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Abstract 

 

Network-based module discovery (NBMD) methods have taken a central role in integrative analyses 

of omics data in modern bioinformatics. NBMD algorithms receive a gene network and nodes' activity 

scores as input and report sub-networks (modules) that are putatively biologically meaningful in the 

context of the activity data. Although NBMD methods exist for almost two decades, only a handful 

of studies attempted to compare the biological signals captured by different methods. Here, we first 

set to systematically evaluate six popular NBMD methods on gene expression (GE) data and Gene-

Wide-Association Studies (GWAS). Notably, testing Gene Ontology (GO) enrichment of modules 

obtained by these methods, we observed that GO terms enriched on modules detected on the real data 

were often also enriched after randomly permuting the input data. To tackle this bias, we designed 

the EMpirical Pipeline (EMP), a method that infers the empirical significance of GO enrichment 

scores of an NBMD solution by computing, for each term, a background distribution of scores on 

permuted data. We used the EMP to fashion five novel performance evaluation criteria for  NBMD 

methods. Last, we developed DOMINO (Discovery of Modules In Networks using Omics) - a novel 

NBMD algorithm. In extensive testing on gene expression and genome-wide association study data 

it outperformed the other six algorithms. As it produces solutions with only a few non-specific GO 

terms, DOMINO can be used without empirical validation. EMP and DOMINO are available at 

https://github.com/Shamir-Lab/.   
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Introduction 

 

The maturation of high-throughput technologies has led to an unprecedented abundance of omics 

studies. With the ever-increasing availability of genomic, transcriptomic and proteomic data 

(McLendon et al, 2008; VanderSluis et al, 2018; Zhang et al, 2011), a main challenge remains to 

uncover biological and biomedical insights by examination of these datasets as a whole (Chen et al, 

2019). A leading approach to this challenge relies on biological networks(Aittokallio & Schwikowski, 

2006), simplified yet solid mathematical abstractions of complex intra-cellular systems. In these 

networks, each node represents a cellular subunit (e.g. a protein) and each edge represents a 

relationship between two subunits (Szklarczyk et al, 2017; Wu et al, 2014; Xenarios et al, 2002) (e.g. 

a physical interaction between two proteins). Among the many bioinformatics tasks that are tackled 

by network-based methods, including gene function and drug target predictions (Emig et al, 2013; 

Warde-Farley et al, 2010), one of the most popular is the discovery of "active" modules in data. Given 

an omics dataset, network-based module discovery (NBMD) aims to detect subnetworks (i.e. 

modules) that are functionally relevant ("active") in the probed biological condition. The core of the 

NBMD task is to pinpoint highly scoring sets of interacting nodes, where the score of each node (i.e. 

the activity score) is derived from the data (e.g. log2( 𝑓𝑜𝑙𝑑 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)). As this 

problem has been proven to be NP-hard (Ideker et al, 2002), many heuristics were suggested to detect 

active modules (Mitra et al, 2013; Creixell et al, 2015). 

An NBMD solution is composed of a set of modules that are enriched for the activity signal.  

Typically, with a solution at hand, each module is subjected to functional analysis (Eden et al, 2009; 

Subramanian et al, 2005) wherein the GO (The Gene Ontology Consortium, 2019) functions of the 

modules genes are assessed. The most popular approach for biologically interpreting a gene set is the 

Hypergeometric (HG) test, where the proportion of genes annotated for a certain property (GO 

functional category) in the set is compared to a background set of genes. Applying the HG test to the 

entire set of the responsive genes in a dataset ignores the modular organization of the response and 

might miss the more elusive biological signals. In constrast, an NBMD solution can provide a finer 

understanding of the examined biological conditions and cellular responses by delineating 

subnetworks that carry out distinct biological endpoints (Leiserson et al, 2015; Cerami et al, 2010). 

For example, biological responses to stress often comprise the concurrent activation and repression 

of multiple biological processes, each mediated by a single or a few dedicated signaling pathways 

(Kyriakis & Avruch, 2012; Ashcroft et al, 2000). NBMD would ideally dissect such a complex 

response into distinct sub-networks, each representing a certain functional module.      

Another key utility of NBMD methods is the amplification of weak signals, where an active module 

comprises multiple nodes that individually have only marginal scores, but collectively score 
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significantly higher. This ability of NBMD methods is especially critical for the functional 

interpretation of Genome-Wide Association Studies (GWASs) (Visscher et al, 2012). Numerous 

GWASs conducted over the last decade have demonstrated that the genetic component of complex 

diseases is highly polygenic (Khera et al, 2018; Musunuru & Kathiresan, 2019; Sullivan & 

Geschwind, 2019), affected by hundreds or thousands of genetic variants, the vast majority of which 

have only a very subtle effect. Therefore, most of the "risk SNPs" do not pass statistical significance 

when tested individually after correcting for multiple testing (Stringer et al, 2011; Boyle et al, 2017). 

This stresses the need for integrative approaches that consider multiple related nodes together, and 

NBMD methods are among the most effective for fulfilling this task (Marbach et al, 2016; Barrenas 

et al, 2009; Cowen et al, 2017). 

Evaluation of NBMD solutions based on GO terms enrichment suffers from a substantial drawback: 

the lack of ground-truth annotations. The manual cherry-picking (Geistlinger et al, 2019) of the right 

terms out of those identified, is inevitably subject to researcher bias. Moreover, as different NBMD 

algorithms tend to capture different biological signals, the underlying functional processes cannot 

conclusively be determined. 

