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Abstract

Cancer is the second leading cause of death worldwide. It is characterized by abnormal cell
proliferation, potentially followed by spreading into surrounding tissue and body organs. Cancer
is challenging to treat since it is very heterogeneous: even tumors originating from the same

organ can greatly vary in their biological mechanism, survival risk, and response to treatment.

Recent years have shown the emergence of large cancer genomic projects, providing detailed
multi-omic profiles together with clinical information for thousands of cancer samples. In line
with the vision of precision medicine, integration of omic and clinical data using statistical and
algorithmic methods allows us to computationally identify clinically distinct subgroups that may

have a profound impact on diagnosis, drug discovery, and treatment.

In this work, we developed a methodology for improving the classification of cancers based on
high-throughput omic data and applied it to both breast and skin cancers. Our analysis of the
breast cancer cohort revealed a significant heterogeneity within the luminal-A subtype and
partitioned its samples into prognostic subgroups based on expression and methylation patterns.
Our analysis of the skin cancer cohort identified a group of poor-prognosis melanoma samples
characterized by melanogenesis genes. We also suggested a simple three-gene classifier for
predicting melanoma subtypes. Lastly, we describe PROMO, an interactive software tool we
developed for multi-omic cancer data analysis and subtyping that generalizes the methodology

used in the breast and skin cancer projects.
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1. Introduction

1.1. Cancer

1.1.1. Introduction to cancer

Cancer is a large group of diseases characterized by uncontrolled proliferation of the body cells,
with the potential of spreading into surrounding tissues. Cancer is the second leading cause of
death worldwide [1]. In 2018, about 1 in 6 deaths worldwide occurred due to cancer, with
estimates of 9.6 million deaths and 18.1 million incidents of cancer occurring globally [2][3].
Cancer can occur in all body parts, but lung, breast, and colorectal cancers are the most common
types of cancer worldwide (Figures 1.1-1.3) [2]. Lung cancer was the most common cancer in
men worldwide. For women, breast cancer was the most frequently diagnosed cancer in most
countries, as well as the most frequent cause of death from cancer. As the world population is
growing and aging, global cancer incidents are on the rise and projected to increase by more

than 60% by the year 2040, making cancer a significant health and economic burden worldwide

[2].
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Figure 1.1: Estimated number of worldwide incidents and deaths from different types of cancer. Image

source: [2]
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Figure 1.2: Estimated worldwide age-standardized incidence rates of cancer. Image source: [2].
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Figure 1.3: Top cancer site per country in 2018. Breast cancer is the most frequent top cancer sites, followed by
prostate and cervix uteri cancers. Image source: [2]



Cancer develops through a multi-step process by which normal cells transform into malignant
cells in a sequence of genetic and epigenetic changes (Figure 1.4). These changes allow the
transformed cells to increase their proliferation rate and acquire new properties. The growing
mass of transformed cells is initially localized to their site of origin (also called a primary or an in
situ cancer). However, additional changes occurring within the proliferating tumor cells may
cause them to break away from the primary tumor and invade healthy tissues or enter the blood
or lymph. These invading cells may travel through the bloodstream or lymphatic system to set
up new colonies of cancer in distant sites, called metastases. Most deaths associated with cancer
result from metastases, as the invading cells damage healthy tissues and compromise organ

functions [4].
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Figure 1.4: The development of a malignant tumor (cancer). Tumors develop from normal cells through a
series of genetic alternations that enable them to increase their proliferation rate and acquire new
properties. The localized mass of altered cells is called an in situ cancer. Additional changes in the cells may
cause them to break away from the tumor and invade normal tissues or enter the blood or lymph. These
invading cells may set up new colonies of cancer (called metastases) at distant sites. Source: [4].

In a seminal paper published in 2000, D. Hanahan and R. Weinberg attempted to reduce the
complexity of the body of knowledge regarding the changes occurring during tumor
development into six underlying principles, which they called "The hallmarks of cancer" (Figure
1.5A) [5]. The hallmarks that the authors define in the paper are (1) Cancer cells acquire the
ability to stimulate their own growth ("self-sufficiency in growth signals"); (2) They become
resistant to inhibitory signals that might otherwise stop their growth ("insensitivity to anti-
growth signals"); (3) They evade their programmed cell death ("evading apoptosis"); (4) They
acquire the ability to multiply indefinitely ("limitless replicative potential"); (5) They stimulate

the growth of blood vessels to support further growth of the tumor by supplying nutrients


https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Self-sufficiency_in_growth_signals
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Insensitivity_to_anti-growth_signals
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Insensitivity_to_anti-growth_signals
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Evading_programmed_cell_death
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Limitless_replicative_potential

("sustained angiogenesis"); (6) They invade local tissue and spread to distant sites ("tissue
invasion and metastasis"). Highlighting a small number of underlying principles common to many
cancers is essential because it provided an organizational framework of cellular properties
uncovered during tumorigenesis [6]. This framework improved the understanding of cancer
biology and, in a sense, portrayed different types of cancer according to their hallmark

characteristics.

A decade letter, Hanahan and Weinberg published a second, related paper that added two
emerging hallmarks: reprogramming energy metabolism and evading immune response, and
two enabling characteristics: genome instability and mutation, and tumor-promoting
inflammation (Figure 1.5B). Of particular interest to us and of relevance to this thesis, was the
emphasis on the interplay between cancer and the adaptive immune system, as an association
between immune gene expression and cancer variability, as well as patient survival, was evident
in our cancer data analyses. By the theory of cancer immunoediting, the interaction between
the evolving tumor and its host's immune system is composed of three phases: elimination,
equilibrium, and escape [7]. Whereas during the elimination phase, a competent immune system
is still capable of destroying transformed cells, in the equilibrium phase, sporadic tumor cells
evade destruction by the immune system and undergo immunoediting, which allows the tumor
to evolve under immune selection. Finally, the immunologically sculpted tumors manage to
escape the immune attack, which allows them to establish an immunosuppressive tumor
microenvironment, to increase their proliferation rate, and finally also to metastasize [8]. As
various routes are available through the process of immunoediting, even tumors of the same
type may significantly differ in their immunogenicity, which is the ability of a substance to induce
an immune response [9]. Further, the activity of the immune system in cancer patients, such as
the presence of tumor-infiltrating lymphocytes (TILs) was shown to correlate with prognosis and

with the response to treatment in several types of cancer [10][11].


https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Sustained_angiogenesis
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Tissue_invasion_and_metastasis
https://en.wikipedia.org/wiki/The_Hallmarks_of_Cancer#Tissue_invasion_and_metastasis
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Figure 1.5: The hallmarks of cancer (A) The six hallmarks of cancer as defined by Hanahan and Weinberg,
2000 [5] (B) additional emerging hallmarks and enabling characteristics as defined by Hanahan and
Weinberg., 2011 [12]. Image source: [5] [12]
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Classic treatments for cancer include surgery, radiation, chemotherapy, or a combination of two
or more of these. Recent advancements in cancer treatment introduced new treatments such as
immunotherapy (boosting the responsiveness of the patient's immune system to fight the tumor
more effectively), hormone therapy (slowing down hormone-dependent tumors such as breast
or prostate cancers) and targeted therapies (targeting specific cancer deregulated proteins) [11].
With the advancements of our understanding of the variability within each cancer type, it is
hoped that new subtype-specific treatment will be developed as part of the precision medicine
approach. The development of such subtype-specific drugs depends on our ability to define
clinically distinct tumor subtypes and to accurately classify tumors into subtypes based on

informative biomarkers.

1.1.2. Breast cancer

Breast cancer is a heterogeneous disease exhibiting high tumor variability in terms of the
underlying biological mechanisms, response to treatment, and overall survival rate [13].
Originally, therapeutic decisions in breast cancer were guided by clinicopathological parameters
like tumor size, presence of lymph-node/remote metastases and histological grade. In addition,
the status of three immunohistochemistry biomarkers - estrogen receptor (ER), progesterone
receptor (PR) and human epidermal growth factor receptor 2 (HER2/ERBB2) allowed the

development of targeted therapies and proved predictive of treatment response [14].

With the emergence of global molecular profiling techniques, large genomic datasets became
available for subtype discovery using unsupervised algorithms. By this methodology, breast
samples are partitioned into subgroups using clustering algorithms, such as hierarchical
clustering [15] or K-Means, and then subgroup significance is evaluated using the clinical data

associated with the samples.

Initially, microarray data were used to define four molecular breast cancer subtypes (basal-like,
HER2-enriched, luminal and normal-like) based on characteristic gene expression signatures in
correlation with clinical data [16]. These molecular subtypes showed a reasonable correlation
with the immunohistochemistry biomarker-based classification. Thus, basal-like samples are
mostly triple-negative (ER-/PR-/Her2-), luminal samples are mostly ER+, and Her2 tumors are

characterized by amplification and high expression of the ERBB2/HER2 gene [17][18].

Subsequent analysis conducted on a larger dataset separated the luminal subtype into two
distinct subgroups named luminal-A and luminal-B. Luminal-B cancers have a higher expression

of proliferation genes including Ki-67, and confer worse prognosis [19]{20][21]. Moreover,
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luminal-B cancers respond better to chemotherapy, while patients with luminal-A cancers

benefit most from antiestrogen treatment [22].

As the partitioning of breast tumors into five molecular subtypes gained acceptance and
popularity, several expression-based predictors have been developed. A central predictor is
PAMS50, which maps a tumor sample to one of the five subtypes based on the gene expression
pattern of 50 genes [23]. Though expected to be more robust than traditional classification
systems that rely only on a few biomarkers, the separation between luminal-A and luminal-B by
the various predictors is not consistent, suggesting that these molecular subtypes may not

represent distinct coherent sample groups [24].

Other attempts to classify breast tumors were based on other profiling technologies such as
miRNA arrays [25][26], copy number variations [27] or a combination of several different
technologies [28][29]. The various studies show different levels of agreement with the
expression-based molecular subtypes, but taken together, they strongly indicate the existence

of additional, more subtle subtypes than the PAM50 subtypes[30].

Epigenetic modifications such as DNA methylation arrays, which measure the methylation status
of thousands of CpG sites across the genome [31], were also used for breast cancer classification.
DNA methylation changes were shown to play a pivotal role in cancer initiation and progression
[32]-[33]. Particularly, promoter hyper-methylation was associated with the silencing of tumor
suppressor genes [34]. Several studies associated breast cancer molecular subtypes with specific
methylation patterns [35], while others showed that methylation data might reveal additional
complexity not captured on the expression level, possibly identifying finer patient groups of

clinical importance [36].

Further improving the classification of breast tumors into clinically significant subtypes as well
as accurate identification of the unique biological features characterizing each subtype is pivotal
for improving our understanding of the disease, identifying subtype-specific biomarkers,

targeted drug development and better prediction of response to treatment.
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1.1.3. Cutaneous melanoma

Cutaneous melanoma is the most lethal form of skin cancer, showing a continuous rise in
worldwide incidence over the past several decades [37][38][39]. Melanoma tumors develop by
uncontrolled proliferation of melanocytes, the pigment-producing cells of the skin [40]. Primary
melanoma tumors are regularly localized to the skin and are usually curable by excision when
detected early [41]. However, melanoma tumors tend to metastasize rapidly into surrounding
tissues and distant organs and are therefore considerably more challenging to cure at later stages

[42].

Melanoma tumors are heterogeneous and show high diversity in their biological characteristics,
metastatic potential, survival risk, and response to treatment [43]. Therefore, the stratification
of melanoma tumors into clinically distinct, prognostic subtypes is crucial for accurate diagnosis,
treatment guidance, and subtype-specific drug development. For the past 40 years, a
clinicopathological system has been used to classify primary melanomas into four major
subtypes (superficial spreading, nodular, lentigo maligna, and acral lentiginous) based on clinical
and pathological features [44][45]. Although beneficial for diagnosis, this classification showed

limited clinical relevance, especially for prognosis and treatment guidance [44].

With the emergence of high-throughput genomic technologies, several commonly mutated
genes that play a central role in melanoma tumorigenesis and metastasis, such as BRAF, NRAS,
and NF1, were identified. These findings significantly advanced the understanding of melanoma
progression and led to the development of targeted therapies that have improved patient

survival [46][47].

In 2015, The Cancer Genome Atlas (TCGA) reported on a study of 331 melanoma patients using
six different high-throughput omic technologies [48]. The study partitioned melanoma tumors
(both primary and metastatic) based on the pattern of the most prevalent mutated genes into
four subtypes: BRAF, NRAS, NF1, and WT [48]. While this mutation-based classification has
proven beneficial for highlighting key potential subtype-specific drug targets, it provides little

prognostic value.

The same study also suggested a transcriptomics-based classification, which divided melanoma
tumors (both primary and metastasis) into three prognostic groups: high-immune, keratin, and
MITF-low [48]. The high-immune group showed the best 10-year survival and was characterized
by the over-expression of many immune genes. The keratin group contained most of the primary
tumors, conferred the worst survival (possibly due to a bias of large primary-tumor thickness in

the TCGA cohort), and was characterized by over-expression of keratin, pigmentation, and
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epithelial genes. Lastly, the MITF-low group showed medium survival and was characterized by
the under-expression of keratin and pigmentation genes. Interestingly, these three
transcriptomic sample groups showed little agreement with the mutation-based groups.
Moreover, the keratin transcriptomic group showed low consistency in terms of both the
expression-profiles and the clinical labels of its comprising samples, possibly suggesting the need

for a more refined transcriptomic tumor classification.

For improving the survival of metastatic melanoma, a better understanding of its development
as well as of its various subtypes is required, in addition to identifying informative biomarkers

capable of predicting patient prognosis and response to specific treatments.
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1.2. The era of omics and personalized medicine

1.2.1. High-throughput omic technologies and the multi-omics era

The "central dogma of molecular biology", stated by Francis Crick in 1957, is a framework for
describing the flow of genetic information between DNA, RNA, and proteins in biological systems
[49][50] (Figures 1.6 and 1.7). The framework includes three general information transfers that
describe the normal flow of biological information: DNA can be copied to DNA (DNA replication),
DNA information can be copied into mRNA (transcription or gene expression), and mRNA can be
used as a template for synthesizing proteins (translation or protein expression). The framework
also includes three special information transfers that occur only under specific conditions in case
of some viruses or in a laboratory: RNA can be copied from RNA (RNA replication), DNA can be
synthesized from an RNA template (reverse transcription), and proteins can be synthesized
directly from a DNA template without the use of mRNA [51]. Several exceptions to the dogma
have been discovered in time (such as Prions, which are self-replicating proteins[52]), but the

dogma is still useful in organizing our knowledge of genetic information flow.

The Central Dogma: "Once information has got into a protein it
can't get out again". Information here means the sequence of

- the amino acid residues, or other sequences related to it.
That is, we may be able to have

DNA RNA . Protein

/ |

but never

DNA RNA - Protein
r

where the arrows show the transfer of information.

Figure 1.6: Left: Crick’s first outline of the central dogma, from an unpublished note made in 1956.
Source: [50], Credit: Wellcome Library, London. Right: Crick speaking at the 1963 Cold Spring Harbor
Symposium. Source: [50], Credit: Cold Spring Harbor Laboratory.

In recent decades, several high-throughput technologies have been developed for interrogating
the information captured in biological molecules such as DNA, RNA, Protein, and others [50].
These high-throughput technologies allow the simultaneous measurement of multiple biological
features in a given biological sample. They are collectively called "Omic" technologies, as this
suffix is common to the many types of large scale data they interrogate (genomics,

transcriptomics, epigenomics, proteomics, metabolomics and others). See Figures 1.7 and 1.8.
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17

The various high-throughput omic technologies interrogate different levels of biological
regulation at unprecedented speed, generating large datasets describing the examined samples
in great detail, thus transforming biomedical research into an information-based field (Table 1.1).
In Genomics, genotype arrays [54] and next-generation sequencing (NGS) for whole-genome
sequencing [55], and exome sequencing [56][57] are the main technologies currently used for
interrogating DNA sequences. In Transcriptomics, probe-based microarrays [58] were the first
widely used method for measuring genome-wide mRNA abundance levels and allowed the
generation of large scale datasets used to explore gene expression variability and dynamics in
different tissues and disease states. More accurate measurement of mRNA levels became
possible with the introduction of RNA-Seq technology [59][60]. Unlike microarrays, RNA-Seq
profiling is not restricted to known genes, and also has a higher larger dynamic range. RNA-Seq
applied NGS technologies to qualitatively and quantitatively profile all types of RNA molecules
such as mRNAs, small RNAs and other non-coding RNAs [59][61][62]. In Epigenomics, genome-
wide characterization of DNA methylation and histone acetylation is interrogated using
methylation arrays [31] or by NGS [63]. In Proteomics, mass-spectrometry [64] and reverse-
phase protein arrays (RPPA)[65] can be used to quantify peptide abundance in a given sample.
Lastly, mass-spectrometry is also utilized to measure the abundance and relative ratios of
metabolites in Metabolomics [66]. Additional omics, as well as their associated technologies,
exist, and many more are expected to be developed in the next decade as the field is advancing

rapidly.

The result of most omic experiments can generally be represented as a matrix whose columns
represent samples, and rows represent biological features (such as genes, transcripts, CpGs,
peptides or metabolites). The matrix entries indicate the existence or abundance of a specific
feature in a specific sample. For convenience, we will call this matrix an "expression matrix", and

will interchangeably use the terms genes and features.

An extensive array of computational methods is available for downstream analysis of large omic
datasets. Several of the methods are reviewed later in this chapter. Briefly, in the context of
cancer research, omic datasets can be used to identify groups of similar samples and similar
features using unsupervised methods. If additional external information is available, such as
clinical labels describing the samples (‘Phenome'), or gene annotations describing the features,
then supervised methods can be used to statistically characterize the identified sample and
feature groups, to identify differentially expressed features, and to identify label-specific

biomarkers [67]. Further, integrative multi-omic analysis, which combines data from more than
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a single omic type (such as mRNA and miRNA, or mRNA and DNA methylation) may provide

additional insights and reveal interactions between features of different types [68][69][70].

Analysis of large omic datasets might be challenging for several reasons. Firstly, the dataset can
be huge in size, posing computational challenges in terms of storage, computing speed, required
analysis skills, and the limited number of visualization methods suited for large-scale datasets.
Secondly, the features generated by different omic technologies can significantly vary. The
number of features in the resulting matrix, their biological meaning, their value distribution and
the way they are correlated to features in other omics, can greatly differ between omic

technologies, requiring the adjustment of the analysis workflow and the statistical methods

used.
Assay Goal Platform Main advantages and
disadvantages
Genomics Identify nucleotide Genotyping arrays, SNP variability is stable
variants (SNPs) in the whole-exome during life; provides limited
whole genome sequencing information in complex
associated with clinical diseases due to several loci
implicated
traits (GWAS) P
Transcriptomics Quantify expression Expression arrays, RNA Widely used due to its high
levels of cellular sequencing information content on cell
transcripts (e.g. mMRNA) status; differences in mRNA
expression do not imply
differences in proteins; does
not take into account post-
transcriptional modifications
Epigenomics Determine DNA methylation Provides additional
modifications in DNA analysis with arrays information to
and small RNA that (Infinium transcriptomics; related to
interfere with gene MethylationEPIC 850K; €xposures; more expensive
. . . than transcriptomics;
expression Illumina, San Diego, CA, i
) sequencing-based
USA), next-generation approaches have
sequencing, small RNA computational tools in active
Sequencing, arrays, etc. deve|opment
Proteomics Characterize protein MS-based approaches Expected to be closer to the
expression levels of phenotype; not widely used,
cells/samples expensive and more
cumbersome analysis
Metabolomics Characterize MS-based approaches Representatives of the
abundance profile of cellular status; applicable to
metabolites and their many biological fluids
relative ratios (i.e. breath, blood,
urine, etc.); not widely used

Table 1.1: Common omic data types. Source: [71]
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1.2.2. Omic-based profiling and the vision of precision medicine in

cancer

Tumors, even those of the same type, show great heterogeneity on the molecular level. The
molecular makeup of each tumor prominently determines its proliferation rate, tendency to
metastasize and its response to specific drugs. Even today, for many cancer types, subtype
diagnosis is imprecise, as it is determined based on a limited number of fuzzy clinicopathological
parameters. Also, traditional treatments like chemotherapy, radiotherapy and surgery, are still
largely unspecific and do not take into account the concrete genetic makeup of the patient's
tumor, thus often leading to treatment inefficiency, drug toxicity and significant side effects. In
contrast to this "one size fits all" approach employed by traditional cancer medicine, the vision
of precision medicine is that patients will receive precisely tailored treatments that target

specific malfunctioning molecular pathways identified in their tumor [72][73].

The wealth of high-resolution biological data provided by large-scale omic technologies as well
as their dropping costs lie at the basis of fulfilling the vision of precision medicine. Promoting
precision medicine in cancer depends on the following efforts, all utilizing large-scale omics data

of different types:

1. Identifying distinct groups of similar patients based on omic profiling and characterizing
the prognosis, response to treatment and other clinical attributes of each group.

2. Characterizing the malfunctioning biological pathways in each patient group, and using
this information to guide targeted drug development.

3. Identifying informative biomarkers that will allow classifying new patients into one of

the known subtypes.

The evolution of breast cancer treatment over the past several decades demonstrates the
dependency of treatment efficiency on accurate patient stratification into clinically distinct
subgroups, which in turn depends on the resolution of profiling technologies (Figure 1.9). As new
technologies emerged, the resolution by which tumors are interrogated increased, and finer

ways to stratify the patients as well as relevant biomarkers were identified [74].

Eventually, precision medicine is envisioned to ensure that patients get the right treatment at
the right dose at the right time, with minimum side-effects and maximum efficacy [75]. However,
to achieve this ambitious aim, several challenges must be overcome: (1) Acquisition, storage, and
analysis of even larger amounts of omics data are required for identifying even finer patient

groups [76], (2) Translation of the knowledge gained from omics data analysis to practical use
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into the clinic [77] (3) Development and regulatory approval of new targeted drugs aimed at

treating small groups of patients [78].
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Figure 1.9: Evolution of breast cancer subtyping and personalization of treatment. Image source: [74]

1.2.3. The Cancer Genome Atlas project (TCGA)

The Cancer Genome Atlas (TCGA) [79] project is an American public-funded project, aimed to
discover major cancer-causing genomic alterations and create a comprehensive “atlas” of cancer
genomic profiles [80]. The project involved 20 collaborating intuitions across the US and Canada,
responsible for collection and sample processing, followed by high-throughput sequencing and
bioinformatics data analyses. During the years of its activity (2005-2016), the project has
generated, analyzed, and made publicly available 2.5 Petabytes of genomic sequence,
expression, methylation, and copy number variation data on more than 11,000 tumor samples

that represent 33 different types of cancer [81].

Most TCGA samples were measured using several different omic technologies, including next-
generation sequencing (DNA-Seq, RNA-Seq, and microRNA-Seq) and microarray (mRNA, DNA
methylation, SNP, and Protein) based technologies (Figures 1.10 and Table 1.2). TCGA also
provided detailed clinical information for each sample, which included parameters like age,
gender, tumor stage, results of lab tests, treatment history and follow-up data. The data were
used in the past decade by both TCGA researchers and by many other researchers around the
world to advance the understanding of cancer development and cancer subtyping, and to

identify the aberrations in different omics that characterize different subtypes of cancer [82].
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Due to its unprecedented scope, resolution and multi-dimensional nature, TCGA's database was

also used to trigger multiple computational approaches and served as a playground for testing

new data mining and machine learning algorithms [80][83].

Omics characterizations

\ Platforms

~ Mutation

_ Copy number

Gene expression

DNA methylation
MicroRNA

RPPA

Clinical data

Figure 1.10: The Cancer Genome Atlas (TCGA). A multi-cancer multi-omic database. Source: [84]

“Omic” Study Technology

DNA sequencing Whole-exome sequencing? (by massively
parallel sequencing technologies)

DMNA copy number Affymetrix 6.0 single nucleotide polymaorphism
(SNP) arrays

DNA methylation lllumina Infinium DNA methylation chips

mRMNA expression Agilent custom 244K whole genome microarrays

miRMA sequencing miRNA sequencing

Protein and phosphoprotein Reverse-phase protein array (RPPA)
expression

Aberration

Point mutation, small insertion/deletion
(indel)

Deletion/amplification

Epigenetic alteration
Gene expression
Aberrations in miRNA

Signaling pathway activity,
cell lineage marker expression

3Exome sequencing involves selectively sequencing the coding regions of the genome. In the human genome, coding regions comprise about 30 megabases and
180,000 exons, or 1% of the human genome. Exome sequencing enables identification of variants that affact protein sequence, but it cannot ba used to identify
structural or non-coding variants. miRMA = microRNA; mRNA = messenger RMA; TOGA = The Cancer Genome Atlas.

Table 1.2: Omic technologies (platforms) included in TCGA's database. Source: [85]
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1.3. Computational methods

1.3.1. Identification of distinguishing features

Analysis of biomedical high-throughput data often aims to identify genes (or other biological
features) that are differentially regulated across different sample classes [86]. Differentially
expressed genes (DEGs) are characterized by having significantly different expression means on
two (or more) samples classes. Therefore, they can be used as biomarkers to distinguish between
the sample classes, to reveal dysregulation of biological pathways among sample classes, and

also to identify informative genes for downstream analysis.

The Student's t-test and Wilcoxon rank-sum test (Mann—Whitney U test) can be used to identify
genes that are differentially expressed between two sample classes (such as experiment and
control or two disease subtype) [86]. The t-test is a parametric test that assumes that the data
are normally distributed, and it has higher statistical power than the rank-sum test, which does
not make that assumption. The rank-sum test aims to detect differences of variable values
between two samples based on ranking, and therefore it is less sensitive to outliers and can also
be performed when the only available data are those relative ranks [87]. For identifying
differentially expressed genes among more than two sample classes (such as multiple disease
subtypes or experiment time points), the parametric ANOVA (analysis of variance) test or the

non-parametric, ranking-based Kruskal-Wallis ANOVA test are appropriate [88][89].

The null hypothesis made by the four tests mentioned above is that there is no difference in
expression between the classes. After a test statistic was computed by one of the tests, for each
gene separately, it can be converted into a p-value, which represents the probability of having
observed our data (or more extreme data) when the null hypothesis is true [90]. When the p-
value is below a certain cut-off (0.05 is often used), we reject the null hypothesis and the result
is considered statistically significant [88]. Since typical analyses for identifying differentially
expressed genes in modern high-throughput datasets may include many thousands of
simultaneous hypothesis testing, we must account for the multiple testing problem [91]. The
problem refers to the situation where the expected number of false discoveries becomes large
relative to the number of true discoveries. The problem was originally addressed by methods to
control the family-wise type | error rate (FWER), such as the Bonferroni correction method [92],
and later by the less conservative method of FDR (False Discovery Rate), which controls the

family-wise error rate [93][94].
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Lastly, Fold-change is a simple metric for comparing gene expression levels between two sample
classes. Fold-change is the ratio between expression averages in the two sample classes. Fold
change is applied mainly as a measure of effect size, and nowadays it is considered inadequate
inference statistic because it does not incorporate variance and offers no associated level of

confidence.

Altogether, these methods allow for the generation of lists of differentially expressed genes
which can then be associated with biological function by performing a gene enrichment analysis

on the list genes, as described below.

1.3.2. Clustering analysis

Clustering analysis is an unsupervised method, used to discover relations between objects by
grouping them into disjoint groups based on a defined similarity metric [95]. Ideally, objects
assigned to each group will have markedly higher similarity to objects in the same group,
compared to their similarity to objects assigned to other groups. Similarly to other unsupervised
methods, clustering attempts to find previously unknown patterns in a given dataset without

using any preexisting labels [96][97].

Clustering is a very useful method in the exploratory biomedical analysis of high-dimensionality
data, as it enables to reveal high-level structures in large datasets [98][99][100]. Given an
expression matrix representing the expression levels of F features on S tumor samples taken
from patients (such as the one in Figure 1.11), clustering can be applied in two different but

complementary ways:

1. Clustering the dataset samples (the columns in Figure 1.11) identifies groups of similar
samples, that share a similar genomic signature and may correspond to disease subtypes
[101].

2. Clustering the dataset features (the rows in Figure 1.11) identifies groups of similar

features that may correspond to co-regulated genes [102].
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Figure 1.11: An example of a two-way clustered expression matrix. Clustering of the matrix samples
(columns) identifies groups of similar samples that may correspond to disease subtypes, whereas
clustering the features (rows) identifies groups of correlated features that may represent co-regulated
genes.

Many different clustering algorithms have been proposed in the literature. There are several
ways to categorize them based on the way they operate [103][104], including hierarchy-based
(such as hierarchical-clustering [15]), partition-based (such as K-means[105]), density-based
(such as DBSCAN[106]), and graph-theory-based (such as CLICK [107]). Table 1.3 lists several
common clustering algorithms by category. The algorithms may greatly differ in their time
complexity, sensitivity to noise or outliers, input parameters and fit to specific applications. Many
clustering algorithms function based on a distance (or similarity) function by which object
similarity is calculated (common distance functions are listed in Table 1.4). Other common inputs
are the number of desired groups (such as K in K-means) or other parameters for determining
group granularity (such as dendrogram cutoff thresholds in hierarchical clustering or the
homogeneity threshold in CLICK). Virtually all the clustering formulations give rise to NP-hard
problems [108][109][110]. Determining an optimal (or "true") number of clusters in a given
dataset is a fundamental and unsolved problem in clustering analysis [111]. In practice, obtaining
a satisfactory solution may require repeated attempts (and application of multiple algorithms)

and reliance on measures for clustering goodness as described below [112].
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Category Typical algorithm

Clustering algorithm based on partition K-means, K-medoids, PAM, CLARA,
CLARANS

Clustering algorithm based on hierarchy BIRCH, CURE, ROCK, Chameleon

Clustering algorithm based on fuzzy theory FCM, FCS, MM

Clustering algorithm based on distribution = DBCLASD, GMM

Clustering algorithm based on density DBSCAN, OPTICS, Mean-shift
Clustering algorithm based on graph CLICK, MST

theory

Clustering algorithm based on grid STING, CLIQUE

Clustering algorithm based on fractal FC

theory

Clustering algorithm based on model COBWEB, GMM, SOM, ART

Table 1.3: Categories of clustering algorithms and typical examples of specific algorithms in each category.
Source: [113].

Name Formula Explanation
Minkowski distance d 1/n A set of definitions for distance:
n
Ty — T . .
(I_Zl |z il ) 1. City-block distance when n = 1

2. Euclidean distance whenn = 2

3. Chebyshev distance when n

-
Standardized d o2 e 1. S stands for the standard
Euclidean distance (Z % ) deviation
=1 . . .
2. A weighted Euclidean distance
based on the deviation
Cosine distance [ —— zz; 1. Stay the same in face of the
[EANER rotation change of data
2. The most commonly used
distance in document area
Pearson ] — _Coizy) 1. Cov stands for the covariance
correlation distance /D(z:),/D(z;) for and D stands for the variance
2. Measure the distance based on
linear correlation
Mahalanobis \/ Ta 1 1. S is the covariance matrix inside
distance ('Z’ :1:]) = (:E’ :EJ) the cluster

2. With high computation
complexity

Table 1.4: Common distance metrics used in clustering analysis. Source: [113].
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K-means and Hierarchical clustering are two of the most widely used clustering algorithms,
especially in the field of biomedical research [98]. Both are simple, widely implemented and their
results can be easily visualized and understood. K-Means assumes that the number of clusters is
k. It starts by choosing k data objects at random as cluster centers. The distance function is then
used to assign each dataset object to the closest center. This partitions all objects into k groups.
Next, the cluster centers are updated to be the centroid (mean) of the groups. Iteration of this
process continues until a minimal decrease in squared error is reached. K-means is well suited
for identifying size-balanced disease subtypes, as using centroids has the advantage of a clear
geometric and statistical meaning while keeping the algorithm insensitive to data ordering.
However, k-means is sensitive to data noise and outliers, can only work with numerical features,
and the number of clusters k must be specified in advance [98][100][114]. Hierarchical clustering
produces a dendrogram, i.e. a rooted tree with edge lengths where all objects are leaves and all
root-leaf distances are equal. The tree-distance of two objects in the tree is the length of the
path between them. Given pairwise input distances of objects, the goal is to build a tree such
that the tree-distances will match the input distances as much as possible. Having created the
dendrogram, clusters of different granularity can later be produced by thresholding pairwise
tree-distances. The algorithm can work for any type of data and does not make any assumptions
about the underlying data distribution. However, the algorithm is less scalable to large datasets

and performs poorly when the clusters vary considerably in shape, density, or size [114][115].
Several methods are available for validating the goodness of a clustering result [116]:

a. Internal cluster validation methods (such as the Silhouette coefficient or the
Dunn index) use only the clustered data itself without any external information,
to evaluate the tradeoff between clusters compactness (intra-cluster similarity)
and separation (inter-cluster similarity).

b. External cluster validation methods use external information for comparing the
resulting clusters to class labels using statistical tests for enrichment (such as
hypergeometric test or Chi-square test).

c. Relative cluster validation methods explore a variation of the clustering
parameters until reaching a stable cluster structure (example: testing various

values for the number of clusters k).

In this study, clusters were mainly validated using external information, as described in the next

section about enrichment analysis.
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1.3.3. Enrichment analysis

Gene enrichment analysis

Gene enrichment analysis is often used in biomedical research for interpreting the biological
meaning of gene groups [117]. The gene groups commonly originate from a clustering operation
performed on the genes of an expression matrix, or from a supervised test identifying the top
differentially expressed gene among two or more sample classes. For characterizing the
biological meaning of each gene group, the group can be tested for enrichment for an array of
known gene classes using statistical methods such as the hypergeometric test, Fisher’s exact test,
chi-square test and binomial probability [117]. The result of such analysis usually takes the form
of a list of gene classes ranked by decreasing significance of enrichment on the gene group. Due
to the large number of enrichment tests conducted in a typical gene enrichment analysis,
resulting p-values must be corrected by a method such as FDR[93]. Gene annotation databases
such as Gene Ontology (GO) [118], Kyoto encyclopedia of genes and genomes (KEGG) pathways
[119], Wiki-Pathways [120], chromosomal location annotations and catalogs of tumor
suppressor genes, are commonly used as gene classes for enrichment analysis.

The gene enrichment analyses performed in this thesis were conducted using several tools,
including TANGO (which is part of the Expander tool) [121]-[122], PROMO [123], and GOrilla
[124]. The GOrilla tool, as well as other tools like GSEA [125], can identify enrichment of gene
classes in a list of ranked genes, preventing the need to decide on a significance cutoff for the
list of differentially expressed genes. These methods perform well when genes are easily ranked

but may be suboptimal when lack of information prevents reliable ranking of the genes [126].

Sample enrichment analysis

A major effort in promoting precision medicine in cancer is to stratify the patients of a certain
cancer type into clinically distinct subgroups. To this end, a clustering algorithm is first applied
on the dataset samples (taken from patients), based on the genomic data only, and then the
clinical labels are used for external validation of the clusters. Cancer datasets often include a
wealth of clinical sample-labels of various types: Numeric (e.g., age, tumor size and the number
of cigarettes smoked per day), Categorical (e.g., gender, histological type, and receptor status),
Ordinal (e.g., pathological stage, metastasis stage) and Survival (overall survival, recurrence-free
survival, etc.). These labels can be used to statistically characterize each of the sample subgroups
by employing an appropriate test for label type. The enrichment of sample clusters for
categorical labels can be tested using the hypergeometric or the chi-square tests. Differences of

numeric and ordinal labels between sample-subgroups can be tested using t-test and ANOVA for
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normally distributed values or using the Wilcoxon rank-sum test and the Kruskal-Wallis tests,
which are non-parametric [87][127][128][90]. Survival labels can be used to prognostically
characterize the sample-groups using survival specific tests as described in the next section.
Evaluation of the most significant enrichments for clinical labels found for each sample group
allows us to clinically characterize the sample groups and determine their relation to previously

known labeling of the samples.

