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Abstract 

Background  

Analysis of large genomic datasets along with their accompanying clinical information has shown great 

promise in cancer research over the last decade. Such datasets typically include thousands of samples, 

each measured by one or several high-throughput technologies ('omics') and annotated with extensive 

clinical information. While instrumental for fulfilling the promise of personalized medicine, the analysis 

and visualization of such large datasets is challenging and necessitates programming skills and familiarity 

with a large array of software tools to be used for the various steps of the analysis.  

Results  

We developed PROMO (Profiler of Multi-Omic data), a friendly, fully interactive stand-alone software for 

analyzing large genomic cancer datasets together with their associated clinical information. The tool 

provides an array of built-in methods and algorithms for importing, preprocessing, visualizing, clustering, 

clinical label enrichment testing and survival analysis that can be performed on a single or multi-omic 

dataset. The tool can be used for quick exploration and for stratification of tumor samples taken from 

patients into clinically significant molecular subtypes. Identification of prognostic biomarkers and 

generation of simple subtype classifiers are additional important features. We review PROMO's main 

features and demonstrate its analysis capabilities on a breast cancer cohort from TCGA. 

Conclusions 

PROMO provides a single integrated solution for swiftly performing a complete analysis of cancer genomic 

data for subtype discovery and biomarker identification without writing a single line of code, and can, 

therefore, make the analysis of these data much easier for cancer biologists and biomedical researchers. 

PROMO is freely available for download at http://acgt.cs.tau.ac.il/promo/. 
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Background 

In recent years, a growing number of high-throughput genomic technologies have become available for 

biomedical research and are jointly providing high-resolution genomic data that fuel the revolution of 

personalized medicine [1][2]. These technologies (collectively named omics) allow the simultaneous 

quantification of a large number of features at various biological levels. The features include gene 

expression (mRNA and miRNA abundance levels measured by microarrays or RNA-Seq), protein 

expression (measured by mass spectroscopy or reverse phase protein arrays), DNA methylation 

(methylation arrays), copy number variation (SNP arrays), and others [3][4]. The technologies vary broadly 

in the number of features they measure as well as in the distribution of measured values [5]. However, 

they can typically be summarized as a numeric matrix where columns represent samples and rows 

represent biological features (often correlating to genes). Bioinformatic analysis of such genomic matrices 

has been extensively used for identifying biologically distinct sample groups, and for revealing groups of 

correlated biological features [6][7]. 

The number of tumor samples and measured features that are included in a typical cancer genomic 

dataset have grown dramatically in the last few years, owing to increasing resolution and reduced costs 

of array and sequencing technologies. Modern repositories comprise thousands of patient samples and 

many thousands of features. Investigation of such large datasets is computationally challenging as it 

requires robust software tools for supporting the analysis of both samples and features in high 

dimensional data [8]. 

In addition to genomic data, modern cancer datasets can include extensive medical information (labels) 

describing each sample, such as clinical properties or assignment to a predefined phenotype. These clinical 

labels make it possible to fuse genomic and clinical data in various ways in order to discover new insights 

based on feature-phenotype associations. Common clinical labels in cancer datasets include disease 

subtypes, pathological stages, survival and recurrence follow-up information, as well as response to 

treatment.  Identification of genomic features that are correlated with significant clinical parameters 

(biomarkers) is expected to play a significant role in the field of personalized medicine, by which the status 

of multiple biomarkers may improve subtype diagnosis and guide therapeutic decisions [9][10].   

The Cancer Genome Atlas (TCGA) is an example of a revolutionary multi-label multi-omic genomic 

database [11]. It includes more than 11,000 samples from 33 types of cancer, where each sample was 

measured using multiple omic technologies and was described by dozens of clinical labels [12]. Many 

studies have already analyzed TCGA data, improving the subtyping of cancers and shedding light on the 
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biological mechanisms underlying the development of various cancer types [13][14][15]. Such analyses 

are typically time-consuming, computationally challenging, and entail team effort, as they require 

applying a diverse array of methods, statistical tools, and algorithms, and often also require writing 

extensive computer code to perform and interweave the various steps of the analysis [16]. Hence, to 

effectively extract clinically meaningful insights from such multi-omic multi-label databases, specialized 

agile integrative tools are required. 