In this study, we first aimed to systematically evaluate popular NBMD algorithms across multiple 

gene expression (GE) and GWAS datasets based on the enrichment of the called modules for 

functional GO categories. Unexpectedly, our analysis revealed that algorithms often obtained 

modules enriched for a high number of GO terms even when run on permuted datasets. Moreover, 

some of the GO terms that were recurrently enriched on permuted datasets, were also enriched on the 

original dataset, indicating that NBMD solutions commonly suffer from a high rate of false calls. We 

therefore designed a procedure for validating the functional analysis of an NBMD solution by 

comparing it to null distributions obtained on permuted datasets. We used the empirically validated 

set of GO terms to define novel metrics for evaluation of NBMD algorithms. Finally, we developed 

DOMINO (Discovery of Modules In Networks using Omics) – a novel NBMD method, and 

demonstrated that its solutions outperform extant methods in terms of the novel metrics and are 

typically characterized by a high rate of validated GO terms.  
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Results 
 

NBMD algorithms suffer from a high rate of non-specific GO term enrichments   

We set out to evaluate the performance of leading NBMD algorithms. Our analysis included six 

algorithms – jActiveModules (Ideker et al, 2002) in two strategies: greedy and simulated annealing 

(abbreviated JAM_greedy and jAM_SA, respectively), BioNet (Beisser et al, 2010), HotNet2 

(Leiserson et al, 2015), NetBox (Cerami et al, 2010) and KeyPathwayMiner (Baumbach et al, 2012) 

(abbreviated KPM). These algorithms were chosen based on their popularity, computational 

methodology and diversity of original application (e.g., gene expression data, somatic mutations) 

(Table S1). As we wished to test these algorithms extensively, we focused on those that had a working 

tool/codebase that can be executed in a stand-alone manner, have reasonable runtime and could be 

applied to different data types. Details on the execution procedure of each algorithm are available in 

the Appendix. We applied these algorithms to two types of data: (1) a set of ten gene-expression (GE) 

datasets of diverse biological physiology (Table S2) where gene activity scores correspond to 

differential expression between test and control conditions, and (2) a set of ten GWAS datasets of 

diverse pathological conditions (Table S3) where gene activity scores correspond to association with 

the trait (Methods). In our analysis, we used the Database of Interacting Proteins (DIP (Xenarios et 

al, 2002)) as the underlying global network. Although the DIP network is relatively small - 

comprising about 3000 nodes and 5000 edges, in a recent benchmark analysis (Huang et al, 2018) it 

got the best normalized score on recovering literature-curated disease gene sets, making it ideal for 

multiple systematic executions.  

First, applying the algorithms to the GE and GWAS datasets we observed that their solutions showed 

high variability in the number and size of modules they detected (Figure S1 and Figure S2). On the 

GE datasets, jAM_SA tended to report a small number of very large modules while HotNet2 usually 

reported a high number of small modules (Figure S1). jAM_SA tended to report large modules also 

on the GWAS datasets (Figure S2). Next, we used the hypergeometric (HG) GO enrichment test to 

functionally characterize the solutions obtained by the algorithms. As part of our evaluation analysis, 

we applied the algorithms also on random datasets that we generated by permuting the original 

activity scores. Importantly, we observed that modules detected on the permuted datasets were 

frequently enriched for GO terms (Figure 1A). Moreover, different algorithms showed varying 

degree of overlap between the enriched terms obtained on real and permuted datasets (Figure 1B). 

These findings imply that some - or even many of terms reported by NBMD algorithms do not stem 

from the specific biological condition that was assayed in each dataset, but rather from other non-

specific factors that bias the solution, such as the structure of the network, the methodology of the 

algorithm and the distribution of the activity scores. 
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Figure 1. A. Comparison of GO enrichment results obtained on the original CBX GE dataset and on its 

permuted datasets. The histograms show the distributions of GO enrichment scores obtained for the modules 

detected on both datasets. The Venn diagrams show the overlap between the GO terms detected in the two 

solutions. B. Comparison of GO terms reported on the original and permuted GE and GWAS datasets. We 

used 1 minus the Jaccard score to measure the dissimilarity between the GO terms. Values close to 1 indicate 

low similarity between the results on the real and permuted data. Each circle shows, per algorithm, this measure 

(averaged over ten random permutations) over the 10 datasets. For each algorithm, the datasets are ordered 

such that higher scores are closer to the center. The gray color represents empty solutions. The results are 

shown separately for the GE and GWAS datasets.    

A   

B 
1-
Jaccard 
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A permutation-based method for filtering false GO terms 

The high overlap between sets of enriched GO terms obtained on real and permuted datasets indicates 

that the results of most NBMD algorithms tested are highly susceptible to false calls that might lead 

to functional misinterpretation of the data. We looked for a way to filter out such non-specific terms 

while preserving the ones that are biologically meaningful in the context of the analyzed dataset.  For 

this purpose, we developed a procedure called the EMpirical Pipeline (EMP). It works as follows: 

Given an NBMD algorithm and a dataset, EMP permutes the genes in the dataset and executes the 

algorithm. For each module reported by the algorithm, it performs GO enrichment analysis. The 

overall reported enrichment score for each GO term is its maximal score over all modules (Figure 

2A). The process is repeated many times (typically, in our analysis, 5,000 times), generating a 

background distribution per GO term (Figure 2B). Next, the algorithm and the enrichment analysis 

are run on the real (i.e. non-permuted) dataset (Figure 2C). Denoting the background CDF obtained 

for GO term 𝑡 by 𝐹𝑡, the empirical significance of 𝑡 with enrichment score s is 𝑒(𝑡)  =  1 − 𝐹𝑡(𝑠). 

EMP reports only terms 𝑡 that passed the HG test (q-value ≤ 0.05 on the original data) and had 

empirical significance 𝑒(𝑡)  ≤  0.05 (Figure 2D). We call such terms empirically validated GO terms 

(EV terms). In addition, for each NBMD algorithm solution, we define the Empirical-to-

Hypergeometric Ratio (EHR) as the fraction of EV terms out of all GO terms that passed the HG test 

(Figure 2E,F).  
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Figure 2. Overview of the EMpirical Pipeline (EMP) procedure. A. The NBMD algorithm and the GO 

enrichment analysis are applied on many instances (typically, n=5000) with permuted activity scores. B. A 

null distribution of enrichment scores is produced per GO term. C. The NBMD algorithm is applied to the 

original (un-permuted) activity scores, to calculate the real enrichment scores. D. For each GO term, the real 

enrichment scores is corrected according to its corresponding empirical distribution. In this example, GO_3 

passed the HG test, but failed the empirical test and thus was filtered out. E, F. Distributions of HG enrichment 

scores for all the GO terms that passed the HG test and for the subset of the EV terms obtained on the TNFa 

expression dataset by jActiveModules with greedy strategy (E) and NetBox (F). The EHR measures the ratio 

between the number of EV terms and the number of GO terms that passed the HG test. The EHR scores 

summarize the advantage of NetBox in avoiding false reported terms.  

