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Abstract

Background: Analysis of large genomic datasets along with their accompanying clinical information has shown
great promise in cancer research over the last decade. Such datasets typically include thousands of samples, each
measured by one or several high-throughput technologies (‘omics’) and annotated with extensive clinical
information. While instrumental for fulfilling the promise of personalized medicine, the analysis and visualization of
such large datasets is challenging and necessitates programming skills and familiarity with a large array of software
tools to be used for the various steps of the analysis.

Results: We developed PROMO (Profiler of Multi-Omic data), a friendly, fully interactive stand-alone software for
analyzing large genomic cancer datasets together with their associated clinical information. The tool provides an
array of built-in methods and algorithms for importing, preprocessing, visualizing, clustering, clinical label
enrichment testing, and survival analysis that can be performed on a single or multi-omic dataset. The tool can be
used for quick exploration and stratification of tumor samples taken from patients into clinically significant
molecular subtypes. Identification of prognostic biomarkers and generation of simple subtype classifiers are
additional important features. We review PROMO’s main features and demonstrate its analysis capabilities on a
breast cancer cohort from TCGA.

Conclusions: PROMO provides a single integrated solution for swiftly performing a complete analysis of cancer
genomic data for subtype discovery and biomarker identification without writing a single line of code, and can,
therefore, make the analysis of these data much easier for cancer biologists and biomedical researchers. PROMO is
freely available for download at http://acgt.cs.tau.ac.il/promo/.

Keywords: Cancer genomics, Personalized medicine, Cancer subtypes, Multi-omics, Cancer biomarkers, Multi-omic
clustering, Gene expression analysis
Background
In recent years, a growing number of high-throughput
genomic technologies have become available for biomed-
ical research and are jointly providing high-resolution
genomic data that fuel the revolution of personalized
medicine [1, 2]. These technologies (collectively named
omics) allow the simultaneous quantification of a large
number of features at various biological levels. The fea-
tures include gene expression (mRNA and miRNA
abundance levels measured by microarrays or RNA-Seq),
protein expression (measured by mass spectroscopy or
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reverse-phase protein arrays), DNA methylation (methy-
lation arrays), copy number variation (SNP arrays), and
others [3, 4]. The technologies vary broadly in the num-
ber of features they measure as well as in the distribu-
tion of measured values [5]. However, they can typically
be summarized as a numeric matrix where columns rep-
resent samples and rows represent biological features
(often correlating to genes). Bioinformatic analysis of
such genomic matrices has been extensively used for
identifying biologically distinct sample groups, and for
revealing groups of correlated biological features [6, 7].
The number of tumor samples and measured features

that are included in a typical cancer genomic dataset
have grown dramatically in the last few years, owing to
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increasing resolution and reduced costs of array and se-
quencing technologies. Modern repositories comprise
thousands of patient samples and many thousands of
features. Investigation of such large datasets is computa-
tionally challenging as it requires robust software tools
for supporting the analysis of both samples and features
in high dimensional data [8].
In addition to genomic data, modern cancer datasets

can include extensive medical information (labels) de-
scribing each sample, such as clinical properties or as-
signment to a predefined phenotype. These clinical
labels make it possible to fuse genomic and clinical data
in various ways in order to discover new insights based
on feature-phenotype associations. Common clinical
labels in cancer datasets include disease subtypes, patho-
logical stages, survival and recurrence follow-up informa-
tion, as well as response to treatment. Identification of
genomic features that are correlated with significant clin-
ical parameters (biomarkers) is expected to play a signifi-
cant role in the field of personalized medicine, by which
the status of multiple biomarkers may improve subtype
diagnosis and guide therapeutic decisions [9, 10].
The Cancer Genome Atlas (TCGA) is an example of a

revolutionary multi-label multi-omic genomic database
[11]. It includes more than 11,000 samples from 33 types
of cancer, where each sample was measured using mul-
tiple omic technologies and was described by dozens of
clinical labels [12]. Many studies have already analyzed
TCGA data, improving the subtyping of cancers and
shedding light on the biological mechanisms underlying
the development of various cancer types [13–15]. Such
Table 1 PROMO’s main analysis types

Analysis type Biomedical goal

1 General exploration and
visualization

Explore the genomic dataset vis-à-vis the cl
Prepare the dataset for downstream analysi
visualize its properties

