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Abstract

Motivation: Metagenomic sequencing has led to the identification and
assembly of many new bacterial genome sequences. These bacteria of-
ten contain plasmids, which are less studied or understood. In order to
assist in the study of these plasmids we developed SCAPP (Sequence
Contents Aware Plasmid Peeler) - an algorithm and tool to assemble
plasmid sequences from metagenomic sequencing.
Results: SCAPP builds on some key ideas from the Recycler plasmid as-
sembly algorithm while improving plasmid assemblies by integrating bio-
logical knowledge about plasmids. We compared performance of SCAPP
to Recycler and metaplasmidSPAdes on simulated metagenomes, real
human gut microbiome samples, and a human gut plasmidome that we
generated. We also created a parallel plasmidome-metagenome cow ru-
men sample and used it to create a novel assessment procedure. In most
cases SCAPP performed better than or similar to Recycler and meta-
plasmidSPAdes across this wide range of datasets.
Availability: https://github.com/Shamir-Lab/SCAPP
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1 Introduction

Plasmids are important due to their involvement in bacterial antibiotic resistance and horizontal
gene transfer in the microbiome. However, their evolution and ecology across different micro-
bial environments and populations are not very well characterized or understood. Thousands of
plasmids have been sequenced and assembled directly from isolate bacteria, but constructing com-
plete plasmid sequences is an extremely challenging task. (A recent benchmark and review was
titled ”On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing
data” (Arredondo-Alonso et al., 2017).) The task of assembling plasmid sequences in the context
of shotgun metagenomic sequencing is even more daunting.

There are a number of tools that can be used to assemble or detect plasmids in isolate bacterial
samples, such as plasmidSPAdes (Antipov et al., 2016), PlasmidFinder (Carattoli et al., 2014),
cBar (Zhou and Xu, 2010), gPlas (Arredondo-Alonso et al., 2019), and others. However, there are
currently only two tools that attempt to reconstruct complete plasmid sequences in metagenomic
samples: Recycler (Rozov et al., 2017) and metaplasmidSPAdes (Antipov et al., 2019). Here we
present SCAPP (Sequence Contents Aware Plasmid Peeler), a new algorithm building on Recycler
that leverages external biological knowledge about plasmid sequences.

The main idea behind Recycler was that a single shortest circular path through each node in
the metagenomic assembly graph can be found efficiently. The circular paths that have uniform k-
mer coverage are iteratively “peeled” off the graph and reported as possible plasmids. The peeling
may reduce coverage of each involved node, or remove it altogether. In SCAPP the assembly
graph is annotated with plasmid-specific genes and a plasmid score based on a plasmid sequence
classifier (Pellow et al., 2019). In the annotated assembly graph we prioritize circular paths that
include plasmid genes and highly probable plasmid sequences. SCAPP also uses the plasmid-specific
genes and plasmid scores to filter out likely false positives from the set of potential plasmids.

We demonstrate on diverse simulated and real metagenomic data that SCAPP performed better
than the original Recycler tool and similar to or better than metaplasmidSPAdes.

2 Methods

SCAPP accepts as input a metagenomic assembly graph, with nodes representing the sequences of
assembled contigs and edges representing k-long sequence overlaps between contigs, and the paired-
end reads from which the graph was assembled. SCAPP processes each component of the assembly
graph and assembles plasmids from them. The output of SCAPP is a set of cyclic sequences
representing confident plasmid assemblies.

A high-level overview of SCAPP is provided in Box 1. The full algorithm is presented as
Algorithm 1 in Supplement S2. The details of the algorithm are explained below. Usage instructions
and documentation for SCAPP are presented in Supplement S4. SCAPP is available from https:

//github.com/Shamir-Lab/SCAPP.

2.1 Read mapping

The first step in creating the annotated assembly graph is to create an alignment of the reads to the
contigs in the graph. By default, read mapping is performed using BWA (Li, 2013) and the align-
ments are filtered to retain only primary read mappings, sorted, and indexed using SAMtools (Li
et al., 2009). The user has the option of providing a sorted and indexed BAM alignment file created
by any other method.

1

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.12.903252doi: bioRxiv preprint first posted online Jan. 14, 2020; 

https://github.com/Shamir-Lab/SCAPP
https://github.com/Shamir-Lab/SCAPP
http://dx.doi.org/10.1101/2020.01.12.903252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Box 1. Overview of SCAPP

1: Annotate the assembly graph:
a: Map reads to nodes of the assembly graph
b: Find nodes with plasmid gene matches
c: Assign plasmid sequence score to nodes

2: for each strongly connected component do
3: Iteratively peel uniform coverage cycles through plasmid gene nodes
4: Iteratively peel uniform coverage cycles through high scoring nodes
5: Iteratively peel shortest cycle through each remaining node if it meets plasmid criteria

6: Output the set of confident plasmid predictions

2.2 Plasmid-specific gene annotation

We created sets of plasmid-specific genes curated by experts in plasmid microbiology from the
Mizrahi Lab (Ben-Gurion University). Information about these plasmid-specific gene sets is found in
Supplement S1. The sequences themselves are available from https://github.com/Shamir-Lab/

SCAPP/data. Other user-supplied sets of plasmid-specific genes can also be integrated into SCAPP.
Nodes in the assembly graph are annotated as containing a plasmid-specific gene hit if there is

a BLAST match between one of the gene sequences and the sequence corresponding to the node
(≥ 75% sequence identity along ≥ 75% of the length of the gene by default).

