
 

1 

 

 
 

 

 

Tel-Aviv University 

Raymond and Beverly Sackler Faculty of Exact Sciences 

The Blavatnik School of Computer Science  

 

Analysis of network-based module discovery algorithms   

from the perspective of biological enrichment 

 

Thesis submitted in partial fulfillment of graduate requirements for  

The degree "Master of Sciences" in Tel-Aviv University  

School of Computer Science 

 

By  

Hagai Levi  
 

Prepared under the supervision of  

Prof. Ron Shamir  

Dr. Ran Elkon 

 

 

November 2019 

  



 

2 

 

Acknowledgements  

 

I would like to express here how grateful I am to the people who accompanied me in this journey. 

First, my supervisors: Prof. Ron Shamir is a textbook example for a scientist: a combination of a 

researcher, who strains for convincing results while holding a constant critical point of view to his 

own work, and a distinguished teacher. Dr. Ran Elkon guided me how to evolve our work, one step 

at a time, until creating a considerable body of research. But even more important, he gave me the 

confidence and the solid ground I needed in challenging times. The impact of having them both as 

co-advisers was invaluable. I hope our joint effort will serve the scientific community.  

Many thanks are reserved to Ron’s lab members – Lianrong, Dvir, Ron Z., David P., Tom, Nimrod, 

Idan, Dan, Neta, Aviv, Yael, Roi, Naama K., Hadar, Omer – as well as to Ran’s lab members - 

Eldad, Avinoam, Michal, David G., Zohar, Naama M. and Amit – for being there, listening and 

giving good advises for in research and day to day matters. My experience would not have been the 

same without them.  

Special thanks reserved for Gilit Zohar-Oren for all her administrative support.  

I would like to thank the funding agencies that supported my MSc studies: The Israel Science 

Foundation (grants  2193/15 and 1339/18), German-Israeli Project (DFG grant RE 4193/1-1) and 

the Edmond J. Safra Center for Bioinformatics at Tel Aviv University (MSc fellowship). This 

funding gave me the conditions I needed to put my focus on research.  

The last sentence is dedicated to thanking my family for all their support. It is an honor to mention 

them here.  

  



 

3 

 

 

 

Table of Contents 
i. Abstract ............................................................................................................................................. 5 

1. Introduction ...................................................................................................................................... 6 

2. Biological Background .................................................................................................................... 8 

2 A. Biological Networks................................................................................................................. 8 

2 B. Gene Ontology ......................................................................................................................... 9 

2 C. Gene Expression Profiling...................................................................................................... 11 

2 D. Genome-Wide Association Studies........................................................................................ 12 

3. Computational background ............................................................................................................ 13 

3 A. Module Identification in Networks ........................................................................................ 13 

3 B. Evaluating Solutions............................................................................................................... 14 

3 C. Enrichment Analysis: Hypergeometric Test .......................................................................... 15 

3 D. Semantic Similarity ................................................................................................................ 15 

3 D i. Resnik’s Semantic Similarity ........................................................................................... 16 

3 D ii. REVIGO ......................................................................................................................... 18 

4. Selected NBMD Algorithms .......................................................................................................... 20 

4 A. Overview: Approaches to Module Detection ......................................................................... 20 

4 B. Detailed Description of Selected Algorithms ......................................................................... 21 

4 B i. jActiveModules ................................................................................................................ 21 

4 B ii. NetBox ............................................................................................................................ 23 

4 B iii Bionet .............................................................................................................................. 26 

4 B iv. HotNet2 .......................................................................................................................... 26 

4 B v. KeyPathwayMiner ........................................................................................................... 30 

5. Methods and Materials ................................................................................................................... 31 

5 A. The Functional Analysis ........................................................................................................ 31 

5 B. Biological Datasets ................................................................................................................. 32 

5 B i. Gene Expression Datasets ................................................................................................ 33 

5 B ii. GWAS Datasets .............................................................................................................. 33 

5 C. Algorithm ............................................................................................................................... 34 

5 D. Biological Network: DIP........................................................................................................ 34 

5 E. Functional Enrichment Analysis: GO ..................................................................................... 34 

5 F. REVIGO Implementation ....................................................................................................... 34 

5 G. Execution details .................................................................................................................... 35 

5 G i. jActiveModules ................................................................................................................ 35 

5 G ii. NetBox ............................................................................................................................ 35 

5 G iii. Bionet ............................................................................................................................. 35 



 

4 

 

5 G iv. HotNet2 .......................................................................................................................... 35 

5 G v. KeyPathwayMiner ........................................................................................................... 35 

6. Results ............................................................................................................................................ 37 

6 A. NBMD Algorithms Suffer from High Rate of Recurrent False Positive GO Terms ............. 38 

6 B. Solution: Empirical Cleaning of NBMD Solutions ................................................................ 40 

6 C. Criteria for Evaluating NBMD Solutions ............................................................................... 43 

6 C i. Solution-Level Criteria ..................................................................................................... 43 

(1). Empirical to Hypergeometric Ratio (EHR) ......................................................................... 44 

(2). Term Count.......................................................................................................................... 44 

(3). Biological Richness ............................................................................................................. 44 

(4). Solution Robustness ............................................................................................................ 45 

6 C ii. Module-Level Criteria ..................................................................................................... 47 

(1). Module-Level EHR (mEHR) .............................................................................................. 47 

(2). Intra-Module Biological Homogeneity ............................................................................... 47 

6 D. Benchmark results .................................................................................................................. 49 

6 D i. Solution-level results ........................................................................................................ 49 

6 D ii. Module-level results ........................................................................................................ 52 

6 E. Domino – A Novel NBMD Algorithm ................................................................................... 60 

6 E i. Method .............................................................................................................................. 60 

6 E ii. Results ............................................................................................................................. 63 

7. Discussion ...................................................................................................................................... 66 

8. References ...................................................................................................................................... 68 

9. Supplementary ............................................................................................................................... 72 

 

 

  



 

5 

 

i. Abstract 

 

Network-based module detection (NBMD) algorithms have been used to functionally interpret omics 

data for almost two decades. These algorithms receive as an input a biological network and nodes' 

(genes) activity scores and report sub-networks that are putatively biologically meaningful. In this 

study we aimed to systematically compare the performance of NBMD algorithms on data recorded 

by transcriptome profiling and genome-wide association studies (GWASs). We focused on six of the 

most popular NBMD tools: jActiveModules (using either simulated annealing or a greedy search), 

NetBox, Bionet, HotNet2 and KeyPathwayMiner, and based our evaluation of the NBMD algorithms' 

solution on module enrichment for Gene Ontology (GO) terms.  

We first observed that many GO terms reported by each algorithm were also reported when the same 

algorithm was applied to permuted data, which we hypothesized to stem from algorithm behavior and 

network structure. Therefore, to remove from the solutions GO terms that are recurrently called in 

permuted data, we developed the EMpirical Pipeline (EMP), a method that quantifies the significance 

of GO enrichment scores of a solution by comparing each term’s scores on the real and permuted 

data. We then designed novel criteria for evaluating NBMD solutions based on the output of the EMP 

procedure, and used them to compare the performance of the six NBMD tools on different gene 

expression and genome wide association study (GWAS) datasets. Notably, NetBox consistently 

outperformed the other NBMD algorithms. Finally, we designed a novel NBMD algorithm called 

Domino (Discovery of Modules In Networks using Omics), and demonstrated that it outperformed 

the algorithms we benchmarked. Importantly, the mean EMP validation rate for enriched GO terms 

detected for Domino's solutions was above 90%, markedly higher than for the other tools. Running 

the EMP procedure for several thousand permutations is computationally heavy. Given Domino’s 

high performance and validation rate, it can be used in biological studies on a standard desktop, 

without the need for the EMP filtering procedure. 
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1. Introduction  

 

Network-based analyses have a central role in bioinformatics1. These analyses utilize biological 

networks - graphs that represent intracellular biological behavior, by describing a specific cellular unit 

(e.g. gene, protein, compound etc.) as a node and a behavior that involves two components (physical 

interaction, co-expression, regulation etc.) as an edge. 

Many types of biological networks exist, including protein-protein interaction networks (PPI)2, metabolic 

networks3, regulatory networks4 and more. They are usually generated based on many assays that examine 

intracellular behaviors and are integrated together into a single graph structure. Examples of well-known 

biological network include STRING5 – the largest multilayer network, which includes many types of 

edges such as co-expression and physical interaction, and ReactomeFI6 – a network that is built from 

multiple pathway databases and additional high-throughput sources. These networks vary in size and can 

span from a few thousand nodes and edges up to many thousands of nodes and millions of edges.   

One of the fundamental challenge in bioinformatics is extracting the biological signal from an assay: naive 

selection of gene by some threshold (e.g. fold change or p-value) might miss some real biological signals: 

Sometimes the assay’s measurements are incomplete: Some gene values are missing in some of the 

samples. Additionally, sometimes the observed signals are too weak when looking at the sum of individual 

gene measurements7. This is especially true for high-throughput assays that apply stringent threshold (to 

account for multiple testing) and end up filtering many relatively high scoring genes (e.g. GWAS). In 

order to deal with this challenge, many methods use biological networks as an integrative resource by 

which the proper context is given to assay measurement, i.e., amplifying biological signals that 

otherwise - just by looking on the assay - would be overlooked.   

Network-based module detection (NBMD) is an approach for joint analysis of an experimental assay 

and a biological network that has been in broad use for almost two decades. NBMD algorithms are 

used to infer important gene-sets (modules) by projecting the assay measurements over a biological 

network and identifying information-rich sub-networks. The input for such algorithms is a biological 

network and gene activity scores for its nodes. Gene activity scores are derived from a specific assay 

and represent the biological information in it. These gene activity scores can be binary (e.g. perturbed 

or not-perturbed) or continuous (e.g. p-values), and can come from various types of omic methods, 

including DNA mutation8,9 and gene expression10,11,12. In many cases they can be executed with a 

different assay type from the one they originally were developed for13
, usually by applying a minor 

preprocessing step on the assay dataset. These algorithms output a solution consisting of several 

modules, which are usually connected subnetworks. Typically, candidate modules are selected by a 

certain strategy (e.g. greedy search), are evaluated by some objective function (e.g. average gene 

activity scores in the set) and the best-performing modules are output in the solution.  
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Given a set of modules, produced by such an algorithm, a common downstream analysis is functional 

analysis, aiming to characterize the modules biologically. The most common functional analysis is 

the hypergeometric (HG) enrichment analysis. Such analysis detects whether a module contains 

significantly larger proportion of genes with a specific function (annotation) than expected just by 

chance. The most popular annotation resource against which such enrichments are measured is the 

Gene Ontology (GO) 14 - a hierarchically-annotated gene-set database that comprises many 

annotation. These annotations are organized in three directed acyclic graph structures: “Biological 

Process”, “Molecular Function” and “Cellular Component”, where “Biological Process” is the most 

comprehensive one.  

Since GO functional analysis is very common, and a variety of solutions were proposed to implement 

it, the need for good criteria for comparing solutions of different NBMD algorithms is evident. 

Manual analysis of the relevant terms in a solution by domain experts is very common in practice, 

but it is slow and may be biased. Consequently, functional-based evaluation of NBMD algorithms 

remains a challenging task.  

In this study we performed a systematic evaluation of prominent module-discovery algorithms across 

several datasets from two different omic data types. Functionally enriched terms in each module and 

each solution were identified by the standard HG test, without manual intervention. Our analysis 

revealed that some algorithms recurrently report many terms as enriched, but some of those terms 

also show up when applying the same algorithm on a random permutation of the same dataset. This 

suggests that such solutions report terms that are likely false positives. To address this shortcoming, 

we developed a procedure that we call the EMpirical Pipeline (EMP). It "cleans" the set of enriched 

terms and their scores by comparing them to the enrichment scores of the same terms on permuted 

datasets. We used this approach along with evaluation metrics that we developed to evaluate six 

popular NBMD algorithms on different gene expression (GE) and GWAS datasets. Of those, the 

NetBox algorithm consistently outperformed the other tested algorithms.  

Finally, we designed a novel NBMD algorithm called Domino (Discovery of Modules In Networks 

using Omics), and demonstrated that it outperformed the algorithms we benchmarked. Importantly, 

the mean EMP validation rate for enriched GO terms detected for Domino's solutions was above 90%, 

markedly higher than for the other tools. Running the EMP procedure is computationally heavy, as it 

requires running the algorithm repeatedly on several thousands of permutations of the gene scores. 

