoma tumors. Genes were also clustered 

in order to identify groups of co-expressing genes. Both samples and genes were clustered using the K-means algorithm 

(using k=4 for the samples and k=5 for the genes). The bars below the matrix display sample labels: (1) Cluster ID, (2) 

Primary vs. Metastasis, (3) Tissue site, (4) TCGA transcriptomic subtype. (B) Kaplan Meier curves for the four sample 

clusters. Log-rank p-values appear in the legend. (C) Summary of the significant enrichments of sample clusters for 

clinical labels. Colors indicate the significance of the enrichment. 
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Cluster Cluster name TCGA 

Transcriptomic 

subtype 

enrichment 

Survival Tumor 

tissue type 

enrichment 

Gene ontology 

enrichment of 

highly expressed 

genes 

1 Immune Immune Best Regional 

lymph node 

Immune response 

 

2 Keratin Keratin Worst Primary Cornification 

3 Melanogenesis-low MITF-Low Good  Nervous system 

development 

4 Melanogenesis-high Keratin Bad  Melanin 

biosynthetic process 

Table 3.1: Summary of the main sample cluster characteristics 

3.1.2. Over-expression of melanogenesis genes characterizes a poor-

survival melanoma subtype 

In order to further characterize the poor-survival cluster 4 ("Melanogenesis-high"), we looked at 

the genes that were over-expressed in this cluster (gene cluster 1). They were enriched for genes 

related to the synthesis of the melanin pigment (“Melanin biosynthetic process”, p-value<1.76E-

08, See Figure S2.1). Additional gene sets significantly enriched in that gene cluster were the 

“Melanogenesis” KEGG-pathway (p-value<0.005, 9 genes: GNAO1, DCT, KIT, TYRP1, FZD9, 

ADCY2, ADCY1, TYR, WNT4) and the “Melanosome membrane” GO term (p-value<0.0004, 6 

genes: OCA2, SLC45A2, GPR143, DCT, TYRP1, TYR). See Tables S2.2 and S2.3 for the complete 

enrichment results. 

Interestingly, these results suggest that the "Melanogenesis-high" samples differ from the 

"Melanogenesis-low" samples by over-expression of genes that are specific to the melanosome 

organelle (see Figure S2.4). The melanosome organelle is the hallmark of melanocytes, which are 

the melanoma cell of origin [169]. In normal skin, melanosomes are responsible for melanin 

production, storage, and transport from melanocytes to surrounding keratinocytes [170] [171]. 

However, the reason melanoma cells retain this function of their cell of origin, and the function 

of the melanosome itself in melanoma cells, have only recently begun to be revealed [172][173]. 

The melanin biosynthesis genes OCA2, TYRP1, DCT, and PMEL (SILV) also appeared on the list of 

top genes over-expressed in "Melanogenesis-high" samples in comparison to all other samples 

(see Table S2.4). 

For testing the independent prognostic value of those melanosome related genes, we 

partitioned all of the dataset samples into two groups based on the expression levels of each 

gene and calculated the difference in the survival plots of the two groups using the log-rank p-

value. For OCA2, KIT, GPR143, and TYRP1, overexpression was significantly correlated with 
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poorer 10-year survival as well as with increased recurrence risk (Figure 3.2). These results may 

suggest a mechanistic link between the melanosome organelle and the increased lethality of 

melanoma. 

 

 Survival Recurrence 

 

 

OCA2 
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GPR143 

  

 

 

TYRP1 

  

Figure 3.2: 10-year survival and recurrence risk estimates for Melanosome related genes, calculated 

over all dataset samples. Dataset samples were split into two groups based on the gene expression levels 

of several melanosome related genes. For each gene, the threshold for splitting the samples into two 

groups was the mean of its 5th and 95th expression percentile. 
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3.1.3. Metastatic melanomas retain the ability to secrete melanosomes 

into surrounding tissue 

In primary melanoma, melanosome secretion was shown to promote the formation of the 

dermal metastatic niche [172]. However, the role of melanosomes in promoting metastasis of 

melanoma in later stages is mostly unknown. To further explore the pigmentation/melanosome 

function in melanoma progression, we tested clinical melanoma specimens. Since our 

unsupervised analysis that identified the four-melanoma subgroups was based on mRNA 

expression levels, we first confirmed the expression of melanogenesis genes at the protein level. 

Primary in-situ melanoma tissues were immunostained for PMEL (SILV) using the HMB45 

antibody. PMEL is a melanocyte-specific marker known to be a melanogenesis gene and is used 

in the pathological diagnosis of melanoma [174][175]. PMEL is involved in the initiation of pre-

melanosome production [176], and was also found in our analysis to be overexpressed in cluster 

4 (see Table S2.4). PMEL strongly stained regions of melanoma (Figure 3.3A), confirming its 

presence at the protein level. To further confirm whether the complete melanogenesis 

machinery is functional, indicated by the production of mature melanosomes, specimens were 

immunostained with mature melanosome marker, GPNMB [172]. Primary melanoma and the 

surrounding tissue clearly stained with GPNMB (Figure 3.3A Left). This indicates that not only is 

the melanogenesis machinery active but also that melanosomes are actively secreted from 

melanoma into the stroma via a gradient pattern of diffusion from the epidermis (Figure 3.3A 

Right).  

Since our computational analysis showed that the machinery of melanin production in 

melanosomes highly correlated with poor prognosis, we further examined melanosome 

synthesis and function along a typical scheme of disease progression. In order to do this, we 

picked melanoma metastasis specimens in the lymph nodes, liver, and brain, all from different 

patients. These tissues represent different stages of aggression [177]. Metastatic specimens 

were subjected to immunohistochemistry for PMEL and GPNMB in order to follow melanosome 

production and distribution. Remarkably, metastases to the lymph, liver, and brain retained a 

hallmark pattern of melanosome secretion into the surrounding stroma (Figure 3.3B). This 

indicates that melanosome production is retained throughout the progression of melanoma and 

that melanosomes are actively secreted to the tumor microenvironment.  Taken together, our 

data demonstrate, for the first time, the presence of active production and secretion of 

melanosomes in distant metastatic sites, suggesting an important function for the melanosome 

organelle in the cancer metastases. 
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Figure 3.3: Melanosomes diffuse outward from primary and metastatic tissues. (A) Immunohistochemical 

(IHC) analysis of an in-situ melanoma showing mature melanosomes stained with Anti-GPNMB (Green) 

diffusing rightwards into the underlying subcutaneous tissues and away from the primary melanoma tumor. 

HMB45 (Red), an antibody for PMEL, which stains the premelanosome, shows the location of the melanoma. 

Nuclei were stained blue with DAPI. Equally sized, equidistant zones were delineated on the image in order to 

quantify differences in the intensity of GPNMB displayed by the graph to the right of the image. (B) IHC 

investigation of the metastatic sites: lymph node (top), liver (middle), and brain (bottom) showing secretion 

and dispersion of mature melanosomes stained with GPNMB (Green) into the stroma surrounding the tumor, 

stained with HMB45 (Red). Nuclei were stained blue with DAPI. Experimental validations were performed by 

members of Carmit Levi's lab. 
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3.1.4. A 3-gene classifier for predicting melanoma molecular subtype 

Having identified four distinct melanoma subgroups, each bearing a different survival risk and 

gene expression signature, we sought to develop a simple procedure to classify a new tumor into 

one of the four subgroups based on a minimal number of genes. Such a procedure will be easier 

to interpret biologically than a 2000-gene signature and also cheaper to assay in diagnostics. We 

selected the decision tree classifier, which was often used in medical decision making due to its 

simplicity, easy interpretability, and robustness to outlier values [178]. In order to determine the 

number of genes to be used by our classifier, we trained a large number of variably pruned 

random decision trees and examined their performance as a function of the number of genes 

used by the tree (see Figure S2.5). Three genes gave a good tradeoff between classifier simplicity 

and performance. We then trained a 3-gene decision tree on the full dataset, which achieved a 

training error of 0.187 (Figure 3.4). Notably, the three genes selected by the tree-training 

algorithm, KLK8, TIGIT and TRIM63, can be viewed as representatives of the three gene 

expression signatures described earlier (Keratin, Immune, and Melanogenesis, respectively). The 

three selected genes, their corresponding thresholds and a set of 10 surrogates for each one are 

displayed in Table 3.2. 

Remarkably, the genes identified as predictors by the decision tree have been previously 

associated with melanoma progression and prognosis: decrease in expression levels of kallikrein 

family member KLK8 was associated with the transfer from primary to metastatic melanoma 

[179], and its expression was linked to survival in various cancers [180][181][182]. TIGIT is a T cell 

immunoreceptor with Ig and ITIM domains, which was recently identified as an attractive cancer 

immunotherapy target due to its central role in tumor immunosurveillance [183][184]. Lastly, 

TRIM63 was implicated in melanoma cell migration/invasion[185]. Figure S2.6 provides a PCA 

visualization of the 469 melanoma samples projected to a 3-dimensional space based on the 

expression levels of the three genes used in the decision tree. 

Interestingly, when we trained 1000 random 3-gene decision trees by resampling the dataset 

samples, most resulting trees had a similar configuration and contained predictors that are 

representatives of the three signatures (see supplemental information, section 7.2). 
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Figure 3.4: A 3-gene decision tree for classifying melanoma samples. The tree trained on the 469 TCGA samples. 

Classification of a new sample into one of the four subtypes is done by traversing the tree from its root to one of its 

leaves (representing an assignment to a subtype). Three biomarkers are used to determine the route along the tree: 

Over-expression of KLK8 distinguishes the “Keratin” subtype, over-expression of TIGIT distinguishes the “Immune” 

subtype, and finally, over-expression of TRIM63 distinguishes the “Melanogenesis-high” from the “Melanogenesis-low” 

subtype. 

  

High Low 

(2) Keratin 

(1) Immune 

(4) Melanogenesis‐high (3) Melanogenesis‐low 
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Predictor gene Threshold Surrogate genes 

KLK8 1.179 KRTDAP, FAM83C, IVL, SBSN, SPRR1B,  KRT14,  KRT16, WFDC5,  

KRT6C, SERPINB5 

TIGIT 0.226 CD2, SLAMF6, LCK, SIRPG, SLA2, UBASH3A, CD3D, CD27, ITGAL, 

SIT1 

TRIM63 0.155 TRPM1, PMEL , SLC5A10, GPR143, TSPAN10, MLPH, MLANA, 

MMP16, SLC45A2, GMPR 

Table 3.2: Threshold values and surrogate genes for the three decision tree predictors as identified by the 

algorithm. Threshold values are used to distinguish between high and low values (based on normalized 

expression values) during the classification procedure. For each predictor gene, 10 surrogate genes were 

identified by the tree-training algorithm and are displayed on the rightmost table column. The surrogate 

genes can be used instead of the predictor gene, with an appropriately adjusted threshold. The  surrogate 

genes are sorted by decreasing  predicted performance. The predictor gene represents the best predictor 

identified by the training algorithm. 

3.1.5. Experimental validation of predictor genes on patient cohort 

The decision tree produced consists of three informative genes (KLK8, TIGIT, and TRIM63) along 

with a threshold level for each gene that together provide a simple method for classifying 

melanoma tumors into one of the four subgroups. To classify a new tumor sample, one evaluates 

the sample's expression levels for three predictor genes (biomarkers): first, a keratin predictor-

gene is evaluated (KLK8, or one of its keratinization surrogates such as KRT6C, IVL, SPRR1B, 

KRT14, KRT16), where high values would label the sample as "Keratin" and low values would lead 

to the next predictor. Next, an immune predictor is evaluated (TIGIT, or one of its immune 

surrogates such as LCK, CD2, SLAMF6, SIRPG, SLA2, UBASH3A, CD3D, CD27, ITGAL, SIT1), where 

high values would label the sample as "Immune" and low levels would lead to the next and final 

predictor. Lastly, a melanogenesis predictor is evaluated (TRIM63, or one of its melanogenesis 

surrogates such as SLC45A2, PMEL, GPR143) where high values would label the sample as 

"Melanogenesis-high" and low values as "Melanogenesis-low". 

In order to validate the association between the classifier's predictor genes and outcome, we 

experimentally tested their expression on six samples from patients of known outcomes. 

Patients who survived for five years or more after initial tumor diagnosis were defined as “good 

survival”, and those who survived two years or less after initial diagnosis as “poor survival” (Table 

S2.5). In all clusters except for cluster 2 (the "Keratin" subgroup, which mostly corresponded to 

primary sites), lymph node tissues were identified in a substantial fraction of the samples (Fig 
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S2.3C). For this reason, we tested the tree predictor genes in melanoma metastases to the lymph 

nodes from each patient using immunohistochemistry (IHC).  

We first conducted H&E staining to confirm that the metastasis was, in fact, in the lymph nodes 

(Figure 3.5A), and then stained each sample by the three predictor genes. Figure 3.5B shows the 

six tissue images per gene and Figure 3.5D shows quantification of staining levels. All lymph node 

specimens stained negatively for the KLK8 gene, the predictor for the primary-melanoma 

enriched "Keratin" subgroup in the tree (Figure 3.5B, first row), indicating that the six samples 

do not belong to that subgroup. Staining for the TIGIT gene, the predictor for the "Immune" 

subgroup, appeared positive in the lymph node specimens of patients 1 and 3, thus assigning 

them to the best prognosis “Immune” subgroup based on the decision tree logic, in agreement 

with their good survival (Figure 3.5B, second row). The specimens from patients 2, 5 and 6 

stained negatively for TIGIT, excluding them from the “Immune” subgroup. The specimen from 

patient 4 showed borderline positive staining, making it difficult to classify. Finally, using TRIM63, 

the predictor for the "Melanogenesis-high" subgroup, specimens 5 and 6 were stained positively 

and were therefore assigned to the “Melanogenesis-high” subgroup, while specimen 3 that was 

stained negatively and therefore assigned to the “Melanogenesis-low” subgroup (Figure 3.5B, 

third row). Except for patient 4, all patients were assigned to subgroups conferring relative 

survival in agreement with their known outcome. The results demonstrate the utility of 

biomarkers in prognostication of melanoma. 

In addition to verifying the expression levels of proteins identified by the decision tree and their 

correlation to survival, we examined three other proteins that were identified as informative 

predictors for general prognosis (Figure 3.5C). As an additional representative from the immune 

protein category we selected LCK, a Src family tyrosine kinase found on lymphocytes, that was 

previously identified as a biomarker for good prognosis in melanoma [48]. Indeed, patients with 

high LCK expression had a better prognosis. As additional representatives for the melanogenesis 

category, we selected GPNMB, indicative of mature melanosome presence [186], and OCA2, a 

transporter protein associated with melanocytes involved in melanin production and pH 

regulation of the melanosome [187]. Patients who had high levels of these proteins in their 

lymph nodes had worse outcomes associated with the “Melanogenesis-high” subgroup.  

Our data demonstrate that using the expression levels of only three classifier genes (keratin, 

immune, and melanogenesis) in our decision tree, we can reasonably predict the patient 

outcome using a lymph node biopsy. Our data further suggest the involvement of melanogenesis 

genes and the melanosome organelle in melanoma progression and lethality.  
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Figure 3.5: Melanogenesis and immune characteristics of melanoma metastases in good and poor prognostic 

outcomes. (A) Hematoxylin and Eosin (H&E) staining of lymph nodes containing melanoma metastases from six 

different patients taken at 20x magnification. Patients 1-3 had a good prognosis, while patients 4-6 had poor 

prognostic outcomes. (B) Immunohistochemical staining of the three proteins of the decision tree on the lymph 

node samples of the six patients. Nuclei were stained blue using DAPI. Row 1: Using KLK8 (pink) to validate non-

primary tumor tissue. Row 2: Using TIGIT (Green) to test for immune proteins. Row 3: The expression of 

melanogenesis related protein TRIM63 (Pink). The assignments of the specimens from the six patients to subtypes 

based on the expression levels of the three predictor genes are summarized as a label at the bottom bar. (C) 

Immunohistochemical staining of additional biomarkers for general prognosis. Row 1: LCK, an immune protein 

indicative of good prognostic outcome. Row 2: Melanogenesis protein OCA2. Row 3:  Melanogenesis protein 

GPNMB. (D) Color matrix quantifying the fluorescence intensity of immunohistochemistry across biomarkers and 

patients. For each protein, values were independently normalized across the samples. Experimental validations 

were performed by members of Carmit Levi's lab. 
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3.2. Methods 

3.2.1. Gene expression analysis for identification of melanoma 

subtypes 

The expression profiles of 474 samples from TCGA's melanoma RNA-Seq dataset [48] were 

downloaded from UCSC XENA's web site in April 2018 [188], together with their associated 

clinical information (213 labels). We used the PROMO software suite (release 2019.5) [123][165] 

for importing, preprocessing, analyzing, and visualizing the data. The downloaded RNA-Seq 

dataset (Illumina HiSeq platform, gene-level RSEM-normalized [27], log2 transformed) included 

104 primary and 365 metastasis samples. Five samples were removed since they had inconsistent 

phenotype labels, and a variability-based filter was used to keep only the 2000 top variable 

genes. Clustering was performed on both samples and genes using the k-means algorithm with 

a correlation distance metric (using k=4 for the samples, and k=5 for the genes). The algorithm 

was run 100 times and a solution minimizing the sum of point-to-centroid distances was chosen.  

We used PROMO's multi-label analysis to evaluate the enrichment of the sample-clusters for 

each of the clinical labels. Enrichment significance of sample-clusters for categorical variables 

(such as sample type) was calculated using FDR-corrected [93] hypergeometric test. For numeric 

variables (such as age, Breslow's depth, and pigmentation score), the difference between sample 

groups was evaluated using FDR-corrected Wilcoxon rank-sum test (Mann–Whitney U test). For 

exploring the prognostic value of the four sample-clusters based on TCGA's survival data, we 

used PROMO to plot 5-year survival curves using the Kaplan-Meier estimator [131], and 

calculated p-values for the difference in survival for each group versus all other groups using the 

log-rank (Mantel-Haenszel) test [133][134].  

To identify active gene functions characterizing each of the sample-clusters, we applied Gene 

Ontology (GO) enrichment analysis [118] on the five gene-clusters using both PROMO (Figure 

S2.1) and the Expander software suite [121]-[122] (Table S2.2). To further characterize the 

biological function of the gene-clusters, we also used Expander to test each gene-cluster for 

enrichment for KEGG pathways [119] (Table S2.3). 

Finally, to identify genes that were over-expressed on sample-cluster 4 compared to all other 

samples, we applied the Wilcoxon rank-sum test on all dataset genes exhibiting non-zero 

variance (n=20,228), and ranked all genes that were over-expressed on cluster 4 and showed p-

value<1e-06 by decreasing fold-change (difference between the mean expressed in cluster 4 
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samples and all other samples, Table S2.4). We used the GORILLA tool[124] for identifying the 

melanin biosynthesis genes appearing among the top 100 differentially expressed genes.  

3.2.2. Human histopathology and analysis of slides 

Samples were obtained from patients at the E. Wolfson Medical Center and Tel Aviv Medical 

Center. The experimental study of the clinical samples was approved by the hospital ethics 

committee (Approval number: 18-0039 WOMC). Surgeons resected the primary tumors and the 

metastases and confirmed clear margins on the samples.  Using demographic information, tumor 

characteristics, and length of survival following diagnosis, patients were identified as belonging 

to either good or bad survival groups by a pathologist. Specimens were fixed in formalin and 

subsequently embedded in paraffin. Hematoxylin (HHS16, Sigma-Aldrich) and Eosin (HT110232, 

Sigma-Aldrich) staining (H&E) of the samples was performed according to the manufacturer 

instructions. H&E images were obtained at 20x using Aperio Slide Scanner. Slides were first 

blocked and incubated with various combinations of primary antibodies including LCK (AF3704, 

R&D Systems), TIGIT (A700-047, Bethyl Lab), TRIM63 (bs2539R, Bioss), OCA2 (bs15510R, Bioss), 

GPNMB (AF2550, R&D Systems), HMB45 (ab732, Abcam), and KLK8 (MAB1719, R&D Systems). 

After subsequent washes, slides were incubated with the matching combinations of secondary 

antibodies, including Alexa Fluor 488 (A11055, Invitrogen), Alexa Fluor 594 (A21203, Invitrogen), 

and or Alexa Fluor 647 (A31571, Invitrogen). 4′,6-diamidino-2-phenylindole (DAPI; Vector 

Laboratories) was then added dropwise to adequately visualize cell nuclei in the stained 

specimens. Images of slides were taken using fluorescence microscopy (Nikon) at 40x 

magnification, split into the individual color channels, and mean intensity of representative areas 

from each image was measured using ImageJ software. The mean intensity values recorded were 

then used to generate a color matrix demonstrating the level of expression of each protein in 

each patient’s sample.  

For the analysis of melanosome spread and secretion, samples of human in-situ melanoma, as 

well as metastases from different patients including brain, lymph, and liver were obtained from 

E. Wolfson Medical Center. Immunohistochemical staining as described above was performed 

using GPNMB (AF2550, R&D Systems) and HMB45 (ab732, Abcam) as primary antibodies, and 

Alexa Fluor 488 (A11055, Invitrogen), Alexa Fluor 594 (A21203, Invitrogen) as secondary 

antibodies, with 4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories) added at the end. 

Images of the slides were taken at 20x magnification using a Nikon fluorescent microscope. The 

image of in-situ melanoma was then broken into its component color channels using ImageJ 
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software, and four equally sized, equidistant frames were cut out and measured for the mean 

intensity of GPNMB to quantify the gradient of its diffusion from the primary tumor. 

3.2.3. Training of a gene-expression based decision tree classifier 

To train a molecular classifier for predicting melanoma subgroups, we used the expression levels 

of the 2000 most variable genes on the set of 469 melanoma samples. We used Matlab’s 

implementation (R2019a)  (accessed through PROMO [123]) to grow a classification tree using a 

curvature test as the method for splitting predictors [189][190]. The training procedure consisted 

of two steps. First, we assessed the best number of predictor genes to be included in the decision 

tree, by training many trees on randomly selected subsets of the dataset samples (90% of the 

samples were included in each iteration) while varying the number of allowed predictor genes 

and the pruning level. The average training error was calculated for each tree size (Figure S2.5). 

Next, having determined the number of predictor genes, we used the entire dataset samples 

(n=469) to train the final decision tree.   
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4. PROMO: an interactive tool for analyzing 

clinically-labeled multi-omic cancer 

datasets 
 

In recent years, a growing number of high-throughput genomic technologies have become 

available for biomedical research and are jointly providing high-resolution genomic data that fuel 

the revolution of personalized medicine [75][72]. These technologies (collectively named omics) 

allow the simultaneous quantification of a large number of features at various biological levels. 

The features include gene expression (mRNA and miRNA abundance levels measured by 

microarrays or RNA-Seq), protein expression (measured by mass spectroscopy or reverse-phase 

protein arrays), DNA methylation (methylation arrays), copy number variation (SNP arrays), and 

others [191][192]. The technologies vary broadly in the number of features they measure as well 

as in the distribution of measured values [50]. However, they can typically be summarized as a 

numeric matrix where columns represent samples and rows represent biological features (often 

correlating to genes). Bioinformatic analysis of such genomic matrices has been extensively used 

for identifying biologically distinct sample groups, and for revealing groups of correlated 

biological features [69][193]. 

The number of tumor samples and measured features that are included in a typical cancer 

genomic dataset have grown dramatically in the last few years, owing to increasing resolution 

and reduced costs of array and sequencing technologies. Modern repositories comprise 

thousands of patient samples and many thousands of features. Investigation of such large 

datasets is computationally challenging as it requires robust software tools for supporting the 

analysis of both samples and features in high dimensional data [60]. 

In addition to genomic data, modern cancer datasets can include extensive medical information 

(labels) describing each sample, such as clinical properties or assignment to a predefined 

phenotype. These clinical labels make it possible to fuse genomic and clinical data in various ways 

in order to discover new insights based on feature-phenotype associations. Common clinical 

labels in cancer datasets include disease subtypes, pathological stages, survival and recurrence 

follow-up information, as well as response to treatment.  Identification of genomic features that 

are correlated with significant clinical parameters (biomarkers) is expected to play a significant 

role in the field of personalized medicine, by which the status of multiple biomarkers may 

improve subtype diagnosis and guide therapeutic decisions [194][195].   
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The Cancer Genome Atlas (TCGA) is an example of a revolutionary multi-label multi-omic 

genomic database [79]. It includes more than 11,000 samples from 33 types of cancer, where 

each sample was measured using multiple omic technologies and was described by dozens of 

clinical labels [80]. Many studies have already analyzed TCGA data, improving the subtyping of 

cancers and shedding light on the biological mechanisms underlying the development of various 

cancer types [84][142][196]. Such analyses are typically time-consuming, computationally 

challenging, and entail team effort, as they require applying a diverse array of methods, 

statistical tools, and algorithms, and often also require writing extensive computer code to 

perform and interweave the various steps of the analysis [197]. Hence, to effectively extract 

clinically meaningful insights from such multi-omic multi-label databases, specialized agile 

integrative tools are required. 

To address this challenge, we developed PROMO (PROfiler of Multi Omic data), a fully interactive 

software suite capable of quickly importing, preprocessing, visualizing, analyzing and reporting 

the results on cancer datasets in a seamless fashion, without writing a single line of computer 

code. PROMO includes an extensive array of bioinformatic methods for performing major 

common analysis types including exploration, visualization, identification of clinically significant 

disease subtypes, revealing co-regulated feature groups, biomarker discovery, simple 

classification and integrative multi-omic analysis. Table 4.1 presents an overview of the 

fundamental analysis types available in PROMO.  

An early version of PROMO was developed as part of a study where we identified distinct 

prognostic subgroups in luminal-A breast tumors based on expression and methylation data 

(Results, section 2) [198]. The analysis workflow in that project provides an example of the key 

steps in a typical application of PROMO (Figure 4.1): Data are imported, filtered and 

preprocessed. Tumor samples are clustered into groups that are then assessed for clinical 

significance using survival analysis and statistical tests on the clinical labels. Clustering of the 

genes followed by gene enrichment analysis associates sample clusters with active gene 

functions. The analysis is summarized visually in a genomic matrix clearly showing the identified 

sample clusters and their association to important clinical labels (Figure 4.1, step 4), in addition 

to downstream analysis methods (Figure 4.1, steps 5-7). 