To address this challenge, we developed PROMO (PROfiler of Multi Omic data), a fully interactive software 

suite capable of quickly importing, preprocessing, visualizing, analyzing and reporting the results on 

cancer datasets in a seamless fashion, without writing a single line of computer code. PROMO includes an 

extensive array of bioinformatic methods for performing major common analysis types including 

exploration, visualization, identification of clinically significant disease subtypes, revealing co-regulated 

feature groups, biomarker discovery, simple classification and integrative multi-omic analysis. Table 1 

presents an overview of the fundamental analysis types available in PROMO.  

An early version of PROMO was developed as part of a study where we identified distinct prognostic 

subgroups in Luminal-A breast tumors based on expression and methylation data [17]. The analysis 

workflow in that project provides an example of the key steps in a typical application of PROMO (Figure 

1): Data are imported, filtered and preprocessed. Tumor samples are clustered into groups that are then 

assessed for clinical significance using survival analysis and statistical tests on the clinical labels. Clustering 

of the genes followed by gene enrichment analysis, associates sample clusters with active gene functions. 

The analysis is summarized visually in a genomic matrix clearly showing the identified sample clusters and 

their association to important clinical labels (Figure 1, step 4), in addition to downstream analysis methods 

(Figure 1, steps 5-7). 

In this paper, we describe PROMO's main features and demonstrate its use in a study of a breast cancer 

cohort [14]. 
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Implementation 

PROMO is a standalone Windows application that can support huge datasets and has a fast fully 

interactive graphical user interface.  PROMO was written in MATLAB, and it runs over the freely available 

Matlab runtime environment, taking advantage of its strong computational engine and editable graphical 

outputs. PROMO is freely available for download at http://acgt.cs.tau.ac.il/promo/. 

PROMO's main screen (Figure 2A) includes several key graphic elements: A large heatmap representing 

the currently analyzed genomic matrix is located at the center of the screen (heatmap colors correspond 

to the matrix values as indicated by the color scale on the right). Beneath the heatmap, a color-bar displays 

the currently selected sample labels. The same sample label colors will consistently be used by PROMO in 

all displays. The user can scroll down the list of clinical labels and explore their distribution over the 

samples. The panel on the left provides access to common commands and parameters. A text log that 

documents the analysis steps appears at the bottom of the screen. Figures 2B-F show the various panels 

that can be directly opened from the tab menu on the left of the screen, providing quick access to 

PROMO’s most useful features. 

Results 

We now describe PROMO’s main features, organized by analysis steps. The dataset used was TCGA's 

breast cancer gene expression profiles (1218 samples downloaded from UCSC's XENA website on May 

2018 ). It is also available on the datasets page of PROMO's website. 

Data import and preprocessing 

In all analysis types, the first steps are to import the required data from local files into PROMO, and 

prepare it for the anlaysis. PROMO enables the integration of data of different types and from multiple 

sources by importing genomic matrices, sample labels and sample or gene partition files. Genomic 

matrices accompanied by complementary phenotypic information (clinical labels) can be loaded in the 

following formats: tabular text files, UCSC's XENA[18][19] file formats (available for many public datasets 

including all TCGA's data), and PROMO's DSC files. The latter are precompiled multi-omic datasets 

available at PROMO's dataset download page for selected TCGA cohorts. PROMO also allows separate 

loading of additional clinical labels and sample partition files to be used in the subtype discovery workflow. 

After import, the loaded dataset can be 'cleaned' by filtering out samples based on clinical label values, 

and also by removing certain features (e.g., removing low variability genes or keeping only specific genes). 

Additional available common preprocessing steps include flooring, ceiling, and row normalization.  
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Data exploration and visualization 

Once a genomic matrix is loaded to PROMO, its properties can be explored with respect to any selected 

clinical label (Figure 3A). The samples (columns) in the matrix can be reordered based on any clinical label 

or by their mean expression. Basic dataset properties like value distribution (3B), clinical label distribution 

(3C), and sample variation (3D) can be studied and displayed graphically in various ways including PCA 

[20][21] and t-SNE [22]. For ease of interpretation, all displays consistently use the same colors to 

represent the various sample subgroups.   