1.3.4. Survival analysis

Survival analysis is a collection of methods for comparing the risks for an event such as death or
disease recurrence, for groups of patients, where the risk changes over time [129]. The patient
groups can be formed by disease subtypes, by different treatments administered to patients in
a clinical trial, or by partitioning of the patients based on a certain biomarker. Survival analysis
methods are suited for analyzing censored longitudinal data, which include incomplete data for
patients who did not experience an event by the time their follow-up ended (either since the
study ended or since they left the trial earlier). The censored longitudinal data underestimate
the true (but unknown) time to event, but still, hold valuable information taken into
consideration by the various survival analysis methods [130]. Kaplan—Meier (KM) plots, log-rank
tests, and Cox (proportional hazards) regression are the most commonly used methods for

survival analysis in cancer research [129][130].

The Kaplan-Meier (KM) method plots the empirical survival probability based on observed
survival times [130][131]. The KM survival curve is a plot of the KM survival probability as a
function of time, and is often used to visually compare the estimated survival function of two or
more groups. The difference between curves can be tested statistically, most commonly using
the log-rank test. Two issues are important when interpreting KM curves: (1) the validity of the
curve depends on the assumption that censoring is unrelated to prognosis and that the survival
probabilities are the same for subjects recruited at any stage of the study.(2) The statistical
precision diminishes as follow-up increases because the curve is based on a smaller number of

patients [132].

The log-rank (Mantel-Haenzel) test [133][134] is a nonparametric statistical test used for
statistically comparing the survival curves of two or more groups. It is used to test the null
hypothesis that there is no difference between the population survival curves. Several variations
to the log-rank test exist [135][136][137], and all of them make the same assumptions as those
for interpreting KM curves, namely independence of censoring from the outcome and time

homogeneity. The tests produce a p-value indicating the significance of the difference between
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the tested curves. For a more detailed examination of survival differences between survival
curves, the log rank tests can be applied for comparing the groups with one another, but then

the resulting p-values must be adjusted for multiple comparisons [138].

The Cox proportional hazards model is a semiparametric regression model that is commonly
used to test the association between the survival time of patients and one or more explanatory
variables [139][140]{141]. Unlike the KM method and the log-rank test, the COX proportional
hazards model supports more than a single explanatory variable and can test for either univariate
or multivariate associations of both categorical and numerical variables to survival. The model
calculates a Hazard Ratio (HR) for each explanatory variable where values equal, greater or lower

than 1 represent no effect, increased or reduction in hazard, respectively.

In this work, we extensively used the three survival analysis methods described above for testing
the clinical significance and prognostic value of patient subgroups we identified and of genomic

signatures and biomarkers we suggested.
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2. Breast cancer subtypes

The large breast cancer dataset developed and provided by The Cancer Genome Atlas project
(TCGA [142]) includes more than a thousand breast tumor samples characterized by various
modern high throughput genomic technologies. This dataset constitutes a significant leap
forward compared to the older microarray-based data. mRNA abundance levels are measured in
TCGA's dataset using RNA-Seq technology. This technology shows increased sensitivity and a
higher dynamic range compared to microarrays [20][21]. DNA-methylation arrays applied on the
same samples can help decipher biological tumor variability by epigenetic modifications not

manifested on the gene expression level.

The aim of this project was to improve the classification of breast tumors based on the extensive
TCGA expression and methylation data that have recently become available. We utilized these

datasets to re-visit the current classification of breast tumors into biologically distinct subgroups.

Our initial question was whether unsupervised clustering of all TCGA breast samples using the
RNA-Seq data would reconstruct the partition defined by PAM50. As the luminal samples showed
the highest level of variability in our global clustering, we also asked how the luminal samples
would cluster into two groups based on the RNA-Seq data, how the resulting sample groups
would compare to PAM50's partition into luminal-A and luminal-B, and whether that partition
would have a clinical advantage over PAMS50's partition of the luminal samples. Looking into the
internal structure of the highly variable luminal-A samples, we asked whether this PAM50 group
can be further partitioned into finer subgroups showing biological distinctness and clinical
significance. We then used enrichment analysis to explore the biological mechanisms underlying
the new luminal-A subgroups.

We asked similar questions regarding breast tumor variability on the epigenetic level. We
evaluated the methylation-based partition of all breast tumors, all the luminal samples, and the
highly heterogeneous luminal-A, and compared the resulting partitions to PAM50. To examine
the biological characteristics of differentially methylated CpGs (DMCs) separating the new
methylation-based luminal-A subgroups, we conducted an enrichment analysis. Finally, we
performed a multivariate Cox survival analysis to determine whether these subgroups have
independent prognostic value. Our improved and refined classification may contribute to the

precision of diagnosis and thus to more personalized treatment.
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2.1. Results

2.1.1. Separation of luminal-A and luminal-B samples is not

reconstructed by RNA-Seq unsupervised analysis

We started by evaluating the global sample structure within the RNA-Seq gene expression data
obtained from TCGA. We applied unsupervised analysis on both tumor (n=1035) and normal
(n=113) breast samples using the K-Means clustering algorithm over the top 2000 variable genes.
Since our initial goal was to compare the resulting partition to the four intrinsic molecular types,
we used K=5 (corresponding to the four types represented by PAM50 label classes in addition to

Normal). The results are shown in Figure 2.1.

The resulting clusters exhibited moderate correspondence with PAM50 labels: Most basal-like,
normal and HER2-enriched samples fell into three different clusters (numbers 4, 5, and 3
respectively, listed in decreasing levels of homogeneity), whereas the luminal samples exhibited
a much greater variability. Importantly, most luminal-A samples were split between two different
clusters - a homogenous luminal-A cluster (cluster 2), and a cluster composed of a mix of luminal-

A and luminal-B samples (cluster 1).

Furthermore, the samples assigned to cluster 2 exhibited a very distinct expression pattern, over-
expressing 1184 genes compared to cluster 1 (out of 1421 differentially expressed genes, see
"Methods"). Cluster 1 samples over-expressed only 229 genes compared to cluster 2 (See Figure
S1.1E for per-cluster distribution and Figure S1.1F for results of differential gene expression

analysis).

According to these results, the variability within the luminal samples is not sufficiently captured
by the PAMS0 luminal-A and luminal-B subtypes. Specifically, they suggest that luminal-A

samples can be further partitioned into finer subgroups, possibly having clinical meaning.
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Breast Cancer RNA-Seq Dataset (2000 genes x 1148 samples]

Figure 2.1: Global unsupervised clustering of 1148 breast samples using RNA-Seq data. Applying the K-Means
algorithm using K=5 on the RNA-Seq dataset yielded a partition exhibiting moderate agreement with PAMS50 labels
and the three IHC markers. Notably, luminal-A samples were split between a rather homogenous cluster 2 and
cluster 1 which is composed of luminal-A and luminal-B mix. (A) K-Means clusters (B) PAM50 calls (C) Estrogen

receptor status (D) Progesterone receptor status (E) HER2 status.
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2.1.2. Unsupervised partition of luminal samples predicts survival and
recurrence better than PAM50

To further investigate the variability among luminal samples, we clustered the 737 luminal
samples (534 luminal-A and 203 luminal-B samples based on PAM50 labels) into two groups. The
results are shown in Figure 2.2A. Similar to the global analysis, the luminal-A samples were
divided between a luminal-A mostly homogenous cluster (cluster 2) and a cluster composed of

both luminal-A and luminal-B samples (cluster 1).

Survival analysis performed on the two luminal partitions (the PAMS50 luminal-A/luminal-B
partition, and the two K-Means clusters shown in Figure 2.2A) showed that the RNA-Seqg-based
clustering partition outperforms the luminal-A/luminal-B distinction in terms of both survival and
recurrence (5-year survival plots are shown in Figure 2.2B; also see Figure S1.2A for overall
survival plots). Hence, the signal identified by our unsupervised analysis of the RNA-Seq data
translates into a clinically relevant partition of the luminal samples that has better predictive

power than PAM50's luminal-A/luminal-B partition in terms of both survival and recurrence.



Estimated survivalfunctions

0.75

34

—1

—12

(p=0.0324, n=281)
(p=0.0324, N=253)

Estimated survival functions

0.9

0.85

0.8

0.75

A
LuminalBreast Cancer RNA-Seq Dataset (2000 genes x 737 samples)]
500
1000 ;
1500
2000
100 200 300 500 600 700 )
K-Means Clusters I B
I LumB
PAM50 LumA
B RNA-SEQ clusters PAMS50
1
5-Year
SURVIVAL 095
(2] 12}
[= c
i) i)
E g
2 09 E
[ [
2 2
2 <
=] =1
[z n
B oss g
£ £
0.8
———1 (p=0.0024, N=370) LumA (p=0.0441,n=525)
———2 (p=0.0024, N=353) LumB (p=0.0441,n=198)
0.75 | ) ) ) 1 . L . . 0.75 \ \ . \ \ . \ \ . ,
0.5 1 15 2 2.5 3 35 4 4.5 0.5 1 15 2 25 3 35 4 4.5 5
Time (Years) Time (Years)
p-value=0.002 p-value=0.044
1
5-Year
RECURRENCE 095

LumA (p=0.9270,n=384)
LumB (p=0.9270,n=150)

0.5 1 15 2 2.5 3 35 4 4.5 0.5 1 15 2 2.5 3 35 4 4.5 5
Time (Years) Time (Years)
p-value=0.032 p-value=0.927

Figure 2.2: Unsupervised analysis of luminal breast samples using RNA-Seq data. (A) Applying the K-Means
algorithm on the 737 luminal samples using K=2 split the samples into two subgroups exhibiting better five-year
prognostic value than the PAM50's luminal-A/luminal-B partition. (B) Five-year survival and recurrence Kaplan-Meier
plots for the two luminal breast cancer partitions. The partition into two RNA-Seq based clusters outperforms PAM50
partition of the luminal samples in both survival and recurrence. P-values were calculated using the log-rank test.
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2.1.3. Luminal-A samples show two distinct classes exhibiting clinical

significance
As the luminal-A samples displayed the highest level of variability by consistently falling into two
major subgroups in previous steps, we focused on this PAMS50 class in an attempt to explore its
underlying substructures. To this end, we re-clustered only the 534 luminal-A samples into two
groups (Figure 2.3A). As the resulting clusters were found to be significantly enriched for various

clinical variables, we designated them as LumA-R1 (n=258) and LumA-R2 (n=276).

The most apparent property of the resulting partition was the general over-expression pattern
exhibited by LumA-R2 samples compared to LumA-R1 samples. Indeed, out of the 2000 genes
selected for clustering, 1276 were differentially expressed and 1068 of them were over-
expressed in LumA-R2 samples (based on FDR corrected rank-sum test). A highly similar partition
(Chi-Square p=1.1e-40) with a parallel over-expression pattern was identified on a microarray
gene expression dataset also available from TCGA for a subset of the luminal-A samples
used here (n=265). This supports the conclusion that the partition and distinct
over-expression pattern we observed are not an artifact originating from RNA-Seqg measurement
technology or from any normalization protocols applied on the dataset (See Supplementary

Information, section S1.4).

Recurrence analysis performed on these two luminal-A subgroups associated LumA-R2 samples
with a significantly reduced 5-year recurrence rate (p=0.0076, Figure 2.3B). Enrichment analyses
on additional clinical information available for the samples revealed that LumA-R1 and LumA-R2
subgroups are enriched with ductal (p=2.1-05) and lobular (p=9.7e-12) histological types,
respectively. LUumA-R1 samples were associated with a higher proliferation score (p=8.9e-25),
older age (p=2.6-05), and a slight but significant decrease in normal cell percent (p=2.8e-08)
accompanied by an increase in tumor nuclei percent (p=2.6e-12) compared with LumA-R2

samples (see Table 2.1).

Comparing the luminal-A partition shown in Figure 2.3A to the groups formed when clustering
all the luminal samples (Figure 2.2A), we note that almost all LumA-R2 samples are contained
within cluster 2 (composed of mainly luminal-A samples) whereas most LumA-R1 are contained
within cluster 1 (composed of a luminal-A-luminal-B mixture). See the second label bar in Figure
2.3A. This suggests that LumA-R1 samples are more similar in their expression profile to luminal-

B samples compared with LumA-R2 samples.
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Figure 2.3: Unsupervised analysis of luminal-A breast samples. (A) Clustering of 534 RNA-Seq profiles
partitions the data into two groups exhibiting distinct expression profiles. The clusters also show significant
enrichment for clinical variables including recurrence, proliferation score, age and histology. The bars
below the heatmap show, from top to bottom, the partition of the samples, the designation of the samples
according to the clustering of all luminal samples (Figure 2.2), histological type and proliferation scores. (B)
Five-year survival and recurrence analysis for the two luminal-A subgroups. LumA-R2 samples exhibit a
significantly reduced five-year recurrence rate compared with LumA-R1.



37

Group Characteristic LumA-R1 LumA-R2 p-value

Recurrence free survival Increased Reduced 7.6e-3
recurrence recurrence

Histology Ductal Lobular

Enrichment p-values for each group | (p=2.1e-05) (p=9.7e-12)

Age average 61.5 57.4 2.6e-05

Proliferation score -04 -0.6 8.9e-25

Tumor nuclei percent 80% 73% 2.6e-12

Normal cell percent 2.9% 6.1% 2.8e-08

Gene overexpression 194 1068

Table 2.1: The main distinguishing characteristics between the luminal-A subgroups LumA-R1 and
LumA-R2. Average values are shown for each group where relevant. Gene overexpression is computed
with respect to the 2000 genes used for clustering.

2.1.4. Luminal-A subgroups exhibit distinct immune system

expression profiles

In order to identify genes that distinguish best between LumA-R1 and LumA-R2 samples, we
created a list of the 1000 most differentially expressed genes (see "Methods"). In agreement
with the general expression pattern described earlier, all genes in the list were over-expressed
in LumA-R2 compared to LumA-R1 samples. The most significant categories in the enrichment
analysis performed on this list were related to the immune system regulation. The more specific
category of T cell receptor signaling genes appeared consistently in analyses based on various
annotation databases (Gene Ontology: "T Cell activation" p=1e-05, KEGG Pathway: "T Cell
receptor signaling pathway" p=3e-07, Wiki-Pathway: "T Cell receptor (TCR) Signaling Pathway"
p=1.09e-07). Other enrichments of interest included the KEGG Pathways "Cytokine-cytokine
receptor interaction" (p=2.13e-13), "Chemokine signaling pathway" (p= 1.14E-09) and Wiki-
Pathway "B Cell Receptor Signaling Pathway" (p=1.72e-06). See Table 2.2 for a list of the most

significant categories, and Supplementary Information, section S1.5 for the full list.

Careful examination of the gene list revealed that LumA-R2 samples over-express genes that are
typically expressed by various immune system cells (e.g., the leukocyte marker CD45/PTPRC, T
Cell marker CD3 and B-Cell marker CD19) [143] [144] [145] [146]. A significant number of over-
expressed genes are related to the T Cell receptor (CD3D, CD3E, CD3G, and CD247) and the
upstream part of its signaling pathway (ZAP70, LCK, FYN, LAT, PAK, ITK) [147] (Figure 2.4).
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Interestingly, the over-expressed genes were related to T Cell or Natural Killer (NK)-mediated

cytotoxic activities (GZMA, GZMB, GZMH, GZMM, PRF1) [148]-[149].

We also observed that the over-expression of immune receptor genes in LumA-R2 samples was
accompanied by over-expression of several chemokine genes (CCL5, CCL17, CCL19+CCL21) and
their corresponding receptors (CCR5, CCR4, CCR7). Topping the list of overexpressed genes in
Lum-A-R2 samples (ranked by p-value) is the Interleukin-33 (IL-33) gene, which drives Th2

responses [150].

In summary, LumA-R2 samples exhibit better prognosis based on several clinical parameters

while over-expressing a significant number of genes related to the immune system.

T CELL RECEPTOR SIGNALING PATHWAYI

=,

Anergy

0
DNA&
Proliferation
Differentiation
[rmuno response
4

oO———»
DNA

Q
2123 (1= |2
!5;;::5

S
A

o
DAG

IKKB
IKKy
IKKa

PI3K-Akt
signaling pathvray,

Ubiquitin mediated
proteolysis

04660 224116
(c) Kanehusa Laboratories

Figure 2.4: LumA-R2 over-expressed genes in the T Cell receptor signaling pathway. The list of top 1000
differentially expressed genes between LumA-R1 and LumA-R2 samples was found to be significantly
enriched for the pathway genes (p=1.3e-07). Genes marked in red are over-expressed in LumA-R2
samples. Pathway and graphics were taken from the KEGG database.



39

Enrichment Term #Genes P-VALUE
Type
Gene Ontology regulation of immune system process 152 3.74E-50
immune system process 201 3.65E-47
regulation of leukocyte activation 71 2.37E-28
regulation of multicellular organismal process 183 2.89E-28
cell activation 91 4.59E-28
regulation of response to external 73 8.18E-27
regulation of biological quality 218 1.82E-26
leukocyte activation 67 1.95E-26
positive regulation of cell activation 56 5.13E-24
T cell activation 45 4.93E-22
regulation of cell proliferation 128 1.83E-21
KEGG Pathways | Cytokine-cytokine receptor interaction 56 4.76E-22
Hematopoietic cell lineage 29 1.50E-17
Cell adhesion molecules (CAMSs) 30 4.08E-13
Primary immunodeficiency 16 8.70E-13
Chemokine signaling pathway 31 1.14E-09
Complement and coagulation cascades 17 1.36E-08
T cell receptor signaling pathway 20 1.30E-07
Allograft rejection 11 6.44E-07
Natural Killer cell mediated cytotoxicity 20 5.66E-06
Pathways in cancer 34 1.49E-05
Wiki-Pathways TCR Signaling Pathway 10 1.55E-09
B Cell Receptor Signaling Pathway 10 1.72E-06
Focal Adhesion 11 5.88E-05
Complement Activation, Classical Pathway 6 8.38E-05
Chromosomal 11923 18 1.84E-05
Location Xq23 8 4.99E-05

Table 2.2: The most enriched functional categories among the 1000 genes most differentially expressed between
LumA-R1 and LumA-R2 samples. All the genes on the list showed significantly higher expression on the LumA-R2
samples compared to LumA-R1 samples.
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2.1.5. Analysis of DNA methylation identifies a luminal subgroup
characterized by hyper-methylation and a significantly poorer

outcome

The luminal-A tumors proved to be the most heterogeneous in our gene expression analysis. To
further identify and characterize clinically meaningful subgroups within the luminal-A group, we

explored breast tumor variability on the epigenetic level as well.

Using the Methylation 450K array dataset available from TCGA, we started our analysis as in the
expression data, by clustering all 679 tumor samples into four groups, corresponding to the
number of PAM50 classes. The resulting clusters (Figure 2.5A) show modest agreement with the
expression based PAMS50 classes; All basal-like samples were assigned to a single cluster
exhibiting a distinct hypo-methylation pattern (cluster 4), whereas HER2-enriched samples were
scattered over three different clusters, indicating that this subtype has reduced manifestation
on the methylation level. Notably, most luminal samples were assigned to three different
clusters (1-3) showing methylation level gradation on the top 2000 variable CpGs. Cluster 1
exhibited a strong hyper-methylation pattern, contained the highest ratio of luminal-B samples
and was associated with significantly poorer survival compared to the three other clusters
(p=0.0001). Cluster 3, on the other hand, exhibited opposite characteristics: lower methylation

levels, the lowest ratio of luminal-B samples and a better outcome (p=0.0129).

Similar results were obtained when we clustered only the 513 luminal A and B samples (Figure
2.5B). Here we used the top 2000 variable genes within these samples, in order to remove the
effect of the other two subtypes on the clustering. Importantly, out of the 127 samples
comprising the hyper-methylated cluster 1, which was associated with reduced survival (p=2.6e-
05), 76 samples were labeled as luminal-A, a subtype usually associated with good survival. In
other words, approximately 20% of the 378 luminal-A samples (as called by the expression-
based PAM50) included in the analysis, could actually be assigned to a higher risk group based

on methylation data (See Supplementary Information, section S1.7 for more details).

The three-way partition by methylation levels and its association with differential survival risk
also appeared when we repeated the analysis in the group of 378 luminal-A samples, using the
top 2000 variable CpGs on these samples (Figure 2.5C). The three methylation-based luminal-A
clusters were designated LumA-M1, LumA-M2 and LumA-M3. The 84-sample LumA-M1 cluster
(composing ~22% of the luminal-A samples) was associated with significantly reduced five-year

survival (p=0.0031).
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Furthermore, the methylation-based partitioning of the luminal-A samples (LumA-M1/2/3)
correlated significantly with the expression-based partitioning (LumA-R1/2, Chi-Square p = 4.4E-
08). The LumA-M2 cluster was enriched for LumA-R1 samples (p = 1.4E-06) and the LumA-M3
cluster was enriched for LumA-R2 samples (p=1.6E-08), showing that the expression and the

methylation-based patterns are related (See lower bar on Figure 2.5C).

Overall, we identified a poorer outcome subgroup within the luminal-A subtype, which is

distinguished by robust hyper-methylation pattern.
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Figure 2.5: Unsupervised analysis of breast cancer tumors using DNA Methylation data. Samples were clustered by K-

Means based on correlation using the top 2000 variable CpGs over each sample subset. (A) All 679 tumors (B) 579 samples

identified as luminal-A and luminal-B by PAM50 classification, (C) 378 luminal A samples only. The first bar below each

expression-matrix shows the assignment of the samples to methylation-based clusters. The second bar on A and B shows

PAM5O calls for the samples. The second bar on C presents the RNA-Seq based LumA-R1/2 subgroups defined in section

3.3. The right panels show five-year Kaplan-Meier survival plots for the resulting groups
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2.1.6. Analysis of differentially methylated CpGs between the LumA-
M1 and LumA-Ma3 subgroups and their correlation to gene

expression
To uncover the biological features characterizing the distinct methylation patterns observed in
the luminal-A subgroups, we examined the 1000 top DMCs (see "Methods") between the hyper-
methylated LumA-M1 (n=84) and the hypo-methylated LumA-M3 (n=171). These two sample
subgroups represent the two extremes of the methylation gradient observed on the luminal-A
samples. Of note, all 1000 top DMCs (representing 483 genes) were hyper-methylated on the

LumA-M1 samples compared to LumA-M3.

Gene enrichment analysis associated these 483 genes hyper-methylated on LumA-M1 samples
with GO terms related to development, signaling, cell differentiation and transcription regulation
(p<1E-15). The genes were also enriched for the "homeobox" InterPro term (p=3.6E-35), in line
with previous reports describing the methylation of homeobox genes during breast
tumorigenesis [151] [152] [153] . Further, the 483 genes were enriched for tumor suppressor
genes according to the TSGene catalog [154] (p=1.5E-03), including 48 such genes. See column 1
in Table 2.3. Analysis for CpG features of the top 1000 DMCs showed significant enrichment for
enhancer elements, tissue-specific promoters and cancer-specific DMRs (See column 1 in Table

2.4).

As DNA-methylation is known to regulate gene expression and as hyper-methylation of
promoters was associated with gene silencing in cancer [155], we focused on LumA-M1 hyper-
methylated CpGs that affect the expression of their corresponding genes. To this end, we used
the RNA-Seq based expression data available from TCGA for the same 378 analyzed samples to
generate a second list of CpGs that are both hyper-methylated on LumA-M1 samples (differential
methylation p<0.01, median difference of 0.2) and whose methylation level is inversely
correlated to the expression level of their corresponding gene (Spearman correlation R < -0.2).
As can be seen in Table 2.4, the 586 CpGs that passed this filter (corresponding to 340 genes)
showed significant over-representation of upstream parts of their corresponding genes (UCSC
RefGene Group: TSS and 1%-Exon p<=4.4E-05) and under-representation of gene body (p=1.43E-
16) and 3'UTR (p=5.83E-04). In terms of the Regulatory Feature Group, these 586 CpGs showed
over-representation of "Promoter Associated Cell type specific" elements (p=1.40E-04)
accompanied by highly significant under-representation of "Promoter Associated" elements
(p=2.94E-31), suggesting that the observed hyper-methylation pattern involves tissue specific

promoters. Among the 340 under-expressed genes containing the 586 hyper-methylated CpGs
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, there were several tumor suppressor genes whose under-expression was previously observed
in breast cancer, such as L3MBTL4 [156], ID4 [157], RUNX3 [158][159], PROX1 [160], SFRP1 [161]
and others. Gene and CpG level enrichments for the negative correlations are shown in column

2 of Tables 2.3 and 2.4 respectively.

Interestingly, the 212 LumA-M1 hyper-methylated CpGs that exhibited positive correlation to
expression (Spearman R > 0.2) had higher enrichments of development-related GO terms
compared with negatively correlated CpGs ("pattern specification process" p=1.07E-13,
"embryonic morphogenesis" p=1.05E-10, "cell fate commitment" p=5.49E-10). In contrast to the
negatively correlated CpGs, they showed high over-representation of "gene body" and under-
representation of "TSS" regions (UCSC RefGene Group, p=9.48E-20 and p=7.28E-14 respectively).
For gene and CpG level enrichments for the positive correlations see column 3 in Tables 2.3 and

2.4, respectively.

The differential methylation pattern distinguishing LumA-M1 from LumA-M3 samples could,
therefore, be characterized by hundreds of CpGs that are hyper-methylated on the LumA-M1
samples. Distinct subsets of these CpGs show negative and positive correlation with the

expression of developmental genes.
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1) (2) (3)
Hyper Meth. CpGs Neg: R<-0.2 Pos: R>0.2
1000 CpGs, 483 genes 586 CpGs, 340 Genes 212 CpGs, 125 Genes
Term p-value | Term p-value Term p-value
Gene anatomical structure 6.1E-28 | developmental 7.8E-06 pattern 1.1E-13
ontology development process specification
process
developmental process | 2.0E-25 | single organism 2.4E-05 regionalization 1.1E-12
signaling
multicellular organismal | 9.6E-24 | signaling 1.8E-05 | anatomical 2.2E-11
process structure
development
single-multicellular 1.6E-22 | cellular 1.4E-05 | single-organism 1.9E-11
organism process developmental developmental
process process
single organism 1.7E-21 | single-organism 2.3E-05 | anatomical 1.8E-11
signaling developmental structure
process morphogenesis
signaling 1.9E-21 | anatomical 8.0E-05 developmental 1.7E-11
structure process
development
cell-cell signaling 1.7E-21 | cell-cell signaling 1.8E-04 | embryonic 1.1E-10
morphogenesis
neuron differentiation 1.2E-20 | cell differentiation 2.2E-04 | cellular 1.8E-10
developmental
process
single-organism 1.4E-19 | synaptic 4.4E-04 organ 5.3E-10
developmental process transmission development
regulation of 1.2E-16 | anatomical 6.1E-04 | single- 5.6E-10
transcription from RNA structure multicellular
polymerase Il promoter morphogenesis organism process
INTERPRO Homeobox 3.6E-35 | Homeobox 1.1E-04 | Homeobox 2.1E-31
Tumor AHRR, AKR1B1, BMP2, 1.56-03 | AKR1B1, ASCL1, BIN1, 9.7E-02 | AMH, GATA4, HOPX, | 5.5E-02
Suppressor | C2orf40, CDH4, CDO1, (48 BMP4, CCDC67, CDK6, (29 HOXB13, LHX4, (14
Genes CDX2, CNTNAP2, CSMD1, genes) | CDOL EBF3, GSTP1, genes) | LHX6, MAPAKL, genes)
(TSGene DLK1, DSC3, EBF3, EDNRB, ID4, IRX1, L3MBTL4, ONECUTL, PAXS,
2_0) FAT4, FOXA2, FOXC1, LRRC4, MAP4K1, MME, RASAL1, TBX5,
GALR1, GREM1, GRIN2A, NTRK3, PCDH10, TP73, WT1, ZIC1
ID4, IRF4, IRX1, LHX4, MAL, PDLIM4, PROX1,
MIR124-2, MIR124-3, PTGDR,
MIR125B1, MIR129-2, RUNX3, SCGB3A1,
MIR137, MIR9-3, SFRP1, SLC5AS8, SLIT2,
ONECUT1, OPCML, PAXS5, UBE2QL1, UNC5B,
PAX6, PCDHS8, PHOX2A, VIM,
PRKCB, PROX1, PTGDR, WT1
RASL10B, SFRP1, SFRP2,
SHISA3, SLIT2, SOX7, TBXS5,
UNC5D, ZIC1

Table 2.3: Gene enrichments on the various subsets of differentially methylated CpGs between LumA-M1 and LumA-
M3 subgroups. GO, INTERPRO and TSG 2.0 databases were used to test the hyper-methylated genes for enrichments.
Group 1 is composed of the 1000 top DMCs with a mean difference of at least 0.2. All the CpGs on this list showed
significant hyper-methylation on the LumA-M1 samples compared to LumA-M3 samples. Group 2 is composed of the
586 CpGs which a differential methylation p-value<0.01, methylation mean difference>0.2 and spearman based
correlation with expression that is lower than 0.2. Group 3 is composed of 212 CpGs with a differential methylation p-
value<0.01, methylation mean difference>0.2 and spearman based correlation with expression that is higher than 0.2.
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(1)
(2) 3)
Hyper Meth.
CpGs Neg: R<-0.2 Pos: R> 0.2
Over- Over-
Over- Under- representa  Under- representa Under-
representati  representati tion p- representat | tion p-  representati
Label Term on p-value on p-value value ion p-value | value on p-value
1stExon 1.E-04 1.E+00 1.E-07 1.E+00 1.E+00 3.E-02
3'UTR 1.E+00 2.E-03 1.E+00 6.E-04 2.E-02 1.E+00
UCSC RefGene | gytR 1.E+00 8.E-01 3.E-01 1.E+00 1.E+00  2.E-02
Grou
P Body 1.E+00 7.E-05 1.E+00 1.E-16 9.E-20 1.E+00
TSS 2.E-02 1.E+00 4.E-05 1.E+00 1.E+00 7.E-14
Gene Associated 1.E+00 2.E-01 1.E+00 5.E-01 1.E+00 1.E+00
Gene Associated Cell type 1.E+00 5E02| 1E+00  2EO0L| 2E0L  1.E+00
specific
NonGene Associated 1.E+00 3.E-01 1.E+00 1.E-01 1.E+00 8.E-01
NonGene Associated ~ Cell 3.E-03 1.E+00 5E-01  1.E+00 2E01  1.E+00
type specific
Regulatory
Feature Group Promoter Associated 1.E+00 2.E-146 1.E+00 3.E-31 1.E+00 4.E-34
Promoter Associated  Cell 1.E+00 5.E-02 1E04  1E+00 | 1E+00  7.E-02
type specific
Unclassified 1.E+00 4.E-01 6.E-04 1.E+00 1.E+00 1.E+00
Unclassified Cell type specific 9.E-35 1.E+00 4.E-06 1.E+00 1.E-10 1.E+00
Unassigned 7.E-52 1.E+00 5.E-06 1.E+00 2.E-09 1.E+00
CDMR (Cancer-DMR) 2.E-16 1.E+00 4.E-03 1.E+00 iL[E=113) 1.E+00
Differentially DMR 9.E-183 1.E+00 2.E-75 1.E+00 1.E-15 1.E+00
Methylated | RDMR  (Reprogramming- 2.E-04 LE+00 | 2E-01  LE+00 | 2E11  1.E+00
Region (DMR) DMR)
Unassigned 1.E+00 2.E-205 1.E+00 2.E-75 1.E+00 5.E-40
Enhancer 1.E-09 1.E+00 8.E-06 1.E+00 2.E-04 1.E+00
DHS (DNAse
hypersensitive 1.E-07 1.E+00 2.E-03 1.E+00 2.E-05 1.E+00
site)

Table 2.4: Feature enrichments on the various subsets of differentially methylated CpGs between LumA-M1 and

LumA-M3 subgroups. CpG enrichment tests show that hyper-methylated CpGs exhibiting negative correlation to

gene expression are enriched for upstream gene parts, while positively correlated CpGs are enriched for gene body.

All three hyper-methylated CpG groups are enriched for informatically determined enhancer elements and

experimentally determined differentially methylated regions and DNAse hypersensitive sites. The p-values represent

hypergeometric based over or under-representation and are FDR corrected (significant p-values are marked in bold).
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2.1.7. Cox Survival Analysis

In previous sections, we presented two different partitions of luminal-A tumors based on
genomic profiles, with prognostic value: The LumA-R2 group (characterized by high expression
of immune-related genes) was associated with a reduced chance of five-year recurrence, while
the LumA-M1 group (characterized by hyper-methylation of CpGs located in developmental
genes) was associated with poorer survival. To determine the prognostic contribution of the two
partitions while adjusting for other relevant explanatory variables, we performed multivariate
Cox survival analysis on both LumA-R and LumA-M partitions (see Table 2.5). Patients belonging
to the LUumA-M1 group exhibited 6.68 fold higher estimated five-year death hazard compared
with the other groups in the COX multivariate model, after adjustment for age, pathological
stage, ER status, PR status and HER2 status. Patients belonging to the LumA-R2 group had a
decreased recurrence hazard of 0.06 (that is, 94% decrease) compared with LumA-R1 patients,
after similar adjustment. The results reaffirm the independent prognostic value of the LumA-R2

and the LumA-M1 classes (see Supplementary Information, section $1.10 for univariate analysis).

Survival Recurrence

Variable HR p-value HR p-value

LumA-R (1 vs 2) 0.56 0.36991 0.06 0.00693
LumA-M (2,3vs 1) 6.68 0.00484 3.04 0.07028
Age (<60 vs.>=60 years) 11.20 0.0037 1.03 0.96530
Pathologic stage (I,11 vs. 111,1V) 2.12 0.25519 1.93 0.26992
ER Status 7.17 0.18095 0.00 0.99575
PR Status 0.47 0.50039 0.29  0.29092
Her2 Status 1.48 0.72659 0.64  0.68789

Table 2.5: Multivariate Cox analysis of luminal-A subgroups for five-year survival and five-year
recurrence. Significant p values are marked in boldface. ER estrogen receptor, PR progesterone receptor,
Her2 human epidermal growth factor receptor 2.
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2.2. Methods

2.2.1. Data acquisition and preprocessing

TCGA data on invasive carcinoma of the breast were downloaded from UCSC Cancer Browser
web site [162] together with accompanying clinical information. The downloaded RNA-Seq gene
expression dataset (lllumina HiSeq platform, gene level RSEM-normalized [163], log2
transformed) included 1215 samples of which 11 male, 8 metastatic and 30 unknown tissue
source samples were filtered out. PAM50 calls (obtained directly from UNC, including PAM50
proliferation scores) were available for 1148 of the filtered samples, and distributed as follows:

183 basal-like, 78 Her2, 534 luminal-A, 203 luminal-B and 150 normal-like.

We also downloaded DNA methylation profiles (Illumina Infinium Human Methylation 450K
platform, beta values [31]) containing 872 samples of which 8 male, 5 metastatic and 19
unknown tissue source samples were filtered out. We used only 679 tumor samples for which
PAMS5O0 calls were available, including 124 basal-like, 42 Her2, 378 luminal-A, and 135 luminal-B
samples. Our analysis used only the 107,639 probes of the Infinium-I design type for which a
gene symbol was available. This allowed us to bypass the bias of the two probe designs included
on the array, to focus on differentially methylated sites that are associated with known genes

and also to reduce the number of analyzed features.

2.2.2. Unsupervised analysis of the tumor samples

Unsupervised analysis of the various sample subsets was executed by clustering the samples
based on the 2000 features (genes or CpGs) showing the highest variability over the samples
included in each analysis. Clustering was performed using correlation distance. We used the k-
means clustering algorithm implementation in Matlab (release 2015a). This implementation uses
the k-means++ algorithm by David and Vassilvitskii [164], which improves the initialization of the
cluster seeds. To improve the quality of the resulting clustering solution, we generated 100
clustering replicates and selected the replicate that minimized the sum of point-to-centroid
distances as the final clustering solution. Due to the high variability among sample subgroups in
the breast cancer datasets, reselecting the top variable genes for the analysis of each sample set
(and renormalizing accordingly) is crucial to ensure the use of the features most relevant to that
set. Each feature was independently centered and normalized over the analyzed samples prior

to clustering.
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Cohort descriptions for the samples used in each analysis appear in the Supplementary
Information (Tables S1.1C, S1.2A, S1.3A for the RNA-Seq analyses and Tables S1.6B, S1.7A and
S1.8A for the DNA methylation analysis).