 
 

The DOMINO algorithm 
 

While the EMP method is a potent way for filtering out false GO term calls from NBMD solutions, 

this procedure is computationally demanding, as it requires several thousands of permutation runs. In 

our analyses, using a 44-cores server, EMP runs typically took several days to complete, depending 

    A                                                                                       B 

     

   C                                                                                      D 

      

    E                                                                            F 
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on the algorithm and the dataset. In order to provide a more frugal alternative that can be used on a 

desktop computer, we developed a novel NBMD algorithm called DOMINO (Discovery of Modules 

In Networks using Omics), with the goal of producing confident modules that also lead to high EHR 

values.  

DOMINO receives as input a set of genes flagged as the active genes in a dataset (e.g., the set of 

genes that passed a differential expression test) and a network of gene interactions, aiming to find 

disjoint connected subnetworks in which the active genes are enriched. It has four main steps:  

0. Dissect the network into disjoint, highly connected subnetworks (slices).  

1. Detect relevant slices where active genes are enriched 

2. For each relevant slice S 

a. Refine S to a sub-slice S' 

b. Repartition S' into putative modules 

3. Report as final modules those that are enriched for active genes. 

 

Step 0 - Dissecting the network into slices: This pre-processing step is done once per network (and 

reused for any analyzed datasets). In this step, the network is split into disjoint subnetworks called 

slices. Splitting is done using a variant of the Newman-Girvan modularity detection algorithm 

(Girvan & Newman, 2002) (Methods).  Each connected component in the final network that has more 

than three nodes is defined as a slice (Figure 3A).  

 

Step 1 - Detecting relevant slices: each slice that contains more active nodes than a certain threshold 

(see Methods) is tested for enrichment for active nodes using the Hypergeometric (HG) test, 

correcting the p-values for multiple testing using FDR(Benjamini & Hochberg, 1995).  Slices with q-

values < 0.3 are accepted as relevant slices (Figure 3B). 

 

Step 2a - Refining the relevant slices into sub-slices: From each slice, the algorithm extracts a 

single connected component that captures most of the activity signal. The single component is 

obtained by solving the Prize Collecting Steiner Tree (PCST) problem(Johnson et al, 2000) 

(Methods). The resulting subgraph is called a sub-slice (Figure 3C).   

 

Step 2b - Partitioning sub-slices into putative modules: Each sub-slice that is not enriched for 

active nodes and has more than 10 nodes is partitioned using the Newman-Girvan algorithm 

(Methods). The resulting parts, and the sub-slices of ≤ 10 nodes, are called putative modules (Figure 

3D).   
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Step 3 - Identifying the final modules:  Each putative module is tested for enrichment for active 

nodes using the HG test. In this step, we correct for multiple testing using the more stringent 

Bonferroni correction. Those with q-value < 0.05 are reported as the final modules (Figure 3E). 

 
 

 
 

Figure 3. Schematic illustration of DOMINO. A. The global network is dissected by the Newman-Girvan 

(NG) modularity algorithm into slices (encompassed in purple line). B. A slice is considered relevant if it 

passes a moderate HG test for enrichment for active nodes (𝐹𝐷𝑅 𝑞 ≤  0.3). C. For each relevant slice the most 

active sub-slice is identified using PCST (red areas). D. Sub-slices are dissected further into putative modules 

using the NG algorithm. E. Each putative module that passes a strict enrichment test for active nodes 

(𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑞𝑣𝑎𝑙 ≤  0.05) is reported. 

 

Systematic evaluation of NBMD algorithms on gene-expression and GWAS datasets  

We next carried out a comparative evaluation of DOMINO and the six NBMD algorithms described 

above (Table S1) over the same ten GE and ten GWAS datasets (Tables S2,S3). This evaluation task 

is challenging as there are no “gold-standard” solutions to benchmark against. To address this 

A                     B 

C              D 

E 

                               Step 0: slices               Step 1: relevant slices 

                           Step 2a: sub-slices                   Step 2b: putative modules 

                           Step 3: final modules 
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difficulty, we introduce five novel scores for the systematic evaluation of NBMD algorithms. These 

scores are based on our EMP method and the GO terms that pass this empirical validation procedure. 

The scores are described in Methods and the results on all algorithms are summarized in Figures 4-

6. 

(a) EHR (Empirical-to-Hypergeometric Ratio). EHR summarizes the tendency of an algorithm to 

capture biological signals that are specific to the analyzed data, i.e. GO terms that are enriched in 

modules found on the real but not on permuted data. EHR has values between 0 to 1, with higher 

values indicating better performance. In our evaluation, DOMINO and NetBox scored highest on 

EHR. In both GE and GWAS datasets, DOMINO performed best with an average above 0.8. (Figure 

4A,B). Importantly, these high EHR levels were not a result of reporting few terms: DOMINO 

reported a high number of enriched GO terms with only NetBox and jAM_greedy on GWAS reporting 

more (Figure 4C,D). Since HotNet2, originally developed for analysis of somatic mutation data, 

yielded poor results on both GE and GWAS datasets we excluded it from subsequent evaluations. For 

the same reason we included KPM only in the subsequent evaluations of GE datasets.  

 

 

 

Figure 4. EHR and number of reported terms. A. EHR for the GE datasets. B. EHR for the GWAS datasets. 

C. The number of EV terms reported for the GE datasets. D. The number of EV terms reported for the GWAS 

datasets. The dots indicate results for each dataset. Error bars indicate the SD across datasets. 

A                   
 

C                   
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(b) Module-level EHR (mEHR). While the EHR characterizes a solution as a whole by considering 

the union of GO terms enriched on any module, biological insights are often obtained by functionally 

characterizing each module individually. We therefore next evaluated the EHR of each module 

separately. Specifically, for each module, we calculated the fraction of its EV terms out of the HG 

terms detected on it (Methods). The results are summarized in Figure 5A. Notably, solutions can have 

a broad range of mEHR scores (see, for example, NetBox solution on the IEM dataset, where the best 

module has an mEHR above 0.9 while the poorest has an mEHR below 0.2). To summarize the results 

over multiple modules, we averaged the k top scoring modules (using k=1 to 20; Figure 6A). In this 

criterion, DOMINO got highest mEHR scores for most values of k, followed by NetBox. The results 

for GWAS datasets are shown in Figure S3A and Figure S4A.  