In this chapter, we describe PROMO's main features and demonstrate its use in a study of a 

breast cancer cohort [142]. 
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 Analysis type Biomedical goal Relevant PROMO features 

1 General exploration and 

visualization 

Explore the genomic dataset vis-a-

vis the clinical labels 

Prepare the dataset for 

downstream analysis, test its 

consistency and visualize its 

properties 

 Variance-based feature filtering 

 Label-based sample filtering 

 Normalization 

 Sorting by samples label or mean 
expression 

 Visualizing data distribution 

 PCA, t-SNE 

2 Focus on genes of 

interest 

Explore the expression profiles of 

specific genes vis-à-vis multiple 

clinical labels 

Identify co-expressed genes 

 Filter features based on gene 
symbols 

 Rank genes by correlation to a 
given gene symbol 

 Multi-label matrix visualization 

3 Disease subtype 

identification  

Look for clinically significant 

sample clusters 

 Sample clustering 

 Label enrichment analysis 

 Survival analysis 

 Classification 

4 Co-regulated feature 

group identification 

Identify groups of similar features, 

characterize each group by 

function 

 Feature clustering 

 GO Enrichment analysis 

5 Biomarker discovery Find features that distinguish 

among sample groups, correlate 

groups with survival and other 

clinical data 

 Statistical tests for identifying 
differentially expressed genes 

 Biomarker-based survival analysis 

 Rank genes by survival prediction 

6 Integrative multi-omic 

analysis 

Stratify patients and identify 

coherent feature groups by 

integrating data from different 

omics 

 Multi-omic sample clustering 

 Inter-omic feature correlation 

Table 4.1: PROMO’s main analysis types 
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Figure 4.1:  PROMO’s subtype discovery workflow – From data import to subtype classifier. This figure outlines 

the complete workflow by which PROMO can be used for identifying and characterizing clinically distinct cancer 

subtypes: (1) Importing genomic data together with clinical information in one of several available formats. (2) 

Preprocessing the data and preparing it for downstream analysis. (3) Verifying the integrity of the data, 

characterizing its distribution and exploring dataset properties with respect to the available clinical labels. (4) 

Employing clustering algorithms partition both samples and features (genes) into groups. (5) Applying 

enrichment tests to identify clinically significant sample subtypes and groups of co-regulated genes and to 

characterize their function. (6) Statistical tests identify features that distinguish between different sample 

subtypes as well as survival-related features. (7) Decision tree classifiers can be generated for formulating a set 

of rules by which a new sample can be classified.  
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4.1. Results 

We now describe PROMO’s main features, organized by analysis steps. The described features 

can be accessed using PROMO's menus or graphical user interface (Figure 4.2). The dataset used 

was TCGA's breast cancer gene expression profiles (1218 samples downloaded from UCSC's 

XENA website in May 2018). It is also available on the datasets page of PROMO's website. 

4.1.1. Data import and preprocessing  

In all analysis types, the first steps are to import the required data from local files into PROMO 

and prepare it for the analysis. PROMO enables the integration of data of different types and 

from multiple sources by importing genomic matrices, sample labels, and sample or gene 

partition files. Genomic matrices accompanied by complementary phenotypic information 

(clinical labels) can be loaded in the following formats: tabular text files, Gene Expression 

Omnibus (GEO)[199] series files (including direct download from within PROMO), UCSC's 

XENA[200][201] file formats (available for many public datasets including all TCGA's data), and 

PROMO's DSC files. The latter are precompiled multi-omic datasets available at PROMO's dataset 

download page for selected TCGA cohorts. PROMO also allows separate loading of additional 

clinical labels and sample partition files to be used in the subtype discovery workflow. 

After import, the loaded dataset can be 'cleaned' by filtering out samples based on clinical label 

values, and also by removing certain features (e.g., removing low variability genes or keeping 

only specific genes). Additional available common preprocessing steps include flooring, ceiling, 

and row normalization.  

  



71 

 

(A) PROMO's main screen 

 

 

 

 

 

 

 

 

 

(B) Preprocessing                  (C) Clustering                         (D) Analysis                             (E) Dataset collection 

 

 

 

 

 

 

 

Figure 4.2: PROMO’s graphical user interface (A) PROMO's main screen. The genomic matrix is in the center 

with columns corresponding to samples and rows to features. Colors represent feature values according to the 

scale on the right. The colorful label bar beneath the matrix displays the currently selected sample label. 

Analysis steps are documented in the textbox on the bottom of the screen. Key commands are available on 

the tabbed panels on the left of the screen. (B) The Preprocessing panel allows filtering, normalization, and 

sorting of the genomic data. (C) Clustering the dataset's samples and features using various algorithms and 

distance functions is available through the Clustering panel. Resulting clustering solutions are aggregated for 

future review and filtering. (D) The Analysis panel provides access to several visualization and exploratory tools 

like PCA, t-SNE, survival analysis, biomarker discovery, GO enrichment and automatic classifier generation. (E) 

In the Dataset Collection panel, several genomic matrices can be assembled into a multi-omic dataset 

collection, and then analyzed together. 
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4.1.2. Data exploration and visualization 

Once a genomic matrix is loaded to PROMO, its properties can be explored with respect to any 

selected clinical label (Figure 4.3A). The samples (columns) in the matrix can be reordered based 

on any clinical label or by their mean expression. Basic dataset properties like value distribution 

(4.3B), clinical label distribution (4.3C), and sample variation (4.3D) can be studied and displayed 

graphically in various ways including PCA [202][203] and t-SNE [204]. For ease of interpretation, 

all displays consistently use the same colors to represent the various sample subgroups.   

4.1.3. Clustering and enrichment analyses 

A major effort in promoting precision medicine is to identify disjoint groups of similar patients 

and characterize each group using its distinct genomic profile, survival data, and clinical 

information. To reveal the similarities among patients, clustering is often performed on both 

samples and features [99].  Clustering the samples can reveal patient groups corresponding to 

disease subtypes [101] while clustering the features reveals groups of co-regulated genes [102]. 

PROMO provides various clustering algorithms such as K-means [105], hierarchical clustering 

[15], and Click [107] (PROMO's clustering panel is shown in Figure S3.1). To explore the resulting 

clusters, the reordered matrix can be visualized in comparison to multiple sample labels (Fig 

4.4A). 

After the genes have been clustered, the built-in Gene Ontology tool can help interpret the 

biological meaning of gene clusters using enrichment analysis (Fig 4.4B) [118]. Likewise, the 

clinical labels on the samples can be used to statistically characterize each sample cluster. A 

comprehensive analysis can be applied to each sample cluster using all clinical labels available 

for the cohort (numeric, ordinal, categorical, or survival labels). The result is a characterization 

of each cluster, together with FDR corrected p-values [93][134] in a unified report (Fig 4.4C). 

Enrichment tests for the sample clusters can also be performed using any selected single clinical 

label (Fig 4.4D).  Finally, survival analysis performed on the sample clusters can test their 

prognostic value using Kaplan-Meier plots [131] and log-rank (Mantel–Haenszel) test [133] (Fig 

4.4E). Taken together, PROMO’s clustering and automatic multi-label enrichment analysis can 

quickly partition both samples and features into distinct groups and assess their biological 

meaning using the clinical labels. 
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Figure 4.3: Visualization of multi-label genomic data. PROMO provides a variety of methods for 

visualizing a genomic dataset together with its associated clinical information. (A) A multi-label 

expression matrix plot. The plot is composed of a heat-map representation of the genomic matrix and 

several label bars beneath it showing different clinical labels that the user interactively selected. The colors 

in each label bar show the label value of each sample according to the legend on the right. The label appears 

below the lower-left corner of the bar. Here, breast cancer patient profiles were grouped according to their 

PAM50 category (shown in the top label bar). By observing the distribution of values in other bars, relations 

between the groups and the labels can be observed. For example, the ER, PR and HER2 status of most 

samples in the 'basal' group are negative, while the HER2 status of most 'HER2' group is positive. (B) Data 

distribution and (C) Clinical label distribution can be explored and visualized separately, or in combination 

using plots such as (D) PCA and others. These figures show that the basal tumor samples are mainly 

characterized by Negative ER, PR and HER2 labels (A) and markedly differ from all other subtypes in their 

gene expression pattern (D), in accordance with the literature [142]. 
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 Figure 4.4: Identification and characterization of cancer subtypes. Unsupervised analysis followed by enrichment analysis 

is performed on both samples and features for identifying clinically significant samples groups, and for biologically 

characterizing them based on the functions of co-expressed gene groups. (A) The RNA-Seq expression matrix of TCGA's 

breast cancer cohort after clustering both samples (columns) and genes (rows) into four clusters using the K-means 

algorithm. Clustering is based on the top 2000 variable genes. White lines separate clusters in each dimension. The bars 

below the matrix show selected sample labels (here: the clustering and PAM50). Matrix and bars were created using 

PROMO's multi-label matrix drawing. (B) Gene clusters were characterized using PROMO's gene ontology enrichment tool. 

The figure shows the five most significant GO terms for every gene cluster. (C-E) Sample clusters were characterized using 

the sample clinical labels: (C) PROMO's multi-label analysis tool automatically tests the clinical labels of different types 

(numeric, ordinal, categorical or survival) for enrichment on the sample clusters. FDR correction is performed over all 

clinical labels of the same type but separately for different types. (D) The various sample clusters can also be characterized 

for a single label by showing its value distribution in each cluster and by calculating enrichment. (E) Survival functions for 

each cluster. The p-values are the significance of the separation of each cluster from the rest using the log-rank test.   
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Multi-Label Analysis – Summary by Clusters 
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E  
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4.1.4. Identification of distinguishing genes and features (Biomarker 

discovery) 

Having obtained patient subgroups of interest, either by sample clustering or using a predefined 

sample label, we may wish to identify distinguishing genes and features that differ significantly 

among sample groups. Such differentially expressed genes can shed light on the biological 

difference between sample clusters, and act as biomarkers for classifying a new sample to a 

sample class.   

After selecting the label and the groups that will be compared, PROMO enables the application 

of various statistical tests for identifying genes that are differentially expressed among the 

groups. The p-values obtained by the tests can be used for gene sorting, filtering and for 

clustering the genes into up-regulated and down-regulated groups. PROMO's Gene Ontology 

enrichment analysis can be executed on the resulting gene groups for characterizing the function 

of up-regulated and down-regulated genes. FDR correction and fold-change based filtering are 

also supported. PROMO's biomarker discovery panel and an example of its output are shown in 

Figure S3.3 and Table S3.1. 

For detecting survival biomarkers, PROMO can rank all genes by their association to survival, 

based on Cox regression analysis [139]. In addition, the user can use the expression levels of 

selected genes to generate a new sample label (for example, HER2_Low and HER2_High). Kaplan-

Meier plots can then be used to estimate the significance of survival differences between sample 

groups defined by the new label. 

Lastly, PROMO can help in finding genes that are functionally related to a given gene of interest 

by ranking all genes based on their correlation to it. Altogether, the various techniques described 

here and implemented in PROMO can quickly identify genes that take part in the biological 

differences between sample groups and may serve as biomarkers for the selected label.  

4.1.5. Automatic generation of a simple molecular classifier 

After having partitioned the dataset samples, characterized the sample groups and their genes, 

and established the clinical relevance of the groups, PROMO can build an algorithm to classify a 

new sample into one of the groups. Such a classifier, especially if based on a small number of 

genes (rather than the thousands used to identify the subgroups) can serve as a significant step 

towards translating the analysis results into a diagnostic biomarker for clinical use.   

Of the many possible classifier types, decision trees have the advantages of being easy to 

understand, highly interpretable biologically and easily visualized [189]. Furthermore, they allow 
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for controlling the tradeoff between accuracy and simplicity. For predicting any selected sample 

label, PROMO can generate a simple decision tree with a single click (Fig 4.5). The generated 

decision tree can be visualized graphically, specified textually, and saved to a Matlab file as a 

function. Automatic cross-validation and parameter optimization make it easy for the user to 

come up with a simple decision tree that may be in future subtype classification kits. It is also 

possible to generate a large number of random trees and rank the genes by the frequency of 

their appearance in the trees, thus identifying informative features for subtype classification. 

 

Figure 4.5: Automatically generated decision-tree for classifying breast tumors into the four PAM50 classes. 

PROMO can generate a cross-validated decision tree for any selected sample label using the currently loaded 

matrix as training data. In this figure, a four-gene molecular classifier for breast cancer subtypes is presented, 

showing a 7.77% loss on the training data, and a 15% averaged loss on 10-fold cross-validation. 
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4.1.6. Integrative multi-omic analysis 

In multi-omic datasets, each sample is characterized by several omic profiles (e.g., gene 

expression, methylation, copy number). Integrative analysis of multi-omic cancer datasets has 

the potential of revealing biological regulatory patterns that are missed in single omic analysis, 

and tools for performing such analyses are currently in great demand [205][68].   

PROMO provides several features for handling and analyzing multi-omic datasets. The profiles 

composing a multi-omic dataset can be imported from repositories into a 'Multi-Omic Dataset 

Collection' in PROMO (Figure 4.2E). The user can navigate between the matrices, edit them 

independently, and select a subset of the datasets for downstream integrative analysis. 

Precompiled dataset collections for several TCGA cancer type cohorts are available on PROMO's 

download page. 

After setting up a multi-omic collection, the "inter-omic correlation identification" feature helps 

to detect correlations between features in two selected omics. This feature allows the 

identification of correlations between features from different biological levels. For instance, anti-

correlation between mRNA expression and DNA methylation levels can pinpoint biological 

regulation. 

The "Multi-omic clustering" feature can be used to cluster the dataset samples based on several 

omic matrices simultaneously. To this end, PROMO provides implementations of the multi-omic 

algorithms SNF [206], NEMO [83], and Consensus Clustering [207] modified for multi-omic data. 

Figure 6 demonstrates the application of a multi-omic clustering algorithm on three different 

omics of the TCGA's breast cancer cohort. 
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Figure 4.6: Multi-omic sample clustering Screenshot of PROMO's main screen after applying multi-omic clustering on 

674 breast tumor samples from TCGA. The 'Dataset Collection' panel on the left was used to select the three omics to 

be used in the clustering. Here features from three different omics were used:  (A) RNA-Seq (2000 features), (B) DNA 

methylation arrays (2000 features) and (C) miRNA arrays (500 features). Algorithm NEMO [83] was applied on the 

subset of samples appearing in the three omics into 5 groups, shown on the label bar below the matrix. The genomic 

matrix displays concatenation of the 4500 features included in the analysis after row normalization, with samples 

grouped by cluster. The 1st and 4th clusters from the left have high methylation signals, while the second and third 

have higher gene expression signals. The clustering of tumor samples using a multi-omic algorithm integrates data 

from different biological levels and thus has the potential of revealing biological regulatory patterns that are missed 

in a single omic analysis. 
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4.2. Methods 

PROMO is a standalone Windows application that can support huge datasets and has a fast fully 

interactive graphical user interface.  PROMO was written in MATLAB, and it runs over the freely 

available Matlab runtime environment, taking advantage of its strong computational engine and 

editable graphical outputs. PROMO is freely available for download at 

http://acgt.cs.tau.ac.il/promo/. 

PROMO's main screen (Figure 4.2A) includes several key graphic elements: A large heatmap 

representing the currently analyzed genomic matrix is located at the center of the screen 

(heatmap colors correspond to the matrix values as indicated by the color scale on the right). 

Beneath the heatmap, a color-bar displays the currently selected sample labels. The same sample 

label colors will consistently be used by PROMO in all displays. The user can scroll down the list 

of clinical labels and explore their distribution over the samples. The panel on the left provides 

access to common commands and parameters. A text log that documents the analysis steps 

appears at the bottom of the screen. Figures 2B-F show the various panels that can be directly 

opened from the tab menu on the left of the screen, providing quick access to PROMO’s most 

useful features. 

4.3. Summary 

PROMO aims to fill in a gap in available analysis tools for large genomic and clinical cancer 

datasets.  It is an interactive tool that is freely available and supports a rich collection of analysis 

methods and facilitates useful workflows for data exploration and visualization, cancer subtype 

identification, biomarker discovery and integrative multi-omic analysis. (See Table 4.2 for a list 

of the key features). PROMO's support for large sample size in addition to features like survival 

analysis and interrogation of the clinical data on sample clusters makes it especially suitable for 

analyzing modern cancer datasets. While many of PROMO's features are also available in other 

tools (Table 4.3), PROMO is unique in its comprehensiveness, support for large sample dimension 

and the spectrum of tools it provides.  

  

http://acgt.cs.tau.ac.il/promo/
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CATEGORY KEY FEATURES 

DATA IMPORT  Importing genomic data from tabular CSV files 

 Importing UCSC’s XENA genome matrix and phenotype 

files 

 Importing GEO series files 

 Adding clinical labels from file 

PREPROCESSING  Flooring, ceiling and row normalization  

 Filtering of samples by clinical labels 

 Filter features by range, variance, gene symbols or by an 

external list 

DATA EXPLORATION AND 

VISUALIZATION 
 PCA, t-SNE 

 Data distribution plots 

 Survival Analysis (Kaplan Meier, Log rank) 

 Multi-label expression matrix figures 

SORTING  Sorting samples and features based on genomic data 

 Sorting samples based on clinical labels 

CLUSTERING  Clustering both samples and features using K-means [105], 

hierarchical clustering [15], and Click [107] 

 Browsing clustering history and zooming into specific 

clusters 

SAMPLE CLUSTER ANALYSIS  Automated multi-label enrichment test for detecting 

enrichment of clinical labels   

FEATURE CLUSTER ANALYSIS  Gene ontology enrichment analysis 

BIOMARKER DISCOVERY  Applying statistical tests for detecting differentially 

expressed genes/features 

 Filter results by FDR corrected p-value and fold change 

 Rank genes based on survival prediction (COX regression) 

CLASSIFIER GENERATION  Automatic generation of decision tree classifiers for 

selected sample labels 

INTEGRATIVE MULTI-OMIC 

ANALYSIS 
 Assembly of dataset collection 

 Multi-omic clustering using SNF [206], NEMO [83] or 

Consensus Clustering [207] 

 Inter-omic correlation identification 

Table 4.2: PROMO’s key features 
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Function  

PROMO 

[123] 

Expander 

[122] 

XENA 

[201]  

Perseus 

[208] 

KnowEng 

[209] 

O-Miner 

 [210] 

Precompiled datasets V X V X V V 

Preprocessing V V X V X V 

Data Visualization V V V V V V 

Sample clustering V V X V V V 

Feature clustering V V V V X V 

Sample clusters enrichment tests 

(clinical data) 
V X V X V X 

Feature clusters enrichment tests V V X V V V 

Survival analysis V X V X V V 

Biomarker discovery V V X V X V 

Automatic decision tree generation V X X X X X 

Inter-omic correlation identification V X X X V X 

Integrative multi-omic sample 

clustering 
V X X X X X 

Table 4.3: Comparison of the main functions provided by PROMO and by other tools  
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5. Discussion 

Cancer is a common and heterogeneous group of diseases, which poses significant health and 

economic burden on the world's population. The basis of cancer is genetic, and indeed a large 

number of genetic aberrations have already been linked to various types of cancer. Our 

understanding of cancer biology and its underlying molecular principles is rapidly advancing. 

However, we are still far from understanding the full extent of tumor variability and therefore in 

many cancers, treatment is still guided by coarse clinical parameters such as tumor size, 

histological grade, and lymph node status, and in many cases, only traditional non-specific 

treatments, such as surgery, chemotherapy and radiation therapy, are available. 

For several decades, stratifying patients into clinically distinct subgroups has been a leading 

strategy for promoting cancer diagnosis and treatment. By this approach, for each cancer type, 

patients with similar clinical characteristics were grouped together into a designated subtype, 

which served as a focal point for treatment development. Over time, each subtype was further 

characterized by its distinguishing properties, prognosis, and response to treatment. However, 

since only a small number of mainly phenotypic properties were available for each patient, the 

subgroups defined for many cancer types were crude and did not necessarily reflect a unique 

underlying genetic makeup that could be used for the development of targeted drugs. 

With the emergence of high-throughput omic technologies, a wealth of biological data became 

available for characterizing tumor samples in much greater detail.  Cancer projects such as TCGA 

[79], GDC [211], ICGC [212] as well as the GEO[199] database, provide many thousands of omic 

profiles and extensive clinical information on cancer patients [213]. The increased number of 

samples, combined with the large number of features provided by the new omic technologies, 

started fueling the revolution of precision medicine, by (1) allowing the definition of more 

accurate, molecular-based classification for each cancer type, (2) identification of subtype-

specific informative biomarkers for improving diagnostics and prognosis, and (3) suggesting 

subtype-specific targets for drug development. 

Our aims in this thesis were to take part in advancing precision medicine by utilizing the currently 

available multi-omic cancer data for improving the classification of breast and skin cancers into 

clinically distinct subtypes, as well as to create a software tool for assisting others in carrying a 

similar task on other cancer datasets. To achieve these aims, we used a strategy that integrates 

omic and clinical information for identifying clinically significant subgroups. The strategy includes 

the following principal steps:  
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 Cluster the tumor samples into groups based on the top variable features. Since our goal 

was to improve the currently accepted classification of cancers,  the number of clusters 

was selected to be larger than the number of currently accepted subtypes by 1 or 2. 

 Cluster the top variable features into a small number of profiles. 

 Clinically characterize the resulting sample clusters by performing enrichment and 

survival analysis using the available clinical information for each sample.   

 Use gene enrichment analysis on the feature clusters for identifying the active gene 

functions characterizing each sample cluster. 

 Identify distinguishing features that can be used as subtype biomarkers. 

This workflow took shape during our breast cancer study, and it was eventually implemented in 

the software tool PROMO. When applied to several cancer datasets, it seemed to identify the 

main structure rapidly. During the course of the study on the breast and melanoma dataset, we 

have encountered several issues and challenges:   

 The large dataset size, ambiguity in some of TCGA's clinical labels, the unknown effect of 

preprocessing on clustering results and the initial absence of adequate tools for 

visualizing and analyzing large genomic datasets at the beginning of the work posed a 

technical challenge in analyzing the data. 

 The notion of a subtype was not well defined and required further clarification in our 

context – eventually, we converged into a definition by which a cancer subtype is a group 

of patients sharing a distinct genomic profile and distinct survival risk, which must also 

be large enough to serve as a target population for drug development. We acknowledge 

that this definition is far from perfect, but we found it of practical utility. 

 In each of the analyses of the breast and skin cohorts, we had to decide on which omic 

to focus, out of the several omics provided by TCGA. In both cases, we selected to focus 

on RNA-Seq gene expression data. The data were available for a larger number of 

samples, better corresponded with previously known subtyping of the cohort, and 

enabled a better separation of the samples based on survival analysis. Perhaps the better 

match to survival was because gene expression data capture better the signal of immune 

activity, which appears to be associated with survival in the two cancer cohorts we 

investigated.  

 The limited number of patients in the cohort that had long-range follow-up data was the 

main limiting factor in identifying finer cancer prognostic subtypes.  
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 Validation of identified subtypes on a second dataset is challenging, due to differences 

in value distribution between omic technologies and due to differences in patient 

distributions between cohorts, which might cause over/under-representation for certain 

cancer subgroups.  

Overall, it is expected that future datasets containing larger sample size, feature resolution and 

follow-up time would enable us to significantly identify even finer cancer subgroups with a 

distinct molecular profile.  

Interestingly, in the two cancer datasets that we analyzed, breaking the samples into finer 

subgroups also highlighted specific biological signals whose expression or methylation pattern 

distinguished patients of different outcomes. In the breast cancer dataset, the luminal-A samples 

were divided into finer subgroups by gene expression pattern of T cell activation, and by 

methylation pattern of developmental genes. In the melanoma dataset, TCGA's Keratin subgroup 

was divided into finer subgroups based on a melanogenesis expression pattern. This 

demonstrates the power of our strategy. 

Still, the approach we utilized in this thesis for cancer subtyping also has limitations that are 

important to recognize. Firstly, our analyses rely on TCGA's bulk transcriptomic and epigenetic 

data.  Bulk data measure the averaged expression (methylation) levels of genes (CpGs) across a 

large population of sample cells [59]. It is very efficient in identifying a global, dominant genomic 

signature in a mixture of sample cells, but cannot capture differences between the 

subpopulation of cells that compose the sample. Intra-tumor heterogeneity has been shown to 

play an important role in cancer subtyping and treatment, and should also be accounted for in 

future studies, perhaps by utilizing single cell sequencing technologies [59][214][215].  Intra-

tumor heterogeneity can also explain in part the discrepancies between our results and 

commonly used classifications such as PAM50 Further, stratifying a large collection of highly 

variable tumors into a small number of distinct mutually-exclusive subtypes is crucial for 

simplifying diagnosis and treatment. However, some tumors cannot be directly assigned to one 

subtype as they bear characteristics of more than a single subtype [216]. 

We focused in our analysis on gene expression and methylation profiles, but additional types of 

omic data have been shown to reveal cancer subtypes. In particular, genomic alternations and 

their use in cancer subtyping were thoroughly explored in the two TCGA papers on breast 

cancer[142] and melanoma[48] on which our studies relied. Our analysis using expression and 

methylation data managed to extract novel clinically relevant insights out of the data. We hope 

that extending the analysis to additional omics and to joint analysis of multiple omics can reveal 
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stronger and clearer insights in the future. We now turn to discuss each one of the three thesis 

projects independently. 

5.1. Breast cancer subtypes 

Gene expression profiling has become a useful tool for breast cancer classification and for the 

direction of treatment [217]. Whereas the HER2-enriched and the basal-like subgroups are well 

defined and indicative for anti-Her2 and chemotherapy treatment respectively, the ER-positive 

luminal subgroup still presents a clinical challenge. In general, all luminal tumors are candidates 

for anti-hormonal therapy. However, some tumors within this class, often with more 

proliferative potential and conferring poorer outcome, are considered for additional therapy. 

Accordingly, the common classification based on the molecular intrinsic subtypes divides the 

luminal tumors into the better outcome luminal-A and the more proliferative, worse outcome 

luminal-B subgroups. However, this classification is sub-optimal for clinical decisions because the 

luminal tumors present a phenotypic and prognostic range rather than an exact partition to 

either group.   

In our study, we applied unsupervised analysis on breast tumor samples using both expression 

and methylation profiles in order to reveal new genetic and epigenetic patterns that correlate 

with a clinical outcome, and compared them to the PAM50 subtypes. Overall, our analyses 

showed that the separation between luminal-A and luminal-B (as represented by PAM50 labels) 

is not clear-cut, but rather represents a phenotypic continuum (as previously observed [24] 

[218]-[77]). In fact, each of the gene expression and methylation datasets used in our analysis 

separately enabled partitioning of the luminal samples into groups showing better prognostic 

value than that of PAM50.  

Furthermore, when we focused on the PAM50-designated luminal-A samples only, the RNA-Seq 

expression profiles could split the luminal-A samples into two subgroups (Figure 2.3A). The 

Lobular-enriched LumA-R2 sample group, characterized by a distinct gene over-expression 

pattern, was associated with significantly reduced recurrence risk compared with the more 

proliferative LumA-R1 subgroup. Interestingly, genes constituting that over-expression pattern 

were significantly enriched for functions related to the immune system, including the more 

specific enrichment of chemokines and genes of up-stream T cell receptor signaling pathways. 