Clustering and enrichment analyses 

A major effort in promoting precision medicine is to identify disjoint groups of similar patients and 

characterize each group using its distinct genomic profile, survival data and clinical information. To reveal 

the similarities among patients, clustering is often performed on both samples and features [23].  

Clustering the samples can reveal patient groups corresponding to disease subtypes [24], while clustering 

the features reveals groups of co-regulated genes [25]. PROMO provides various clustering algorithms 

such as K-means [26], hierarchical clustering [27], and Click [28] (PROMO's clustering panel is shown in 

Figure S1). To explore the resulting clusters, the reordered matrix can be visualized in comparison to 

multiple sample labels (Fig 4A). 

After the genes have been clustered, the built-in Gene Ontology tool can help interpret the biological 

meaning of gene clusters using enrichment analysis (Fig 4B) [29]. Likewise, the clinical labels on the 

samples can be used to statistically characterize each sample cluster. A comprehensive analysis can be 

applied to each sample cluster using all clinical labels available for the cohort (numeric, ordinal, categorical 

or survival labels). The result is a characterization of each cluster together with FDR corrected p-values 

[30][31] in a unified report (Fig 4C). Enrichment tests for the sample clusters can also be performed using 

any selected single clinical label (Fig 4D).  Finally, survival analysis performed on the sample clusters can 

test their prognostic value using Kaplan-Meier plots [32] and log-rank (Mantel–Haenszel) test [33](Fig 4E). 

Taken together, PROMO’s clustering and automatic multi-label enrichment analysis can quickly partition 

both samples and features into distinct groups and assess their biological meaning using the clinical labels. 
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Identification of distinguishing genes and features (Biomarker discovery) 

Having obtained patient subgroups of interest, either by sample clustering or using a predefined sample 

label, we may wish to identify distinguishing genes and features that differ significantly among sample 

groups. Such differentially expressed genes can shed light on the biological difference between sample 

clusters, and act as biomarkers for classifying a new sample to a sample class.   

After selecting the label and the groups that will be compared, PROMO enables the application of various 

statistical tests for identifying genes that are differentially expressed among the groups. The p-values 

obtained by the tests can be used for gene sorting, filtering and for clustering the genes into up-regulated 

and down-regulated groups. PROMO's Gene Ontology enrichment analysis can be executed on the 

resulting gene groups for characterizing the function of up-regulated and down-regulated genes. FDR 

correction and fold-change based filtering are also supported. PROMO's biomarker discovery panel and 

an example of its output are shown in Figure S2. 

For detecting survival biomarkers, PROMO can rank all genes by their association to survival, based on 

Cox regression analysis [34]. In addition, the user can use the expression levels of selected genes to 

generate a new sample label (for example HER2_Low and HER2_High). Kaplan-Meier plots can then be 

used to estimate the significance of survival differences between sample groups defined by the new label. 

Lastly, PROMO can help in finding genes that are functionally related to a given gene of interest by ranking 

all genes based on their correlation to it. Altogether, the various techniques described here and 

implemented in PROMO can quickly identify genes that take part in the biological differences between 

sample groups and may serve as biomarkers for the selected label.  
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Automatic generation of a simple molecular classifier 

After having partitioned the dataset samples, characterized the sample groups and their genes, and 

established the clinical relevance of the groups, PROMO can build an algorithm to classify a new sample 

into one of the groups. Such a classifier, especially if based on a small number of genes (rather than the 

thousands used to identify the subgroups) can serve as a significant step towards translating the analysis 

results into a diagnostic biomarker for clinical use.   

Of the many possible classifier types, decision trees have the advantages of being easy to understand, 

highly interpretable biologically and easily visualized [35]. Furthermore, they allow for controlling the 

tradeoff between accuracy and simplicity. For predicting any selected sample label, PROMO can generate 

a simple decision tree with a single click (Fig 5). The generated decision tree can be visualized graphically, 

specified textually and saved to a Matlab file as a function. Automatic cross-validation and parameter 

optimization make it easy for the user to come up with a simple decision tree that may be in future 

subtype classification kits. It is also possible to generate a large number of random trees and rank the 

genes by the frequency of their appearance in the trees, thus identifying informative features for subtype 

classification. 