Domino’s high validation rate suggest that it can be run without the need for the EMP filtering 

procedure, and thus can be used in biological studies on a standard desktop. 
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2. Biological Background  

2 A. Biological Networks  

The cell is a complex system. The subunits composing it include proteins, genes and metabolic 

compounds – all of which interact together to create its internal ecosystem. Traditionally, researchers 

tend to examine how a single subunit affects a condition (e.g. diseases). While this approach is proper 

for some cases, e.g., Mendelian diseases, for many others it gives narrow perspective of few 

parameters while ignoring many others. 

The last two decades were characterized by a rapid rise of the field of bioinformatics. Key drivers of 

this rise are high-throughput omics technologies – from microarrays to Next-Generation Sequencing 

(NGS).  The abundance of assays served as a good basis for creating and using gene and protein 

networks – an integrative data structure representing many assays as a whole and providing a 

graphical and mathematical representation. As knowledge grew, the size of the networks increased, 

and larger computational resources were required for network-related applications.  

A biological network summarizes knowledge on a biological system. Generally, nodes represent units 

in the network, while edges represent the interactions between the units. Typically, nodes represent 

cell subunits (e.g. proteins, genes, metabolic compounds) and edges represent relationships between 

these subunits (e.g. physical interaction, co-expression, regulation). Many network properties can be 

quantified either on the whole network (e.g. global modularity), sub-graphs (e.g. density) or on a 

single subunit (e.g. degree of node). All these scores can be used in order to derive biological insights 

and will be explained in following sections. 

Many types of biological networks exist. The most common ones are: 

1. Protein–protein interaction networks (PPIs): proteins are nodes and their physical interactions 

are edges. These are the most commonly used biological networks 

2. Protein-DNA interaction \ Regulatory networks: The expression of genes is regulated 

by transcription factors (TFs), proteins that bind to DNA regions (primarily promoters and 

enhancers) and control the gene’s transcription. In regulatory networks, nodes represent 

proteins or genes and edges represent regulatory interaction. The edges in such networks are 

directed, representing the regulatory direction (e.g. from a TF to a promoter)    

3. Co-expression networks: genes (nodes) are linked by edges if their expression is highly 

correlated over a large number of samples.  

4. Metabolic networks: These networks represent metabolites, chemical compounds that 

participate in biochemical reactions, and directed edges represent transformation of one 

https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/DNA
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compound into another in a reaction. Additionally, enzymes that catalyze these reactions are 

also present in these networks and point to the reactions they catalyze.  

5. Signaling networks: Signals are transduced between different subunits of the cell and thus 

form complex signaling networks. Typically signaling transduction composed from protein–

protein interactions, phosphorylation reactions, and metabolic reactions – all of which are 

combined into one signaling network, with some of these edges directed. 

 

Sometimes the terms ‘pathway’ and ‘network’ are used interchangeably15. Although both are similar 

concepts, they have certain distinctions. Both comprise systems of cell subunits that carry out 

biological functions, that giving more biological holistic views. Pathways are small-scale systems of 

well-studied processes where interactions comprise biochemical reactions and events of regulation, 

complex formation and signaling. They represent high-quality knowledge based on decades of 

research and can be visualized in detailed flow diagrams.  In contrast, networks summarize 

interactions of many subunits that are unspecific to a certain biological process. While pathways 

describe thoroughly a specific biological process, biological network are simplified abstractions of 

global complex cellular logic. While each interaction in a pathway is well-studied and of high 

confidence, networks are noisier. However, they likely contain uncovered information that does not 

exist in pathways. Finally, while pathways are easier to visualize and to interpret by visual inspection, 

a full biological network usually looks like a giant ‘hairball’, leaving us with little insights as a raw 

data structure. 

2 B. Gene Ontology  

The Gene Ontology (GO)14 is a major bioinformatics resource that unifies the representation 

of gene and gene product attributes in a cross-species language. GO terms are genes’ biological 

annotations in this language. These annotations implicitly define gene-sets: Each GO term 

corresponds to the set of genes that are annotated by this term. In addition, GO provides hierarchical 

relationships between GO terms. The GO resource covers three domains (definitions are taken from 

http://geneontology.org/docs/ontology-documentation/ ): 

1. Cellular Component (CC): The locations relative to cellular structures in which a gene product 

performs a function, either cellular compartments (e.g., mitochondrion), or stable 

macromolecular complexes of which they are parts (e.g., the ribosome). Unlike the other 

aspects of GO, cellular component classes refer not to processes but rather a cellular anatomy 

(~5K terms).  

2. Molecular Function (MF): Molecular-level activities performed by gene products. Molecular 

function terms describe activities that occur at the molecular level, such as “catalysis” or 

http://geneontology.org/docs/ontology-documentation/
http://amigo.geneontology.org/amigo/term/GO:0005739
http://amigo.geneontology.org/amigo/term/GO:0005840
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“transport”. GO molecular function terms represent activities rather than the entities 

(molecules or complexes) that perform the actions, and do not specify where, when, or in what 

context the action takes place. Molecular functions generally correspond to activities that can 

be performed by individual gene products (i.e. a protein or RNA), but some activities are 

performed by molecular complexes composed of multiple gene products. Examples of broad 

functional terms are “catalytic activity” and “transporter activity”; examples of narrower 

functional terms are “adenylate cyclase activity” or “Toll-like receptor binding”. To avoid 

confusion between gene product names and their molecular functions, GO molecular 

functions are often appended with the word “activity” (e. g., a protein kinase would have the 

GO molecular function protein kinase activity). (~12K terms).  

3. Biological Process (BP): The larger processes, or ‘biological programs’ accomplished by 

multiple molecular activities. Examples of broad biological process terms are “DNA 

repair” or “signal transduction”. Examples of more specific terms are “pyrimidine nucleobase 

biosynthetic process” or “glucose transmembrane transport”. Note that a biological process is 

not equivalent to a pathway. At present, the GO does not try to represent the dynamics or 

dependencies that would be required to fully describe a pathway (~20K terms). 

GO is structured as a directed acyclic graph of terms (nodes in the graph), each with 

defined relationships (represented as directed edges) to one or more other terms in the same domain 

and sometimes to other domains. There are several types of relationship: “is a”, “part of”, “regulates”. 

Each GO term has many attributes, such as id, name and description. See Figure 1. GO is a key 

reference resource for enrichment analysis: a statistical approach by which one can assign a gene-set 

with putative biological functions (see Section 3 C. Enrichment Analysis: Hypergeometric Test). 

 

http://amigo.geneontology.org/amigo/term/GO:0003824
http://amigo.geneontology.org/amigo/term/GO:0005215
http://amigo.geneontology.org/amigo/term/GO:0004016
http://amigo.geneontology.org/amigo/term/GO:0035325
http://amigo.geneontology.org/amigo/term/GO:0006281
http://amigo.geneontology.org/amigo/term/GO:0006281
http://amigo.geneontology.org/amigo/term/GO:0007165
http://amigo.geneontology.org/amigo/term/GO:0019856
http://amigo.geneontology.org/amigo/term/GO:0019856
http://amigo.geneontology.org/amigo/term/GO:1904659
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Figure 1: A sub-graph from the domain “biological process” containing all terms that are ancestors of GO term 

“GO:1904948 - midbrain dopaminergic neuron”. Term A is an ancestor of term B if A is a generalization of , i.e., every 

gene annotated with term B is also annotated with term A (Source: QuickGO website16). 

2 C. Gene Expression Profiling  

Gene expression studies compare expression levels of genes on genomic scale across different 

samples. The levels of all genes in a sample are called its expression profile. Often, the samples have 

properties (e.g., control, treatment, condition or cell type) according to which they can be divided into 

biologically meaningful groups for downstream analyses (e.g., differential expression analysis). The 

most common technologies to measure expression profiles are microarray and RNA-Seq. 

A gene expression matrix summarizes expression levels of genes across samples. Conventionally, 

each row represents a gene and each column represents a sample. The exact size of these matrices 

depends on the number of measured genes and the number of samples (Figure 2).  
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Figure 2: Illustration of a gene expression matrix. The yellow columns represent the control samples and the green 

ones are the treated samples. The blue-red colors represent the expression levels. 

 

2 D. Genome-Wide Association Studies  

A genome-wide association study (GWAS) scans genetic markers across a very large case-control 

cohort – typically, many thousands of individuals - and finds genetic variants - single nucleotide 

polymorphism (SNP) - associated with a particular disease. Such studies are particularly useful in 

characterizing polygenetic complex diseases. To carry out a GWAS, researchers genotype samples 

from two groups: individuals with the disease (cases) and individuals without the disease 

(controls).For each SNP, it is tested if one allele is significantly more frequent in the cases, and 

therefore putatively associated with the disease17 (Figure 3). In most cases (due to genetic correlation 

between SNPs that are closed to each other), the disease-associated SNPs are not the direct cause of 

the disease, but serve in various downstream analyses as pointers to genomic regions, such as genes, 

promoters, and enhancers in order to find which contain the causal variants18,19. 

For each individual, several million SNPs are genotyped and examined. After Bonferroni correction 

for multiple testing, only a few turn out to be significant. Yet, recent studies showed that there is 

additional information in SNPs that failed reaching the strict cutoff induced by Bonferroni correction 

(p-value < 10-8). In a typical GWAS, there are thousands of informative SNPs with very weak effect. 

As a result, functional interpretation of GWAS results is still a major challenge.  
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Figure 3: Schematic illustration of GWAS assay. Colored individuals are those who carry the SNP’s minor allele 

(Source: NIH website20) 

 

3. Computational background  

 

3 A. Module Identification in Networks 

High-throughput biological assays can reveal genes/proteins that are perturbed in the analyzed 

biological condition15,21. In a gene-expression assay these can be the differentially expressed genes 

between control and treatment samples; In a genotyping assay these can be the mutated genes. In 

GWAS these can be the genes that contain SNPs that are significantly associated with the disease 

phenotype.  

Each perturbed gene by itself may be hard to interpret, but by studying the set of perturbed genes 

together using a network model, better understanding can be obtained, thanks to the intracellular 

context the network adds. The analysis can pinpoint biological processes that are altered due to gene 

perturbations, compare the effect of perturbation of different genes and so on. In this way, the 

biological network puts the measurements in the context of known gene interactions. Furthermore, it 

opens the door to examine new properties such as relevance of unmeasured genes.  

One way to put the perturbed gene set in a network context is to formulate an objective function that 

scores subgraphs in order to identify those with high signal of perturbation. The objective function, 
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together with constraints on the allowed subgraph structure, are then used to find best-scoring 

subgraphs. Most formulations developed for the problem were proven NP-hard. This opens the door 

for many heuristic approaches for NBMD that give “good” but not provably optimal solutions. A 

solution of such algorithm is typically one or several modules, where each module is a set of genes 

corresponding to a connected subnetwork. Often, these modules are disjoint.  

 

3 B. Evaluating Solutions 

A common approach to evaluate the quality of an NBMD solution is by examination of its modules’ 

biological signal. It is typically assessed by comparing the genes in each of the modules against 

biological databases, such as trait-to-gene-set databases (e.g. DisGenNet22), pathways (e.g. KEGG23, 

Reactome24) or ontologies (e.g. GO14). One approach measures the recovery of an expected gene-set. 

This is mostly done for trait-related datasets against gold-standard gene-set. The drawback of this 

approach is the need to have a gold standard gene-set. An alternative approach is to compute 

enrichment scores of every gene-set in the database, followed by examining the relation between the 

(top) significantly enriched sets and the condition tested in the datasets. Both of these approaches are 

inevitably exposed to researcher bias, e.g., the researcher determines the relevance of gene-sets. 

Recently, a benchmark25 was conducted on 11 NBMD algorithms: The algorithms’ input were gene 

expression datasets and the network was HPRD26 – a manually curated experimentally verified PPI 

network (~5000 nodes, ~18000 edges). The first criterion in the benchmark was recovery of ground-

truth genes out of simulated datasets. The recovery was measured by precision, recall and F1 scores, 

which are defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =  2 ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Where TP is the number of actual positives that are correctly identified as such, FP the number of 

actual negatives that are correctly identified as such, and FN are the number of positives that are 

incorrectly identified as negative. These criteria did not identify a clear best-performing algorithm.  