We postulate that the significantly elevated mRNA levels of immune-related genes in LumA-R2 

samples are indicative of increased infiltration levels of immune system cells into these tumors.  
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Typically, chemokines serve as ligands that by binding to their corresponding receptors, attract 

immune system cells to the site where they are secreted [219] [220]. LumA-R2 samples over-

expressed several chemokines and their corresponding receptors. The simultaneous over-

expression of both the chemokine CCL5 (previously found to be highly expressed by breast 

cancer cells [221]) and one of its receptors – CCR5 (expressed among others by CD8+ Cytotoxic 

T Cells), suggests that tumor cell-derived CCL5 attracts CD8+ cytotoxic T lymphocytes (CTLs) to 

LumA-R2 tumors. Similarly, the over-expressed chemokines CCL19 and CCL21 may be expressed 

by the tumor cells, whereas their CCR7 receptor may be expressed by licensed DC or (less 

typically) by naive and central memory T Cells.  

In line with this possibility, the over-expressed genes in LumA-R2 samples included genes typical 

of CTLs (and also NK cells), which may lead to anti-tumor cytotoxic activities exerted by the 

granzyme (GZMA and GZMB) and perforin pathways (PRF1). Accordingly, over-expression of T 

cell activation genes was also detected in LumA-R2 patients.  Notably, the over-expressed genes 

are concentrated at the upstream part of the T cell receptor signaling pathway (Figure 2.4). At 

this stage, it is not clear why down-stream effectors are not enriched in LumA-R2 samples, 

however, it is of interest to see that the alpha chain of IL-15R was over-expressed in these 

samples, suggesting that T cell activation processes may indeed come into effect in this sub-

group of patients. 

How could the over-expression of the immune genes by LumA-R2 samples be related, if at all, to 

reduced tumor recurrence? It is possible that only LumA-R2 tumors can release chemo-

attractants that induce the migration of antigen-specific, possibly beneficial, leukocyte sub-

populations to the tumor site. Despite recent reports associating tumor-infiltrating lymphocytes 

with a better prognosis [222] [223] [224], it is yet to be determined how enhanced immunogenic 

activity in the LumA-R2 tumors may improve their outcome. Possibly in the future, this LumA-R2 

characteristic pattern may direct emerging immune checkpoint related therapies [225]. 

The role of epigenetic regulation in malignant processes is increasingly recognized. Indeed, our 

analysis of DNA methylation data partitioned the breast tumor samples into four clusters 

showing only moderate agreement with the expression based PAM50 subtypes. In line with 

previous studies [36][226], one cluster showed a hypo-methylation pattern and corresponded 

with the PAM50 basal-like subgroup that was associated with poorer outcome. However, the 

luminal samples did not cluster neatly into the PAM50 luminal-A and luminal-B subgroups. 

Instead, three luminal clusters with increasing methylation levels were obtained (Clusters 1-3 in 

Figure 2.5A), of which the most hyper-methylated cluster was associated with a significantly 
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poorer five-year prognosis. In fact, even when we clustered only the luminal-A samples (Figure 

2.5C), the hyper-methylated cluster 1 (LumA-M1) still had significantly poorer survival compared 

to the other two clusters (LumA-M2 and LumA-M3).  

Notably, the top 1000 differentially methylated CpG loci, all hyper-methylated on LumA-M1 

samples, showed enrichment for genes involved in morphogenesis, differentiation, and 

developmental processes. Moreover, the CpG hyper-methylation correlated with under-

expression of developmental genes, including various tumor suppressor genes. Indeed, hyper-

methylation of developmental genes in luminal breast tumors was previously reported [227] 

[228], secondary to repressive histone marks, which direct de-novo methylation. Moreover, 

hyper-methylation was implicated in normal processes of cell aging and in tumorigenesis [61]. 

Taken together, the methylation-based analysis suggests poorer outcome for luminal tumors 

showing a characteristic hyper-methylation pattern, whether in the luminal-A or in the luminal-

B subgroups. The hyper-methylation associated silencing of developmental and tumor 

suppressor genes may indeed explain these findings. More importantly, within the luminal-A 

subgroup that is generally associated with a better outcome, the hyper-methylation pattern of 

the LumA-M1 subgroup marks 84 samples (composing 22% of the 378 luminal-A samples) as a 

high-risk patient group that might benefit from more aggressive treatment.  

Lastly, we showed that the sample partitions induced by the gene expression and DNA 

methylation patterns are related (p = 4.4E-08, see the lower bar on Figure 2.5C), mainly because 

the better outcome LumA-M3 samples are enriched for LumA-R2. However, our attempts to 

partition the luminal-A samples based on both patterns together did not yield a partition that is 

better than the separate partitions in terms of survival prediction or clustering stability. This 

observation was confirmed by Cox multivariate analysis showing the independent prognostic 

contribution of each pattern to outcome prediction (Table 2.5), suggesting that gene expression 

and methylation hold complementary information, reflecting different aspects of the biological 

complexity of breast tumors.   

Recently, several novel partitions of luminal breast tumors were proposed [19][65][230]. The 

partitions identified in our study are reinforced by partial though significant similarity to some of 

the newly defined groups. LumA-R1 and LumA-R2 clusters are enriched for the Proliferative 

(p=8.1e-04) and Reactive-like (2.4-e04) classes respectively of ILC (Invasive Lobular Carcinoma) 

tumors, as defined in [229] (see Supplementary Information, section 12). Furthermore, the 

LumA-M1 cluster is enriched (p=1.6e-07) for the poorer outcome Epi-LumB group, described by 

Stefansson et al. [226] (named Epi-LumB, as it was largely composed of luminal-B samples, see 
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Supplementary Information, section 13). Additional research is needed in order to consolidate 

the different partitions identified using different procedures into robust and meaningful 

categories for prognostic and diagnostic use in clinics.  

5.2. Skin cancer subtypes 

Our computational analysis of the 474 melanoma expression profiles identified four clinically 

distinct subgroups. The identified groups (Table 3.1) showed significant correspondence to 

TCGA's transcriptomic classification[48]; however, TCGA's keratin subgroup was split in our 

analysis into a keratin subgroup, composed mainly of primary tumors (cluster 2), and a 

melanogenesis-high subgroup, composed mainly of high-risk metastatic melanomas (cluster 4). 

Three gene expression signatures stratified the melanoma samples into the four clinically distinct 

subgroups: Patients in Cluster 1, characterized by high expression of immune genes, had the best 

survival, in agreement with previous reports in melanoma and other cancer types [48] [198]. 

Patients in Cluster 2, characterized by a high expression of keratin related genes, had the worst 

survival. That cluster contained mostly primary samples. As noted in [48], the poor survival can 

be attributed to the size bias of primary melanomas in the TCGA cohort. 

The third expression pattern, which was of greatest interest to us, was enriched for 

melanogenesis and melanosome-related genes and distinguished the two, metastasis-enriched, 

clusters 3 (“Melanogenesis-low”) and 4 (“Melanogenesis-high”). Patients with high levels of the 

melanogenesis pattern were included in Cluster 4 and had a worse survival rate compared to 

those in Cluster 3, who had low levels. The association between over-expression of 

melanogenesis genes and poorer prognosis can be explained by several hypotheses: (1) 

Trafficking of miRNA or other agents within secreted melanosomes by melanoma cells to its 

environment can make it more hospitable for melanoma progression [172]; (2) Making the tumor 

resilient to chemotherapy, due to the drug-detoxifying properties of melanogenesis genes 

[173][231];  or (3) Removal of anticancer drugs from the melanoma cells by melanogenesis 

related transporters effluxing drugs outside of cells [232][233]. The latter hypothesis can be 

backed by the fact that in our analysis, samples of the Melanogenesis-high cluster overexpressed 

ABC transporters such as ABCB5 and ABCC2 [232] (Table S2.4). Our validation on samples from 

patients found that secretion of melanosomes to the surrounding tissues occurs both in primary 

melanoma (with clear gradient) as well as in metastatic melanoma. We, therefore, hypothesize 

that the reduced survival rate that characterizes the "Melanogenesis-high" subgroup is 
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associated with the significantly higher activation of the melanogenesis pathway in these 

patients, as opposed to the "Melanogenesis-low" subgroup. 

The importance of keratin, immune and melanogenesis expression patterns in classifying 

melanoma tumors was also recognized in previous studies aimed at molecularly stratifying 

melanoma tumors.  In 2010, Jönsson et al. identified four expression-based subgroups by 

analyzing 57 stage IV melanomas taken from patients[234]. These subgroups, later named 'Lund', 

were called 'normal-like', 'high-immune', 'pigmentation', and 'proliferative' sample subgroups.  

The normal-like group was characterized by over-expression of keratin genes (KRT17, KRT10, and 

KRT80); the high-immune group overexpressed immune genes (CCL13 and CD209), and the 

pigmentation group showed overexpression of melanogenesis genes (MITF, TYR, DCT, and 

MLANA).  The proliferative group showed under-expression of the three signatures. The 

subgroups showed significant survival differences and were confirmed on additional patient 

cohorts [235][236][237]. These results support the potential utility of biomarkers for the three 

expression patterns in classifying melanoma tumors into clinically distinct subtypes. 

We trained a simple decision tree for classifying melanoma samples into one of the four 

subgroups. Our tests showed that a three-gene decision tree gave a good balance between 

classifier simplicity and accuracy. Although inferior in accuracy to more complex classifiers like 

SVM, a three-gene decision tree is easier to interpret biologically, easier to translate into a useful 

diagnostic kit in the future, and also captures the hierarchy of biological signals we identified in 

the data. A drawback for using a decision tree is that its thresholds depend on the distribution 

of the training data, and therefore must be recalculated before the tree can be applied to other 

datasets.  

Across multiple training runs, the trees produced tended to select one representative predictor 

gene from each of the three expression signatures. Key predictor genes, as well as their other 

signature representatives, were experimentally validated on a new cohort of melanoma taken 

from patients. Although limited in scope, the validation showed that the predictor genes differed 

in their protein expression levels among melanoma samples and confirmed the association of 

predictor levels with outcome. More substantial validation should be conducted. 

We hope that classifiers such as the one suggested here will be translated in the near future into 

accurate and accessible diagnostic kits for improving the diagnosis and prognosis of melanoma 

tumors.  
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5.3. PROMO 

Our vision in developing PROMO was to create a one-stop-shop for mining clinically important 

insights from large omic datasets, quickly and without any need for programming skills. A 

thorough analysis of these datasets - and larger ones expected in the future - by many 

researchers is crucial for improving cancer diagnosis and treatment. However, the analysis of 

such data is challenging and requires advanced bioinformatics, statistical, and programming 

skills. PROMO accelerates the analysis process and makes it more accessible for non-

computational cancer researchers. Within a single short session, the user can import a cancer 

dataset of interest, preprocess it, cluster its samples and features, test the sample clusters for 

significance using survival analysis and enrichment tests on the clinical labels, test the feature 

clusters for GO enrichment, identify subtype distinguishing features (biomarkers) using various 

statistical tests and export the results using various reports and figures.  The simple classification 

capabilities in PROMO can automatically produce a decision tree classifier for any selected label 

and thus act as a basis for a subtype diagnosis.  

We intend to continue developing PROMO by adding features and supporting the tool's users. 

We hope that PROMO’s comprehensiveness and ease of use will help cancer researchers make 

the best use of the accumulating cancer datasets to fulfill the promises of precision medicine. 
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7. Supplementary Information 
 

7.1. Supplement 1: Breast cancer subtypes 

7.1.1. Datasets used and global RNA-Seq dataset analysis (Normal + 

Tumor) 

Datasets 

TCGA's Breast Cancer datasets were downloaded from the UCSC cancer browser website in 

March 2015. 

Technology Dataset title DatasetID #Samples Dataset version 

Gene 

Expression 

- RNA-Seq 

TCGA breast invasive 

carcinoma (BRCA) gene 

expression by RNAseq 

(IlluminaHiSeq) 

BRCA gene expression 

(IlluminaHiSeq) 

1215 2015-02-24 

DNA-

Methylation 

array 

TCGA breast invasive 

carcinoma (BRCA)  

(HumanMethylation450) 

BRCA  

(Methylation450k) 

872 2015-02-24 

Gene 

Expression 

- 

MicroArrays 

TCGA breast invasive 

carcinoma (BRCA) gene 

expression 

(AgilentG4502A_07_3 array) 

BRCA gene expression 

(AgilentG4502A_07_3) 

597 2015-02-24 

Table S1.1A: Properties of datasets used in the study. 

Obtaining the RNA-Seq dataset and initial sample preprocessing 

RSEM normalized version of TCGA's BRCA RNA-SEQ expression dataset was used in the following 

analyses. Updated RNA-SEQ based PAM50 calls for TCGA BRCA samples were obtained from UNC 

University. 

Sample preprocessing: Downloaded dataset contained 1215 samples of which the following 

were removed based on supplied labels:  19 – Unknown tissue site, 11 Male, 7 metastatic 

samples, 30 Unavailable UNC_Pam50 labels. The preprocessed dataset contained 1148 samples, 

of which 113 are normal based on the 'sample type' field, and 150 are normal based on 'PAM50 

call'. 
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Distribution of PAM50 calls on the preprocessed RNA-Seq expression dataset 

Total number of samples after preprocessing: 1148 

PAM50 label Number of samples 

Basal 183 

Her2 78 

LumA 534 

LumB 203 

Normal 150 

Total 1148 

Table S1.1B: distribution of PAM50 labels on TCGA's RNA-Seq dataset 

 

Figure S1.1A: PCA of 1148 breast samples based on 2000 top variable genes, colored by PAM50 labels 
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Clustering the samples based on RNA-SEQ data 

The K-Means clustering algorithm was executed on the 1148 samples using the 2000 top variable 

genes. Matlab v8.5 implementation of the K-Means algorithm was used using correlation-based 

distance metric, and 100 replicates. Rows (genes) were standardized before the sample 

clustering. 

 

Figure S1.1B: PCA of 1148 breast samples based on 2000 top variable genes, colored by K-Means clusters. 
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RNA-Seq Clusters Total 1 2 3 4 5 

  
n=1148 n=360 n=217 n=201 n=193 n=177 

Age (Median) 
 

58 62 57 58 53 54 

ER Status NA 160 ( 14%)  28 (  8%)   2 (  1%)   8 (  4%)   7 (  4%) 115 ( 65%) 
 

Negative 227 ( 20%)   3 (  1%)   7 (  3%)  53 ( 26%) 159 ( 82%)   5 (  3%) 
 

Positive 761 ( 66%) 329 ( 91%) 208 ( 96%) 140 ( 70%)  27 ( 14%)  57 ( 32%) 

PR Status NA 163 ( 14%)  29 (  8%)   4 (  2%)   6 (  3%)   9 (  5%) 115 ( 65%) 
 

Negative 326 ( 28%)  35 ( 10%)  21 ( 10%)  86 ( 43%) 171 ( 89%)  13 (  7%) 
 

Positive 659 ( 57%) 296 ( 82%) 192 ( 88%) 109 ( 54%)  13 (  7%)  49 ( 28%) 

Her2 Status NA 391 ( 34%)  81 ( 23%)  73 ( 34%)  37 ( 18%)  57 ( 30%) 143 ( 81%) 
 

Negative 649 ( 57%) 260 ( 72%) 137 ( 63%)  89 ( 44%) 132 ( 68%)  31 ( 18%) 
 

Positive 108 (  9%)  19 (  5%)   7 (  3%)  75 ( 37%)   4 (  2%)   3 (  2%) 

PAM50 Basal 183 ( 16%)   0 (  0%)   0 (  0%)   3 (  1%) 180 ( 93%)   0 (  0%) 
 

Her2  78 (  7%)   0 (  0%)   0 (  0%)  78 ( 39%)   0 (  0%)   0 (  0%) 
 

LumA 534 ( 47%) 242 ( 67%) 212 ( 98%)  37 ( 18%)   0 (  0%)  43 ( 24%) 
 

LumB 203 ( 18%) 117 ( 33%)   5 (  2%)  80 ( 40%)   1 (  1%)   0 (  0%) 
 

Normal 150 ( 13%)   1 (  0%)   0 (  0%)   3 (  1%)  12 (  6%) 134 ( 76%) 

Pathologic stage NA 120 ( 10%)   1 (  0%)   2 (  1%)   2 (  1%)   2 (  1%) 113 ( 64%) 
 

Stage I 176 ( 15%)  64 ( 18%)  53 ( 24%)  18 (  9%)  29 ( 15%)  12 (  7%) 
 

Stage II 589 ( 51%) 202 ( 56%) 108 ( 50%) 118 ( 59%) 134 ( 69%)  27 ( 15%) 
 

Stage III 234 ( 20%)  81 ( 23%)  49 ( 23%)  58 ( 29%)  23 ( 12%)  23 ( 13%) 
 

Stage IV  16 (  1%)   5 (  1%)   1 (  0%)   5 (  2%)   4 (  2%)   1 (  1%) 
 

Stage X  13 (  1%)   7 (  2%)   4 (  2%)   0 (  0%)   1 (  1%)   1 (  1%) 

Histological type Infiltrating Ductal 

Carcinoma 

753 ( 66%) 272 ( 76%) 107 ( 49%) 182 ( 91%) 166 ( 86%)  26 ( 15%) 

 
Infiltrating Lobular 

Carcinoma 

182 ( 16%)  40 ( 11%)  95 ( 44%)  11 (  5%)   1 (  1%)  35 ( 20%) 

 
Medullary Carcinoma   5 (  0%)   0 (  0%)   0 (  0%)   1 (  0%)   4 (  2%)   0 (  0%) 

 
Metaplastic Carcinoma   4 (  0%)   0 (  0%)   0 (  0%)   1 (  0%)   3 (  2%)   0 (  0%) 

 
Mixed Histology  29 (  3%)  15 (  4%)   8 (  4%)   3 (  1%)   1 (  1%)   2 (  1%) 

 
Mucinous Carcinoma  16 (  1%)  15 (  4%)   0 (  0%)   1 (  0%)   0 (  0%)   0 (  0%) 

 
NA 159 ( 14%)  18 (  5%)   7 (  3%)   2 (  1%)  18 (  9%) 114 ( 64%) 

Table S1.1C: Cohort description for the global RNA-Seq dataset analysis (Normal + Tumor) 
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Comparing resulting clusters to PAM50 labels 

 

Figure S1.1C: Distribution of PAM50 labels among sample clusters 

 

Figure S1.1D: p-values of the hypergeometric enrichment of resulting clusters for PAM50 labels 
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Evaluation of expression distribution in cluster 1 samples versus cluster 2 samples 

 

Figure S1.1E: Distribution of normalized expression values by sample cluster. 

When applying rank-sum test on the top 2000 variables genes, testing for difference in means 

between samples of cluster 1 (n=360) and samples of cluster 2(n=217), 1421 genes out of 2000 

passed the test with p-value<0.01. 

All genes passing the test 1421 

Genes overexpressed on cluster1 compared 

to cluster2 

229 

Genes overexpressed on cluster2 compared 

to cluster1 

1184 

Genes with FC==0 8 

Table S1.1D: Analysis of differentially expressed genes 
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Figure S1.1F: Differentially expressed genes between cluster 1 and cluster 2 

 

7.1.2. RNA-Seq luminal samples analysis 

Zooming into the luminal samples, we applied unsupervised analysis only on samples labeled as 

either luminal-A or luminal-B by PAM50.  

Sample preprocessing: In this step of the analysis we started with the 1215 samples included in 

the TCGA's BRCA RNA-Seq dataset and removed the following samples: 19 – Unknown tissue 

site, 11 Male, 7 metastatic, 30 Unavailable PAM50 labels, 113 normal sample type, 37 normal by 

PAM50. From the Remaining with 988 samples we kept only the 737 luminal samples (534 

luminal-A and 203 luminal-B based on PAM50 labels). 

Gene preprocessing: We kept only the top 2000 variable genes over the 737 luminal samples.  

Unsupervised method: As described in the previous section, K-Means (distance metric: 

correlation) with K=2 applied on the 737 samples using the 2000 top variable genes (after row 

standardization).  

We then compared the sample partition induced by our clustering, to the PAM50 luminal-

A/luminal-B partition using log-rank tests and show that our RNA-Seq based partition 
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outperforms PAM50's partition in terms of both survival and recurrence, and in both 5-year and 

overall time spans. 

OVERALL Survival and Recurrence 

 RNA-SEQ Clusters PAM50's LuminalA/LuminalB 

OVERALL 

SURVIVAL 

 

pValue=0.0029 

 

pValue=0.0057 

OVERALL 

RECURRENCE 

 

pValue = 0.028 

 

pValue = 0.990 

Figure S1.2A: Overall survival and recurrence plots for K-Means clusters versus PAM50 luminal-A/luminal-B classification 
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 RNA-Seq Clusters Total 1 2 
  

n=737 n=382 n=355 

Age (Median) 
 

60 62 56 

ER Status NA  33 (  4%)  27 (  7%)   6 (  2%) 

 
Negative  14 (  2%)   4 (  1%)  10 (  3%) 

 
Positive 690 ( 94%) 351 ( 92%) 339 ( 95%) 

PR Status NA  36 (  5%)  28 (  7%)   8 (  2%) 

 
Negative  87 ( 12%)  44 ( 12%)  43 ( 12%) 

 
Positive 614 ( 83%) 310 ( 81%) 304 ( 86%) 

Her2 Status NA 195 ( 26%)  77 ( 20%) 118 ( 33%) 

 
Negative 486 ( 66%) 270 ( 71%) 216 ( 61%) 

 
Positive  56 (  8%)  35 (  9%)  21 (  6%) 

PAM50 LumA 534 ( 72%) 207 ( 54%) 327 ( 92%) 

 
LumB 203 ( 28%) 175 ( 46%)  28 (  8%) 

Pathologic stage NA   3 (  0%)   1 (  0%)   2 (  1%) 

 
Stage I 137 ( 19%)  54 ( 14%)  83 ( 23%) 

 
Stage II 396 ( 54%) 224 ( 59%) 172 ( 48%) 

 
Stage III 179 ( 24%)  90 ( 24%)  89 ( 25%) 

 
Stage IV  10 (  1%)   6 (  2%)   4 (  1%) 

 
Stage X  12 (  2%)   7 (  2%)   5 (  1%) 

Histological type Infiltrating Ductal Carcinoma 504 ( 68%) 307 ( 80%) 197 ( 55%) 

 
Infiltrating Lobular 

Carcinoma 

163 ( 22%)  29 (  8%) 134 ( 38%) 

 
Medullary Carcinoma   1 (  0%)   0 (  0%)   1 (  0%) 

 
Mixed Histology  27 (  4%)  15 (  4%)  12 (  3%) 

 
Mucinous Carcinoma  16 (  2%)  15 (  4%)   1 (  0%) 

 
NA  26 (  4%)  16 (  4%)  10 (  3%) 

Table S1.2A: Cohort description for the luminal RNA-Seq dataset analysis 
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7.1.3. RNA-Seq luminal-A sample analysis 

Next, we clustered only the luminal-A samples. Similarly to the previous section, we filtered the 

samples further by removing the 203 luminal-B samples based on PAM50 labels. 534 luminal-A 

samples remained. K-Means (distance metric: correlation) with K=2 was applied to the 534 

samples using the 2000 top variable genes. 

 

Figure S1.3A: Clustering of the luminal-A samples into two clusters 
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RNA-Seq Clusters Total 1 2 

  
n=534 n=258 n=276 

Age (Median) 
 

60 62 57 

ER Status NA  21 (  4%)  18 (  7%)   3 (  1%) 

 
Negative  11 (  2%)   3 (  1%)   8 (  3%) 

 
Positive 502 ( 94%) 237 ( 92%) 265 ( 96%) 

PR Status NA  24 (  4%)  19 (  7%)   5 (  2%) 

 
Negative  50 (  9%)  21 (  8%)  29 ( 11%) 

 
Positive 460 ( 86%) 218 ( 84%) 242 ( 88%) 

Her2 Status NA 161 ( 30%)  62 ( 24%)  99 ( 36%) 

 
Negative 347 ( 65%) 181 ( 70%) 166 ( 60%) 

 
Positive  26 (  5%)  15 (  6%)  11 (  4%) 

PAM50 LumA 534 (100%) 258 (100%) 276 (100%) 

Pathologic stage NA   3 (  1%)   1 (  0%)   2 (  1%) 

 
Stage I 113 ( 21%)  52 ( 20%)  61 ( 22%) 

 
Stage II 282 ( 53%) 144 ( 56%) 138 ( 50%) 

 
Stage III 121 ( 23%)  52 ( 20%)  69 ( 25%) 

 
Stage IV   6 (  1%)   4 (  2%)   2 (  1%) 

 
Stage X   9 (  2%)   5 (  2%)   4 (  1%) 

Histological 

type 

Infiltrating Ductal Carcinoma 331 ( 62%) 188 ( 73%) 143 ( 52%) 

 
Infiltrating Lobular 

Carcinoma 

152 ( 28%)  35 ( 14%) 117 ( 42%) 

 
Mixed Histology  21 (  4%)  12 (  5%)   9 (  3%) 

 
Mucinous Carcinoma  11 (  2%)  10 (  4%)   1 (  0%) 

 
NA  19 (  4%)  13 (  5%)   6 (  2%) 

Table S1.3A: Cohort description for the luminal-A RNA-Seq dataset analysis 

  



122 

 

 SURVIVAL RECURRENCE 

5 YEAR   

OVERALL   

Figure S1.3B:  Survival and Recurrence analysis for the 2 luminal–A subgroups 

 

Cluster LumA-R2 samples exhibit distinct overexpression pattern 

 Applied rank-sum test on the top 2000 variables genes, testing for a difference in means 

between samples of LumA-R1 (n=258) and LumA-R2 samples (n=276). 1276 genes out of 2000 

passed the test with pValue<0.01. 

Total number of genes passing the rank sum test 1276 

Genes over expressed on cluster1 compared to cluster2 194 

Genes over expressed on cluster2 compared to cluster1 1068 

Genes with zero fold change  5 

Table S1.3B: Analysis of differentially expressed genes 
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Effect of changing the value of K in the clustering  

To test the effect of choice of K in the K-means algorithm on the expression-based subtyping 

results, we clustered the 1027 breast cancer expression profiles (excluding the normal samples) 

with both k=4 and k=5. The heatmap in the following figure shows the k=5 clustering, and bar A 

identifies the five subgroups. Bar B shows the subgroup of each sample when clustering with 

k=4.  Clusters 1, 4 and 5 on the K=5 clustering correspond almost perfectly to clusters 3, 1 and 2 

on the K=4 clustering, respectively. Sample cluster 4 on the K=4 clustering (containing a mixture 

of LumA and LumB samples), was split into clusters 2 (mostly LumB) and 3 (mostly LumA) on the 

K=5 clustering. Panel D shows the PAM50 classification with the LumA category split into the 

subgroups LumA-R1 and LumA-R2 revealed in this study. We see that the leftmost sample cluster 

in A and B, which was identified with both k values, captures very well the 'LumA-R2' samples. 