Furthermore, the EMP procedure enhances the functional interpretation of each module by 

distinguishing between its enriched GO terms that are specific to the real data (i.e., the EV terms) and 

those that are recurrently enriched also on the permuted ones.This utility of EMP is demonstrated, as 

one example, on a module detected by jAM_greedy on the TNFa GE dataset (Figure 5B). TNFa is a 

potent inducer of immune reponses largely mediated by the NFκB transcription factors. This 

biological process is well captured by the GO terms that passed EPM validation (e.g., “NIK/NF-

kappaB signaling”) (Hayden & Ghosh, 2014). In contrast, GO terms that failed passing this validation 

procedure represent less specific processes (e.g., “regulation of RNA biosynthetic process”). 

Similarly, EV terms of a module detected by DOMINO on the schizophrenia GWAS data are highly 

relevant for this trait (e.g., “neurotransmitter metabolic process”, “regulation of neurogenesis” and 

“learning”) (Ripke et al, 2014) while GO terms that did not pass validation are either generally less 

specific (e.g., “system development” and “regulation of localization”) or seem less relevant 

biologically (e.g., “regulation of apoptosis”) (Figure S3B).     
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Figure 5.  Performance measured using the module-level EHR (mEHR) criterion on GE datasets. A. mEHR 

scores for each algorithm and dataset. Up to ten top k modules are shown per datasets, ranked by their mEHR. 

B. An example of a module from the solution reported by jAM_greedy on the TNFa dataset (mEHR=0.35). 

The nodes’ color indicates the logarithm of their fold change in the dataset. The black nodes are the neighbors 

of the module’s nodes in the network. Right: The EV terms for this module are shown in red and those that did 

not pass the empirical validation in blue. GO terms with borderline EV score (0.05 < q-val < 0.1) are colored 

in purple).  
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(c) Biological richness. The next criterion aims to measure the diversity of biological processes 

captured by a solution. Our underlying assumption here is that the biological systems are complex 

and their responses to triggers involve the concurrent modulation of a diversity of biological 

processes. For example, genotoxic stress concurrently activates DNA damage repair mechanisms and 

apoptotic pathways and suppresses cell-cycle progression. However, merely counting the number of 

EV terms of a solution would not faithfully reflect its biological richness because of the high 

redundancy between GO terms. This redundancy stems from overlaps between sets of genes assigned 

to different GO terms, mainly due to the hierarchical structure of the ontology. We therefore used 

REVIGO(Supek et al, 2011) to derive a non-redundant set of GO terms based on semantic similarity 

scores(Lord et al, 2003),(Resnik, 1999). We defined the biological richness score of a solution as the 

number of its non-redundant EV terms (Methods). The results in Figure 6B show that on the GE 

datasets, DOMINO and NetBox performed best. On the GWAS datasets, jAM_greedy performed best 

(Figure S4B).    

(d) Intra-module homogeneity. While high biological diversity (richness) is desirable at the solution 

level, a single module should ideally capture only a few related biological processes. Solutions in 

which the response is dissected into modules where each represents a distinct biological endpoint are 

easier to interpret biologically and are preferred over solutions with larger modules, where each 

represents several composite processes. To reflect this preference, we introduced the intra-module 

homogeneity score, which quantifies how functionally homogeneous the EV terms captured by each 

module are (Methods). For each solution, we take the average score of its modules. On the GE 

datasets, BioNet and NetBox performed best in this criterion for the lower similarity cutoffs while 

KPM scored the highest for the higher cutoffs (Figure 6C). On the GWAS datasets, NetBox, 

DOMINO, and jAM_greedy scored higher than jAM_SA and BioNet (Figure S4C). 

(e) Robustness. This criterion measures how robust an algorithm's results are to subsampling of the 

data. It compares the EV-terms obtained on the original dataset with those obtained on randomly 

subsampled datasets. Running 100 subsampling iterations and using the EV terms found on the 

original dataset as the gold-standard GO terms, we compute AUPR and average F1 scores for each 

solution (Methods). DOMINO's solutions showed the highest robustness on the GE datasets, followed 

by NetBox (Figure 6D,E). It also performed best on the GWAS datasets, showing markedly higher 

robustness than all other algorithms (Figure S4D,E).  
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Figure 6. Evaluation results for the GE datasets. A. Module-level EHR scores. The plots show the average 

mEHR score in the k top modules, as a function of k in each dataset. Modules were ranked by their mEHR 

scores. B. Biological richness. The plots show the median number of non-redundant terms (richness score) as 

a function of the Resnik similarity cutoff. C. Intra-module homogeneity scores as a function of the similarity 

cutoff. D. Robustness measured by the average AUPR over the datasets, shown as a function of the 

subsampling fraction. E. Robustness measured by the average F1 over the datasets shown as a function of the 

subsample fraction. For each dataset and subsampling fraction 100 samples were drawn and averaged. 

 

A                
 

C                 
 

E 
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Table 1 (and Table S4) summarizes the results of the benchmark on GE and GWAS datasets. For the 

GE datasets, DOMINO performed best in five of the six criteria, while KPM scored highest in intra-

module homogeneity. On the GWAS datasets, DOMINO scored best in four criteria, while 

jAMgreedy had the highest biological richness and NetBox had the highest intra-module 

homogeneity. Overall, these results demonstrate the high performance of DOMINO in multiple 

solution facets in both GE and GWAS datasets. NetBox tended to give the second-best results overall. 

 

Discussion 

The fundamental task of network-based module discovery (NBMD) algorithms is to identify active 

modules in an underlying network based on genes activity profiles. The comparison of such 

algorithms is challenging due to the complex nature of the solutions produced. Algorithms differ 

dramatically in the number, size, and properties of the modules they detect. Although NBMD 

algorithms have been extensively used for some two decades, there is no accepted community 

benchmark and no consensus evaluation criteria have emerged. Since modules are often used to 

characterize the biological processes that are activated/repressed in the probed biological conditions, 

we analyzed the solutions produced by the algorithms from the perspective of functional enrichment. 