2.2.3. Sample cluster enrichment and survival analysis

To evaluate the clinical relevance of the sample clusters obtained in each unsupervised analysis,
we used the extensive clinical information available from TCGA for each sample. Enrichment
significance of sample clusters for categorical variables (such as PAMS50 subtype or histological
type) was calculated using false discovery rate (FDR) corrected hypergeometric test. For numeric
variables (such as age, tumor nuclei percent and others) difference between sample groups was

evaluated using the Wilcoxon rank-sum test (Mann—Whitney U test).

Survival and recurrence-free survival curves were plotted using the Kaplan-Meier estimator [131]
and p-values for the difference in survival for each group versus all other groups were calculated
using the log-rank (Mantel-Haenzel) test [133][134]. Cox univariate and multivariate survival
analyses were conducted using Matlab implementation; p-values were corrected using FDR. The
analysis and visualization scripts are publicly available as an interactive graphical tool named

PROMO [165][123] (thoroughly presented in Results, section 4).

2.2.4. Analysis of differentially expressed genes and gene enrichment

A list of genes that have the highest differential expression between the two RNA-Seq-based
sample groups LumA-R1 and LumA-R2 was generated by applying the Wilcoxon rank-sum test on
all dataset genes exhibiting non-zero variance (n=19913) after flooring all dataset values to 1 and
ceiling to 14. We selected the 1000 genes exhibiting the most significant p-value that also have
a median difference of at least 0.5 (log2 transformed RSEM expression values). All genes on the
list showed significantly higher expression on the LumA-R2 sample group (lowest p-Value was

8.1e-28).

Gene enrichment tests were performed on these 1000 genes against a background all genes
included in the rank-sum test. The Expander software suite [121]-[122] was used to detect
significant enrichments for Gene Ontology (GO) [118], Kyoto encyclopedia of genes and genomes
(KEGG) pathways [119], Wiki-Pathways [120] and chromosomal location enrichments. GO tests

were also performed using the GOrilla tool [124].
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2.2.5. Analysis of differentially methylated CpGs, correlation to

expression and CpG enrichment
To identify CpGs that are differentially methylated between LumA-M1 and LumA-M3 samples
we applied the rank-sum test on all CpGs that survived our preprocessing and also had non-zero
variability on the relevant samples (n=93,880). We then selected the 1000 CpGs showing the
highest significance and having a minimal median difference of 0.2 (in Beta-values). All selected

CpGs had significantly higher mean methylation on group LumA-M1 compared to the LumA-M3

group.

To focus on DMCs whose genes show concomitant expression changes, we calculated for each
CpG its Spearman correlation with the expression profile of its associated gene based on
Illumina's probe-set annotation. The correlation values enabled the identification of 586 DMCs
(rank-sum p-value<0.01, median difference>0.2) negatively correlated to expression (R < -0.2)

and a second smaller group of 212 DMCs showing positive correlation (R > 0.2) to expression.

We used the array CpG annotations provided by Illumina to calculate enrichments of each one
of the three CpG lists (top 1000 DMCs, 586 negatively correlated DMCs, and 212 positively
correlated DMCs) for features like differentially methylated regions (DMRs), Enhancer regions,
UCSC RefGene Groups and Regulatory Feature Groups. Gene enrichment analysis was performed
on the unique genes composing each CpG list, using the Expander and Gorilla tools as described
above. Enrichment for InterPro [166] terms was calculated using David [167]. Enrichment for
tumor suppressor genes was calculated by the hypergeometric test based on the TSGene [154]

catalog.
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3. Skin cancer subtypes

In this study, we set out to explore whether the transcription-based subtype classification can
be improved based on the larger number of 469 melanoma samples currently available from
TCGA. We reasoned that larger datasets might allow for the identification of new prognostic
subtypes or improve the characterization of previously described subtypes. We also aimed at
identifying a minimal set of informative prognostic biomarkers that can be used to stratify
patients into clinically relevant subtypes. Finally, we performed a set of experimental tests on

human melanoma specimens to validate our computational discoveries.

3.1. Results

3.1.1. Unsupervised analysis identifies four distinct melanoma

subgroups
In order to identify groups of similar melanoma tumors, we applied unsupervised analysis on 469
RNA-Seq expression profiles obtained from TCGA’s melanoma dataset. The dataset contained a
mixture of primary (n=104) and metastasis samples (n=365). The clustering of the samples based
on the 2000 most variable genes resulted in four distinct sample clusters showing significantly
different 5-year survival rates (see Figure 3.1A, 3.1B, and Table S2.1). Gene ontology enrichment
analysis identified active gene signatures that were used to characterize each sample group
(Figure S2.1). Finally, we used the clinical information available for the samples in order to

clinically characterize each sample group (see Figure 3.1C and Figure S2.2).

Cluster 2, with the lowest survival rate, was mainly composed of primary melanomas showing
significantly high Breslow depths and high pathologic T values. This cluster was associated with
over-expression of cornification, epidermis development, and keratin related genes, all of which
are characteristic of differentiated keratinocytes that form the outermost skin barrier[168]. We
attributed the poor survival in this cluster to the bias in the TCGA cohort for thick primary tumors
[48]. The other three clusters were mainly composed of metastatic melanomas. Cluster 1, which
conferred the highest survival rate, was enriched for lymph node metastases and showed
significantly high values for several immune scores that correlate with lymphocyte infiltration.
Cluster 1 was also associated with the overexpression of adaptive immune response genes.
Cluster 3 showed relatively good survival and was found to be marginally enriched for regional
cutaneous tissue sites, whereas cluster 4 showed relatively poor survival and was found to be

marginally enriched for metastasis to distant tissue sites. Interestingly, what distinguished the
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relatively poor prognosis cluster 4 from the relatively good prognosis cluster 3 was an expression
pattern enriched for melanin biosynthesis genes (gene cluster 1) whose over-expression was

correlated with poor survival.

We compared our four-cluster partition to TCGA's three transcriptomic subtypes (Figures 3.1A3
and S2.3). We found that the two partitions largely correspond (Chi-Square p-value=1.6e-79) -
sample clusters 1 and 3 were significantly enriched for TCGA's Immune and MITF-Low
transcriptomic subtypes, respectively. TCGA's keratin subtype was split into two distinct clusters
— the primary-enriched worst outcome cluster 2 and the bad outcome metastasis-enriched
cluster 4. Overall, our analysis revealed a partition of the metastatic samples into the high-
immune, best survival (cluster 1), low-melanogenesis good survival (cluster 3, corresponding to
TCGA's MITF-low subtypes), and a new metastasis enriched subgroup, characterized by poor
survival and by significant overexpression of melanogenesis genes (cluster 4). We named the
four identified melanoma subgroups accordingly: 1: "Immune", 2: "Keratin", 3: "Melanogenesis-
low" and 4: "Melanogenesis-high". Table 3.1 summarizes the characteristics of the four

subgroups and their relation to TCGA's subgroups.
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Figure 3.1: Clustering of TCGA’s RNA-Seq melanoma dataset. (A) A heat map representing the clustering of 469

melanoma samples (matrix columns) into four groups based on the 2000 genes with the most variable expression

profiles (matrix rows). Each sample cluster represents a group of similar melanoma tumors. Genes were also clustered

in order to identify groups of co-expressing genes. Both samples and genes were clustered using the K-means algorithm

(using k=4 for the samples and k=5 for the genes). The bars below the matrix display sample labels: (1) Cluster ID, (2)

Primary vs. Metastasis, (3) Tissue site, (4) TCGA transcriptomic subtype. (B) Kaplan Meier curves for the four sample

clusters. Log-rank p-values appear in the legend. (C) Summary of the significant enrichments of sample clusters for

clinical labels. Colors indicate the significance of the enrichment.
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Cluster  Cluster name TCGA Survival  Tumor Gene ontology
Transcriptomic tissue type enrichment of
subtype enrichment highly expressed
enrichment genes

1 Immune Immune Best Regional Immune response

lymph node

2 Keratin Keratin Worst Primary Cornification

3 Melanogenesis-low MITF-Low Good Nervous system

development
4 Melanogenesis-high  Keratin Bad Melanin
biosynthetic process
Table 3.1: Summary of the main sample cluster characteristics

3.1.2. Over-expression of melanogenesis genes characterizes a poor-

survival melanoma subtype
In order to further characterize the poor-survival cluster 4 ("Melanogenesis-high"), we looked at
the genes that were over-expressed in this cluster (gene cluster 1). They were enriched for genes
related to the synthesis of the melanin pigment (“Melanin biosynthetic process”, p-value<1.76E-
08, See Figure S2.1). Additional gene sets significantly enriched in that gene cluster were the
“Melanogenesis” KEGG-pathway (p-value<0.005, 9 genes: GNAO1, DCT, KIT, TYRP1, FZD9,
ADCY2, ADCY1, TYR, WNT4) and the “Melanosome membrane” GO term (p-value<0.0004, 6
genes: OCA2, SLC45A2, GPR143, DCT, TYRP1, TYR). See Tables S2.2 and S2.3 for the complete

enrichment results.

Interestingly, these results suggest that the "Melanogenesis-high" samples differ from the
"Melanogenesis-low" samples by over-expression of genes that are specific to the melanosome
organelle (see Figure S2.4). The melanosome organelle is the hallmark of melanocytes, which are
the melanoma cell of origin [169]. In normal skin, melanosomes are responsible for melanin
production, storage, and transport from melanocytes to surrounding keratinocytes [170] [171].
However, the reason melanoma cells retain this function of their cell of origin, and the function
of the melanosome itself in melanoma cells, have only recently begun to be revealed [172][173].
The melanin biosynthesis genes OCA2, TYRP1, DCT, and PMEL (SILV) also appeared on the list of
top genes over-expressed in "Melanogenesis-high" samples in comparison to all other samples

(see Table S2.4).

For testing the independent prognostic value of those melanosome related genes, we
partitioned all of the dataset samples into two groups based on the expression levels of each
gene and calculated the difference in the survival plots of the two groups using the log-rank p-

value. For OCA2, KIT, GPR143, and TYRP1, overexpression was significantly correlated with
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poorer 10-year survival as well as with increased recurrence risk (Figure 3.2). These results may

suggest a mechanistic link between the melanosome organelle and the increased lethality of

melanoma.
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Figure 3.2: 10-year survival and recurrence risk estimates for Melanosome related genes, calculated

over all dataset samples. Dataset samples were split into two groups based on the gene expression levels
of several melanosome related genes. For each gene, the threshold for splitting the samples into two

groups was the mean of its 5th and 95th expression percentile.
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3.1.3. Metastatic melanomas retain the ability to secrete melanosomes

into surrounding tissue

In primary melanoma, melanosome secretion was shown to promote the formation of the
dermal metastatic niche [172]. However, the role of melanosomes in promoting metastasis of
melanoma in later stages is mostly unknown. To further explore the pigmentation/melanosome
function in melanoma progression, we tested clinical melanoma specimens. Since our
unsupervised analysis that identified the four-melanoma subgroups was based on mRNA
expression levels, we first confirmed the expression of melanogenesis genes at the protein level.
Primary in-situ melanoma tissues were immunostained for PMEL (SILV) using the HMB45
antibody. PMEL is a melanocyte-specific marker known to be a melanogenesis gene and is used
in the pathological diagnosis of melanoma [174][175]. PMEL is involved in the initiation of pre-
melanosome production [176], and was also found in our analysis to be overexpressed in cluster
4 (see Table S2.4). PMEL strongly stained regions of melanoma (Figure 3.3A), confirming its
presence at the protein level. To further confirm whether the complete melanogenesis
machinery is functional, indicated by the production of mature melanosomes, specimens were
immunostained with mature melanosome marker, GPNMB [172]. Primary melanoma and the
surrounding tissue clearly stained with GPNMB (Figure 3.3A Left). This indicates that not only is
the melanogenesis machinery active but also that melanosomes are actively secreted from
melanoma into the stroma via a gradient pattern of diffusion from the epidermis (Figure 3.3A

Right).

Since our computational analysis showed that the machinery of melanin production in
melanosomes highly correlated with poor prognosis, we further examined melanosome
synthesis and function along a typical scheme of disease progression. In order to do this, we
picked melanoma metastasis specimens in the lymph nodes, liver, and brain, all from different
patients. These tissues represent different stages of aggression [177]. Metastatic specimens
were subjected to immunohistochemistry for PMEL and GPNMB in order to follow melanosome
production and distribution. Remarkably, metastases to the lymph, liver, and brain retained a
hallmark pattern of melanosome secretion into the surrounding stroma (Figure 3.3B). This
indicates that melanosome production is retained throughout the progression of melanoma and
that melanosomes are actively secreted to the tumor microenvironment. Taken together, our
data demonstrate, for the first time, the presence of active production and secretion of
melanosomes in distant metastatic sites, suggesting an important function for the melanosome

organelle in the cancer metastases.
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Figure 3.3: Melanosomes diffuse outward from primary and metastatic tissues. (A) Immunohistochemical
(IHC) analysis of an in-situ melanoma showing mature melanosomes stained with Anti-GPNMB (Green)
diffusing rightwards into the underlying subcutaneous tissues and away from the primary melanoma tumor.
HMBA45 (Red), an antibody for PMEL, which stains the premelanosome, shows the location of the melanoma.
Nuclei were stained blue with DAPI. Equally sized, equidistant zones were delineated on the image in order to
quantify differences in the intensity of GPNMB displayed by the graph to the right of the image. (B) IHC
investigation of the metastatic sites: lymph node (top), liver (middle), and brain (bottom) showing secretion
and dispersion of mature melanosomes stained with GPNMB (Green) into the stroma surrounding the tumor,
stained with HMBA45 (Red). Nuclei were stained blue with DAPI. Experimental validations were performed by
members of Carmit Levi's lab.
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3.1.4. A 3-gene classifier for predicting melanoma molecular subtype

Having identified four distinct melanoma subgroups, each bearing a different survival risk and
gene expression signature, we sought to develop a simple procedure to classify a new tumor into
one of the four subgroups based on a minimal number of genes. Such a procedure will be easier
to interpret biologically than a 2000-gene signature and also cheaper to assay in diagnostics. We
selected the decision tree classifier, which was often used in medical decision making due to its
simplicity, easy interpretability, and robustness to outlier values [178]. In order to determine the
number of genes to be used by our classifier, we trained a large number of variably pruned
random decision trees and examined their performance as a function of the number of genes
used by the tree (see Figure S2.5). Three genes gave a good tradeoff between classifier simplicity
and performance. We then trained a 3-gene decision tree on the full dataset, which achieved a
training error of 0.187 (Figure 3.4). Notably, the three genes selected by the tree-training
algorithm, KLK8, TIGIT and TRIM63, can be viewed as representatives of the three gene
expression signatures described earlier (Keratin, Immune, and Melanogenesis, respectively). The
three selected genes, their corresponding thresholds and a set of 10 surrogates for each one are

displayed in Table 3.2.

Remarkably, the genes identified as predictors by the decision tree have been previously
associated with melanoma progression and prognosis: decrease in expression levels of kallikrein
family member KLK8 was associated with the transfer from primary to metastatic melanoma
[179], and its expression was linked to survival in various cancers [180][181][182]. TIGITisa T cell
immunoreceptor with Ig and ITIM domains, which was recently identified as an attractive cancer
immunotherapy target due to its central role in tumor immunosurveillance [183][184]. Lastly,
TRIM63 was implicated in melanoma cell migration/invasion[185]. Figure S2.6 provides a PCA
visualization of the 469 melanoma samples projected to a 3-dimensional space based on the

expression levels of the three genes used in the decision tree.

Interestingly, when we trained 1000 random 3-gene decision trees by resampling the dataset
samples, most resulting trees had a similar configuration and contained predictors that are

representatives of the three signatures (see supplemental information, section 7.2).
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Figure 3.4: A 3-gene decision tree for classifying melanoma samples. The tree trained on the 469 TCGA samples.
Classification of a new sample into one of the four subtypes is done by traversing the tree from its root to one of its
leaves (representing an assignment to a subtype). Three biomarkers are used to determine the route along the tree:
Over-expression of KLK8 distinguishes the “Keratin” subtype, over-expression of TIGIT distinguishes the “Immune”
subtype, and finally, over-expression of TRIM63 distinguishes the “Melanogenesis-high” from the “Melanogenesis-low”

subtype.



60

Predictor gene | Threshold | Surrogate genes

KLKS 1.179 KRTDAP, FAMS3C, IVL, SBSN, SPRR1B, KRT14, KRT16, WFDCS5,
KRT6C, SERPINB5

TIGIT 0.226 CD2, SLAMF6, LCK, SIRPG, SLA2, UBASH3A, CD3D, CD27, ITGAL,
SIT1

TRIM63 0.155 TRPM1, PMEL , SLC5A10, GPR143, TSPAN10, MLPH, MLANA,

MMP16, SLC45A2, GMPR

Table 3.2: Threshold values and surrogate genes for the three decision tree predictors as identified by the
algorithm. Threshold values are used to distinguish between high and low values (based on normalized
expression values) during the classification procedure. For each predictor gene, 10 surrogate genes were
identified by the tree-training algorithm and are displayed on the rightmost table column. The surrogate
genes can be used instead of the predictor gene, with an appropriately adjusted threshold. The surrogate
genes are sorted by decreasing predicted performance. The predictor gene represents the best predictor
identified by the training algorithm.

3.1.5. Experimental validation of predictor genes on patient cohort

The decision tree produced consists of three informative genes (KLK8, TIGIT, and TRIM63) along
with a threshold level for each gene that together provide a simple method for classifying
melanoma tumors into one of the four subgroups. To classify a new tumor sample, one evaluates
the sample's expression levels for three predictor genes (biomarkers): first, a keratin predictor-
gene is evaluated (KLK8, or one of its keratinization surrogates such as KRT6C, IVL, SPRR1B,
KRT14, KRT16), where high values would label the sample as "Keratin" and low values would lead
to the next predictor. Next, an immune predictor is evaluated (TIGIT, or one of its immune
surrogates such as LCK, CD2, SLAMF6, SIRPG, SLA2, UBASH3A, CD3D, CD27, ITGAL, SIT1), where
high values would label the sample as "Immune" and low levels would lead to the next and final
predictor. Lastly, a melanogenesis predictor is evaluated (TRIM63, or one of its melanogenesis
surrogates such as SLC45A2, PMEL, GPR143) where high values would label the sample as

"Melanogenesis-high" and low values as "Melanogenesis-low".

In order to validate the association between the classifier's predictor genes and outcome, we
experimentally tested their expression on six samples from patients of known outcomes.
Patients who survived for five years or more after initial tumor diagnosis were defined as “good

III

survival”, and those who survived two years or less after initial diagnosis as “poor survival” (Table
$2.5). In all clusters except for cluster 2 (the "Keratin" subgroup, which mostly corresponded to

primary sites), lymph node tissues were identified in a substantial fraction of the samples (Fig
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$2.3C). For this reason, we tested the tree predictor genes in melanoma metastases to the lymph

nodes from each patient using immunohistochemistry (IHC).

We first conducted H&E staining to confirm that the metastasis was, in fact, in the lymph nodes
(Figure 3.5A), and then stained each sample by the three predictor genes. Figure 3.5B shows the
six tissue images per gene and Figure 3.5D shows quantification of staining levels. All lymph node
specimens stained negatively for the KLK8 gene, the predictor for the primary-melanoma
enriched "Keratin" subgroup in the tree (Figure 3.5B, first row), indicating that the six samples
do not belong to that subgroup. Staining for the TIGIT gene, the predictor for the "Immune"
subgroup, appeared positive in the lymph node specimens of patients 1 and 3, thus assigning
them to the best prognosis “Immune” subgroup based on the decision tree logic, in agreement
with their good survival (Figure 3.5B, second row). The specimens from patients 2, 5 and 6
stained negatively for TIGIT, excluding them from the “Immune” subgroup. The specimen from
patient 4 showed borderline positive staining, making it difficult to classify. Finally, using TRIM63,
the predictor for the "Melanogenesis-high" subgroup, specimens 5 and 6 were stained positively
and were therefore assigned to the “Melanogenesis-high” subgroup, while specimen 3 that was
stained negatively and therefore assigned to the “Melanogenesis-low” subgroup (Figure 3.5B,
third row). Except for patient 4, all patients were assigned to subgroups conferring relative
survival in agreement with their known outcome. The results demonstrate the utility of

biomarkers in prognostication of melanoma.

In addition to verifying the expression levels of proteins identified by the decision tree and their
correlation to survival, we examined three other proteins that were identified as informative
predictors for general prognosis (Figure 3.5C). As an additional representative from the immune
protein category we selected LCK, a Src family tyrosine kinase found on lymphocytes, that was
previously identified as a biomarker for good prognosis in melanoma [48]. Indeed, patients with
high LCK expression had a better prognosis. As additional representatives for the melanogenesis
category, we selected GPNMB, indicative of mature melanosome presence [186], and OCA2, a
transporter protein associated with melanocytes involved in melanin production and pH
regulation of the melanosome [187]. Patients who had high levels of these proteins in their

lymph nodes had worse outcomes associated with the “Melanogenesis-high” subgroup.

Our data demonstrate that using the expression levels of only three classifier genes (keratin,
immune, and melanogenesis) in our decision tree, we can reasonably predict the patient
outcome using a lymph node biopsy. Our data further suggest the involvement of melanogenesis

genes and the melanosome organelle in melanoma progression and lethality.
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Figure 3.5: Melanogenesis and immune characteristics of melanoma metastases in good and poor prognostic
outcomes. (A) Hematoxylin and Eosin (H&E) staining of lymph nodes containing melanoma metastases from six
different patients taken at 20x magnification. Patients 1-3 had a good prognosis, while patients 4-6 had poor
prognostic outcomes. (B) Immunohistochemical staining of the three proteins of the decision tree on the lymph
node samples of the six patients. Nuclei were stained blue using DAPI. Row 1: Using KLK8 (pink) to validate non-
primary tumor tissue. Row 2: Using TIGIT (Green) to test for immune proteins. Row 3: The expression of
melanogenesis related protein TRIM63 (Pink). The assignments of the specimens from the six patients to subtypes
based on the expression levels of the three predictor genes are summarized as a label at the bottom bar. (C)
Immunohistochemical staining of additional biomarkers for general prognosis. Row 1: LCK, an immune protein
indicative of good prognostic outcome. Row 2: Melanogenesis protein OCA2. Row 3: Melanogenesis protein
GPNMB. (D) Color matrix quantifying the fluorescence intensity of immunohistochemistry across biomarkers and
patients. For each protein, values were independently normalized across the samples. Experimental validations
were performed by members of Carmit Levi's lab.
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3.2. Methods

3.2.1. Gene expression analysis for identification of melanoma

subtypes
The expression profiles of 474 samples from TCGA's melanoma RNA-Seq dataset [48] were
downloaded from UCSC XENA's web site in April 2018 [188], together with their associated
clinical information (213 labels). We used the PROMO software suite (release 2019.5) [123][165]
for importing, preprocessing, analyzing, and visualizing the data. The downloaded RNA-Seq
dataset (lllumina HiSeq platform, gene-level RSEM-normalized [27], log2 transformed) included
104 primary and 365 metastasis samples. Five samples were removed since they had inconsistent
phenotype labels, and a variability-based filter was used to keep only the 2000 top variable
genes. Clustering was performed on both samples and genes using the k-means algorithm with
a correlation distance metric (using k=4 for the samples, and k=5 for the genes). The algorithm

was run 100 times and a solution minimizing the sum of point-to-centroid distances was chosen.

We used PROMO's multi-label analysis to evaluate the enrichment of the sample-clusters for
each of the clinical labels. Enrichment significance of sample-clusters for categorical variables
(such as sample type) was calculated using FDR-corrected [93] hypergeometric test. For numeric
variables (such as age, Breslow's depth, and pigmentation score), the difference between sample
groups was evaluated using FDR-corrected Wilcoxon rank-sum test (Mann—Whitney U test). For
exploring the prognostic value of the four sample-clusters based on TCGA's survival data, we
used PROMO to plot 5-year survival curves using the Kaplan-Meier estimator [131], and
calculated p-values for the difference in survival for each group versus all other groups using the

log-rank (Mantel-Haenszel) test [133][134].

To identify active gene functions characterizing each of the sample-clusters, we applied Gene
Ontology (GO) enrichment analysis [118] on the five gene-clusters using both PROMO (Figure
S2.1) and the Expander software suite [121]-[122] (Table S2.2). To further characterize the
biological function of the gene-clusters, we also used Expander to test each gene-cluster for

enrichment for KEGG pathways [119] (Table S2.3).

Finally, to identify genes that were over-expressed on sample-cluster 4 compared to all other
samples, we applied the Wilcoxon rank-sum test on all dataset genes exhibiting non-zero
variance (n=20,228), and ranked all genes that were over-expressed on cluster 4 and showed p-

value<le-06 by decreasing fold-change (difference between the mean expressed in cluster 4
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samples and all other samples, Table S2.4). We used the GORILLA tool[124] for identifying the

melanin biosynthesis genes appearing among the top 100 differentially expressed genes.

3.2.2. Human histopathology and analysis of slides

Samples were obtained from patients at the E. Wolfson Medical Center and Tel Aviv Medical
Center. The experimental study of the clinical samples was approved by the hospital ethics
committee (Approval number: 0039-18WOMOC). Surgeons resected the primary tumors and the
metastases and confirmed clear margins on the samples. Using demographicinformation, tumor
characteristics, and length of survival following diagnosis, patients were identified as belonging
to either good or bad survival groups by a pathologist. Specimens were fixed in formalin and
subsequently embedded in paraffin. Hematoxylin (HHS16, Sigma-Aldrich) and Eosin (HT110232,
Sigma-Aldrich) staining (H&E) of the samples was performed according to the manufacturer
instructions. H&E images were obtained at 20x using Aperio Slide Scanner. Slides were first
blocked and incubated with various combinations of primary antibodies including LCK (AF3704,
R&D Systems), TIGIT (A700-047, Bethyl Lab), TRIM63 (bs2539R, Bioss), OCA2 (bs15510R, Bioss),
GPNMB (AF2550, R&D Systems), HMBA45 (ab732, Abcam), and KLK8 (MAB1719, R&D Systems).
After subsequent washes, slides were incubated with the matching combinations of secondary
antibodies, including Alexa Fluor 488 (A11055, Invitrogen), Alexa Fluor 594 (A21203, Invitrogen),
and or Alexa Fluor 647 (A31571, Invitrogen). 4',6-diamidino-2-phenylindole (DAPI; Vector
Laboratories) was then added dropwise to adequately visualize cell nuclei in the stained
specimens. Images of slides were taken using fluorescence microscopy (Nikon) at 40x
maghnification, split into the individual color channels, and mean intensity of representative areas
from each image was measured using ImageJ software. The mean intensity values recorded were
then used to generate a color matrix demonstrating the level of expression of each protein in

each patient’s sample.

For the analysis of melanosome spread and secretion, samples of human in-situ melanoma, as
well as metastases from different patients including brain, lymph, and liver were obtained from
E. Wolfson Medical Center. Immunohistochemical staining as described above was performed
using GPNMB (AF2550, R&D Systems) and HMB45 (ab732, Abcam) as primary antibodies, and
Alexa Fluor 488 (A11055, Invitrogen), Alexa Fluor 594 (A21203, Invitrogen) as secondary
antibodies, with 4',6-diamidino-2-phenylindole (DAPI; Vector Laboratories) added at the end.
Images of the slides were taken at 20x magnification using a Nikon fluorescent microscope. The

image of in-situ melanoma was then broken into its component color channels using Imagel



65

software, and four equally sized, equidistant frames were cut out and measured for the mean

intensity of GPNMB to quantify the gradient of its diffusion from the primary tumor.

3.2.3. Training of a gene-expression based decision tree classifier

To train a molecular classifier for predicting melanoma subgroups, we used the expression levels
of the 2000 most variable genes on the set of 469 melanoma samples. We used Matlab’s
implementation (R2019a) (accessed through PROMO [123]) to grow a classification tree using a
curvature test as the method for splitting predictors [189][190]. The training procedure consisted
of two steps. First, we assessed the best number of predictor genes to be included in the decision
tree, by training many trees on randomly selected subsets of the dataset samples (90% of the
samples were included in each iteration) while varying the number of allowed predictor genes
and the pruning level. The average training error was calculated for each tree size (Figure S2.5).
Next, having determined the number of predictor genes, we used the entire dataset samples

(n=469) to train the final decision tree.



66

4, PROMO: an interactive tool for analyzing
clinically-labeled  multi-omic  cancer
datasets

In recent years, a growing number of high-throughput genomic technologies have become
available for biomedical research and are jointly providing high-resolution genomic data that fuel
the revolution of personalized medicine [75][72]. These technologies (collectively named omics)
allow the simultaneous quantification of a large number of features at various biological levels.
The features include gene expression (MRNA and miRNA abundance levels measured by
microarrays or RNA-Seq), protein expression (measured by mass spectroscopy or reverse-phase
protein arrays), DNA methylation (methylation arrays), copy number variation (SNP arrays), and
others [191][192]. The technologies vary broadly in the number of features they measure as well
as in the distribution of measured values [50]. However, they can typically be summarized as a
numeric matrix where columns represent samples and rows represent biological features (often
correlating to genes). Bioinformatic analysis of such genomic matrices has been extensively used
for identifying biologically distinct sample groups, and for revealing groups of correlated

biological features [69][193].

The number of tumor samples and measured features that are included in a typical cancer
genomic dataset have grown dramatically in the last few years, owing to increasing resolution
and reduced costs of array and sequencing technologies. Modern repositories comprise
thousands of patient samples and many thousands of features. Investigation of such large
datasets is computationally challenging as it requires robust software tools for supporting the

analysis of both samples and features in high dimensional data [60].

In addition to genomic data, modern cancer datasets can include extensive medical information
(labels) describing each sample, such as clinical properties or assignment to a predefined
phenotype. These clinical labels make it possible to fuse genomic and clinical data in various ways
in order to discover new insights based on feature-phenotype associations. Common clinical
labels in cancer datasets include disease subtypes, pathological stages, survival and recurrence
follow-up information, as well as response to treatment. Identification of genomic features that
are correlated with significant clinical parameters (biomarkers) is expected to play a significant
role in the field of personalized medicine, by which the status of multiple biomarkers may

improve subtype diagnosis and guide therapeutic decisions [194][195].
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The Cancer Genome Atlas (TCGA) is an example of a revolutionary multi-label multi-omic
genomic database [79]. It includes more than 11,000 samples from 33 types of cancer, where
each sample was measured using multiple omic technologies and was described by dozens of
clinical labels [80]. Many studies have already analyzed TCGA data, improving the subtyping of
cancers and shedding light on the biological mechanisms underlying the development of various
cancer types [84][142][196]. Such analyses are typically time-consuming, computationally
challenging, and entail team effort, as they require applying a diverse array of methods,
statistical tools, and algorithms, and often also require writing extensive computer code to
perform and interweave the various steps of the analysis [197]. Hence, to effectively extract
clinically meaningful insights from such multi-omic multi-label databases, specialized agile

integrative tools are required.

To address this challenge, we developed PROMO (PROfiler of Multi Omic data), a fully interactive
software suite capable of quickly importing, preprocessing, visualizing, analyzing and reporting
the results on cancer datasets in a seamless fashion, without writing a single line of computer
code. PROMO includes an extensive array of bioinformatic methods for performing major
common analysis types including exploration, visualization, identification of clinically significant
disease subtypes, revealing co-regulated feature groups, biomarker discovery, simple
classification and integrative multi-omic analysis. Table 4.1 presents an overview of the

fundamental analysis types available in PROMO.

An early version of PROMO was developed as part of a study where we identified distinct
prognostic subgroups in luminal-A breast tumors based on expression and methylation data
(Results, section 2) [198]. The analysis workflow in that project provides an example of the key
steps in a typical application of PROMO (Figure 4.1): Data are imported, filtered and
preprocessed. Tumor samples are clustered into groups that are then assessed for clinical
significance using survival analysis and statistical tests on the clinical labels. Clustering of the
genes followed by gene enrichment analysis associates sample clusters with active gene
functions. The analysis is summarized visually in a genomic matrix clearly showing the identified
sample clusters and their association to important clinical labels (Figure 4.1, step 4), in addition

to downstream analysis methods (Figure 4.1, steps 5-7).

In this chapter, we describe PROMO's main features and demonstrate its use in a study of a

breast cancer cohort [142].
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Analysis type

Biomedical goal

Relevant PROMO features

1 General exploration and

visualization

Explore the genomic dataset vis-a-
vis the clinical labels

Prepare the dataset for
downstream analysis, test its
consistency and visualize its

properties

e Variance-based feature filtering

e Label-based sample filtering

o Normalization

e Sorting by samples label or mean
expression

e Visualizing data distribution

e PCA, t-SNE

2 Focus on genes of

interest

Explore the expression profiles of
specific genes vis-a-vis multiple
clinical labels

Identify co-expressed genes

o Filter features based on gene
symbols

e Rank genes by correlation to a
given gene symbol

e Multi-label matrix visualization

3 Disease subtype

identification

Look for clinically significant

sample clusters

e Sample clustering

e Label enrichment analysis
e Survival analysis

o Classification

4 Co-regulated feature

group identification

Identify groups of similar features,

characterize each group by

e Feature clustering
e GO Enrichment analysis

function
5 Biomarker discovery Find features that distinguish e Statistical tests for identifying
differentially expressed genes
among sample groups, correlate . . .
e Biomarker-based survival analysis
groups with survival and other e Rank genes by survival prediction
clinical data
6 Integrative multi-omic Stratify patients and identify e Multi-omic sample clustering
analysis coherent feature groups by * Inter-omic feature correlation

integrating data from different

omics

Table 4.1: PROMO’s main analysis types
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Figure 4.1: PROMO’s subtype discovery workflow — From data import to subtype classifier. This figure outlines
the complete workflow by which PROMO can be used for identifying and characterizing clinically distinct cancer
subtypes: (1) Importing genomic data together with clinical information in one of several available formats. (2)
Preprocessing the data and preparing it for downstream analysis. (3) Verifying the integrity of the data,
characterizing its distribution and exploring dataset properties with respect to the available clinical labels. (4)
Employing clustering algorithms partition both samples and features (genes) into groups. (5) Applying
enrichment tests to identify clinically significant sample subtypes and groups of co-regulated genes and to
characterize their function. (6) Statistical tests identify features that distinguish between different sample
subtypes as well as survival-related features. (7) Decision tree classifiers can be generated for formulating a set
of rules by which a new sample can be classified.
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4.1. Results

We now describe PROMO’s main features, organized by analysis steps. The described features
can be accessed using PROMO's menus or graphical user interface (Figure 4.2). The dataset used
was TCGA's breast cancer gene expression profiles (1218 samples downloaded from UCSC's

XENA website in May 2018). It is also available on the datasets page of PROMO's website.

4.1.1. Dataimport and preprocessing

In all analysis types, the first steps are to import the required data from local files into PROMO
and prepare it for the analysis. PROMO enables the integration of data of different types and
from multiple sources by importing genomic matrices, sample labels, and sample or gene
partition files. Genomic matrices accompanied by complementary phenotypic information
(clinical labels) can be loaded in the following formats: tabular text files, Gene Expression
Omnibus (GEO)[199] series files (including direct download from within PROMO), UCSC's
XENA[200][201] file formats (available for many public datasets including all TCGA's data), and
PROMO's DSC files. The latter are precompiled multi-omic datasets available at PROMO's dataset
download page for selected TCGA cohorts. PROMO also allows separate loading of additional

clinical labels and sample partition files to be used in the subtype discovery workflow.