Another criterion used by the same study measured the recovery of known prostate cancer genes from 

analysis of gene expression profiles of prostate-cancer patients and healthy individuals. This criterion 

measured the fold enrichment in the genes included in the solutions to known prostate cancer (PC) 

genes: 
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(#of recovered PC genes) ∙  (# total genes in network)

(# PC related genes)  ∙  (# of genes in the solution)
 

 

Where the selected genes are those identified by the algorithm as part of modules, and recovered 

genes are selected prostate cancer genes. Here the authors reported PinnacleZ as the best performing 

method (fold enrichment=2.494). However, only a small difference separated it from the second best 

method (WMAXC, fold enrichment=2.35). Both of these methods got relatively high F1 scores.  

 

3 C. Enrichment Analysis: Hypergeometric Test  
 

One of the most popular analyses in bioinformatics is enrichment analysis – a family of statistical 

tests that aim to determine whether a selected set of genes has unusually large proportion of genes 

with a particular annotation. Enrichment tests use popular gene-set databases such as MSigDB, GO 

and KEGG. The most classic enrichment test is the hypergeometric test. It can be defined as follows: 

Suppose you have N balls, out of which K < N are red ones. Assuming you draw n balls at random 

without repetition, the chances that exactly k of them are red ones is: 

ℎ𝑔(𝑁, 𝐾, 𝑛, 𝑘) = Pr(𝑋 = 𝑘) =
(𝐾

𝑘
)(𝑁−𝐾

𝑛−𝑘
)

(𝑁
𝑛

)
 

 

The probability of drawing at least k red balls (or the p-value of the test) is:  

 

 

 

In this study we refer define the enrichment score as: − log10(𝐻𝐺(𝑁, 𝐾, 𝑛, 𝑘)) 

3 D. Semantic Similarity 

Given its hierarchical structure, many GO terms may capture similar biological information. Term 

similarities are reflected by their topological relationships (e.g. parent-children relationship: 

“GO:0048839 Inner Ear Development” and “GO:0090102:Cochlea Development”, or siblings 

relationship: “GO:0090102:Cochlea Development and “GO:0042472:Inner-Ear Morphogenesis”). 

Moreover, a single gene can be annotated with multiple GO terms, which can contribute to the 

similarity. Sematic similarity aims to measure how close any two terms are. Intuitively, semantic 

similarity increases when more properties are in common between the terms and when they are 

"closer" on the GO DAG (see Section 2 B. Gene Ontology). One powerful semantic similarity 
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application is FastSemSim, which implements 16 different semantic similarity metrics. In our work 

analysis we used Resnik semantic similarity metric, which is described in the following section.   

   

3 D i. Resnik’s Semantic Similarity 

This measure, developed by Phillip Resnik in 1999,27 is one of the earliest semantic similarity 

methods and is still in use today. We demonstrate how it works over semantic similarity of concepts. 

We define concepts as objects in hierarchical taxonomy that maintain “is a” relationships (Figure 4). 

Each concept c has a known probability 𝑝(𝑐) to occur, and the information content of c, denoted 

𝐼𝐶(𝑐), is defined as − log(𝑝(𝑐)).  The information content of a concept measures how common it is, 

with less frequent concepts having higher information content.  

 

Figure 4: An illustration for concept taxonomy (Source: Resnik27) 
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The mutual information of two concepts is determined by their most informative common ancestor 

(MICA). Formally the similarity of concepts 𝑐1, 𝑐2 is defined as: 

    

𝑠𝑖𝑚(𝑐1, 𝑐2) = max
𝑐∈𝑆(𝑐1,𝑐2)

− log 𝑝(𝑐) =  − log 𝑝(𝑀𝐼𝐶𝐴(𝑐1, 𝑐2)) 

Where 𝑆(𝑐1, 𝑐2) is the set of 𝑐1’s and 𝑐2’s common ancestors. Typically, 𝑠𝑖𝑚(𝑐1, 𝑐2) values are 

determined by its least common ancestor, i.e., 𝑀𝐼𝐶𝐴(𝑐1, 𝑐2) =  𝐿𝐶𝐴(𝑐1, 𝑐2). 

To apply similarity to the GO hierarchy, we simply use terms instead of concepts. The probability of 

a terms is the fraction of gene-products annotated to it.  Thus, the Resnik similarity of terms 𝐺𝑂1 and 

𝐺𝑂2 is 𝐼𝐶(𝑀𝐼𝐶𝐴(𝐺𝑂1, 𝐺𝑂2)). Notably, the higher the similarity of a term pair is, the higher the 

chance to find larger set of genes that are mutual to both terms. For instance, “GO: 0048839: Inner 

Ear Development” and “GO:0090102: Cochlea Development” has 6.27 Resnik score, with 4 

overlapping genes, while “GO:0060348: Bone Development” and “GO:0090102:Cochlea 

Development” has only 2.63 score with zero overlapping genes (Figure 5). 

 

 

 

Figure 5: Resnik similarity scores and gene overlap between different GO terms. Gene annotations were acquired from 

GO resource files and GOATOOLS. 
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3 D ii. REVIGO 

Frequently, GO enrichment analysis yields a solution with a long list of GO terms, many of which 

are closely related to each other. In order to get less redundant biological signal, one might want to 

remove highly similar terms from the list and leave only the most suitable representatives. REVIGO28 

groups highly similar GO terms and chooses a representative for each group. Representatives are 

determined based on their specificity, i.e., avoiding too general terms, and enrichment scores, i.e., 

preferring terms with higher scores. If the difference between the enrichment scores is below a certain 

threshold, and one term is a child of the other, REVIGO will choose the parent (more general) term. 

However, when at least 75% of the genes in the parent term belong also to child term, the child term 

is chosen instead, The REVIGO procedure is outlined in Figure 6. 
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Figure 6: Schematic flow of the original REVIGO procedure. The flow receives a list of GO terms and their enrichment 

scores as an input and outputs a non-redundant list of GO terms (Source: Fran Supek  & Tomislav Šmuc28)  
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4. Selected NBMD Algorithms 

In the following section, we describe some popular network-based module detection (NBMD) 

algorithms that we used in our study (Table 1). The algorithms were chosen based on their popularity, 

diversity of purpose and computational ideas. Since we wished to test these algorithms extensively, 

we focused on those that had a working tool/codebase that can be executed as a stand-alone tool 

(some tools were isolated from larger packages), reasonable runtime and could be applied to different 

data types.  We used these algorithms for the benchmark in Section Results.  

 

Method 

name 

Publish

ed on 

Designed 

for 

Algorithmic Approach Code 

language 

# citations 

(updated to 

11/2019) 

jActive-

Modules10 

2002 GE Seek high scoring subnetworks by 

simulated annealing  

Java 1207 

NetBox9 2010 Mutation Enrichment of Perturbed 

neighbors, Newman-Girvan (NG) 

modularity score 

Java, 

Python 

304 

Bionet11 2010 GE Prize collecting Steiner tree  R 218 

HotNet28 2015 Mutation Heat diffusion Python 460 

KeyPathway

Miner12 

2012 GE Choose modules with at most K 

non-perturbed genes 

Java 41 

 

Table 1: The NBMD algorithms used in our study. GE: Gene expression.  

 

4 A. Overview: Approaches to Module Detection  

NBMD algorithms typically perform two main steps: apply gene scores on the network (e.g., the 

vertices), and then detect modules according to these scores. In these steps the main variants are: (1) 

the way by which genes are scored (e.g., raw p-values or binary scores); (2) the biological network; 

(3) the module detection method (heat-diffusion, maximize gene scores’ objective function etc.); 

and (4) the constraints of the solution, such as the number of reported modules (e.g. single, defined 

by an input, or determined by algorithm, extent of overlap allowed between modules etc.) 

Typically, users of such algorithms has some flexibility in (1) (2) and (4), but the module detection 

algorithm remains as is used as is. 
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4 B. Detailed Description of Selected Algorithms 

In the following subsections we describe each algorithm and overview some of the results reported 

by the original papers   

4 B i. jActiveModules  

jActiveModules10 was one of the pioneering algorithms for detecting “active gene modules” in a 

biological network given a gene expression dataset. It is integrated as a plugin in the Cytoscape 

software, and is still widely used today. It comprises two main concepts – a scoring system (for an 

individual gene and gene set), and module discovery strategy:   

 

Scoring System 

The scoring system consists of the following steps:  

1. Compute for each gene 𝑖  a p-value 𝑝𝑖 for node 𝑖  being differentially expressed between the control 

and treatment samples.  

2. Assign Z-scores to nodes. These Z-score are calculated by the inversed normal CDF for each gene:  

 

3. Calculate Z-scores for subnetworks: The Z-score (ZA) of a subnetwork with gene set A of size k is 

defined as:  

 

Notably, the distribution of ZA can be different for different values of 𝑘. The authors calibrated 𝑍𝐴 

under normal distribution assumption (SA).  

 

The parameters for the distribution (μk and σk) were extracted from background distribution of 

subnetworks of the same size by random sampling of gene sets of size k. This correction guarantees 

standard normal distribution function across all modules in all sizes and therefore, a comparable 

scoring criterion.  

   

Module Discovery  

Module identification utilizes simulated annealing29 in order to explore relatively high-scoring 

modules.     

 

For an input graph 𝐺 = (𝑉, 𝐸) the score of each gene is set according to the GE measurement as 

described above. The algorithm progresses in iterations, and each iteration 𝑖 has a designated 
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parameter value 𝑇𝑖  called temperature. Initially, each gene 𝑣 ∈ 𝑉 is set to a state active/inactive with 

probability 0.5 independently, virtually creating the subnetwork 𝐺𝑤  consisting of the active nodes. In 

each iteration 𝑖 a random gene in the network is chosen, its state is toggled, while the temperature 𝑇𝑖 

is decreased, and the score of the gene set in the new active subnetwork is calculated. If the new gene 

set score 𝑠𝑖 is higher than the current one 𝑠𝑖−1, we keep it. Otherwise we un-toggle the gene with 

probability 𝑒(𝑠𝑖−𝑠𝑖−1)/𝑇𝑖 – introducing the stochastic element to the process. This process is repeated 

for a fixed number of step 𝑁 when 𝑇𝑁 ≈ 0. Finally, we take from the active gene set the 𝑀 highest-

scoring connected components – the putative modules (𝑀 is predefined by the user). The score of 

each module is calculated by 𝑆𝐴. 

Additionally, in order to address bias towards large degree nodes ("hubs")– each time a node with 

degree higher than a specific threshold is toggled, simultaneously all its neighbors that are not in the 

highest scoring connected component are removed. The particular threshold is defined by the user. 

Figure 7 gives an example of a solution provided by the algorithm. 

 

 

Figure 7:Performance of jActiveModules on a small molecular interaction network. Nodes represent genes, an edge 

directed from one node to another signifies that the protein encoded by the first gene can influence the transcription of 

the second by DNA binding (protein→DNA), and an undirected edge between nodes signifies that the corresponding 
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proteins can physically interact. Z-scores (blue scale) indicate the likelihood of differential expression of each gene in a 

GAL80 knockout experiment. Z-scores were used to search for active subnetworks using simulated annealing method; 

the five top-scoring subnets are shown. (Source: Ideker et al.10). 

  

4 B ii. NetBox 
 

Netbox9 was originally developed for analysis of somatic mutations, in order to identify biological 

subnetworks that are recurrently affected by mutated cancer driver genes.  

Netbox works as follows:   

1. Mark perturbed nodes: these are the nodes that represent mutated genes. 

2. Mark linker nodes. A linker node connects at least two mutated genes, and must be 

significantly enriched in terms of its perturbed neighbors, that is, each such linker has to have 

more perturbed neighbors than expected by chance. This is quantified using hypergeometric-

test and adjusted for multiple-testing using FDR. 

3. Define 𝐺′, a subgraph of 𝐺 by filtering out each node that is neither perturbed nor linker. 

4. Apply Newman-Girvan algorithm for modularity-detection on 𝐺′, resulting in a partitioning - 

or modules - and modularity score of the network. 