2.3 Plasmid score annotation

By default, we use PlasClass (Pellow et al., 2019) to annotate each node in the assembly graph
with a plasmid score. PlasFlow (Krawczyk et al., 2018) scores are also supported. We re-weight
the node scores according to the sequence length as follows. For a given sequence of length L
and plasmid probability p assigned by the classifier, the re-weighted plasmid score, s is: s =

0.5 +
p− 0.5

1 + e−0.001(L−2000)
. This tends to pull scores towards 0.5 for short sequences, for which there

is lower confidence, while leaving scores of longer sequences practically unchanged.
Long nodes (L > 10 kbp) with low plasmid score (s < 0.2) are considered to be probable

chromosome nodes and are removed, simplifying the assembly graph. Similarly, long nodes (L > 10
kbp) with high plasmid score (s > 0.9) are considered to be probable plasmid nodes. The user can
change these default thresholds if desired.

2.4 Assigning node weights

Plasmid score and plasmid-specific gene annotations are incorporated into the node weights. Each
node is assigned a weight w(v) = (1 − s)/C · L where C is the depth of coverage of the node’s
sequence and L is the sequence length. This gives lower weight to more highly covered, longer
nodes that have higher plasmid scores. Additionally, nodes with plasmid-specific gene hits are
assigned a weight of zero, making them more likely to be integrated into any lowest-weight cycle
in the graph that can pass through them.

2.5 Finding low-weight cycles in the graph

The core of the SCAPP algorithm is to iteratively find the lowest weight (“lightest”) cycle going
through each node in the graph for consideration as a potential plasmid. We use the bidirectional
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single-source, single-target shortest path implementation of the NetworkX Python package (Schult,
2008).

The order that nodes are considered matters since in each iteration potential plasmids are
peeled from the graph, affecting which cycles may be found in subsequent iterations. The plasmid
annotations are used to decide the order that nodes are considered: first all nodes with plasmid-
specific genes, then all probable plasmid nodes, and then all nodes in the graph. If the lightest
cycle going through a node meets certain criteria described below, it is peeled off, changing the
coverage of nodes in the graph, and potentially affecting what cycles will subsequently be found.
Performing the search for light cycles in this order ensures that the cycles through annotated nodes
will be considered before other cycles.

2.6 Assessing coverage uniformity

The lightest cyclic path, weighted as described above, going through each node is found and evalu-
ated. The Recycler algorithm sought a cycle with near uniform coverage, reasoning that all contigs
that form a plasmid should have roughly the same coverage. However, this does not take into
account the overlap of the cycle with other paths in the graph (see Figure 1). To account for this,
we compute instead a discounted coverage score for each node in the cycle based on its interaction
with other paths as follows:

For a node v in the cycle C with coverage cov(v), its discounted coverage is cov(v) times the
fraction of the coverage on all its neighbors (both incoming and outgoing), N (v), that is on those
neighbors that are in the cycle (see Figure 1):

cov′(v, C) = cov(v) ·

∑
u∈C∧u∈N (v)

cov(u)∑
u∈N (v)

cov(u)

A node v in cycle C whose contig length is len(v) is assigned a weight, f corresponding to its
fraction of the length of the cycle:

f(v, C) =
len(v)∑

u∈C
len(u)

These weights are used to compute the weighted mean and standard deviation of the discounted
coverage of the nodes in the cycle:

µcov′(C) =
∑
u∈C

f(u,C)cov′(u,C)

STDcov′ =

√∑
u∈C

f(u,C)(cov′(u,C)− µcov′(C))2

The coefficient of variation of C is the ratio of the standard deviation to the mean:

CV (C) =
STDcov′(C)

µcov′(C)
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Figure 1: Evaluating and peeling cycles. Numbers inside nodes indicate coverage.
Cycles (a, e, f) and (c, e, g) have the same average coverage (13.33) and CV (0.35), but
their discounted CV values differ: The discounted coverage of node a is 6, and the
discounted coverage of node e is 10 in both cycles. The left cycle has CV=0.22 and the
right has CV=0. By peeling off the mean discounted coverage of the right cycle (10)
one gets the right graph. Note that nodes g, c were removed from the graph since their
coverage was reduced to 0, and the coverage of node e was reduced to 10.

2.7 Finding potential plasmid cycles

Once the set of lightest cycles has been generated, each cycle is evaluated as a potential plasmid.
A cycle is a potential plasmid if one of the following criteria is met:

1. The cycle is formed by an isolated “compatible” self-loop node v, i.e. len(v) > 1000, indeg(v) =
outdeg(v) = 1, and at least one of the following conditions holds:

(a) v has a high plasmid score s(v) > 0.9.

(b) v has a plasmid gene hit.

(c) < 10% of the paired-end reads with a mate on v have the other mate on a different node.

2. The cycle is formed by a connected compatible self-loop node v, i.e. len(v) > 1000, indeg(v) >
1 or outdeg(v) > 1, and < 10% of the paired-end reads with a mate on v have the other mate
on a different node.

3. The cycle is not formed by a self-loop and has:

(a) Uniform coverage: CV (C) < 0.5, and

(b) Consistent mate-pair links: a node in the cycle is defined as an “off-path dominated” node
if the majority of the paired-end reads with one mate on the node have the other mate
on a node that is not in the cycle. If less than half the nodes in the cycle are “off-path
dominated”, then we consider the mate-pair links to be consistent.

The default values of these thresholds can be changed by the user.
These potential plasmid cycles are peeled from the graph in each iteration (see Figure 1).