This additional analysis demonstrates the stability of our clustering results: the split of the LumA 

samples (and especially the identification of the LumA-R2 subgroup, the orange cluster on bar 

D) is repeatedly reproduced when applying clustering on various sample subsets, various feature 

subsets (the top variable genes on each sample subsets) and various values of K.  

 

Figure S1.3C:  Comparison of clustering of 1027 tumor samples using K=4 and K=5. The heatmap shows the 

results of K-Means using K=5 on the expression profiles of 1027 breast tumors. (A) K-means clustering with 

K=5. (B) K-means clustering with K=4. (C) PAM50 calls. (D) PAM50 calls with the LumA class split into the two 

new LumA subgroups: LumA-R1 and LumA-R2. 

  

A 

B 

C 

D 
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7.1.4. Validation of luminal-A partition on microarray gene 

expression data 

In order to verify that the two luminal-A subgroups that were identified using the RNA-Seq data 

represent real biological variance rather than measurement or normalization bias, we repeated 

the analysis on microarray-based gene expression data. 

TCGA's Microarray gene expression data were downloaded from the Cancer Browser website. 

The original dataset contained 597 samples x 17814 genes. We removed 11 samples (6 Male, 3 

Metastatic and 2 having unknown tissue site) and remained with 586 samples. 

Samples were clustered using the same protocol described for the RNA-Seq dataset (K-means 

algorithm applied using correlation distance after row normalization). Similarly to the Global 

RNA-Seq analysis. Luminal-A samples were split between a mixed luminal-A/luminal-B cluster 

(cluster 1) and a rather homogenous cluster (cluster 2). 

 

Figure S1.4A: Global unsupervised clustering of breast samples using Microarray gene expression data.  

When clustering the 265 luminal-A samples in the microarray dataset into 2, the resulting 

partition exhibited very high similarity (Chi-square p=1.1e-40) to the luminal-A subgroups 

identified based on the RNA-Seq data. When comparing the top 200 genes differentially 

expressed on the two-microarray luminal-A subgroups to the top 200 genes differentially 

expressed on the two RNA-Seq luminal-A subgroups, 88 genes appeared in the intersection. 
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Similarly, to the RNA-Seq based list of differentially expressed genes, the 88 genes also were 

enriched for GO terms such as immune system process, cell differentiation and T-Cell receptor 

related terms.  

We, therefore, conclude that the signal observed on the RNA-Seq data, splitting the luminal-A 

samples into two distinct subgroups is not an artifact of either the measurement technology or 

the normalization used by TCGA. 

 

 

 

Figure S1.4B: Clustering microarray expression profiles of luminal-A samples into two and comparison to the 

LumA-R subgroups identified on RNA-Seq dataset. 
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7.1.5. Differentially Expressed Gene Analysis (LumA-R1 vs. LumA-

R2) 

Gene enrichment tests on the top 1000 differentially expressed genes 

We started our analysis of differentially expressed genes between the two subgroups identified 

using RNA-Seq data within luminal-A samples, by generating a list of the top 1000 DEGs using 

the rank-sum test p-value, and a requirement for a minimum mean difference of 0.5. 

Interestingly, all 1000 genes were overexpressed in LumA-R2 compared to LumA-R1. 

We then used the Expandar[122]  suite to detect significant enrichments for Gene ontology 

terms[118], KEGG pathways[119] and Wiki-pathways[120]. The results are listed below: 

Gene ontology enrichments detected using Expander TANGO on the list of 1000 DEGs 

Gene Ontology Term #Genes Enrichment 

significance 

(pValue) 

TANGO 

corrected 

pvalue 

regulation of immune system process - GO:0002682 152 3.74E-50 1.00E-05 

immune system process - GO:0002376 201 3.65E-47 1.00E-05 

regulation of leukocyte activation - GO:0002694 71 2.37E-28 1.00E-05 

regulation of multicellular organismal process - GO:0051239 183 2.89E-28 1.00E-05 

cell activation - GO:0001775 91 4.59E-28 1.00E-05 

regulation of response to external stimulus - GO:0032101 73 8.18E-27 1.00E-05 

regulation of biological quality - GO:0065008 218 1.82E-26 1.00E-05 

leukocyte activation - GO:0045321 67 1.95E-26 1.00E-05 

positive regulation of cell activation - GO:0050867 56 5.13E-24 1.00E-05 

T cell activation - GO:0042110 45 4.93E-22 1.00E-05 

regulation of cell proliferation - GO:0042127 128 1.83E-21 1.00E-05 

regulation of response to stress - GO:0080134 91 1.91E-19 1.00E-05 

chemical homeostasis - GO:0048878 93 6.50E-19 1.00E-05 

hemopoiesis - GO:0030097 60 6.63E-19 1.00E-05 

cell migration - GO:0016477 79 9.97E-19 1.00E-05 

locomotion - GO:0040011 110 1.13E-18 1.00E-05 

immune response-regulating cell surface receptor signaling 

pathway - GO:0002768 

36 2.88E-18 1.00E-05 

lymphocyte differentiation - GO:0030098 37 3.09E-18 1.00E-05 

leukocyte migration - GO:0050900 43 1.10E-17 1.00E-05 

regulation of cytokine production - GO:0001817 58 8.45E-17 1.00E-05 

positive regulation of cell proliferation - GO:0008284 79 1.46E-16 1.00E-05 

cell differentiation - GO:0030154 194 2.08E-16 1.00E-05 

biological adhesion - GO:0022610 90 6.97E-16 1.00E-05 

response to organic substance - GO:0010033 155 8.13E-16 1.00E-05 

calcium ion homeostasis - GO:0055074 43 1.11E-15 1.00E-05 

cellular response to cytokine stimulus - GO:0071345 60 2.42E-15 1.00E-05 
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cellular response to chemical stimulus - GO:0070887 137 3.04E-15 1.00E-05 

immune effector process - GO:0002252 41 1.72E-14 1.00E-05 

regulation of cell migration - GO:0030334 55 3.10E-14 1.00E-05 

regulation of acute inflammatory response - GO:0002673 20 4.06E-14 1.00E-05 

hemostasis - GO:0007599 62 4.15E-13 1.00E-05 

negative regulation of biological process - GO:0048519 213 1.29E-12 1.00E-05 

positive regulation of signaling - GO:0023056 83 1.55E-12 1.00E-05 

response to external stimulus - GO:0009605 104 2.20E-12 1.00E-05 

blood circulation - GO:0008015 39 9.70E-12 1.00E-05 

regulation of behavior - GO:0050795 28 1.21E-11 1.00E-05 

positive regulation of cellular component movement - 

GO:0051272 

37 1.54E-11 1.00E-05 

regulation of adaptive immune response - GO:0002819 23 2.43E-11 1.00E-05 

regulation of cell differentiation - GO:0045595 89 3.88E-11 1.00E-05 

negative regulation of sequestering of calcium ion - 

GO:0051283 

13 5.22E-11 1.00E-05 

regulation of cell death - GO:0010941 107 5.51E-11 1.00E-05 

regulation of secretion - GO:0051046 53 5.55E-11 1.00E-05 

regulation of alpha-beta T cell activation - GO:0046634 18 9.86E-11 1.00E-05 

regulation of hydrolase activity - GO:0051336 89 1.31E-10 1.00E-05 

regulation of protein secretion - GO:0050708 25 1.54E-10 1.00E-05 

humoral immune response - GO:0006959 22 2.04E-10 1.00E-05 

positive regulation of inflammatory response - GO:0050729 19 2.82E-10 1.00E-05 

regulation of lymphocyte mediated immunity - GO:0002706 19 1.28E-09 1.00E-05 

cell chemotaxis - GO:0060326 21 3.53E-09 1.00E-05 

regulation of protein transport - GO:0051223 36 3.98E-09 1.00E-05 

positive regulation of metabolic process - GO:0009893 144 5.02E-09 1.00E-05 

regulation of leukocyte chemotaxis - GO:0002688 16 5.52E-09 1.00E-05 

vasculature development - GO:0001944 47 7.58E-09 1.00E-05 

nervous system development - GO:0007399 127 7.73E-09 1.00E-05 

positive regulation of leukocyte migration - GO:0002687 16 9.39E-09 1.00E-05 

regulation of transmembrane transport - GO:0034762 45 1.00E-08 1.00E-05 

positive regulation of molecular function - GO:0044093 104 1.03E-08 1.00E-05 

negative regulation of multicellular organismal process - 

GO:0051241 

41 1.11E-08 1.00E-05 

Table S1.5A: Gene ontology enrichments detected using Expander TANGO on the list of 1000 DEGs    

KEGG PATHWAYS 

KEGG Pathway #Genes p-value Enrichment Genes 

Cytokine-cytokine 

receptor interaction 

56 4.76E-22 4.57 [ACVRL1, CD40, CXCL9, TNFRSF13B, CXCL2, 

CX3CL1, IL18RAP, LEPR, TNFRSF8, IL12B, CCR7, 

CCR5, CCR4, CCR2, PDGFRA, IL15RA, IL11RA, 

IL1R2, TNFRSF1B, TGFBR2, IL3RA, KIT, XCL2, XCL1, 

LTB, MET, CCL14, CCL13, FIGF, CXCR5, CSF2RB, 

CXCR6, IL2RG, EGFR, TPO, CCL5, CXCR3, 

TNFRSF17, CCL19, IL12RB1, CCL17, NGFR, CCL23, 

XCR1, CCL21, TSLP, IL10RA, IL6, BMP2, CXCL12, 

CD40LG, LEP, FAS, CD27, IL7R, IL18R1] 

Hematopoietic cell 

lineage 

29 1.50E-17 7.1 [CD1E, CD3G, CD1D, CD1C, CD3E, CD1B, CD3D, 

TPO, CD19, CD38, CD37, CD36, CD34, CR2, CR1, 
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MME, IL11RA, IL1R2, CD2, FCER2, IL6, CD8B, CD5, 

CD8A, IL3RA, CD7, KIT, IL7R, MS4A1] 

Cell adhesion 

molecules (CAMs) 

30 4.08E-13 4.84 [CD40, ICAM2, NRXN2, SPN, CDH5, HLA-DOA, CD34, 

HLA-DOB, JAM2, JAM3, CADM3, PDCD1LG2, SELE, 

HLA-E, CD2, SELP, CLDN11, CLDN5, PTPRC, 

CD40LG, CD6, CD8B, SELL, CD8A, HLA-DPB1, 

CLDN19, PECAM1, CD28, CD226, PDCD1] 

Primary 

immunodeficiency 

16 8.70E-13 9.73 [CD40, CIITA, TNFRSF13B, IL2RG, CD3E, CD3D, 

CD79A, ZAP70, CD40LG, PTPRC, CD8B, LCK, CD8A, 

CD19, IL7R, JAK3] 

Chemokine 

signaling pathway 

31 1.14E-09 3.49 [CCL14, CCL13, ITK, CXCL9, CXCR5, ADCY4, 

PIK3CD, CXCR6, RASGRP2, CXCL2, CX3CL1, GNG2, 

CCL5, CXCR3, CCR7, CCL19, CCR5, CCL17, CCR4, 

JAK3, CCR2, CCL23, XCR1, CCL21, PRKCB, GNG11, 

FGR, CXCL12, ELMO1, XCL2, XCL1] 

Complement and 

coagulation 

cascades 

17 1.36E-08 5.24 [CR2, CR1, C1S, VWF, F10, CFH, C1R, PROS1, F2R, 

CFI, TFPI, C3, C6, C7, SERPING1, MASP1, A2M] 

T cell receptor 

signaling pathway 

20 1.30E-07 3.94 [ITK, PIK3CD, CD3G, CD3E, CD3D, ZAP70, PTPRC, 

CD40LG, CD8B, CD8A, LCK, GRAP2, CD28, PAK7, 

PRKCQ, FYN, CD247, PDCD1, PAK3, LAT] 

Allograft rejection 11 6.44E-07 6.33 [CD40, CD40LG, HLA-DPB1, PRF1, CD28, GZMB, 

FAS, IL12B, HLA-DOA, HLA-DOB, HLA-E] 

Natural killer cell 

mediated 

cytotoxicity 

20 5.66E-06 3.13 [PRKCB, SH2D1A, PRF1, ICAM2, GZMB, PIK3CD, 

PRKCA, HLA-E, ZAP70, NCR3, KLRK1, LCK, PLCG2, 

FAS, CD48, FYN, CD247, HCST, LAT, CD244] 

Pathways in cancer 34 1.49E-05 2.2 [FIGF, LAMA2, EPAS1, TCF7, PIK3CD, PTGS2, GLI1, 

ETS1, FGF2, FOXO1, EGFR, GLI2, WNT6, FGF7, 

ACVR1C, MECOM, PLCG2, WNT1, RUNX1T1, 

PDGFRA, WNT10A, PRKCB, PTCH2, PRKCA, IGF1, 

TRAF1, TGFBR2, IL6, BMP2, COL4A4, KIT, FAS, 

PPARG, MET] 

PPAR signaling 

pathway 

13 1.67E-05 4.01 [ADIPOQ, LPL, AQP7, ACSL5, ACSL4, FABP4, 

ACADL, FABP7, PPARG, PLIN1, CD36, PCK1, PLTP] 

Autoimmune thyroid 

disease 

11 2.39E-05 4.5 [CD40, TPO, CD40LG, HLA-DPB1, PRF1, CD28, 

GZMB, FAS, HLA-DOA, HLA-DOB, HLA-E] 

Focal adhesion 23 6.43E-05 2.46 [PDGFRA, FIGF, TNXB, VWF, LAMA2, CAV2, PRKCB, 

CAV1, PIK3CD, PRKCA, IGF1, EGFR, THBS4, RELN, 

TNN, COL4A4, PAK7, ITGA7, COL6A6, FYN, FLNC, 

PAK3, MET] 

Neuroactive ligand-

receptor interaction 

27 7.73E-05 2.25 [PTGER4, PTGFR, HTR2B, ADRB2, HTR2A, P2RY8, 

EDNRB, CNR2, GRM7, CNR1, S1PR1, LEPR, CTSG, 

S1PR2, GABRE, S1PR4, GRIA4, GABRP, GZMA, 

P2RY14, F2R, AVPR2, SSTR1, TACR1, P2RX1, LEP, 

F2RL2] 

Table S1.5B: KEGG-Pathways enrichments detected using Expander TANGO on the list of 1000 DEGs      

WIKI-PATHWAYS 

Wiki-Pathway #Genes p-value Enrichment Genes 

TCR Signaling Pathway 10 1.55E-09 11.8 

[IL15RA, ITK, PSTPIP1, CD8A, 

GRAP2, CD3G, CD247, CD3E, 

CD3D, LAT] 

B Cell Receptor Signaling Pathway 10 1.72E-06 6.45 

[MAP4K1, BLK, KLF11, CR2, 

PTPRC, IRF4, INPP5D, PLCG2, 

HCLS1, ETS1] 

Focal Adhesion 11 5.88E-05 4.11 

[FGR, PDGFRA, FIGF, TNXB, 

RELN, TNN, TXK, COL4A4, PAK7, 

MET, THBS4] 

Complement Activation, Classical 

Pathway 
6 8.38E-05 7.51 [C3, C6, C7, C1S, C1R, MASP1] 

Table S1.5C: WIKI-Pathways enrichments detected using Expander TANGO on the list of 1000 DEGs 
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Gene enrichment test using GOrilla on the gene list ranked by rank-sum test on 

LumA-R1 vs. LumA-R2 

To verify our results with a second tool for GO enrichment analysis, we first applied a rank-sum 

test on all dataset genes for the testing for a difference in expression means between LumA-R1 

and LumA-R2 samples. We then used the test p-values to rank the genes and applied the 

GOrilla[124] algorithm on the list composed of 19914 genes. 

GO Term Description Enrichment FDR q-value 

GO:0002376 immune system process 2.18 3.44E-49 

GO:0002682 regulation of immune system process 2.32 4.07E-47 

GO:0022610 biological adhesion 2.47 1.99E-40 

GO:0007155 cell adhesion 2.47 2.18E-40 

GO:0051239 regulation of multicellular organismal process 1.86 1.60E-38 

GO:0030155 regulation of cell adhesion 2.92 8.32E-38 

GO:0050865 regulation of cell activation 3.25 1.01E-37 

GO:0048583 regulation of response to stimulus 1.64 1.43E-37 

GO:0002684 positive regulation of immune system process 2.54 8.17E-36 

GO:0042127 regulation of cell proliferation 2.09 4.15E-34 

GO:0006955 immune response 2.25 4.52E-34 

GO:0048518 positive regulation of biological process 1.46 1.94E-33 

GO:0002694 regulation of leukocyte activation 3.24 2.97E-33 

GO:0007166 cell surface receptor signaling pathway 1.85 4.08E-32 

GO:0007165 signal transduction 1.49 4.15E-32 

GO:0051240 positive regulation of multicellular organismal process 2.09 2.36E-31 

GO:0051249 regulation of lymphocyte activation 3.33 1.33E-30 

GO:0050867 positive regulation of cell activation 3.69 1.37E-29 

GO:0001775 cell activation 2.74 1.64E-29 

GO:0034110 regulation of homotypic cell-cell adhesion 3.55 6.63E-29 

GO:0048584 positive regulation of response to stimulus 1.82 1.20E-28 

GO:0045785 positive regulation of cell adhesion 3.25 2.00E-28 

GO:0002696 positive regulation of leukocyte activation 3.67 3.34E-28 

GO:0098609 cell-cell adhesion 2.65 8.75E-28 

GO:0022407 regulation of cell-cell adhesion 3.18 3.87E-27 

GO:1903037 regulation of leukocyte cell-cell adhesion 3.46 4.20E-26 

GO:0051251 positive regulation of lymphocyte activation 3.68 1.49E-25 

GO:0050776 regulation of immune response 2.31 1.91E-25 

GO:0050863 regulation of T cell activation 3.46 3.05E-25 

GO:0045321 leukocyte activation 3.01 2.00E-24 

GO:0016337 single organismal cell-cell adhesion 2.85 1.22E-23 

GO:0050793 regulation of developmental process 1.71 1.54E-23 

GO:0034112 positive regulation of homotypic cell-cell adhesion 3.91 2.40E-23 

GO:0051094 positive regulation of developmental process 2.03 3.50E-23 
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GO:0030154 cell differentiation 1.8 3.40E-23 

GO:1903039 positive regulation of leukocyte cell-cell adhesion 3.89 3.38E-23 

GO:0050870 positive regulation of T cell activation 3.89 1.48E-22 

GO:0008284 positive regulation of cell proliferation 2.26 1.84E-22 

GO:0098602 single organism cell adhesion 2.85 1.89E-22 

GO:0006952 defense response 1.96 2.37E-22 

GO:0048522 positive regulation of cellular process 1.42 3.21E-22 

GO:0046649 lymphocyte activation 3.14 5.71E-22 

GO:0022409 positive regulation of cell-cell adhesion 3.54 1.41E-21 

GO:0050896 response to stimulus 1.41 1.72E-21 

GO:0016477 cell migration 2.27 2.52E-21 

GO:0040011 locomotion 2.14 3.39E-21 

GO:0010033 response to organic substance 1.75 7.99E-21 

GO:0032101 regulation of response to external stimulus 2.14 1.51E-20 

GO:2000026 regulation of multicellular organismal development 1.81 1.61E-20 

GO:0002250 adaptive immune response 3.71 2.99E-20 

Table S1.5D: Gene ontology enrichments identified using the Gorilla tool on the list of differentially 

expressed genes (LumA-R1 vs. LumA-R2)  
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7.1.6. DNA methylation data analysis on all tumor types 

Obtaining the DNA-methylation dataset and initial preprocessing 

Obtaining the data: TCGA's DNA-Methylation breast cancer dataset was downloaded from 

UCSC's Cancer Browser website. Samples were measured using Illumina's Infinium 

HumanMethylation450 BeadChip arrays. 

Sample filtering: Started with 872 samples. Removed 8 gender/male, 5 sample type/metastatic, 

19 tumor_tissue_site/NA, 98 sample type/normal, 33 PAM50 call/NA, 30 PAM50 Normal. 

Remained with 679 samples. 

Distribution of PAM50 labels in preprocessed Meth450 dataset: 

Total after preprocessing: 679 

PAM50 label #Samples 

Basal 124 

Her2 42 

LumA 378 

LumB 135 

Total 679 

Table S1.6A: Distribution of PAM50 labels in TCGA's Meth450 dataset 

Probeset filtering: The Illumina Methylation 450K array contains two types of probe chemistries 

that may require special normalization. To avoid dealing with integrating the two probe types 

and in order to zoom in CpGs characterizing known genes, we used only Infinium I probes that 

are also associated with a Gene symbol, keeping 107,639 probes for all further analyses. 

Row Normalization: Rows were standardized (centered and normalized) before clustering was 

applied on the columns (samples) of the methylation beta matrix. 

Sample Clustering: The k-means algorithm was used to cluster the samples, using correlation as 

a distance metric. 
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Meth450 Clusters Total 1 2 3 4 

  
n=679 n=182 n=160 n=174 n=163 

Age (Median) 
 

58 62 58 56 54 

ER Status NA 38 (  6%) 12 (  7%) 7 (  4%) 11 (  6%) 8 (  5%) 

 
Negative 144 ( 21%) 11 (  6%) 3 (  2%) 6 (  3%) 124 ( 76%) 

 
Positive 497 ( 73%) 159 ( 87%) 150 ( 94%) 157 ( 90%) 31 ( 19%) 

PR Status NA 41 (  6%) 12 (  7%) 8 (  5%) 11 (  6%) 10 (  6%) 

 
Negative 202 ( 30%) 43 ( 24%) 11 (  7%) 18 ( 10%) 130 ( 80%) 

 
Positive 436 ( 64%) 127 ( 70%) 141 ( 88%) 145 ( 83%) 23 ( 14%) 

Her2 Status NA 232 ( 34%) 57 ( 31%) 41 ( 26%) 71 ( 41%) 63 ( 39%) 

 
Negative 394 ( 58%) 92 ( 51%) 115 ( 72%) 95 ( 55%) 92 ( 56%) 

 
Positive 53 (  8%) 33 ( 18%) 4 (  3%) 8 (  5%) 8 (  5%) 

PAM50 Basal 124 ( 18%) 0 (  0%) 0 (  0%) 0 (  0%) 124 ( 76%) 

 
Her2 42 (  6%) 14 (  8%) 0 (  0%) 3 (  2%) 25 ( 15%) 

 
LumA 378 ( 56%) 96 ( 53%) 119 ( 74%) 156 ( 90%) 7 (  4%) 

 
LumB 135 ( 20%) 72 ( 40%) 41 ( 26%) 15 (  9%) 7 (  4%) 

Pathologic stage NA 3 (  0%) 1 (  1%) 1 (  1%) 0 (  0%) 1 (  1%) 

 
Stage I 112 ( 16%) 28 ( 15%) 21 ( 13%) 43 ( 25%) 20 ( 12%) 

 
Stage II 382 ( 56%) 89 ( 49%) 93 ( 58%) 89 ( 51%) 111 ( 68%) 

 
Stage III 172 ( 25%) 61 ( 34%) 43 ( 27%) 40 ( 23%) 28 ( 17%) 

 
Stage IV 6 (  1%) 2 (  1%) 1 (  1%) 1 (  1%) 2 (  1%) 

 
Stage X 4 (  1%) 1 (  1%) 1 (  1%) 1 (  1%) 1 (  1%) 

Histological type Infil. Ductal Carcinoma 461 ( 68%) 123 ( 68%) 106 ( 66%) 96 ( 55%) 136 ( 83%) 

 
Infil. Lobular Carcinoma 140 ( 21%) 41 ( 23%) 33 ( 21%) 62 ( 36%) 4 (  2%) 

 
Medullary Carcinoma 5 (  1%) 0 (  0%) 0 (  0%) 1 (  1%) 4 (  2%) 

 
Metaplastic Carcinoma 2 (  0%) 0 (  0%) 0 (  0%) 0 (  0%) 2 (  1%) 

 
Mixed Histology 24 (  4%) 6 (  3%) 11 (  7%) 5 (  3%) 2 (  1%) 

 
Mucinous Carcinoma 14 (  2%) 7 (  4%) 2 (  1%) 5 (  3%) 0 (  0%) 

 
NA 33 (  5%) 5 (  3%) 8 (  5%) 5 (  3%) 15 (  9%) 

Table S1.6B: Cohort description for the Methylation dataset analysis 
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Survival and Recurrence KM plots for Meth450 samples based on PAM50 labels 

 

Figure S1.6A: Survival analysis for Meth450 samples based on PAM50 labels 

 

Clustering Meth450 tumor samples to 4 using top 2000 variable CpGs (Inf I, GS only)  

 

Figure S1.6B: Clustering the 469 samples of TCGA's Meth450 dataset into 4 subgroups and comparison to PAM50 

labels 
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 5-year Overall 

SURVIVAL 

  

RECURRENCE 

  

Figure S1.6C: Overall and 5-year survival analysis for the four identified Meth450 subgroups 

7.1.7. Methylation luminal samples analysis 

Clustering Meth450 luminal tumor samples to 3 using top 2000 CpGs (Inf I, GS only)  

 

Figure S1.7A: Clustering the luminal samples into 3 based on methylation profiles. 
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 Meth450 Clusters Total 1 2 3 
  

n=513 n=127 n=156 n=230 

Age (Median) 
 

59 63 59 56 

ER Status NA  30 (  6%)  10 (  8%)   7 (  4%)  13 (  6%) 

 
Negative  13 (  3%)   6 (  5%)   2 (  1%)   5 (  2%) 

 
Positive 470 ( 92%) 111 ( 87%) 147 ( 94%) 212 ( 92%) 

PR Status NA  31 (  6%)  10 (  8%)   8 (  5%)  13 (  6%) 

 
Negative  62 ( 12%)  25 ( 20%)  14 (  9%)  23 ( 10%) 

 
Positive 420 ( 82%)  92 ( 72%) 134 ( 86%) 194 ( 84%) 

Her2 Status NA 171 ( 33%)  41 ( 32%)  40 ( 26%)  90 ( 39%) 

 
Negative 309 ( 60%)  71 ( 56%) 104 ( 67%) 134 ( 58%) 

 
Positive  33 (  6%)  15 ( 12%)  12 (  8%)   6 (  3%) 

PAM50 LumA 378 ( 74%)  76 ( 60%)  98 ( 63%) 204 ( 89%) 

 
LumB 135 ( 26%)  51 ( 40%)  58 ( 37%)  26 ( 11%) 

Pathologic stage NA   1 (  0%)   0 (  0%)   1 (  1%)   0 (  0%) 

 
Stage I  92 ( 18%)  22 ( 17%)  18 ( 12%)  52 ( 23%) 

 
Stage II 270 ( 53%)  63 ( 50%)  90 ( 58%) 117 ( 51%) 

 
Stage III 143 ( 28%)  39 ( 31%)  46 ( 29%)  58 ( 25%) 

 
Stage IV   4 (  1%)   2 (  2%)   1 (  1%)   1 (  0%) 

 
Stage X   3 (  1%)   1 (  1%)   0 (  0%)   2 (  1%) 

Histological type Infil. Ductal Carcinoma 323 ( 63%)  81 ( 64%) 112 ( 72%) 130 ( 57%) 

 
Infil. Lobular Carcinoma 136 ( 27%)  34 ( 27%)  26 ( 17%)  76 ( 33%) 

 
Medullary Carcinoma   1 (  0%)   0 (  0%)   0 (  0%)   1 (  0%) 

 
Mixed Histology  22 (  4%)   6 (  5%)   7 (  4%)   9 (  4%) 

 
Mucinous Carcinoma  14 (  3%)   4 (  3%)   4 (  3%)   6 (  3%) 

 
NA  17 (  3%)   2 (  2%)   7 (  4%)   8 (  3%) 

Table S1.7A: Cohort description for the luminal Methylation dataset analysis. 
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 Meth450 clusters PAM50's LuminalA/LuminalB 

5-Year 

SURVIVAL 

  

5-Year 

RECURRENCE 

  

 

Figure S1.7B: Comparative 5-year survival and recurrence analysis for the three methylation subgroups and 

PAM50's luminal subgroups. 
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 Meth450 clusters PAM50's LuminalA/LuminalB 

 

 

 

 

OVERALL 

SURVIVAL 

  

 

 

 

 

OVERALL 

RECURRENCE 

  

Figure S1.7C: Comparative overall survival and recurrence analysis for the three methylation subgroups and 

PAM50's luminal subgroups. 