After import, the loaded dataset can be 'cleaned' by filtering out samples based on clinical label
values, and also by removing certain features (e.g., removing low variability genes or keeping
only specific genes). Additional available common preprocessing steps include flooring, ceiling,

and row normalization.
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(A) PROMO's main screen
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Figure 4.2: PROMO'’s graphical user interface (A) PROMO's main screen. The genomic matrix is in the center
with columns corresponding to samples and rows to features. Colors represent feature values according to the
scale on the right. The colorful label bar beneath the matrix displays the currently selected sample label.
Analysis steps are documented in the textbox on the bottom of the screen. Key commands are available on
the tabbed panels on the left of the screen. (B) The Preprocessing panel allows filtering, normalization, and
sorting of the genomic data. (C) Clustering the dataset's samples and features using various algorithms and
distance functions is available through the Clustering panel. Resulting clustering solutions are aggregated for
future review and filtering. (D) The Analysis panel provides access to several visualization and exploratory tools
like PCA, t-SNE, survival analysis, biomarker discovery, GO enrichment and automatic classifier generation. (E)
In the Dataset Collection panel, several genomic matrices can be assembled into a multi-omic dataset
collection, and then analyzed together.
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4.1.2. Data exploration and visualization

Once a genomic matrix is loaded to PROMO, its properties can be explored with respect to any
selected clinical label (Figure 4.3A). The samples (columns) in the matrix can be reordered based
on any clinical label or by their mean expression. Basic dataset properties like value distribution
(4.3B), clinical label distribution (4.3C), and sample variation (4.3D) can be studied and displayed
graphically in various ways including PCA [202][203] and t-SNE [204]. For ease of interpretation,

all displays consistently use the same colors to represent the various sample subgroups.

4.1.3. Clustering and enrichment analyses

A major effort in promoting precision medicine is to identify disjoint groups of similar patients
and characterize each group using its distinct genomic profile, survival data, and clinical
information. To reveal the similarities among patients, clustering is often performed on both
samples and features [99]. Clustering the samples can reveal patient groups corresponding to
disease subtypes [101] while clustering the features reveals groups of co-regulated genes [102].
PROMO provides various clustering algorithms such as K-means [105], hierarchical clustering
[15], and Click [107] (PROMO's clustering panel is shown in Figure S3.1). To explore the resulting
clusters, the reordered matrix can be visualized in comparison to multiple sample labels (Fig

4.4A).

After the genes have been clustered, the built-in Gene Ontology tool can help interpret the
biological meaning of gene clusters using enrichment analysis (Fig 4.4B) [118]. Likewise, the
clinical labels on the samples can be used to statistically characterize each sample cluster. A
comprehensive analysis can be applied to each sample cluster using all clinical labels available
for the cohort (numeric, ordinal, categorical, or survival labels). The result is a characterization
of each cluster, together with FDR corrected p-values [93][134] in a unified report (Fig 4.4C).
Enrichment tests for the sample clusters can also be performed using any selected single clinical
label (Fig 4.4D). Finally, survival analysis performed on the sample clusters can test their
prognostic value using Kaplan-Meier plots [131] and log-rank (Mantel-Haenszel) test [133] (Fig
4.4E). Taken together, PROMOQ'’s clustering and automatic multi-label enrichment analysis can
quickly partition both samples and features into distinct groups and assess their biological

meaning using the clinical labels.
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Figure 4.3: Visualization of multi-label genomic data. PROMO provides a variety of methods for
visualizing a genomic dataset together with its associated clinical information. (A) A multi-label
expression matrix plot. The plot is composed of a heat-map representation of the genomic matrix and
several label bars beneath it showing different clinical labels that the user interactively selected. The colors
in each label bar show the label value of each sample according to the legend on the right. The label appears
below the lower-left corner of the bar. Here, breast cancer patient profiles were grouped according to their
PAMS5O0 category (shown in the top label bar). By observing the distribution of values in other bars, relations
between the groups and the labels can be observed. For example, the ER, PR and HER2 status of most
samples in the 'basal' group are negative, while the HER2 status of most '"HER2' group is positive. (B) Data
distribution and (C) Clinical label distribution can be explored and visualized separately, or in combination
using plots such as (D) PCA and others. These figures show that the basal tumor samples are mainly
characterized by Negative ER, PR and HER2 labels (A) and markedly differ from all other subtypes in their
gene expression pattern (D), in accordance with the literature [142].
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Figure 4.4: Identification and characterization of cancer subtypes. Unsupervised analysis followed by enrichment analysis
is performed on both samples and features for identifying clinically significant samples groups, and for biologically
characterizing them based on the functions of co-expressed gene groups. (A) The RNA-Seq expression matrix of TCGA's
breast cancer cohort after clustering both samples (columns) and genes (rows) into four clusters using the K-means
algorithm. Clustering is based on the top 2000 variable genes. White lines separate clusters in each dimension. The bars
below the matrix show selected sample labels (here: the clustering and PAM50). Matrix and bars were created using
PROMO's multi-label matrix drawing. (B) Gene clusters were characterized using PROMO's gene ontology enrichment tool.
The figure shows the five most significant GO terms for every gene cluster. (C-E) Sample clusters were characterized using
the sample clinical labels: (C) PROMOQ's multi-label analysis tool automatically tests the clinical labels of different types
(numeric, ordinal, categorical or survival) for enrichment on the sample clusters. FDR correction is performed over all
clinical labels of the same type but separately for different types. (D) The various sample clusters can also be characterized
for a single label by showing its value distribution in each cluster and by calculating enrichment. (E) Survival functions for
each cluster. The p-values are the significance of the separation of each cluster from the rest using the log-rank test.
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4.1.4. ldentification of distinguishing genes and features (Biomarker

discovery)

Having obtained patient subgroups of interest, either by sample clustering or using a predefined
sample label, we may wish to identify distinguishing genes and features that differ significantly
among sample groups. Such differentially expressed genes can shed light on the biological
difference between sample clusters, and act as biomarkers for classifying a new sample to a

sample class.

After selecting the label and the groups that will be compared, PROMO enables the application
of various statistical tests for identifying genes that are differentially expressed among the
groups. The p-values obtained by the tests can be used for gene sorting, filtering and for
clustering the genes into up-regulated and down-regulated groups. PROMO's Gene Ontology
enrichment analysis can be executed on the resulting gene groups for characterizing the function
of up-regulated and down-regulated genes. FDR correction and fold-change based filtering are
also supported. PROMO's biomarker discovery panel and an example of its output are shown in

Figure S3.3 and Table S3.1.

For detecting survival biomarkers, PROMO can rank all genes by their association to survival,
based on Cox regression analysis [139]. In addition, the user can use the expression levels of
selected genes to generate a new sample label (for example, HER2_Low and HER2_High). Kaplan-
Meier plots can then be used to estimate the significance of survival differences between sample

groups defined by the new label.

Lastly, PROMO can help in finding genes that are functionally related to a given gene of interest
by ranking all genes based on their correlation to it. Altogether, the various techniques described
here and implemented in PROMO can quickly identify genes that take part in the biological

differences between sample groups and may serve as biomarkers for the selected label.

4.1.5. Automatic generation of a simple molecular classifier

After having partitioned the dataset samples, characterized the sample groups and their genes,
and established the clinical relevance of the groups, PROMO can build an algorithm to classify a
new sample into one of the groups. Such a classifier, especially if based on a small number of
genes (rather than the thousands used to identify the subgroups) can serve as a significant step

towards translating the analysis results into a diagnostic biomarker for clinical use.

Of the many possible classifier types, decision trees have the advantages of being easy to

understand, highly interpretable biologically and easily visualized [189]. Furthermore, they allow
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for controlling the tradeoff between accuracy and simplicity. For predicting any selected sample
label, PROMO can generate a simple decision tree with a single click (Fig 4.5). The generated
decision tree can be visualized graphically, specified textually, and saved to a Matlab file as a
function. Automatic cross-validation and parameter optimization make it easy for the user to
come up with a simple decision tree that may be in future subtype classification kits. It is also
possible to generate a large number of random trees and rank the genes by the frequency of

their appearance in the trees, thus identifying informative features for subtype classification.
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Figure 4.5: Automatically generated decision-tree for classifying breast tumors into the four PAM50 classes.
PROMO can generate a cross-validated decision tree for any selected sample label using the currently loaded
matrix as training data. In this figure, a four-gene molecular classifier for breast cancer subtypes is presented,
showing a 7.77% loss on the training data, and a 15% averaged loss on 10-fold cross-validation.
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4.1.6. Integrative multi-omic analysis

In multi-omic datasets, each sample is characterized by several omic profiles (e.g., gene
expression, methylation, copy number). Integrative analysis of multi-omic cancer datasets has
the potential of revealing biological regulatory patterns that are missed in single omic analysis,

and tools for performing such analyses are currently in great demand [205][68].

PROMO provides several features for handling and analyzing multi-omic datasets. The profiles
composing a multi-omic dataset can be imported from repositories into a 'Multi-Omic Dataset
Collection' in PROMO (Figure 4.2E). The user can navigate between the matrices, edit them
independently, and select a subset of the datasets for downstream integrative analysis.
Precompiled dataset collections for several TCGA cancer type cohorts are available on PROMO's

download page.

After setting up a multi-omic collection, the "inter-omic correlation identification" feature helps
to detect correlations between features in two selected omics. This feature allows the
identification of correlations between features from different biological levels. For instance, anti-
correlation between mRNA expression and DNA methylation levels can pinpoint biological

regulation.

The "Multi-omic clustering" feature can be used to cluster the dataset samples based on several
omic matrices simultaneously. To this end, PROMO provides implementations of the multi-omic
algorithms SNF [206], NEMO [83], and Consensus Clustering [207] modified for multi-omic data.
Figure 6 demonstrates the application of a multi-omic clustering algorithm on three different

omics of the TCGA's breast cancer cohort.
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Figure 4.6: Multi-omic sample clustering Screenshot of PROMO's main screen after applying multi-omic clustering on
674 breast tumor samples from TCGA. The 'Dataset Collection' panel on the left was used to select the three omics to
be used in the clustering. Here features from three different omics were used: (A) RNA-Seq (2000 features), (B) DNA
methylation arrays (2000 features) and (C) miRNA arrays (500 features). Algorithm NEMO [83] was applied on the
subset of samples appearing in the three omics into 5 groups, shown on the label bar below the matrix. The genomic
matrix displays concatenation of the 4500 features included in the analysis after row normalization, with samples
grouped by cluster. The 1t and 4% clusters from the left have high methylation signals, while the second and third
have higher gene expression signals. The clustering of tumor samples using a multi-omic algorithm integrates data
from different biological levels and thus has the potential of revealing biological regulatory patterns that are missed
in a single omic analysis.
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4.2. Methods

PROMO is a standalone Windows application that can support huge datasets and has a fast fully
interactive graphical user interface. PROMO was written in MATLAB, and it runs over the freely
available Matlab runtime environment, taking advantage of its strong computational engine and
editable graphical outputs. PROMO is freely available for download at

http://acgt.cs.tau.ac.il/promo/.

PROMO's main screen (Figure 4.2A) includes several key graphic elements: A large heatmap
representing the currently analyzed genomic matrix is located at the center of the screen
(heatmap colors correspond to the matrix values as indicated by the color scale on the right).
Beneath the heatmap, a color-bar displays the currently selected sample labels. The same sample
label colors will consistently be used by PROMO in all displays. The user can scroll down the list
of clinical labels and explore their distribution over the samples. The panel on the left provides
access to common commands and parameters. A text log that documents the analysis steps
appears at the bottom of the screen. Figures 2B-F show the various panels that can be directly
opened from the tab menu on the left of the screen, providing quick access to PROMO’s most

useful features.

4.3. Summary

PROMO aims to fill in a gap in available analysis tools for large genomic and clinical cancer
datasets. Itis an interactive tool that is freely available and supports a rich collection of analysis
methods and facilitates useful workflows for data exploration and visualization, cancer subtype
identification, biomarker discovery and integrative multi-omic analysis. (See Table 4.2 for a list
of the key features). PROMO's support for large sample size in addition to features like survival
analysis and interrogation of the clinical data on sample clusters makes it especially suitable for
analyzing modern cancer datasets. While many of PROMO's features are also available in other
tools (Table 4.3), PROMO is unique in its comprehensiveness, support for large sample dimension

and the spectrum of tools it provides.


http://acgt.cs.tau.ac.il/promo/
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CATEGORY

KEY FEATURES

DATA IMPORT

® |mporting genomic data from tabular CSV files

= |mporting UCSC’s XENA genome matrix and phenotype
files

® |mporting GEO series files

= Adding clinical labels from file

PREPROCESSING

= Flooring, ceiling and row normalization

= Filtering of samples by clinical labels

= Filter features by range, variance, gene symbols or by an
external list

DATA EXPLORATION AND
VISUALIZATION

= PCA, t-SNE

= Data distribution plots

= Survival Analysis (Kaplan Meier, Log rank)
= Multi-label expression matrix figures

SORTING = Sorting samples and features based on genomic data
= Sorting samples based on clinical labels
CLUSTERING = Clustering both samples and features using K-means [105],
hierarchical clustering [15], and Click [107]
= Browsing clustering history and zooming into specific
clusters
SAMPLE CLUSTER ANALYSIS

= Automated multi-label enrichment test for detecting
enrichment of clinical labels

FEATURE CLUSTER ANALYSIS

= Gene ontology enrichment analysis

BIOMARKER DISCOVERY

= Applying statistical tests for detecting differentially
expressed genes/features

= Filter results by FDR corrected p-value and fold change

= Rank genes based on survival prediction (COX regression)

CLASSIFIER GENERATION

= Automatic generation of decision tree classifiers for
selected sample labels

INTEGRATIVE
ANALYSIS

MULTI-OMIC

= Assembly of dataset collection

=  Multi-omic clustering using SNF [206], NEMO [83] or
Consensus Clustering [207]

* Inter-omic correlation identification

Table 4.2: PROMO’s key features
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PROMO | Expander XENA Perseus | KnowEng | O-Miner
Function
[123] [122] [201] [208] [209] [210]

Precompiled datasets v X % X v v
Preprocessing v v X v X v
Data Visualization v v v v v v
Sample clustering v v X % v v
Feature clustering v % % % X v
Sample clusters enrichment tests

74 X 74 X 74 X
(clinical data)
Feature clusters enrichment tests v v X v v v
Survival analysis v X % X v v
Biomarker discovery v % X % X v
Automatic decision tree generation v X X X X X
Inter-omic correlation identification v X X X v X
Integrative multi-omic sample

%4 X X X X X

clustering

Table 4.3: Comparison of the main functions provided by PROMO and by other tools
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5. Discussion

Cancer is a common and heterogeneous group of diseases, which poses significant health and
economic burden on the world's population. The basis of cancer is genetic, and indeed a large
number of genetic aberrations have already been linked to various types of cancer. Our
understanding of cancer biology and its underlying molecular principles is rapidly advancing.
However, we are still far from understanding the full extent of tumor variability and therefore in
many cancers, treatment is still guided by coarse clinical parameters such as tumor size,
histological grade, and lymph node status, and in many cases, only traditional non-specific

treatments, such as surgery, chemotherapy and radiation therapy, are available.

For several decades, stratifying patients into clinically distinct subgroups has been a leading
strategy for promoting cancer diagnosis and treatment. By this approach, for each cancer type,
patients with similar clinical characteristics were grouped together into a designated subtype,
which served as a focal point for treatment development. Over time, each subtype was further
characterized by its distinguishing properties, prognosis, and response to treatment. However,
since only a small number of mainly phenotypic properties were available for each patient, the
subgroups defined for many cancer types were crude and did not necessarily reflect a unique

underlying genetic makeup that could be used for the development of targeted drugs.

With the emergence of high-throughput omic technologies, a wealth of biological data became
available for characterizing tumor samples in much greater detail. Cancer projects such as TCGA
[79], GDC [211], ICGC [212] as well as the GEO[199] database, provide many thousands of omic
profiles and extensive clinical information on cancer patients [213]. The increased number of
samples, combined with the large number of features provided by the new omic technologies,
started fueling the revolution of precision medicine, by (1) allowing the definition of more
accurate, molecular-based classification for each cancer type, (2) identification of subtype-
specific informative biomarkers for improving diagnostics and prognosis, and (3) suggesting

subtype-specific targets for drug development.

Our aims in this thesis were to take part in advancing precision medicine by utilizing the currently
available multi-omic cancer data for improving the classification of breast and skin cancers into
clinically distinct subtypes, as well as to create a software tool for assisting others in carrying a
similar task on other cancer datasets. To achieve these aims, we used a strategy that integrates
omic and clinical information for identifying clinically significant subgroups. The strategy includes

the following principal steps:
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e  Cluster the tumor samples into groups based on the top variable features. Since our goal
was to improve the currently accepted classification of cancers, the number of clusters
was selected to be larger than the number of currently accepted subtypes by 1 or 2.

e Cluster the top variable features into a small number of profiles.

e C(linically characterize the resulting sample clusters by performing enrichment and
survival analysis using the available clinical information for each sample.

e Use gene enrichment analysis on the feature clusters for identifying the active gene
functions characterizing each sample cluster.

e Identify distinguishing features that can be used as subtype biomarkers.

This workflow took shape during our breast cancer study, and it was eventually implemented in
the software tool PROMO. When applied to several cancer datasets, it seemed to identify the
main structure rapidly. During the course of the study on the breast and melanoma dataset, we

have encountered several issues and challenges:

e The large dataset size, ambiguity in some of TCGA's clinical labels, the unknown effect of
preprocessing on clustering results and the initial absence of adequate tools for
visualizing and analyzing large genomic datasets at the beginning of the work posed a
technical challenge in analyzing the data.

e The notion of a subtype was not well defined and required further clarification in our
context — eventually, we converged into a definition by which a cancer subtype is a group
of patients sharing a distinct genomic profile and distinct survival risk, which must also
be large enough to serve as a target population for drug development. We acknowledge
that this definition is far from perfect, but we found it of practical utility.

e In each of the analyses of the breast and skin cohorts, we had to decide on which omic
to focus, out of the several omics provided by TCGA. In both cases, we selected to focus
on RNA-Seq gene expression data. The data were available for a larger number of
samples, better corresponded with previously known subtyping of the cohort, and
enabled a better separation of the samples based on survival analysis. Perhaps the better
match to survival was because gene expression data capture better the signal ofimmune
activity, which appears to be associated with survival in the two cancer cohorts we
investigated.

o The limited number of patients in the cohort that had long-range follow-up data was the

main limiting factor in identifying finer cancer prognostic subtypes.
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e Validation of identified subtypes on a second dataset is challenging, due to differences
in value distribution between omic technologies and due to differences in patient
distributions between cohorts, which might cause over/under-representation for certain

cancer subgroups.

Overall, it is expected that future datasets containing larger sample size, feature resolution and
follow-up time would enable us to significantly identify even finer cancer subgroups with a

distinct molecular profile.

Interestingly, in the two cancer datasets that we analyzed, breaking the samples into finer
subgroups also highlighted specific biological signals whose expression or methylation pattern
distinguished patients of different outcomes. In the breast cancer dataset, the luminal-A samples
were divided into finer subgroups by gene expression pattern of T cell activation, and by
methylation pattern of developmental genes. In the melanoma dataset, TCGA's Keratin subgroup
was divided into finer subgroups based on a melanogenesis expression pattern. This

demonstrates the power of our strategy.

Still, the approach we utilized in this thesis for cancer subtyping also has limitations that are
important to recognize. Firstly, our analyses rely on TCGA's bulk transcriptomic and epigenetic
data. Bulk data measure the averaged expression (methylation) levels of genes (CpGs) across a
large population of sample cells [59]. It is very efficient in identifying a global, dominant genomic
signature in a mixture of sample cells, but cannot capture differences between the
subpopulation of cells that compose the sample. Intra-tumor heterogeneity has been shown to
play an important role in cancer subtyping and treatment, and should also be accounted for in
future studies, perhaps by utilizing single cell sequencing technologies [59][214][215]. Intra-
tumor heterogeneity can also explain in part the discrepancies between our results and
commonly used classifications such as PAMS50 Further, stratifying a large collection of highly
variable tumors into a small number of distinct mutually-exclusive subtypes is crucial for
simplifying diagnosis and treatment. However, some tumors cannot be directly assigned to one

subtype as they bear characteristics of more than a single subtype [216].

We focused in our analysis on gene expression and methylation profiles, but additional types of
omic data have been shown to reveal cancer subtypes. In particular, genomic alternations and
their use in cancer subtyping were thoroughly explored in the two TCGA papers on breast
cancer[142] and melanoma[48] on which our studies relied. Our analysis using expression and
methylation data managed to extract novel clinically relevant insights out of the data. We hope

that extending the analysis to additional omics and to joint analysis of multiple omics can reveal
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stronger and clearer insights in the future. We now turn to discuss each one of the three thesis

projects independently.

5.1. Breast cancer subtypes

Gene expression profiling has become a useful tool for breast cancer classification and for the
direction of treatment [217]. Whereas the HER2-enriched and the basal-like subgroups are well
defined and indicative for anti-Her2 and chemotherapy treatment respectively, the ER-positive
luminal subgroup still presents a clinical challenge. In general, all luminal tumors are candidates
for anti-hormonal therapy. However, some tumors within this class, often with more
proliferative potential and conferring poorer outcome, are considered for additional therapy.
Accordingly, the common classification based on the molecular intrinsic subtypes divides the
luminal tumors into the better outcome luminal-A and the more proliferative, worse outcome
luminal-B subgroups. However, this classification is sub-optimal for clinical decisions because the
luminal tumors present a phenotypic and prognostic range rather than an exact partition to

either group.

In our study, we applied unsupervised analysis on breast tumor samples using both expression
and methylation profiles in order to reveal new genetic and epigenetic patterns that correlate
with a clinical outcome, and compared them to the PAM50 subtypes. Overall, our analyses
showed that the separation between luminal-A and luminal-B (as represented by PAM50 labels)
is not clear-cut, but rather represents a phenotypic continuum (as previously observed [24]
[218]-[77]). In fact, each of the gene expression and methylation datasets used in our analysis
separately enabled partitioning of the luminal samples into groups showing better prognostic

value than that of PAMS50.

Furthermore, when we focused on the PAM50-designated luminal-A samples only, the RNA-Seq
expression profiles could split the luminal-A samples into two subgroups (Figure 2.3A). The
Lobular-enriched LumA-R2 sample group, characterized by a distinct gene over-expression
pattern, was associated with significantly reduced recurrence risk compared with the more
proliferative LumA-R1 subgroup. Interestingly, genes constituting that over-expression pattern
were significantly enriched for functions related to the immune system, including the more
specific enrichment of chemokines and genes of up-stream T cell receptor signaling pathways.
We postulate that the significantly elevated mRNA levels of immune-related genes in LumA-R2

samples are indicative of increased infiltration levels of immune system cells into these tumors.
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Typically, chemokines serve as ligands that by binding to their corresponding receptors, attract
immune system cells to the site where they are secreted [219] [220]. LumA-R2 samples over-
expressed several chemokines and their corresponding receptors. The simultaneous over-
expression of both the chemokine CCL5 (previously found to be highly expressed by breast
cancer cells [221]) and one of its receptors — CCR5 (expressed among others by CD8+ Cytotoxic
T Cells), suggests that tumor cell-derived CCL5 attracts CD8+ cytotoxic T lymphocytes (CTLs) to
LumA-R2 tumors. Similarly, the over-expressed chemokines CCL19 and CCL21 may be expressed
by the tumor cells, whereas their CCR7 receptor may be expressed by licensed DC or (less

typically) by naive and central memory T Cells.

In line with this possibility, the over-expressed genes in LumA-R2 samples included genes typical
of CTLs (and also NK cells), which may lead to anti-tumor cytotoxic activities exerted by the
granzyme (GZMA and GZMB) and perforin pathways (PRF1). Accordingly, over-expression of T
cell activation genes was also detected in LumA-R2 patients. Notably, the over-expressed genes
are concentrated at the upstream part of the T cell receptor signaling pathway (Figure 2.4). At
this stage, it is not clear why down-stream effectors are not enriched in LumA-R2 samples,
however, it is of interest to see that the alpha chain of IL-15R was over-expressed in these
samples, suggesting that T cell activation processes may indeed come into effect in this sub-

group of patients.

How could the over-expression of the immune genes by LumA-R2 samples be related, if at all, to
reduced tumor recurrence? It is possible that only LumA-R2 tumors can release chemo-
attractants that induce the migration of antigen-specific, possibly beneficial, leukocyte sub-
populations to the tumor site. Despite recent reports associating tumor-infiltrating lymphocytes
with a better prognosis [222] [223] [224], it is yet to be determined how enhanced immunogenic
activity in the LumA-R2 tumors may improve their outcome. Possibly in the future, this LumA-R2

characteristic pattern may direct emerging immune checkpoint related therapies [225].

The role of epigenetic regulation in malignant processes is increasingly recognized. Indeed, our
analysis of DNA methylation data partitioned the breast tumor samples into four clusters
showing only moderate agreement with the expression based PAM50 subtypes. In line with
previous studies [36][226], one cluster showed a hypo-methylation pattern and corresponded
with the PAMS50 basal-like subgroup that was associated with poorer outcome. However, the
luminal samples did not cluster neatly into the PAMS50 luminal-A and luminal-B subgroups.
Instead, three luminal clusters with increasing methylation levels were obtained (Clusters 1-3 in

Figure 2.5A), of which the most hyper-methylated cluster was associated with a significantly



87

poorer five-year prognosis. In fact, even when we clustered only the luminal-A samples (Figure
2.5C), the hyper-methylated cluster 1 (LumA-M1) still had significantly poorer survival compared

to the other two clusters (LumA-M2 and LumA-M3).

Notably, the top 1000 differentially methylated CpG loci, all hyper-methylated on LumA-M1
samples, showed enrichment for genes involved in morphogenesis, differentiation, and
developmental processes. Moreover, the CpG hyper-methylation correlated with under-
expression of developmental genes, including various tumor suppressor genes. Indeed, hyper-
methylation of developmental genes in luminal breast tumors was previously reported [227]
[228], secondary to repressive histone marks, which direct de-novo methylation. Moreover,
hyper-methylation was implicated in normal processes of cell aging and in tumorigenesis [61].
Taken together, the methylation-based analysis suggests poorer outcome for luminal tumors
showing a characteristic hyper-methylation pattern, whether in the luminal-A or in the luminal-
B subgroups. The hyper-methylation associated silencing of developmental and tumor
suppressor genes may indeed explain these findings. More importantly, within the luminal-A
subgroup that is generally associated with a better outcome, the hyper-methylation pattern of
the LumA-M1 subgroup marks 84 samples (composing 22% of the 378 luminal-A samples) as a

high-risk patient group that might benefit from more aggressive treatment.

Lastly, we showed that the sample partitions induced by the gene expression and DNA
methylation patterns are related (p = 4.4E-08, see the lower bar on Figure 2.5C), mainly because
the better outcome LumA-M3 samples are enriched for LumA-R2. However, our attempts to
partition the luminal-A samples based on both patterns together did not yield a partition that is
better than the separate partitions in terms of survival prediction or clustering stability. This
observation was confirmed by Cox multivariate analysis showing the independent prognostic
contribution of each pattern to outcome prediction (Table 2.5), suggesting that gene expression
and methylation hold complementary information, reflecting different aspects of the biological

complexity of breast tumors.

Recently, several novel partitions of luminal breast tumors were proposed [19][65][230]. The
partitions identified in our study are reinforced by partial though significant similarity to some of
the newly defined groups. LumA-R1 and LumA-R2 clusters are enriched for the Proliferative
(p=8.1e-04) and Reactive-like (2.4-e04) classes respectively of ILC (Invasive Lobular Carcinoma)
tumors, as defined in [229] (see Supplementary Information, section 12). Furthermore, the
LumA-M1 cluster is enriched (p=1.6e-07) for the poorer outcome Epi-LumB group, described by

Stefansson et al. [226] (named Epi-LumB, as it was largely composed of luminal-B samples, see
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Supplementary Information, section 13). Additional research is needed in order to consolidate
the different partitions identified using different procedures into robust and meaningful

categories for prognostic and diagnostic use in clinics.

5.2. SKin cancer subtypes

Our computational analysis of the 474 melanoma expression profiles identified four clinically
distinct subgroups. The identified groups (Table 3.1) showed significant correspondence to
TCGA's transcriptomic classification[48]; however, TCGA's keratin subgroup was split in our
analysis into a keratin subgroup, composed mainly of primary tumors (cluster 2), and a

melanogenesis-high subgroup, composed mainly of high-risk metastatic melanomas (cluster 4).

Three gene expression signatures stratified the melanoma samples into the four clinically distinct
subgroups: Patients in Cluster 1, characterized by high expression of immune genes, had the best

survival, in agreement with previous reports in melanoma and other cancer types [48] [198].

Patients in Cluster 2, characterized by a high expression of keratin related genes, had the worst
survival. That cluster contained mostly primary samples. As noted in [48], the poor survival can

be attributed to the size bias of primary melanomas in the TCGA cohort.

The third expression pattern, which was of greatest interest to us, was enriched for
melanogenesis and melanosome-related genes and distinguished the two, metastasis-enriched,
clusters 3 (“Melanogenesis-low”) and 4 (“Melanogenesis-high”). Patients with high levels of the
melanogenesis pattern were included in Cluster 4 and had a worse survival rate compared to
those in Cluster 3, who had low levels. The association between over-expression of
melanogenesis genes and poorer prognosis can be explained by several hypotheses: (1)
Trafficking of miRNA or other agents within secreted melanosomes by melanoma cells to its
environment can make it more hospitable for melanoma progression [172]; (2) Making the tumor
resilient to chemotherapy, due to the drug-detoxifying properties of melanogenesis genes
[173][231]; or (3) Removal of anticancer drugs from the melanoma cells by melanogenesis
related transporters effluxing drugs outside of cells [232][233]. The latter hypothesis can be
backed by the fact that in our analysis, samples of the Melanogenesis-high cluster overexpressed
ABC transporters such as ABCB5 and ABCC2 [232] (Table S2.4). Our validation on samples from
patients found that secretion of melanosomes to the surrounding tissues occurs both in primary
melanoma (with clear gradient) as well as in metastatic melanoma. We, therefore, hypothesize

that the reduced survival rate that characterizes the "Melanogenesis-high" subgroup is
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associated with the significantly higher activation of the melanogenesis pathway in these

patients, as opposed to the "Melanogenesis-low" subgroup.

The importance of keratin, immune and melanogenesis expression patterns in classifying
melanoma tumors was also recognized in previous studies aimed at molecularly stratifying
melanoma tumors. In 2010, Jonsson et al. identified four expression-based subgroups by
analyzing 57 stage IV melanomas taken from patients[234]. These subgroups, later named 'Lund’,
were called 'normal-like’, 'high-immune', 'pigmentation’, and 'proliferative' sample subgroups.
The normal-like group was characterized by over-expression of keratin genes (KRT17, KRT10, and
KRT80); the high-immune group overexpressed immune genes (CCL13 and CD209), and the
pigmentation group showed overexpression of melanogenesis genes (MITF, TYR, DCT, and
MLANA). The proliferative group showed under-expression of the three signatures. The
subgroups showed significant survival differences and were confirmed on additional patient
cohorts [235][236][237]. These results support the potential utility of biomarkers for the three

expression patterns in classifying melanoma tumors into clinically distinct subtypes.

We trained a simple decision tree for classifying melanoma samples into one of the four
subgroups. Our tests showed that a three-gene decision tree gave a good balance between
classifier simplicity and accuracy. Although inferior in accuracy to more complex classifiers like
SVM, a three-gene decision tree is easier to interpret biologically, easier to translate into a useful
diagnostic kit in the future, and also captures the hierarchy of biological signals we identified in
the data. A drawback for using a decision tree is that its thresholds depend on the distribution
of the training data, and therefore must be recalculated before the tree can be applied to other

datasets.

Across multiple training runs, the trees produced tended to select one representative predictor
gene from each of the three expression signatures. Key predictor genes, as well as their other
signature representatives, were experimentally validated on a new cohort of melanoma taken
from patients. Although limited in scope, the validation showed that the predictor genes differed
in their protein expression levels among melanoma samples and confirmed the association of

predictor levels with outcome. More substantial validation should be conducted.

We hope that classifiers such as the one suggested here will be translated in the near future into
accurate and accessible diagnostic kits for improving the diagnosis and prognosis of melanoma

tumors.
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5.3. PROMO

Our vision in developing PROMO was to create a one-stop-shop for mining clinically important
insights from large omic datasets, quickly and without any need for programming skills. A
thorough analysis of these datasets - and larger ones expected in the future - by many
researchers is crucial for improving cancer diagnosis and treatment. However, the analysis of
such data is challenging and requires advanced bioinformatics, statistical, and programming
skills. PROMO accelerates the analysis process and makes it more accessible for non-
computational cancer researchers. Within a single short session, the user can import a cancer
dataset of interest, preprocess it, cluster its samples and features, test the sample clusters for
significance using survival analysis and enrichment tests on the clinical labels, test the feature
clusters for GO enrichment, identify subtype distinguishing features (biomarkers) using various
statistical tests and export the results using various reports and figures. The simple classification
capabilities in PROMO can automatically produce a decision tree classifier for any selected label

and thus act as a basis for a subtype diagnosis.

We intend to continue developing PROMO by adding features and supporting the tool's users.
We hope that PROMO’s comprehensiveness and ease of use will help cancer researchers make

the best use of the accumulating cancer datasets to fulfill the promises of precision medicine.
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7. Supplementary Information

7.1. Supplement 1: Breast cancer subtypes

7.1.1. Datasets used and global RNA-Seq dataset analysis (Normal +

Tumor)

Datasets

TCGA's Breast Cancer datasets were downloaded from the UCSC cancer browser website in

March 2015.
Technology | Dataset title DatasetID #Samples Dataset version
Gene TCGA breast invasive BRCA gene expression | 1215 2015-02-24
Expression carcinoma (BRCA) gene (IluminaHiSeq)

- RNA-Seq expression by RNAseq
(IlluminaHiSeq)

DNA- TCGA breast invasive BRCA 872 2015-02-24
Methylation | carcinoma (BRCA) (Methylation450k)

array (HumanMethylation450)

Gene TCGA breast invasive BRCA gene expression | 597 2015-02-24
Expression carcinoma (BRCA) gene (AgilentG4502A_07_3)

- expression

MicroArrays | (AgilentG4502A_07_3 array)

Table S1.1A: Properties of datasets used in the study.
Obtaining the RNA-Seq dataset and initial sample preprocessing

RSEM normalized version of TCGA's BRCA RNA-SEQ expression dataset was used in the following
analyses. Updated RNA-SEQ based PAMSO calls for TCGA BRCA samples were obtained from UNC

University.