2.8 Filtering confident plasmid assemblies

In the final stage of SCAPP, plasmid-specific genes and plasmid scores are used to filter out likely
false positive plasmids from the output to create a set of confident plasmid assemblies. All potential
plasmids are assigned a length-weighted plasmid score and are annotated with plasmid-specific genes
as was done for the contigs during graph annotation. Potential plasmids that belong to at least two
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of the following sets are reported as confident plasmids: (a) potential plasmids containing a match
to plasmid-specific gene; (b) potential plasmids with plasmid score > 0.5; (c) self-loop nodes.

3 Results

We tested SCAPP on simulated metagenomes, human gut metagenomes, a human gut plasmidome
that we generated and also on a parallel metagenome-plasmidome cow rumen microbiome specimen
that we generated. (Sequencing data will be made available upon publication.) The test settings
and evaluation methods are described below.

4 Experimental settings and evaluation

All metagenomes were assembled using the SPAdes assembler (v3.13) with the --meta option. The
default of 16 threads were used, and the maximum memory was set to 750 GB. metaplasmidSPAdes
(mpSpades) was run with these same parameters. mpSpades internally chooses the values of k to
use for the k-mer length in the assembly graph. We matched the values of k used in SPAdes to
these values for each dataset. In practice, the maximum k value was 77 for the simulations and
human metagenomic samples, and 127 for the plasmidome and parallel metagenome-plasmidome
samples.

For a simulated metagenome, the set of plasmids used in the simulation was the gold standard.
We used BLAST to match the assembled plasmids to the reference plasmid sequences. A plasmid
assembled by one of the tools was considered to be a true positive if > 90% of its length was covered
by BLAST matches to a reference (> 80% sequence identity). The rest of the assembled plasmids
were considered to be false positives. Gold standard plasmids that did not have assembled plasmids
matching them were considered to be false negatives. Precision was defined as TP/(TP +FP ) and
recall was defined as TP/(TP + FN), where TP , FP , and FN were the number of true positive,
false positive, and false negative plasmids, respectively. The F1 score was defined as the harmonic
mean of precision and recall.

For the human microbiome and plasmidome samples, the set of plasmids serving as the gold
standard was selected from PLSDB (v.2018 12 05) (Galata et al., 2018). The contigs from the
metaSPAdes assembly were matched against the plasmids in PLSDB using BLAST. Matches be-
tween a contig and a reference plasmid with sequence identity > 85% were marked and a contig
was said to match a reference if > 85% of its length was marked. Reference plasmids with > 90%
of their lengths covered by marked regions of the matching contigs were used as the gold standard.

The set of plasmids assembled by a method was compared to the gold standard set using BLAST.
A predicted plasmid was considered a true positive if there were sequence matches (> 80% identity)
between the plasmid and a gold standard plasmid that covered more than 90% of their lengths.

Note that in the case of the real samples, if two assembled plasmids matched to the same
reference gold standard plasmid sequence(s), then one of them was considered to be a false positive.
However, if there were multiple gold standard reference plasmids that were matched to a single
assembled plasmid, then none of them was considered as a false negative. Given the number of
true positive, false positives, and false negatives, the precision, recall, and F1 score were calculated
as for the simulation.

For the parallel metagenome-plasmidome sample, plasmidomic reads were aligned to the plasmid
sequences and metagenome assembly contigs using BWA (Li, 2013). Coverage at each base of each
metagenomic contig was called using bedtools (Quinlan and Hall, 2010).
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4.1 Simulated metagenomes

We created five read datasets simulating metagenomic communities of bacteria and plasmids and
assembled them. We randomly selected bacterial genome references from NCBI along with their
associated plasmids and used realistic distributions for genome abundance and plasmid copy num-
ber. For genome abundance we used the log-normal distribution, normalized so that the relative
abundances sum to 1. For plasmid copy number we used a geometric distribution with parameter
p = min(1, log10(L)/7) where L is the plasmid length. This makes it much less likely for a long
plasmid to have a copy number above 1, while shorter plasmids can have higher copy numbers.
Paired-end short reads (read length = 126 bp) were simulated from the genome references using
InSilicoSeq (Gourlé et al., 2018) with the HiSeq error model and assembled. 25M paired-end reads
were generated for Sim1, Sim2 and Sim3, and 50M for Sim4 and Sim5.

Table 1 presents features of the simulated datasets and reports the performance of Recycler,
mpSpades, and SCAPP on them. SCAPP outperformed Recycler, but both did poorly due to
fragmentation of the assembly graphs. mpSpades, which modifies and updates its own assembly
graph, did better on the smaller simulations, but its performance was lower on the more complex
samples. SCAPP performed better than mpSpades on two of the more complex simulations.

# unique Recycler SCAPP mpSpades
# genomes # plasmids plasmids F1 score F1 score F1 score

Sim1 30 82 56 2.9 4.2 17.5
Sim2 180 333 219 3.1 7.1 10.8
Sim3 320 745 497 5.8 9.0 6.8
Sim4 450 1024 644 5.0 6.0 5.7
Sim5 625 1365 886 6.2 6.4 7.7

Table 1: Performance on simulated metagenome datasets. The number of unique
plasmids accounts for plasmids with copy number greater than one.

4.2 Human gut microbiomes

We assembled plasmid sequences in twenty publicly available human gut microbiome samples se-
lected from the study of Vrieze et al. (2012) (accession numbers are listed in S3). There is no gold
standard set of plasmids for these samples to measure performance against. Instead, we matched
all assembled contigs to PLSDB (Galata et al., 2018) and considered database plasmdis that had
more than 90% of their length covered as the gold standard.