 

Figure S1.7D: Enrichment analysis of the 3 methylation subgroups for the two PAM50 luminal subgroups. P-

values indicate hypergeometric enrichment significance. 
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7.1.8. Methylation luminal-A samples analysis 

 

Clustering Meth450 378 luminal-A tumor samples to 3 using top 2000 CpGs , Inf 1, GS included 

only 

 

Figure S1.8A: Clustering the luminal-A samples into 3 groups using DNA-Methylation data.  

 

 

Figure S1.8B: Comparison of the RNA-Seq based partition into LumA-R1/R2 and the Methylation based 

partition into LumA-M1/2/3 
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Meth450 Clusters Total 1 2 3 
  

n=378 n=84 n=123 n=171 

Age (Median) 
 

59 62 60 56 

ER Status NA  18 (  5%)   5 (  6%)   4 (  3%)   9 (  5%) 

 
Negative  10 (  3%)   3 (  4%)   3 (  2%)   4 (  2%) 

 
Positive 350 ( 93%)  76 ( 90%) 116 ( 94%) 158 ( 92%) 

PR Status NA  19 (  5%)   5 (  6%)   5 (  4%)   9 (  5%) 

 
Negative  41 ( 11%)  18 ( 21%)  10 (  8%)  13 (  8%) 

 
Positive 318 ( 84%)  61 ( 73%) 108 ( 88%) 149 ( 87%) 

Her2 Status NA 143 ( 38%)  27 ( 32%)  47 ( 38%)  69 ( 40%) 

 
Negative 221 ( 58%)  50 ( 60%)  72 ( 59%)  99 ( 58%) 

 
Positive  14 (  4%)   7 (  8%)   4 (  3%)   3 (  2%) 

PAM50 LumA 378 (100%)  84 (100%) 123 (100%) 171 (100%) 

Pathologic stage NA   1 (  0%)   0 (  0%)   1 (  1%)   0 (  0%) 

 
Stage I  77 ( 20%)  14 ( 17%)  18 ( 15%)  45 ( 26%) 

 
Stage II 193 ( 51%)  43 ( 51%)  66 ( 54%)  84 ( 49%) 

 
Stage III 103 ( 27%)  27 ( 32%)  37 ( 30%)  39 ( 23%) 

 
Stage IV   2 (  1%)   0 (  0%)   1 (  1%)   1 (  1%) 

 
Stage X   2 (  1%)   0 (  0%)   0 (  0%)   2 (  1%) 

Histological type Infil. Ductal Carcinoma 212 ( 56%)  42 ( 50%)  77 ( 63%)  93 ( 54%) 

 
Infil. Lobular Carcinoma 127 ( 34%)  32 ( 38%)  36 ( 29%)  59 ( 35%) 

 
Mixed Histology  17 (  4%)   4 (  5%)   5 (  4%)   8 (  5%) 

 
Mucinous Carcinoma   9 (  2%)   3 (  4%)   1 (  1%)   5 (  3%) 

 
NA  13 (  3%)   3 (  4%)   4 (  3%)   6 (  4%) 

Table S1.8A: Cohort description for the luminal-A Methylation dataset analysis.  
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Figure S1.8C: Survival and recurrence analysis for the three methylation-based luminal-A subgroups    

 

  

 Survival Recurrence 

Five-

Year 

  

Overall 
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7.1.9. Differentially Methylated Gene Analysis (LumA-M1 vs. LumA-

M2) 

We have generated a list of the top 1000 differentially methylated CpGs between LumA-M1 and 

LumA-M3 groups using the rank-sum test having a minimal median difference of 0.2. The list 

represented 483 unique gene symbols for which gene enrichments were calculated using a 

background of 15737 genes included in the rank-sum test. 

Gene Enrichment tests on the top 1000 differentially methylated CpGs 

The following results were obtained by using the Expander suite on a set of 429 (unique gene 

symbols having Entrez ID) genes included in the set of 1000 differentially methylated CpGs: 

Gene Ontology enrichments detected using Expander TANGO on the list of 1000 DMGs 

 

 

Table S1.9A: Top GO:Biological-procedure enrichments on the list of 1000 most differentially 

methylated CpGs 

Gene Ontology Term – Biological process 

 

#Genes Enrichment 

significance 

(pValue) 

TANGO 

corrected 

pvalue 

system development - GO:0048731 188 9.86E-34 1.00E-05 

nervous system development - GO:0007399 132 4.38E-31 1.00E-05 

system process - GO:0003008 115 3.11E-27 1.00E-05 

neurological system process - GO:0050877 98 2.77E-26 1.00E-05 

multicellular organismal signaling - GO:0035637 72 8.17E-24 1.00E-05 

cell differentiation - GO:0030154 141 8.51E-23 1.00E-05 

pattern specification process - GO:0007389 52 4.10E-21 1.00E-05 

regionalization - GO:0003002 44 7.03E-21 1.00E-05 

brain development - GO:0007420 56 3.47E-20 1.00E-05 

neuron differentiation - GO:0030182 73 1.68E-19 1.00E-05 

regulation of multicellular organismal process - GO:0051239 104 6.24E-18 1.00E-05 

regulation of transcription from RNA polymerase II promoter 

- GO:0006357 

85 2.44E-17 1.00E-05 

regulation of transcription, DNA-dependent - GO:0006355 151 6.31E-17 1.00E-05 

behavior - GO:0007610 45 9.98E-17 1.00E-05 

anatomical structure morphogenesis - GO:0009653 105 5.02E-16 1.00E-05 

central nervous system neuron differentiation - GO:0021953 26 5.79E-16 1.00E-05 

positive regulation of macromolecule biosynthetic process - 

GO:0010557 

77 1.29E-15 1.00E-05 

organ morphogenesis - GO:0009887 61 1.81E-15 1.00E-05 

forebrain development - GO:0030900 36 2.34E-15 1.00E-05 

neuron fate commitment - GO:0048663 18 9.17E-15 1.00E-05 
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Gene Ontology Term – Molecular Function #Genes Enrichment 

significance 

(pValue) 

TANGO 

corrected 

pvalue 

DNA binding - GO:0003677 125 1.06E-16 0.001 

regulatory region DNA binding - GO:0000975 38 6.08E-14 0.001 

neuron projection - GO:0043005 48 2.27E-11 0.001 

axon part - GO:0033267 19 2.73E-09 0.001 

Table S1.9B: Top GO:Molecular-function enrichments on the list of 1000 most differentially methylated CpGs 

KEGG PATHWAYS 

KEGG Pathway #Genes p-value Enrichment Genes 

Neuroactive ligand-receptor 
interaction 

27 2.65E-
10 

4.2 [CHRM2, VIPR2, GPR83, GRIK2, 
GRM1, CRHR2, GRIN2A, EDNRB, 
GRM7, GRM6, GALR1, NPBWR1, 
P2RY1, LEPR, NTSR1, PTGDR, DRD5, 
GHSR, GABBR2, GABRA5, GABRA4, 
HTR1A, SCTR, NMBR, SSTR4, GRIN1, 
GRIN3A] 

Maturity onset diabetes of the 
young 

8 7.95E-
08 

12.8 [NEUROD1, NR5A2, ONECUT1, 
SLC2A2, PAX6, NEUROG3, NKX2-2, 
FOXA2] 

Calcium signaling pathway 17 1.04E-
05 

3.41 [RYR1, CHRM2, RYR2, PDE1C, 
PRKCB, CACNA1A, CACNA1E, RYR3, 
GRM1, GRIN1, GRIN2A, EDNRB, 
GNAL, CD38, NOS1, NTSR1, DRD5] 

Table S1.9C: Top enrichment of KEGG pathways on the list of 1000 most differentially methylated CpGs 

Gene enrichment test using GOrilla  (top 1000 CpGs + 0.2 Fold Change)  

GO Term Description FDR q-value Enrichment 

GO:0048856 anatomical structure development 6.07E-28 2.39 

GO:0032502 developmental process 1.98E-25 1.9 

GO:0032501 multicellular organismal process 9.55E-24 2.17 

GO:0044707 single-multicellular organism process 1.55E-22 2.15 

GO:0044700 single organism signaling 1.70E-21 3.72 

GO:0023052 signaling 1.89E-21 3.71 

GO:0007267 cell-cell signaling 1.70E-21 3.79 

GO:0030182 neuron differentiation 1.19E-20 6.57 

GO:0044767 single-organism developmental process 1.43E-19 1.84 

GO:0006357 

regulation of transcription from RNA polymerase II 

promoter 1.21E-16 2.38 

GO:0007610 behavior 3.46E-16 3.95 

GO:0007389 pattern specification process 6.11E-16 4.49 

GO:0048869 cellular developmental process 1.89E-15 2.09 

GO:0021953 central nervous system neuron differentiation 1.93E-15 9.71 

GO:0003008 system process 4.97E-15 2.72 

GO:0007154 cell communication 5.80E-15 2.8 

GO:0050877 neurological system process 6.10E-15 3.23 

GO:0048731 system development 6.51E-15 3.39 

GO:0003002 regionalization 6.79E-15 5.42 

GO:0051239 regulation of multicellular organismal process 8.45E-15 2.1 
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Table S1.9D: GOrilla results for Gene Ontology enrichments on the list of top 1000 differentially methylated 

CpGs between LumA-M1 and LumA-M2 

Gene enrichments on the various subsets of differentially methylated CpGs between 

LumA-M1 and LumA-M3 subgroups 

 (1) 

Hyper Meth. CpGs  

(2) 

Neg: R < -0.2 

(3) 

Pos: R > 0.2  

Gene 

ontology 

anatomical structure 

development 

6.1E-28 developmental 

process 

7.8E-06 pattern specification 

process 

1.1E-13 

developmental process 2.0E-25 single organism 

signaling 

2.4E-05 regionalization 1.1E-12 

multicellular organismal 

process 

9.6E-24 signaling 1.8E-05 anatomical structure 

development 

2.2E-11 

single-multicellular 

organism process 

1.6E-22 cellular developmental 

process 

1.4E-05 single-organism 

developmental 

process 

1.9E-11 

single organism 

signaling 

1.7E-21 single-organism 

developmental 

process 

2.3E-05 anatomical structure 

morphogenesis 

1.8E-11 

Signaling 1.9E-21 anatomical structure 

development 

8.0E-05 developmental 

process 

1.7E-11 

cell-cell signaling 1.7E-21 cell-cell signaling 1.8E-04 embryonic 

morphogenesis 

1.1E-10 

neuron differentiation 1.2E-20 cell differentiation 2.2E-04 cellular 

developmental 

process 

1.8E-10 

single-organism 

developmental process 

1.4E-19 synaptic transmission 4.4E-04 organ development 5.3E-10 

regulation of 

transcription from RNA 

polymerase II promoter 

1.2E-16 anatomical structure 

morphogenesis 

6.1E-04 single-multicellular 

organism process 

5.6E-10 

Behavior 3.5E-16 tube development 1.8E-03 cell fate commitment 5.5E-10 

pattern specification 

process 

6.1E-16 regulation of 

multicellular 

organismal 

development 

1.8E-03 multicellular 

organismal process 

7.7E-10 

cellular developmental 

process 

1.9E-15 cell development 1.7E-03 organ morphogenesis 1.8E-09 

central nervous system 

neuron differentiation 

1.9E-15 neuron differentiation 2.0E-03 transcription, DNA-

templated 

6.5E-09 

Tumor 

Suppres

sor Gene 

(TSGene 

2.0) 

 1.5E-03  9.7E-02  5.5E-02 

Table S1.9E: Gene enrichments on the various subsets of differentially methylated CpGs between LumA-M1 and 

LumA-M3 subgroups. 
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Feature enrichments on the various subsets of differentially methylated CpGs 

between LumA-M1 and LumA-M3 subgroups 

Group   Total 
(1) 

Hyper Meth. CpGs  
(2) 

Neg: R < -0.2 
(3) 

Pos: R > 0.2  

#CpGs  94880 1000 589 212 

Label Term #Terms #Terms p-value #Terms p-value #Terms p-value 

UCSC 
RefGene 
Group 

1stExon 9548 141 1.5E-04 104 1.4E-07 11 1.0E+00 

3'UTR 2489 11 1.0E+00 3 1.0E+00 13 1.8E-02 

5'UTR 11737 121 1.0E+00 82 3.2E-01 14 1.0E+00 

Body 32979 285 1.0E+00 111 1.0E+00 141 9.5E-20 

TSS 38127 442 1.6E-02 289 4.5E-05 33 1.0E+00 

Regulato
ry 

Feature 
Group 

Gene Associated 227 0 1.0E+00 0 1.0E+00 0 1.0E+00 
Gene Associated 
Cell type specific 384 0 1.0E+00 0 1.0E+00 3 1.6E-01 
NonGene 
Associated 472 2 1.0E+00 0 1.0E+00 0 1.0E+00 
NonGene 
Associated Cell 
type specific 40 4 2.8E-03 1 4.9E-01 1 2.2E-01 
Promoter 
Associated 36454 41 1.0E+00 95 1.0E+00 6 1.0E+00 
Promoter 
Associated Cell 
type specific 1676 9 1.0E+00 26 1.4E-04 0 1.0E+00 

Unclassified 7559 71 1.0E+00 73 5.8E-04 17 1.0E+00 
Unclassified Cell 
type specific 7962 211 8.8E-35 86 3.9E-06 50 1.3E-10 

Unassigned 40106 662 7.4E-52 308 4.9E-06 135 1.8E-09 

DMR 
(Differenti

ally 
Methylate
d Region) 

CDMR (Cancer 
DMR) 855 44 1.5E-16 14 3.9E-03 20 1.1E-13 

DMR 6722 391 9.2E-18 195 1.7E-75 54 1.4E-15 
RDMR 
(Reprogramming 
DMR) 1447 33 1.9E-04 14 1.8E-01 22 2.2E-11 

Unassigned 85856 532 1.0E+00 366 1.0E+00 116 1.0E+00 

Enhancer   10107 99 1.2E-09 66 8.0E-06 29 1.7E-04 

DHS   17152 137 1.1E-07 86 2.1E-03 44 1.7E-05 

Tumor 
Suppress
or Gene 
(TSGene 
2.0)   944 48 1.5E-03 29 9.7E-02 14 5.5E-02 

Table S1.9F: Feature enrichments on the various subsets of differentially methylated CpGs between LumA-M1 

and LumA-M3 subgroups. Group 1 is composed of the 1000 top differentially methylated CpGs exhibiting a mean 

difference of at least 0.2. All the CpGs on this list showed significant hyper-methylation on the LumA-M1 samples 

compared to LumA-M3 samples. Group 2 is composed of the 589 CpGs exhibiting differential methylation p-

value<0.01, methylation mean difference>0.2 and spearman based correlation to expression that is lower than 0.2. 

Group 3 212 CpGs exhibiting differential methylation p-value<0.01, methylation mean difference>0.2 and spearman 

based correlation to expression that is higher than 0.2. All p-values represent hypergeometric based over-

representation and are FDR corrected. 
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Hyper Meth. 
CpGs Neg: R < -0.2 Pos: R > 0.2 

Label Term 

Over-
represent
ation FDR 
corrected 
pValue 

Under-
represen
tation 
FDR 
correcte
d pValue 

Over-
represen
tation 
FDR 
correcte
d pValue 

Under-
represen
tation 
FDR 
correcte
d pValue 

Over-
represen
tation 
FDR 
correcte
d pValue 

Under-
repres
entatio
n FDR 
correct
ed 
pValue 

UCSC 
RefGene 
Group 

1stExon 1.E-04 1.E+00 1.E-07 1.E+00 1.E+00 3.E-02 

3'UTR 1.E+00 2.E-03 1.E+00 6.E-04 2.E-02 1.E+00 

5'UTR 1.E+00 8.E-01 3.E-01 1.E+00 1.E+00 2.E-02 

Body 1.E+00 7.E-05 1.E+00 1.E-16 9.E-20 1.E+00 

TSS 2.E-02 1.E+00 4.E-05 1.E+00 1.E+00 7.E-14 

Regulatory 
Feature Group 

Gene Associated 1.E+00 2.E-01 1.E+00 5.E-01 1.E+00 1.E+00 

Gene Associated Cell 
type specific 1.E+00 5.E-02 1.E+00 2.E-01 2.E-01 1.E+00 

NonGene Associated 1.E+00 3.E-01 1.E+00 1.E-01 1.E+00 8.E-01 

NonGene Associated 
Cell type specific 3.E-03 1.E+00 5.E-01 1.E+00 2.E-01 1.E+00 

Promoter Associated 1.E+00 2.E-146 1.E+00 3.E-31 1.E+00 4.E-34 

Promoter Associated 
Cell type specific 1.E+00 5.E-02 1.E-04 1.E+00 1.E+00 7.E-02 

Unclassified 1.E+00 4.E-01 6.E-04 1.E+00 1.E+00 1.E+00 

Unclassified Cell type 
specific 9.E-35 1.E+00 4.E-06 1.E+00 1.E-10 1.E+00 

Unassigned 7.E-52 1.E+00 5.E-06 1.E+00 2.E-09 1.E+00 

Relation to 
UCSC CpG 

Island 

Island 1.E+00 9.E-04 1.E+00 1.E-03 1.E+00 7.E-02 

N_Shelf 1.E+00 5.E-01 1.E+00 7.E-01 1.E+00 1.E+00 

N_Shore 6.E-02 1.E+00 4.E-02 1.E+00 7.E-01 1.E+00 

S_Shelf 8.E-02 1.E+00 8.E-02 1.E+00 1.E+00 9.E-01 

S_Shore 3.E-02 1.E+00 3.E-02 1.E+00 4.E-01 1.E+00 

Unassigned 4.E-01 1.E+00 7.E-01 1.E+00 2.E-01 1.E+00 

DMR 
(Differentially 
Methylated 

Region 

CDMR 2.E-16 1.E+00 4.E-03 1.E+00 1.E-13 1.E+00 

DMR 9.E-183 1.E+00 2.E-75 1.E+00 1.E-15 1.E+00 

RDMR 2.E-04 1.E+00 2.E-01 1.E+00 2.E-11 1.E+00 

Unassigned 1.E+00 2.E-205 1.E+00 2.E-75 1.E+00 5.E-40 

Enhancer 
0 1.E+00 1.E-09 1.E+00 8.E-06 1.E+00 2.E-04 

1 1.E-09 1.E+00 8.E-06 1.E+00 2.E-04 1.E+00 

DHS 
0 1.E+00 1.E-07 1.E+00 2.E-03 1.E+00 2.E-05 

1 1.E-07 1.E+00 2.E-03 1.E+00 2.E-05 1.E+00 
Tumor 

Suppressor 
Gene Catalogue 

(TSG 2.0) 

0 1.E+00 2.E-03 1.E+00 1.E-01 1.E+00 6.E-02 

1 2.E-03 1.E+00 1.E-01 1.E+00 6.E-02 1.E+00 

Table S1.9G: Feature enrichment on the various subsets of differentially methylated CpGs between 

LumA-M1 and LumA-M3 subgroups (Including under-representation p-values) 
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7.1.10.  Cox proportional hazards model analysis 

  Survival Recurrence 

  Univariate  Multivariate  Univariate  Multivariate  

Variable HR pValue HR pValue HR pValue HR pValue 

LumA-R (1 vs 2) 0.44 0.10939 0.56 0.36991 0.20 0.00421 0.06 0.00693 

LumA-M (2,3 vs 1) 4.53 0.00258 6.68 0.00484 1.64 0.34338 3.04 0.07028 

Age (<60 vs.>=60 years) 5.79 0.00624 11.20 0.0037 2.18 0.10301 1.03 0.96530 

Pathologic stage (I,II vs. III,IV) 1.30 0.62799 2.12 0.25519 2.09 0.11941 1.93 0.26992 

ER Status 1.72 0.60363 7.17 0.18095 0.00 0.99217 0.00 0.99575 

PR Status 1.03 0.96671 0.47 0.50039 0.37 0.33789 0.29 0.29092 

Her2 Status 0.79 0.8208 1.48 0.72659 0.99 0.98916 0.64 0.68789 

Table S1.10A: Univariate and Multivariate Cox analysis of luminal-A subgroups for five-year survival and 

five-year recurrence.  

7.1.11. Joint clustering of luminal-A samples using both expression and 

DNA methylation datasets 

After establishing that luminal-A samples (as labeled by PAM50) can be further divided into 

distinct clinically meaningful subgroups by either the RNA-Seq or the methylation datasets 

separately, we set out to generate a single robust luminal-A partition that would leverage from 

the complementary biological information stored in both expression and methylation datasets. 

To this end, we unified both expression and methylation datasets into a single “bi-omic” dataset 

composed of 378 luminal-A samples for which both types of data are available. From each 

dataset we selected the top 1000 variable features (top 1000 variable genes from the RNA-Seq 

dataset, and top 1000 variable CpGs from the methylation dataset). We then clustered the 

samples using a variant of K-Means for which the distance metric is formulated as the average 

of the correlation based distances on the two data types, i.e., for samples s, t  

𝐷𝑠𝑡 =
𝑑𝑠𝑡
𝐸𝑥𝑝

+𝑑𝑠𝑡
𝑀𝑒𝑡ℎ

2
 where the distance 𝑑𝑠𝑡 for each data type is 1 minus the correlation between 

the 1000-long vectors of samples s and t.  

Interestingly, applying the method on the luminal-A samples did not produce an improved 

partition neither in terms of stability (repeated executions yielded significantly different results) 

nor in terms of survival prediction compared with the separate partitions. We assume this result 

can be attributed to fact that the two datasets impose very different partitions on the samples, 

making this dataset sub-optimal target for the described integrative clustering approach.  
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Figure S1.11A: Joint clustering of 378 luminal-A samples to 3 using the k-means algorithm based on top 

1000 variably expressed genes and top 1000 variably methylated CpG islands. 

 

7.1.12. LumA-R1/2 clusters are enriched for the ILC classes defined by 

TCGA 

We compared our RNA-Seq based partition of the luminal-A samples to the three ILC (Invasive 

Lobular Carcinoma) classes recently defined by TCGA. A Chi-square test determined that the two 

partitions are related (p=1.2e-04, based on the 104 ILC samples appearing on both datasets). The 

hypergeometric test we used to evaluate the enrichment of specific ILC classes within each of 

our luminal clusters. LumA-R1 cluster was found to be significantly enriched for the proliferative 

ILC class (p=8.1e-04), whereas the LumA-R2 cluster was found to be significantly enriched for the 

Reactive-like ILC class (2.4-e04). 
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Figure 7.1.12A: Comparison of the two luminal-A subgroups we identified and TCGA's ILC (Invasive Lobular 

Carcinoma) classes. 
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7.1.13.   LumA-M1 samples are enriched for the Epi-LumB group 

identified by Stefansson et al. 

For comparing our methylation-based luminal-A clusters to the bad outcome luminal group 

described by Stefansson et al.[226] (named Epi-LumB as it was largely composed of luminal-B 

samples), we first kept only samples that appeared both in our partition and in Epi-LumB labels 

for TCGA's Meth450 dataset, and then we calculated enrichment for the Epi-LumB label in our 

clusters. Cluster LumA-M1 was found to be enriched with the Epi-LumB label (p=1.6e-07), 

enforcing our observation that this group is associated with a bad outcome (though labeled as 

luminal-A by PAM50). 

 

 

 

Figure S1.13A: Comparison of the methylation subgroups we identified and the Epi-LumB subgroups. 
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7.2. Supplement 2: Skin cancer subtypes 

 

Figure S2.1: Gene ontology enrichments on the five gene clusters. The analysis was performed in PROMO, 

using FDR-corrected hypergeometric test p-values. The five most significant GO terms are listed for each gene 

cluster. 
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Figure S2.2: Enrichment for clinical labels on the four melanoma sample clusters. The four sample 

clusters were tested for enrichment for multiple clinical labels. The enrichments were tested using the 

hypergeometric test, and the top enriched labels on the clusters were plotted. 
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Figure S2.3: Characteristics of the four melanoma subtypes. Concordance between the four melanoma subgroups, 

tumor tissue sites, and TCGA's three transcriptomic subgroup labels. For each comparison, the histogram on the 

right shows the breakdown of samples in each subtype into categories, and the matrix on the left shows the 

confusion matrix. For each cell, the number of samples and p-value for enrichment based on the hypergeometric 

test is shown. (A) Primary vs. Metastasis (B) Detailed tissue site (C) TCGA's three transcriptomic subtypes, including 

NA value for new samples that were not included in TCGA's melanoma paper[48] (D) TCGA's three transcriptomic 

subtypes, omitting the NA samples. 

A 

B 

C 

D 
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Figure S2.4: Sample-cluster 4 overexpressed genes that are enriched for the KEGG "Melanogenesis" 

pathway. Over-expressed genes (p<0.005) are marked in red. 

 

Figure S2.5: Error of decision tree classifiers as a function of the number of genes. For a varying number of 

genes (1-15) and for varying pruning levels (0-10), 30 decision trees were trained on resampled subsets of the 

dataset samples (resampling ratio of 0.9). The graph shows the average training error for each decision tree 

size. A three-gene classifier for predicting melanoma's molecular subtype gives a good balance between 

simplicity (avoiding over-fitting) and performance and reaches a training error that is close to that obtained by  

larger number of genes. 
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Figure S2.6: Dispersion of the 469 melanoma samples projected to the 3-dimensional space of the three 

selected classifier predictors: KLK8, TIGIT, and TRIM63. Samples are colored by the melanoma subgroup. 