2 Focus on genes of interest Explore the expression profiles of specific g
labels
Identify co-expressed genes

3 Disease subtype
identification

Look for clinically significant sample clusters

4 Co-regulated feature group
identification

Identify groups of similar features, character

5 Biomarker discovery Find features that distinguish among sampl
with survival and other clinical data

6 Integrative multi-omic
analysis

Stratify patients and identify coherent featu
from different omics
analyses are typically time-consuming, computationally
challenging, and entail team effort, as they require apply-
ing a diverse array of methods, statistical tools, and
algorithms, and often also require writing extensive
computer code to perform and interweave the various
steps of the analysis [16]. Hence, to effectively extract
clinically meaningful insights from such multi-omic
multi-label databases, specialized agile integrative tools
are required.
To address this challenge, we developed PROMO

(PROfiler of Multi Omic data), a fully interactive software
suite capable of quickly importing, preprocessing, visualiz-
ing, analyzing and reporting the results on cancer datasets
in a seamless fashion, without writing a single line of com-
puter code. PROMO includes an extensive array of bio-
informatic methods for performing major common
analysis types including exploration, visualization, identifi-
cation of clinically significant disease subtypes, revealing
co-regulated feature groups, biomarker discovery, simple
classification and integrative multi-omic analysis. Table 1
presents an overview of the fundamental analysis types
available in PROMO.
An early version of PROMO was developed as part of

a study where we identified distinct prognostic sub-
groups in Luminal-A breast tumors based on expression
and methylation data [17]. The analysis workflow in that
project provides an example of the key steps in a typical
application of PROMO (Fig. 1): Data are imported, fil-
tered and preprocessed. Tumor samples are clustered
into groups that are then assessed for clinical signifi-
cance using survival analysis and statistical tests on the
Relevant PROMO features

inical labels
s, test its consistency and

• Variance-based feature filtering
• Label-based sample filtering
• Normalization
• Sorting by sample label or mean
expression

• Visualizing data distribution
• PCA, t-SNE

enes vis-à-vis multiple clinical • Filter features based on gene symbols
• Rank genes by correlation to a given
gene symbol

• Multi-label matrix visualization

• Sample clustering
• Label enrichment analysis
• Survival analysis
• Classification

ize each group by function • Feature clustering
• GO Enrichment analysis

e groups, correlate groups • Statistical tests for identifying
differentially expressed genes

• Biomarker-based survival analysis
• Rank genes by survival prediction

re groups by integrating data • Multi-omic sample clustering
• Inter-omic feature correlation



Fig. 1 PROMO’s subtype discovery workflow – From data import to subtype classifier. This figure outlines the complete workflow by which
PROMO can be used for identifying and characterizing clinically distinct cancer subtypes: (1) Importing genomic data together with clinical
information in one of several available formats. (2) Preprocessing the data and preparing it for downstream analysis. (3) Verifying the integrity of
the data, characterizing its distribution and exploring dataset properties with respect to the available clinical labels. (4) Employing clustering
algorithms partition both samples and features (genes) into groups. (5) Applying enrichment tests to identify clinically significant sample subtypes
and groups of co-regulated genes. and to characterize their function. (6) Statistical tests identify features that distinguish between different
sample subtypes as well as survival related features. (7) Decision tree classifiers can be generated for formulating a set of rules by which a new
sample can be classified
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clinical labels. Clustering of the genes followed by gene
enrichment analysis associates sample clusters with ac-
tive gene functions. The analysis is summarized visually
in a genomic matrix clearly showing the identified sam-
ple clusters and their association to important clinical la-
bels (Fig. 1, step 4), in addition to downstream analysis
methods (Fig. 1, steps 5–7).
In this paper, we describe PROMO’s main features