Figure 2 summarizes the results of the three algorithms. The mean F1 score of SCAPP across
the 20 samples was 16.1, while mpSpades and Recycler achieved mean F1 scores of 10.3 and 10.9,
respectively. SCAPP performed best in more cases, with mpSpades failing to assemble true positive
plasmid sequences in over half the samples. We note that all of the failures of SCAPP occurred
when the number of gold standard plasmids was very small and the other tools also failed to
assemble true positive plasmids. SCAPP also performed best on the largest samples with the most
gold standard plasmids.

4.3 Human gut plasmidome

The human gut microbiome from a fecal sample of a healthy adult male was extracted, enriched for
plasmids and sequenced following the protocol outlined in Brown Kav et al. (2013) (approved by
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Figure 2: F1 scores of the plasmids assembled by Recycler, mpSpades and SCAPP
in human gut microbiome samples, calculated using PLSDB plasmids as the gold stan-
dard. The dashed line shows the number of gold standard plasmids in each sample.

local ethics committee of Clalit HMO, approval number 0266-15-SOR). This protocol was assessed
to achieve samples with at least 65% plasmid contents by Krawczyk et al. (2018).

We determined the gold standard set of plasmids as in the gut microbiome samples, resulting in
74 plasmids with > 90% of their length covered. Performance was computed as for the metagenomic
samples and is shown in Table 2. mpSpades had lower precision and much lower recall than the
other tools. SCAPP achieved better overall performance as a result of higher precision.

median plasmid
Tool # plasmids length (kbp) precision recall F1 score

Recycler 93 2.1 15.1 37.8 21.5
SCAPP 82 2.1 17.1 35.9 23.1
mpSpades 53 3.0 13.2 10.9 12.0

Table 2: Performance on the human gut plasmidome.

Notably, though the sample was obtained from a healthy donor, some of the reconstructed
plasmids matched reference plasmids annotated with virulence-associated hosts such as Klebsiella
pneumoniae, pathogenic serovars of Salmonella enterica, and Shigella sonnei. The detection of
plasmids previously isolated in pathogenic hosts in bacteria in the healthy gut indicates potential
pathways for transfer of virulence genes.

We used MetaGeneMark (Zhu et al., 2010) to find potential genes in the plasmids assembled by
SCAPP (294 genes) and then annotated them with the NCBI non-redundant (nr) protein database.
46 of the plasmids contained 170 (58%) annotated genes, of which 77 (45%) had known functional
annotations, which we grouped manually in Figure 3A. There are five antibiotic and toxin resistance
genes, all on plasmids that were not in the gold standard set, highlighting SCAPP’s ability to find
novel resistance carrying plasmids. Most of the genes with functional annotations are for plasmid
functions covering 29 out of 33 of the plasmids with functionally annotated genes (88%). This
provides a strong indication that SCAPP succeeded in assembling true plasmids.

We also examined the hosts that were annotated for the plasmid genes, shown in Figure 3.
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Almost all of the annotated plasmids had genes that were from a broad range of hosts, defined as
being identified in hosts from more than one phylum. This demonstrates the broad host range of
many of the plasmids that SCAPP finds and highlights the importance of plasmids in transferring
genes, such as the antibiotic resistance genes we detected across a range of bacteria.

Figure 3: Annotation of genes in the plasmids identified by SCAPP on the human
gut plasmidome sample. A) Functional annotations of the plasmid genes. B) Host
annotations of the plasmids. Broad-range plasmids had genes annotated with hosts
from more than one phylum.

4.4 Parallel metagenomic and plasmidome samples

We performed two sequencing assays on the same cow rumen microbiome sample (4 month old calf,
approvals by the local ethics committee of the Volcani Center, numbers 412/12IL and 566/15IL).
In one subsample we performed metagenomic sequencing. The other subsample underwent plasmid
enrichment before sequencing according to the protocol of Brown Kav et al. (2013). (see Figure 6A).
This enabled us to assess the plasmids assembled in the metagenome using the plasmidome. Because
the plasmidome was from the same sample as the metagenome, it could provide a better assessment
of performance than using PLSDB matches as the gold standard, especially as PLSDB tends to
under-represent plasmids in non-clinical contexts.

We ran the three plasmid discovery algorithms on each of the subsamples. The results are
presented in Table 3. In both subsamples, mpSpades made the least predictions and Recylcer
made the most. To compare the plasmids identified by the different tools, we considered two
plasmids to be the same if their sequences matched at > 80% identity across > 90% of their length.
The comparison is shown in Figure 4. On the plasmidome subsample, fifty one plasmids were
identified by all three methods. Seventeen were common to the three methods in the metagenome.
In both subsamples, the Recycler plasmids included almost all those identified by each of the other
two methods and also a large number of additional plasmids. In the plasmidome, SCAPP and
Recycler shared many more plasmids than mpSpades and Recycler.
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metagenome plasmidome

Tool
#

plasmids
median
length

#
plasmids

median
length

Recycler 60 4.3 147 1.7

SCAPP 25 5.8 109 1.8

mpSpades 26 6.2 65 2.0

Table 3: Number of plasmids assembled by each
tool and their median lengths (in kbp) for the parallel
metagenome and plasmidome samples.

Figure 4: Comparison of the plasmids assembled by
each tool. A) Overlap between plasmids found in the
metagenomic sample. B) Overlap between plasmids
found in the plasmidomic sample.

Comparison of the assemblies to PLSDB (as was done for the human gut samples) gave very few
results. The metagenome contained only one matching PLSDB reference plasmid, and none of the
tools assembled it. The plasmidome had only seven PLSDB matches, and mpSpades, Recycler, and
SCAPP had F1 scores of 2.86, 2.67, and 1.74, respectively. The low numbers of PLSDB matches
compared to the number of plasmids assembled demonstrate the ability of the tools to identify
novel plasmids that are not in the database.