The axis representing the expression level of the KLK gene distinguishes cluster 2 samples (green circles, 

“Keratin” subgroup) showing high levels of KLK8 expression, from all other clusters. The axis representing 

the expression of the TIGIT gene distinguishes cluster 1 samples (purple circles, “Immune” subgroup) 

showing high levels of TIGIT expression, from the other subgroups. Lastly, the axis representing the 

expression of the TRIM63 gene distinguished cluster 3 samples (yellow circles, “Melanogenesis-low” 

subtype) from cluster 4 samples (orange circles, “Melanogenesis-high” subtype).  

 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 

Sample number  105 68 118 118 469 

Tissue site Primary Tumor 16 53 10 25 104 

Regional Cutaneous or 
Subcutaneous 

21 6 32 15 74 

Regional Lymph Node 115 2 57 49 223 

Distant Metastasis 13 7 19 29 68 

TCGA’s 
Transcriptomic 
subtypes 

Immune 114 2 34 18 168 

Keratin 1 41 2 56 100 

MITF-Low 0 0 57 2 59 

NA 50 23 25 41 139 

Table S2.1: Characterization of the four melanoma subgroups.   
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Gene 

Cluster 

GO Term #genes Raw p-

value 

Empiric

al p-

Value 

Gene List 

1 neurogenesis - GO:0022008 68 7.10E-14 2.00E-04 [GABRB3, ROBO2, ONECUT2, LAMC3, CTNND2, RASGRF1, PCSK9, KNDC1, NR2E1, 

DUSP15, CDH4, SOX1, DPYSL4, CDH1, CRTAC1, SALL4, EFHD1, NRTN, PLXNC1, PITX2, 

SOX6, SH3GL2, MNX1, EPHA5, NKX2-8, SERPINF1, ADRA2C, MAPK8IP2, POU3F1, ISL1, 

OLFM1, NRG3, DCT, RTN4RL1, KIT, LMX1B, MAPT, HAP1, BRSK2, ARX, PRDM13, PRELP, 

ADCY1, FSTL4, DLL3, TRPM1, VTN, GBX2, CTNNA2, PROM1, WNT4, SPTBN2, NKX2-2, 

MCOLN3, SYT3, GABRA5, MCF2, FZD9, DCDC2, L1CAM, POU4F1, GNAO1, CPEB1, 

NR4A3, NEURL1, RAB17, MDGA2, BMPR1B] 

somatodendritic 

compartment - GO:0036477 

34 1.60E-08 4.00E-04 [PCSK2, CHRM1, CTTNBP2, CTNND2, CACNA1B, ADCY2, KNDC1, CPN1, KCNN1, KCNN2, 

PPARGC1A, ANKS1B, KCNH1, SPTBN2, SYT5, EPHA5, MME, GABRA5, SERPINF1, 

MAPK8IP2, L1CAM, GNAO1, OLFM1, CPEB1, MLPH, NOV, RTN4RL1, NEURL1, EEF1A2, 

RAB17, MAPT, BMPR1B, CRYAB, PDE9A] 

melanosome membrane - 

GO:0033162 

6 2.34E-08 4.00E-04 [OCA2, SLC45A2, GPR143, DCT, TYRP1, TYR] 

cell body - GO:0044297 28 2.70E-08 6.00E-04 [PCSK2, CTNND2, CACNA1B, KNDC1, CPN1, KCNN1, KCNN2, PPARGC1A, KCNH1, 

SPTBN2, SYT5, EPHA5, GABRA5, SERPINF1, MAPK8IP2, L1CAM, GNAO1, OLFM1, 

CPEB1, NOV, RTN4RL1, NEURL1, EEF1A2, RAB17, MAPT, BMPR1B, CRYAB, PDE9A] 

secondary metabolic process 

- GO:0019748 

9 4.43E-08 6.00E-04 [OCA2, SLC45A2, AS3MT, ABCC2, CITED1, DCT, TYRP1, CYP1A1, TYR] 

anatomical structure 

morphogenesis - GO:0009653 

66 4.48E-08 6.00E-04 [ROBO2, RYR1, ONECUT2, CITED1, LAMC3, CTNND2, ONECUT1, LDB3, KNDC1, NR2E1, 

MYLK3, CDH4, SOX1, DPYSL4, KRT27, SALL4, RBPMS2, CAPN3, NRTN, PITX2, SOX6, 

SH3GL2, MNX1, KCNH1, EPHA5, NKX2-8, RIPK4, MAPK8IP2, MMP8, ISL1, OLFM1, 

CEACAM1, NOV, NRG3, SFRP5, ITGA7, CRYAB, MET, BRSK2, SLC24A4, HPGD, ARX, 

KLK4, GATA4, PRELP, ADCY1, CACNA1H, DLL3, TRPM1, VTN, GBX2, MYH14, TNNI3, 

CTNNA2, PROM1, WNT4, SPTBN2, CAP2, FOXF2, L1CAM, POU4F1, NR4A3, NOX5, 

RADIL, BMPR1B, RAMP1] 

neuron projection 

development - GO:0031175 

31 4.80E-08 6.00E-04 [ROBO2, BRSK2, CTNND2, ARX, RASGRF1, PRELP, NR2E1, ADCY1, CDH4, DPYSL4, GBX2, 

CDH1, CRTAC1, EFHD1, NRTN, CTNNA2, SH3GL2, MNX1, SPTBN2, EPHA5, NKX2-8, 

MCF2, MAPK8IP2, L1CAM, POU4F1, ISL1, GNAO1, NR4A3, RTN4RL1, MAPT, BMPR1B] 

central nervous system 

development - GO:0007417 

39 4.91E-08 6.00E-04 [ROBO2, CITED1, LAMC3, CTTNBP2, ARX, KNDC1, NR2E1, VTN, SOX1, GBX2, CDH1, 

CRTAC1, CTNNA2, SOX6, PITX2, PPARGC1A, SH3GL2, MNX1, NKX2-2, WNT4, SPTBN2, 

EPHA5, SLC6A17, S100A1, GABRA5, POU3F1, POU4F1, ISL1, GNAO1, BCAN, NR4A3, 

NRG3, DCT, RTN4RL1, NEURL1, MAL, HAP1, MAPT, MDGA2] 

melanin metabolic process - 

GO:0006582 

6 7.19E-08 8.00E-04 [OCA2, SLC45A2, CITED1, DCT, TYRP1, TYR] 

developmental pigmentation 

- GO:0048066 

8 2.97E-07 0.0034 [OCA2, SLC45A2, GPR143, CITED1, DCT, KIT, TYRP1, TYR] 

2 skin development - 

GO:0043588 

85 4.46E-72 2.00E-04 [FOXE1, ITGB4, KRT23, ABCA12, TGM1, LCE1B, CASP14, PRSS8, TGM5, KRT6C, TGM3, 

RPTN, TP63, KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, SPINK5, KRT79, KRT78, KRT7, 

KRT77, KRT5, OVOL1, KRT75, LOR, LCE1C, EREG, LCE2B, FLG2, LCE2C, CLDN4, LCE2A, 

DSG1, PKP1, PKP3, DSG3, IRF6, DSC1, IVL, DSC2, S100A7, DSC3, SPRR2E, FLG, SPRR3, 

SPRR2G, CSTA, KRT80, KLK5, ALOX12B, APCDD1, EVPL, KLK8, PPL, EGFR, LCE3D, SCEL, 

PERP, SFN, PI3, SPRR2A, SPRR2B, ALOXE3, SPRR2D, CDSN, C1orf68, KLK13, KRT13, 

GRHL3, KRT10, CNFN, ASPRV1, LCE3E, KRT19, KRT17, GJB3, KRT16, KRT15, KRT14, 

SPRR1A, FGFR2, SPRR1B] 

epidermal cell differentiation 

- GO:0009913 

72 6.99E-62 2.00E-04 [KRT23, ABCA12, TGM1, LCE1B, CASP14, PRSS8, TGM5, KRT6C, TGM3, RPTN, TP63, 

KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, SPINK5, KRT79, KRT78, KRT7, KRT77, KRT5, 

KRT75, LOR, LCE1C, EREG, LCE2B, LCE2C, LCE2A, DSG1, PKP1, PKP3, DSG3, IRF6, DSC1, 

IVL, DSC2, S100A7, DSC3, SPRR2E, FLG, SPRR3, SPRR2G, CSTA, KRT80, KLK5, EVPL, 

KLK8, PPL, LCE3D, SCEL, PERP, SFN, PI3, SPRR2A, SPRR2B, SPRR2D, CDSN, C1orf68, 

KLK13, KRT13, KRT10, CNFN, LCE3E, KRT19, KRT17, KRT16, KRT15, KRT14, SPRR1A, 

SPRR1B] 

cornified envelope - 

GO:0001533 

40 1.51E-55 2.00E-04 [SPRR2E, FLG, SPRR3, CSTA, SPRR2G, EVPL, CST6, PPL, TGM1, SCEL, LCE3D, LCE1B, PI3, 

SPRR2A, SPRR2B, RPTN, SPRR2D, DSP, CDSN, KRT2, C1orf68, KRT1, KRT10, CNFN, LOR, 

LCE3E, LCE1C, LCE2B, LCE2C, LCE2A, PKP1, DSG1, DSG3, PKP3, SPRR1A, DSC1, IVL, 

SPRR1B, DSC2, DSC3] 

epithelial cell differentiation - 

GO:0030855 

87 3.37E-53 2.00E-04 [EHF, KRT23, TFCP2L1, ABCA12, TGM1, LCE1B, CASP14, PRSS8, TGM5, KRT6C, TGM3, 

RPTN, TP63, KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, SPINK5, KRT79, KRT78, KRT7, 

KRT77, FOXL2, KRT5, KRT75, LOR, LCE1C, EREG, LCE2B, LCE2C, LCE2A, ELF3, DSG1, 

PKP1, PKP3, DSG3, IRF6, RHCG, DSC1, IVL, DSC2, S100A7, DSC3, SPRR2E, FLG, SPRR3, 

SPRR2G, CSTA, KRT80, DLX3, KLK5, EVPL, KLK8, PPL, LCE3D, SCEL, RAB25, PERP, SFN, 

PI3, SPRR2A, SPRR2B, SPRR2D, CDSN, PSAPL1, WNT7B, AKR1C1, C1orf68, KLK13, 

KRT13, AKR1C2, PTK6, KRT10, CNFN, GRHL2, LCE3E, KRT19, KRT17, KRT16, KRT15, 

KRT14, CD24, SPRR1A, FGFR2, SPRR1B] 

peptide cross-linking - 

GO:0018149 

28 3.95E-34 2.00E-04 [SPRR2E, FLG, SPRR3, CSTA, EVPL, TGM1, LCE3D, LCE1B, PI3, SPRR2A, TGM5, SPRR2B, 

TGM3, SPRR2D, DSP, KRT2, C1orf68, KRT1, KRT10, LOR, LCE3E, LCE1C, LCE2B, LCE2C, 

LCE2A, SPRR1A, IVL, SPRR1B] 

extracellular exosome - 

GO:0070062 

118 5.88E-23 2.00E-04 [CALML5, CBLC, CALML3, DEFB1, AQP5, TGM1, CKMT1B, PRSS8, PRSS3, KRT6C, TGM3, 

KRT6B, CD177, KRT6A, GBP6, ENTPD2, KRT2, KRT1, SPINK5, SLC6A14, KRT79, KRT78, 

KRT7, KRT77, KRT5, NCCRP1, KRT75, SULT2B1, FLG2, SLPI, SPINT1, SCNN1B, SCNN1A, 

PKP1, RHCG, S100A9, DSC1, S100A8, DSC2, S100A7, KPRP, CRABP2, TACSTD2, SLC5A1, 

EVPL, PPL, FUT3, PKHD1, SFN, PI3, S100A14, CLCA4, PROM2, GGT6, CDSN, C1orf68, 

A2ML1, CNFN, CRNN, AKR1B10, LCN2, FAT2, SPRR1B, LAD1, CLIC3, PCDHGB5, ITGB4, 

DMKN, CASP14, CTSG, ITGB6, SERPINB3, DSP, SERPINB4, LYNX1, GPX2, MMP7, ARG1, 

ANXA3, SERPINB5, TMPRSS11D, EPN3, CEACAM5, DSG1, IRF6, DSG3, IVL, SPRR3, 

LRRC15, CSTA, SERPINB13, SBSN, CST6, SCEL, RAB25, RNASE7, MAL2, EPS8L2, 

LGALS7B, WNT7B, AKR1C1, CKMT1A, KLK13, KRT13, BBOX1, KRT10, PDZK1IP1, 

SLURP1, KLK11, KRT19, KRT17, KRT16, KRT15, KRT14, SAA1, S100P, NECTIN4, 

C1orf116] 

extracellular vesicle - 

GO:1903561 

118 9.25E-23 2.00E-04 [CALML5, CBLC, CALML3, DEFB1, AQP5, TGM1, CKMT1B, PRSS8, PRSS3, KRT6C, TGM3, 

KRT6B, CD177, KRT6A, GBP6, ENTPD2, KRT2, KRT1, SPINK5, SLC6A14, KRT79, KRT78, 

KRT7, KRT77, KRT5, NCCRP1, KRT75, SULT2B1, FLG2, SLPI, SPINT1, SCNN1B, SCNN1A, 

PKP1, RHCG, S100A9, DSC1, S100A8, DSC2, S100A7, KPRP, CRABP2, TACSTD2, SLC5A1, 

EVPL, PPL, FUT3, PKHD1, SFN, PI3, S100A14, CLCA4, PROM2, GGT6, CDSN, C1orf68, 

A2ML1, CNFN, CRNN, AKR1B10, LCN2, FAT2, SPRR1B, LAD1, CLIC3, PCDHGB5, ITGB4, 
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DMKN, CASP14, CTSG, ITGB6, SERPINB3, DSP, SERPINB4, LYNX1, GPX2, MMP7, ARG1, 

ANXA3, SERPINB5, TMPRSS11D, EPN3, CEACAM5, DSG1, IRF6, DSG3, IVL, SPRR3, 

LRRC15, CSTA, SERPINB13, SBSN, CST6, SCEL, RAB25, RNASE7, MAL2, EPS8L2, 

LGALS7B, WNT7B, AKR1C1, CKMT1A, KLK13, KRT13, BBOX1, KRT10, PDZK1IP1, 

SLURP1, KLK11, KRT19, KRT17, KRT16, KRT15, KRT14, SAA1, S100P, NECTIN4, 

C1orf116] 

extracellular organelle - 

GO:0043230 

118 1.00E-22 2.00E-04 [CALML5, CBLC, CALML3, DEFB1, AQP5, TGM1, CKMT1B, PRSS8, PRSS3, KRT6C, TGM3, 

KRT6B, CD177, KRT6A, GBP6, ENTPD2, KRT2, KRT1, SPINK5, SLC6A14, KRT79, KRT78, 

KRT7, KRT77, KRT5, NCCRP1, KRT75, SULT2B1, FLG2, SLPI, SPINT1, SCNN1B, SCNN1A, 

PKP1, RHCG, S100A9, DSC1, S100A8, DSC2, S100A7, KPRP, CRABP2, TACSTD2, SLC5A1, 

EVPL, PPL, FUT3, PKHD1, SFN, PI3, S100A14, CLCA4, PROM2, GGT6, CDSN, C1orf68, 

A2ML1, CNFN, CRNN, AKR1B10, LCN2, FAT2, SPRR1B, LAD1, CLIC3, PCDHGB5, ITGB4, 

DMKN, CASP14, CTSG, ITGB6, SERPINB3, DSP, SERPINB4, LYNX1, GPX2, MMP7, ARG1, 

ANXA3, SERPINB5, TMPRSS11D, EPN3, CEACAM5, DSG1, IRF6, DSG3, IVL, SPRR3, 

LRRC15, CSTA, SERPINB13, SBSN, CST6, SCEL, RAB25, RNASE7, MAL2, EPS8L2, 

LGALS7B, WNT7B, AKR1C1, CKMT1A, KLK13, KRT13, BBOX1, KRT10, PDZK1IP1, 

SLURP1, KLK11, KRT19, KRT17, KRT16, KRT15, KRT14, SAA1, S100P, NECTIN4, 

C1orf116] 

structural molecule activity - 

GO:0005198 

54 5.09E-21 2.00E-04 [LAD1, WWC1, KRT23, LCE1B, EPB41L4B, KRT6C, KRT6B, KRT6A, DSP, KRT4, KRT2, 

KRT1, KRT79, KRT78, KRT7, KRT77, KRT5, KRT75, LOR, LCE1C, LCE2B, FLG2, LCE2C, 

CLDN4, LCE2A, PKP1, INA, IVL, SHANK2, SPRR2E, FLG, SPRR3, CSTA, KRT80, EVPL, PPL, 

LCE3D, MAL2, PI3, SPRR2A, SPRR2B, SPRR2D, C1orf68, KRT13, KRT10, LCE3E, MPP7, 

KRT19, KRT17, KRT16, KRT15, KRT14, SPRR1A, SPRR1B] 

intermediate filament - 

GO:0005882 

28 4.63E-18 2.00E-04 [FLG, KRT80, KRT23, CASP14, KRT6C, KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, KRT13, 

KRT79, KRT78, KRT7, KRT77, KRT10, KRT5, KRT75, KRT19, KRT17, KRT16, KRT15, 

KRT14, PKP1, EPPK1, INA, SHANK2] 

3 immune system process - 

GO:0002376 

176 8.58E-85 2.00E-04 [FCN1, ADAMDEC1, FCMR, NCF1, ATP8A1, CLEC10A, AQP9, SIRPG, HP, LY75, PRF1, 

RORC, SLA2, CXCL13, IKZF3, CLU, IFI44L, VPREB3, GPR174, CYSLTR2, SIT1, RGS1, 

TBC1D10C, TNFSF11, HLA-DOA, HLA-DOB, ZNF683, ZBP1, GBP5, CD96, LAG3, PRKCB, 

THEMIS, HLA-G, LAX1, CHIT1, FCAMR, CD8B, IFI27, CD8A, PADI2, PRKCQ, CLEC4E, 

CARD11, SKAP1, IDO1, BLK, TNFRSF11B, GATA3, CD1C, LY9, PLAC8, SPTA1, C3, CD79B, 

CD79A, KLRK1, C7, UBD, CD19, BTLA, NLRP2, SLAMF7, TNFRSF17, SLAMF6, ICOS, HLA-

DQA2, HLA-DQA1, SLAMF1, HLA-DRB5, SIGLEC14, KLRC2, BCL11B, TNFRSF9, CRTAM, 

SH2D1A, IFNLR1, LYZ, SELE, SELP, MARCO, CXCL10, CXCL11, PTPRC, SELL, CD27, KLRD1, 

IL7R, HAMP, PIGR, ITK, CIITA, CXCL9, TNFRSF13B, FASLG, CD3G, CTSW, PTPN22, LRMP, 

CD3E, ITGAL, CD3D, PIK3CG, JCHAIN, TNFSF13B, SPN, GNLY, KYNU, OLR1, CTLA4, CD38, 

CCR7, LBP, CCR5, CCR2, CR2, CR1, ITGA4, RHOH, PAX5, MMP9, ZAP70, HSH2D, AIM2, 

ITGAD, IFNG, LCK, BANK1, IL1B, XCL2, CHI3L1, TLR8, CD48, TLR10, LTB, SMPDL3B, 

MS4A1, HLA-DQB2, LTF, BIRC3, CCL14, CD5L, FGL2, CXCR5, CST7, IL2RG, LILRA3, 

LILRA4, CCL8, CCL5, CXCR3, TBX21, IL21R, CCL19, CCL18, IL12RB1, GBP1, IL33, 

PLA2G2D, CCL22, CCL21, ERAP2, TRAT1, CD70, GZMA, GZMB, LILRB1, GZMH, CD2, 

CD6, CD5, CAMK4, POU2AF1, CD7, CD247, PDCD1] 

regulation of immune system 

process - GO:0002682 

116 3.02E-57 2.00E-04 [FCN1, CLEC10A, SIRPG, SLA2, CXCL13, IKZF3, CLU, SIT1, GPR171, TBC1D10C, TNFSF11, 

UBASH3A, HLA-DOA, HLA-DOB, ZNF683, GBP5, CD96, LAG3, PRKCB, THEMIS, HLA-G, 

LAX1, CD8B, CD8A, PADI2, PRKCQ, CLEC4E, CARD11, SKAP1, IDO1, BLK, KLRB1, GATA3, 

CD1C, KIR2DL4, SPTA1, C3, CD79B, CD79A, KLRK1, C7, CD19, BTLA, SLAMF7, STAP1, 

SLAMF6, ICOS, HLA-DQA2, HLA-DQA1, SLAMF1, HLA-DRB5, CRTAM, SH2D1A, IFNLR1, 

SELP, MARCO, CXCL10, CXCL11, PTPRC, SELL, CD27, KLRD1, IL7R, PIGR, ITK, CXCL9, 

TNFRSF13B, CD3G, PTPN22, CD3E, ITGAL, CD3D, TNFSF13B, SPN, CTLA4, CD38, CCR7, 

LBP, CCR2, CR2, CR1, ITGA4, MMP12, GREM1, FCER2, ZAP70, AIM2, IFNG, LCK, BANK1, 

IL1B, TLR8, CD48, TLR10, SMPDL3B, HLA-DQB2, LTF, BIRC3, CCL5, CXCR3, TBX21, 

CCL19, TIGIT, IL12RB1, GBP1, IL33, PLA2G2D, CCL21, TRAT1, LILRB1, CD2, CD6, CD5, 

CAMK4, CD247, PDCD1] 

regulation of cell activation - 

GO:0050865 

61 1.40E-37 2.00E-04 [TNFRSF13B, SIRPG, PTPN22, CD3G, CD3E, SLA2, CD3D, IKZF3, TNFSF13B, SPN, SIT1, 

TBC1D10C, CD38, TNFSF11, CTLA4, CCR7, LBP, HLA-DOA, CCR2, ZNF683, LAG3, HLA-G, 

LAX1, ZAP70, IFNG, BANK1, LCK, IL1B, PRKCQ, HLA-DQB2, CARD11, IDO1, GATA3, 

SPTA1, KLRK1, CCL5, TBX21, BTLA, STAP1, CCL19, TIGIT, IL12RB1, ICOS, HLA-DQA2, 

HLA-DQA1, SLAMF1, IL33, PLA2G2D, HLA-DRB5, CCL21, LILRB1, CD2, SELP, PTPRC, 

CD6, CD5, CAMK4, CD27, CD247, PDCD1, IL7R] 

regulation of leukocyte cell-

cell adhesion - GO:1903037 

51 1.03E-36 2.00E-04 [SIRPG, PTPN22, CD3G, CD3E, CD3D, TNFSF13B, SPN, SIT1, TNFSF11, CTLA4, CCR7, 

HLA-DOA, CCR2, ZNF683, LAG3, ITGA4, HLA-G, LAX1, ZAP70, IFNG, LCK, IL1B, PRKCQ, 

HLA-DQB2, CARD11, IDO1, GATA3, SPTA1, KLRK1, CCL5, BTLA, CCL19, TIGIT, IL12RB1, 

ICOS, HLA-DQA2, HLA-DQA1, SLAMF1, PLA2G2D, HLA-DRB5, CCL21, LILRB1, CD2, 

PTPRC, CD6, CD5, CAMK4, CD27, CD247, PDCD1, IL7R] 

regulation of T cell activation 

- GO:0050863 

50 1.36E-36 2.00E-04 [SIRPG, PTPN22, CD3G, CD3E, CD3D, TNFSF13B, SPN, SIT1, TNFSF11, CTLA4, CCR7, 

HLA-DOA, CCR2, ZNF683, LAG3, HLA-G, LAX1, ZAP70, IFNG, LCK, IL1B, PRKCQ, HLA-

DQB2, CARD11, IDO1, GATA3, SPTA1, KLRK1, CCL5, BTLA, CCL19, TIGIT, IL12RB1, ICOS, 

HLA-DQA2, HLA-DQA1, SLAMF1, PLA2G2D, HLA-DRB5, CCL21, LILRB1, CD2, PTPRC, 

CD6, CD5, CAMK4, CD27, CD247, PDCD1, IL7R] 

positive regulation of 

leukocyte activation - 

GO:0002696 

45 8.39E-32 2.00E-04 [SIRPG, CD3G, GATA3, CD3E, CD3D, TNFSF13B, SPN, SPTA1, KLRK1, CCL5, TBX21, BTLA, 

CD38, TNFSF11, CTLA4, STAP1, CCR7, CCL19, LBP, IL12RB1, ICOS, HLA-DQA2, HLA-

DQA1, SLAMF1, CCR2, IL33, HLA-DRB5, CCL21, LILRB1, HLA-G, CD2, ZAP70, PTPRC, 

IFNG, CD6, LCK, CD5, IL1B, CD27, PRKCQ, CD247, PDCD1, IL7R, HLA-DQB2, CARD11] 

innate immune response - 

GO:0045087 

60 1.28E-31 2.00E-04 [FCN1, ITK, CIITA, NCF1, CLEC10A, SLA2, CLU, PIK3CG, JCHAIN, KYNU, LBP, ZNF683, 

ZBP1, GBP5, CR2, CR1, HLA-G, ZAP70, AIM2, IFNG, IFI27, LCK, XCL2, TLR8, TLR10, 

SMPDL3B, CLEC4E, HLA-DQB2, LTF, BLK, CCL14, GATA3, LY9, C3, CCL8, KLRK1, C7, 

CCL5, UBD, NLRP2, SLAMF7, SLAMF6, CCL19, CCL18, IL12RB1, HLA-DQA2, GBP1, HLA-

DQA1, SLAMF1, HLA-DRB5, SIGLEC14, CCL22, CCL21, KLRC2, SH2D1A, GZMB, IFNLR1, 

MARCO, CD6, KLRD1] 

external side of plasma 

membrane - GO:0009897 

40 2.07E-31 2.00E-04 [FCN1, CXCL9, TNFRSF13B, CXCR5, FASLG, IL2RG, CD3E, SPN, CD79B, CD79A, KLRK1, 

CD19, CXCR3, CTLA4, CCR7, CCR5, IL12RB1, ICOS, SLAMF1, LAG3, TNFRSF9, LILRB1, 

GP1BA, SELP, CD2, FCER2, CXCL10, PTPRC, IFNG, SELL, CD8B, CD5, CD8A, CD27, TLR8, 

KLRD1, PDCD1, CD69, IL7R, MS4A1] 

regulation of cell adhesion - 

GO:0030155 

59 7.14E-29 2.00E-04 [ADAMDEC1, SIRPG, PTPN22, CD3G, CD3E, CXCL13, CD3D, PIK3CG, TNFSF13B, SPN, 

SIT1, TNFSF11, CTLA4, CCR7, CYTIP, HLA-DOA, CCR2, ZNF683, LAG3, ITGA4, HLA-G, 

LAX1, GREM1, ZAP70, IFNG, LCK, IL1B, PRKCQ, HLA-DQB2, CARD11, SKAP1, IDO1, 

GATA3, SPTA1, KLRK1, CCL5, ABI3BP, BTLA, CCL19, TIGIT, IL12RB1, ICOS, HLA-DQA2, 

GBP1, HLA-DQA1, SLAMF1, PLA2G2D, HLA-DRB5, CCL21, LILRB1, CD2, PTPRC, CD6, 

CD5, CAMK4, CD27, CD247, PDCD1, IL7R] 