Early on, we observed that many enriched GO terms also appear on permuted datasets, suggesting 

that such enrichments stem from some proprieties of the algorithms or the data that bias the results. 

Following this observation, we developed the EMP procedure, which empirically calibrates the 

enrichment scores and filters out non-specific terms.  

Our analysis highlighted the need for improved NBMD algorithms and better benchmark 

methodology. We developed the DOMINO algorithm and defined five novel evaluation criteria to 

allow systematic comparison of NBMD algorithms. Each of these criteria emphasizes a different 

aspect of the solution (Figure 7). We used these criteria to evaluate the performance of six popular 

NBMD algorithms and our DOMINO algorithm on a set of ten GE and ten GWAS datasets that 

collectively cover a very wide spectrum of biological conditions. Overall, DOMINO performed best, 

indicating its ability to produce "clean", stable and concise modules. NetBox also scored high in our 

evaluation analysis. Interestingly, both DOMINO and NetBox handle the activity scores as binary 

ones. Intuitively one may expect that such a step could lead to a loss of important biological signals. 

However, the high performance of these algorithms suggests that at least on our benchmark binarizing 

the data helped in reducing noise. Further study of this observation is needed. 

Notably, the algorithms that we tested differ substantially in their empirical validation rates (i.e., 

EHR). Some algorithms produced solutions with very low EHR (<0.5), and therefore running the 

EMP on them is critical. While empirical correction is desirable and adds confidence to the reported 
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results, it is computationally highly demanding even with a relatively small network (DIP). Using 

larger networks, of course, makes this procedure even slower. A notable advantage of DOMINO is 

the high validation rates it consistently obtained: its average EHR and average mEHR were above 

0.8. This indicates that DOMINO can be confidently run without EMP when computational resources 

are limited. The EMP and DOMINO software and codebases are freely available to the community  

at https://github.com/Shamir-Lab/.  

One shortcoming of EMP is that it does not lend itself to provide module-based correction for 

enrichment scores, since each randomized run can produce a different number of modules of different 

sizes. Ideally, one would like to validate the GO terms on the module level. Nevertheless, we do 

provide means for validation of terms on the module-level by the mEHR index, which calculates the 

proportion of enriched GO terms that passed the EMP filter in each module. Another limitation is the 

speed, which also limits the size of networks one can use. 

An additional future task is to understand better the sources of the bias that causes over-reporting of 

enriched GO terms. The sources may be the activity score distribution, network structure, algorithm 

strategy, etc. Obtaining such understanding could lead to improved module discovery and shorter 

runtimes of EMP. It could also enable tuning of each algorithms’ hyper-parameters, which is another 

open issue in our analysis. 

In summary, in this study we (1) report on a highly prevalent bias in popular NBMD algorithms that 

leads to non-specific calls of enriched GO terms, (2) implemented a procedure to allow for the 

correction of this bias, (3) introduced novel evaluation criteria of solutions and (4) developed 

DOMINO – a novel NBMD algorithm with low rate of non-specific calls and better performance 

across most of the criteria.    

 

 

Figure 7. A breakdown of the evaluation criteria by their properties. Richness, EHR and robustness score 

solutions based only on the whole set of the reported GO terms, without taking into account the results for 

individual modules. In contrast, mEHR and intra-module homogeneity score solutions in a module-aware 

fashion. From another perspective, biological richness and intra-module homogeneity consider the functional 

relations among the reported GO terms, while EHR, mEHR, and robustness do not. Colors highlight the 

different facets considered by each group of scores. 
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Table 1. Summary of the benchmark results.  
 

 

  

Per algorithm, the average over the ten datasets is shown 

*Results are average over the top 10 modules 
# Results shown for Resnik cutoff=3 

 

Methods: 

 

1. The Newman-Girvan algorithm in DOMINO   

The Newman-Girvan (NG) algorithm is a community detection method(Girvan & Newman, 2002). 

This method iteratively removes edges using the Betweenness-centrality metric for edges and 

recomputes the modularity score for each intermediate graph. Let 𝑀𝑖 be the modularity score for the 

graph in iteration 𝑖. The process continues until a stopping criterion is met. The stopping criterion we 

used in DOMINO's step (1) is that 𝑀𝑖+1 ≤  𝑀𝑖. For step (2b), the stopping criterion is 

𝑙𝑜𝑔 (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏−𝑠𝑙𝑖𝑐𝑒)

𝑙𝑜𝑔 (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
≤ 𝑀𝑖. For more details see Appendix.   

 
 

2. Threshold for testing relevant slices 

Slices that contain only a few active nodes are unlikely to be relevant. Testing multiple such slices 

would diminish the significance of the actual relevant slices. Therefore, we test for relevance only 

slices that satisfy either 

#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑙𝑖𝑐𝑒

#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
≥ 0.2 . 

or 

#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑙𝑖𝑐𝑒 > 𝑙𝑜𝑔2(#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 in network). 

  EHR mEHR* 

Robustness 
(F1) 

Robustness 
(AUPR) 

Biological 
Richness# 

Intra-Module 
Homomgeneity# 

 GE 

NetBox 0.73 0.66 0.36 0.54 29.5 2.00 

jAM_sa 0.35 0.36 0.17 0.15 21.5 1.55 

Bionet 0.42 0.46 0.17 0.26 25 2.06 

KPM 0.36 0.40 0.21 0.29 17.5 2.39 

DOMINO 0.82 0.84 0.43 0.66 36 1.83 

jAM_greedy 0.28 0.31 0.14 0.14 17 1.82 

  GWAS 

NetBox 0.76 0.78 0.39 0.45 13 1.81 

jAM_sa 0.35 0.38 0.12 0.14 10 0.93 

Bionet 0.39 0.43 0.33 0.33 5 1.06 

DOMINO 0.81 0.81 0.77 0.77 15 1.56 

jAM_greedy 0.39 0.46 0.28 0.24 18 1.72 
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3. The PCST application in DOMINO   

In PCST (Johnson et al, 2000), nodes have values called prizes, and edges have values called 

penalties. All values are non-negative. The goal is to find a subtree 𝑇 that maximizes the sum of the 

prizes of nodes in 𝑇 minus the sum penalties of the edges in it, i.e.,  ∑ 𝑝(𝑣) −  ∑ 𝑐(𝑒)𝑒∈ 𝑇𝑣∈𝑇   where 

𝑝(𝑣) is the prize of node 𝑣, and 𝑐(𝑒) is the cost of edge 𝑒. 