We next compared the plasmids assembled by each tool in the two subsamples. For each
tool, we considered the plasmids it assembled from the plasmidome to be the gold standard set,
and computed scores as above for the plasmids it reported for the metagenome. The results are
presented in Figure 5A. SCAPP had the highest precision. Since mpSpades had a much smaller
gold standard set, it achieved higher recall and F1. Recycler output many more plasmids than the
other tools in both samples, but had much lower precision, suggesting that many are spurious.

Figure 5: Performance on the parallel dataset. A) Precision, recall and F1 score of
each tool on the plasmids assembled from the metagenome compared to the plasmids
assembled from the plasmidome. B) Overall precision, recall, F1 score of the tools on
the plasmids assembled from the metagenome compared to the union of all plasmids
assembled by all tools in the plasmidome.

Next, we considered the union of the plasmids assembled across all tools to be the gold standard
set and recomputed the scores as before. We refer to them as the “overall” scores. The results in
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Figure 5B show that overall precision scores were the same as in Figure 5A, while overall recall
was lower for all the tools. mpSpades underperformed because of its smaller set of plasmids and
SCAPP had the highest overall F1 score.

Finally, in order to fully leverage the power of parallel samples, we computed the performance
of each tool on the metagenomic sample, using the reads of the plasmidomic sample, and not
just the plasmids that the tools were able to assemble. We calculated the plasmidome read-based
precision by mapping the plasmidomic reads to the plasmids assembled from the metagenomic
sample (Figure 6A). A plasmid with > 90% of its length covered by more than one plasmidomic
read was considered to be a true positive. The plasmidome read-based recall was computed by
mapping the plasmidomic reads to the contigs of the metagenomic assembly. Contigs with >
90% of their length covered by plasmidomic reads at depth > 1 were considered to be plasmidic.
Plasmidic contigs that were integrated into the assembled plasmids were counted as true positives,
and those that were not were considered false negatives. The recall was the total fraction of the
plasmid contigs that was covered by integrated contigs. Note that the precision and recall here
are measured using different units (plasmids and base pairs, respectively) so they are not directly
related. For mpSpades, which does not output a metagenomic assembly, we mapped the contigs
from the metaSPAdes assembly to the mpSpades plasmids using BLAST (> 80% sequence identity
matches along > 90% of the length of the contigs).

The pasmidome read-based performance is presented in Figure 6B. All tools achieved a similar
recall of around 12. SCAPP and mpSpades performed very similarly, with SCAPP having slightly
higher precision (24.0 vs 23.1) but slightly lower recall (11.9 vs 12.2). Recycler had a bit higher
recall (13.1), at the cost of much lower precision (11.7). Hence, a much lower fraction of the plas-
mids assembled by Recycler in the metagenome are actually supported by the parallel plasmidome
sample, adding to the other evidence that Recycler makes many more false positive calls than the
other tools.

Figure 6: Using the plasmidome reads to evaluate the quality of metagenome assem-
bly. A) Plasmidome (I) and metagenome reads (II) are obtained from subsamples of the
same sample. III: The metagenome reads are assembled into a graph. IV: The graph is
used to detect and report plasmid by the algorithm of choice. V. The plasmidome reads
are matched to assembled plasmids. Nearly fully matched plasmids (red) are used to
calculate plasmid read-based precision. VI. The plasmidome reads are matched to the
assembly graph contigs. Nearly fully covered contigs (red) are considered plasmidic.
The fraction of total length of plasmidic contigs included in the detected plasmids gives
the plasmidome read-based recall. B) Plasmidome read-based performance.
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We assessed the significance of the improved plasmid assembly by SCAPP. Only one plasmid in
PLSDB was covered by contigs in the metagenomic assembly, demonstrating the ability of SCAPP
to identify novel plasmids that are not in the databases. Four of the plasmids assembled by SCAPP
in the metagenome sample were also assembled with the same sequence in the plasmidome sample.

There were 293 contigs in the metagenomic assembly that were covered by plasmidomic reads,
with a total length of 146.6 kbp. 17.4 kbp of this length were incorporated into plasmids assembled
by SCAPP. In contrast, the plasmidome assembly had a total length of 8.9 Mbp. This clearly shows
the potential advantage of plasmidome sequencing for determining plasmids. This is also apparent
from the low recall seen in Figure 5A.

We detected potential genes in the plasmids assembled by SCAPP in the plasmidome sample
and annotated them as we did for the human gut plasmidome. Out of 242 genes, only 34 genes
from 17 of the plasmids had annotations, and only 18 of these had known functions, highlighting
that many of the plasmids in the cow rumen plasmidome are as yet unknown. These functions are
shown in Figure 7A. The high concentration of genes of plasmid function indicates that SCAPP
succeeded in assembling novel plasmids. Unlike in the human plasmidome, most of the plasmids
with known host annotations have hosts from a single phylum, see Figure 7B.

Figure 7: Annotation of genes in the plasmids identified by SCAPP on the rumen
plasmidome sample. A) Functional annotations of the plasmid genes. B) Host anno-
tations of the plasmids.

4.5 Summary

We summarize in Table 4 the performance of the tools across all the datasets. We say the per-
formance of two tools is similar (denoted ≈) if their scores are within 5% of each other, and that
one has much higher performance than the other (�) if its score is > 30% more. Unless otherwise
stated, F1 score is used.

We see that in most cases SCAPP is the highest performing, and other than in the case of the
small simulations, SCAPP performs close to the top performing tool.