Sample preprocessing: Downloaded dataset contained 1215 samples of which the following

were removed based on supplied labels: 19 — Unknown tissue site, 11 Male, 7 metastatic
samples, 30 Unavailable UNC_Pam50 labels. The preprocessed dataset contained 1148 samples,
of which 113 are normal based on the 'sample type' field, and 150 are normal based on 'PAMS50

call'.
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Distribution of PAMS50 calls on the preprocessed RNA-Seq expression dataset

Total number of samples after preprocessing: 1148

PAMS5O0 label Number of samples
Basal 183

Her2 78

LumA 534

LumB 203

Normal 150

Total 1148

Table S1.1B: distribution of PAMS50 labels on TCGA's RNA-Seq dataset
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Figure S1.1A: PCA of 1148 breast samples based on 2000 top variable genes, colored by PAMS50 labels
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Clustering the samples based on RNA-SEQ data

The K-Means clustering algorithm was executed on the 1148 samples using the 2000 top variable
genes. Matlab v8.5 implementation of the K-Means algorithm was used using correlation-based

distance metric, and 100 replicates. Rows (genes) were standardized before the sample

clustering.
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Figure S1.1B: PCA of 1148 breast samples based on 2000 top variable genes, colored by K-Means clusters.
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RNA-Seq Clusters Total 1 2 3 4 5
n=1148 n=360 n=217 n=201 n=193 n=177
Age (Median) 58 62 57 58 53 54
ER Status NA 160 (14%) | 28 ( 8%) 2 ( 1%) 8 ( 4%) 7( 4%) | 115 (65%)
Negative 227 (20%) | 3( 1%) 7 ( 3%) 53 (26%) | 159 (82%) | 5( 3%)
Positive 761 (66%) | 329 (91%) | 208 (96%) | 140 (70%) | 27 (14%) | 57 (32%)
PR Status NA 163 (14%) | 29 ( 8%) 4 ( 2%) 6 ( 3%) 9(5%) | 115 (65%)
Negative 326 (28%) | 35(10%) | 21(10%) | 86(43%) | 171(89%) | 13 ( 7%)
Positive 659 (57%) | 296 (82%) | 192 (88%) | 109 (54%) | 13( 7%) | 49 (28%)
Her2 Status NA 391 (34%) | 81(23%) | 73(34%) | 37 (18%) | 57 (30%) | 143 (81%)
Negative 649 (57%) | 260 (72%) | 137 (63%) | 89 (44%) | 132 (68%) | 31 (18%)
Positive 108 ( 9%) | 19 ( 5%) 7 ( 3%) 75(37%) | 4( 2%) 3( 2%)
PAM50 Basal 183 (16%) | 0( 0%) 0 ( 0%) 3( 1%) 180 (93%) | 0( 0%)
Her2 78 ( 7%) 0 ( 0%) 0 ( 0%) 78 (39%) 0 ( 0%) 0 ( 0%)
LumA 534 (47%) | 242 (67%) | 212 (98%) | 37 (18%) | O ( 0%) 43 ( 24%)
LumB 203 (18%) | 117 (33%) | 5( 2%) 80 (40%) | 1( 1%) 0 ( 0%)
Normal 150 (13%) | 1( 0%) 0 ( 0%) 3( 1%) 12 ( 6%) | 134 (76%)
Pathologic stage | NA 120 (10%) | 1( 0%) 2 ( 1%) 2 ( 1%) 2(1%) | 113(64%)
Stage | 176 (15%) | 64 (18%) | 53(24%) | 18( 9%) | 29(15%) | 12( 7%)
Stage 11 589 (51%) | 202 (56%) | 108 (50%) | 118 (59%) | 134 (69%) | 27 ( 15%)
Stage 11 234 (20%) | 81(23%) | 49(23%) | 58(29%) | 23(12%) | 23(13%)
Stage IV 16 ( 1%) 5( 1%) 1( 0%) 5( 2%) 4 ( 2%) 1( 1%)
Stage X 13 ( 1%) 7( 2%) 4( 2%) 0 ( 0%) 1( 1%) 1( 1%)
Histological type | Infiltrating Ductal | 753 (66%) | 272 (76%) | 107 (49%) | 182 (91%) | 166 (86%) | 26 (15%)
Carcinoma
Infiltrating Lobular | 182 (16%) | 40 (11%) | 95(44%) | 11( 5%) 1( 1%) 35 (20%)
Carcinoma
Medullary Carcinoma 5 ( 0%) 0 ( 0%) 0 ( 0%) 1( 0%) 4( 2%) 0 ( 0%)
Metaplastic Carcinoma 4 ( 0%) 0 ( 0%) 0 ( 0%) 1( 0%) 3( 2%) 0 ( 0%)
Mixed Histology 29 ( 3%) 15 ( 4%) 8 ( 4%) 3( 1%) 1( 1%) 2( 1%)
Mucinous Carcinoma 16 ( 1%) 15 ( 4%) 0 ( 0%) 1( 0%) 0 ( 0%) 0 ( 0%)
NA 159 (14%) | 18( 5%) 7( 3%) 2( 1%) 18 ( 9%) | 114 (64%)

Table S1.1C: Cohort description for the global RNA-Seq dataset analysis (Normal + Tumor)
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Comparing resulting clusters to PAMS50 labels

Distribution of PAM50 labels on clusters
(Chi-square pValue: 0.0e+00) (Global Jaccard: 0.372)
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Figure S1.1C: Distribution of PAM50 labels among sample clusters
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Figure S1.1D: p-values of the hypergeometric enrichment of resulting clusters for PAMS50 labels
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Evaluation of expression distribution in cluster 1 samples versus cluster 2 samples
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Figure S1.1E: Distribution of normalized expression values by sample cluster.

When applying rank-sum test on the top 2000 variables genes, testing for difference in means
between samples of cluster 1 (n=360) and samples of cluster 2(n=217), 1421 genes out of 2000

passed the test with p-value<0.01.

All genes passing the test 1421

Genes overexpressed on clusterl compared | 229

to cluster2

Genes overexpressed on cluster2 compared | 1184

to clusterl

Genes with FC==0 8

Table S1.1D: Analysis of differentially expressed genes
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Volcano plot for 1421 genes passing Ranksumtest
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Figure S1.1F: Differentially expressed genes between cluster 1 and cluster 2

7.1.2. RNA-Seq luminal samples analysis
Zooming into the luminal samples, we applied unsupervised analysis only on samples labeled as

either luminal-A or luminal-B by PAM50.

Sample preprocessing: In this step of the analysis we started with the 1215 samples included in

the TCGA's BRCA RNA-Seq dataset and removed the following samples: 19 — Unknown tissue
site, 11 Male, 7 metastatic, 30 Unavailable PAM50 labels, 113 normal sample type, 37 normal by
PAMS50. From the Remaining with 988 samples we kept only the 737 luminal samples (534
luminal-A and 203 luminal-B based on PAM50 labels).

Gene preprocessing: We kept only the top 2000 variable genes over the 737 luminal samples.

Unsupervised method: As described in the previous section, K-Means (distance metric:

correlation) with K=2 applied on the 737 samples using the 2000 top variable genes (after row

standardization).

We then compared the sample partition induced by our clustering, to the PAM50 luminal-

A/luminal-B partition using log-rank tests and show that our RNA-Seq based partition
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outperforms PAMS50's partition in terms of both survival and recurrence, and in both 5-year and

overall time spans.

OVERALL Survival and Recurrence

RNA-SEQ Clusters PAMS50's LuminalA/LuminalB
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Figure S1.2A: Overall survival and recurrence plots for K-Means clusters versus PAM50 luminal-A/luminal-B classification
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RNA-Seq Clusters Total 1 2
n=737 n=382 n=355
Age (Median) 60 62 56
ER Status NA 33 ( 4%) 27 ( 7%) 6 ( 2%)
Negative 14 ( 2%) 4( 1%) 10 ( 3%)
Positive 690 ( 94%) 351 (92%) 339 (95%)
PR Status NA 36 ( 5%) 28 ( 7%) 8 ( 2%)
Negative 87 (12%) 44 ( 12%) 43 (12%)
Positive 614 (83%) 310 (81%) 304 (86%)
Her?2 Status NA 195 (1 26%) 77 (20%) 118 ( 33%)
Negative 486 ( 66%) 270 ( 71%) 216 (61%)
Positive 56 ( 8%) 35 ( 9%) 21 ( 6%)
PAMS50 LumA 534 ( 72%) 207 (54%) 327 (92%)
LumB 203 (28%) 175 ( 46%) 28 ( 8%)
Pathologic stage | NA 3 ( 0%) 1( 0%) 2 ( 1%)
Stage | 137 (19%) 54 ( 14%) 83 (23%)
Stage Il 396 ( 54%) 224 (59%) 172 (48%)
Stage IlI 179 ( 24%) 90 ( 24%) 89 ( 25%)
Stage IV 10 ( 1%) 6 ( 2%) 4( 1%)
Stage X 12 ( 2%) 7 ( 2%) 5 ( 1%)
Histological type | Infiltrating Ductal Carcinoma | 504 (68%) 307 (80%) 197 (55%)
Infiltrating Lobular | 163 (22%) 29 ( 8%) 134 (138%)
Carcinoma
Medullary Carcinoma 1( 0%) 0 ( 0%) 1( 0%)
Mixed Histology 27 ( 4%) 15 ( 4%) 12 ( 3%)
Mucinous Carcinoma 16 ( 2%) 15 ( 4%) 1( 0%)
NA 26 ( 4%) 16 ( 4%) 10 ( 3%)

Table S1.2A: Cohort description for the luminal RNA-Seq dataset analysis
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7.1.3. RNA-Seq luminal-A sample analysis

Next, we clustered only the luminal-A samples. Similarly to the previous section, we filtered the
samples further by removing the 203 luminal-B samples based on PAMS50 labels. 534 luminal-A
samples remained. K-Means (distance metric: correlation) with K=2 was applied to the 534

samples using the 2000 top variable genes.

LuminalA Breast Cancer RNA-Seq Dataset [2000 genes x 534 samples]
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Figure S1.3A: Clustering of the luminal-A samples into two clusters
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RNA-Seq Clusters Total 1 2
n=534 n=258 n=276
Age (Median) 60 62 57
ER Status NA 21( 4%) 18 ( 7%) 3( 1%)
Negative 11 ( 2%) 3( 1%) 8( 3%)
Positive 502 ( 94%) 237 (92%) 265 (96%)
PR Status NA 24 ( 4%) 19 ( 7%) 5( 2%)
Negative 50 ( 9%) 21 ( 8%) 29 (11%)
Positive 460 ( 86%) 218 ( 84%) 242 ( 88%)
Her2 Status NA 161 (30%) 62 (24%) 99 (36%)
Negative 347 (65%) 181 ( 70%) 166 ( 60%)
Positive 26 ( 5%) 15 ( 6%) 11 ( 4%)
PAMS50 LumA 534 (100%) 258 (100%) 276 (100%)
Pathologic stage | NA 3( 1%) 1( 0%) 2( 1%)
Stage | 113 (21%) 52 ( 20%) 61 (22%)
Stage Il 282 (53%) 144 ( 56%) 138 (50%)
Stage IlI 121 (23%) 52 ( 20%) 69 ( 25%)
Stage IV 6( 1%) 4( 2%) 2( 1%)
Stage X 9( 2%) 5( 2%) 4( 1%)
Histological Infiltrating Ductal Carcinoma | 331(62%) 188 ( 73%) 143 (52%)
type
Infiltrating Lobular | 152 (28%) 35 (14%) 117 (42%)
Carcinoma
Mixed Histology 21 ( 4%) 12 ( 5%) 9( 3%)
Mucinous Carcinoma 11( 2%) 10 ( 4%) 1( 0%)
NA 19 ( 4%) 13 ( 5%) 6( 2%)

Table S1.3A: Cohort description for the luminal-A RNA-Seq dataset analysis
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Figure S1.3B: Survival and Recurrence analysis for the 2 luminal-A subgroups

Cluster LumA-R2 samples exhibit distinct overexpression pattern

Applied rank-sum test on the top 2000 variables genes, testing for a difference in means

between samples of LumA-R1 (n=258) and LumA-R2 samples (n=276). 1276 genes out of 2000

passed the test with pValue<0.01.

Total number of genes passing the rank sum test 1276
Genes over expressed on clusterl compared to cluster2 194
Genes over expressed on cluster2 compared to clusterl 1068
Genes with zero fold change 5

Table S1.3B: Analysis of differentially expressed genes
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Effect of changing the value of K in the clustering

To test the effect of choice of K in the K-means algorithm on the expression-based subtyping
results, we clustered the 1027 breast cancer expression profiles (excluding the normal samples)
with both k=4 and k=5. The heatmap in the following figure shows the k=5 clustering, and bar A
identifies the five subgroups. Bar B shows the subgroup of each sample when clustering with
k=4. Clusters 1, 4 and 5 on the K=5 clustering correspond almost perfectly to clusters 3, 1 and 2
on the K=4 clustering, respectively. Sample cluster 4 on the K=4 clustering (containing a mixture
of LumA and LumB samples), was split into clusters 2 (mostly LumB) and 3 (mostly LumA) on the
K=5 clustering. Panel D shows the PAM50 classification with the LumA category split into the
subgroups LUumA-R1 and LumA-R2 revealed in this study. We see that the leftmost sample cluster
in A and B, which was identified with both k values, captures very well the 'LumA-R2' samples.
This additional analysis demonstrates the stability of our clustering results: the split of the LumA
samples (and especially the identification of the LumA-R2 subgroup, the orange cluster on bar
D) is repeatedly reproduced when applying clustering on various sample subsets, various feature

subsets (the top variable genes on each sample subsets) and various values of K.

Breast Cancer RNA-Seq (2000 genes x 1027 samples]
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Figure S1.3C: Comparison of clustering of 1027 tumor samples using K=4 and K=5. The heatmap shows the
results of K-Means using K=5 on the expression profiles of 1027 breast tumors. (A) K-means clustering with
K=5. (B) K-means clustering with K=4. (C) PAM50 calls. (D) PAM50 calls with the LumA class split into the two
new LumA subgroups: LumA-R1 and LumA-R2.



124

7.1.4. Validation of luminal-A partition on microarray gene

expression data

In order to verify that the two luminal-A subgroups that were identified using the RNA-Seq data
represent real biological variance rather than measurement or normalization bias, we repeated

the analysis on microarray-based gene expression data.

TCGA's Microarray gene expression data were downloaded from the Cancer Browser website.
The original dataset contained 597 samples x 17814 genes. We removed 11 samples (6 Male, 3

Metastatic and 2 having unknown tissue site) and remained with 586 samples.

Samples were clustered using the same protocol described for the RNA-Seq dataset (K-means
algorithm applied using correlation distance after row normalization). Similarly to the Global
RNA-Seq analysis. Luminal-A samples were split between a mixed luminal-A/luminal-B cluster

(cluster 1) and a rather homogenous cluster (cluster 2).

Breast Cancer Gene ExpressionDataset (2000 genes x 586 samples]
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Figure S1.4A: Global unsupervised clustering of breast samples using Microarray gene expression data.

When clustering the 265 luminal-A samples in the microarray dataset into 2, the resulting
partition exhibited very high similarity (Chi-square p=1.1e-40) to the luminal-A subgroups
identified based on the RNA-Seq data. When comparing the top 200 genes differentially
expressed on the two-microarray luminal-A subgroups to the top 200 genes differentially

expressed on the two RNA-Seq luminal-A subgroups, 88 genes appeared in the intersection.
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Similarly, to the RNA-Seq based list of differentially expressed genes, the 88 genes also were
enriched for GO terms such as immune system process, cell differentiation and T-Cell receptor

related terms.

We, therefore, conclude that the signal observed on the RNA-Seq data, splitting the luminal-A

samples into two distinct subgroups is not an artifact of either the measurement technology or

the normalization used by TCGA.
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Figure S1.4B: Clustering microarray expression profiles of luminal-A samples into two and comparison to the
LumA-R subgroups identified on RNA-Seq dataset.
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7.1.5. Differentially Expressed Gene Analysis (LUumA-R1 vs. LUmA-

R2)

Gene enrichment tests on the top 1000 differentially expressed genes

We started our analysis of differentially expressed genes between the two subgroups identified

using RNA-Seq data within luminal-A samples, by generating a list of the top 1000 DEGs using

the rank-sum test p-value, and a requirement for a minimum mean difference of 0.5.

Interestingly, all 1000 genes were overexpressed in LumA-R2 compared to LumA-R1.

We then used the Expandar[122] suite to detect significant enrichments for Gene ontology

terms[118], KEGG pathways[119] and Wiki-pathways[120]. The results are listed below:

Gene ontology enrichments detected using Expander TANGO on the list of 1000 DEGs

Gene Ontology Term #Genes Enrichment TANGO
significance corrected
(pValue) pvalue
regulation of immune system process - GO:0002682 152 3.74E-50 | 1.00E-05
immune system process - GO:0002376 201 3.65E-47 | 1.00E-05
regulation of leukocyte activation - GO:0002694 71 2.37E-28 | 1.00E-05
regulation of multicellular organismal process - GO:0051239 183 2.89E-28 | 1.00E-05
cell activation - GO:0001775 91 459E-28 | 1.00E-05
regulation of response to external stimulus - GO:0032101 73 8.18E-27 | 1.00E-05
regulation of biological quality - GO:0065008 218 1.82E-26 | 1.00E-05
leukocyte activation - GO:0045321 67 1.95E-26 | 1.00E-05
positive regulation of cell activation - GO:0050867 56 5.13E-24 | 1.00E-05
T cell activation - GO:0042110 45 493E-22 | 1.00E-05
regulation of cell proliferation - GO:0042127 128 1.83E-21 | 1.00E-05
regulation of response to stress - GO:0080134 91 1.91E-19 | 1.00E-05
chemical homeostasis - GO:0048878 93 6.50E-19 | 1.00E-05
hemopoiesis - GO:0030097 60 6.63E-19 | 1.00E-05
cell migration - GO:0016477 79 9.97E-19 | 1.00E-05
locomotion - GO:0040011 110 1.13E-18 | 1.00E-05
immune response-regulating cell surface receptor signaling 36 2.88E-18 | 1.00E-05
pathway - GO:0002768
lymphocyte differentiation - GO:0030098 37 3.09E-18 | 1.00E-05
leukocyte migration - GO:0050900 43 1.10E-17 | 1.00E-05
regulation of cytokine production - GO:0001817 58 8.45E-17 | 1.00E-05
positive regulation of cell proliferation - GO:0008284 79 1.46E-16 | 1.00E-05
cell differentiation - GO:0030154 194 2.08E-16 | 1.00E-05
biological adhesion - GO:0022610 90 6.97E-16 | 1.00E-05
response to organic substance - GO:0010033 155 8.13E-16 | 1.00E-05
calcium ion homeostasis - GO:0055074 43 1.11E-15 | 1.00E-05
cellular response to cytokine stimulus - GO:0071345 60 2.42E-15 | 1.00E-05
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cellular response to chemical stimulus - GO:0070887 137 3.04E-15 | 1.00E-05
immune effector process - GO:0002252 41 1.72E-14 | 1.00E-05
regulation of cell migration - GO:0030334 55 3.10E-14 | 1.00E-05
regulation of acute inflammatory response - GO:0002673 20 4.06E-14 | 1.00E-05
hemostasis - GO:0007599 62 4.15E-13 | 1.00E-05
negative regulation of biological process - GO:0048519 213 1.29E-12 | 1.00E-05
positive regulation of signaling - GO:0023056 83 1.55E-12 | 1.00E-05
response to external stimulus - GO:0009605 104 2.20E-12 | 1.00E-05
blood circulation - GO:0008015 39 9.70E-12 | 1.00E-05
regulation of behavior - GO:0050795 28 1.21E-11 | 1.00E-05
positive regulation of cellular component movement - 37 1.54E-11 | 1.00E-05
GO0:0051272

regulation of adaptive immune response - GO:0002819 23 2.43E-11 | 1.00E-05
regulation of cell differentiation - GO:0045595 89 3.88E-11 | 1.00E-05
negative regulation of sequestering of calcium ion - 13 5.22E-11 | 1.00E-05
G0:0051283

regulation of cell death - GO:0010941 107 5.51E-11 | 1.00E-05
regulation of secretion - GO:0051046 53 5.55E-11 | 1.00E-05
regulation of alpha-beta T cell activation - GO:0046634 18 9.86E-11 | 1.00E-05
regulation of hydrolase activity - GO:0051336 89 1.31E-10 | 1.00E-05
regulation of protein secretion - GO:0050708 25 1.54E-10 | 1.00E-05
humoral immune response - GO:0006959 22 2.04E-10 | 1.00E-05
positive regulation of inflammatory response - GO:0050729 19 2.82E-10 | 1.00E-05
regulation of lymphocyte mediated immunity - GO:0002706 19 1.28E-09 | 1.00E-05
cell chemotaxis - GO:0060326 21 3.53E-09 | 1.00E-05
regulation of protein transport - GO:0051223 36 3.98E-09 | 1.00E-05
positive regulation of metabolic process - GO:0009893 144 5.02E-09 | 1.00E-05
regulation of leukocyte chemotaxis - GO:0002688 16 5.52E-09 | 1.00E-05
vasculature development - GO:0001944 47 7.58E-09 | 1.00E-05
nervous system development - GO:0007399 127 7.73E-09 | 1.00E-05
positive regulation of leukocyte migration - GO:0002687 16 9.39E-09 | 1.00E-05
regulation of transmembrane transport - GO:0034762 45 1.00E-08 | 1.00E-05
positive regulation of molecular function - GO:0044093 104 1.03E-08 | 1.00E-05
negative regulation of multicellular organismal process - 41 1.11E-08 | 1.00E-05
GO0:0051241

Table S1.5A: Gene ontology enrichments detected using Expander TANGO on the list of 1000 DEGs

KEGG PATHWAYS

KEGG Pathway #Genes | p-value Enrichment

Genes

Cytokine-cytokine 56 | 4.76E-22 457

receptor interaction

[ACVRL1, CD40, CXCL9, TNFRSF13B, CXCL2,
CX3CL1, IL18RAP, LEPR, TNFRSF8, IL12B, CCR?7,
CCR5, CCR4, CCR2, PDGFRA, IL15RA, IL11RA,
ILIR2, TNFRSF1B, TGFBR2, IL3RA, KIT, XCL2, XCL1,
LTB, MET, CCL14, CCL13, FIGF, CXCR5, CSF2RB,
CXCR6, IL2RG, EGFR, TPO, CCL5, CXCRS3,
TNFRSF17, CCL19, IL12RB1, CCL17, NGFR, CCL23,
XCR1, CCL21, TSLP, IL10RA, IL6, BMP2, CXCL12,
CD40LG, LEP, FAS, CD27, IL7R, IL18R1]

Hematopoietic  cell 29 | 1.50E-17 7.1

lineage

[CD1E, CD3G, CD1D, CD1C, CD3E, CD1B, CD3D,
TPO, CD19, CD38, CD37, CD36, CD34, CR2, CR1,
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MME, IL11RA, IL1IR2, CD2, FCER2, IL6, CD8B, CD5,
CDS8A, IL3RA, CD7, KIT, IL7R, MS4A1]
Cell adhesion 30 | 4.08E-13 4.84 | [CD40, ICAM2, NRXN2, SPN, CDH5, HLA-DOA, CD34,
HLA-DOB, JAM2, JAM3, CADM3, PDCD1LG2, SELE,
molecules (CAMS) HLA-E, CD2, SELP, CLDN11, CLDN5, PTPRC,
CD40LG, CD6, CD8B, SELL, CD8A, HLA-DPB1,
CLDN19, PECAM1, CD28, CD226, PDCD1]
Primary 16 | 8.70E-13 9.73 | [CD40, CIITA, TNFRSF13B, IL2RG, CD3E, CD3D,
- . CD79A, ZAP70, CD40LG, PTPRC, CD8B, LCK, CD8A,
immunodeficiency CD19, IL7R, JAK3]
Chemokine 31 | 1.14E-09 3.49 | [CCL14, CCL13, ITK, CXCL9, CXCR5, ADCY4,
. . PIK3CD, CXCR6, RASGRP2, CXCL2, CX3CL1, GNG2,
Slgnalmg pathway CCL5, CXCR3, CCR7, CCL19, CCR5, CCL17, CCR4,
JAK3, CCR2, CCL23, XCR1, CCL21, PRKCB, GNG11,
FGR, CXCL12, ELMO1, XCL2, XCL1]
Comp|ement and 17 | 1.36E-08 5.24 | [CR2, CR1, C1S, VWF, F10, CFH, C1R, PROS1, F2R,
coagulation CFI, TFPI, C3, C6, C7, SERPING1, MASP1, A2M]
cascades
T cell receptor 20 | 1.30E-07 3.94 | [ITK, PIK3CD, CD3G, CD3E, CD3D, ZAP70, PTPRC,
. . CD40LG, CD8B, CD8A, LCK, GRAP2, CD28, PAK?7,
Slgnalmg pathway PRKCQ, FYN, CD247, PDCD1, PAK3, LAT]
A||Ograft rejection 11 6.44E-07 6.33 | [CD40, CD40LG, HLA-DPB1, PRF1, CD28, GZMB,
FAS, IL12B, HLA-DOA, HLA-DOB, HLA-E]
Natural Kkiller cell 20 | 5.66E-06 3.13 | [PRKCB, SH2D1A, PRF1, ICAM2, GZMB, PIK3CD,
. PRKCA, HLA-E, ZAP70, NCR3, KLRK1, LCK, PLCG2,
mediated
. FAS, CD48, FYN, CD247, HCST, LAT, CD244]
cytotoxicity
Pathways in cancer 34 1.49E-05 2.2 | [FIGF, LAMA2, EPAS1, TCF7, PIK3CD, PTGS2, GLI1,
ETS1, FGF2, FOXO1, EGFR, GLI2, WNT6, FGF7,
ACVR1C, MECOM, PLCG2, WNT1, RUNX1T1,
PDGFRA, WNT10A, PRKCB, PTCH2, PRKCA, IGF1,
TRAF1, TGFBR2, IL6, BMP2, COL4A4, KIT, FAS,
PPARG, MET]
PPAR signaling 13 | 1.67E-05 4.01 | [ADIPOQ, LPL, AQP7, ACSL5, ACSL4, FABP4,
pathway ACADL, FABP7, PPARG, PLIN1, CD36, PCK1, PLTP]
Autoimmune thyro|d 11 2.39E-05 4.5 | [CD40, TPO, CD40LG, HLA-DPB1, PRF1, CD28,
disease GZMB, FAS, HLA-DOA, HLA-DOB, HLA-E]
Focal adhesion 23 | 6.43E-05 2.46 | [PDGFRA, FIGF, TNXB, VWF, LAMA2, CAV2, PRKCB,
CAV1, PIK3CD, PRKCA, IGF1, EGFR, THBS4, RELN,
TNN, COL4A4, PAK7, ITGA7, COL6A6, FYN, FLNC,
PAK3, MET]
Neuroactive |igand_ 27 | 7.73E-05 2.25 | [PTGER4, PTGFR, HTR2B, ADRB2, HTR2A, P2RYS,
. . EDNRB, CNR2, GRM7, CNR1, S1PR1, LEPR, CTSG,
receptor Interaction S1PR2, GABRE, S1PR4, GRIA4, GABRP, GZMA,
P2RY14, F2R, AVPR2, SSTR1, TACR1, P2RX1, LEP,
F2RL2]

Table S1.5B: KEGG-Pathways enrichments detected using Expander TANGO on the list of 1000 DEGs

WIKI-PATHWAYS

Wiki-Pathway #Genes p-value Enrichment | Genes

[IL15RA, ITK, PSTPIP1, CDB8A,
TCR Signaling Pathway 10 | 1.55E-09 11.8 | GRAP2, CD3G, CD247, CD3E,

CD3D, LAT]

[MAP4K1, BLK, KLF1l, CR2,
B Cell Receptor Signaling Pathway 10 | 1.72E-06 6.45 | PTPRC, IRF4, INPPSD, PLCG2,

HCLS1, ETS1]

[FGR, PDGFRA, FIGF, TNXB,
Focal Adhesion 11 | 5.88E-05 4.11 | RELN, TNN, TXK, COL4A4, PAK?,

MET, THBS4]
Complement Activation, Classical

6 | 8.38E-05 7.51 | [C3, C6, C7,C1S, C1R, MASP1]

Pathway

Table S1.5C: WIKI-Pathways enrichments detected using Expander TANGO on the list of 1000 DEGs
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Gene enrichment test using GOrilla on the gene list ranked by rank-sum test on
LumA-R1 vs. LUmA-R2

To verify our results with a second tool for GO enrichment analysis, we first applied a rank-sum
test on all dataset genes for the testing for a difference in expression means between LumA-R1

and LumA-R2 samples. We then used the test p-values to rank the genes and applied the

GOrilla[124] algorithm on the list composed of 19914 genes.

GO Term Description Enrichment FDR g-value
GO0:0002376 | immune system process 2.18 3.44E-49
G0:0002682 | regulation of immune system process 2.32 4.07E-47
G0:0022610 | biological adhesion 2.47 1.99E-40
GO0:0007155 | cell adhesion 2.47 2.18E-40
G0:0051239 | regulation of multicellular organismal process 1.86 1.60E-38
G0:0030155 | regulation of cell adhesion 2.92 8.32E-38
GO0:0050865 | regulation of cell activation 3.25 1.01E-37
G0:0048583 | regulation of response to stimulus 1.64 1.43E-37
G0:0002684 | positive regulation of immune system process 2.54 8.17E-36
G0:0042127 | regulation of cell proliferation 2.09 4.15E-34
GO:0006955 | immune response 2.25 4.52E-34
G0:0048518 | positive regulation of biological process 1.46 1.94E-33
G0:0002694 | regulation of leukocyte activation 3.24 2.97E-33
GO:0007166 | cell surface receptor signaling pathway 1.85 4.08E-32
GO:0007165 | signal transduction 1.49 4.15E-32
GO0:0051240 | positive regulation of multicellular organismal process 2.09 2.36E-31
G0:0051249 | regulation of lymphocyte activation 3.33 1.33E-30
GO0:0050867 | positive regulation of cell activation 3.69 1.37E-29
GO0:0001775 | cell activation 2.74 1.64E-29
GO0:0034110 | regulation of homotypic cell-cell adhesion 3.55 6.63E-29
G0:0048584 | positive regulation of response to stimulus 1.82 1.20E-28
GO0:0045785 | positive regulation of cell adhesion 3.25 2.00E-28
GO0:0002696 | positive regulation of leukocyte activation 3.67 3.34E-28
G0:0098609 | cell-cell adhesion 2.65 8.75E-28
G0:0022407 | regulation of cell-cell adhesion 3.18 3.87E-27
G0:1903037 | regulation of leukocyte cell-cell adhesion 3.46 4.20E-26
GO0:0051251 | positive regulation of lymphocyte activation 3.68 1.49E-25
GO:0050776 | regulation of immune response 231 1.91E-25
GO0:0050863 | regulation of T cell activation 3.46 3.05E-25
GO0:0045321 | leukocyte activation 3.01 2.00E-24
G0:0016337 | single organismal cell-cell adhesion 2.85 1.22E-23
GO0:0050793 | regulation of developmental process 1.71 1.54E-23
GO0:0034112 | positive regulation of homotypic cell-cell adhesion 3.91 2.40E-23
GO0:0051094 | positive regulation of developmental process 2.03 3.50E-23
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G0:0030154 | cell differentiation 1.8 3.40E-23
G0:1903039 | positive regulation of leukocyte cell-cell adhesion 3.89 3.38E-23
GO0:0050870 | positive regulation of T cell activation 3.89 1.48E-22
G0:0008284 | positive regulation of cell proliferation 2.26 1.84E-22
G0:0098602 | single organism cell adhesion 2.85 1.89E-22
GO0:0006952 | defense response 1.96 2.37E-22
GO0:0048522 | positive regulation of cellular process 1.42 3.21E-22
GO0:0046649 | lymphocyte activation 3.14 5.71E-22
G0:0022409 | positive regulation of cell-cell adhesion 3.54 1.41E-21
G0:0050896 | response to stimulus 1.41 1.72E-21
GO0:0016477 | cell migration 2.27 2.52E-21
GO0:0040011 | locomotion 2.14 3.39E-21
G0:0010033 | response to organic substance 1.75 7.99E-21
G0:0032101 | regulation of response to external stimulus 2.14 1.51E-20
G0:2000026 | regulation of multicellular organismal development 1.81 1.61E-20
G0:0002250 | adaptive immune response 3.71 2.99E-20

Table S1.5D: Gene ontology enrichments identified using the Gorilla tool on the list of differentially

expressed genes (LumA-R1 vs. LumA-R2)
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7.1.6. DNA methylation data analysis on all tumor types

Obtaining the DNA-methylation dataset and initial preprocessing

Obtaining the data: TCGA's DNA-Methylation breast cancer dataset was downloaded from

UCSC's Cancer Browser website. Samples were measured using lllumina's Infinium

HumanMethylation450 BeadChip arrays.

Sample filtering: Started with 872 samples. Removed 8 gender/male, 5 sample type/metastatic,

19 tumor_tissue_site/NA, 98 sample type/normal, 33 PAMS50 call/NA, 30 PAM50 Normal.

Remained with 679 samples.

Distribution of PAMS50 labels in preprocessed Meth450 dataset:

Total after preprocessing: 679

PAMSO0 label |  #Samples
Basal 124
Her2 42
LumA 378
LumB 135
Total 679

Table S1.6A: Distribution of PAM50 labels in TCGA's Meth450 dataset

Probeset filtering: The lllumina Methylation 450K array contains two types of probe chemistries

that may require special normalization. To avoid dealing with integrating the two probe types
and in order to zoom in CpGs characterizing known genes, we used only Infinium | probes that

are also associated with a Gene symbol, keeping 107,639 probes for all further analyses.

Row Normalization: Rows were standardized (centered and normalized) before clustering was

applied on the columns (samples) of the methylation beta matrix.