T cell activation - GO:0042110 36 3.54E-26 2.00E-04 [ITK, RORC, PTPN22, CD3G, GATA3, ITGAL, CD1C, CD3E, SLA2, CD3D, LY9, PIK3CG, SPN, 

TBX21, CCR7, SLAMF6, CCL19, PLA2G2D, CCL21, BCL11B, CRTAM, THEMIS, RHOH, 

LILRB1, CD2, ZAP70, HSH2D, PTPRC, IFNG, CD8B, LCK, CD8A, CD7, CLEC4E, IL7R, 

CARD11] 
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4 chloride channel activity - 

GO:0005254 

10 3.01E-06 0.0254 [GABRP, GLRA2, CLCN4, TTYH1, FXYD3, GABRA3, FXYD1, SLC26A4, ANO5, GABRG2] 

neurogenesis - GO:0022008 53 5.00E-06 0.0392 [ALK, ATP8A2, PPP1R9A, RND2, KIF17, HOXC10, RIMS2, GRIP1, CHL1, SOX8, PHGDH, 

SOX9, NEFH, TRIM67, CHRNB2, MYOC, COL25A1, OLIG1, OLIG2, GFRA3, MAG, SFRP1, 

OLFM3, RARB, ASPA, CRB1, NLGN1, PLPPR5, LRP4, BHLHE22, UGT8, SLITRK2, PTPRZ1, 

MAP2, CNR1, FLRT1, ADGRG6, SPP1, APOD, LINGO2, BCHE, KCNJ10, EYA1, CNTN6, 

LGI4, S100B, SORL1, MT3, LIN28A, LHX2, FABP7, FGF13, HCN1] 

5 cell adhesion - GO:0007155 81 1.34E-28 2.00E-04 [PCDHGB7, SPON1, TENM3, TNC, HBB, ICAM5, SLC7A11, ARHGAP6, HAPLN4, HAPLN1, 

COMP, CDH2, ITGB8, NRCAM, EDIL3, PCDHAC2, POSTN, KIRREL2, ACTN2, APLP1, OMD, 

EPDR1, PCDHA13, PCDHA11, PCDHA10, CLDN11, IL1RAPL1, ADGRB1, PKP2, ITGA8, 

COL8A1, EPHA3, FREM2, ASTN1, PCDH10, NRXN1, NTM, NRXN3, ADAM22, NRXN2, 

THBS2, THBS4, COL19A1, ADD2, ACAN, NT5E, SRPX2, EFS, RELN, FLRT3, PCDHA5, 

PCDHA4, SPOCK1, PCDHA3, NCAM1, NCAM2, PCDHA7, PCDHA6, NLGN4Y, NLGN4X, 

PCDH9, ANGPT1, NEGR1, PCDH20, BMP7, PTPRD, NFASC, KRT18, PCDHB2, ITGA10, 

PCDHB16, PCDHB6, CNTN1, ITGBL1, PCDHB5, CNTN3, PCDHB3, CNTN4, NECTIN3, 

SDK2, ADGRL3] 

biological adhesion - 

GO:0022610 

81 2.22E-28 2.00E-04 [PCDHGB7, SPON1, TENM3, TNC, HBB, ICAM5, SLC7A11, ARHGAP6, HAPLN4, HAPLN1, 

COMP, CDH2, ITGB8, NRCAM, EDIL3, PCDHAC2, POSTN, KIRREL2, ACTN2, APLP1, OMD, 

EPDR1, PCDHA13, PCDHA11, PCDHA10, CLDN11, IL1RAPL1, ADGRB1, PKP2, ITGA8, 

COL8A1, EPHA3, FREM2, ASTN1, PCDH10, NRXN1, NTM, NRXN3, ADAM22, NRXN2, 

THBS2, THBS4, COL19A1, ADD2, ACAN, NT5E, SRPX2, EFS, RELN, FLRT3, PCDHA5, 

PCDHA4, SPOCK1, PCDHA3, NCAM1, NCAM2, PCDHA7, PCDHA6, NLGN4Y, NLGN4X, 

PCDH9, ANGPT1, NEGR1, PCDH20, BMP7, PTPRD, NFASC, KRT18, PCDHB2, ITGA10, 

PCDHB16, PCDHB6, CNTN1, ITGBL1, PCDHB5, CNTN3, PCDHB3, CNTN4, NECTIN3, 

SDK2, ADGRL3] 

extracellular matrix - 

GO:0031012 

59 8.97E-25 2.00E-04 [VIT, SPON1, CPXM2, ELN, TNC, PCSK6, HAPLN4, HAPLN1, COMP, PODNL1, FGF9, 

EMILIN3, COL10A1, EDIL3, TIMP4, POSTN, APLP1, OMD, P3H2, WNT16, ASPN, SFRP2, 

MMP13, MMP16, COL8A1, COL4A5, ANGPTL4, EMID1, FREM2, COL11A1, PTN, THBS2, 

THBS4, COL19A1, COCH, ACAN, RELN, FLRT3, EPYC, GPC3, SPOCK1, CILP2, NDP, GPC4, 

WNT2, GPC6, LRRN3, TFPI2, BMP7, MFAP5, LRFN5, CILP, SMOC1, OGN, MFAP2, 

COL20A1, COL9A3, LRRN1, FMOD] 

neurogenesis - GO:0022008 99 1.28E-23 2.00E-04 [STMN2, TNC, SOX2, FGF5, SALL1, CDH2, DPYSL5, KIF5C, KIF5A, NRCAM, POSTN, OMD, 

SOX11, ANK3, POU3F2, DKK1, ISL2, SFRP2, DOK5, ADGRB3, ADGRB1, EPHA3, NGEF, 

ASTN1, DLX1, NDRG4, DLX2, SHC3, DLX5, NTM, LPAR1, EFNB3, FLRT3, NPTX1, NKX2-5, 

NKX6-1, WNT2, PLXNA4, RAP1GAP2, NGFR, LRRN3, SYT1, BDNF, LIF, INHBA, BMP7, 

PTPRD, BMP2, LRFN5, GDNF, TRPV4, OGN, CNTN1, ZNF536, LRRN1, CNTN4, SDK2, 

SNAP25, TENM3, AREG, UCHL1, NEFL, NEFM, ZNF521, FOXD1, EDN3, GFRA1, WNT16, 

GFRA2, GAP43, HAND2, ALDH1A2, IL1RAPL1, DCX, SHANK1, LTK, SEMA3A, NRXN1, 

SEMA3B, NRXN3, ADAM22, PTN, RELN, ERBB4, EPYC, SLITRK6, SPOCK1, SLITRK5, 

NCAM1, CSMD3, NCAM2, WASF3, NTRK2, NLGN4X, NEGR1, VAX1, NFASC, FMOD, 

ADGRL3] 

anatomical structure 

morphogenesis - GO:0009653 

115 3.80E-23 2.00E-04 [TNC, SOX2, COMP, SALL1, CDH2, BMPER, FGF9, DPYSL5, KIF5C, KIF5A, NRCAM, 

MYOZ2, POSTN, IGFBP5, ACTN2, OSR1, APLP1, OMD, NPY1R, SOX11, ANK3, DKK1, 

SFRP4, RBP4, ISL2, SFRP2, DOK5, ADGRB3, ADGRB1, PKP2, COL8A1, FREM2, DLX1, 

NDRG4, DLX2, SHC3, DLX5, DLX6, EFNB3, FLRT3, NDP, NPTX1, NKX2-5, NKX6-1, WNT2, 

PLXNA4, STRA6, NGFR, TFAP2B, LRRN3, BDNF, LIF, INHBA, BMP7, BMP2, LRFN5, GDNF, 

TRPV4, OGN, LRRN1, CNTN4, SDK2, THRB, CXCL8, TENM3, SYCP2, ELN, MEOX2, AREG, 

TMEM100, UCHL1, NEFL, COL10A1, FOXD1, GFRA1, WNT16, GFRA2, ALDH1A3, GAP43, 

MMP13, MMP16, HAND2, ALDH1A2, ITGA8, ANGPTL4, MDFI, SHANK1, SEMA3A, 

NRXN1, COL11A1, SEMA3B, KCNA2, NRXN3, PTN, HOXD11, PTGS2, SRPX2, RELN, 

ERBB4, EPYC, GPC3, SLITRK6, SLITRK5, NCAM1, GPC4, NTRK2, ANGPT1, EYA4, VAX1, 

NFASC, KRT18, WT1, MFAP2, FMOD, NECTIN3] 

axon development - 

GO:0061564 

46 4.61E-21 2.00E-04 [SHC3, DLX5, SEMA3A, NRXN1, SEMA3B, NRXN3, TNC, UCHL1, EFNB3, RELN, FLRT3, 

DPYSL5, EPYC, KIF5C, KIF5A, SLITRK6, NEFL, SLITRK5, NEFM, NCAM1, NRCAM, NPTX1, 

NCAM2, PLXNA4, NGFR, FOXD1, LRRN3, BDNF, OMD, GFRA1, ANK3, VAX1, BMP7, 

GFRA2, ISL2, NFASC, LRFN5, GAP43, GDNF, DOK5, OGN, ADGRB1, LRRN1, CNTN4, 

FMOD, EPHA3] 

synapse organization - 

GO:0050808 

31 5.00E-20 2.00E-04 [NRXN1, NRXN3, TNC, NRXN2, RELN, CDH2, FLRT3, LRRTM2, SLITRK6, NRCAM, 

NLGN4Y, NTRK2, NLGN4X, BDNF, ANK3, DKK1, PTPRD, NFASC, GDNF, GLRB, PCDHB2, 

ADGRB3, IL1RAPL1, PCDHB16, PCDHB6, COL4A5, PCDHB5, PCDHB3, SDK2, ADGRL3, 

SHANK1] 

regulation of nervous system 

development - GO:0051960 

60 2.03E-17 2.00E-04 [SNAP25, TENM3, STMN2, SOX2, CDH2, LRRTM2, NEFL, NRCAM, SOX11, DKK1, 

POU3F2, ISL2, SFRP2, ADGRB3, IL1RAPL1, ADGRB1, EPHA3, NGEF, SHANK1, DLX1, LTK, 

NDRG4, DLX2, SEMA3A, NRXN1, LPAR1, NRXN3, PTN, THBS2, SRPX2, RELN, FLRT3, 

ERBB4, SLITRK6, SPOCK1, SLITRK5, CSMD3, NKX2-5, NKX6-1, WNT2, WASF3, PLXNA4, 

RAP1GAP2, NGFR, NTRK2, LRRN3, NEGR1, SYT1, BDNF, LIF, VAX1, BMP7, PTPRD, 

BMP2, TRPV4, CNTN1, ZNF536, LRRN1, CNTN4, ADGRL3] 

cell morphogenesis involved 

in neuron differentiation - 

GO:0048667 

42 3.78E-17 2.00E-04 [SHC3, DLX5, SEMA3A, NRXN1, SEMA3B, NRXN3, UCHL1, EFNB3, RELN, FLRT3, DPYSL5, 

EPYC, KIF5C, KIF5A, SLITRK6, SLITRK5, NCAM1, NRCAM, NPTX1, PLXNA4, NGFR, 

FOXD1, LRRN3, BDNF, OMD, GFRA1, ANK3, VAX1, BMP7, GFRA2, ISL2, NFASC, LRFN5, 

GAP43, GDNF, DOK5, OGN, ADGRB1, LRRN1, CNTN4, FMOD, SHANK1] 

neuron projection 

morphogenesis - GO:0048812 

44 4.84E-17 2.00E-04 [SHC3, DLX5, SEMA3A, NRXN1, SEMA3B, NRXN3, UCHL1, EFNB3, RELN, FLRT3, DPYSL5, 

EPYC, KIF5C, KIF5A, SLITRK6, NEFL, SLITRK5, NCAM1, NRCAM, NPTX1, PLXNA4, NGFR, 

POSTN, FOXD1, LRRN3, BDNF, OMD, GFRA1, ANK3, VAX1, BMP7, GFRA2, ISL2, NFASC, 

LRFN5, GAP43, GDNF, DOK5, OGN, ADGRB1, LRRN1, CNTN4, FMOD, SHANK1] 

Table S2.2: Gene ontology enrichments for the five gene clusters. Top significant enrichments for GO terms are 

listed for each gene cluster. Enrichments were calculated using TANGO. 
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Gene 

Cluster 

KEGG Pathway #genes Raw p-

value 

Correcte

d p-value 

Enrichment 

factor 

Gene list 

1 Melanogenesis 9 7.25E-05 0.00414 5.07 [GNAO1, DCT, KIT, TYRP1, FZD9, 
ADCY2, ADCY1, TYR, WNT4] 

Calcium signaling pathway 10 0.00119 0.0442 3.22 [RYR1, CHRM1, GNAL, CACNA1B, 
ATP2B3, CACNA1D, ADCY2, ADCY1, 
MYLK3, CACNA1H] 

Maturity onset diabetes of the 

young 

4 8.83E-04 0.0357 9.11 [PKLR, ONECUT1, MNX1, NKX2-2] 

3 Natural killer cell mediated 

cytotoxicity 

17 3.07E-11 3.52E-09 8.19 [KLRC2, PRKCB, SH2D1A, PRF1, 
GZMB, FASLG, ITGAL, HLA-G, 
KIR2DL4, PIK3CG, ZAP70, KLRK1, 
IFNG, LCK, KLRD1, CD48, CD247] 

Graft-versus-host disease 12 6.87E-13 9.53E-11 19.2 [HLA-DRB5, IFNG, IL1B, PRF1, 
GZMB, FASLG, KLRD1, HLA-DOA, 
HLA-DQA2, HLA-G, HLA-DOB, HLA-
DQA1] 

B cell receptor signaling 

pathway 

8 1.87E-05 0.00129 6.99 [CD79B, CD79A, CR2, PRKCB, 
CD19, CARD11, CD22, PIK3CG] 

Allograft rejection 10 1.44E-10 1.39E-08 17.7 [HLA-DRB5, IFNG, PRF1, GZMB, 
FASLG, HLA-DOA, HLA-DQA2, HLA-
G, HLA-DOB, HLA-DQA1] 

Primary immunodeficiency 14 4.83E-17 1.56E-14 26.2 [CIITA, TNFRSF13B, IL2RG, CD3E, 
CD3D, CD79A, ZAP70, PTPRC, 
CD8B, LCK, CD8A, CD19, IL7R, 
ICOS] 

Leukocyte transendothelial 

migration 

8 3.87E-04 0.0171 4.56 [ITK, NCF1, ITGA4, PRKCB, RHOH, 
ITGAL, MMP9, PIK3CG] 

Hematopoietic cell lineage 21 1.12E-19 5.41E-17 15.8 [CR2, HLA-DRB5, CR1, ITGA4, 
CD3G, GP1BA, CD1C, CD3E, CD3D, 
CD2, FCER2, CD8B, CD5, CD8A, 
IL1B, CD19, CD7, CD38, IL7R, 
MS4A1, CD22] 

Autoimmune thyroid disease 10 5.32E-09 4.70E-07 12.6 [HLA-DRB5, PRF1, GZMB, CTLA4, 
FASLG, HLA-DOA, HLA-DQA2, HLA-
G, HLA-DOB, HLA-DQA1] 

Type I diabetes mellitus 11 3.27E-11 3.52E-09 16.8 [HLA-DRB5, IFNG, IL1B, PRF1, 
GZMB, FASLG, HLA-DOA, HLA-
DQA2, HLA-G, HLA-DOB, HLA-
DQA1] 

Chemokine signaling pathway 22 1.59E-13 3.08E-11 7.63 [CCL14, ITK, CXCL9, CCL22, CCL21, 
NCF1, PRKCB, CXCR5, CXCR6, 
CXCL13, PIK3CG, CXCL10, CXCL11, 
CCL8, CCL5, CXCR3, XCL2, CCR7, 
CCL19, CCL18, CCR5, CCR2] 

Cytokine-cytokine receptor 

interaction 

35 6.30E-23 6.11E-20 8.79 [CCL14, CXCL9, TNFRSF13B, 
CXCR5, FASLG, TNFRSF11B, 
CXCR6, IL2RG, CXCL13, TNFSF13B, 
CCL8, CCL5, CXCR3, IL21R, 
TNFRSF17, TNFSF11, CCR7, 
CCL19, CCL18, CCR5, IL12RB1, 
CCR2, CCL22, CCL21, CD70, 
TNFRSF9, IFNLR1, CXCL10, 
CXCL11, IFNG, IL1B, XCL2, CD27, 
LTB, IL7R] 

Asthma 5 8.35E-05 0.0045 10.9 [HLA-DRB5, HLA-DOA, HLA-DQA2, 
HLA-DOB, HLA-DQA1] 

Toll-like receptor signaling 

pathway 

8 1.59E-04 0.00771 5.19 [CXCL10, CXCL11, CXCL9, CCL5, 
IL1B, TLR8, LBP, PIK3CG] 

Systemic lupus 

erythematosus 

8 0.00117 0.0442 3.85 [C3, HLA-DRB5, IFNG, C7, HLA-DOA, 
HLA-DQA2, HLA-DOB, HLA-DQA1] 

Cell adhesion molecules 

(CAMs) 

22 7.20E-17 1.74E-14 10.9 [CADM3, HLA-DRB5, ITGA4, ITGAL, 
SELE, HLA-G, CD2, SELP, SPN, 
PTPRC, CD6, CD8B, SELL, CD8A, 
CTLA4, PDCD1, HLA-DOA, ICOS, 
HLA-DQA2, HLA-DOB, HLA-DQA1, 
CD22] 

Antigen processing and 

presentation 

12 9.42E-09 7.62E-07 8.94 [CIITA, HLA-DRB5, CD8B, KLRC2, 
CD8A, KLRD1, HLA-DOA, HLA-
DQA2, HLA-G, HLA-DOB, HLA-
DQA1, KIR2DL4] 

T cell receptor signaling 

pathway 

17 6.73E-13 9.53E-11 10.3 [ITK, CD3G, CD3E, CD3D, PIK3CG, 
ZAP70, PTPRC, CD8B, IFNG, CD8A, 
LCK, CTLA4, PRKCQ, CD247, 
PDCD1, ICOS, CARD11] 

5 Arrhythmogenic right 

ventricular cardiomyopathy 

(ARVC) 

9 4.28E-05 0.00259 5.38 [DES, CDH2, ACTN2, CACNA2D1, 
ITGA10, PKP2, ITGA8, ITGB8, 
CACNG4] 

Neuroactive ligand-receptor 

interaction 

16 2.54E-04 0.0117 2.77 [GABRA2, GRIA1, CHRM3, GRIA2, 
THRB, LPAR1, NPY1R, ADRB1, 
GRIK2, PRLR, MCHR1, GHR, 
GABRR1, GLRB, F2RL2, NTSR1] 

ECM-receptor interaction 9 1.17E-04 0.00596 4.74 [COMP, RELN, COL11A1, ITGA10, 
TNC, ITGA8, ITGB8, THBS2, THBS4] 

Dilated cardiomyopathy 10 3.59E-05 0.00232 4.92 [PLN, DES, CACNA2D1, ITGA10, 
ITGA8, ITGB8, ADRB1, ADCY8, 
CACNG4, ADCY5] 

Cell adhesion molecules 

(CAMs) 

15 3.14E-07 2.34E-05 5.03 [NLGN4X, NEGR1, NRXN1, NRXN3, 
NRXN2, CLDN11, NFASC, CDH2, 
CNTN1, ITGA8, ITGB8, NRCAM, 
NCAM1, NCAM2, NECTIN3] 

TG 

F-beta signaling pathway 

8 7.28E-04 0.0307 4.12 [COMP, BMP2, FST, BMP8B, INHBA, 
THBS2, BMP7, THBS4] 

Table S2.3: Enrichment analysis for KEGG pathways performed using PROMO on the five gene clusters. Top 
significant KEGG pathways are displayed for each gene cluster. Enrichments were calculated using TANGO. 
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Id Gene Symbol  p-value Mean diff. Id Gene Symbol p-value Mean diff. 

1 OCA2  8.28E-11 5.70 51 DUSP9 1.33E-09 1.70 

2 TYRP1  6.71E-08 5.66 52 WNK2 4.53E-06 1.68 

3 ITGB1BP3  1.10E-12 3.29 53 LAMA1 6.48E-06 1.68 

4 SLC7A4  1.18E-06 3.02 54 SEPT3 4.46E-11 1.68 

5 IP6K3  8.43E-06 2.94 55 CDK2 1.92E-14 1.65 

6 C14orf34  5.34E-08 2.78 56 KCNAB2 3.11E-13 1.62 

7 ABCB5  5.83E-12 2.68 57 MGC16025 6.70E-13 1.62 

8 GABRA5  5.62E-10 2.67 58 PRR5-ARHGAP8 4.87E-05 1.61 

9 KRTAP19-1  1.06E-11 2.65 59 SNCB 7.12E-06 1.58 

10 FAM69C  5.10E-16 2.65 60 GNAO1 1.15E-07 1.58 

11 KIT  4.68E-07 2.42 61 MAST1 4.27E-07 1.57 

12 VGF  2.36E-05 2.40 62 HRK 2.01E-07 1.56 

13 SLC6A17  3.69E-12 2.30 63 LOC148145 2.18E-05 1.55 

14 MGAT5B  5.03E-14 2.30 64 PLAC2 3.51E-05 1.55 

15 ACCSL  7.56E-11 2.23 65 C6orf176 6.14E-09 1.53 

16 GNAL  2.53E-09 2.22 66 SFTPC 1.36E-07 1.52 

17 ABCC2  4.07E-09 2.20 67 RIMS4 2.97E-06 1.49 

18 ONECUT1  2.53E-09 2.17 68 ONECUT2 2.75E-05 1.48 

19 NECAB2  8.68E-09 2.16 69 FZD9 6.86E-09 1.48 

20 PRODH  1.73E-07 2.08 70 ARHGAP8 2.72E-05 1.48 

21 PNMA6A  9.15E-17 2.08 71 LOC100127888 2.55E-09 1.46 

22 CNTFR  2.96E-05 2.07 72 TRIM63 5.22E-16 1.44 

23 POU4F1  2.19E-07 2.03 73 EPHA5 2.27E-07 1.44 

24 TRPM1  6.21E-12 2.03 74 DGCR5 8.67E-06 1.44 

25 SLC5A10  9.89E-07 2.00 75 TMEM151A 1.05E-05 1.43 

26 SILV  1.95E-15 1.96 76 C1QL4 2.51E-08 1.42 

27 FOXF2  2.92E-09 1.94 77 CPNE7 2.05E-06 1.41 

28 CDK15  2.41E-07 1.90 78 GBX2 8.10E-05 1.40 

29 SLC16A6  4.76E-05 1.90 79 FSTL4 1.84E-06 1.40 

30 NKX2-8  5.75E-05 1.89 80 NRTN 1.99E-05 1.40 

31 L1CAM  2.05E-06 1.88 81 TFAP2A 7.61E-22 1.39 

32 CDH3  1.18E-10 1.87 82 DUSP8 2.01E-08 1.38 

33 BRSK2  3.30E-09 1.86 83 C6orf218 4.38E-12 1.35 

34 PITX2  6.15E-05 1.85 84 ZNF703 4.75E-14 1.32 

35 DPYSL4  1.59E-10 1.84 85 HES6 6.04E-08 1.32 

36 KIF1A  5.41E-06 1.84 86 LGI3 1.30E-05 1.31 

37 PRRT4  8.44E-07 1.83 87 NCRNA00052 3.20E-07 1.30 

38 RTN4R  1.19E-14 1.81 88 C15orf59 8.46E-05 1.28 

39 ADAM11  2.45E-11 1.81 89 LOC390595 9.69E-06 1.28 

40 CA14  4.30E-14 1.80 90 TPCN2 1.79E-10 1.28 

41 NR4A3  8.93E-10 1.80 91 ADAMTSL5 1.29E-07 1.26 

42 MCF2L  6.71E-09 1.80 92 GPRC5A 7.47E-05 1.26 

43 TSPAN10  9.07E-12 1.78 93 DCT 6.70E-05 1.26 

44 TPPP  1.21E-11 1.77 94 LRRC39 7.68E-07 1.25 

45 KCNH1  9.86E-07 1.77 95 ITPKB 6.75E-11 1.25 

46 GMPR  1.59E-12 1.76 96 CELF5 2.07E-05 1.25 

47 KREMEN2  2.72E-08 1.74 97 MANEAL 4.15E-07 1.25 

48 DLL3  1.70E-09 1.74 98 TTYH2 1.84E-13 1.25 

49 SULT4A1  4.74E-05 1.72 99 ANKRD9 7.75E-13 1.24 

50 SEMA6A  6.74E-20 1.72 100 HES4 1.58E-07 1.24 

Table S2.4: List of the 100 most differentially expressed genes distinguishing cluster 4 samples from and all other 

clusters. Genes are sorted by descending fold-change.  P-value was calculated using the rank-sum test applied on 

[Melanogenesis-high] samples (n=118) vs. [Immune,Keratin,Melanogenesis-low] samples (n=350).  p-value cutoff: 

p<0.0001. 
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Patient 
number  

Age at time 
of primary 

tumor 
diagnosis 

Survival 
from T 

diagnosis 
(months) 

Survival 
from 

regional 
lymph node 

(N) 
diagnosis 
(months) 

Survival from 
distant 

metastasis 
(M) diagnosis 

(months) 

Current 
status  

1 81 over 60 months Alive 

2 67 over 60 months Alive 

3 66 over 60 months Alive 

4 88 24 4.15   Dead 

5 74 19.75 6.77   Dead 

6 67 19.48 17.38 0.85 Dead 

Table S2.5: Clinical details for the six patients selected for Immunohistochemical staining. Patients 1-3 

survived for more than 60 months after diagnosis and were therefore labeled as "Good Prognosis", whereas 

patients 4-6 survived less than 20 months and were therefore labeled as "Poor Prognosis".
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Analysis of the topology and predictor genes for subsampled datasets 

 

 

 

 

 

 

 

 

 

  

Figure S2.6: Distribution of the topology of 1000 decision trees. For analyzing the topology and biological function 

of the tree predictors, we trained 1000 3-gene decision trees by resampling the dataset samples (resample factor = 

0.8). The most frequent topology was ‘1101000’, identical to the topology of the final decision tree presented in 

Figure 4, which was trained on the entire dataset (Note that 1101000 and 1100100 are considered different since 

the left child of every node always corresponds to the "less than" subgroup.)  