and demonstrate its use in a study of a breast cancer
cohort [14].
Results
We now describe PROMO’s main features, organized by
analysis steps. The described features can be accessed
using PROMO’s menus or graphical user interface
(Fig. 2). The dataset used was TCGA’s breast cancer
gene expression profiles (1218 samples downloaded from
UCSC’s XENA website in May 2018). It is also available
on the datasets page of PROMO’s website.
Data import and preprocessing
In all analysis types, the first steps are to import the re-
quired data from local files into PROMO and prepare it
for the analysis. PROMO enables the integration of data
of different types and from multiple sources by import-
ing genomic matrices, sample labels, and sample or gene
partition files. Genomic matrices accompanied by com-
plementary phenotypic information (clinical labels) can
be loaded in the following formats: tabular text files,
Gene Expression Omnibus (GEO) [18] series files (in-
cluding direct download from within PROMO), UCSC’s
XENA [19, 20] file formats (available for many public
datasets including all TCGA’s data), and PROMO’s DSC
files. The latter are precompiled multi-omic datasets
available at PROMO’s dataset download page for se-
lected TCGA cohorts. PROMO also allows separate
loading of additional clinical labels and sample partition
files to be used in the subtype discovery workflow.
After import, the loaded dataset can be ‘cleaned’ by fil-

tering out samples based on clinical label values, and



Fig. 2 PROMO’s graphical user interface. a PROMO’s main screen. The genomic matrix is in the center with columns corresponding to samples
and rows to features. Colors represent feature values according to the scale on the right. The colorful label bar beneath the matrix displays the
currently selected sample label. Analysis steps are documented in the textbox on the bottom of the screen. Key commands are available on the
tabbed panels on the left of the screen. b The Preprocessing panel allows filtering, normalization, and sorting of the genomic data. c Clustering
the dataset’s samples and features using various algorithms and distance functions is available through the Clustering panel. Resulting clustering
solutions are aggregated for future review and filtering. d The Analysis panel provides access to several visualization and exploratory tools like
PCA, t-SNE, survival analysis, biomarker discovery, GO enrichment and automatic classifier generation. e In the Dataset Collection panel, several
genomic matrices can be assembled into a multi-omic dataset collection, and then analyzed together
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also by removing certain features (e.g., removing low
variability genes or keeping only specific genes).
Additional available common preprocessing steps in-
clude flooring, ceiling, and row normalization.
Data exploration and visualization
Once a genomic matrix is loaded to PROMO, its proper-
ties can be explored with respect to any selected clinical
label (Fig. 3a). The samples (columns) in the matrix can
be reordered based on any clinical label or by their mean
expression. Basic dataset properties like value distribution
(Fig. 3b), clinical label distribution (Fig. 3c), and sample
variation (Fig. 3d) can be studied and displayed graphically
in various ways including PCA [21, 22] and t-SNE [23].
For ease of interpretation, all displays consistently use the
same colors to represent the various sample subgroups.
Clustering and enrichment analyses
A major effort in promoting precision medicine is to iden-
tify disjoint groups of similar patients and characterize



Fig. 3 Visualization of multi-label genomic data. PROMO provides a variety of methods for visualizing a genomic dataset together with its
associated clinical information. a A multi-label expression matrix plot. The plot is composed of a heat-map representation of the genomic matrix
and several label bars beneath it showing different clinical labels that the user interactively selected. The colors in each label bar show the label
value of each sample according to the legend on the right. The label appears below the lower left corner of the bar. Here, breast cancer patient
profiles were grouped according to their PAM50 category (shown in the top label bar). By observing the distribution of values in other bars,
relations between the groups and the labels can be observed. For example, the ER, PR and HER2 status of most samples in the ‘Basal’ group are
negative, while the HER2 status of most ‘HER2’ group is positive. b Data distribution and c Clinical label distribution can be explored and
visualized separately, or in combination using plots such as d PCA and others. These figures show that the Basal tumor samples are mainly
characterized by Negative ER, PR and HER2 labels (a) and markedly differ from all other subtypes in their gene expression pattern (d), in
accordance with the literature [14]
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each group using its distinct genomic profile, survival data,
and clinical information. To reveal the similarities among
patients, clustering is often performed on both samples
and features [24]. Clustering the samples can reveal pa-
tient groups corresponding to disease subtypes [25] while
clustering the features reveals groups of co-regulated
genes [26]. PROMO provides various clustering algo-
rithms such as K-means [27], hierarchical clustering [28],
and Click [29] (PROMO’s clustering panel is shown in
Additional file 1: Figure S1). To explore the resulting clus-
ters, the reordered matrix can be visualized in comparison
to multiple sample labels (Fig. 4a).
After the genes have been clustered, the built-in Gene