Sample Clustering: The k-means algorithm was used to cluster the samples, using correlation as

a distance metric.
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Meth450 Clusters Total 1 2 3 4
n=679 n=182 n=160 n=174 n=163
Age (Median) 58 62 58 56 54
ER Status NA 38(6%) | 12(7%) | 7(4%) | 11(6%) | 8(5%)
Negative 144 (21%) | 11( 6%) 3( 2%) 6 ( 3%) 124 ( 76%)
Positive 497 (73%) | 159 (87%) | 150 (94%) | 157 (90%) | 31 (19%)
PR Status NA 41(6%) | 12(7%) | 8(5%) | 11(6%) | 10( 6%)
Negative 202 (30%) | 43(24%) | 11( 7%) | 18(10%) | 130 (80%)
Positive 436 (64%) | 127 (70%) | 141(88%) | 145 (83%) | 23 (14%)
Her2 Status NA 232 (34%) | 57(31%) | 41(26%) | 71(41%) | 63 (39%)
Negative 394 (58%) | 92(51%) | 115(72%) | 95(55%) | 92 (56%)
Positive 53 ( 8%) 33(18%) | 4( 3%) 8 ( 5%) 8 ( 5%)
PAMS50 Basal 124 (18%) | 0( 0%) 0( 0%) 0( 0%) 124 ( 76%)
Her2 42 ( 6%) 14(8%) | 0(0%) 3( 2%) 25 ( 15%)
LumA 378 (56%) | 96(53%) | 119 (74%) | 156 ( 90%) 7( 4%)
LumB 135(20%) | 72(40%) | 41(26%) | 15( 9%) 7( 4%)
Pathologic stage NA 3( 0%) 1( 1%) 1( 1%) 0( 0%) 1( 1%)
Stage | 112 (16%) | 28(15%) | 21(13%) | 43(25%) | 20(12%)
Stage I 382(56%) | 89(49%) | 93(58%) | 89(51%) | 111 (68%)
Stage IlI 172 (25%) | 61(34%) | 43(27%) | 40(23%) | 28(17%)
Stage IV 6 ( 1%) 2( 1%) 1(1%) 1(1%) 2( 1%)
Stage X 4( 1%) 1( 1%) 1( 1%) 1( 1%) 1( 1%)
Histological type Infil. Ductal Carcinoma 461 (68%) | 123 (68%) | 106 (66%) | 96 (55%) | 136 (83%)
Infil. Lobular Carcinoma | 140(21%) | 41(23%) | 33(21%) | 62(36%) 4( 2%)
Medullary Carcinoma 5( 1%) 0( 0%) 0( 0%) 1( 1%) 4( 2%)
Metaplastic Carcinoma 2( 0%) 0 ( 0%) 0( 0%) 0 ( 0%) 2( 1%)
Mixed Histology 24.( 4%) 6( 3%) 11( 7%) 5( 3%) 2( 1%)
Mucinous Carcinoma 14 ( 2%) 7( 4%) 2( 1%) 5( 3%) 0( 0%)
NA 33 ( 5%) 5( 3%) 8 ( 5%) 5( 3%) 15 ( 9%)

Table S1.6B: Cohort description for the Methylation dataset analysis
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Survival and Recurrence KM plots for Meth450 samples based on PAM50 labels
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Figure S1.6A: Survival analysis for Meth450 samples based on PAM50 labels

Clustering Meth450 tumor samples to 4 using top 2000 variable CpGs (Inf I, GS only)
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Figure S1.6B: Clustering the 469 samples of TCGA's Meth450 dataset into 4 subgroups and comparison to PAM50
labels
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Figure S1.6C: Overall and 5-year survival analysis for the four identified Meth450 subgroups

7.1.7. Methylation luminal samples analysis

Clustering Meth450 luminal tumor samples to 3 using top 2000 CpGs (Inf I, GS only)

LuminalBreast CancerMeth450 Dataset (2000 CpGs x 513 samples)

Luminal K-Means Clusters 1

ILums

PAMS0 Luma

Figure S1.7A: Clustering the luminal samples into 3 based on methylation profiles.
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Meth450 Clusters Total 1 2 3
n=513 n=127 n=156 n=230
Age (Median) 59 63 59 56
ER Status NA 30(6%) | 10(8%) | 7( 4%) 13 ( 6%)
Negative 13 ( 3%) 6 ( 5%) 2( 1%) 5 ( 2%)
Positive 470 (92%) | 111 (87%) | 147 (94%) | 212 (92%)
PR Status NA 31(6%) | 10(8%) | 8( 5%) 13 ( 6%)
Negative 62 (12%) | 25(20%) | 14( 9%) | 23 (10%)
Positive 420 (82%) | 92(72%) | 134 (86%) | 194 ( 84%)
Her?2 Status NA 171(33%) | 41(32%) | 40(26%) | 90 (39%)
Negative 309 (60%) | 71(56%) | 104 (67%) | 134 (58%)
Positive 33 ( 6%) 15 (12%) | 12( 8%) 6 ( 3%)
PAMS50 LumA 378 (74%) | 76 (60%) | 98 (63%) | 204 (89%)
LumB 135(26%) | 51(40%) | 58 (37%) | 26 (11%)
Pathologic stage | NA 1( 0%) 0( 0%) 1(1%) 0 ( 0%)
Stage | 92 (18%) | 22(17%) | 18(12%) | 52 (23%)
Stage Il 270 (53%) | 63(50%) | 90(58%) | 117 (51%)
Stage 111 143 (28%) | 39(31%) | 46 (29%) | 58 (25%)
Stage IV 4( 1%) 2 ( 2%) 1( 1%) 1( 0%)
Stage X 3( 1%) 1(1%) 0( 0%) 2( 1%)
Histological type | Infil. Ductal Carcinoma | 323(63%) | 81(64%) | 112(72%) | 130 (57%)
Infil. Lobular Carcinoma | 136 (27%) | 34(27%) | 26 (17%) | 76 (33%)
Medullary Carcinoma 1( 0%) 0 ( 0%) 0 ( 0%) 1( 0%)
Mixed Histology 22 ( 4%) 6 ( 5%) 7 ( 4%) 9 ( 4%)
Mucinous Carcinoma 14 ( 3%) 4 ( 3%) 4( 3%) 6 ( 3%)
NA 17 ( 3%) 2 ( 2%) 7 ( 4%) 8 ( 3%)

Table S1.7A: Cohort description for the luminal Methylation dataset analysis.
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Figure S1.7B: Comparative 5-year survival and recurrence analysis for the three methylation subgroups and

PAMS50's luminal subgroups.
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Figure S1.7C: Comparative overall survival and recurrence analysis for the three methylation subgroups

PAM50's luminal subgroups.
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7.1.8. Methylation luminal-A samples analysis

Clustering Meth450 378 luminal-A tumor samples to 3 using top 2000 CpGs, Inf 1, GS included

only

LuminatA Breast CancerMeth4so Dataset (2000 CpGs x 378 samples]
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Figure S1.8A: Clustering the luminal-A samples into 3 groups using DNA-Methylation data.
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Figure S1.8B: Comparison of the RNA-Seq based partition into LumA-R1/R2 and the Methylation based
partition into LumA-M1/2/3
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Meth450 Clusters Total 1 2 3
n=378 n=84 n=123 n=171
Age (Median) 59 62 60 56
ER Status NA 18 ( 5%) 5( 6%) 4( 3%) 9( 5%)
Negative 10 ( 3%) 3( 4%) 3( 2%) 4( 2%)
Positive 350 ( 93%) 76 ( 90%) 116 (94%) | 158(92%)
PR Status NA 19 ( 5%) 5( 6%) 5( 4%) 9( 5%)
Negative 41 (11%) 18 (21%) 10 ( 8%) 13 ( 8%)
Positive 318 ( 84%) 61 (73%) 108 (88%) | 149 (87%)
Her2 Status NA 143 ( 38%) 27 (32%) 47 (38%) 69 ( 40%)
Negative 221 (58%) 50 ( 60%) 72 (59%) 99 (58%)
Positive 14 ( 4%) 7( 8%) 4( 3%) 3( 2%)
PAMS50 LumA 378 (100%) | 84(100%) | 123 (100%) | 171 (100%)
Pathologic stage | NA 1( 0%) 0( 0%) 1( 1%) 0( 0%)
Stage | 77 (20%) 14 (17%) 18 ( 15%) 45 (26%)
Stage Il 193 (51%) 43 (51%) 66 ( 54%) 84 ( 49%)
Stage Il 103 ( 27%) 27 (32%) 37 (30%) 39 (23%)
Stage IV 2( 1%) 0( 0%) 1( 1%) 1( 1%)
Stage X 2( 1%) 0( 0%) 0( 0%) 2( 1%)
Histological type | Infil. Ductal Carcinoma 212 (56%) 42 (50%) 77 (63%) 93 ( 54%)
Infil. Lobular Carcinoma | 127 (34%) 32 (38%) 36 (29%) 59 (35%)
Mixed Histology 17 (1 4%) 4( 5%) 5( 4%) 8 ( 5%)
Mucinous Carcinoma 9( 2%) 3( 4%) 1( 1%) 5( 3%)
NA 13 ( 3%) 3( 4%) 4( 3%) 6 ( 4%)

Table S1.8A: Cohort description for the luminal-A Methylation dataset analysis.




Five-

Year

Overall

Kaplan-Meier estimate of survival functions - Survival (1780 day threshold) Kaplan-Meier estimate of survival functions - Recurrence (1780 day threshold)
1 1

140

Survival
0.95 -
12}
=4
S
5 o9k
c
2
©
2
S 085
3
2}
e
2
E 08
£
17}
it
—1 =0.0031, N=83
0.75 | ® ! )
2 (p=0.1860, N=123)
3 (p=0.2339, N=168)
07 | | \ \ , , . . , )
0 05 1 15 2 25 3 3.5 4 4.5 5
Time (Years)
Kaplan-Meier estimate of survival functions - Survival
1
09
0.8 [
12}
=4
i<l
Forr |
c
5 I
Sosr
<
3
n 0.5
e
L
E 04
£
w
03 f
=1 (p=0.2600, N=83)
02 b 2 (p=0.2649, N=123)
3 (p=0.8431, N=168)
o1 | . ) | . . L . . )
0 2 4 6 8 10 12 14 16 18 20

Time (Years)

Recurrence

Estimated survivalfunctions

Estimated survivalfunctions

0.98

0.92

=

L

(p=0.7791, n=61)
2 (p=0.2170, N=94)
3 (p=0.0434, N=138)

L L L L L L L '

02 fF

0.5 1 15 2 25 3 35 q
Time (Years)

Kaplan-Meier estimate of survival functions - Recurrence

——1  (p=0.9239,N=61)
2 (p=0.2306, N=94)
3 (p=0.0212,N=138)

2 4 6 8 10 12
Time (Years)

Figure S1.8C: Survival and recurrence analysis for the three methylation-based luminal-A subgroups
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7.1.9. Differentially Methylated Gene Analysis (LUmA-M1 vs. LUmA-
M2)

We have generated a list of the top 1000 differentially methylated CpGs between LumA-M1 and
LumA-M3 groups using the rank-sum test having a minimal median difference of 0.2. The list
represented 483 unique gene symbols for which gene enrichments were calculated using a

background of 15737 genes included in the rank-sum test.

Gene Enrichment tests on the top 1000 differentially methylated CpGs

The following results were obtained by using the Expander suite on a set of 429 (unique gene

symbols having Entrez ID) genes included in the set of 1000 differentially methylated CpGs:

Gene Ontology enrichments detected using Expander TANGO on the list of 1000 DMGs

Gene Ontology Term — Biological process #Genes Enrichment | TANGO
significance | corrected
(pValue) pvalue
system development - GO:0048731 188 9.86E-34 1.00E-05
nervous system development - GO:0007399 132 4.38E-31 1.00E-05
system process - GO:0003008 115 3.11E-27 1.00E-05
neurological system process - GO:0050877 98 2.77E-26 1.00E-05
multicellular organismal signaling - GO:0035637 72 8.17E-24 1.00E-05
cell differentiation - GO:0030154 141 8.51E-23 1.00E-05
pattern specification process - GO:0007389 52 4.10E-21 1.00E-05
regionalization - GO:0003002 44 7.03E-21 1.00E-05
brain development - GO:0007420 56 3.47E-20 1.00E-05
neuron differentiation - GO:0030182 73 1.68E-19 1.00E-05
regulation of multicellular organismal process - GO:0051239 104 6.24E-18 1.00E-05
regulation of transcription from RNA polymerase Il promoter 85 2.44E-17 1.00E-05
- GO:0006357
regulation of transcription, DNA-dependent - GO:0006355 151 6.31E-17 1.00E-05
behavior - GO:0007610 45 9.98E-17 1.00E-05
anatomical structure morphogenesis - GO:0009653 105 5.02E-16 1.00E-05
central nervous system neuron differentiation - GO:0021953 26 5.79E-16 1.00E-05
positive regulation of macromolecule biosynthetic process - 77 1.29E-15 1.00E-05
G0:0010557
organ morphogenesis - GO:0009887 61 1.81E-15 1.00E-05
forebrain development - GO:0030900 36 2.34E-15 1.00E-05
neuron fate commitment - GO:0048663 18 9.17E-15 1.00E-05

Table S1.9A: Top GO:Biological-procedure enrichments on the list of 1000 most differentially
methylated CpGs
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Gene Ontology Term — Molecular Function #Genes Enrichment TANGO
significance corrected
(pValue) pvalue

DNA binding - GO:0003677 125 1.06E-16 0.001

regulatory region DNA binding - GO:0000975 38 6.08E-14 0.001

neuron projection - GO:0043005 48 2.27E-11 0.001

axon part - GO:0033267 19 2.73E-09 0.001

Table S1.9B: Top GO:Molecular-function enrichments on the list of 1000 most differentially methylated CpGs

KEGG PATHWAYS

KEGG Pathway #Genes p-value | Enrichment Genes
Neuroactive ligand-receptor 27 2.65E- 4.2 | [CHRM2, VIPR2, GPR83, GRIK2,
interaction 10 GRM1, CRHR2, GRIN2A, EDNRSB,
GRM7, GRM6, GALR1, NPBWR1,
P2RY1, LEPR, NTSR1, PTGDR, DRD5,
GHSR, GABBR2, GABRA5, GABRA4,
HTR1A, SCTR, NMBR, SSTR4, GRINL,
GRIN3A]
Maturity onset diabetes of the 8| 7.95E- 12.8 | [NEURODL, ~ NR5A2, ~ ONECUTL,
young 08 SLC2A2, PAX6, NEUROG3, NKX2-2,
FOXAZ2]
Calcium signaling pathway 17 | 1.04E- 3.41 | [RYR1, CHRM2, RYR2, PDEIC,
05 PRKCB, CACNA1A, CACNALE, RYRS3,
GRM1, GRIN1, GRIN2A, EDNRB,
GNAL, CD38, NOS1, NTSR1, DRD5]

Table S1.9C: Top enrichment of KEGG pathways on the list of 1000 most differentially methylated CpGs

Gene enrichment test using GOrilla (top 1000 CpGs + 0.2 Fold Change)

GO Term Description FDR g-value Enrichment

G0:0048856 anatomical structure development 6.07E-28 2.39
G0:0032502 developmental process 1.98E-25 1.9
G0:0032501 multicellular organismal process 9.55E-24 2.17
GO0:0044707 single-multicellular organism process 1.55E-22 2.15
G0:0044700 single organism signaling 1.70E-21 3.72
G0:0023052 signaling 1.89E-21 3.71
G0:0007267 cell-cell signaling 1.70E-21 3.79
G0:0030182 neuron differentiation 1.19E-20 6.57
GO0:0044767 single-organism developmental process 1.43E-19 1.84

regulation of transcription from RNA polymerase Il

G0:0006357 promoter 1.21E-16 2.38
G0:0007610 behavior 3.46E-16 3.95
G0:0007389 pattern specification process 6.11E-16 4.49
G0:0048869 cellular developmental process 1.89E-15 2.09
G0:0021953 central nervous system neuron differentiation 1.93E-15 9.71
G0:0003008 system process 4.97E-15 2.72
GO:0007154 cell communication 5.80E-15 2.8
G0:0050877 neurological system process 6.10E-15 3.23
G0:0048731 system development 6.51E-15 3.39
G0:0003002 regionalization 6.79E-15 5.42
G0:0051239 regulation of multicellular organismal process 8.45E-15 21
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Table S1.9D: GOrilla results for Gene Ontology enrichments on the list of top 1000 differentially methylated
CpGs between LumA-M1 and LumA-M2

Gene enrichments on the various subsets of differentially methylated CpGs between
LumA-M1 and LumA-M3 subgroups

(1) (2) 3)
Hyper Meth. CpGs Neg: R<-0.2 Pos: R>0.2
Gene anatomical  structure | 6.1E-28 | developmental 7.8E-06 pattern specification | 1.1E-13
ontology development process process
developmental process | 2.0E-25 | single organism | 2.4E-05 regionalization 1.1E-12
signaling
multicellular organismal | 9.6E-24 | signaling 1.8E-05 anatomical structure | 2.2E-11
process development
single-multicellular 1.6E-22 | cellular developmental | 1.4E-05 | single-organism 1.9E-11
organism process process developmental
process
single organism | 1.7E-21 | single-organism 2.3E-05 | anatomical structure | 1.8E-11
signaling developmental morphogenesis
process
Signaling 1.9E-21 | anatomical structure | 8.0E-05 | developmental 1.7E-11
development process
cell-cell signaling 1.7E-21 | cell-cell signaling 1.8E-04 | embryonic 1.1E-10

morphogenesis
neuron differentiation 1.2E-20 | cell differentiation 2.2E-04 cellular 1.8E-10
developmental

process
single-organism 1.4E-19 | synaptic transmission 4.4E-04 | organ development 5.3E-10
developmental process
regulation of | 1.2E-16 | anatomical structure | 6.1E-04 | single-multicellular 5.6E-10
transcription from RNA morphogenesis organism process
polymerase Il promoter
Behavior 3.5E-16 | tube development 1.8E-03 | cell fate commitment | 5.5E-10
pattern specification | 6.1E-16 | regulation of | 1.8E-03 multicellular 7.7E-10
process multicellular organismal process
organismal
development
cellular developmental | 1.9€-15 | cell development 1.7E-03 | organ morphogenesis | 1.8E-09
process
central nervous system | 1.9E-15 | neuron differentiation | 2.0E-03 | transcription, DNA- | 6.5E-09
neuron differentiation templated
Tumor 1.5E-03 9.7E-02 5.5E-02
Suppres
sor Gene
(TSGene
2.0)

Table S1.9E: Gene enrichments on the various subsets of differentially methylated CpGs between LumA-M1 and
LumA-M3 subgroups.
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Feature enrichments on the various subsets of differentially methylated CpGs

between LumA-M1 and LumA-M3 subgroups

1) 2 ®3)
Group Total Hyper Meth. CpGs Neg: R<-0.2 Pos: R>0.2
#CpGs 94880 1000 589 212
Label Term #Terms #Terms p-value #Terms p-value #Terms p-value
1stExon 9548 141 | 1.5E-04 104 1.4E-07 11 | 1.0E+00
UCSC 3UTR 2489 11 | 1.0E+00 3 | 1.0E+00 13 1.8E-02
RefGene | suTR 11737 121 | 1.0E+00 82 | 3.2E-01 14 | 1.0E+00
Group | goqy 32979 285 | 1.0E+00 111 | 1.0E+00 141 | 9.5E-20
TSS 38127 442 | 1.6E-02 289 4.5E-05 33 | 1.0E+00
Gene Associated 227 0 | 1.0E+00 0| 1.0E+00 0| 1.0E+00
Gene Associated
Cell type specific 384 0 | 1.0E+00 0| 1.0E+00 3 1.6E-01
NonGene
Associated 472 2 | 1.0E+00 0 | 1.0E+00 0| 1.0E+00
NonGene
Associated Cell
Regulato | 70 cpecific 40 4| 2.8E-03 1| 4901 1| 2201
ry Promoter
Feature | Associated 36454 41 | 1.0E+00 95 | 1.0E+00 6 | 1.0E+00
Group Promoter
Associated Cell
type specific 1676 9 | 1.0E+00 26 1.4E-04 0 | 1.0E+00
Unclassified 7559 71 | 1.0E+00 73 5.8E-04 17 | 1.0E+00
Unclassified Cell
type specific 7962 211 | 8.8E-35 86 3.9E-06 50 1.3E-10
Unassigned 40106 662 | 7.4E-52 308 4.9E-06 135 1.8E-09
CDMR (Cancer
DMR DMR) 855 44 | 1.5E-16 14 3.9E-03 20 1.1E-13
(Differenti | pmR 6722 391 | 9.2E-18 195 | 1.7E-75 54 | 1.4E-15
ally RDMR
Methylate (Reprogramming
d Region) DMR) 1447 33 | 1.9E-04 14 1.8E-01 22 2.2E-11
Unassigned 85856 532 | 1.0E+00 366 | 1.0E+00 116 | 1.0E+00
Enhancer 10107 99 | 1.2E-09 66 8.0E-06 29 1.7E-04
DHS 17152 137 | 1.1E-07 86 2.1E-03 44 1.7E-05
Tumor
Suppress
or Gene
(TSGene
2.0) 944 48 | 1.5E-03 29 9.7E-02 14 5.5E-02

Table S1.9F: Feature enrichments on the various subsets of differentially methylated CpGs between LumA-M1
and LumA-M3 subgroups. Group 1 is composed of the 1000 top differentially methylated CpGs exhibiting a mean
difference of at least 0.2. All the CpGs on this list showed significant hyper-methylation on the LumA-M1 samples
compared to LUmA-M3 samples. Group 2 is composed of the 589 CpGs exhibiting differential methylation p-
value<0.01, methylation mean difference>0.2 and spearman based correlation to expression that is lower than 0.2.
Group 3 212 CpGs exhibiting differential methylation p-value<0.01, methylation mean difference>0.2 and spearman
based correlation to expression that is higher than 0.2. All p-values represent hypergeometric based over-

representation and are FDR corrected.
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Hyper Meth.
CpGs Neg: R<-0.2 Pos: R> 0.2
Under-
Under- Over- Under- Over- repres
Over- represen | represen represen | represen entatio
represent  tation tation tation tation n FDR
ation FDR FDR FDR FDR FDR correct
corrected correcte | correcte correcte | correcte ed
Label Term pValue d pValue | d pValue dpValue | dpValue pValue
1stExon 1.E-04 1.E+00 1.E-07 1.E+00 1.E+00 3.E-02
UCSC 3UTR 1.E+00 2.E-03 1.E+00 6.E-04 2.E-02  1.E+00
Rnge”e 5UTR 1.E+00 8.E-01 3.E-01 1.E+00 1.E+00  2.E-02
roup
Body 1.E+00 7.E-05 1.E+00 1.E-16 9.E-20 1.E+00
TSS 2.E-02 1.E+00 4.E-05 1.E+00 1.E+00 7.E-14
Gene Associated 1.E+00 2.E-01 1.E+00 5.E-01 1.E+00 1.E+00
Gene Associated Cell
type specific 1.E+00 5.E-02 1.E+00 2.E-01 2.E-01 1.E+00
NonGene Associated 1.E+00 3.E-01 1.E+00 1.E-01 1.E+00 8.E-01
NonGene Associated
Cell type specific 3.E-03 1.E+00 5.E-01 1.E+00 2.E-01 1.E+00
Regulatory )
Feature Group | Promoter Associated 1.E+00 2.E-146 1.E+00 3.E-31 1.E+00 4.E-34
Promoter Associated
Cell type specific 1.E+00 5.E-02 1.E-04 1.E+00 1.E+00 7.E-02
Unclassified 1.E+00 4.E-01 6.E-04 1.E+00 1.E+00 1.E+00
Unclassified Cell type
specific 9.E-35 1.E+00 4.E-06 1.E+00 1.E-10 1.E+00
Unassigned 7.E-52 1.E+00 5.E-06 1.E+00 2.E-09 1.E+00
Island 1.E+00 9.E-04 1.E+00 1.E-03 1.E+00 7.E-02
N_Shelf 1.E+00 5.E-01 1.E+00 7.E-01 1.E+00 1.E+00
Relation to
UCSC CpG N_Shore 6.E-02 1.E+00 4.E-02 1.E+00 7.E-01 1.E+00
Island S_Shelf 8.E-02 1.E+00 8.E-02 1.E+00 1.E+00 9.E-01
S_Shore 3.E-02 1.E+00 3.E-02 1.E+00 4E-01 1.E+00
Unassigned 4.E-01 1.E+00 7.E-01 1.E+00 2.E-01 1.E+00
DMR CDMR 2.E-16 1.E+00 4.E-03 1.E+00 1.E-13 1.E+00
(Differentially DMR 9.E-183 1.E+00 2.E-75 1.E+00 1.E-15 1.E+00
Methylated
Region RDMR 2E-04  1E+00 2.E-01 1.E+00 2.E-11  1.E+00
Unassigned 1.E+00 2.E-205 1.E+00 2.E-75 1.E+00 5.E-40
0 1.E+00 1.E-09 1.E+00 8.E-06 1.E+00 2.E-04
Enhancer
1 1.E-09 1.E+00 8.E-06 1.E+00 2.E-04 1.E+00
DHS 0 1.E+00 1.E-07 1.E+00 2.E-03 1.E+00 2.E-05
1 1.E-07 1.E+00 2.E-03 1.E+00 2.E-05 1.E+00
Tumor
Sup:ressor 0 1.E+00 2.E-03 1.E+00 1.E-01 1E+00  6.E-02
Gene Catalogue
(TSG 2.0 1 2.E-03 1.E+00 1.E-01 1.E+00 6.E-02 1.E+00

Table $1.9G: Feature enrichment on

the various subsets of differentially methylated CpGs between

LumA-M1 and LumA-M3 subgroups (Including under-representation p-values)
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7.1.10. Cox proportional hazards model analysis

Survival Recurrence
Univariate Multivariate Univariate Multivariate
Variable HR pValue HR pValue HR pValue HR pValue
LumA-R (1vs 2) 0.44 @ 0.10939 0.56 | 0.36991 0.20 0.00421 | 0.06 @ 0.00693
LumA-M (2,3 vs 1) 453 @ 0.00258 6.68 = 0.00484 1.64  0.34338 | 3.04  0.07028
Age (<60 vs.>=60 years) 5.79 | 0.00624 11.20 0.0037 2.18 | 0.10301 | 1.03 & 0.96530
Pathologic stage (I,Il vs. lI,IV) | 1.30 | 0.62799 | 2.12 | 0.25519 | 2.09 | 0.11941 | 1.93 | 0.26992
ER Status 1.72 | 0.60363 7.17 | 0.18095  0.00 | 0.99217 | 0.00 | 0.99575
PR Status 1.03 | 0.96671 0.47 | 0.50039 H 0.37 | 0.33789 | 0.29 | 0.29092
Her2 Status 0.79 0.8208 | 1.48 | 0.72659 | 0.99  0.98916 0.64 | 0.68789

Table S1.10A: Univariate and Multivariate Cox analysis of luminal-A subgroups for five-year survival and
five-year recurrence.

7.1.11. Joint clustering of luminal-A samples using both expression and
DNA methylation datasets

After establishing that luminal-A samples (as labeled by PAM50) can be further divided into
distinct clinically meaningful subgroups by either the RNA-Seq or the methylation datasets
separately, we set out to generate a single robust luminal-A partition that would leverage from

the complementary biological information stored in both expression and methylation datasets.

To this end, we unified both expression and methylation datasets into a single “bi-omic” dataset
composed of 378 luminal-A samples for which both types of data are available. From each
dataset we selected the top 1000 variable features (top 1000 variable genes from the RNA-Seq
dataset, and top 1000 variable CpGs from the methylation dataset). We then clustered the
samples using a variant of K-Means for which the distance metric is formulated as the average

of the correlation based distances on the two data types, i.e., for samples s, t

Exp , ;Meth
aiP+d . . . .
Dg = % where the distance d; for each data type is 1 minus the correlation between

the 1000-long vectors of samples s and t.

Interestingly, applying the method on the luminal-A samples did not produce an improved
partition neither in terms of stability (repeated executions yielded significantly different results)
nor in terms of survival prediction compared with the separate partitions. We assume this result
can be attributed to fact that the two datasets impose very different partitions on the samples,

making this dataset sub-optimal target for the described integrative clustering approach.
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A bi-omic dataset [2000 features x 378 samples]
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Figure S1.11A: Joint clustering of 378 luminal-A samples to 3 using the k-means algorithm based on top
1000 variably expressed genes and top 1000 variably methylated CpG islands.

7.1.12. LumA-R1/2 clusters are enriched for the ILC classes defined by
TCGA

We compared our RNA-Seq based partition of the luminal-A samples to the three ILC (Invasive
Lobular Carcinoma) classes recently defined by TCGA. A Chi-square test determined that the two
partitions are related (p=1.2e-04, based on the 104 ILC samples appearing on both datasets). The
hypergeometric test we used to evaluate the enrichment of specific ILC classes within each of
our luminal clusters. LumA-R1 cluster was found to be significantly enriched for the proliferative

ILC class (p=8.1e-04), whereas the LumA-R2 cluster was found to be significantly enriched for the

Reactive-like ILC class (2.4-e04).
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LuminakA RNA-Seq data [2000 genes x 534 samples)
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Figure 7.1.12A: Comparison of the two luminal-A subgroups we identified and TCGA's ILC (Invasive Lobular

Carcinoma) classes.
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7.1.13. LumA-M1 samples are enriched for the Epi-LumB group
identified by Stefansson et al.

For comparing our methylation-based luminal-A clusters to the bad outcome luminal group
described by Stefansson et al.[226] (named Epi-LumB as it was largely composed of luminal-B
samples), we first kept only samples that appeared both in our partition and in Epi-LumB labels
for TCGA's Meth450 dataset, and then we calculated enrichment for the Epi-LumB label in our
clusters. Cluster LumA-M1 was found to be enriched with the Epi-LumB label (p=1.6e-07),

enforcing our observation that this group is associated with a bad outcome (though labeled as

luminal-A by PAM50).

LuminatA Methylationdataset (2000 genes x 378 samples]

500 [

1000

1500 &

2000

50 100 150 200 250 300 350
NA
. Non Epi-LumB
Epi-LumB
Clustering Results Label: [Epi-LumBj] vs. Luminal-A Methylation based

(Chi-square pValue: 1.4e-09) (Global Jaccard: 0.381)

[ Non Epi-LumB (83)
I pi-LumB 36

1(30) 2(41) 3 (48)
Clusters

Label enrichment on clusters - Luminal-A clusters vs. Epi-LumB

T T
NonEpi-LumB (83) 9 (1.0e+00) 27 (8.1e-01)
Epi-LumB (36) 14 (3.2e-01) 1 (1.0e+00)
2
1 1

1030) 2(41) 3(48)
DNA-Methylationbased LuminalA clusters

Epi-LumB

Figure S1.13A: Comparison of the methylation subgroups we identified and the Epi-LumB subgroups.
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7.2. Supplement 2: Skin cancer subtypes

Gene cluster 1

1 1 1.76e-08 melanin biosynthetic process
2 1 2.53e-05 negative regulation of neuron apoptotic process
3 1 2.56e-05 eye pigment biosynthetic process
4 1 4.49e-05 neuron projection development
5 1 5.69e-05 cell-celladhesion mediated by cadherin
0 5 10 15 20 25 30
Gene cluster 2
1 6.60e-69 cornification
2 1.74e-50 epidermis development
3 3.20e-36 keratinocyte differentiation
4 9.29e-35 peptide cross-linking
5 1.19e-33 keratinization
0 5 10 15 20 25 30
Gene cluster 3
1 1.20e-44 immuneresponse
2 1.50e-32 adaptive immuneresponse
3 1.90e-23 inflammatoryresponse
4 3.47e-19 T cell costimulation
5 1.81e-18 regulation ofimmuneresponse
0 5 10 15 20 25 30
Gene cluster 4
1 1 6.30e-06 ion transmembrane transport
2 1 2.85e-05 regulation of membrane potential
3 1 4.32e-05 chloride transport
4 1 8.52e-05 negative regulation of myoblastdifferentiation
5 1 1.00e-04 nervous systemprocess
0 5 10 15 20 25 30
Gene cluster s
1 1 1.18e-19 nervous systemdevelopment
2 1 2.27e-16 cell adhesion
3 1 3.24e-12 cell-cell signaling
4 1 1.47e-11 axon guidance
5 1 2.10e-11 chemicalsynaptic transmission

Figure S2.1: Gene ontology enrichments on the five gene clusters. The analysis was performed in PROMO,
using FDR-corrected hypergeometric test p-values. The five most significant GO terms are listed for each gene
cluster.
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Figure S2.2: Enrichment for clinical labels on the four melanoma sample clusters. The four sample
clusters were tested for enrichment for multiple clinical labels. The enrichments were tested using the
hypergeometric test, and the top enriched labels on the clusters were plotted.
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Figure S2.3: Characteristics of the four melanoma subtypes. Concordance between the four melanoma subgroups,
tumor tissue sites, and TCGA's three transcriptomic subgroup labels. For each comparison, the histogram on the
right shows the breakdown of samples in each subtype into categories, and the matrix on the left shows the
confusion matrix. For each cell, the number of samples and p-value for enrichment based on the hypergeometric
test is shown. (A) Primary vs. Metastasis (B) Detailed tissue site (C) TCGA's three transcriptomic subtypes, including
NA value for new samples that were not included in TCGA's melanoma paper[48] (D) TCGA's three transcriptomic

subtypes, omitting the NA samples.
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Figure S2.4: Sample-cluster 4 overexpressed genes that are enriched

pathway. Over-expressed genes (p<0.005) are marked in red.
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Figure S2.5: Error of decision tree classifiers as a function of the number of genes. For a varying number of

genes (1-15) and for varying pruning levels (0-10), 30 decision trees were trained on resampled subsets of the

dataset samples (resampling ratio of 0.9). The graph shows the average training error for each decision tree

size. A three-gene classifier for predicting melanoma's molecular subtype gives a good balance between

simplicity (avoiding over-fitting) and performance and reaches a training error that is close to that obtained by

larger number of genes.
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Figure S2.6: Dispersion of the 469 melanoma samples projected to the 3-dimensional space of the three
selected classifier predictors: KLK8, TIGIT, and TRIM63. Samples are colored by the melanoma subgroup.
The axis representing the expression level of the KLK gene distinguishes cluster 2 samples (green circles,

“Keratin” subgroup) showing high levels of KLK8 expression, from all other clusters. The axis representing

the expression of the TIGIT gene distinguishes cluster 1 samples (purple circles, “Immune” subgroup)

showing high levels of TIGIT expression, from the other subgroups. Lastly, the axis representing the

expression of the TRIM63 gene distinguished cluster 3 samples (yellow circles, “Melanogenesis-low”

subtype) from cluster 4 samples (orange circles, “Melanogenesis-high” subtype).