 

Integrative multi-omic analysis 

In multi-omic datasets, each sample is characterized by several omic profiles (e.g., gene expression, 

methylation, copy number). Integrative analysis of multi-omic cancer datasets has a potential of revealing 

biological regulatory patterns that are missed in single omic analysis, and tools for performing such 

analyses are currently in great demand [36][37].   

PROMO provides several features for handling and analyzing multi-omic datasets. The profiles composing 

a multi-omic dataset can be imported from repositories into a 'Multi-Omic Dataset Collection' in PROMO 

(Figure 2E). The user can navigate between the matrices, edit them independently, and select a subset of 

the datasets for downstream integrative analysis. Precompiled dataset collections for several TCGA cancer 

type cohorts are available on PROMO's download page. 

After setting up a multi-omic collection, the "inter-omic correlation identification" feature helps to detect 

correlations between features in two selected omics. This feature allows the identification of correlations 

between features from different biological levels. For instance, anti-correlation between mRNA 

expression and DNA methylation levels can pinpoint biological regulation. 
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The "Multi-omic clustering" feature can be used to cluster the dataset samples based on several omic 

matrices simultaneously. To this end, PROMO provides implementations of the multi-omic algorithms SNF 

[38], NEMO [39] and of Consensus Clustering [40] modified for multi-omic data. Figure S4 demonstrates 

the application of a multi-omic clustering algorithm on three different omics of the TCGA's breast cancer 

cohort. 

Discussion  

Recent cancer projects such as TCGA [41], GDC [42], and ICGC [43] provide the research community with 

a wealth of omic profiles and extensive clinical information on cancer patients [44]. Analysis of the data is 

challenging and requires advanced bioinformatics, statistical and programming skills. A thorough analysis 

of these datasets - and larger ones expected in the future - by many researchers, is crucial for improving 

cancer diagnosis and treatment. 

PROMO aims to fill in a gap in available analysis tools for such large genomic and clinical cancer datasets.  

It is an interactive tool that is freely available and  supports a rich collection of analysis methods and 

facilitates useful workflows for data exploration and visualization, cancer subtype identification, 

biomarker discovery and integrative multi-omic analysis. (See Table 2 for a list of the key features). 

PROMO's support for large sample size in addition to features like survival analysis and interrogation of 

the clinical data on sample clusters make it especially suitable for analyzing modern cancer datasets. While 

many of PROMO's features are also available in other tools (Table 3), PROMO is unique in its 

comprehensiveness, support for large sample dimension and the spectrum of tools it provides.  

Our vision for PROMO is that it will be used as a one-stop shop for mining clinically important insights 

from genomic datasets, quickly and without any need for programming skills. It accelerates the analysis 

process and makes it more accessible for non-computational cancer researchers. Within a single short 

session, the user can import a cancer dataset of interest, preprocess it, cluster its samples and features, 

test the sample clusters for significance using survival analysis and enrichment tests on the clinical labels, 

test the feature clusters for GO enrichment, identify subtype distinguishing features (biomarkers) using 

various statistical tests and export the results using various reports and figures.  The simple classification 

capabilities in PROMO can automatically produce a decision tree classifier for any selected label, and thus 

act as a basis for a subtype diagnosis.  

We intend to continue developing PROMO by adding features and supporting the tool's users. We hope 

that PROMO’s comprehensiveness and ease of use will help cancer researchers make the best use of the 

accumulating cancer datasets to fulfill the promises of precision medicine.  
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Conclusions 

PROMO is a powerful, user-friendly, stand-alone, publicly available tool for exploration, analysis, and 

interpretation of genomic cancer data together with clinical information. 

Availability and requirements 

Project name: PROMO  (Profiler of Multi-Omics data)  

Project home page: http://acgt.cs.tau.ac.il/promo/ 

Operating system: Windows 

Programming language: Matlab 

Required runtime library: Matlab R2019a (9.6) 

List of abbreviations 

BRCA  Breast Cancer 

DSC  Dataset Collection 

FDR  False Discovery Rate 

GO  Gene Ontology 

PCA  Principal Component Analysis 

t-SNE  t-distributed Stochastic Neighbor Embedding 

PROMO Profiler of Multi-Omics data 

TCGA  The Cancer Genome Atlas 
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Figures 

 

 

 