4.6 Resource usage

We compared the runtime and memory usage of the three tools, presented in 5. Recycler and
SCAPP require assembly by metaSPAdes and pre-processing of the reads and resulting assembly
graph. SCAPP also requires post-processing of the assembled plasmids. mpSpades requires post-
processing of the assembled plasmids with the plasmidVerify tool. The reported runtimes are for
the full pipelines necessary to run each tool – from reads to assembled plasmids.
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Small simulations (2) mpSpades � SCAPP � Recycler

Large simulations (3) SCAPP > mpSpades > Recycler

Human gut metagenomes (20) SCAPP � mpSpades > Recycler

Plasmidome SCAPP > Recycler � mpSpades

Parallel: within tool mpSpades > SCAPP � Recycler

Parallel: “overall”, across tools SCAPP > Recycler > mpSpades

Parallel: plasmidome read-based precision SCAPP ≈ mpSpades � Recycler

Parallel: plasmidome read-based recall Recycler > mpSpades ≈ SCAPP

Table 4: Summary of performance. Comparison of the performance of the tools
on each of the datasets. When multiple samples were tested, the number of samples
appears in parentheses, and average performance is reported. For the parallel samples
results are for the evaluation of the metagenome based on the plasmidome.

In almost all cases assembly was the most memory intensive step, with metaSPAdes and
mpSpades reaching very similar peak RAM usage (within 0.01 GB), and so we report the RAM
usage for this step. The assembly step was also the longest step in all cases.

The runtimes and memory usage for each of the tools are shown in Table 5. Performance
measurements were made on a 44-core, 2.2 GHz server with 792 GB of RAM. 16 processes were
used where possible. Recycler is single-threaded, so only one process could be used for that step.
Note that mpSpades does not output a metagenomic assembly graph, so users interested in both the
plasmid and non-plasmid sequences in a sample would need to run metaSPAdes as well, practically
doubling the runtime.

Dataset
Assembly peak

RAM (GB)

Runtime (minutes)

Recycler SCAPP mpSpades

Mean human
metagenomes

20.7 115.4 130.1 102.8

Plasmidome 30.1 906.5 908.9 547.6

Parallel
metagenome

148.1 2118.0 2229.7 2132.3

Parallel
plasmidome

26.4 880.9 883.8 684.1

Table 5: Resource usage comparison for the three methods. Peak RAM of the assem-
bly step (metaSPAdes for Recycler and SCAPP, metaplasmidSPAdes for mpSpades) in
GB. Runtime (wall clock time, in minutes) is reported for the entire pipeline including
assembly and any pre-processing and post-processing required. Metagenome results
are an average across the 20 samples.

5 Conclusion

Plasmid assembly from metagenomic sequencing is extremely difficult as seen by the low numbers
of plasmids found in real samples. This is true even in samples of the human gut microbiome,
which is widely studied – relatively few plasmids from the extensive PLSDB plasmid database were
covered in assemblies of these samples. Despite the challenges, SCAPP succeeded in assembling

12

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.12.903252doi: bioRxiv preprint first posted online Jan. 14, 2020; 

http://dx.doi.org/10.1101/2020.01.12.903252
http://creativecommons.org/licenses/by-nc-nd/4.0/


plasmids in real samples. SCAPP demonstrated generally improved performance over Recycler and
metaplasmidSPAdes in a wide range of contexts. By applying SCAPP across large sets of samples,
many new plasmid reference sequences can be assembled, enhancing our understanding of plasmid
biology and ecology.
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Supplementary information for
SCAPP: An algorithm for improved plasmid assembly in metagenomes

S1 Plasmid-specific genes

We used five sets of plasmid-specific genes:

1. MOB genes 1: 331 amino acid sequences of plasmid maintenance genes curated by plasmid
biologists and filtered computationally (see details of filtering below).

2. MOB genes 2: Larger set of 559 amino acid sequences of plasmid maintenance genes curated
by plasmid biologists and filtered computationally.

3. Plasmid ORFs: 4276 nucleotide sequences corresponding to ORFs annotated with ‘mobiliza-
tion’, ‘conjugation’, ‘partitioning’, ‘toxin-antitoxin’, ‘replication’, or ‘recombination’ from a
large set of putative plasmids found by the Mizrahi Lab and then filtered computationally.

4. ACLAME plasmid genes: 4813 nucleotide sequences of genes that make up 96 gene families
in the ACLAME (Leplae et al., 2009) database that were manually selected as being possibly
plasmid-specific. The set of genes was deduplicated and filtered computationally.

5. PLSDB-specific ORFs: 94478 plasmid-specific sequences determined as follows: We used
MetaGeneMark (Zhu et al., 2010) to predict genes in the plasmid sequences from PLSDB
(v.2018 12 05) (Galata et al., 2018). We then counted the number of BLAST matches (> 75%
identity match along > 75% of the gene length) to these genes in both PLSDB and bacterial
reference genomes from NCBI (downloaded January 9, 2019 ). We considered each predicted
gene that appeared in the plasmids more than 20 times and was > 20× more prevalent in the
plasmids than in the genomes to be plasmid-specific.

Sets 1–4 were filtered as follows: We counted matches between the sequences and PLSDB
plasmids and NCBI bacterial reference genomes as for the PLSDB-specific ORFs (set 5). We
excluded any gene that had more than 4 matches to bacterial genes and met one of the following
conditions: (1) ≤ 4 matches to plasmid genes and > 4× as many matches to bacterial genes as
plasmid genes; or, (2) > 4 plasmid gene matches, but ≤ 4× as many matches to plasmid genes as
to bacterial genes.