 

The Newman-Girvan modularity detection method iteratively removes an edge from the current 

graph, creating a series of graphs 𝐺′ = 𝐺0, 𝐺1, … 𝐺𝑘. The final graph 𝐺𝑘 contains no edges. The edge 

to be removed is chosen by computing the betweenness-centrality scores for each edge, defined as its 

frequency in shortest paths of all gene pairs in the current graph. For each gene pair, a shortest path 

is calculated and a score of 1 is added to each edge that appears in the path. For gene pairs with 

multiple shortest paths the score is split evenly among the different paths (e.g. a gene pair with two 

shortest paths will add 0.5 to the score of an edge for each appearance of the edge in any of the paths). 

The highest scoring edge is thereafter removed from the graph and the process repeats. In some 

iterations the process breaks connected components into smaller ones. The graph 𝐺𝑖   is assigned a 

modularity score Mi as follows: 

 

Where NM is the number of modules (connected components in the current graph), 𝑙𝑠 is the number 

of edges within module 𝑠, 𝐿 is the total number of edges in the network, and 𝑑𝑠 is the sum of the 

degrees of all nodes within module 𝑠. Netbox reports the set of modules in the subnetwork Gi that 

had maximum modularity score. 
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In order to test  NetBox the authors used Glioblastoma’s mutation dataset from The Cancer Genomic 

Atlas (TCGA30) - a project comprising multi-OMIC datasets across 33 cancer types -  and a literature-

curated network they constructed themselves.  

 

The authors validated their results in the following ways:  

1. Statistical validation: The authors performed permutations over the network, while retaining its 

basic structure such as degree distribution etc., and measured the modularity score – creating by that 

a background distribution. This way they evaluated whether the real modularity score was 

significantly higher than what is expected by chance. Such significance might indicate that the 

identified modules have a structural meaning.  

2. Biological validation by discovered cancer-driver genes:  Out of eight genes identified by TCGA 

frequency-based approach, seven were contained in the modules detected by Netbox. In addition, many 

of the genes in the solution are targets of high-level focal amplification or homozygous deletions.  

3. Biological validation by overlapping of discovered modules with known ones: the two largest 

modules are in close agreement to the three critical signaling pathways identified in the original TCGA 

pathway analysis. 

4. Biological validation by GO term enrichment analysis: many modules were enriched with cancer-

relevant GO terms. 
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Figure 8: Overview of Netbox approach for identifying oncogenic processes and candidate driver genes in GBM. The 

authors constructed the network from protein-protein interactions and signaling pathways curated from literature (A), 

and assembling genomic alterations in GBM (B). We then extracted a GBM-specific network of altered genes (C), 

which was then partitioned into network modules (D). The level of connectivity of the network was assessed by using 

(E1) a global null model to compare the size of the largest component in the observed network v. networks arising from 

randomly selected gene sets; and (E2) a local null model to compare network modularity of the observed network to 

locally rewired networks (Source: Chris Sander et al.9). 
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4 B iii Bionet  

The Bionet11 tool is a combination of a module discovery method with statistical gene and module 

scoring method.  

 

Scoring system  

The scoring system comprises the following steps:  

1. Calculate differential expression p-value (using student’s t-test) for each gene.  

2. Model p-value distribution according to Beta-Uniform Mixture (BUM) model: Assuming no signal 

exists in our data, p-values should be distributed uniformly. A real signal on the other hand would lead 

to concentration of p-values in the left side of the distribution histogram (i.e. higher concentration of 

p-values in the significant region of the histogram compared to the non-significant region). This 

pattern of distribution can be modeled by BUM, where α and β are the parameters of the beta 

distribution. 𝛽 was fixed to 1, and α was estimated by maximizing the likelihood. α variable is 

thereafter used to calculate the adjusted score for the nodes:  

𝑠𝐹𝐷𝑅(𝑥) = log (
𝛼𝑥𝛼−1

𝛼𝜏𝛼−1
) = (𝛼 − 1)(log(𝑥) − log (𝜏(𝐹𝐷𝑅))) 

where 𝑥 is the p-value and 𝜏 is the unadjusted p-value threshold for a given FDR. Finally, let w’ be 

the minimal adjusted gene score. The score of node 𝑝 is 𝑝(𝑣) = 𝑔𝑒𝑛𝑒_𝑠𝑐𝑜𝑟𝑒(𝑣)  −

𝑤′. Additionally, each edge score is set to −𝑤′.   

 

Module Discovery  

The authors use the Heinz algorithm, which they previously developed31. This algorithm aims to find 

a single module, by solving the prize-collecting Steiner tree problem (PCST). PCST is defined as 

follows: Given a connected undirected vertex- and edge-weighted graph G=(V,E,c,p) with vertex 

profits 𝑝: 𝑉 → ℝ≥0 and edge costs 𝑐: 𝐸 → ℝ≥0, find a connected subgraph 𝑇 = 𝑉𝑇 , 𝐸𝑇 ) of 𝐺, 𝑉𝑇  ⊆

𝑉, 𝐸𝑇  ⊆ 𝐸, that maximizes the profit:  

𝑝(𝑇) = ∑ 𝑝(𝑣)

𝑣∈VT

− ∑ 𝑐(𝑒)

𝑒∈ET

 

The authors formulated PCST as Integer Linear Programming (ILP) and solved it heuristically.  

 

  

4 B iv. HotNet2  

HotNet28 was originally developed for network-based analysis of mutations across cancer types, but 

since then was put into use for analysis of different omic and GWAS data. It comprises two main 

concepts - scoring system and module discovery method:  
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Scoring system   

The authors used MutSig32 in order to score each gene for its mutation load.  

   

Module Discovery  

HotNet2 harnesses insulated heat diffusion process in order to identify candidate modules. This 

process can also be described as a random walk with restart. Denote parameter 0 < 𝛽 < 1 as the 

restart coefficient. The process is a walk in the graph, where at each iteration the process resides in 

one vertex. We start a random walk from some root node. In each step we can either move to a 

neighbor of the current vertex with probability 1 − 𝛽 or jump back to the root with probability 𝛽. In 

the former case, the neighbor is chosen uniformly at random. This process can be described by the 

transition matrix W:   

   

  

  

where 𝑑𝑒𝑔(𝑖) is the degree of node 𝑖.  

The Ergodic Theorem guarantees that if the graph is connected such random walk starting from 

node i reaches stationary distribution described by the vector si:  

  

 

where 𝑒𝑖 is a vector with 1 at the 𝑖’th element and 0 at the rest.  

𝑠𝑖𝑗 describes the stationary walk probabilities that random walk starting in node 𝑖 is at node 𝑗. This 

induces the diffusion matrix 𝐹:  

  

  

 

Note that 𝐹 defines an asymmetric relation between nodes: The probability of reaching 𝑖 from 𝑗 might 

differ from the probability of reaching from 𝑗 to 𝑖. Note that 𝐹 is captured only from topology of the 

network, regardless of the scores derived from a specific assay.  

In order to model scores of a specific assay define the scoring vector h where ℎ(𝑗) is the score of gene 

𝑗, and 𝐸 the exchanged heat matrix: 

  

  

𝐸(𝑖, 𝑗) is the amount of heat a specific node absorbs from all the network structure (the heat it retains 

plus the heat induced by other nodes).  
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The authors applied a threshold 𝑑 over the matrix so an edge from node 𝑖 to 𝑗 exists only if 𝐸𝑖𝑗  ≥  𝑑. 

Importantly, 𝐸 is not symmetric (as 𝐹 is not symmetric) and therefore 𝐸 induces a directed graph that 

is different from the original undirected network. Thereafter, strongly connected components in this 

new graph are identified and reported as modules.  

Finally, the significance of the modules was assessed by comparing it to modules of the same size 

generated by applying the same process to datasets in which gene scores and network edges were 

randomly permuted, thus computing empirical p-values. These empirical p-values were corrected by 

BH-FDR. See 

Figure 9 for an overview. 

 

Figure 9: Overview of HotNet2 algorithm and Pan-Cancer analysis. HotNet2 assigns heat to each gene (node) in an 

interaction network according to a gene score encoding the frequency and/or predicted functional impact of mutations 

in the gene. This heat spreads to neighboring nodes using an insulated heat diffusion process. At the equilibrium heat 

distribution, the network is partitioned into subnetworks according to the amount and direction of heat exchange 

between pairs of nodes. Thus, the partition depends on both the individual genes scores and the local topology of 

protein interactions. The statistical significance (p-value and FDR) for the resulting subnetworks is computed using the 

same procedure on random data. In the TCGA Pan-Cancer analysis, gene scores are computed according to single 

nucleotide variants, small indels, and splice site mutations (from exome sequencing data), copy number aberrations 

(from SNP array data), and gene expression (from RNA-seq data) (Source: Raphael et al.8).   
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4 B v. KeyPathwayMiner  
 

KeyPathwayMiner12 was originally developed for gene expression data. The algorithm has two 

parameters, 𝑘 and 𝑙. It first identifies dysregulated genes in each sample and determines that a gene 

is perturbed if it is dysregulated in at least 𝑙 samples. Thereafter, it seeks connected modules of 

maximum size with at most 𝑘 non-perturbed genes.  

Given an input graph 𝐺, the authors create a new graph 𝐺′ as follows: 

1. For each non-perturbed node 𝑣𝑖  in 𝐺 create a corresponding non-perturbed node in 𝐺′ : ui  

2. Create an edge between each node pair (𝑢𝑎, 𝑢𝑏) ∈ 𝐺’ if and only if there exists a path between 

𝑣𝑎 to 𝑣𝑏 in 𝐺 that does not pass through any non-perturbed node.  

The authors evaluate 𝑈𝑗 = {𝑢1, 𝑢2 … 𝑢𝑚}, a connected component in 𝐺’, by choosing its 

corresponding vertices in 𝐺, 𝑉𝑗 = {𝑣1, 𝑣2 … 𝑣𝑚}, and assigning a score 𝑆(𝑈𝑗) to 𝑈𝑗   which is the 

number of perturbed nodes that are reachable to any node in 𝑉𝑗 through a path that does not use any 

non-perturbed nodes. The objective function is to find a maximal scoring connected component in 

𝐺’:  max
𝑈𝑗 ⊆𝐺′

𝑆(𝑈𝑗).  

To find maximal scoring modules, the authors suggested several heuristic strategies: Greedy 

algorithm, ant colony optimization or branch and bound. The web implementation offers only the 

greedy strategy, which works as follows:  

For every node 𝑢, iteratively construct a set 𝐺𝑢
′ , starting with 𝐺𝑢

′ = {𝑢}. In every iteration 𝑖 we add to 

𝐺𝑢
′  a node 𝑢𝑖 ∈ 𝐺′ that is adjacent to 𝐺𝑢

′   and maximizes the objective function 𝑆(𝐺𝑢
′  ∪  {𝑢𝑖}). We 

stop the iterations when |𝐺𝑢
′ | = k or |𝐺𝑢

′ | = |𝐺′|. Finally, return the maximal scoring 𝐺𝑢
′ . 

 

Figure 10 gives an example of a module provided by the algorithm.  
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Figure 10: A module discovered by KeyPathwayMiner. The dataset analyzed included 125 colorectal cancer patients 

whose promoter CpG islands were tested for methylation levels. Dysregulated genes in a patient's sample were defined 

as those with differential methylation of their promoter's CpG island in comparison to normal samples.  Six modules of 

sizes 56-62 were found when running the greedy algorithm for 𝑘 =  8 and 𝑙 = 25. The largest subnetwork found 

containing the BRAF gene is shown. Red nodes represent un-perturbed nodes, triangle nodes are hypermethylated 

genes that also show significant decrease in expression levels, and nodes with purple border are genes with promoters 

classified as CpG island methylator phenyotype (CIMP), an established factor of colorectal cancer (Source: Alcaraz et 

al.12 ) 

5. Methods and Materials 

NBMD algorithms can be compared by many technical criteria: running time, memory consumption, 

number of identified modules, module sizes, etc. More important criteria are those that reflect the 

biological information the solutions capture. A common evaluation of such algorithms is by the extent 

they identify expected biological signals. Such evaluation usually relies on “cherry picking” of salient 

gene sets that are believed to be relevant to the condition studied. This method evidently suffers from 

bias and not scalable. We therefore turned to fashion a benchmark in which we used GO gene sets 

and the hypergeometric test in order to systematically evaluate algorithms across several datasets, 

without manually selecting ground truth gene-sets (e.g., expected GO terms). In the following 

sections we discuss the main challenges we encountered and the criteria we designed based on the 

insights we gained. 