Figure 1 – PROMO’s subtype discovery workflow – From data import to subtype classifier This figure 

outlines the complete workflow by which PROMO can be used for identifying and characterizing clinically 

distinct cancer subtypes: (1) Importing genomic data together with clinical information in one of several 

available formats. (2) Preprocessing the data and preparing it for downstream analysis. (3) Verifying the 

integrity of the data, characterizing its distribution and exploring dataset properties with respect to 

available clinical label. (4) Employing clustering algorithms partition both samples and features (genes) 

into groups. (5) Applying enrichment tests to identify clinically significant sample subtypes and groups of 

co-regulated genes. and to characterize their function. (6) Statistical tests identify features that distinguish 

between different sample subtypes as well as survival related features. (7) Decision tree classifier can be 

generated for formulating a set of rules by which a new sample can be classified.   
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(A) PROMO's main screen 
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Figure 2: PROMO’s graphical user interface (A) PROMO's main screen. The genomic matrix is in the center with 

columns corresponding to samples and rows to features. Colors represent feature values according to the scale on 

the right. The colorful label bar beneath the matrix displays the currently selected sample label. Analysis steps are 

documented in the textbox on the bottom of the screen. Key commands are available on the tabbed panels on the 

left of the screen. (B) The Preprocessing panel allows filtering, normalization, and sorting of the genomic data. (C) 

Clustering the dataset's samples and features using various algorithms and distance functions is available through 

the Clustering panel. Resulting clustering solutions are aggregated for future review and filtering. (D) The Analysis 

panel provides access to several visualization and exploratory tools like PCA, t-SNE, survival analysis, biomarker 

discovery, GO enrichment and automatic classifier generation. (E) In the Dataset Collection panel, several genomic 

matrices can be assembled into a multi-omic dataset collection, and then analyzed together.  
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Figure 3: Visualization of multi-label genomic data. PROMO provides a variety of methods for visualizing 

a genomic dataset together with its associated clinical information. (A) A multi-label expression matrix 

plot. The plot is  composed of a heat-map representation of the genomic matrix and several label bars 

beneath it showing different clinical labels that the user interactively selected. The colors in each label bar 

show the label value of each sample according to the legend on the right. The label appears below the 

lower left corner of the bar. Here, breast cancer patient profiles were grouped according to their PAM50 

category (shown in the top label bar). By observing the distribution of values in other bars, relations 

between the groups and the labels can be observed. For example, the ER, PR and HER2 status of most 

samples in the 'Basal' group are negative, while the HER2 status of most 'HER2' group is positive. (B) Data 

distribution and (C) Clinical label distribution can be explored and visualized separately, or in combination 

using plots such as (D) PCA and others. These figures show that the Basal tumor samples are mainly 

characterized by Negative ER, PR and HER2 labels (A) and markedly differ from all other subtypes in their 

gene expression pattern (D), in accordance with the literature [14]. 
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Figure 4: Identification and characterization of cancer subtypes. Unsupervised analysis followed by 

enrichment analysis is performed on both samples and features for identifying clinically significant 

samples groups, and for biologically characterizing them based on the functions of co-expressed gene 

groups. (A) The RNA-Seq expression matrix of TCGA's breast cancer cohort after clustering both samples 

(columns) and genes (rows) into four clusters using the K-means algorithm. Clustering is based on the top 

2000 variable genes. White lines separate clusters in each dimension. The bars below the matrix show 

selected sample labels (here: the clustering and PAM50). Matrix and bars were created using PROMO's 

multi-label matrix drawing. (B) Gene clusters were characterized using PROMO's gene ontology 

enrichment tool. The figure shows the five most significant GO terms for every gene cluster. (C-E) Sample 

clusters were characterized using the sample clinical labels: (C) PROMO's multi-label analysis tool 

automatically tests the clinical labels of different types (numeric, ordinal, categorical or survival) for 

enrichment on the sample clusters. The various (D) Sample clusters can also be characterized for a single 

label by showing its value distribution in each cluster and by calculating enrichment . (E) Survival functions 

for each cluster. The p-values are the significance of separation of each cluster from the rest using the log-

rank test.   
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Figure 5: Automatically generated decision tree for classifying breast tumors into the four PAM50 

classes. PROMO can generate a cross-validated decision tree for any selected sample label using the 