Ontology tool can help interpret the biological meaning of
gene clusters using enrichment analysis (Fig. 4b) [30].
Likewise, the clinical labels on the samples can be used to
statistically characterize each sample cluster. A compre-
hensive analysis can be applied to each sample cluster



Fig. 4 Identification and characterization of cancer subtypes. Unsupervised analysis followed by enrichment analysis is performed on both
samples and features for identifying clinically significant samples groups, and for biologically characterizing them based on the functions of co-
expressed gene groups. a The RNA-Seq expression matrix of TCGA’s breast cancer cohort after clustering both samples (columns) and genes
(rows) into four clusters using the K-means algorithm. Clustering is based on the top 2000 variable genes. White lines separate clusters in each
dimension. The bars below the matrix show selected sample labels (here: the clustering and PAM50). Matrix and bars were created using
PROMO’s multi-label matrix drawing. b Gene clusters were characterized using PROMO’s gene ontology enrichment tool. The figure shows the
five most significant GO terms for every gene cluster. c-e Sample clusters were characterized using the sample clinical labels: c PROMO’s multi-
label analysis tool automatically tests the clinical labels of different types (numeric, ordinal, categorical or survival) for enrichment on the sample
clusters. FDR correction is performed over all clinical labels of the same type but separately for different types. The various d Sample clusters can
also be characterized for a single label by showing its value distribution in each cluster and by calculating enrichment. e Survival functions for
each cluster. The p-values are the significance of the separation of each cluster from the rest using the log-rank test
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using all clinical labels available for the cohort (numeric,
ordinal, categorical, or survival labels). The result is a
characterization of each cluster, together with FDR cor-
rected p-values [31, 32] in a unified report (Fig. 4c). En-
richment tests for the sample clusters can also be
performed using any selected single clinical label (Fig. 4d).
Finally, survival analysis performed on the sample clusters
can test their prognostic value using Kaplan-Meier plots
[33] and log-rank (Mantel–Haenszel) test [34](Fig. 4e).
Taken together, PROMO’s clustering and automatic
multi-label enrichment analysis can quickly partition both
samples and features into distinct groups and assess their
biological meaning using the clinical labels.
Identification of distinguishing genes and features
(biomarker discovery)
Having obtained patient subgroups of interest, either by
sample clustering or using a predefined sample label, we
may wish to identify distinguishing genes and features that
differ significantly among sample groups. Such differen-
tially expressed genes can shed light on the biological dif-
ference between sample clusters, and act as biomarkers
for classifying a new sample to a sample class.
After selecting the label and the groups that will be

compared, PROMO enables the application of various
statistical tests for identifying genes that are differentially
expressed among the groups. The p-values obtained by
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the tests can be used for gene sorting, filtering and for
clustering the genes into up-regulated and down-
regulated groups. PROMO’s Gene Ontology enrichment
analysis can be executed on the resulting gene groups
for characterizing the function of up-regulated and
down-regulated genes. FDR correction and fold-change
based filtering are also supported. PROMO’s biomarker
discovery panel and an example of its output are shown
in Additional file 1: Figure S2.
For detecting survival biomarkers, PROMO can rank

all genes by their association to survival, based on Cox
regression analysis [35]. In addition, the user can use the
expression levels of selected genes to generate a new
sample label (for example, HER2_Low and HER2_High).
Kaplan-Meier plots can then be used to estimate the sig-
nificance of survival differences between sample groups
defined by the new label.
Lastly, PROMO can help in finding genes that are

functionally related to a given gene of interest by rank-
ing all genes based on their correlation to it. Altogether,
the various techniques described here and implemented
in PROMO can quickly identify genes that take part in
the biological differences between sample groups and
may serve as biomarkers for the selected label.
Fig. 5 Automatically generated decision tree for classifying breast tumors i
decision tree for any selected sample label using the currently loaded matr
breast cancer subtypes is presented, showing a 7.77% loss on the training
Automatic generation of a simple molecular classifier
After having partitioned the dataset samples, character-
ized the sample groups and their genes, and established
the clinical relevance of the groups, PROMO can build
an algorithm to classify a new sample into one of the
groups. Such a classifier, especially if based on a small
number of genes (rather than the thousands used to
identify the subgroups) can serve as a significant step to-
wards translating the analysis results into a diagnostic
biomarker for clinical use.
Of the many possible classifier types, decision trees