The node prizes are computed by diffusing the activity of the nodes using influence propagation with 

the linear threshold model(Kempe et al, 2015). The process is iterative: Initially, the set of active 

nodes is as defined by the input. In each iteration, an inactive node is activated if the sum of the 

influence of its active neighbors exceeds 𝜃 =  0.5. The influence of a node that has 𝑘 neighbors on 

each neighbor is 
1

𝑘
. Activated nodes remain so in all subsequent iterations. The process ends when no 

new node is activated. If v became active in iteration 𝑙 then 𝑝(𝑣) = 0.7𝑙. We define the penalty of 

edge 𝑒 as 𝑐(𝑒) = 0 if it is connected to an active node, and 𝑐(𝑒) = 1 − 𝜖 otherwise (we used 𝜖 =

10−4).  

PCST is NP-hard but good heuristics are available. In DOMINO we used FAST-PCST (Hegde et al, 

2014). The resulting subgraph obtained by solving PCST on each slice is called its sub-slice. See 

Figure 3C. 

 

4. Derivation of p-values and q-values for the GE and GWAS datasets 

For the GE datasets, we calculated p-values for differential expression between test and control 

conditions using edgeR (Robinson et al, 2010) for RNAseq and student t-test for microarray datasets. 

We computed q-values using Benjamini-Hochberg FDR method (Benjamini & Hochberg, 1995). For 

GWAS we took the p-values of each SNP for the significance of its association with the analyzed trait 

and summarized them to gene-level p-values with PASCAL (Lamparter et al, 2016), using the sum 

chi-square option and flanks of 50k bps around genes. We computed q-values using Benjamini-

Hochberg FDR method (Benjamini & Hochberg, 1995). 
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5. NBMD tools - execution details  

See the Appendix for details on the execution of each of the six algorithms benchmarked. 

 

6. Criteria for evaluating NBMD solutions 

We defined five novel criteria to allow systematic evaluation of solutions provided by NBMD 

algorithms. For a specific solution,  we considered the list of GO terms that passed the HG enrichment 

test (HG terms) and the terms that passed the EMP validation procedure (EV terms).  

 

Solution-Level Criteria 

(1) Empirical to Hypergeometric Ratio (EHR). We define the Empirical-to-Hypergeometric Ratio 

(EHR) as the ratio between the number of reported HG terms and EV-terms. EHR summarizes 

the tendency of an algorithm to over-report GO terms, with values close to 1.0 indicating good 

solutions while values close to 0 indicating poor ones. EHR reflects the precision (true positive 

rate) of a solution.  

(2) Biological Richness. This criterion quantifies the biological information collectively captured by 

the EV-terms. As often there is high redundancy among enriched GO terms - mainly due to the 

hierarchical structure of the GO ontology - we use the method implemented in REVIGO(Supek 

et al, 2011) to derive a non-redundant set of EV terms, that is, a measurement of the biological 

diversity of the solution. This method is based on a similarity matrix of GO terms, which is 

generated using Resnik similarity score (Resnik, 1999). The biological richness score is defined 

as the number of non-redundant EV terms in a solution. We calculated this measure using different 

similarity cutoffs (1.0 to 4.0 in REVIGO). 

(3) Solution Robustness. This criterion evaluates the robustness of a solution to incomplete gene 

activity data. It compares the EV-terms obtained on the original dataset with those obtained on 

randomly subsampled datasets, where non-sampled gene levels are treated as missing. We 

repeated this procedure for subsampling fractions 0.6, 0.7, 0.8, and 0.9, iterating each fraction 100 

times. Using the EV terms of the full dataset as the truth, we then computed average precision, 

recall and F1 scores across these iterations. Another perspective is provided by the examination 

of the frequency by which GO terms are detected in the subsampled datasets: higher frequency 

for a specific EV-term implies higher robustness. We measured this robustness aspect of a 

solution using AUPR, in which EV terms are ranked according to their frequency across 

iterations, and EV terms detected on the full dataset are used as the positive instances). Note that 

cases in which an algorithm results in many empty solutions (that is, solutions with no enriched 
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GO terms) and a few non-empty ones that are enriched for true EV terms can yield a high but 

misleading AUPR score. Therefore we validated that the fraction of non-empty solutions obtained 

by the algorithms on the subsampled runs is high: all the algorithms achieved around 70% or more 

non-empty solutions on GE data (Figure S6).  

 

Module-Level Criteria 

(1) Module-Level EHR (mEHR). This criterion calculates a single module’s EHR. We define the 

module-level EHR (mEHR), as the ratio between the number of a module's EV terms and HG 

terms (Figure S5A). We score each solution by averaging the mEHR of its 𝑘 top-ranked modules 

(𝑘 values ranging from 1-20). 

(4) Intra-Module Homogeneity. This index measures the homogeneity of the biological signal that 

is captured by each module compared to the biological signal in the entire solution. For its 

calculation, we build a (complete) graph for the solution's EV terms (GO graph) in which nodes 

represent the EV-terms and the weights on the edges are the pairwise Resnik similarity score 

(Figure S5B). Next, edges whose weight is below a cutoff are removed. The intra-module 

homogeneity is defined as the module's relative edge-density:  

  

(
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑑𝑢𝑙𝑒

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒
)

(
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒
)
 

 

We calculate the intra-module homogeneity score for a solution by averaging its modules' 

scores (Figure S5B). We repeat this test for a range of similarity cutoffs – from 1.0 to 4.0. 

This criterion provides a complementary view on top of the one captured by the biological 

richness criterion, by characterizing its the biological coherence of the reported modules. 
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Table S1. NBMD algorithms included in our analysis. 