Cluster 1 | Cluster2 | Cluster 3 | Cluster 4 | Total

Sample number 105 68 118 118 469
Tissue site Primary Tumor 16 53 10 25 104

Regional Cutaneous or | 21 6 32 15 74

Subcutaneous

Regional Lymph Node | 115 2 57 49 223

Distant Metastasis 13 7 19 29 68
TCGA’s Immune 114 2 34 18 168
Transcriptomic | Keratin 1 41 2 56 100
subtypes MITF-Low 0 0 57 2 59

NA 50 23 25 41 139

Table S2.1: Characterization of the four melanoma subgroups.
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Raw p-
value

Empiric
al p-
Value

Gene List

neurogenesis - GO:0022008

somatodendritic
compartment - GO:0036477

melanosome membrane -
G0:0033162

cell body - GO:0044297

secondary metabolic process
- G0:0019748

anatomical structure
morphogenesis - GO:0009653

neuron projection
development - GO:0031175
central  nervous  system
development - GO:0007417

melanin metabolic process -
G0:0006582
developmental pigmentation
- GO:0048066
skin development -
G0:0043588

epidermal cell differentiation
- G0:0009913

cornified
G0:0001533

envelope -

epithelial cell differentiation -
G0:0030855

peptide cross-linking -
G0:0018149
extracellular
G0:0070062

exosome -

extracellular vesicle -

G0:1903561

68

34

28

66

31

39

85

72

40

87

28

118

118

7.10E-14

1.60E-08

2.34E-08

2.70E-08

4.43E-08

4.48E-08

4.80E-08

4.91E-08

7.19E-08

2.97E-07

4.46E-72

6.99E-62

1.51E-55

3.37E-53

3.95E-34

5.88E-23

9.25E-23

2.00E-04

4.00E-04

4.00E-04

6.00E-04

6.00E-04

6.00E-04

6.00E-04

6.00E-04

8.00E-04

0.0034

2.00E-04

2.00E-04

2.00E-04

2.00E-04

2.00E-04

2.00E-04

2.00E-04

[GABRB3, ROBO2, ONECUT2, LAMC3, CTNND2, RASGRF1, PCSK9, KNDC1, NR2EL,
DUSP15, CDH4, SOX1, DPYSL4, CDH1, CRTACL, SALL4, EFHD1, NRTN, PLXNCL, PITX2,
SOX6, SH3GL2, MNX1, EPHAS, NKX2-8, SERPINF1, ADRA2C, MAPK8IP2, POU3F1, ISL1,
OLFM1, NRG3, DCT, RTN4RLL, KIT, LMX1B, MAPT, HAP1, BRSK2, ARX, PROM13, PRELP,
ADCY1, FSTL4, DLL3, TRPM1, VTN, GBX2, CTNNA2, PROM1, WNT4, SPTBN2, NKX2-2,
MCOLN3, SYT3, GABRAS, MCF2, FZD9, DCDC2, LICAM, POU4F1, GNAO1, CPEBL,
NR4A3, NEURL1, RAB17, MDGA2, BMPR1B]

[PCSK2, CHRM1, CTTNBP2, CTNND2, CACNALB, ADCY2, KNDCL, CPN1, KCNN1, KCNN2,
PPARGCIA, ANKS1B, KCNH1, SPTBN2, SYTS, EPHAS, MME, GABRAS, SERPINFL,
MAPKSIP2, LLCAM, GNAO1, OLFM1, CPEB1, MLPH, NOV, RTN4RL1, NEURLL, EEF1A2,
RAB17, MAPT, BMPR1B, CRYAB, PDESA]

[OCA2, SLC45A2, GPR143, DCT, TYRP1, TYR]

[PCSK2, CTNND2, CACNA1B, KNDC1, CPN1, KCNN1, KCNN2, PPARGCLA, KCNH1,
SPTBN2, SYTS, EPHAS, GABRAS, SERPINF1, MAPK8IP2, LICAM, GNAO1, OLFML,
CPEBL, NOV, RTN4RL1, NEURL1, EEF1A2, RAB17, MAPT, BMPR1B, CRYAB, PDE9A]
[OCA2, SLCASA2, AS3MT, ABCC2, CITED, DCT, TYRP1, CYP1AL, TYR]

[ROBO2, RYR1, ONECUT2, CITED1, LAMC3, CTNND2, ONECUTL, LDB3, KNDC1, NR2E1,
MYLK3, CDH4, SOX1, DPYSL4, KRT27, SALL4, RBPMS2, CAPN3, NRTN, PITX2, SOX6,
SH3GL2, MNX1, KCNH1, EPHAS, NKX2-8, RIPK4, MAPK8IP2, MMPS, ISL1, OLFM1,
CEACAM1, NOV, NRG3, SFRPS, ITGA7, CRYAB, MET, BRSK2, SLC24A4, HPGD, ARX,
KLK4, GATA4, PRELP, ADCY1, CACNALH, DLL3, TRPM1, VTN, GBX2, MYH14, TNNI3,
CTNNA2, PROM1, WNT4, SPTBN2, CAP2, FOXF2, LICAM, POU4F1, NR4A3, NOXS,
RADIL, BMPR1B, RAMP1]

[ROBO2, BRSK2, CTNND2, ARX, RASGRF1, PRELP, NR2E1, ADCY1, CDH4, DPYSL4, GBX2,
CDH1, CRTACL, EFHD1, NRTN, CTNNA2, SH3GL2, MNX1, SPTBN2, EPHAS, NKX2-8,
MCF2, MAPK8IP2, LICAM, POU4FL, ISL1, GNAO1, NR4A3, RTN4RL1, MAPT, BMPR18]

[ROBO2, CITEDL, LAMC3, CTTNBP2, ARX, KNDC1, NR2E1, VTN, SOX1, GBX2, CDH1,
CRTAC1, CTNNA2, SOX6, PITX2, PPARGC1A, SH3GL2, MNX1, NKX2-2, WNT4, SPTBN2,
EPHAS, SLC6A17, SI00A1, GABRAS, POU3F1, POUAFL, ISL1, GNAO1, BCAN, NR4A3,
NRG3, DCT, RTN4RL1, NEURLL, MAL, HAP1, MAPT, MDGA2]

[OCA2, SLC4SA2, CITED1, DCT, TYRP1, TYR]

[OCA2, SLC45A2, GPR143, CITED1, DCT, KIT, TYRP1, TYR]

[FOXEL, ITGB4, KRT23, ABCA12, TGML, LCE1B, CASP14, PRSS8, TGMS, KRT6C, TGMS3,
RPTN, TP63, KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, SPINKS, KRT79, KRT78, KRT7,
KRT77, KRT5, OVOLL, KRT75, LOR, LCE1C, EREG, LCE2B, FLG2, LCE2C, CLDN4, LCE2A,
DSG1, PKP1, PKP3, DSG3, IRF6, DSCL, IVL, DSC2, S100A7, DSC3, SPRR2E, FLG, SPRR3,
SPRR2G, CSTA, KRT80, KLKS, ALOX12B, APCDD1, EVPL, KLK8, PPL, EGFR, LCE3D, SCEL,
PERP, SFN, PI3, SPRR2A, SPRR2B, ALOXE3, SPRR2D, CDSN, Clorf68, KLK13, KRT13,
GRHL3, KRT10, CNFN, ASPRV1, LCE3E, KRT19, KRT17, GJB3, KRT16, KRT15, KRT14,
SPRR1A, FGFR2, SPRR1B]

[KRT23, ABCA12, TGM1, LCE1B, CASP14, PRSS8, TGMS, KRT6C, TGM3, RPTN, TP63,
KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, SPINKS, KRT79, KRT78, KRT7, KRT77, KRTS,
KRT75, LOR, LCE1C, EREG, LCE28, LCE2C, LCE2A, DSG1, PKP1, PKP3, DSG3, IRF6, DSCL,
IVL, DSC2, S100A7, DSC3, SPRR2E, FLG, SPRR3, SPRR2G, CSTA, KRT80, KLKS, EVPL,
KLK8, PPL, LCE3D, SCEL, PERP, SFN, PI3, SPRR2A, SPRR2B, SPRR2D, CDSN, Clorf68,
KLK13, KRT13, KRT10, CNFN, LCE3E, KRT19, KRT17, KRT16, KRT15, KRT14, SPRR1A,
SPRR1B]

[SPRR2E, FLG, SPRR3, CSTA, SPRR2G, EVPL, CST6, PPL, TGM1, SCEL, LCE3D, LCE1B, PI3,
SPRR2A, SPRR2B, RPTN, SPRR2D, DSP, CDSN, KRT2, C1orf68, KRT1, KRT10, CNFN, LOR,
LCE3E, LCE1C, LCE2B, LCE2C, LCE2A, PKP1, DSG1, DSG3, PKP3, SPRR1A, DSCL, IVL,
SPRR1B, DSC2, DSC3]

[EHF, KRT23, TFCP2L1, ABCA12, TGM1, LCE1B, CASP14, PRSS8, TGMS, KRT6C, TGMS3,
RPTN, TP63, KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, SPINKS, KRT79, KRT78, KRT7,
KRT77, FOXL2, KRTS, KRT75, LOR, LCELC, EREG, LCE2B, LCE2C, LCE2A, ELF3, DSGL,
PKP1, PKP3, DSG3, IRF6, RHCG, DSC1, IVL, DSC2, S100A7, DSC3, SPRR2E, FLG, SPRR3,
SPRR2G, CSTA, KRT80, DLX3, KLKS, EVPL, KLK8, PPL, LCE3D, SCEL, RAB2S, PERP, SFN,
PI3, SPRR2A, SPRR2B, SPRR2D, CDSN, PSAPLL, WNT7B, AKR1C1, Clorfe8, KLK13,
KRT13, AKR1C2, PTK6, KRT10, CNFN, GRHL2, LCE3E, KRT19, KRT17, KRT16, KRT15,
KRT14, CD24, SPRR1A, FGFR2, SPRR1B]

[SPRR2E, FLG, SPRR3, CSTA, EVPL, TGML, LCE3D, LCE1B, PI3, SPRR2A, TGMS, SPRR2B,
TGMS3, SPRR2D, DSP, KRT2, Clorfé8, KRT1, KRT10, LOR, LCE3E, LCELC, LCE2B, LCE2C,
LCE2A, SPRR1A, IVL, SPRR1B]

[CALMLS, CBLC, CALML3, DEFB1, AQP5, TGM1, CKMT1B, PRSS8, PRSS3, KRT6C, TGM3,
KRT6B, CD177, KRT6A, GBP6, ENTPD2, KRT2, KRT1, SPINKS, SLC6A14, KRT79, KRT78,
KRT7, KRT77, KRTS, NCCRP1, KRT75, SULT2B1, FLG2, SLPI, SPINT1, SCNN1B, SCNN1A,
PKP1, RHCG, S100A9, DSC1, S100A8, DSC2, S100A7, KPRP, CRABP2, TACSTD2, SLCSA1,
EVPL, PPL, FUT3, PKHD1, SFN, PI3, S100A14, CLCA4, PROM2, GGT6, CDSN, Clorf68,
A2ML1, CNFN, CRNN, AKR1B10, LCN2, FAT2, SPRR1B, LAD1, CLIC3, PCDHGBS, ITGB4,
DMKN, CASP14, CTSG, ITGB6, SERPINB3, DSP, SERPINB4, LYNX1, GPX2, MMP7, ARG1,
ANXA3, SERPINB5, TMPRSS11D, EPN3, CEACAMS, DSG1, IRF6, DSG3, IVL, SPRR3,
LRRC15, CSTA, SERPINB13, SBSN, CST6, SCEL, RAB25, RNASE7, MAL2, EPS8L2,
LGALS7B, WNT7B, AKR1C1, CKMT1A, KLK13, KRT13, BBOX1, KRT10, PDZK1IP1,
SLURP1, KLK11, KRT19, KRT17, KRT16, KRT15, KRT14, SAA1, S100P, NECTIN4,
Clorf116]

[CALMLS, CBLC, CALML3, DEFB1, AQP5, TGM1, CKMT1B, PRSS8, PRSS3, KRT6C, TGM3,
KRT6B, CD177, KRT6A, GBP6, ENTPD2, KRT2, KRT1, SPINKS, SLC6A14, KRT79, KRT78,
KRT7, KRT77, KRTS, NCCRP1, KRT75, SULT2B1, FLG2, SLPI, SPINT1, SCNN1B, SCNN1A,
PKP1, RHCG, S100A9, DSC1, S100A8, DSC2, S100A7, KPRP, CRABP2, TACSTD2, SLCSA1,
EVPL, PPL, FUT3, PKHD1, SFN, PI3, S100A14, CLCA4, PROM2, GGT6, CDSN, Clorf68,
A2ML1, CNFN, CRNN, AKR1B10, LCN2, FAT2, SPRR1B, LAD1, CLIC3, PCDHGBS, ITGB4,
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DMKN, CASP14, CTSG, ITGB6, SERPINB3, DSP, SERPINB4, LYNX1, GPX2, MMP7, ARG1,
ANXA3, SERPINB5, TMPRSS11D, EPN3, CEACAMS, DSG1, IRF6, DSG3, IVL, SPRR3,
LRRC15, CSTA, SERPINB13, SBSN, CST6, SCEL, RAB25, RNASE7, MAL2, EPSSL2,
LGALS7B, WNT7B, AKR1C1, CKMT1A, KLK13, KRT13, BBOX1, KRT10, PDZK1IP1,
SLURP1, KLK11, KRT19, KRT17, KRT16, KRT15, KRT14, SAA1, S100P, NECTIN4,
Clorf116)

[CALMLS, CBLC, CALML3, DEFB1, AQP5, TGM1, CKMT1B, PRSS8, PRSS3, KRT6C, TGM3,
KRT6B, CD177, KRT6A, GBP6, ENTPD2, KRT2, KRT1, SPINKS, SLC6A14, KRT79, KRT78,
KRT7, KRT77, KRTS, NCCRP1, KRT75, SULT2B1, FLG2, SLPI, SPINT1, SCNN1B, SCNN1A,
PKP1, RHCG, S100A9, DSC1, S100A8, DSC2, S100A7, KPRP, CRABP2, TACSTD2, SLC5A1,
EVPL, PPL, FUT3, PKHD1, SFN, PI3, S100A14, CLCA4, PROM2, GGT6, CDSN, Clorf68,
A2ML1, CNFN, CRNN, AKR1B10, LCN2, FAT2, SPRR1B, LAD1, CLIC3, PCDHGBS, ITGB4,
DMKN, CASP14, CTSG, ITGB6, SERPINB3, DSP, SERPINB4, LYNX1, GPX2, MMP7, ARG1,
ANXA3, SERPINB5, TMPRSS11D, EPN3, CEACAMS, DSG1, IRF6, DSG3, IVL, SPRR3,
LRRC15, CSTA, SERPINB13, SBSN, CST6, SCEL, RAB25, RNASE7, MAL2, EPSSL2,
LGALS7B, WNT7B, AKR1C1, CKMT1A, KLK13, KRT13, BBOX1, KRT10, PDZK1IP1,
SLURP1, KLK11, KRT19, KRT17, KRT16, KRT15, KRT14, SAA1, S100P, NECTIN4,
Clorf116]

[LAD1, WWC1, KRT23, LCE1B, EPB41L4B, KRT6C, KRT6B, KRT6A, DSP, KRT4, KRT2,
KRT1, KRT79, KRT78, KRT7, KRT77, KRTS, KRT75, LOR, LCELC, LCE2B, FLG2, LCE2C,
CLDN4, LCE2A, PKP1, INA, IVL, SHANK2, SPRR2E, FLG, SPRR3, CSTA, KRT80, EVPL, PPL,
LCE3D, MAL2, PI3, SPRR2A, SPRR2B, SPRR2D, Clorf68, KRT13, KRT10, LCE3E, MPP7,
KRT19, KRT17, KRT16, KRT15, KRT14, SPRR1A, SPRR1B]

[FLG, KRT80, KRT23, CASP14, KRT6C, KRT6B, KRT6A, DSP, KRT4, KRT2, KRT1, KRT13,
KRT79, KRT78, KRT7, KRT77, KRT10, KRT5, KRT75, KRT19, KRT17, KRT16, KRT15,
KRT14, PKP1, EPPK1, INA, SHANK2]

[FCN1, ADAMDECL, FCMR, NCF1, ATP8AL, CLEC10A, AQPY, SIRPG, HP, LY75, PRF1,
RORC, SLA2, CXCL13, IKZF3, CLU, IFI44L, VPREB3, GPR174, CYSLTR2, SIT1, RGSL,
TBC1D10C, TNFSF11, HLA-DOA, HLA-DOB, ZNF683, ZBP1, GBPS, CD96, LAG3, PRKCB,
THEMIS, HLA-G, LAX1, CHIT1, FCAMR, CD8B, IFI27, CD8A, PADI2, PRKCQ, CLECAE,
CARD11, SKAP1, IDO1, BLK, TNFRSF11B, GATA3, CD1C, LY9, PLAC8, SPTAL, C3, CD79B,
CD79A, KLRK1, C7, UBD, CD19, BTLA, NLRP2, SLAMF7, TNFRSF17, SLAMF®, 1COS, HLA-
DQA2, HLA-DQAL, SLAMF1, HLA-DRBS, SIGLEC14, KLRC2, BCL11B, TNFRSF9, CRTAM,
SH2D1A, IFNLR1, LYZ, SELE, SELP, MARCO, CXCL10, CXCL11, PTPRC, SELL, CD27, KLRD1,
IL7R, HAMP, PIGR, ITK, CIITA, CXCL9, TNFRSF13B, FASLG, CD3G, CTSW, PTPN22, LRMP,
CD3E, ITGAL, CD3D, PIK3CG, JCHAIN, TNFSF138B, SPN, GNLY, KYNU, OLR1, CTLA4, CD38,
CCR7, LBP, CCRS, CCR2, CR2, CR1, ITGA4, RHOH, PAX5, MMP9, ZAP70, HSH2D, AIM2,
ITGAD, IFNG, LCK, BANK1, IL1B, XCL2, CHI3L1, TLR8, CD48, TLR10, LTB, SMPDL3B,
MS4A1, HLA-DQB2, LTF, BIRC3, CCL14, CDSL, FGL2, CXCRS, CST7, IL2RG, LILRA3,
LILRA4, CCL8, CCL5, CXCR3, TBX21, IL21R, CCL19, CCL18, IL12RB1, GBP1, IL33,
PLA2G2D, CCL22, CCL21, ERAP2, TRAT1, CD70, GZMA, GZMB, LILRB1, GZMH, CD2,
CD6, CD5, CAMK4, POU2AF1, CD7, CD247, PDCD1]

[FCN1, CLEC10A, SIRPG, SLA2, CXCL13, IKZF3, CLU, SIT1, GPR171, TBC1D10C, TNFSF11,
UBASH3A, HLA-DOA, HLA-DOB, ZNF683, GBP5, CD96, LAG3, PRKCB, THEMIS, HLA-G,
LAX1, CD8B, CD8A, PADI2, PRKCQ, CLEC4E, CARD11, SKAP1, IDOL, BLK, KLRBL, GATA3,
CD1C, KIR2DL4, SPTAL, €3, CD798, CD79A, KLRK1, C7, CD19, BTLA, SLAMF7, STAPL,
SLAMF, ICOS, HLA-DQA2, HLA-DQA1, SLAMF1, HLA-DRBS, CRTAM, SH2D1A, IFNLR1,
SELP, MARCO, CXCL10, CXCL11, PTPRC, SELL, CD27, KLRD1, IL7R, PIGR, ITK, CXCL9,
TNFRSF138, CD3G, PTPN22, CD3E, ITGAL, CD3D, TNFSF13B, SPN, CTLA4, CD38, CCR7,
LBP, CCR2, CR2, CR1, ITGA4, MMP12, GREM1, FCER2, ZAP70, AIM2, IFNG, LCK, BANK,
IL1B, TLR8, CD48, TLR10, SMPDL3B, HLA-DQB2, LTF, BIRC3, CCL5, CXCR3, TBX21,
CCL19, TIGIT, IL12RB1, GBP1, IL33, PLA2G2D, CCL21, TRAT, LILRB1, CD2, CD6, CDS,
CAMK4, CD247, PDCD1]

[TNFRSF13B, SIRPG, PTPN22, CD3G, CD3E, SLA2, CD3D, IKZF3, TNFSF138, SPN, SIT1,
TBC1D10C, CD38, TNFSF11, CTLA4, CCR7, LBP, HLA-DOA, CCR2, ZNF683, LAG3, HLA-G,
LAX1, ZAP70, IFNG, BANK1, LCK, IL1B, PRKCQ, HLA-DQB2, CARD11, IDO1, GATA3,
SPTAL, KLRK1, CCL5, TBX21, BTLA, STAP1, CCL19, TIGIT, IL12RB1, ICOS, HLA-DQA2,
HLA-DQA1, SLAMFL, IL33, PLA2G2D, HLA-DRBS, CCL21, LILRB1, CD2, SELP, PTPRC,
CD6, CD5, CAMK4, CD27, CD247, PDCD1, IL7R]

[SIRPG, PTPN22, CD3G, CD3E, CD3D, TNFSF13B, SPN, SIT1, TNFSF11, CTLA4, CCR7,
HLA-DOA, CCR2, ZNF683, LAG3, ITGA4, HLA-G, LAX1, ZAP70, IFNG, LCK, IL1B, PRKCQ,
HLA-DQB2, CARD11, IDO1, GATA3, SPTAL, KLRK1, CCLS, BTLA, CCL19, TIGIT, IL12RB1,
ICOS, HLA-DQA2, HLA-DQA1, SLAMF1, PLA2G2D, HLA-DRBS, CCL21, LILRB1, CD2,
PTPRC, CD6, CD5, CAMK4, CD27, CD247, PDCD1, IL7R]

[SIRPG, PTPN22, CD3G, CD3E, CD3D, TNFSF13B, SPN, SITL, TNFSF11, CTLA4, CCR7,
HLA-DOA, CCR2, ZNF683, LAG3, HLA-G, LAX1, ZAP70, IFNG, LCK, IL1B, PRKCQ, HLA-
DQB2, CARD11, IDO1, GATA3, SPTAL, KLRK1, CCLS, BTLA, CCL19, TIGIT, IL12RB1, ICOS,
HLA-DQA2, HLA-DQAL, SLAMF1, PLA2G2D, HLA-DRBS, CCL21, LILRB1, CD2, PTPRC,
CD6, CD5, CAMK4, CD27, CD247, PDCD1, IL7R]

[SIRPG, CD3G, GATA3, CD3E, CD3D, TNFSF13B, SPN, SPTAL, KLRK1, CCLS, TBX21, BTLA,
CD38, TNFSF11, CTLA4, STAP1, CCR7, CCL19, LBP, IL12RB1, ICOS, HLA-DQA2, HLA-
DQAL, SLAMF1, CCR2, IL33, HLA-DRBS5, CCL21, LILRB1, HLA-G, CD2, ZAP70, PTPRC,
IFNG, CD6, LCK, CD5, IL1B, CD27, PRKCQ, CD247, PDCD1, IL7R, HLA-DQB2, CARD11]

[FCN1, ITK, CIITA, NCF1, CLEC10A, SLA2, CLU, PIK3CG, JCHAIN, KYNU, LBP, ZNF683,
ZBP1, GBPS, CR2, CR1, HLA-G, ZAP70, AIM2, IFNG, IFI27, LCK, XCL2, TLRS, TLR10,
SMPDL3B, CLECAE, HLA-DQB2, LTF, BLK, CCL14, GATA3, LY9, C3, CCL8, KLRK1, C7,
CCL5, UBD, NLRP2, SLAMF7, SLAMF®6, CCL19, CCL18, IL12RB1, HLA-DQA2, GBP1, HLA-
DQAL, SLAMF1, HLA-DRBS, SIGLEC14, CCL22, CCL21, KLRC2, SH2D1A, GZMB, IFNLRL,
MARCO, CD6, KLRD1]

[FCN1, CXCL, TNFRSF13B, CXCRS, FASLG, IL2RG, CD3E, SPN, CD798, CD79A, KLRKL,
CD19, CXCR3, CTLA4, CCR7, CCRS, IL12RB1, ICOS, SLAMF1, LAG3, TNFRSF9, LILRB1,
GP1BA, SELP, CD2, FCER2, CXCL10, PTPRC, IFNG, SELL, CD8B, CD5, CD8A, CD27, TLRS,
KLRD1, PDCD1, CD6Y, IL7R, MS4AL]

[ADAMDECL, SIRPG, PTPN22, CD3G, CD3E, CXCL13, CD3D, PIK3CG, TNFSF138B, SPN,
SIT1, TNFSF11, CTLA4, CCR7, CYTIP, HLA-DOA, CCR2, ZNF683, LAG3, ITGA4, HLA-G,
LAX1, GREM1, ZAP70, IFNG, LCK, IL1B, PRKCQ, HLA-DQB2, CARD11, SKAP1, IDO1,
GATA3, SPTAL, KLRK1, CCLS, ABI3BP, BTLA, CCL19, TIGIT, IL12RB1, ICOS, HLA-DQA2,
GBP1, HLA-DQAL, SLAMF1, PLA2G2D, HLA-DRBS, CCL21, LILRB1, CD2, PTPRC, CD6,
CD5, CAMK4, CD27, CD247, PDCDY, IL7R]

[ITK, RORC, PTPN22, CD3G, GATA3, ITGAL, CD1C, CD3E, SLA2, CD3D, LY9, PIK3CG, SPN,
TBX21, CCR7, SLAMF6, CCL19, PLA2G2D, CCL21, BCL11B, CRTAM, THEMIS, RHOH,
LILRB1, CD2, ZAP70, HSH2D, PTPRC, IFNG, CD8B, LCK, CD8A, CD7, CLECAE, IL7R,
CARD11]
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3.01E-06

0.0254

[GABRP, GLRA2, CLCN4, TTYH1, FXYD3, GABRA3, FXYD1, SLC26A4, ANOS, GABRG2]

neurogenesis - GO:0022008

53

5.00E-06

0.0392

[ALK, ATP8A2, PPP1R9IA, RND2, KIF17, HOXC10, RIMS2, GRIP1, CHL1, SOX8, PHGDH,
SOX9, NEFH, TRIM67, CHRNB2, MYOC, COL25A1, OLIG1, OLIG2, GFRA3, MAG, SFRP1,
OLFMS3, RARB, ASPA, CRB1, NLGN1, PLPPRS, LRP4, BHLHE22, UGTS, SLITRK2, PTPRZ1,
MAP2, CNR1, FLRT1, ADGRG6, SPP1, APOD, LINGO2, BCHE, KCNJ10, EYAL, CNTN,
LGI4, S100B, SORL1, MT3, LIN28A, LHX2, FABP7, FGF13, HCN1]

cell adhesion - GO:0007155

81

1.34E-28

2.00E-04

[PCDHGB7, SPON1, TENM3, TNC, HBB, ICAMS, SLC7A11, ARHGAP6, HAPLN4, HAPLN1,
COMP, CDH2, ITGBS, NRCAM, EDIL3, PCDHAC2, POSTN, KIRREL2, ACTN2, APLP1, OMD,
EPDR1, PCDHA13, PCDHA11, PCDHAL0, CLDN11, ILIRAPL1, ADGRB1, PKP2, ITGAS,
COL8A1, EPHA3, FREM2, ASTN1, PCDH10, NRXN1, NTM, NRXN3, ADAM22, NRXN2,
THBS2, THBS4, COL19A1, ADD2, ACAN, NTSE, SRPX2, EFS, RELN, FLRT3, PCDHAS,
PCDHA4, SPOCK1, PCDHA3, NCAM1, NCAM2, PCDHA7, PCDHA6, NLGN4Y, NLGN4X,
PCDH9, ANGPT1, NEGR1, PCDH20, BMP7, PTPRD, NFASC, KRT18, PCDHB2, ITGA10,
PCDHB16, PCDHB6, CNTN1, ITGBL1, PCDHBS, CNTN3, PCDHB3, CNTN4, NECTIN3,
SDK2, ADGRL3]

biological adhesion -

G0:0022610

81

2.22E-28

2.00E-04

[PCDHGB7, SPON1, TENM3, TNC, HBB, ICAMS, SLC7A11, ARHGAP6, HAPLN4, HAPLNL,
COMP, CDH2, ITGB8, NRCAM, EDIL3, PCDHAC2, POSTN, KIRREL2, ACTN2, APLP1, OMD,
EPDR1, PCDHA13, PCDHA11, PCDHAL0, CLDN11, ILIRAPL1, ADGRB1, PKP2, ITGAS,
COL8AL, EPHA3, FREM2, ASTN1, PCDH10, NRXN1, NTM, NRXN3, ADAM22, NRXN2,
THBS2, THBS4, COL19A1, ADD2, ACAN, NTSE, SRPX2, EFS, RELN, FLRT3, PCDHAS,
PCDHA4, SPOCK1, PCDHA3, NCAM1, NCAM2, PCDHA7, PCDHA6, NLGN4Y, NLGN4X,
PCDH9, ANGPT1, NEGR1, PCDH20, BMP7, PTPRD, NFASC, KRT18, PCDHB2, ITGA10,
PCDHB16, PCDHB6, CNTN1, ITGBL1, PCDHBS, CNTN3, PCDHB3, CNTN4, NECTIN3,
SDK2, ADGRL3]

extracellular matrix -

G0:0031012

59

8.97E-25

2.00E-04

[VIT, SPON1, CPXM2, ELN, TNC, PCSK6, HAPLN4, HAPLN1, COMP, PODNL1, FGF9,
EMILIN3, COL10A1, EDIL3, TIMP4, POSTN, APLP1, OMD, P3H2, WNT16, ASPN, SFRP2,
MMP13, MMP16, COL8A1, COL4AS, ANGPTL4, EMID1, FREM2, COL11A1, PTN, THBS2,
THBS4, COL19A1, COCH, ACAN, RELN, FLRT3, EPYC, GPC3, SPOCK1, CILP2, NDP, GPC4,
WNT2, GPC6, LRRN3, TFPI2, BMP7, MFAPS, LRFNS, CILP, SMOC1, OGN, MFAP2,
COL20A1, COL9A3, LRRN1, FMOD]

neurogenesis - GO:0022008

99

1.28E-23

2.00E-04

[STMN2, TNC, SOX2, FGFS5, SALLL, CDH2, DPYSLS, KIF5C, KIF5A, NRCAM, POSTN, OMD,
SOX11, ANK3, POU3F2, DKK1, ISL2, SFRP2, DOK5, ADGRB3, ADGRB1, EPHA3, NGEF,
ASTN1, DLX1, NDRG4, DLX2, SHC3, DLXS, NTM, LPAR1, EFNB3, FLRT3, NPTX1, NKX2-5,
NKX6-1, WNT2, PLXNA4, RAP1GAP2, NGFR, LRRN3, SYT1, BDNF, LIF, INHBA, BMP7,
PTPRD, BMP2, LRFNS, GDNF, TRPV4, OGN, CNTN1, ZNF536, LRRN1, CNTN4, SDK2,
SNAP25, TENM3, AREG, UCHL1, NEFL, NEFM, ZNF521, FOXD1, EDN3, GFRAL, WNT16,
GFRA2, GAP43, HAND2, ALDH1A2, ILIRAPL1, DCX, SHANK1, LTK, SEMA3A, NRXN1,
SEMA3B, NRXN3, ADAM22, PTN, RELN, ERBBA, EPYC, SLITRK6, SPOCK1, SLITRKS,
NCAM1, CSMD3, NCAM2, WASF3, NTRK2, NLGN4X, NEGR1, VAX1, NFASC, FMOD,
ADGRL3]

anatomical structure
morphogenesis - GO:0009653

115

3.80E-23

2.00E-04

[TNC, SOX2, COMP, SALL1, CDH2, BMPER, FGF9, DPYSLS, KIFSC, KIFSA, NRCAM,
MYOZ2, POSTN, IGFBPS, ACTN2, OSR1, APLP1, OMD, NPY1R, SOX11, ANK3, DKK1,
SFRP4, RBP4, ISL2, SFRP2, DOKS, ADGRB3, ADGRB1, PKP2, COL8A1, FREM2, DLXL,
NDRG4, DLX2, SHC3, DLXS, DLX6, EFNB3, FLRT3, NDP, NPTX1, NKX2-5, NKX6-1, WNT2,
PLXNA4, STRA6, NGFR, TFAP2B, LRRN3, BDNF, LIF, INHBA, BMP7, BMP2, LRFNS, GDNF,
TRPV4, OGN, LRRN1, CNTN4, SDK2, THRB, CXCL8, TENMS3, SYCP2, ELN, MEOX2, AREG,
TMEM100, UCHL1, NEFL, COL10AL, FOXD1, GFRAL, WNT16, GFRA2, ALDH1A3, GAP43,
MMP13, MMP16, HAND2, ALDH1A2, ITGA8, ANGPTL4, MDFI, SHANK1, SEMA3A,
NRXN1, COL11A1, SEMA3B, KCNA2, NRXN3, PTN, HOXD11, PTGS2, SRPX2, RELN,
ERBB4, EPYC, GPC3, SLITRK6, SLITRKS, NCAM1, GPC4, NTRK2, ANGPT1, EYA4, VAX1,
NFASC, KRT18, WT1, MFAP2, FMOD, NECTIN3]

axon development -
GO0:0061564

46

4.61E-21

2.00E-04

[SHC3, DLXS, SEMA3A, NRXN1, SEMA3B, NRXN3, TNC, UCHL, EFNB3, RELN, FLRT3,
DPYSLS, EPYC, KIFSC, KIFSA, SLITRK, NEFL, SLITRKS, NEFM, NCAM1, NRCAM, NPTX1,
NCAM2, PLXNA4, NGFR, FOXD1, LRRN3, BDNF, OMD, GFRA1, ANK3, VAX1, BMP7,
GFRA2, ISL2, NFASC, LRFN5, GAP43, GDNF, DOKS, OGN, ADGRB1, LRRN1, CNTN4,
FMOD, EPHA3]

synhapse organization -
G0:0050808

31

5.00E-20

2.00E-04

[NRXNL, NRXN3, TNC, NRXN2, RELN, CDH2, FLRT3, LRRTM2, SLITRK6, NRCAM,
NLGNA4Y, NTRK2, NLGN4X, BDNF, ANK3, DKK1, PTPRD, NFASC, GDNF, GLRB, PCDHB2,
ADGRBS3, ILIRAPL1, PCDHB16, PCDHB6, COL4AS, PCDHBS, PCDHB3, SDK2, ADGRL3,
SHANK1]

regulation of nervous system
development - GO:0051960

60

2.03E-17

2.00E-04

[SNAP25, TENM3, STMN2, SOX2, CDH2, LRRTM2, NEFL, NRCAM, SOX11, DKKI,
POU3F2, ISL2, SFRP2, ADGRB3, ILIRAPL1, ADGRB1, EPHA3, NGEF, SHANK1, DLX1, LTK,
NDRG4, DLX2, SEMA3A, NRXN1, LPARL, NRXN3, PTN, THBS2, SRPX2, RELN, FLRT3,
ERBB4, SLITRK6, SPOCK1, SLITRKS, CSMD3, NKX2-5, NKX6-1, WNT2, WASF3, PLXNA4,
RAP1GAP2, NGFR, NTRK2, LRRN3, NEGR1, SYT1, BDNF, LIF, VAX1, BMP7, PTPRD,
BMP2, TRPV4, CNTN1, ZNF536, LRRN1, CNTN4, ADGRL3]

cell morphogenesis involved
in neuron differentiation -
G0:0048667

42

3.78E-17

2.00E-04

[SHC3, DLX5, SEMA3A, NRXN1, SEMA3B, NRXN3, UCHL1, EFNB3, RELN, FLRT3, DPYSLS,
EPYC, KIFSC, KIFSA, SLITRK6, SLITRKS, NCAM1, NRCAM, NPTX1, PLXNA4, NGFR,
FOXD1, LRRN3, BDNF, OMD, GFRAL, ANK3, VAX1, BMP7, GFRA2, ISL2, NFASC, LRFNS5,
GAP43, GDNF, DOKS5, OGN, ADGRB1, LRRN1, CNTN4, FMOD, SHANK1]

neuron projection
morphogenesis - GO:0048812

44

4.84E-17

2.00E-04

[SHC3, DLX5, SEMA3A, NRXN1, SEMA3B, NRXN3, UCHL1, EFNB3, RELN, FLRT3, DPYSL5,
EPYC, KIFSC, KIFSA, SLITRK6, NEFL, SLITRKS, NCAM1, NRCAM, NPTX1, PLXNA4, NGFR,
POSTN, FOXD1, LRRN3, BDNF, OMD, GFRAL, ANK3, VAX1, BMP7, GFRA2, ISL2, NFASC,
LRFNS, GAP43, GDNF, DOKS5, OGN, ADGRB1, LRRN1, CNTN4, FMOD, SHANK1]

listed for each gene cluster. Enrichments were calculated using TANGO.