have the advantages of being easy to understand, highly
interpretable biologically and easily visualized [36]. Fur-
thermore, they allow for controlling the tradeoff between
accuracy and simplicity. For predicting any selected sam-
ple label, PROMO can generate a simple decision tree
with a single click (Fig. 5). The generated decision tree
can be visualized graphically, specified textually, and
saved to a Matlab file as a function. Automatic cross-
validation and parameter optimization make it easy for
the user to come up with a simple decision tree that
may be in future subtype classification kits. It is also
possible to generate a large number of random trees and
rank the genes by the frequency of their appearance in
nto the four PAM50 classes. PROMO can generate a cross-validated
ix as training data. In this figure, a four-gene molecular classifier for
data, and a 15% averaged loss on 10-fold cross-validation



Table 2 PROMO’s key features

Category Key Features

Data import ▪ Importing genomic data from tabular CSV files
▪ Importing UCSC’s XENA genome matrix and
phenotype files

▪ Importing GEO series files
▪ Adding clinical labels from file

Preprocessing ▪ Flooring, ceiling and row normalization
▪ Filtering of samples by clinical labels
▪ Filter features by range, variance, gene
symbols or by an external list

Data exploration and
visualization

▪ PCA, t-SNE
▪ Data distribution plots
▪ Survival Analysis (Kaplan Meier, Log rank)
▪ Multi-label expression matrix figures

Sorting ▪ Sorting samples and features based on
genomic data

▪ Sorting samples based on clinical labels

Clustering ▪ Clustering both samples and features using K-
means [27], hierarchical clustering [28], and
Click [29]

▪ Browsing clustering history and zooming into
specific clusters

Sample cluster
analysis

▪ Automated multi-label enrichment test for
detecting enrichment of clinical labels

Feature cluster
analysis

▪ Gene ontology enrichment analysis

Biomarker discovery ▪ Applying statistical tests for detecting
differentially expressed genes/features

▪ Filter results by FDR corrected p-value and
fold change

▪ Rank genes based on survival prediction (COX
regression)

Classifier generation ▪ Automatic generation of decision tree
classifiers for selected sample labels

Integrative multi-omic
analysis

▪ Assembly of dataset collection
▪ Multi-omic clustering using SNF [39], NEMO
[40] or Consensus Clustering [41]

▪ Inter-omic correlation identification
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the trees, thus identifying informative features for sub-
type classification.

Integrative multi-omic analysis
In multi-omic datasets, each sample is characterized by
several omic profiles (e.g., gene expression, methylation,
copy number). Integrative analysis of multi-omic cancer
datasets has the potential of revealing biological regula-
tory patterns that are missed in single omic analysis, and
tools for performing such analyses are currently in great
demand [37, 38].
PROMO provides several features for handling and

analyzing multi-omic datasets. The profiles composing a
multi-omic dataset can be imported from repositories
into a ‘Multi-Omic Dataset Collection’ in PROMO
(Fig. 2e). The user can navigate between the matrices,
edit them independently, and select a subset of the data-
sets for downstream integrative analysis. Precompiled
dataset collections for several TCGA cancer type cohorts
are available on PROMO’s download page.
After setting up a multi-omic collection, the “inter-

omic correlation identification” feature helps to detect
correlations between features in two selected omics. This
feature allows the identification of correlations between
features from different biological levels. For instance,
anti-correlation between mRNA expression and DNA
methylation levels can pinpoint biological regulation.
The “Multi-omic clustering” feature can be used to

cluster the dataset samples based on several omic matri-
ces simultaneously. To this end, PROMO provides
implementations of the multi-omic algorithms SNF [39],
NEMO [40], and Consensus Clustering [41] modified for
multi-omic data. Additional file 1: Figure S4 demon-
strates the application of a multi-omic clustering algo-
rithm on three different omics of the TCGA’s breast
cancer cohort.