Method name Published 

on 

Designed 

for 

Algorithmic Approach Code 

language 

# citations 

(updated to 

11/2019) 

jActiveModules 

(Ideker et al, 2002) 

2002 GE Seek high scoring 

subnetworks either by 

simulated annealing 

(jAM_SA) or by a 

greedy search 

(jAM_greedy) 

Java 1207 

NetBox (Cerami et 

al, 2010) 

2010 Somatic 

Mutations 

Enrichment of Perturbed 

neighbors, Newman-

Girvan (NG) modularity 

score 

Java, 

Python 

304 

BioNet (Beisser et 

al, 2010) 

2010 GE Prize collecting Steiner 

tree  

R 218 

HotNet2 (Leiserson 

et al, 2015) 

2015 Somatic 

Mutations 

Heat diffusion Python 460 

KeyPathwayMiner 

(Baumbach et al, 

2012) 

2012 GE Choose modules with at 

most K non-perturbed 

genes 

Java 41 

 

  

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.03.10.984963doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.984963
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

Table S2. The ten gene expression datasets used in our benchmark analysis. 

Datasets name 

(acronym) access to data Technology General description 

TNFa (Schmidt 

et al, 2015) GSE64233 RNA-seq TNFa, a potent inducer of immune responses 

HC (Elkon et al, 

2015) GSE67478 RNA-seq 

Hair cell from the cochlea and vestibular system, compared to non-hair cell 

from these inner-ear organs.  

SHERA (Miano 

et al, 2018) GSE108693 RNA-seq 

Luminal lncRNAs regulation by ERα-controlled enhancers in a ligand-

independent manner in breast cancer cells. Comparison was made between 

ER siRNA to control siRNA 

SHEZH (Ito et 

al, 2018) GSE109064 RNA-seq 

Downregulation of EZH2 leads to cellular senescence with features of 

SASP. Comparison between control to 4d samples. 

ERS (Kroeger et 

al, 2018) GSE106847 RNA-seq 

ATF6 encodes a transcription factor that is activated during the Unfolded 

Protein Response to protect cells from ER stress. Comparison was made 

between ATF6-activated and control cells. 

IEM (Hertzano 

et al, 2011) --- Microarray 

Comparison between 2 different cell types in the inner-ear: blood cells and 

mesenchymal cells. 

ROR (Bayerlová 

et al, 2017) GSE74383 RNA-seq 

RNA-Seq profiling of estrogen-receptor-positive MCF-7 cell lines with 

different perturbations of non-canonical WNT signaling. Comparison was 

made between ROR2-overexpression and control conditions.   

APO (Pulikkan 

et al, 2018) GSE101788 RNA-seq 

Comparison between ME-1 cells (a human leukemia cell line) treated with 

either the AI-10-49 drug (which induces apoptosis) or DMSO (control).  

CBX (Connelly 

et al, 2019) GSE123689 RNA-seq 

CBX8 is a subunit of the polycomb repressive complex 1 (PRC1). This 

RNA-seq experiment compared CBX8-KO and control cells.   

IFT (Forbes et 

al, 2018) GSE107230 RNA-seq 

IFT140 is involved in the formation and maintenance of cilia. This RNA-

seq experiment compared uncorrected (IFT140 compound heterozygous) 

and gene-corrected (IFT140 heterozygous) epithelial cells isolated from 

patient’s iPSC that were derived from kidney organoids. 
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Table S3. The ten GWAS datasets used in our benchmark analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4. Summary of the standard deviation of the results in Table 1 

 

 

Datasets name (acronym) Trait 

BC (Michailidou et al, 2017) Breast Cancer 

CD (De Lange et al, 2017) Crohn’s Disease 

SCZ (Ripke et al, 2014) Schizophrenia 

TRI (Teslovich et al, 2010) Triglycerides 

T2D (Mahajan et al, 2018) Type 2 Diabetes 

CAD (Nelson et al, 2017) Coronary Artery Disease 

BMD (Kemp et al, 2017) Bone Mineral Density 

Height (Allen et al, 2010) Height 

AF (Nielsen et al, 2018) Arterial Fibrillation 

 

AMD (Fritsche et al, 2016) 

Age Related Macular 

Degeneration 

  EHR mEHR 
Robustness 
(F1) 

Robustness 
(AUPR) 

Biological 
Richness 

Intra-Module 
Homomgeneity 

  GE 
NetBox 4.20E-01 1.17E-16 2.25E-01 3.31E-01 3.41E+01 1.58E+00 
jAM_sa 2.89E-01 5.85E-17 1.70E-01 1.80E-01 1.65E+01 1.55E+00 
Bionet 3.96E-01 0.00E+00 1.33E-01 2.70E-01 2.50E+01 1.66E+00 
KPM 4.50E-01 5.85E-17 2.55E-01 3.63E-01 2.74E+01 2.59E+00 
DOMINO 2.94E-01 0.00E+00 1.96E-01 2.53E-01 2.44E+01 8.68E-01 
jAM_greedy 3.38E-01 5.85E-17 1.80E-01 1.93E-01 1.37E+01 2.79E+00 

  GWAS 
NetBox 4.07E-01 1.17E-16 4.25E-01 4.13E-01 3.52E+01 1.78E+00 
jAM_sa 3.33E-01 5.85E-17 1.69E-01 2.08E-01 1.14E+01 6.70E-01 
Bionet 4.95E-01 0.00E+00 4.29E-01 4.36E-01 6.69E+00 1.50E+00 
DOMINO 3.18E-01 1.17E-16 2.90E-01 3.12E-01 1.70E+01 1.58E+00 
jAM_greedy 2.99E-01 5.85E-17 2.11E-01 2.12E-01 1.05E+01 1.48E+00 
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Figure S1. Summary statistics of the solutions obtained on the GE datasets. For each dataset, the number of 

modules detected by each NBMD algorithm and their sizes are indicated. (Error bars represent 1 SD of the 

number of genes in modules). The numbers in green are the total number of genes in the union of all modules 

in the solution. 
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Figure S2. Summary statistics of the solutions obtained on the GWAS datasets. For each dataset, the number 

of modules detected by each NBMD algorithm and their sizes are indicated. (Error bars represent 1 SD of the 

number of genes in modules). We excluded empty solutions. Green numbers are the total number of genes of 