currently loaded matrix as training data. In this figure, a four-gene molecular classifier for breast cancer 

subtypes is presented, showing 7.77% loss on the training data, and 15% averaged loss on 10-fold cross-

validation. 
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Tables 

Table 1 – PROMO’s main analysis types 

 Analysis type Biomedical goal Relevant PROMO features 

1 General exploration and 

visualization 

Explore the genomic dataset vis-a-vis 

the clinical labels 

Prepare the dataset for downstream 

analysis, test its consistency and 

visualize its properties 

 Variance-based feature filtering 

 Label-based sample filtering 

 Normalization 

 Sorting by samples label or mean 

expression 

 Visualizing data distribution 

 PCA, t-SNE 

2 Focus on genes of interest Explore the expression profiles of 

specific genes vis-à-vis multiple 

clinical labels 

Identify co-expressed genes 

 Filter features based on gene symbols 

 Rank genes by correlation to a given 

gene symbol 

 Multi-label matrix visualization 

3 Disease subtype identification  Look for clinically significant sample 

clusters 

 Sample clustering 

 Label enrichment analysis 

 Survival analysis 

 Classification 

4 Co-regulated feature group 

identification 

Identify groups of similar features, 

characterize each group by function 

 Feature clustering 

 GO Enrichment analysis 

5 Biomarker discovery Find features that distinguish among 

sample groups, correlate groups with 

survival and other clinical data 

 Statistical tests for identifying 

differentially expressed genes 

 Biomarker-based survival analysis 

 Rank genes by survival prediction 

6 Integrative multi-omic analysis Stratify patients and identify 

coherent feature groups by 

integrating data from different omics 

 Multi-omic sample clustering 

 Inter-omic feature correlation 
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Table 2: PROMO’s key features 

CATEGORY KEY FEATURES 

DATA IMPORT  Importing genomic data from tabular CSV files 

 Importing UCSC’s XENA genome matrix and phenotype files 

 Adding clinical labels from file 

PREPROCESSING  Flooring, ceiling and row normalization  

 Filtering of samples by clinical labels 

 Filter features by range, variance, gene symbols or by an external 

list 

DATA EXPLORATION AND 

VISUALIZATION 
 PCA, t-SNE 

 Data distribution plots 

 Survival Analysis (Kaplan Meier, Log rank) 

 Multi-label expression matrix figures 

SORTING  Sorting samples and features based on genomic data 

 Sorting samples based on clinical labels 

CLUSTERING  Clustering both samples and features using K-means [26], 

hierarchical clustering [27], and Click [28] 

 Browsing clustering history and zooming into specific clusters 

SAMPLE CLUSTER ANALYSIS  Automated multi-label enrichment test for detecting enrichment of 

clinical labels   

FEATURE CLUSTER ANALYSIS  Gene ontology enrichment analysis 

BIOMARKER DISCOVERY  Applying statistical tests for detecting differentially expressed 

genes/features 

 Filter results by FDR corrected p-value and fold change 

 Rank genes based on survival prediction (COX regression) 

CLASSIFIER GENERATION  Automatic generation of decision tree classifiers for selected 

sample labels 

INTEGRATIVE MULTI-OMIC 

ANALYSIS 
 Assembly of dataset collection 

 Multi-omic clustering using SNF [38], NEMO [39] or Consensus 

Clustering [40] 

 Inter-omic correlation identification 
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Table 3: Comparison of the main functions provided by PROMO and by other tools 

Function  
PROMO 

 

Expander 

[45] 

XENA 

[19]  

Perseus 

[46] 

KnowEng 

[47] 

O-Miner 

 [48] 

Precompiled datasets V X V X V V 

Preprocessing V V X V X V 

Data Visualization V V V V V V 

Sample clustering V V X V V V 

Feature clustering V V V V X V 

Sample clusters enrichment tests (clinical data) V X V X V X 

Feature clusters enrichment tests V V X V V V 

Survival analysis V X V X V V 

Biomarker discovery V V X V X V 

Automatic decision tree generation V X X X X X 

Inter-omic correlation identification V X X X V X 

Integrative multi-omic sample clustering V X X X X X 
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Supplementary Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Clustering Panel The clustering panel allows the selection of a clustering algorithm and its 

relevant parameters. Clustering can be applied both on samples and on genes. The resulting clusters are 

added as a new sample label and  can be explored on PROMO's main screen with respect to any other 

clinical label (See Figure 3). 
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Figure S2: Biomarker Discovery (A) This panel is used for identifying genes that are differentially 

expressed between sample groups defined by any sample label. Statistical tests vary by the label types, 

and include t-test, Ranksum test, ANOVA and Kruskal-Wallis. After optional filtering, the resulting list of 

genes is saved to a file sorted by p-value. Here two groups were defined, according to the PAM50 label. 