5 A. The Functional Analysis  

The standard functional analysis based on an NBMD algorithm works as follows (Figure 11): We 

start from a dataset of biological measurement and a biological network. We calculate gene activity 

scores on the dataset. The vector of scores is provided, along with the biological network, as an input 
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for the algorithm. We then execute the algorithm and get a solution: the identified modules. Last, we 

perform functional analysis on each module, test functional enrichment of each module against a set 

of functional gene groups, and report the highly enriched gene groups. This flow has seven main 

components:  (1) the gene activity scores; (2) the gene activity scores’ distribution; (3) the NBMD 

algorithm; (4) the biological network (e.g. STRING5, DIP2 etc.); (5) the collection of functionally 

annotated gene sets  (e.g. GO14, MSigDB33);  (6) the enrichment analysis method (e.g. 

Hypergeometric test, GSEA34 etc.);  (7) the criterion for concluding strong biological signals. Below 

we describe the specific choices we made for each component.  

 

 

 

Figure 11: Flow of analysis. The seven components described in the text are marked as orange circles V1-V7.  

 

 

5 B. Biological Datasets 

We included in the benchmark gene expression and GWAS datasets, and computed FDR-corrected 

q-values per gene as described below. The method by which we derived gene activity scores from q-

values differs across algorithms, and is elaborated on Section 5 G. Execution details. The datasets are 

available in https://github.com/hag007/bnetworks/tree/master/datasets. 

 

 

  

https://github.com/hag007/bnetworks/tree/master/datasets
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5 B i. Gene Expression Datasets 

We analyzed seven gene expression datasets that span different physiological processes (Table 2). 

For each dataset we calculated differential expression p-values using edgeR35 for RNAseq and student 

t-test for microarray assays. We computed q-values using Benjamini-Hochberg FDR method36. 

 

Datasets 

name 

(acronym) access to data Technology General description 

Reference 

TNFa_2 GSE64233 RNA-seq TNFa which induced immune responses 37 

HC12 GSE67478 RNA-seq 

hair cell's cochlea and vestibular cells, 

compared to non hair cell ones (i.e. non-

hair cell's cochlea and vestibular cells) 

38 

SHERA GSE108693 RNA-seq 

Luminal lncRNAs regulation by ERα-

controlled enhancers in a ligand-

independent manner in breast cancer 

cells. Comparison was made between 

ER siRNA to control siRNA 

39 

SHEZH GSE109064 RNA-seq 

Downregulation of EZH2 Leads to 

Cellular Senescence with Features of 

SASP. Comparison between control to 

4d samples 

40 

ERS_1 GSE106847 RNA-seq 

ATF6 encodes a transcription factor that 

is activated during the Unfolded Protein 

Response to protect cells from ER 

stress. Comparison was made between 

ATF-6 pathway activated cell to 

baseline 

41 

IEM --- Microarray 

Comparison between 2 different cell 

types in cochlea: blood cells and 

mesenchymal cells. 

42 

ROR_1 GSE74383 RNA-seq 

RNA-Seq profiling of estrogen-

receptor-positive MCF-7 cell lines with 

different perturbations of non-canonical 

WNT signaling. Comparison was made 

between empty vector transfected cells 

to ROR2 overexpression construct 

transfected cells  

43 

  

Table 2: Description of the seven GE datasets used in the benchmark. 

 

5 B ii. GWAS Datasets   

We used results of five GWAS studies of different traits. The GWAS summary statistics provide a p-

value for each SNP, which represents its association with trait. The traits we examined were breast 

cancer, Crohn's disease, schizophrenia, triglycerides and type 2 diabetes. To derive a p-value per 

gene, we used PASCAL18 with  flanks of 50kbps around genes. We computed q-values using 

Benjamini-Hochberg FDR method36 
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5 C. Algorithm 

This is the central component in our benchmark. We compared five different algorithms 

corresponding to six different algorithmic options: (1) jActiveModules10 with the greedy strategy 

(denoted jAM_greedy), (2) jActiveModules with simulated-annealing strategy (denoted jAM_sa), (3) 

Bionet11, (4) HotNet28, (5) NetBox9, and (6) KeyPathwayMiner with INES GREEDY strategy 

(denoted KPM)12 (see Section 4. Selected NBMD Algorithms for more details). We executed each 

algorithm in a way that it can produce multiple modules in a solution, such that all modules are 

mutually exclusive, and of size of at least four genes each. Reported modules of 3 genes or less were 

ignored. Each algorithm’s specific execution details in this benchmark are given in Section 5 G. 

Execution details.  

 

5 D. Biological Network: DIP 

The running time of NBMD algorithms can grow very quickly with the network’s size. In order to 

allow systematic executions of numerous algorithm and dataset combinations in a reasonable time, 

we had to choose a relatively small network. Following a recent benchmark44, we chose DIP2 as a 

proper biological network for our analysis: DIP got the best normalized performance score in that 

study, and is a relatively small network (~3000 nodes and ~5000 edges). Moreover, as DIP is a global 

network, namely, not designed to describe any specific biological process, we could use it for various 

biological datasets regardless of the specific biological conditions examined. 

 

5 E. Functional Enrichment Analysis: GO  

We performed enrichment analysis over GO terms. We used GO terms’ resource files from Gene-

Ontology Consortium and GOATOOLS45 in order to import GO terms, computed their 

hypergeometric p-values (i.e. enrichment scores) and corrected for multiple tests using Benjamini-

Hochberg FDR method36. We considered only Biological-Process terms that contain between 5 to 

500 genes).  

 

5 F. REVIGO Implementation 

The REVIGO original implementation (see Section 3 D ii. REVIGO) is not applicable for solution 

with more than 350 enriched terms. Therefore, in our study, we re-implemented it using Resnik 

similarity implementation of Fastsemsim (https://pypi.org/project/fastsemsim/). We also added some 

variants to the original implementation and determined some hyper-parameter values: 

https://pypi.org/project/fastsemsim/
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1. We skipped the omission of broadly interpretable terms. Instead, we considered only 

terms with 5-500 genes. 

2. We extended the usage of the GO hierarchical structure in filtering similar terms: When 

two terms had similarity above the threshold and one was an ancestor of the other, we 

removed the former. This modification gives more importance to the hierarchy in 

determining the non-redundant set of GO terms. 

3. The threshold of the enrichment score difference was set to be 1. 

5 G. Execution details  

The NBDM algorithms that we tested differ in preprocessing, input and output. We describe the 

specific execution details for each algorithm below. 

5 G i. jActiveModules 
jActiveModules was written as a plugin for Cytoscape46, a user interface tool for network analysis. 

We modified the codebase of jActiveModules so we could run it independently of Cytoscape.  

jActiveModules expects a list of genes and their p-values as the gene activity scores. We increased 

the default number of requested modules in order to retrieve more modules and also required that 

reported modules are mutually exclusive. Notably, the algorithm usually produced no more than 10 

modules with more than 3 genes. 

5 G ii. NetBox 

We modify NetBox codebase so we can choose the networks it uses. In addition, NetBox gets as an 

input a list of mutated genes, that is, binary gene activity scores. We used the genes’ q-values and set 

the gene score to 1 if its q-value was < 0.05, and 0 otherwise.  

5 G iii. Bionet 

Bionet is designed to retrieve only one module. In order to retrieve multiple mutually exclusive 

modules we executed Bionet iteratively, removing the genes in the identified module in each iteration. 

We stopped these iterations after retrieving modules smaller than four genes five times in a row.  

5 G iv. HotNet2 

HotNet2 expects gene activity scores that are calculated by mutation p-values (e.g., using MutSig). 

We transformed the q-values calculated from our datasets into – 𝑙𝑜𝑔10(𝑞_𝑣𝑎𝑙𝑢𝑒) scale and used them 

as the input activity scores. We took all the reported modules, ignoring their scores reported by 

HotNet2.  

5 G v. KeyPathwayMiner 

We used the version of KPM with the greedy strategy. It expects binary gene activity scores: 1 marks 

a gene as perturbed and 0 otherwise. We used the genes’ q-values and scored a gene with 1 if its q-
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value was < 0.05, and 0 otherwise. As the reported modules considerably overlap each other, we 

executed the algorithm iteratively, removing in each iteration the genes in the identified module.   

   

  



 

37 

 

6. Results 

Our benchmark analysis compared six algorithms (Table 1) - jActiveModules1 in two strategies: 

greedy and simulated annealing (abbreviated JAM_greedy and jAM_sa, respectively), bionet2, 

hotnet23, NetBox4, and KeyPathwayMiner5 (abbreviated KPM). Each algorithm was tested on seven 

gene expression (GE) datasets (Figure 12Table 2) and five GWAS datasets (Error! Reference source 

not found.).   

General description of the solutions, such as average module size, number of modules, is provided in 

Error! Reference source not found. and Error! Reference source not found. for GE and GWAS 

datasets, respectively. 

 

Figure 12: Technical description of the solutions over GE datasets. Green numbers are the total number of genes in the 

solution. 
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Figure 13: Technical description of the solutions over GWAS datasets. We excluded KeyPathwayMiner, as its solutions 

were empty. Green numbers are the total number of genes in the solution. 

6 A. NBMD Algorithms Suffer from High Rate of Recurrent False Positive GO Terms 

NBMD algorithms differ in many ways: The number of modules they produce, the number of genes 

per module, and the number of enriched terms per module. When we started the benchmark, we 

observed that some algorithms tended to consistently report more enriched terms with higher 

enrichment scores.  In order to evaluate whether the reported terms are indeed biologically 

meaningful, we chose to use randomization: For each algorithm, we randomly permuted gene scores, 

reran the algorithm, and compared the results on the true and permuted input. We observed that in 

many cases the distribution was not as different as one would expect (Figure 14. Full results in 

supplementary Tables Table S8Table S9). In fact, some algorithms reported extremely significantly 

enriched terms over permuted data. We also found some disturbing overlap between the enriched 

terms detected in the original and the permuted datasets (Figure 14). These findings imply that in 

some cases, part of the reported signal was not due to the specific biological assay, but might arise 

from some bias. This bias could stem from the specific biological network, algorithm and score 

distribution. In addition, some reported term overlap also stems from dependencies between gene sets 

for which we compute enrichment scores. Of course, the overall bias was due to a combination of 

these factors. 



 

39 

 

   

 

 

Figure 14: Comparison of GO enrichment scores obtained on original and permuted datasets. Left column: Histograms 

of the enrichment scores. Right: Venn diagrams of the overlap between reported terms (after FDR correction). (A) (B) 

Results on the TNFa gene expression dataset using jActiveModules with the greedy strategy. (C) (D) Results on the 

TNFa gene expression dataset using NetBox. (E) (F) Results on the Schizophrenia GWAS dataset using 

jActiveModules with the greedy strategy. (G) (H) Results on the Schizophrenia GWAS dataset using NetBox. A higher 

fraction of the terms reported by jActiveModules is also reported when the algorithm is applied on permuted data.  
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6 B. Solution: Empirical Cleaning of NBMD Solutions 

We chose to deal with the problems that we identified in the reported terms by empirical correction. 

We developed a method that we call the EMpirical Pipeline (EMP) for identifying and filtering out 

terms that also show up frequently when analyzing permuted data. For each dataset, algorithm and 

GO term, the method computes a background distribution of the term's enrichment scores and uses it 

to filter terms with seemingly high enrichment scores obtained on the original dataset that are also 

frequently reported in the permuted data.  

Specifically, EMP works as follows: Given an algorithm and an assay dataset as an input, it permutes 

the genes in the dataset, executes the algorithm and performs enrichment analysis, yielding an 

enrichment score for each GO term (Figure 15-A). The process is repeated many times (typically, in 

our analysis, 5000) and generates a background distribution per GO term (Figure 15-B). Denote the 

CDF obtained for term t by 𝐹𝑡. It then executes the algorithm and the enrichment analysis once more 

using the real (i.e. non-permuted) dataset (Figure 15-C). The empirical significance of GO term t with 

enrichment score s is 𝑒(𝑡)  =  1 − 𝐹𝑡(𝑠) (Figure 15-C, Figure 15-D). EMP reports only terms t that 

passed both the HG test (q-value ≤ 0.05) and the empirical test at 𝑒(𝑡)  ≤  0.05. We call such terms 

empirically validated terms (EV-terms). 
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A.                                                                                       B. 