Figure S2.7: Most frequent genes in the 1000 decision trees (in all tree positions).  
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Figure S2.8: Most frequent predictor genes for each position in the tree and their biological function. For each position 

in the 1101000 topology, we generated a list of the 10 most frequent predictor genes as appearing on the 791 random 

tree variants. The analysis showed that the most frequent genes in each position are characterized by a specific biological 

function. Position 1, which forms the tree’s root, was typically assigned with keratin and other skin related biomarkers, 

such as LGALS7B, TNS4 and KLK8. Position 2 was typically assigned with well-known immune markers such as TIGIT, 

KIAA0748, LCK, and IL21R. Position 4 was preferentially assigned with TRIM63, but also with typical melanogenesis genes 

such as GPR143, SILV, and TRPM1. Interestingly, the lists also included genes that are less familiar in their context here, 

such as LOC399959.   

The results demonstrate the hierarchy of the biological functions by which melanoma samples can be partitioned into 

distinct subgroups, and also show that the final tree presentd in Figure 4 is a representative of a stable tree topology and 

is using predictor genes that are biomarkers of the above three biological functions. 
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7.3. Supplement 3: PROMO 

 

 

 

 

 

 

 

 

 

Figure S3.1: Clustering Panel The clustering panel allows the selection of a clustering algorithm and its 

relevant parameters. Clustering can be applied both on samples and on genes. The resulting clusters 

are added as a new sample label and can be explored on PROMO's main screen with respect to any 

other clinical label (See Figure 3). 

 

Figure S3.2: Label Management Panel. This panel allows the management of sample labels, including 

removing, renaming and viewing the distribution of values of a label. Labels can be assigned to category 

types, and those types determine the statistical test that can be used for calculating their enrichment 

on sample clusters. Both labels and their categories can be loaded and saved to files. New labels can be 

generated from existing labels (by uniting label values for instance), or from genomic data (e.g., 

translating the expression values of a selected gene to LOW/HIGH labels). Lastly, the distribution of 

values for the selected label is displayed as a histogram on the right. 
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Figure S3.3: Biomarker Discovery (A) This panel is used for identifying genes that are differentially expressed 

between sample groups defined by any sample label. Statistical tests vary by label type, and include t-test, 

rank-sum test, ANOVA and Kruskal-Wallis. After optional filtering, the resulting list of genes is saved to a file 

sorted by p-value. Here two groups were defined, according to the PAM50 label. One group corresponds to 

the basal and the other to the LumA and Lum B categories. See Table S3.1 for the resulting set of differentially 

expressed genes.   (B) The feature patterns of the identified genes are presented on PROMO's main screen 

together with any selected sample labels. Here we see the expression levels of the 20 genes that were 

identified by the test in A, after row normalization).  

 

A 

B 
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id Gene Symbol p-value 

(Test:  Ranksum test on 

PAM50B_Call 

[Basal](n=191) vs. 

[LumA,LumB](n=770)) 

Fold 

Change 

1 CXorf61 2.33E-123 4.5604 

2 LEMD1 1.72E-122 3.1005 

3 ART3 3.17E-118 5.294 

4 HORMAD1 1.75E-113 5.8894 

5 GABBR2 7.04E-111 4.2383 

6 SLC26A9 4.21E-101 2.4335 

7 OPRK1 2.22E-99 2.5534 

8 GATA3 3.27E-99 -4.02715 

9 CCKBR 5.86E-99 2.1373 

10 ROPN1 8.44E-99 6.1879 

11 MLPH 5.43E-98 -5.1038 

12 ESR1 7.07E-98 -7.07625 

13 SLC39A6 9.68E-98 -2.7197 

14 FOXA1 3.21E-97 -6.7128 

15 TBC1D9 6.71E-97 -4.06355 

16 LOC145837 2.99E-96 -4.18775 

17 CT62 3.12E-96 -3.65845 

18 RASGEF1C 5.50E-96 2.1274 

19 AGR3 1.12E-95 -9.2111 

20 FOXC1 1.63E-95 4.26835 

Table S3.1: List of differentially expressed genes. The 20 genes with the most significant differential 

expression between the groups defined in Figure S3.3A are shown. Genes are sorted by their rank-sum 

test p-values. Genes with positive fold change are over-expressed on the basal samples compared with 

the luminal samples.  Here, for instance, we see that the Estrogen Receptor gene (ESR1) is ranked 12th 

and exhibits a significant under-expression on the basal tumors samples (the Triple-Negative subtype) 

compared to the luminal tumor samples.   





נבחרו כאיזון ראוי בין דיוק לבין פשטות המסווג(. אנו מקווים שעץ ההחלטה שיצרנו, כמו גם הגנים 

צות פרוגנוסטיות שזיהינו כבעלי ערך כסמנים, יתרמו בעתיד לשיפור הדיוק בסיווג של חולים לתתי קבו

 גם בקליניקה.  

PROMO – כלי לניתוח מידע רחב היקף בתחום הסרטן 

פרומו הינו כלי אינטראקטיבי בעל ממשק גרפי שפיתחנו על מנת לאפשר ניתוח מתקדם של אוספי 

מידע גדולים של סרטן בקלות ובמהירות ובכך להנגיש את אוספי מידע אלו לקהל חוקרים רחב יותר. 

את מרבית שלבי הניתוח שביצענו על אוסף דגימות סרטן השד ועל אוסף דגימות  פרומו מממש

המלנומה כפי שתוארו בפרקים הקודמים. הכלי מותאם לניתוח של אוספי מידע גדולים )הכוללים אלפי 

דגימות(, ומתמחה בניתוח של מידע רחב היקף ביחד עם נתונים קליניים הזמינים עבור כל חולה, 

 עשיר של סוגי ניתוחים.ומאפשר מגוון 

סוג הניתוח הראשי בו תומך פרומו הוא זיהוי תתי סוגים של סרטן. השלבים העיקריים בניתוח כזה הם: 

( סינון ונירמול 2( ייבוא של מידע רחב היקף ביחד עם מידע קליני ממגוון מקורות ופורמטי קבצים. )1)

( מגוון אפשרויות לחקר 3שך הניתוח. )של אוסף הנתונים כדי לסלק מידע מיותר שאינו נחוץ להמ

( הפעלת 4התפלגות הנתונים וויזואליזציה שלהם כדי לזהות את התכונות הבסיסיות של נתוני האוסף. )

( על שורות או על עמודות מטריצת הביטוי מאפשרים חלוקה של Clusteringמגוון אלגוריתמי קיבוץ )

( מבחני העשרה על קבוצות 5לתתי קבוצות. ) תכונות האוסף )לרוב גנים( או של דגימות האוסף

הדגימות תוך שימוש במידע הקליני הזמין לכל דגימה מאפשר לאפיין קלינית את קבוצות הדגימות 

שהתקבלו. מבחני העשרה על תכונות האוסף )גנים( מאפשרים לאפיין את הפונקציות הביולוגיות של 

סיסי מבחנים סטטיסטיים לזיהוי גנים מפרידים או ( איתור של סמנים על ב6הגנים בקבוצות השונות. )

( לבסוף, פרומו מאפשר יצירה אוטומטית של עצי החלטה פשוטים עבור 7על בסיס ניתוח הישרדות. )

 תווית דגימות נבחרת.

 סיכום

בעבודה זו עשינו שימוש במגוון שיטות אלגוריתמיות וסטטיסטיות לצורך ניתוח נתונים רחבי היקף 

בתחום הסרטן. הניתוח נעשה על ידי שילוב של מידע ביולוגי רחב היקף עם מידע קליני מסוגים שונים. 

מאפשרים  בניתוח של דגימות סרטן השד זיהינו דפוס מבוסס ביטוי גנים ודפוס מבוסס מתילציה אשר

. בניתוח של דגימות המלנומה, Luminal-Aלהעריך טוב יותר את סיכוי ההישרדות של דגימות מסוג 

זיהינו קבוצה של דגימות בעלת שרידות נמוכה המאופיינת על ידי ביטוי יתר של גנים הקשורים 

שזיהינו.  למלנוגנזה, ויצרנו עץ החלטה פשוט שמאפשר לסווג דגימה חדשה לאחת מארבע תתי הסוגים

לבסוף, פיתחנו כלי בשם פרומו שמאפשר ניתוח מהיר של אוספי נתונים ביולוגיים גדולים בתחום הסרטן 

בשילוב עם המידע הקליני הזמין. אנו מקווים שהאבחנות שהעלינו והכלי שפיתחנו יסייעו בשיפור הסיווג 

 בסרטן ויתרמו לקידום חזון הרפואה האישית.



 

, שהתאפיינה בפרופיל היפרמתילציה ובסיכויי LumA-M1אותה כינינו  Luminal-Aקבוצה של דגימות 

-הישרדות נמוכים יותר באופן מובהק בהשוואה לשתי הקבוצות האחרות. ניתוח העשרה על אתרי ה

CpG  שמתילציה גבוהה בהם מאפיינת את קבוצת הדגימותLumA-M1 הראה שמדובר בגנים הקשורים ,

 (.Developmental genesלהתפתחות )

, העלה ששתי מערכות הסיווג שמצאנו הינן בעלות ערך Cox regressionניתוח הישרדות מבוסס על 

על בסיס נתוני ביטוי גנים מעלה את סיכויי הישנות  LumA-R1פרוגנוסטי. שיוך של דגימה לתת הקבוצה 

מוריד את סיכויי  על בסיס נתוני מתילצית דנ"א LumA-M1הגידול, ואילו שיוך של דגימה לתת הקבוצה 

 ההישרדות של המטופל באופן מובהק.  

לסיכום, הניתוח שביצענו על נתוני ביטוי גנים ונתוני מתילציית דנ"א בדגימות של סרטן השד מסוג 

Luminal-A  זיהה שני דפוסים בעלי ערך פרוגנוסטי שעשויים לסייע בעתיד בחלוקה טובה יותר דגימות

 אלו לתת סוגים מדויקים יותר.

 שיפור הסיווג של סרטן העור מלנומה

לשפר את הסיווג מבוסס ביטוי הגנים של גידולי מלנומה כפי שהוצע על  ההייתפרויקט זה המטרה של 

. סיווג זה כלל חלוקה של הדגימות לשלוש קבוצות טרנסרקריפטומיות 2015בשנת  TCGAידי 

(Immune-high, Keratin, MITF-lowשהראו הבדל מובהק בסיכו ) [48] יי ההישרדות שלהן. 

לארבע, זיהתה קבוצות  TCGA-דגימות המלנומה שהורדו ממאגר ה 469מונחית של  חלוקה בלתי

ברורות בעלות הבדל מובהק בסיכויי ההישרדות של החולים. החלוקה בוצעה על בסיס פרופילי ביטוי 

. אפיון של ארבע תתי k-meansהגנים בעלי השונות הגבוהה ביותר באמצעות אלגוריתם  2000של 

בחלוקה שביצענו על בסיס מידע קליני ועל ידי השוואה לשלוש תתי הקבוצות הקבוצות שהתקבלו 

-Immuneבחלוקה שלנו מקבילות לתת הקבוצות  3-ו 1העלתה שתת הקבוצות  TCGAשהוגדרו על ידי 

high ו-MITF-low  אצלTCGA (. עם זאת, תת הקבוצה ה)בהתאמKeratin  שלTCGA  פוצלה בחלוקה

בעלת סיכויי  ההכילה בעיקר גידולים ראשוניים, היית 2רות: תת קבוצה שלנו לשתי תתי קבוצות ברו

הכילה בעיקר  4ההישרדות הנמוכים ביותר, והתאפיינה בביטוי יתר של גנים מסוג קרטין. תת קבוצה 

בעלת סיכויי הישרדות נמוכים למדי, והתאפיינה בביטוי יתר של גנים מסוג מלנוגנזה  הגרורות, היית

(Melanogenesis.) 

בחלוקה שקיבלנו )וזכתה לכינוי  4התמקדות בגנים הקשורים למלנוגנזה ומבוטאים ביתר בתת קבוצה 

Melanogenesis-high (, העלתה שגנים אלו הינם פרוגנוסטיים )עשויים לשמש כסמנים לחיזוי

הספרות הישרדות( ואף עשויים לרמז על קשר מנגנוני בין אברון המלנוזום שאליו גנים אלו קשורים לפי 

 לבין הישרדות. מחקר נוסף נדרש כדי לאמת השערה זו. 

החלטה לחיזוי תת סוג של מלנומה על בסיס ביטוי גנים. המסווג מאפשר -לסיום, אימנו מסווג מסוג עץ

גנים 3סיווג של דגימה חדשה לאחת מארבע תתי הקבוצות שזיהינו, על בסיס מספר קטן של גנים )  



 

 תוצאות

 סרטן השדשיפור הסיווג של 

ומכילה את  PAM50סכמת הסיווג המולקולרי המקובלת בסרטן השד מבוססת על ביטוי גנים, קרויה 

. בפרויקט זה עשינו שימוש בנתוני ביטוי גנים Basal-like, Her2, Luminal-A, Luminal-Bתתי הסוגים 

(Gene Expression( ובנתוני מתילציית דנ"א )DNA Methylation הזמינים עבור ) מאות דגימות סרטן

לצורך שיפור הסיווג של גידולי סרטן השד לקבוצות בעלות משמעות  TCGA-השד במאגר הנתונים של ה

 קלינית.

-דגימות מגידולים של סרטן השד ו 1035דגימות ) 1148התחלנו בהורדת פרופילי ביטוי הגנים של 

קבוצות בעזרת אלגוריתם  5-וחלוקתם בצורה בלתי מונחית ל TCGA-דגימת שד נורמלי( ממאגר ה  113

הגנים בעלי השונות הגבוהה ביותר. השוואת החלוקה אותה קיבלנו לתווית  2000על בסיס  k-means-ה

ובמיוחד דגימות  Luminal-הצביעה על דמיון מתון בין שתי צורות החלוקה, כאשר דגימות ה PAM50-ה

משמעותית המרמזת על האפשרות לחלק קבוצה זו לתתי סוגים עדינים הראו הטרוגניות  Luminal-A-ה

 יותר.

( לשתי קבוצות, תוך שימוש Luminal-B-ו Luminal-A) Luminal-דגימות ה 737בהמשך, חילקנו רק את 

הגנים  2000על בסיס נתוני הביטוי של   k-meansבאותה שיטת חלוקה בלתי מונחית בעזרת אלגוריתם 

אותה קיבלנו הפרידה טוב יותר את הדגימות  Luminal-דגימות אלו. חלוקת דגימות ה השונים ביותר על

לקבוצות  PAM50מבחינת הישרדות וגם מבחינת הסיכוי להישנות הגידול, בהשוואה לחלוקת התווית 

Luminal-A ו-Luminal-B תוצאה זו מראה שהשיטה בה אנו מחלקים את הדגימות מזהה אפיון ביולוגי .

 ההדגימות שהינו בעל חשיבות קלינית. גם בחלוקה זו, השונות הגדולה ביותר שנצפתה היית כלשהו של

 , ועל כן החלטנו להתמקד בתת קבוצה זו.Luminal-Aבקרב דגימות 

, חילקה את Luminal-A-דגימות ה 534חלוקה בלתי מונחית נוספת לשתי קבוצות, הפעם רק של 

בהתאמה(. באופן  n=276-ו n=258) LumA-R2-ו LumA-R1נו הדגימות לשתי קבוצות ברורות אותן כיני

, והדגימו שוני מובהק PAM50-של סיווג ה Luminal-A-קבוצות אלו פיצלו את קבוצת ה-מעניין, תת

התאפיינה בסיכוי נמוך יותר להישנות הגידול  LumA-R2סטטיסטית בסיכוי להישנות סרטן. תת הקבוצה 

, והתאפיינה גם בביטוי יתר של מספר גדול של גנים הקשורים LumA-R1שנים ביחס לקבוצה  5תוך 

 .Tלמערכת החיסון , המועשרים בגנים הקשורים להפעלת תאי 

דנ"א של דגימות סרטן השד  תבחלקו השני של הפרויקט ביצענו ניתוח דומה על פרופילי מתילציי

קבוצות  3-ל Luminal-A-דגימות ה 378. חלוקה בלתי מונחית של TCGA-שהורדו אף הם ממאגר ה

-בעלי השונות הגבוהה ביותר, חשפה תת CpG-אתרי ה 2000על בסיס  k-meansבעזרת אלגוריתם 



 

האחראים [40] סרטן העור מלנומה מתחיל בהתחלקות לא מבוקרת של תאים בעור בשם מלנוציטים 

על הפקת הפיגמנט מלנין, והפצתו לתאי העור הסובבים אותם. הטיפול בגידולי מלנומה ראשוניים הוא 

. אולם, גידולי מלנומה נוטים להתפשט במהירות יחסית [41]קל יחסית, וכולל הסרה של הגידול בניתוח 

. גם [42]לאיברים מרוחקים בגוף ולייסד שם גרורות. במצב זה, הטיפול הוא מאתגר הרבה יותר 

במלנומה, החלטות טיפוליות נעשו בהתחלה על סמך פרמטרים קליניים ופתולוגיים שחילקו את 

לתתי סוגים אלו משמעות  ה, אך מלבד סיוע באבחון, לא היית[45][44]וגים הגידולים למספר תתי ס

 ,BRAFגנים, בהם . עם התפתחותן של טכנולוגיות גנומיות רחבות היקף, זוהו מספר ]44[קלינית ברורה 

NRAS, NF1שלו לשלוח גרורות  ה, אשר קיומה של מוטציה בהם משפיע על התפתחות הגידול ועל הנטיי

שהגדיר עבור מלנומה  TCGA-, פורסם מאמר של קבוצת ה2015בשנת  .]46[]47[ לאתרים מרוחקים

(, ובמקביל הגדיר WT-, וBRAF ,NRAS ,NF1סוגים בהתבסס על מוטציות שכיחות )-סיווג לארבעה תתי

(. MITF-Low-ו High-Immune ,Keratinגים בהתבסס על פרופיל ביטוי גנים )גם סיווג לשלושה תתי סו

בין שני הסיווגים היתה תאימות נמוכה ורק הסיווג השני, שמבוסס על פרופיל ביטוי גנים, הראה קשר 

 לשרידות.

 טכנולוגיות רחבות היקף וחזון הרפואה המותאמת אישית

ת היקף המאפשרות מדידה של מספר גדול מאוד של בשנים האחרונות פותחו מספר טכנולוגיות רחבו

היות והן מספקות  'Omics'. טכנולוגיות רחבות היקף אלו מכונות בכללותן [50]תכונות ביולוגיות בדגימה 

 )חקר רנ"א וביטוי גנים(, Transcriptomics )חקר הדנ"א(,  Genomics-נתונים רחבי היקף בתחומי ה

Epigenomics ,)חקר שינויים אפיגנטיים על הדנ"א(Proteomics .וכן הלאה )חקר חלבונים( 

 33דגימות שמייצגות  11,000הינו דוגמא למאגר נתונים גנומי של סרטן הכולל TCGA  [79]-פרויקט ה

שינויים ברצף  למיפוי DNA-Seqסוגי סרטן. הדגימות  נדגמו על ידי מספר טכנולוגיות רחבות היקף כולל 

למדידת רמות מתילציית  miRNA ,Methylation arrays-ו mRNAלמדידת רמות ביטוי  RNA-Seqהדנ"א, 

למדידת שינויים במספר העותקים בגנום, ועוד. בנוסף, כולל מאגר הנתונים גם  DNA ,SNP arrays-ה

וגי, משך הישרדות ועוד. מידע קליני מפורט לגבי כל אחת מהדגימות הכולל גיל, מין, תת סוג היסטול

הפך למשאב יקר ערך בתחום חקר הסרטן היות והוא כולל מידע רחב היקף ורב ממדי  TCGA-מאגר ה

 . [83][80] [81]על גידולים מסוגים שונים כפי שלא היה זמין בעבר

אחד השימושים המבטיחים ביותר לניצולו של המידע הביולוגי רחב ההיקף בתחום הסרטן, הוא בתחום 

ים . אם בעבר סווגו חולי סרטן לקבוצות גסות על פי מאפיינים בסיסי[73][72]הרפואה המותאמת אישית 

של הגידול, והטיפול שניתן שלהם היה אחיד למדי, תחום הרפואה המותאמת אישית מבטיח לסווג כל 

חולה לקבוצה מדויקת יותר, ולספק לו טיפול מותאם אישית שמבוסס על הפרופיל הגנטי המדויק של 

יפולים הגידול שלו. לשם פיתוח גישה זו יש לזהות תתי סוגים מדויקים עבור כל סוג סרטן, לפתח ט

( שיאפשרו את סיווגו של חולה לתת סוג מדויק Biomarkersספציפיים עבור כל תת סוג, ולזהות סמנים )

]75[. 

 



 

 תקציר

 רקע כללי

 סרטן

המונח "סרטן" מתייחס לקבוצה גדולה של מחלות המתאפיינות בחלוקה בלתי מבוקרת של תאים 

לרקמות סובבות ולאיברים מרוחקים. המחלה הינה גורם התמותה השני  םולעיתים גם בהתפשטות

מיליון  9.6, אחד מכל שישה מקרי מוות בעולם נגרם מסרטן וסה"כ נרשמו 2018. בשנת [1]בעולם 

. סרטן יכול להופיע בכל איבר בגוף, אך סוגי [2]המחלה מקרים חדשים של מיליון  18.1-מקרי מוות ו

 הסרטן השכיחים ביותר הם בריאות, בשד ובמעי.

שלבי שבמסגרתו תאים בריאים מומרים לתאים ממאירים -גידולים סרטניים מתפתחים בתהליך רב

שינויים אלו מאפשרים לתאים המומרים להגביר את קצב בעקבות רצף של שינויים גנטיים ואפיגנטיים. 

החלוקה שלהם ולרכוש תכונות חדשות. בהתחלה, המסה ההולכת וגדלה של תאים ממאירים נשארת 

(, אולם שינויים נוספים המתרחשים Primaryההיווצרות הראשוני של הגידול )סרטן ראשוני,  במקום

בתאי הגידול המתרבים עלולים לגרום לתאים להתנתק מהגידול הראשוני ולפלוש לרקמות בריאות או 

להיכנס לדם או ללימפה. תאים אלו עשויים לעבור דרך מחזור הדם או מערכת הלימפה אל אתרים 

(. רוב Metastasesבגוף בהם יוכלו להקים מושבות חדשות של תאי הגידול, המכונות גרורות ) חדשים

מקרי המוות במחלת הסרטן הם תוצאה של הגרורות שמתפשטות לרקמות בריאות ופוגעות בתפקוד 

 .[4]האיברים 

הטיפולים המסורתיים בסרטן אינם ספציפיים למאפיינים הגנטיים של הגידול והם כוללים ניתוח להסרת  

או שילובים שלהם. לאחרונה החל שימוש בטיפולים מתקדמים וספציפיים  ההגידול, הקרנות, כימותרפי

בגידול(, טיפולים  םערכת החיסון של הגוף להילחיותר כגון טיפולים חיסוניים )המגבירים את יכולת מ

הורמונאליים )המעכבים את קצב החלוקה של גידולים תלויי הורמון( וטיפולים מוכוונים )שתוקפים 

 .  [11] מולקולה ספציפית הנדרשת לחלוקת התאים באופן בלתי מבוקר(

בסרטן השד, החלטות טיפוליות התבססו בתחילה על פרמטרים כגון גודל הגידול, מיקומו, מצב בלוטות 

הסטטוס של שלושה קולטני הורמונים הלימפה ושלב היסטולוגי. בהמשך, נעשה שימוש גם במידע לגבי 

. עם התפתחותן של טכנולוגיות רחבות היקף [14]( בקביעת סוג הטיפול HER2-)אסטרוגן, פרוגסטרון ו

ת סרטן שד שונות, הוגדרו מספר שמאפשרות את מדידת רמת הביטוי של מספר גדול של גנים בדגימו

 Basal-like, HER2-enriched, Luminal-A and: [21][20][19]תתי סוגים מולקולריים לסרטן השד 

Luminal-B לתתי סוגים מולקולריים אלו היתה תאימות מסוימת לשיטות הסיווג הקודמות, והם הראו .

מספר מאפיינים קליניים כגון רמת סיכון ותגובה לתרופות, מה שהביא להתבססותם הנרחבת. בשנת 

שמאפשר סיווג של דגימת סרטן השד לאחת מארבע הקבוצות הנ"ל  PAM50פורסם מסווג בשם  2009

 . [23]גנים 50ת הביטוי של על פי חתימ

  



 

  



 

 תמצית

מחלת הסרטן הינה גורם המוות השני בשכיחותו בעולם. המחלה מאופיינת בחלוקה בלתי מבוקרת של 

תאים ולעיתים גם בהתפשטות לרקמות סובבות ולאיברים מרוחקים. הטיפול במחלת הסרטן הוא 

באותו האיבר בגוף עשויים להיבדל מאוד זה מאתגר בשל היותה מאוד הטרוגנית: גם גידולים שמוצאם 

 מזה מבחינה ביולוגית, מבחינת סיכויי ההישרדות ומבחינת האופן בו הם מגיבים לתרופות.

בשנים האחרונות, מספר מאגרי נתונים גנומיים גדולים בתחום הסרטן נעשו זמינים. מאגרים אלו כוללים 

וסף למידע קליני מקיף עבור אלפי דגימות סרטן היקף בנ-נתונים שמקורם במגוון טכנולוגיות רחבות

מסוגים שונים. בהתאם לחזון הרפואה המותאמת אישית, שילוב של מידע גנומי רחב היקף עם מידע 

קליני באמצעות שיטות סטטיסטיות ואלגוריתמיות שונות מאפשרות לזהות באופן חישובי תתי סוגים 

 השפיע על אבחון, פיתוח תרופות וטיפול בסרטן.של סרטן שהינם בעלי חשיבות קלינית ועשויים ל

בעבודה זו, פיתחנו גישה לשיפור הסיווג של סרטן לתתי סוגים בהתבסס על נתונים רחבי היקף, ויישמנו 

 הטרוגניות שףשביצענו על נתוני סרטן השד ח הניתוחאותה על סרטן השד ועל סרטן עור מסוג מלנומה. 

 קבוצות-תתשתי להכלולות בתת סוג זה  הדגימות את לקוחי Luminal-A סוגתת הב משמעותית

 זיהההעור  ביצענו על נתוני סרטןש הניתוח. מתילציהרמות ו גנים ביטוי דפוסי בסיס על פרוגנוסטיות

על ידי ביטוי ביתר של גנים המעורבים  מאופיינותבעלות הישרדות נמוכה וה מלנומה דגימות של קבוצה

המבוסס על רמות הביטוי של שלושה גנים  פשוטמולקולרי  מסווגכמו כן, פיתחנו . Melanogenesis-ב

 שפיתחנו אינטראקטיבי תוכנה כלישהינו , PROMO את מתארים אנו, לבסוף. סוג במלנומה-תת לחיזוי

היקף וזיהוי תתי סוגים של סרטן. הכלי מכליל את השיטה לזיהוי תתי סוגים -רחבי נתונים ניתוח לצורך

 פעלנו בפרויקטים לשיפור הסיווג של סרטן השד וסרטן העור.  אותה ה
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