Discussion
Recent cancer projects such as TCGA [11], GDC [42],
ICGC [43] as well as the GEO [18] database, provide the
research community with a wealth of omic profiles and
extensive clinical information on cancer patients [44].
Analysis of the data is challenging and requires advanced
bioinformatics, statistical, and programming skills. A
thorough analysis of these datasets - and larger ones ex-
pected in the future - by many researchers is crucial for
improving cancer diagnosis and treatment.
PROMO aims to fill in a gap in available analysis tools

for such large genomic and clinical cancer datasets. It is
an interactive tool that is freely available and supports a
rich collection of analysis methods and facilitates useful
workflows for data exploration and visualization, cancer
subtype identification, biomarker discovery and integra-
tive multi-omic analysis. (See Table 2 for a list of the key
features). PROMO’s support for large sample size in
addition to features like survival analysis and interroga-
tion of the clinical data on sample clusters make it espe-
cially suitable for analyzing modern cancer datasets.
While many of PROMO’s features are also available in
other tools (Table 3), PROMO is unique in its compre-
hensiveness, support for large sample dimension and the
spectrum of tools it provides.
Our vision for PROMO is that it will be used as a one-

stop-shop for mining clinically important insights from
genomic datasets, quickly and without any need for pro-
gramming skills. It accelerates the analysis process and
makes it more accessible for non-computational cancer
researchers. Within a single short session, the user can im-
port a cancer dataset of interest, preprocess it, cluster its
samples and features, test the sample clusters for signifi-
cance using survival analysis and enrichment tests on the
clinical labels, test the feature clusters for GO enrichment,
identify subtype distinguishing features (biomarkers) using



Table 3 Comparison of the main functions provided by PROMO and by other tools

Function PROMO Expander [45] XENA [20] Perseus [46] KnowEng [47] O-Miner [48]

Precompiled datasets V X V X V V

Preprocessing V V X V X V

Data visualization V V V V V V

Sample clustering V V X V V V

Feature clustering V V V V X V

Sample clusters enrichment tests (clinical data) V X V X V X

Feature clusters enrichment tests V V X V V V

Survival analysis V X V X V V

Biomarker discovery V V X V X V

Automatic decision tree generation V X X X X X

Inter-omic correlation identification V X X X V X

Integrative multi-omic sample clustering V X X X X X

Netanely et al. BMC Bioinformatics          (2019) 20:732 Page 9 of 10
various statistical tests and export the results using various
reports and figures. The simple classification capabilities
in PROMO can automatically produce a decision tree
classifier for any selected label, and thus act as a basis for
a subtype diagnosis.
We intend to continue developing PROMO by adding

features and supporting the tool’s users. We hope that
PROMO’s comprehensiveness and ease of use will help
cancer researchers make the best use of the accumulating
cancer datasets to fulfill the promises of precision medicine.

Conclusions
PROMO is a powerful, user-friendly, stand-alone, publicly
available tool for exploration, analysis, and interpretation
of genomic cancer data together with clinical information.

Methods
Implementation
PROMO is a standalone Windows application that can
support huge datasets and has a fast fully interactive
graphical user interface. PROMO was written in
MATLAB, and it runs over the freely available Matlab
runtime environment, taking advantage of its strong
computational engine and editable graphical outputs.
PROMO is freely available for download at http://acgt.
cs.tau.ac.il/promo/.
PROMO’s main screen (Fig. 2a) includes several key

graphic elements: A large heatmap representing the cur-
rently analyzed genomic matrix is located at the center
of the screen (heatmap colors correspond to the matrix
values as indicated by the color scale on the right). Be-
neath the heatmap, a color-bar displays the currently se-
lected sample labels. The same sample label colors will
consistently be used by PROMO in all displays. The user
can scroll down the list of clinical labels and explore
their distribution over the samples. The panel on the left
provides access to common commands and parameters.
A text log that documents the analysis steps appears at
the bottom of the screen. Figures 2B-F show the various
panels that can be directly opened from the tab menu
on the left of the screen, providing quick access to PRO-
MO’s most useful features.

Availability and requirements
Project name: PROMO (Profiler of Multi-Omics data)
Project home page: http://acgt.cs.tau.ac.il/promo/
Operating system: Windows
Programming language: Matlab
Other requirements: Installation of Matlab runtime li-

brary R2019a (9.6)
License: GNU GPL 3.0
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3142-5.

Additional file 1: Figure S1. Clustering Panel. Figure S2. Biomarker
Discovery. Table S1. List of differentially expressed genes. Figure S3.
Label Management Panel. Figure S4. Multi-omic sample clustering.
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