       

 

C.                                                                                            D. 

        1 

              

Figure 15: Overview of the EMpirical Pipeline steps. (A) EMP uses the NBMD algorithm and the enrichment analysis 

pipeline on many instances of permuted activity scores in order to calculate a background distribution of enrichment 

scores per GO term. (B) A background distribution is produced per GO term. (C) The algorithm is applied on the 

original un-permuted activity scores, in order to calculate the real enrichment scores.  (D) For each GO term, EMP 

places the real enrichment scores on its corresponding empirical distribution, yielding an empirical p-value, and 

reports only terms that passed both empirical and the hypergeometric tests’ significance threshold. In this example 

GO_3 passed the HG test. However, it does not pass the empirical test and thus labelled as “EMP invalid”    
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We then compared the score histograms of the terms that passed the HG test and the EV-terms (See 

Figure 15. Full results in Figures Figure S4Figure S5). Different algorithms show very different 

empirical validation rate, which is highly affected by the dataset too.  

 

 

 

Figure 15: GO term enrichment score distributions for HG-enriched and EV  terms. (A) dataset – TNFa_2 (gene 

expression), algorithm – jActiveModules with greedy strategy. (B) dataset – TNFa_2 (gene expression), algorithm – 

NetBox. (C) dataset – Schizophrenia (GWAS), algorithm – jActiveModules with greedy strategy. (D) dataset – 

Schizophrenia (GWAS), algorithm – NetBox. The EHR value is reported above the title in each case. The EHR metric is 

as defined in Section 7 C i (1). Empirical to Hypergeometric Ratio (EHR). 
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6 C. Criteria for Evaluating NBMD Solutions 

In order to compare the six benchmarked algorithms in light of our new insights, we designed several 

criteria that measure an algorithm performance. We consider two evaluation perspectives: (1) 

ignoring the biological information of the terms and measuring solution statistically, i.e., quantitative 

criteria. (2) Taking into account the biological information each term captures, i.e., qualitative criteria. 

The EMP process removes certain GO terms from the union of of all terms reported in all the 

solution’s modules. Nevertheless, the identity of the modules comprising the solution is important. 

Therefore, we evaluated solutions both on the solution level (i.e., in a module agnostic manner; 

considering union of all modules) and on the module level, i.e., in a module-aware fashion  

Our criteria are described in the following subsections. A breakdown of the criteria is in Figure 16:  

 

 

Figure 16: The evaluation criteria that we used in our benchmark analysis and their properties. 

 

 

6 C i. Solution-Level Criteria 

A solution is composed of the modules detected by the algorithm when applied to a dataset. For a 

specific solution, after applying EMP, we have its list of reported GO terms that passed the HG 
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enrichment test, their enrichment scores and the EV terms. The criteria in the following subsections 

examine the relations between the reported terms and the EV-terms (See Figure 16).  

 

(1). Empirical to Hypergeometric Ratio (EHR) 

We define Empirical-to-Hypergeometric Ratio (EHR) as the ratio between the number of reported 

terms and EV-terms (Figure 17). EHR summarizes the tendency of an algorithm to over-report terms, 

with ratio of 1 being best possible and lower values are less desirable. It reflects the precision (true 

positive rate) of a solution. If an algorithm has EHR values near 1 across many datasets, this suggest 

that we can trust most terms produced by the algorithm on a new dataset even without running EMP. 

(2). Term Count 

This criterion counts the number of EV-terms obtained by the algorithm.  

(3). Biological Richness 

This criterion quantifies the biological information captured collectively by the EV-terms. When 

using enrichment scores of GO terms, it is important to keep in mind that there is often high 

redundancy in their biological meaning: multiple high scoring gene sets may stem from nearby terms 

in the hierarchical structure of GO, common genes that different sets share, and more. In order to 

evaluate the diversity of the signals that stem from the EV-terms, we produced the similarity matrix 

using Resnik similarity score27 between every two EV-terms. We then applied REVIGO28 to filter 

out redundant terms, and defined the biological richness score as the number of non-redundant terms 

in a solution. The process was repeated when using similarity cutoffs 1 to 4 in REVIGO. We also 

compared the median number of terms in the resulting non-redundant gene set list across all datasets. 

This criterion implies how biologically-diverse the resulted EV-terms are. See Figure 17 
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Figure 17: Term count, EHR and biological richness. In our evaluation, for each algorithm, we average the scores of 

each criterion across datasets.  

 

(4). Solution Robustness 

This criterion evaluates the robustness of a solution to incomplete gene activity data. It compares the 

EV-terms obtained on the original full dataset with those obtained on randomly subsampled datasets, 

where non-sampled gene levels are treated as missing. We repeated this procedure for subsampling 

fractions 0.6, 0.7, 0.8, and 0.9, iterating each fraction 100 times. Using the EV terms of the full dataset 

as a “gold-standard”, we then computed average precision, recall and F1 scores across these iterations.  

Another perspective is provided by the examination of the frequency by which terms come up in the 

subsampled datasets: higher frequency for a specific EV-term implies higher robustness. The most 

natural way to measure this robustness is using PR-AUC, in which terms are ranked according to 

their frequency across iterations. As an algorithm could often result in many empty solutions and only 

few accurate ones – and thus yield a high but misleading PR-AUC score, we also report the fraction 

of non-empty solutions as an indicator for the “sparseness” of the solutions obtained by an algorithm. 

See Figure 18.  
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A.           

 
B. 

 
C. 

 
 

Figure 18: Computing robustness criteria. (A) We subsample datasets and run the functional analysis flow over them. 

(B) For each GO term list obtained from a subsampled dataset (blue list) we calculate precision recall and F1 against 

the “gold-standard” EV terms (orange list) obtained from the full dataset, and compute average over 100 random 

down-sampling runs. (C) We rank GO term by their frequency in the subsampled datasets and compute AUPR.  These 

procedures are repeated for each subsampling fraction. 
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6 C ii. Module-Level Criteria 

All the criteria above evaluate the solution monolithically, while ignoring the quality of individual 

modules. Evaluation at the solution level is more natural in our EMP procedure, as it examines 

directly EV-terms, which are computed for a solution, and not per module. However, it is also 

important to evaluate modules individually: different modules may capture different biological 

signals with varied quality. The criteria in the following subsections examine a module's reported 

terms with respect to their solution’s EV-terms. 

(1). Module-Level EHR (mEHR) 

This criterion calculates a single module’s EHR. As mentioned above (Section 6 B. Solution: 

Empirical Cleaning of NBMD ), we cannot create background distributions at the module level. We 

therefore calculate module-level EHR, abbreviated mEHR, by computing the fraction of terms that 

are reported in the module and are also included in the EV-terms (Figure 19A). We rank solution 

modules by their mEHR score, take the 𝑘 top-ranked modules and aggregate their scores. We consider 

𝑘 values of 1-20. This criterion enables us to understand the signal-to-noise variability across modules 

and refines a solution by indicating its “cleanest” modules. 

(2). Intra-Module Biological Homogeneity 

In Section 7 C I (3). Biological Richness we described a criterion for the biological richness of a 

solution. Ideally, we prefer solutions that have high richness but where each module shows high 

homogeneity: A typical dataset reflects an experiment wherein several biological processes are 

reflected 

. A good solution would distinguish these processes as distinct modules, where in each module one 

or few related processes are identified and reported. This is in contrast, for example, to providing one 

large module representing all the processes. To capture this notion we build a graph for the solution. 

Each vertex represents an EV-term, and two vertices are connected by an edge whose weight is their 

Resnik similarity score. Edges of weight below a cutoff are removed. We calculate intra-module 

homogeneity as the relative module density:  the fraction of the edges inside of it compared to fraction 

of edges in the whole graph.  

  

:
(

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑑𝑢𝑙𝑒

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒
)

(
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒
)
 

 

Intra-module homogeneity score for a solution is then calculated by averaging its module scores 

(Figure 19B). We repeat this test for a range of cutoffs – from 1 to 4. This criterion goes one level 
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deeper than solution-level richness, providing complementary view on top of the general biological 

information in a solution, by measuring how topologically coherent it is. 

 

 

 

Figure 19: Computing module-level criteria. (A) Enriched GO terms in each module are examined for being EV terms 

(marked in red) and mEHR is computed. (B),(C) Similarity graph is built using Resnik similarity scores between GO 

terms, a certain cutoff is applied (5 here) for filtering low scoring edges, and intra-module homogeneity score is 

calculated. 
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6 D. Benchmark results 

We summarized performance on GE and GWAS datasets separately.  The evaluation was based on 

the criteria described above. 

6 D i. Solution-level results 
The results for term count and EHR are presented in Figure 20. In both GE and GWAS datasets, 

NetBox obtained the highest mean scores. Although it has outlier scores in some datasets, it still 

preserved its top rank when considering the median score, which is less sensitive for outliers.   

As HotNet2 yielded poor results in both GE and GWAS datasets, we omitted it from subsequent 

evaluations. As KPM yielded empty solution in all GWAS datasets, we omitted it from evaluations 

on the GWAS datasets. 

 

Figure 20: Dot-plot summary for term counts and EHR criteria. (A) EHR for GE. (B) EHR for GWAS. (C) Term count 

or GE (D) Term counts for GWAS. The dots indicate results for each dataset. 
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Figure 21 summarizes the results for the biological richness criterion.  Here too, NetBox got the 

highest median score for all similarity cutoffs, implying its solution captures more diverse spectrum 

of biological processes: 

 

Figure 21:  Richness score. The plots show the median number of non-redundant terms (richness score) as a function of 

Resnik similarity cutoff used. A: GE. B: GWAS datasets.    
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In order to get a global view of these criteria we presented each solution as a dot in a scatter plot 

where the axes are richness and EHR scores. Better solutions are located in the upper-right part of the 

plot. On both GE and GWAS plots, NetBox solutions tend to achieve good results. 

 

 

  

Figure 22: EHR v richness. The figures show the richness (x-axis) and EHR (y-axis) values for each combination of 

dataset and algorithm. The richness results are for cutoff 3. A: GE. B: GWAS datasets.  

 

Figure 23 shows the robustness of the algorithms.  On the GE datasets, NetBox had highest average 

F1 and PR-AUC scores across all subsampling fractions. Importantly, NetBox also exhibited high 

rate of non-empty solutions (>0.8). On the GWAS datasets, Bionet showed the highest score in both 

measurements. NetBox had the poorest AUPR in the GWAS datasets but was second best in F1. 

Interestingly, in the GWAS analysis we did not observe an improvement trend with growing 

subsampling fraction, possibly pointing to the high polygenetic nature of complex traits, where each 

of the numerous affected genes is associated with only very subtle signal.  
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Figure 23: Recovery criteria. PR-AUC score as a function of subsample fraction for A : gene expression and B : GWAS 

datasets, and average precision, recall and F1 scores as a function of subsample fraction for C - gene expression and D 

- GWAS datasets. Each subsampling fraction is sampled 100 times 

 

6 D ii. Module-level results 
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We evaluated the algorithms by mEHR and intra-module biological homogeneity. Figure 24 and 

 

Figure 25 summarize the performance in terms of mEHR for the GE datasets. Figures Figure 26 and 

Figure 27 show the results for the GWAS datasets.  Specifically, we calculated mEHR per module 

and calculated the average mEHR per algorithm for the top-ranked modules. For any number of top-

ranked modules, NetBox got the highest scores in both measurements in both GE and GWAS datasets 
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Figure 24: Module-level EHR scores on the GE datasets. mEHR scores for each algorithm and dataset. Note that 

different solutions have broad range of mEHR score (e.g. the red-marked solutions)  
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Figure 25: Module-level EHR scores on the GE datasets. Average mEHR score in the k top modules, as a function of k. 

Modules are ranked by their mEHR scores. 
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Figure 26: Module-level EHR scores on the GWAS datasets. mEHR scores for each algorithm and dataset. Note that 

different solutions have broad range of mEHR score (e.g. the red-marked solutions).  
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Figure 27: Module-level EHR scores on the GWAS datasets. Average mEHR score in the k top modules, as a function of 

k. Modules are ranked by their mEHR scores.  
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Figure 28 shows the results for the median intra-module biological homogeneity across datasets. 