Table S2.2: Gene ontology enrichments for the five gene clusters. Top significant enrichments for GO terms are
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Gene KEGG Pathway #genes | Raw p- Correcte Enrichment Gene list
Cluster value d p-value | factor
1 Melanogenesis 9 | 7.25E-05 0.00414 5.07 | oas ancys e whrg -
Calcium signaling pathway 10 | 0.00119 0.0442 3,22 | i ey eva:
MYLK3, CACNA1H]
Maturity onset diabetes of the 4 | 8.83E-04 0.0357 Q.11 | [PKLR ONECUTL MNXL, NKX2-2]
young
H H KLRC2, PRKCB, SH2D1A, PRF1,
3 Natural killer cell mediated 17 | 3.07E-11 3.52E-09 8.19 | KRS PR frema PR
cytotoxicity IFNG, LK, KLRDY, CDAB, CO24T]
H HLA-DRB5, IFNG, IL1B, PRF1,
Graft-versus-host disease 12 | 6.87E-13 9.53E-11 19.2 | R oL A on,
HLA-DQA2, HLA-G, HLA-DOB, HLA-
DQA1]
B cell receptor signaling 8 | 1.87E-05 0.00129 6.99 | 5 arons coos mkaca
pathway
Allograft rejection 10 | 1.44E-10 | 1.39E-08 17.7 | B bon HiAboAs. i
G, HLA-DOB, HLA-DQA1]
Primary immunodeficiency 14 | 4.83E-17 | 1.56E-14 26.2 | 33 Chron oA, preRc.
CD8B, LCK, CD8A, CD19, IL7R,
ICOS]
Leukocyte  transendothelial 8 | 3.87E-04 0.0171 4.56 | e iee pcacay B RHOR:
migration
Hematopoietic cell lineage 21 | 1.12E-19 | 5.41E-17 15.8 | K52 dotonremic Tose. Conn,
CD2, FCER2, CD8B, CD5, CD8A,
IL1B, CD19, CD7, CD38, IL7R,
MS4A1, CD22]
Autoimmune thyroid disease 10 | 5.32E-09 | 4.70E-07 12.6 | B o HoAnoAs ti:
G, HLA-DOB, HLA-DQA1]
Type | diabetes mellitus 11 | 3.27E-11 | 3.52E-09 16.8 | B s e tan Fha
DQA2, HLA-G, HLA-DOB, HLA-
DQA1]
Chemokine signaling pathway 22 | 1.59E-13 | 3.08E-11 7.63 | K" P, ohene oot
CXCL13, PIK3CG, CXCL10, CXCL11,
CCL8, CCL5, CXCR3, XCL2, CCR7,
CCL19, CCL18, CCR5, CCR2]
Cytokine-cytokine  receptor 35 | 6.30E-23 | 6.11E-20 8.79 | S oS M
H H CXCRS, IL2RG, CXCL13, TNFSF13B,
interaction CCls, CCL5, CXCR3, IL2IR,
TNFRSF17, TNFSF11, CCR7,
CCL19, CCL18, CCRS5, IL12RB1,
CCR2, CCL22, CcCL21, CD70,
TNFRSF9, IFNLR1, CXCL10,
CXCL11, IFNG, IL1B, XCL2, CD27,
LTB, IL7R]
HLA-DRB5, HLA-DOA, HLA-DQA2,
Asthma 8.35E-05 0.0045 10.9 | [HADRES, HLADOA HLADQ
Toll-like receptor signaling 1.59E-04 0.00771 5.19 | S e er piksae > <
pathway
Systemic lupus 8 | 0.00117 0.0442 3.85 | i oaos, A s
erythematosus
H CADMS3, HLA-DRBS5, ITGA4, ITGAL,
Cell adhesion molecules 22 | 7.20E-17 1.74E-14 10.9 | s R, T Tomm
(CAMS) CTLAG PDCDI. HUADOA, ICOS.
HLA-DQA2, HLA-DOB, HLA-DQAL,
cD22)
Antigen  processing  and 12 | 9.42E-09 | 7.62E-07 8.94 | G on o, oo
presentation 882? Klgéﬁﬁ’] HLA-DOB, HLA-
T cell receptor signaling 17 | 6.73E-13 | 9.53E-11 10.3 | D i e e
pathway PbCD1, 008, CaRDIT
5 Arrhythmogenic right 9 | 4.28E-05  0.00259 5.38 | Reato, pren, MGAs,  IMa38,
ventricular  cardiomyopathy cAcNGA]
(ARVC)
Neuroactive ligand-receptor 16 | 2.54E-04 0.0117 2.77 | b LpARL NAYIR. " ADRBL
H H GRIK2, PRLR, MCHR1, GHR,
Interaction GABRR1, GLRB, F2RL2, NTSR1]
ECM-receptor interaction 9| 1.17E-04 0.00596 474 | R ohe ans Trinss, Tiass)
Dilated cardiomyopathy 10 | 3.59E-05 = 0.00232 4.92 | [0% Pees Abror. Acors,
CACNG4, ADCY5]
H NLGN4X, NEGR1, NRXN1, NRXN3,
Cell adhesion molecules 15 | 3.14E-07 2.34E-05 5.03 | N oot N, N
(CAMS) NCAME, NCAMZ. NECTING]
TG 8 7 28E_04 0 0307 4 12 [COMP, BMP2, FST, BMP8B, INHBA,

F-beta signaling pathway

THBS2, BMP7, THBS4]

Table S2.3: Enrichment analysis for KEGG pathways performed using PROMO on the five gene clusters. Top
significant KEGG pathways are displayed for each gene cluster. Enrichments were calculated using TANGO.
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Id | Gene Symbol p-value Mean diff. | Id Gene Symbol p-value Mean diff.
1 OCA2 8.28E-11 | 5.70 51 DUSP9 1.33E-09 | 1.70
2 TYRP1 6.71E-08 | 5.66 52 WNK2 4.53E-06 | 1.68
3 ITGB1BP3 1.10E-12 | 3.29 53 LAMA1 6.48E-06 | 1.68
4 SLC7A4 1.18E-06 | 3.02 54 SEPT3 4.46E-11 | 1.68
5 IP6K3 8.43E-06 | 2.94 55 CDK2 1.92E-14 | 1.65
6 Cl4orf34 5.34E-08 | 2.78 56 KCNAB2 3.11E-13 | 1.62
7 ABCB5 5.83E-12 | 2.68 57 MGC16025 6.70E-13 | 1.62
8 GABRAS 5.62E-10 | 2.67 58 PRR5-ARHGAP8 | 4.87E-05 | 1.61
9 KRTAP19-1 1.06E-11 | 2.65 59 SNCB 7.12E-06 | 1.58
10 A FAM69C 5.10E-16 | 2.65 60 GNAO1 1.15E-07 | 1.58
11  KIT 4.68E-07 | 2.42 61 MAST1 4.27E-07 | 1.57
12  VGF 2.36E-05 | 2.40 62 HRK 2.01E-07 | 1.56
13 | SLC6A17 3.69E-12 | 2.30 63 LOC148145 2.18E-05 | 1.55
14 MGAT5B 5.03E-14 | 2.30 64 PLAC2 3.51E-05 | 1.55
15 @ ACCSL 7.56E-11 | 2.23 65 C6orfl76 6.14E-09 | 1.53
16 | GNAL 2.53E-09 | 2.22 66 SFTPC 1.36E-07 | 1.52
17 ABCC2 4.07E-09 | 2.20 67 RIMS4 2.97E-06 | 1.49
18 ¥ ONECUT1 2.53E-09 | 2.17 68 ONECUT2 2.75E-05 | 1.48
19 NECAB2 8.68E-09 | 2.16 69 FZD9S 6.86E-09 | 1.48
20 | PRODH 1.73E-07 | 2.08 70 ARHGAP8 2.72E-05 | 1.48
21 | PNMAGA 9.15E-17 | 2.08 71 LOC100127888 | 2.55E-09 | 1.46
22 | CNTFR 2.96E-05 | 2.07 72 TRIM63 5.22E-16 | 1.44
23 | POU4F1 2.19E-07 | 2.03 73 EPHAS 2.27E-07 | 1.44
24 | TRPM1 6.21E-12 | 2.03 74 DGCR5 8.67E-06 | 1.44
25 | SLC5A10 9.89E-07 | 2.00 75 TMEM151A 1.05E-05 | 1.43
26 | SILV 1.95E-15 | 1.96 76 ciQL4 2.51E-08 | 1.42
27 | FOXF2 2.92E-09 | 1.94 77 CPNE7 2.05E-06 | 1.41
28 | CDK15 2.41E-07 | 1.90 78 GBX2 8.10E-05 | 1.40
29 | SLC16A6 4.76E-05 | 1.90 79 FSTL4 1.84E-06 | 1.40
30 | NKX2-8 5.75E-05 | 1.89 80 NRTN 1.99E-05 | 1.40
31 | L1CAM 2.05E-06 | 1.88 81 TFAP2A 7.61E-22 | 1.39
32 | CDH3 1.18E-10 | 1.87 82 DUSP8 2.01E-08 | 1.38
33 | BRSK2 3.30E-09 | 1.86 83 | C6orf218 4.38E-12 | 1.35
34 | PITX2 6.15E-05 | 1.85 84 ZNF703 4.75E-14 | 1.32
35 | DPYSL4 1.59E-10 | 1.84 85 HES6 6.04E-08 | 1.32
36 | KIF1A 5.41E-06 | 1.84 86 LGI3 1.30E-05 | 1.31
37 | PRRT4 8.44E-07 | 1.83 87 NCRNAO0052 3.20E-07 | 1.30
38 | RTN4R 1.19E-14 | 1.81 88 C150rf59 8.46E-05 | 1.28
39 | ADAM11 2.45E-11 | 1.81 89 | LOC390595 9.69E-06 | 1.28
40 | CA14 4.30E-14 | 1.80 920 TPCN2 1.79E-10 | 1.28
41 | NR4A3 8.93E-10 | 1.80 91 ADAMTSL5 1.29E-07 | 1.26
42 | MCF2L 6.71E-09 | 1.80 92 GPRC5A 7.47E-05 | 1.26
43 | TSPAN10 9.07E-12 | 1.78 93 DCT 6.70E-05 | 1.26
44 | TPPP 1.21E-11 | 1.77 94 LRRC39 7.68E-07 | 1.25
45 | KCNH1 9.86E-07 | 1.77 95 ITPKB 6.75E-11 | 1.25
46 | GMPR 1.59E-12 | 1.76 96 CELF5 2.07E-05 | 1.25
47 | KREMEN2 2.72E-08 | 1.74 97 MANEAL 4.15E-07 | 1.25
48 | DLL3 1.70E-09 | 1.74 98 TTYH2 1.84E-13 | 1.25
49 | SULT4A1 4.74E-05 | 1.72 929 ANKRD9 7.75E-13 | 1.24
50 | SEMAGA 6.74E-20 | 1.72 100 | HES4 1.58E-07 | 1.24

Table S2.4: List of the 100 most differentially expressed genes distinguishing cluster 4 samples from and all other
clusters. Genes are sorted by descending fold-change. P-value was calculated using the rank-sum test applied on
[Melanogenesis-high] samples (n=118) vs. [Immune,Keratin,Melanogenesis-low] samples (n=350). p-value cutoff:
p<0.0001.
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Patient | Age at time Survival Survival Survival from | Current
number of primary fromT from distant status
tumor diagnosis regional metastasis
diagnosis (months) lymph node | (M) diagnosis
(N) (months)
diagnosis
(months)
1 81 over 60 months Alive
2 67 over 60 months Alive
3 66 over 60 months Alive
4 88 24 4.15 Dead
5 74 19.75 6.77 Dead
6 67 19.48 17.38 0.85 Dead

Table S2.5: Clinical details for the six patients selected for Immunohistochemical staining. Patients 1-3
survived for more than 60 months after diagnosis and were therefore labeled as "Good Prognosis", whereas
patients 4-6 survived less than 20 months and were therefore labeled as "Poor Prognosis".
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Analysis of the topology and predictor genes for subsampled datasets
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Figure S2.6: Distribution of the topology of 1000 decision trees. For analyzing the topology and biological function
of the tree predictors, we trained 1000 3-gene decision trees by resampling the dataset samples (resample factor =
0.8). The most frequent topology was ‘1101000’, identical to the topology of the final decision tree presented in
Figure 4, which was trained on the entire dataset (Note that 1101000 and 1100100 are considered different since
the left child of every node always corresponds to the "less than" subgroup.)
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Figure S2.7: Most frequent genes in the 1000 decision trees (m all tree positions).
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Figure S2.8: Most frequent predictor genes for each position in the tree and their biological function. For each position
in the 1101000 topology, we generated a list of the 10 most frequent predictor genes as appearing on the 791 random
tree variants. The analysis showed that the most frequent genes in each position are characterized by a specific biological
function. Position 1, which forms the tree’s root, was typically assigned with keratin and other skin related biomarkers,
such as LGALS7B, TNS4 and KLK8. Position 2 was typically assigned with well-known immune markers such as TIGIT,
KIAA0748, LCK, and IL21R. Position 4 was preferentially assigned with TRIM63, but also with typical melanogenesis genes
such as GPR143, SILV, and TRPML1. Interestingly, the lists also included genes that are less familiar in their context here,
such as LOC399959.

The results demonstrate the hierarchy of the biological functions by which melanoma samples can be partitioned into
distinct subgroups, and also show that the final tree presentd in Figure 4 is a representative of a stable tree topology and
is using predictor genes that are biomarkers of the above three biological functions.
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7.3. Supplement 3: PROMO

4 Clustering

Clustering Panel

K-Means

Distance measure: |correlation k K: 5 Replicates 5 Cluster
K-Medoids

Distance measure:  cormelation ~ & 3 Sehicales 3 S

Hierarchical Clustering

Distance measure euclidean ~ [[] Optimize leaf arder Show dendrogram
Linkage method average i Optimization criterion adjacent N Cluster
Max Clust. 5 Transformation method:  linear ~

Click

Distance measure: | CORRELATION R

Cluster
Homogeneity 0.7

Figure S3.1: Clustering Panel The clustering panel allows the selection of a clustering algorithm and its
relevant parameters. Clustering can be applied both on samples and on genes. The resulting clusters
are added as a new sample label and can be explored on PROMO's main screen with respect to any
other clinical label (See Figure 3).

{4 Label Management - [m] X

Label Management

Search:

Label name ‘ Label category 1 ‘ 2 |
Node_Coded_nature2012 NA - |1 |Basal 142
Node_nature2012 NA | 2 [Herz &
0S_Time_nature2012 Survival_Time g =
0OS_event_nature2012 Survival_Event (5 NA 255
PAMs0Call_RNAseq 6 [Normal 1
PAMso_mRNA_nature2012 NA
PR_Status_nature2012 NA
RPPA_Clusters_nature2012 NA
SigClust_Intrinsic_mRNA_nat... NA v
< >

o 100 200 300 400 500
Labels Categories Add a new label Export labels
Import label category from file Load label from file Save labels data to file
Export label category to file Generate a new label from existing label

Generate a new label from data

Figure S3.2: Label Management Panel. This panel allows the management of sample labels, including
removing, renaming and viewing the distribution of values of a label. Labels can be assigned to category
types, and those types determine the statistical test that can be used for calculating their enrichment
on sample clusters. Both labels and their categories can be loaded and saved to files. New labels can be
generated from existing labels (by uniting label values for instance), or from genomic data (e.g.,
translating the expression values of a selected gene to LOW/HIGH labels). Lastly, the distribution of
values for the selected label is displayed as a histogram on the right.
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Z Biomarker Discovery Panel - X
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Finding differentially expressed genes
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Figure S3.3: Biomarker Discovery (A) This panel is used for identifying genes that are differentially expressed
between sample groups defined by any sample label. Statistical tests vary by label type, and include t-test,
rank-sum test, ANOVA and Kruskal-Wallis. After optional filtering, the resulting list of genes is saved to a file
sorted by p-value. Here two groups were defined, according to the PAM50 label. One group corresponds to
the basal and the other to the LumA and Lum B categories. See Table S3.1 for the resulting set of differentially
expressed genes. (B) The feature patterns of the identified genes are presented on PROMO's main screen
together with any selected sample labels. Here we see the expression levels of the 20 genes that were
identified by the test in A, after row normalization).
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id Gene Symbol p-value Fold

(Test: Ranksum test on Change

PAM50B_Call

[Basal](n=191) vs.

[LumA,LumB](n=770))
1 CXorf61l 2.33E-123 4.5604
2 LEMD1 1.72E-122 3.1005
3 ART3 3.17E-118 5.294
4 HORMAD1 1.75E-113 5.8894
5 GABBR2 7.04E-111 4.2383
6 SLC26A9 4.21E-101 2.4335
7 OPRK1 2.22E-99 2.5534
8 GATA3 3.27E-99 -4.02715
9 CCKBR 5.86E-99 2.1373
10 ROPN1 8.44E-99 6.1879
11 MLPH 5.43E-98 -5.1038
12 ESR1 7.07E-98 -7.07625
13 SLC39A6 9.68E-98 -2.7197
14 FOXA1 3.21E-97 -6.7128
15 TBC1D9 6.71E-97 -4.06355
16 LOC145837 2.99E-96 -4.18775
17 CT62 3.12E-96 -3.65845
18 RASGEF1C 5.50E-96 2.1274
19 AGR3 1.12E-95 -9.2111
20 FOXC1 1.63E-95 4.26835

Table S3.1: List of differentially expressed genes. The 20 genes with the most significant differential
expression between the groups defined in Figure S3.3A are shown. Genes are sorted by their rank-sum
test p-values. Genes with positive fold change are over-expressed on the basal samples compared with
the luminal samples. Here, for instance, we see that the Estrogen Receptor gene (ESR1) is ranked 12
and exhibits a significant under-expression on the basal tumors samples (the Triple-Negative subtype)
compared to the luminal tumor samples.






D220 D2 17D L,INX'Y N07NNN YUV D' X .(;\IIOYJ?I nivws |'2'7 7T "2 XA JIT'RD 1NN
NnI‘uoiNaNdS NIxIay? MNY? 0'71n 7Y aIroa Tian 119'W7 TNy 1IN ,0'100 RRL% V20 N'NTY

NP o
JVYON DINNA 97'A AN YT NIN1Y% 75 — PROMO

190IX 7¥ DTPNNA NINY TWOXRY NIN 7Y INNOY 19711 Pwnn 7pa 'upRILI'R 'O 12D 1NND
ONIF AN DNRIN 707 178 YT '90IX NIX Y107 1021 NNYNal NIp2A (VN0 7w 0YITA YT
NINAT QOIX W1 TYUN |VI0 NINAT QOIX 7V NYXIY NININ A7¢ NN DR wnnn Inno
197X 0'7712N) D'7ITA YT'A '90IX 7¢ NINYY DXRNIN *720 .0 TN 07192 NRINY '9) nninnn
,N7IN 72 7Y D2'ATH 0Y2'7 DRIN) OV TN 9PN 2N YT'R 7w NN annnnt (Nt

.0'NIN1Y 110 7¢ Y'Wy |HAN TWONNI

DN DT NN 0™MP'YN 07U .|VN0 7Y DAI0 NN IN'T KIN NN NIN 12 'YXIN NININ 210
7M1 12'o (2) .0'¥ap 'unIsI NNIZA (1IN Y7 YT DY Th qp'n 2Nt yTn 9w i (1)
N7 NIPNWOR [1an (3) .NIMAN qwNAY? yinl 0'RY Ny @707 7D DRIMIN oIR Y
N7w9N (4) .90IXN 1M1 7¥ NI'0*02N NNINN DX NINT? M2 DN7W AXTINIT'IE DRININ NIA79NN
72U NPI7N DNYORN 10N NXNUN NITNY 7Y IR NNIY 7y (Clustering) Y7 "NMIAR (1an
nixp v nMwyn anan (5) .niXnp 'MNn? Qoixn NNAT 7w IR (D2 2NY7) 9OIRN NN
NINATN NIXIAPZ DX D97 [MOX7 TWONN NNAT 727 M 17970 YyT'Na win'y M NNt
72U NN NIYRAI9N DX |MOXR7 DNIWOKRN (D'2) OIRN NN 72V "YWy NN .17apnny
IX D190 DA 1IN'T7? D'VO'VVO DYINAN '0'01 7V DINO 7V IN'KR (6) .NINIYA NIXIAPA DA
N2V DFOIYD NUTNN 'YV 7Y NTONIVIX DY AWONRN 1NN ,91027 (7) .ITwa NN 0'01 7y

DNN21 NIN'AT NN

nid'o

Qi7'n 2NN DM NINY X7 NI'KO'VVOI NIMNMINATR NIV'Y 1IN YIN'Y 1'WY IT NTIAYA
.DIIY DAION 177 VTN DY 9'N 2NN A7 YT 7w A17'Y T 78 Nl NINAN 010N DINNA
DIYORN WX N'¥7'NN 0012 01971 024 110 001N OI9T I1'A'T TWN |UI0 NINAT 7W NN
,AMN7NN NINAT 7¢ NINMA .Luminal-A 2100 NINAT ¢ DIMYHN 12'0 DX NI 210 1vnY
DOIYPN D2 W N 0 T 7Y NITOIRAN NN NITIY N7y NINAAT Y axinp T
J1'NTY 010N 'MN Y2IRN NNKT? NYTN NNAT 21107 2WORNY VIYS NLV7NN YV 10X ,NTANR7NY
[U10N DINNA D'71ITA 021712 DIN '90IX 7Y 1'NN NN TWONNY INND DY 73 1INN'9 , 91017
A'ON ID'WA 1YMO' IINN'OY Y7001 11'7UNY NIINARNY DN X .'ATN 1770 yTNn oy 21'7'wa

JUYIRD DRIDIAN [ITN DIT'7Y? IDAN1T 0102



"D'001 NX7'MNN9 7'91N9] NIMORNNY ,LUMA-M1 122D NNIX Luminal-A nimaT 7w nxnap
-0 NN 72V DWYN NN CJDNNRD NIXIAPZN MYY ARIWAD PR2aIM 91X NI' DIN1 NIMuhN
DIYZN D222 2TAY NRIN ,LUmA-M1 Nin'aTn DX DX N1'OXN DN NNIRA DY NN CpG

.(Developmental genes) NninnNonn?

W NIV ' IRYNY 20N NIdWN 'MW n72un ,Cox regression 7y 001an NITIWN NN
NNYRN "ID2'0 NN N7YN 02 '10' "IN 0'01 7V LUmA-R1 nXIApn NNY Nn'aT 7w 1'Y .'001AND
"2'0 NN TIM X"T NX7'NN 21N 0'01 7V LumA-M1 nxiapzn NNY nn'aT 2 'Y 17'R1,2Tan

.7NaImM 91X 7910100 YW NITYANN

AlOn TYUN |VOO 7v ninnaTa XMT DU N 0122 N0 N 7Y 1YY Niman L,oin'o?
nm' aTani' Nn1lv n,7|'7n1 TNy Yo7 D"IYYY '0011AIND 1Y 172 D'0I9T AW NN'T Luminal-A

2N 00TA DRAI0 NNY 17X
NN YA V1o 7V AIroN NI9'Y

2V VXINWY '93 Nnin'm 21T W 01N 10" 001N AI'ON NN 15WT7 NNYD AT VR'ND W NNvNN
NIMIVSIPIONL NIXIARE WIW? nmaTh 2w npin 775 nt aro 2015 mawa TCGA T

. [48] |n7w nimwrnan D0 Pnain 71an I (Immune-high, Keratin, MITF-low)

NIXPZ ANA'T WIR? TCGA-D NANAN IMINY nnin7an nimaT 469 7w n'nam 'm72a npln
102 *7'91N5 0'01 7V NYXIA NRITNN 071NN 7W NITYNN Y12'0] 7nam 77an Nitya nNina
NN YIIX 7Y [I'9X .k-means DNMIAZX NIY¥NAR] NI NNaN hiwn 2y 0man 2000 v
NIXAZN NN WI7Y7 ARIWUA YT 991 %7 v 0'02 7Y ny¥aY nplna 172pNnY NiXipn
Immune- NIXIAPN NNY? NIapn 07w npi7na 3-1 1 nixiagn My AN7vun TCGA T 72V NTaAINY
NPI7Na N7¥19 TCGA 7w Keratin n¥IApn NN ,NXT 0V .(NnNXNN2) TCGA 7¥X MITF-low-1 high
"D'0 N7V NN'NL,0MIYRY 07172 77'Y2 070 2 NN DN CNNM2 NIXAP 'Mn My ny
I7'V2 N'7'oN 4 NN NN PO 210N 0N 7Y AN 10N NIYOXRNNE NI DDININ NITIYN
NT12171 210N 022 7¢ N 0 NIMONRNNIELMTAY D'DINY NITIYA MID'0 N7Ya NN L, NNMa

.(Melanogenesis)

1237 NNOTI) N72'PW NRI7N2 4 NXIAP NNA N2 D'RLVIANTE NTARIY? DNIYRN D2 DITZANN
1T'N7 DINOd WnWwY Dviwy) DUVOIMNS DN 1R DY NN (Melanogenesis-high
NIN90N '97 DNIYR 17X DA I'7RY DITI7AN [N2X |2 112210 W 72V TANYT DYIwY X1 (MM

AT DYWN MNXY " TO WM 901N Wznn .nimwa |21y

AYONN 210NN .0"A 10 0'01 7V NN 7w 10 NN TN NV7NN-YV A10N Ao 11A'K ,DI'07
022 3) D' 7 [V7 190N 0'02 7V ,I1'N'TY NIXIAPZN NN YIIXN NNKY? NWTN NNAT 7Y a11'o



NIKXXIN

TYUN |UYO 7w Ao NI9'Y

NX N7'on1 PAMS50 n'Nj7 ,0'2 10 7Y NooIAN TUN [V10A N7AIAN N7IR7INN A1I'0N N0
D22 '10 1IN YIN'Y N'YY DT 0R'IN9] .Basal-like, Her2, Luminal-A, Luminal-B D'aion 'nn
[010 NINAT NIXN 1IAY 0Nt (DNA Methylation) X"T nu¥7'nn uniar (Gene Expression)
NIynwn NIy NIXIAPY? TYUN (VN0 21T 72w AI'oN N19'W IX? TCGA-N 7W DRININ NARN] TYUN

e

-1 TwN [0 7w D'7ITan NiMaaT 1035) ninaT 1148 YW ptan 1v2 'O NTINA N7NNN
DNMIAZX NNV NIXIAR 5-7 n'Nam 'M72 Nixa onpi7ni TCGA-N Naxnn (Y 7w nniaT 113
NN 0727 NNIX NRI7NN DIRIYA AN NN Dnivn *7va 09an 2000 0'oa 7y k-means-n
NINAT TNIMAI Luminal-n NIMAAT AWK ,nRI7NN NNIX ‘MY |2 INA [I'nT 7y ny2axn PAM50-n
DTY 010 'MNY IT NXIQP 7707 NNWOKRN 7V NTNINN N'MIYAYN NINMANLN IXN Luminal-A-n

Jnre

win'y )N ,nixiapg M7 (Luminal-B-1 Luminal-A) Luminal-n nimaaT 737 nX 71 np''n ,qwunna
0120 2000 9w 1v1n 1m1 0'oa 7V k-means DNMIYR NITYA N'NIA M7 NRI7N NO'W NNIKA
NINATN DX NI A0 NTI90 12727 ANIR Luminal-n nimaT ni7n 078 nimaT 72y 1N naivn
NIXIP? PAM50 n'inn NeI7N7 ARIWNL ,2ITan NRYAY '1D'on N1'Nan DAl NIMYH N1'Nan
U7 [I'9X NNTA NINATA DR 027NN DX N NU'WAY AR IT IRXIN .Luminal-B-1 Luminal-A
NN NNOXIY NI N71TAN NRIYALIT D170 DA N7 NIA'WN 7202 1Y NN 79 1Inw'?)

AT N¥IR NN TPANN? no7nn 2 1, Luminal-A nmaT 272

NX NP'7'n Luminal-A-d nimaaT 534 7w 1 Dyon NIXIp ‘M7 N5on N'Naim M7 npin
[91X] .(NNKRNNQ N=276-1 N=258) LumA-R2-1 LumA-R1 12D [NIX NNIN2 NIXAPZ 'MY? NinaTn
?nam 21w TNl ,PAMS50-n Ao 7w Luminal-A-n N¥IAp DX 19%'9 17X NIXAP-NN ,[Myn
2170 NNYNY AN ma 13'02 N1OXRNN LUmA-R2 NXIRZN NN |00 NIYAYT 12'01 N'U0'VVO
DNIYPZN D' 7w 71T 190N 7w AN 10t DA MTORNNE L, LUmA-R1 nx¥Inp? ona 0w 5 N

.T '*N N7v9n7 DNIYZN 0222 DNYYINN , [10'NN DYy

TUN VY0 NINAT YW X"1T NUX'NA *2'91ND 7Y DNIT NN 1YY VP'N9N 7Y YN 7N
nixp 3-7 Luminal-A-n nimaaT 378 9w n'nam 'M72 npi7n . TCGA-N Naxnn DN X IMINnY

-NN N5YN NI NN NRIYN 22 CpG-n Nk 2000 0'0a 7y k-means DnmMia'7x NItva



D'NINKN [40] D'0'¥I17N WA NIy O'RN W Nzian X7 NIpvnnna 7'Nnn nnin?n an juno
NIN D'MIYRY NN 21T 719100 .DNIN D100 NIYD 'RNYT INYONI1 L1171 VINA'DN NPON 7Y
N'oN' NN'NNA VYWOSNINYT D'Vl NNR'M "2IT'A,07IX .[41] NIN2 2ITan 7w Anon 7701 ,non 7
DA .[42] "NI' D2IN NANNA KIN 719'0N ,NT 2¥N2 .NNNA DY TOM71 1A 0'Pninn 0NAKY
DX IP7'NY 0"A7IM91 0" 0M0N19 O 7Y N7NNNA WYl NIr719'0 NIu7nn ,nnntna
niynwn 178 01210 'NN7 nN"n X7 ,]INQX VI'0 TA'Mm X ,[44][45] D'a10 'NN 19017 D717 an
BRAF, DN2,D'2 1901 INIT,97'N NIANT NIMMIA NIFAIZIDL 7w NINNSNN Dy .[44] nNa Ny
NNNA NI7YUY 17W 010IN 7251 20 NINNSNN 7V Y'oswn DN NV 7w g "WX ,NRAS, NF1
NN Y Ymnw TCGA-n nxIap 7w nkn 0o ,2015 miwa .[46][47] o'pninn DNKY
TN 7apnal,(WT-1,NF1 ,NRAS ,BRAF) NINDW NI'YLIN 7V 002NN D'AI0-'NN NYAIRT A0
.(MITF-Low-1 Keratin ,High-Immune) D12 102 7'911 7Y 002NN D*AI0 NN NWITYYT A11'0 DA
YR NRIN L0210 7'91ND 7V 001aNY WD AIFON 711 NDIND NIN'RN NN DRAION Y |1

DTy
N'Y'X INXNIND AXION [ITNI §'A NIANY NIFAINDL

7 TINN 71IT2 190N 7W DTTTA NNYORNAN 97'N NIANT NIFA7ID0 190N INNID NIINNKN DY
NIZ90nN [N NI 'Omics' NI'72 NIIdA 17X 7' NIANY NA00 . [50] nnfaTa Nifi nnpdn
,(012 vl X"11 pN) Transcriptomics ,(X"1TN 1jPN) Genomics-nN 'MINN2A 9N 2NN DIN)

NN 21 (D21270 2PN) Proteomics ,(X"1TN 7V 0*0A'OXR D*11'W Y7N)Epigenomics

33 nix''nw ninaT 11,000 7700 V10 7w MNA DRINI NARNY XNAT 120 [79] TCGA-D LR'ND
qQx12 0"1'Y 19M7 DNA-Seq 7712 ' NI2ANT NIMAI7IID0 190N T 7V NAT NIN'AT .[V10 AI0
NU¥7'NN NN NTTNY? Methylation arrays ,miRNA-I mRNA 102 nin1 N1 7 RNA-Seq ,X"1Tn
DA DININ NARN 771D ,90102 . TIYI ,0122 D'PNIYA 190N 0*1'YW N7 SNP arrays ,DNA-n
STIVE DMWY w7100 10 NN L' L7 7700 nimaTnn NNR 9D 2% 011on 1'% yTn
TAN 271 9'N 2N YT 771D RINENIF (VYo N DINNA W ' ARkWNYT 190 TCGA-N NaNn

.[81] [80][83] Nava |'aT N'n K7W '9D DIIW DAION D717 7y

DINN2A XINL,|VION DINNA O7'NN 2NN A71MN YT'AN 7Y 17117 AN 0'N'0ANN D'YIN'YN TR
D'"0'01 D'''ONN 'S 7V NIOA NIXIAPRYT |UN0 71N 12110 12V DX .[72][73] N'W'R NARNINMN AXI9N
75 21107 N'VAN N'W'R NNIXNINN ARI9DIN DINN L' TA7 TR N DN7Y [NIY 72191001, 2170 v
7¥ PN '01an 7'91N9N 7Y 001ANY N'WIR DXNIN 719'0 17 9071 NP NRTA AXIAR7 071N
D'719'0 NN9Y ,|LIO0 A0 72 1Y D'PITA D'AI0 'NN NINT? W' IT N2 NIN'S DYW7 .19 2Iman
7' 210 NN7 N7IN 7¥ 121'0 DX NWOR'Y (Biomarkers) 0¥ano NINT?1 ,210 NN 72 112V 0D"'9'¥50

.[75]



XN

7% v
JuNO

D'NN 7¥ NMpIan "M npI7na NNtOXNNN NIZNn YW D7ma nxine? ont'nn "jvno" NimN
NYN NNINNN DI NN D7D .DPNRNNA DNAKYE NIQAI0 NP7 DNIVYWSNN D) D'N'Y7I
[I"7'7n 9.6 MW >"noI jVIoN DA D71V NN PR AW o0 TNR L2018 miwa [1] 07iva
10 N ,9122 12K 702 Y'9In? 710t [V10 .[2] NN Y D'wTN DA 7 18.1-1 nim pn

Aynal 7Yl NIRRT DN N 0'NDYN [oN

D'NAN D'RNY7 DINM O'RN O'RN INNA0NAY 1%7w-11 1'7NN2 0'NNSNA 0010 D71
A¥j? NX 1207 DNIMN 0'RNY DYOKRN 17X DY .0M0IA'ONI 00X DVII'Y W X1 NIAzya
NINYI 0N'RAN D'RN 7Y D77 N27INN nonn ,N7NNNa .NIYTN NN WYY DN7Y npI7nn
D'YNINNN 0'901 D"I'W D7IX ,(Primary ,RIUKRY |UN0) 7IT'AN 7w UKD NNXIFDD DIPN
IN NI NINEAT7 WI7971 1IWURIN 71700 7NINNY7 0'RNY7 DNA7 0717V 02NN 2Iman 'kna
DNX 78 NON'™N NdOWN IX DTN TN 0T 1AY7 0wy 178 O'RN .07 IR 077 010'1Y
AN .(Metastases) NINNA NN L2ITAN 'KN 7W NIWTN NIAYIN 0'pAY7 1721' DN 9122 D'YUTN
TSN NIYAIDI NI NINZY? NIVYONNY NINNAN 7W NRXIN 0N (V0N N7NNA NINN PN

.[4] oMaRn

NI0N7 NN 07710 DNIZITAN 7w D'VIAN D'M'OXRNYT D'9'XD0 DI'X [VI0L D''NNIONN D'719'0N
D''9'¥90! D'NTPNN D'719'0] YIN'Y 7NN NINNKT? .0N7W DAI7'Y IX N'9NIMD NI L 21Tan
0'219'0 ,("71T22 DN'NYT 91IAN 7Y 10'NN DDV N7ID' NIK 0DAanN) 0MI0'N 0Y719'0 (120 NI
D'97INY) D1IDIA 0719'01 (AN 7N D212 7Y DRI7NN Q%7 DR DOYNN) DY7XIMIIN

. [11] (jan 'm7a 9182 D'RNN NPI7NY NYWATIN N'O'Y90 N7177In

NI0I72 2¥N NI L2170 712 (12 D0NIS 72V 17NN 100NN NIF7I9'Y NIV7NN , TYN |VI02
DINNIN V717 NYI7Y 7¢ 01VVON A7 YT'NI DA YIN'Y NYYI ,UNNd .A17100'0 2A7W1 non'n
Qi7'n NIANT NIRAIZ00 7w NINNSNN DY .[14] 719'0n 210 Ny1apa (HER2-1 [INVOAND L,|ANVOK)
190N NTAIN ,NNIY TY [V10 NIN'YATA DA 7Y 21TA 190N 7W 101N NN NTTN DX NNYOXRNY
Basal-like, HER2-enriched, Luminal-A and :[19][20][21] Twn V007 D717 D'AI0 NN
IXNID DN LNIMTIRD AroN NIV'YWY NNYIoN NIM'RN NN 17X 071771 010 'NNY .Luminal-B
MY .N2NNIN DNIC0ANNY X'ANYW NN ,NIDNNYT NAIANI [12'0 NN 12D 077 D''OXN 190N
7"30 NIXIAPEN Y2IRN NNRYT TYUN VY0 NNMAT 7Y A1I'0 TWONNY PAMS50 nwa alion no1io 2009

.[23] 012 50 7w nv'an nn'nn ' 7y






n‘'xnn

7w NMpIan 'M72 npINa N1OINA N7NAN .071Y2 ININDYA YN DHNN DA NN [VIoN N7NN
XIN JVYON N7NNA 719'0N .0'PNINNA DN2A'RY7I NNAI0O NINPAYY NIVYSNNA DA 0'N'YY7I D'RN
NT TINA 7T2'07 DMWY 9122 12'RD IMIND DRXINY D'71T'2 02 N22N00 TING AN 7w anKn

JI9NNY 0'2'an 0N |9IXN NI'NANI NITMY'AN "12'0 N1'NAN L1711 N1'nan Nt

D'7710 17X DMARN .D'2'AT IYY] JUION DINNA O'71TA 0112 01N NARA 1901 ,NIINNKN DY
010 NINAT '97X MY 9PN 'R YTNT oI g7'n-NIANT NARINY (11N DIPNY D1
YT Oy 9p'n 2NN ' YT Y A1I7'Y N'WKR NRNINN ARI9IN [ITN? OXNNA .01IY D100
D210 'MN 2IY'N [9IXA NINT? NNWONN NIIY NITMNMIATRI NI'Y0'VVO NIV'Y NIYXANA 1777

.02 71901 NIDINN NIN'O L[INAX 7V Y'OUNYT7 DMIYYI N'77 NI'WN 7Y DI'NY |0 7Y

INY",97'N 2NN 021N 7V 002NN2 0'A10 'MN7 |UN0 7Y AI'0N TI9'WY "W NNN'D ,IT NTIAYA
NINANLVN QYN TYN [VI0 1IN 7V YX'AY NINYN .NNIRT7A 210N 1Y [VI0 V1 TYUN [U10 72V NNIX
NIXAP-NN 'MY7 AT 210 N2 NI7I70 NINATA DX 27'N1 Luminal-A 2100 NN N'Miynwn
NN'T YN (OO0 "INY 7V VXA NINNID .AY7'NN NN D22 10 '0I9T 0'0 7V NI'VOIAIND
DNIYAN 022 7W AN 10 T 7V DRYDIRANT NI NITIYN N7V NN DT 9w axngp
D22 NYWI7Y 7Y 110N NN 7Y 001NN VIYD M71R7IN A1on 1INN'D 1D IND .Melanogenesis-a
INN'OY A'VPRIVI'X NDIN 722 'YW ,PROMO NX DIRNN 12X 91017 .NNIR702 A10-NN 1T'NY
D210 'NN 1N'T? NV'WN NIX 7700 750 .|VN0 7Y DAI0 NN IN'TI §7'N-'2NN DRINI NINY IX?

Alyn Jv1h0o1 TYN |10 7w alron 119'wh D'U'INSa 1n7y9n NNIX






TeL AVIV UNIVERSITY % 2IN-XN NU'O1DIIN

1777X0 "2 Mt W'Y 07t 0'y TN no77on

7101271 W'y awnnn w7 1900 N

NIYXNNA |VY0 7Y DAIO-'NN 'IN'T

0;7'2 2N ' YT NINY

"N101017'97 VPIT" ANIN N7 DWT N1aN

"INAINI 'AT NNN

MY N '91N9 7w Innina

2'aX 7N NV'0NANIIN 7w LNIOYT waIN

2019 nanxT