the union of all modules in the solution. 
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Figure S3. Module-level EHR (mEHR) scores on the GWAS datasets. A. mEHR scores for each algorithm 

and GWAS dataset. B. An example of a module from the solution reported by DOMINO on the Schizophrenia 

dataset (mEHR=0.8), and its enriched GO terms. The nodes are color coded by their gene scores as calculated 

by PASCAL (Lamparter et al, 2016) and -log10 transformed. Black nodes are the neighbors of the module's 

nodes in the network. Nodes with purple border are active nodes (𝑞𝑣𝑎𝑙 < 0.05). Red: top 50 EV terms. Blue: 

enriched HG terms that failed the empirical test.  
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Figure S4. Evaluation results for the GWAS datasets. A. Module-level EHR scores. The plots show average 

mEHR score in the k top modules, as a function of k. Modules are ranked by their mEHR scores. B. Biological 

richness. The plots show the median number of non-redundant terms (richness score) as a function of the 

Resnik similarity cutoff. C. Intra-module homogeneity scores as a function of Resnik similarity cutoff. D. 

Robustness measured by the average AUPR over the datasets, shown as a function of the subsampling fraction. 

E. Robustness measured by the average F1 over the datasets shown as a function of subsample fraction (results 

for each dataset and fraction were averaged over 100 subsampling).  
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Figure S5. Module-level evaluation criteria. A. mEHR. Enriched GO terms in each module are examined by 

the EMP procedure (EV terms are colored in red) and mEHR is calculated for each module in the solution. B. 

Intra-module homogeneity. A GO graph is first built for the union of all the EV terms in a solution using 

Resnik similarity scores. Then, a certain cut-off is applied (here, 4.0) for filtering low scoring edges. Last, 

the intra-module homogeneity score is calculated as the density ratio between the EV terms that are enriched 

in the module and the entire GO graph 
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Figure S6. The fraction of non-empty solutions as a function of the subsampling fraction. For each algorithm 

and subsampling fraction we report the average over the datasets.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.03.10.984963doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.984963
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

Appendix 1: NBMD tools - execution details  

The NBDM algorithms that we tested differ in preprocessing, input and output. We describe below 

the specific execution details for each algorithm. 

jActiveModules (Ideker et al, 2002). jActiveModules was written as a plugin for Cytoscape 

(Shannon et al, 2003), a powerful platfrom for network analysis of biological data. We modified the 

codebase of jActiveModules so we could run it independently of Cytoscape.  jActiveModules expects 

a list of genes and their p-values as the gene activity scores. We increased the default number of 

requested modules (from n=5 to n=50) to retrieve more modules and required that reported modules 

would be mutually exclusive. The algorithm typically producing no more than 10 modules with more 

than 3 genes. 

NetBox (Cerami et al, 2010). We modified NetBox codebase so we can choose the networks it uses. 

NetBox gets as an input a list of mutated genes, that is, binary gene activity scores. We used the genes’ 

q-values and set the gene score to 1 if its q-value was < 0.05, and 0 otherwise.  

BioNet (Beisser et al, 2010). BioNet is designed to retrieve only one module. To retrieve multiple 

mutually exclusive modules we executed BioNet iteratively, removing the genes in the identified 

module in each iteration. We stopped these iterations after retrieving modules smaller than four genes 

in five consequtive runs.  

HotNet2 (Leiserson et al, 2015). HotNet2 expects gene activity scores that are calculated by mutation 

rate p-values (e.g., using MutSig). We transformed the q-values calculated from our datasets into 

– 𝑙𝑜𝑔10(𝑞_𝑣𝑎𝑙𝑢𝑒) scale and used them as the input activity scores. We considered all the reported 

modules, ignoring their scores reported by HotNet2.  

KeyPathwayMiner (Baumbach et al, 2012). We used the version of KPM with the greedy strategy. 

It expects binary gene activity scores: 1 marks a gene as active and 0 otherwise. We used the genes’ 

q-values and scored a gene with 1 if its q-value was < 0.05, and 0 otherwise. As the reported modules 

considerably overlap each other, we executed the algorithm iteratively, removing in each iteration the 

genes in the identified module.   

DOMINO. DOMINO gets as an input a set of active genes, that is, binary gene activity scores. We 

used the genes’ q-values and set the gene score to 1 if its q-value was < 0.05, and 0 otherwise. 
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The Newman-Girvan (NG) algorithm  
The Newman-Girvan method (Girvan & Newman, 2002) iteratively removes edges using the 

Betweenness-centrality metric for edges. This method iteratively removes edges using the 

Betweenness-centrality metric for edges. Betweenness-centrality scores each edge according to its 

frequency in shortest paths between all node pairs. For each node pair, a shortest path is calculated 

and a score of 1 is added to each edge that appears in the path. For node pairs with multiple shortest 

paths the score is split evenly among the different paths (e.g. a node pair with two shortest paths will 

add 0.5 to the score of an edge for of each appearance of the edge in any of the paths). The highest 

scoring edge is thereafter removed from the graph and the process repeats. In some iterations, the 

process breaks connected components into smaller ones. The overall solution at iteration 𝑖 is given a 

“modularity score”, which measures how well-connected are the nodes inside each CC, while being 

disconnected from nodes in other CCs. 𝑀𝑖 is calculated as follows: 

 

𝑀𝑖 = ∑
𝑙𝑠

𝐿
− (

𝑑𝑠

2𝐿
)

2
𝑁𝑀

𝑠=1

  

 

Where 𝑁𝑀 is the number of modules (connected components in the current graph), 𝑙𝑠 is the number 

of edges within modules, 𝐿 is the total number of edges in the network, and 𝑑𝑠 is the sum of the 

degrees of all nodes within modules. Originally, the algorithm reports the partition that is associated 

with the highest modularity score. In DOMINO, the process continues until a stopping criterion is 

met. The stopping criteria we use in DOMINO are: 

In step (1) : 𝑀𝑖+1 ≤  𝑀𝑖.  

In step (2b):  
𝑙𝑜𝑔 (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏−𝑠𝑙𝑖𝑐𝑒)

𝑙𝑜𝑔 (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
≤ 𝑀𝑖.   
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