KPM solutions had highest homogeneity for the GE datasets. In GWAS, NetBox had the highest 

scores. 

 

 

Figure 28: Intra-module homogeneity scores as a function of the edge similarity cutoff. (A) GE (B) GWAS. 
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As we prefer biologically rich solutions with high biological consistency within each module, we 

plotted in Figure 29 the intra-module biological homogeneity against biological richness for each 

dataset and algorithm. Better solutions are located in the upper-right part of the plot. The results for 

GE are inconclusive, while NetBox tended to give biologically rich and homogeneous solutions in 

some of the GWAS datasets. 

 

Figure 29: Biological richness vs. intra-module homogeneity. Each plot shows richness (y-axis) and intra-module 

homogeneity (x-axis) criteria for every algorithm and dataset. The results are for cutoff of 3. (A) GE (B) GWAS. 
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6 E. Domino – A Novel NBMD Algorithm 
 

After concluding the benchmark, we moved to design a novel NBMD algorithm called Domino 

(Discovery of Modules In Networks using Omics).  

 

6 E i. Method 
 

Domino receives as input a set of genes called the active genes and a network of gene interactions. 

It aims to find disjoint connected subnetworks in which the active genes are abundant. The 

algorithm works as follows 

0. Dissect the network into disjoint, highly connected subnetworks (slices) 

1. Detect relevant slices where active genes are abundant 

2. For each relevant slice S 

a. Refine S to a sub-slice S' 

b. Repartition S' into putative modules 

3. Report as final modules those that are rich with active genes. 

Step 0 is a pre-processing step that depends only on the network, and is done only once per 

network. We now describe each step in more detail. 

(0) Dissecting the network into slices.  

This step splits the network into disjoint subnetworks called slices. Splitting is done using a variant 

of the Newman-Girvan modularity detection algorithm47. Briefly, it iteratively removes an edge with 

the highest betweenness-centrality score and recomputes the modularity score of the resulting 

network. The process ends after the first iteration where no improvement in the modularity score is 

achieved. Each connected component in the final network that has more than three nodes is defined 

as a slice. See Figure 31-A. 

(1) Detecting relevant slices.  

In this step we test each slice for enrichment in active nodes, using the Hypergeometric (HG) test, 

and correct the p-values obtained for multiple testing using BH-FDR36.  Slices with q-values < 0.3 

are accepted as relevant slices. See Figure 31-B. 

(2a) Refining the relevant slices into sub-slices.  

We wish to extract from each slice a single connected component that captures most of the activity 

signal. This is done by formulating and solving a Prize Collecting Steiner Tree (PCST) problem48. In 

PCST, nodes have values called prizes, and edges have values called penalties. All values are non-

negative. The goal is to find a subtree 𝑇 that maximizes the sum of the prizes of nodes in 𝑇 minus the 

sum penalties of the edges in it, i.e.,  ∑ 𝑝(𝑣) −  ∑ 𝑐(𝑒)𝑒∈ 𝑇𝑣∈𝑇   where 𝑝(𝑣) is the prize of node 𝑣, and 

𝑐(𝑒) is the cost of edge 𝑒. 
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The node prizes are computed by diffusing the activity of the nodes using influence propagation with 

a linear threshold model49. The process is iterative: Initially the set of active nodes is as defined by 

the input. In each iteration, an inactive node is activated if the sum of the influence of its active 

neighbors exceeds 𝜃 =  0.5. The influence of a node that has 𝑘 neighbors on each neighbor is 
1

𝑘
. 

Activated nodes remain so in all subsequent iterations. The process ends when no new node is 

activated. If v became active in iteration 𝑙 then 𝑝(𝑣) = 0.7𝑙. See Figure 30.  

 

Figure 30: Schematic illustration of the influence propagation process. Each step represents an iteration of the process. 

Green nodes are active. Nodes marked in yellow in a specific step are activated in this step. 𝑝(𝑣) –the PCST node prize 

– appears next to each node. Nodes that were not activated ha1ve prize zero.  

 

To compute the edge penalties, we apply the same influence propagation process on 100 instances 

with randomly permuted assignment of active nodes, and compute the average score 𝑎(𝑣) =

 𝑎𝑣𝑔(𝑝(𝑣)) for each node. The normalized permuted score 𝑁𝑃𝑆(𝑢) for node 𝑢 is:  

 

𝑁𝑃𝑆(𝑢) =
𝑎(𝑢) −  𝑚𝑖𝑛𝑣∈𝑉𝑎(𝑣)

𝑚𝑎𝑥𝑣∈𝑉𝑎(𝑣)  −  𝑚𝑖𝑛𝑣∈𝑉𝑎(𝑣)
 

We define the penalty of edge 𝑒 = (𝑢, 𝑣) as: 

𝑐(𝑒) = 𝑚𝑖𝑛(𝑁𝑃𝑆(𝑢), 𝑁𝑃𝑆(𝑣)). 

PCST is NP-hard but good heuristics are available. In our algorithm we used FAST-PCST50. The 

resulting subgraph obtained by solving PCST on the slice is called its sub-slice. See Figure 31-C 

 

(2b) Partitioning sub-slices into putative modules 

Each sub-slice of >10 nodes is partitioned using the Newman-Girvan algorithm. The algorithm is 

stopped when the modularity score exceeds 
log (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏−𝑠𝑙𝑖𝑐𝑒)

log (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
). The resulting connected 

components, and the sub-slices of ≤ 10 nodes, are called putative modules. See Figure 31-D. 
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(3) Identifying the final modules 

We test each putative module for enrichment with active nodes using the HG test, and correct for 

multiple testing using Bonferroni correction.  Those with q-value < 0.05 are reported as the final 

modules. See Figure 31-E. 

 
A:      B: 

 

C:      D: 

 

E: 

 

 

Figure 31: Schematic illustration of Domino: (A) The global network is dissected by the Newman-Girvan (NG) 

modularity algorithm into three slices (encompassed in purple line). (B) A slice is relevant if it passes a moderate test 

for enrichment of active nodes (𝐵𝐻 𝑞𝑣𝑎𝑙 ≤  0.3). (C) Each relevant slice (red areas) a most active sub-slice is 

identified using PCST. (D) Sub-slices are dissected further into putative modules using the NG algorithm. (E) Each 

putative module that passes a strict test enrichment of active nodes (𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 ≤  0.05) is reported. 
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6 E ii. Results 
 

We compared Domino to five NBMD methods that we evaluated in the benchmark: jAM_greedy, 

jAM_SA10, bionet11, NetBox9, and KPM12. We excluded hotnet2 due to its lower performance in the 

benchmark. We used the same GE and GWAS benchmark datasets. We assessed solutions produced 

by Domino according to the same criteria described above. We report here on EHR, mEHR, 

biological richness, intra-module biological homogeneity and robustness by F1. Results for terms 

count and robustness by AUPR are available in Supplementary Tables Table S3, Table S5.  For 

biological richness and intra-module homogeneity, we used Resnik similarity metric with similarity-

cutoff of 3. For mEHR we took from each solution up to 10 modules with the highest mEHR score. 

Table 3 summarizes the results of each algorithm. For GE, Domino performed best in three of the 

five criteria, while NetBox had the highest biological richness and KPM the highest intra-module 

homogeneity. For GWAS, Domino was best or equal best in four criteria and second in intra-module 

homogeneity, where NetBox was best. A summary of the results in terms of ranking on each criterion 

are given in Supplementary Tables Table S1Table S2. Fuller results including standard deviations for 

each criterion are included in Supplementary Tables Table S3, Table S4, Table S5, Table S6.  
 

NetBox JAM_SA Bionet Domino JAM_greedy KPM 

 Gene Expression (GE) 

HER 0.76 0.45 0.46 0.97 0.38 0.42 
mEHR 0.66 0.31 0.34 0.92 0.31 0.36 
Robustness 0.37 0.21 0.18 0.44 0.20 0.23 
Biological Richness 28 22 16 22 18 24 
Intra-Module Homogeneity 2.85 1.91 2.84 1.79 2.14 3.83 
 GWAS  
HER 0.78 0.59 0.38 0.96 0.42 

 

mEHR 0.84 0.68 0.26 0.92 0.61 
 

Robustness  0.09 0.17 0.31 0.76 0.19 
 

Biological Richness 23 12 5 23 15 
 

Intra-Module Homogeneity 3.02 1.38 3.28 3.12 1.42 
 

Table 3. Summary of the results of each algorithm on each criterion of the benchmarks. Top: Gene expression. Bottom: 

GWAS. The results are average across the datasets of each type, with the exception of biological richness where the 

median was used. KPM reported no modules on the GWAS datasets. The F1 score was used in Robustness. 

 
In order to get a global view, we compared pairs of complementary criteria i.e., criteria that are 

similar in exactly one property. 
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High EHR can stem from a case in which only a few modules contain most of the EV terms. 

 
Figure 32 plots EHR vs. mEHR, capturing the full quantitative perspective (Figure 16 in orange). In 

general, we see agreement between EHR and mEHR, suggesting that EHR levels are not merely 

affected by a small part of the solution. Notably, on both, GE and GWAS datasets, Domino 

performs best with near perfect global and per-module scores. 

 

 

Figure 32: EHR vs. mEHR. Each plot shows the aggregated scores across datasets for every algorithm. (A) GE (B) GWAS.  

Typically, the downstream analyses of NBMD solutions handle each module separately, looking for 

the module’s unique biological signal. Figure 33 plots mEHR vs. Intra-Module Homogeneity, 

capturing the full module-level perspective. (Figure 16 in purple). this On the GE datasets, Domino, 

NetBox and KPM were pareto optimal with KPM highest on Intra-Module Homogeneity and lowest 

on mEHR, and Domino lowest on Intra-Module Homogeneity and highest in mEHR. On the GWAS 
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datasets, Domino had the best score with NetBox slightly below, and Bionet had slightly higher Intra-

Module Homogeneity but the lowest mEHR. 

 

 

Figure 33: mEHR vs. intra-module homogeneity.  Each plot shows the average scores across datasets for every 

algorithm.(A) GE (B) GWAS. 

 

Additional plots of pairs of criteria are given in supplementary Figures  

Figure S1, 

 

Figure S2, Figure S3.  
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7. Discussion  

 

The fundamental challenge of network-based module discovery (NBMD) algorithms is to identify 

active modules in an underlying network based on genes activity scores. Such scores can be 

continuous or binary. The comparison of such algorithms is a challenging task, due to the complex 

nature of the output that such algorithms produce. Algorithms differ dramatically in the number, sizes 

and the properties of the modules they produce. How can one compare the quality of a solution (set 

of modules) provided by different algorithms? Although NBMD algorithms have been used for some 

two decades, there is no accepted community benchmark, and no consensus evaluation criteria have 

emerged. 

 

To overcome this challenge, since modules are often used to pinpoint functional enrichment, we 

developed a procedure to filter GO terms that recurrently appear over permuted datasets: We run the 

algorithm multiple times on randomly permuted gene profiles and obtain a background distribution 

of the p-values obtained for each GO term. We use this null distribution to empirically correct the 

results on the real (unpermuted) data accordingly. We call this process EMP (for EMpirical Pipeline) 

and call the terms that pass it EV (Empirically Validated) terms.  

 

We subsequently used EMP to evaluate how "clean", stable and concise the results of a NBMD 

algorithm are. Notably, the six algorithms that we tested differed substantially in their EMP validation 

rates. We observed for some algorithms that many of the GO terms that passed the HG test did not 

pass the empirical one. Therefore, we recommend users of NBMD algorithms to apply the empirical 

correction procedure in order to alleviate functional misinterpretation of a network-based algorithm’s 

solution. We made the EMP code available to the community. 

  

Of the six algorithms that we tested, NetBox9 ranked  consistently high in many criteria.  Notably, 

NetBox also had a low rate of terms that did not pass the empirical evaluation, so our analysis 

indicates that running it without the time-consuming EMP is relatively safe. 

 

Ideally, one would like to correct the reported terms on the module level. EMP does not consider 

directly module-based correction for enrichment scores, since each randomized run can produce 

different sized modules and a different number of them. However, we do provide additional analysis 

on the module level by marking, for each module in the solution, the enriched GO terms that passed 

the EMP filter (namely, were reported as EV terms). 
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Based on our experience in the benchmark, we designed the NBMD algorithm, and demonstrated that 

it outperformed the algorithms we benchmarked in most criteria. In particular, the mean EMP 

validation rate for enriched GO terms detected for Domino's solutions was above 90%, making it 

practical without the need for the slow EMP filtering procedure. 