All of these gene sets are available in the SCAPP release from https://github.com/Shamir-Lab/

SCAPP/data in the following locations:

• MOB genes 1: aa/aa2

• MOB genes 2: aa/aa1

• Plasmid ORFs: nt/nt3

• ACLAME plasmid genes: nt/nt1

• PLSDB-specific ORFs: nt/nt2

S2 The SCAPP algorithm

The full SCAPP algorithm is detailed in Algorithm 1. The helper function peel(G,C) which defines
how cycle C is peeled from the graph is given in Algorithm 2.

S3 List of real human gut microbiome samples

The accessions of the publicly available human metagenomic samples assembled are:
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Algorithm 1 SCAPP pipeline

Input: Sample assembly graph G = (V,E), the read set R of the sample
Output: P : potential plasmids, O: confident plasmid predictions
1: Create annotated graph G′ = (V ′, E′):

a: Map R to V ′

b: score(v)← sequence plasmid probability ∀v ∈ V ′
c: w(v) = (1− score(v))/len(v) · cov(v) ∀v ∈ V ′
d: V m = {v ∈ V ′|v contains a plasmid gene}, w(v) = 0 ∀v ∈ V m

2: V ′ ← V ′ \ {v ∈ V ′| deg(v) = 0 ∨ v is a probable chromosome node ∨
v is a non-compatible self-loop with indeg(v) = outdeg(v) = 1}

3: P ← {v ∈ V ′|v is a compatible self-loop}
4: for each strongly connected component CC ∈ G′ do
5: for v ∈ V m ∩ CC in decreasing order by len(v) · cov(v) do
6: Find lowest weight cycle C through v
7: if C meets coverage and paired-end read criteria then
8: P ← P ∪ {C}, G′ ← peel(G′, C)

9: for v ∈ {v ∈ CC| v is a probable plasmid node} in decreasing order by len(v) · cov(v) do
10: Find lowest weight cycle C through v
11: if C meets coverage and paired-end read criteria then
12: P ← P ∪ {C}, G′ ← peel(G′, C)

13: while V ′ changes do
14: S ← {}
15: for v ∈ V ′ ∩ CC in decreasing order by len(v) · cov(v) do
16: Find lowest weight cycle C through v
17: S ← S ∪ C
18: for C ∈ S in increasing order of coefficient of variation of discounted coverage do
19: if C meets coverage and paired-end read criteria then
20: P ← P ∪ {C}, G′ ← peel(G′, C)

21: O ← {C ∈ P |(C contains a plasmid gene ∧ plasmid score(C) > 0.5) ∨
(C contains a plasmid gene ∧ C is self-loop ) ∨ (plasmid score(C) > 0.5 ∧ C is self-loop )}

Algorithm 2 peel(G,C)

Input: Assembly graph G = (V,E) annotated with node coverage, cycle C ⊂ G
Output: Updated graph G′ = (V ′ ⊆ V,E′ ⊆ E) with cycle C peeled
1: G′ = G
2: µcov′(C) =

∑
u∈C

f(u,C)cov′(u,C), the weighted mean of the discounted coverage of C in G

3: for v ∈ C do
4: cov(v)← max{cov(v)− µcov′(C), 0}
5: if cov(v) = 0 then
6: V ′ ← V ′ \ v
7: E′ ← E′ \ {e|e = (u, v) ∪ e = (v, u) ∀u ∈ V }
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• ERR1297645

• ERR1297651

• ERR1297671

• ERR1297685

• ERR1297697

• ERR1297700

• ERR1297720

• ERR1297738

• ERR1297751

• ERR1297770

• ERR1297785

• ERR1297796

• ERR1297798

• ERR1297810

• ERR1297822

• ERR1297824

• ERR1297834

• ERR1297838

• ERR1297845

• ERR1297852

S4 Software documentation

SCAPP is fully documented at https://github.com/Shamir-Lab/SCAPP. We outline the instal-
lation and usage instructions here.

S4.1 Installing SCAPP

SCAPP is written in Python3 and requires a number of packages which will be installed by the
setup script.

SCAPP requires BWA, the NCBI BLAST+ executables, and samtools. We also highly rec-
ommend installing PlasClass to use full functionality of the SCAPP pipeline (available from:
https://github.com/Shamir-Lab/SCAPP).

To install PlasClass do:

git clone https://github.com/Shamir-Lab/SCAPP.git

cd SCAPP

python setup.py install

We recommend using a virtual environment.

S4.2 Configuring SCAPP paths

SCAPP requires configuration variables specifying the paths to the BWA, BLAST+, and samtools
executables for the system it is being run on.

Set the paths to these executables in the file bin/config.json.
This information can be configured once when first installing SCAPP and then used for all

SCAPP runs provided the locations of those executables do not change.
Alternatively, the locations of these executables can be added to the PATH environment variable.

If these executables are in the PATH environment variable so that they can be run from any location
on the system without specifying the path, then the SCAPP configuration variables can be left
blank and there is no need to alter the file config.json.

S4.3 Running SCAPP: Basic Usage

SCAPP is run using the script SCAPP.py in the bin directory as follows:

python scapp.py -g <assembly graph> -o <output directory> -k <max k value>

-r1 <reads 1> -r2 <reads 2>

If a BAM file aligning the reads to assembly graph nodes already exists (for example from a
previous run of SCAPP), then the BAM file can be used instead of the reads files rather than
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having the pipeline redo the alignment:

python scapp.py -g <assembly graph> -o <output directory> -k <max k value> -b <BAM>

The basic command line options are:

• -g/--graph: Assembly graph fastg file.

• -o/--output_dir: Output directory.

• -k/--max_k: Maximum k value used by the assembler. Default: 55.

• -p/--num_processes: Number of processes to use. Default: 16.

• -r1/--reads1: Paired-end reads file 1.