One group corresponds to the basal and the other to the LumA and Lum B categories. See Table S1 for the 

resulting set of differentially expressed genes.   (B) The feature patterns of the identified genes are 

presented on PROMO's main screen together with any selected sample labels. Here we see the expression 

levels of the 20 genes that were identified by the test in A, after row normalization).  

A 

B 
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id Gene Symbol p-value (Test:  
Ranksum test on 
PAM50B_Call 
[Basal](n=191) vs. 
[LumA,LumB](n=770)) 

Fold 
Change 

p-value 
Rank 

1 CXorf61 2.33E-123 4.5604 1 

2 LEMD1 1.72E-122 3.1005 2 

3 ART3 3.17E-118 5.294 3 

4 HORMAD1 1.75E-113 5.8894 4 

5 GABBR2 7.04E-111 4.2383 5 

6 SLC26A9 4.21E-101 2.4335 6 

7 OPRK1 2.22E-99 2.5534 7 

8 GATA3 3.27E-99 -4.02715 8 

9 CCKBR 5.86E-99 2.1373 9 

10 ROPN1 8.44E-99 6.1879 10 

11 MLPH 5.43E-98 -5.1038 11 

12 ESR1 7.07E-98 -7.07625 12 

13 SLC39A6 9.68E-98 -2.7197 13 

14 FOXA1 3.21E-97 -6.7128 14 

15 TBC1D9 6.71E-97 -4.06355 15 

16 LOC145837 2.99E-96 -4.18775 16 

17 CT62 3.12E-96 -3.65845 17 

18 RASGEF1C 5.50E-96 2.1274 18 

19 AGR3 1.12E-95 -9.2111 19 

20 FOXC1 1.63E-95 4.26835 20 

 

Table S1: List of differentially expressed genes. The 20 genes with the most significant differential 

expression between the groups defined in Figure S2A are shown. Genes are sorted by their Ranksum test 

p-values. Genes with positive fold change are over-expressed on the Basal samples compared with the 

Luminal samples.  Here, for instance, we see that the Estrogen Receptor gene (ESR1) is ranked 12th and 

exhibits a significant under-expression on the Basal tumors samples (the Triple-Negative subtype) 

compared to the Luminal tumor samples.   
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Figure S3: Label Management Panel This panel allows the management of sample labels, including 

removing, renaming and viewing the distribution of values of a label. Labels can be assigned to category 

types, and those types determine the statistical test that can be used for calculating their enrichment on 

sample clusters. Both labels and their categories can be loaded and saved to files. New labels can be 

generated from existing labels (by uniting label values for instance), or from genomic data (e.g., translating 

expression values of selected gene to LOW/HIGH labels). Lastly, the distribution of values for the selected 

label is displayed as an histogram on the right. 
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Figure S4: Multi-omic sample clustering Screenshot of PROMO's main screen after applying multi-omic 

clustering on 674 breast tumor samples from TCGA. The 'Dataset Collection' panel on the left was used to 

select the three omics to be used in the clustering. Here features from three different omics were used:  

(A) RNA-Seq (2000 features), (B) DNA methylation arrays (2000 features) and (C) miRNA arrays (500 

features). Algorithm NEMO [39] was applied on the subset of samples appearing in the three omics into 

5 groups, shown on the label bar below the matrix. The genomic matrix displays concatenation of the 

4500 features included in the analysis after row normalization, with samples grouped by cluster. The 1st 

and 4th clusters from the left have high methylation signals, while the second and third have higher gene 

expression signals. Clustering of tumor samples using a multi-omic algorithms integrates data from 

different biological levels and thus has the potential of revealing biological regulatory patterns that are 

missed in single omic analysis. 
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