 

Domino, as NetBox, binarizes the activity scores. Intuitively one may think that such step could lead 

to a loss of important biological signals. However, the performance of these algorithms suggests that 

in fact binarizing might help in denoising the process. Further study of this phenomenon is needed. 

 

An obvious drawback of the empirical analysis is running time. Running each algorithm thousands 

of time for each dataset is slow and expensive, even on a cluster: A correction of a single solution 

could take several hours up to one week, depending on the algorithm and dataset associated with the 

solution being analyzed. Understanding better the role of each putative source of bias can lead to 

runtime improvement of the EMP that would enable its execution on a standard desktop station in a 

reasonable time. This can also lead to more efficient systematic execution of EMP in a way that will 

contribute to the selection of the algorithm’s hyper-parameter – another open issue in our analysis. 

As currently running EMP on a desktop station is infeasible, our results indicate that running Domino 

can be confidently used even without EMP.  
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9. Supplementary 
 

 

 

Figure S1: Robustness measured by F1 vs. robustness measured by AUPR.  Each plot shows the average scores across 

datasets for every algorithm.(A) GE (B) GWAS. 
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Figure S2: EHR vs. biological richness.  Each plot shows the average scores across datasets for every algorithm.(A) 

GE (B) GWAS. 
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Figure S3: Biological richness vs. intra-module homogeneity. Each plot shows the average scores across datasets for 

every algorithm. (A) GE (B) GWAS. 
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Figure S4: GO term enrichment score distributions for HG-enriched and EV terms for each algorithm and gene 

expression datasets. The EHR value is reported in each case. The EHR metric is as defined in Section 7 C i (1). 

Empirical to Hypergeometric Ratio (EHR).  
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Figure S5: GO term enrichment score distributions for HG-enriched and EV terms for each algorithm and GWAS 

datasets. The EHR value is reported in each case. The EHR metric is as defined in Section 7 C i (1). Empirical to 

Hypergeometric Ratio (EHR). 
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  EHR 
Biological 
richness 

mEHR 
Intra module 
homogeneity 

Recovery: 
F1 

Recovery: 
AUPR 

Average 
rank 

# 
top  
rank 

Domino 1 3.5 1 6 1 1 2.25 4 

NetBox 2 1 2 2.5 2 2 1.92 1 

JAM_SA 4 3.5 4.5 5 6 6 4.83 0 

Bionet 3 6 6 2.5 5 4 4.42 0 

KPM 5 2 3 1 3 3 2.83 1 

JAM_Greedy 6 5 4.5 4 4 5 4.75 0 

 

Table S1: Ranking table for GE. For each criterion, ranks are from 1 (best performer) to 6, with fractional numbers for 

ties. We ranked the scores from 1 (top) to 6 (bottom), and averaged tied ranks. In terms of number of criteria ranked 

first Domino got the highest score. In terms of the average rank, Domino was second-best after Netbox.    
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  EHR 
Biological 
richness 

mEHR 
Intra module 
homogeneity 

Recovery: 
F1 

Recovery: 
AUPR 

Average 
rank 

# top  
rank 

Domino 1 1.5 1 2 1 1 1.25 5 

NetBox 2 1.5 2 3 5 5 3.08 1  

JAM_SA 3 4 3 5 4 4 3.83 0 

Bionet 5 5 5 1 2 2 3.33 1 

JAM_Greedy 4 3 4 4 3 3 3.50 0 

Table S2: Ranking table for GWAS. For each criterion, ranks are from 1 (best performer) to 5, with fractional numbers 

for ties. We ranked the scores from 1 (top) to 6 (bottom), and averaged tied ranks. In terms of number of criteria ranked 

first and the average rank, Domino got the highest score.   
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Term 
count EHR mEHR 

Robustness 
(F1) 

Robustness 
(AUPR) 

Biological 
richness 

Intra-module 
homogeneity 

NetBox 391.43 0.76 0.66 0.37 0.55 28 2.85 

JAM_SA 187.00 0.45 0.31 0.21 0.19 22 1.91 

Bionet 141.71 0.46 0.34 0.18 0.31 16 2.84 

KPM 144.14 0.42 0.36 0.23 0.34 24 3.83 

Domino 267.57 0.97 0.92 0.44 0.63 22 1.79 

JAM_greedy 124.00 0.38 0.31 0.20 0.22 18 2.14 

Table S3: Aggregated results of each algorithm on each criterion of the benchmarks on gene expression datasets. 

Aggregation was done using mean across datasets for each criterion except for “biological richness”, where median 

was applied. 
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Term 
count EHR mEHR 

Robustness 
(F1) 

Robustness 
(AUPR) 

Biological 
richness 

Intra-module 
homogeneity 

NetBox 620.83 0.39 0.43 0.21 0.30 39.03 1.27 

JAM_SA 177.17 0.29 0.31 0.18 0.20 16.87 1.23 

Bionet 168.21 0.44 0.37 0.14 0.32 16.77 1.39 

KPM 204.72 0.49 0.43 0.26 0.41 19.92 2.32 

Domino 221.28 0.04 0.11 0.13 0.07 19.02 0.39 

JAM_greedy 128.89 0.36 0.37 0.19 0.24 13.57 1.52 

Table S4: standard deviation of  results of each algorithm on each criterion of the benchmarks on gene expression 

datasets. 
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Term 
count EHR mEHR 

Robustness 
(F1) 

Robustness 
(AUPR) 

Biological 
Richness 

Intra-module 
homogeneity 

NetBox 260.8 0.78 0.84 0.09 0.20 23 3.02 

JAM_SA 101.4 0.59 0.68 0.17 0.18 12 1.38 

Bionet 25.2 0.38 0.26 0.31 0.37 5 3.28 

Domino 173.4 0.96 0.92 0.76 0.74 23 3.12 

JAM_greedy 108.2 0.42 0.61 0.19 0.17 15 1.42 

Table S5: Aggregated results of each algorithm on each criterion of the benchmarks on GWAS datasets. Aggregation 

was done using mean across datasets for each criterion except for “biological richness”, where median was applied. 
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Term 
count EHR mEHR 

Robustness 
(F1) 

Robustness 
(AUPR) 

Biological 
richness 

Intra-module 
homogeneity 

NetBox 407.79 0.44 0.35 0.18 0.28 33.26 1.32 

JAM_SA 96.34 0.25 0.33 0.17 0.23 5.85 0.25 

Bionet 35.49 0.51 0.42 0.45 0.48 9.46 1.31 

Domino 142.08 0.04 0.10 0.15 0.18 18.55 1.15 

JAM_greedy 120.15 0.37 0.40 0.21 0.19 13.86 0.43 

Table S6: standard deviation of each algorithm on each criterion of the benchmarks on GWAS datasets. 
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 HC12 SHERA ROR_1 TNFa_2 SHEZH_1 ERS_1 IEM 

hotnet2 0.03 0.13 0 0 0.7 0.1 0 

KPM 0.28 0.08 0 0 0.01 0.56 0.28 

netbox 0.16 0 0 0 0 0.48 0.09 

JAM_greedy 0 0.15 0.27 0.54 0.13 0.28 0.36 

bionet 0.2 0.07 0 0 0.03 0.02 0.19 

JAM_SA 0.04 0.12 0.2 0.56 0.44 0.19 0.12 

Table S7: Ratio between the number of overlapping terms of one permuted dataset and the 

unpermuted dataset, and the number of terms in the unpermuted dataset, for each algorithm and 

gene expression dataset.  
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 HC12 SHERA ROR_1 TNFa_2 SHEZH_1 ERS_1 IEM 

hotnet2 0.03 0.13 0 0 0.7 0.1 0 

KPM 0.28 0.08 0 0 0.01 0.56 0.28 

netbox 0.16 0 0 0 0 0.48 0.09 

JAM_greedy 0 0.15 0.27 0.54 0.13 0.28 0.36 

bionet 0.2 0.07 0 0 0.03 0.02 0.19 

JAM_SA 0.04 0.12 0.2 0.56 0.44 0.19 0.12 

Table S8: Ratio between the number of overlapping terms of one permuted dataset and the unpermuted dataset, and the 

number of terms in the unpermuted dataset, for each algorithm and gene expression dataset.  
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Triglycerides.
G50 

Crohns_Disease
.G50 

Breast_Cancer.
G50 

Schizophrenia.
G50 

Type_2_Diabetes
.G50 

hotnet2 0.02 0.17 0.02 0 0.1 

netbox 0 0 0 0 0 

JAM_greedy 0.29 0.04 0.26 0.12 0.03 

JAM_SA 0.09 0 0.15 0 0.17 

bionet 0 0 0.12 0.26 0 

 

Table S9: Ratio between the number of overlapping terms of one permuted dataset and the unpermuted dataset, and the 

number of terms in the unpermuted dataset, for each algorithm and GWAS datasets.  
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 : תקציר
 

במשך כשני  ומייםשימוש לצרכי אפיון ביולוגי של פרופיליים גנ במבוססי רשת למציאת מודולים נמצאים  םאלגוריתמי

על הפרופיל הגנומי ומדווחים תתי רשתות  בוסס כקלט רשת ביולוגית וניקוד לגנים המאלגורתמים אלו מקבלים . עשורים

 .  המתיימרים להיות בעלי חשיבות ביולוגית( מודולים)

ההשוואה נערכה על בסיס מידע גנומי  . השוואה שיטתית בין אלגוריתמים מבוססי רשת למציאת מודולים במחקר ערכנו

 ,jActiveModules: מובילותהמהשיטות  חמש במחקר התמקדנו ב. GWASמפרופיל ביטויי גנים ומניקוד מבוסס 

NetBox, Hotnet2, Keypathwayminer, bionet .  ההשוואה בין האלגוריתמים התבססה על ההעשרה הביולוגית של

 .  ווחהישנמצאה במודולים אותם כל שיטה דGene Ontology (GO )קבוצות 

ערבבנו את קלט ניקוד המחקר הבחנו כי מספר גדול של העשרות ביולוגיות חוזרות ומופיעות גם בפתרונות בהן  במהלך

על מנת לנקות .  שרות אלו עולות בעקבות הטיה שמקורה באלגוריתם ומבנה הרשתנו השערה כי העיבעקבות כך העל.  הגנים

 הכלי. לניקוי העשרות ביולוגיות המדווחות מהמודולים EMPבשם העשרות שעולות בעקבות הטיות שכאלו פיתחנו כלי 

 . המתקבלות לאחר ערבוב ניקוד הגנים לאלו  ,  מבוסס על השוואת ההעשרות של המודולים המתקבלים מניקוד הגנים המקורי

ועל פיהם    EMP-פרוצדורת ה  לאחר מכן פנינו לתכנון קריטריוני השוואה בין האלגוריתמים השונים המבוססים על תוצאות

   . עולה על מתחריו באופן עקבי ברוב הקריטריונים NetBoxומצאנו כי  ,הערכנו את האלגוריתמים השונים

נו כי היא יוהרא Domino (Discovery of Modules In Networks using Omics)בשם שיטה חדשה  תחנויפ, לסיום

 90%מעל  Domino-חשוב לציין כי בפתרונות שהתקבלו מ. השיטות האחרות על פי הקריטריונים שפיתחנו לה עלעו

 .  משמעותית מהכלים האחריםשיעור גבוה  , EMP-מההעשרות הביולוגיות שרדו את פרוצדורת ה

שיעור הנמוך של בהתחשב ב. היא תהליך כבד מבחינה חישוביתלצורך ניקוי השערות מוטות  EMPהרצת פרוצדורת 

 .ניקוייכול לשמש במחקרים ביולוגיים על גבי עמדת קצה סטנדרטית ללא  הכלי, Dominoהשערות מוטות באלגוריתם 
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 אוניברסיטת תל אביב

ש ריימונד ובברלי סאקלר ''הפקולטה למדעים מדויקים ע   

ש בלוונטיק''בית הספר למדעי המחשב ע  

 

מודוליםאלגוריתמים מבוססי רשת למציאת  ניתוח   

ת וביולוגי ותמנקודת מבט של העשר  
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