• -r2/--reads2: Paired-end reads file 2.

• -b/--bam: BAM alignment file aligning reads to graph nodes. -b and -r1,-r2 are mutually
exclusive.

The -g, -o and either -r1,-r2 or -b options are required for every run of SCAPP.

S4.4 SCAPP output files

SCAPP creates a number of subdirectories and outputs files in the output directory specified by
the user. Key output files are highlighted:

output directory specified by the user

|- <prefix>.confident_cycs.fasta
output plasmids fasta file (<prefix> is the base name of
the assembly graph)

|- logs log files output by the SCAPP pipeline
|- scapp.log log file of the main SCAPP algorithm
|- bwa_std.log output of running BWA read alignment
|- blast_std.log output of running BLAST to find plasmid genes
|- plasclass_std.log output of running PlasClass to assign plasmid scores

|- intermediate_files files output by the SCAPP pipeline

|- reads_pe_primary.sort.bam(.bai)
alignment files of reads to assembly graph, created by
BWA

|- plasclass.out
plasmid scores assigned to the assembly graph nodes by
PlasClass

|- hit_seqs.out list of assembly graph nodes with plasmid gene hits

|- <prefix>.cycs.fasta
fasta file of all cycles passing the cycle criteria (<prefix>
is the base name of the assembly graph)

|- <prefix>.cycs.paths.txt
the edges that make up each cycle in
<prefix>.cycs.fasta

|- <prefix>.self_loops.fasta
fasta of the cycles in <prefix>.cycs.fasta that consist
of self-loops

|- <prefix>.gene_filtered_cycs.fasta
fasta of the cycles in <prefix>.cycs.fasta that have
plasmid gene hits

|- <prefix>.classified_cycs.fasta
fasta of the cycles in <prefix>.cycs.fasta that are clas-
sified as plasmids by PlasClass

4

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.12.903252doi: bioRxiv preprint first posted online Jan. 14, 2020; 

http://dx.doi.org/10.1101/2020.01.12.903252
http://creativecommons.org/licenses/by-nc-nd/4.0/


The primary output is the file <prefix>.confident_cycs.fasta which contains the confident
plasmid predictions (prefix is the name of the input assembly graph file less the suffix).

The scapp.log file contains a log of the SCAPP run.
<prefix>.cycs.fasta contains all the potential plasmids – cycles that pass the cycle criteria.

The confident cycles that are predicted as plasmids are a subset of these. Users may want to
examine these potential plasmids.

<prefix>.cycs.paths.txt contains the paths for each potential plasmid. The name of the
plasmid is listed. On the next line, the names of the set of edges that are contained in the cycle are
listed in order. The third line for each entry lists the numbers of those edges (for easier use with
visualisation tools).

The files reads_pe_primary.sort.bam, reads_pe_primary.sort.bam.bai, and plasclass.out

contain the outputs of preprocessing steps in the SCAPP pipeline. These steps are the most time
consuming, and the files can be passed into the pipeline (using the -b and -pc parameters) in order
to skip these steps in case SCAPP is run multiple times on the same sample.

S4.5 Advanced options

The SCAPP pipeline is configurable and there are many advanced options to set different thresholds
and inputs in the algorithm. In most cases, we advise using the default settings and pipeline
configurations.

There are a number of ways the stages of the SCAPP can be modified with the following
parameters:

• -sc/--use_scores: Flag to determine whether to use plasmid scores. Use value False to
turn off plasmid score use. Default True.

• -gh/--use_gene_hits: Flag to determine whether to use plasmid specific genes. Use value
False to turn off plasmid gene use. Default True.

• -pc/--plasclass: PlasClass score file. If PlasClass classification of the assembly graph nodes
has already been performed, provide the name of the PlasClass output file.

• -pf/--plasflow: PlasFlow score file. To use PlasFlow scores for the nodes instead of Plas-
Class, provide the name of the PlasFlow output file. -pf, -pc are mutually exclusive.

The following parameters change thresholds used in the algorithm:

• -m/--max_CV: Maximum allowed coefficient of variation for coverage. Default: 0.5.

• -l/--min_length: Minimum allowed length for potential plasmid. Default: 1000.

• -clft/--classification_thresh: Threshold for classifying a potential plasmid as a plasmid.
Default: 0.5.

• -gm/--gene_match_thresh: Threshold for % identity and fraction of length covered to deter-
mine plasmid gene matches. Default: 0.75.

• -sls/selfloop_score_thresh: Threshold plasmid score above which a self-loop is considered
a potential plasmid. Default: 0.9.

• -slm/--selfloop_mate_thresh: Threshold fraction of off-loop mate-pairs, below which a
self-loop is considered a potential plasmid. Default: 0.1.

• -cst/--chromosome_score_thresh: Threshold score, below which a long node is considered
a chromosome node. Default: 0.2.

• -clt/--chromosome_length_thresh: Threshold length, above which a low scoring node is
considered a chromosome node. Default: 10000.
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• -pst/--plasmid_score_thresh: Threshold score, above which a long node is considered a
plasmid node. Default: 0.9.

• -plt/--plasmid_length_thresh: Threshold length, above which a high scoring node is con-
sidered a plasmid node. Default: 10000.

• -cd/--good_cyc_dominated_thresh: Threshold for the maximum fraction of nodes with
most mate-pairs off the cycle allowed for the cycle to be considered a potential plasmid.
Default: 0.5.

Note that instead of setting each of these parameters on the command line, they can instead be
set using the file bin/params.json. Simply set each variable in this file to the desired value and
it will be used in SCAPP. Any value passed as a command-line parameter will override the values
set in this file.
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