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Abstract

Genome rearrangement problems arise in both species evolution and cancer research.
Basic genome rearrangement models assume that the genome contains a single copy
of each gene and the only changes in the genome are structural, i.e. reordering of
segments. In contrast, numerical changes such as deletions and duplications, which
change the number of copies of genes, have been observed in species evolution and
prominently in tumorigenesis. In this thesis we describe our studies in which we de-
veloped models for structural and numerical alterations in cancer. The models differ
in the assumptions taken on the genome structure and in the type of rearrangements
allowed during their evolution. We give efficient algorithms and hardness results on
these models, and use them to analyze tumor genomes. This thesis advances the
state of the art of multi copy genome rearrangements in cancer in two ways. Our
models allow a broader set of operations than extant models, thus being more real-
istic. Furthermore, they attempt to reconstruct the full sequence of structural and

numerical events during cancer evolution.
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Chapter 1
Introduction

The computational study of genome rearrangements is a sub-area of computational
biology born about 25 years ago [89, 91]. Over that period, it has flourished and
developed into a fascinating research area, combining beautiful combinatorial mod-
els, elegant theory and applications. Models of the first generation, motivated by
species evolution, were simple (though their analysis was sometimes quite sophis-
ticated) and assumed that genomes contain only one copy of each gene. With the
explosion of biological data, new analysis opportunities arose, necessitating more

complex models and theory.

This chapter describes some of the problems and results related to rearrangement
models allowing multiple gene copies. This research area is motivated by evolution of
species and of cancer genomes. Studies of cancer genome evolution are stimulated
by the recent large scale deep sequencing of thousands of tumor genomes, which
has brought about a plethora of novel challenges. Our main focus is on multi-copy

models, but key single-copy models are also reviewed briefly for context.

This chapter is by no means exhaustive. The field of modeling genome rearrange-
ments is vast and cannot be covered in one paper. The selection of topics reflects
our knowledge (or lack thereof) and taste, and we apologize to the many researchers

whose work is not mentioned. For further reading see, e.g., [130, 42, 39].

In the following section we give biological introduction and motivation to genome
rearrangements (GR) in both species evolution and cancer.! Section 1.2 gives com-

putational background and some fundamental results in the analysis of single copy

1See the Acronyms chapter for a list of abbreviations
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genomes. In Sections 1.3 and 1.4 we review GR models that handle genomes with

multiple gene copies in the context of species and cancer evolution.

1.1 Introduction to genome rearrangements

1.1.1 Genomes and rearrangements

The genome? encodes instructions used in the development and functioning of all
living organisms (bacteria, plants, animals etc.). Genomes are built of DNA, a
double-stranded molecule in which each strand is a long sequence of nucleotides
(or bases). Each base can be of four types A, C, G and T. The two strands are
complementary such that an A on one strand is coupled with a 7" on the other
strand, and similarly C is coupled with G. Because of this complementarity, one
strand completely determines the other, and DNA molecules are usually represented

by the sequence of one strand.

The genome is the total DNA material in the cell. It is partitioned into physi-
cally disjoint subsequences called chromosomes. Chromosomes can be either linear
and contain two ends called telomeres, or circular. A gene is a segment along the
chromosome containing information for the construction of a protein. Proteins are
molecules that form the “machines” and building blocks of most cellular functions.
The direction in which a gene is transcribed into a protein on a given strand deter-
mines its orientation. Genes are a basic unit of heredity passed from one generation
to the other.

The causes of diversity of organisms are changes in the DNA between gener-
ations. Such changes, which arise due to inaccurate replication and also due to
environmental effects on the DNA, open the possibilities for modified genes, new

genes, and eventually new species.

Genomes can evolve in a local and global manner. Local alterations refer to point
mutations in the DNA sequence that can either substitute a single base (or a very
short subsequence) with a different one, insert a single base into the sequence or

delete a base from the sequence. Such local alterations can also involve very short

2Since this chapter concentrates mainly on the computational aspects of GR, we only give a brief
biological introduction. We italicize terms that actually require definitions. For concise biological
definitions see, e.g., [66]. Box 1 defines some biological terms that are mentioned in the text.
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sequence segments. On the other hand, a sequence can also evolve by modifying its
organization on a large scale. These global mutations, called genome rearrangements
or structural variations, relocate, duplicate, or delete large fragments of the DNA.

The main rearrangement types include the following (compare Figure 1.1):

Deletion. A segment of DNA is lost. A chromosome deletion is a deletion of

an entire chromosome.

e [nversion or reversal. A segment is cut and reinserted in the opposite orien-
tation. Since the insertion reverses the two strands, the result is an inverted

and reverse complemented DNA sequence.
e Transposition. A DNA segment is moved to a different location.

e Duplication. A genomic segment is copied and reinserted into the genome.
In a tandem duplication the copy is inserted right after the original one. An
arbitrary (non tandem) duplication inserts the new copy at an arbitrary posi-
tion (one particular type of such is retrotransposition). A whole chromosome
duplication makes another copy of an entire chromosome. A whole genome

duplication duplicates all the genome’s chromosomes.
e Translocation. Two linear chromosomes exchange their end segments.
e Fusion. Two chromosomes are joined into one.

e Fission. A chromosome splits into two chromosomes.

The above rearrangement operations affect DNA segments rather than nucleotides
and thus genomes are often represented by sequences of segments in this context.
Two segments are called homologous if they derive from a common ancestor either
by speciation (in that case the segments appear in the genomes of different species)

or by duplication (where they occur on the same genome).

While these operations represent the common rearrangements observed in genomes
they do not necessarily correspond to atomic biological events. For instance, even
though fusions and fissions are observed in genomic data, they may be a result of

multiple operations and not a single one.
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Figure 1.1: Genome rearrangements. a. Deletion. b. Reversal. c. Transposition. d.
Tandem duplication. e. Translocation. f. Fusion. g. Fission.

1.1.2 Genome rearrangements in species evolution

The genomes of related species are very similar. For instance, most of the mouse and
human genomes can be divided into segments in which gene content is conserved
[26]. However, the order of these segments along the human and mouse genomes is
different. This difference is attributed to rearrangement events occurring after the

divergence of the two lineages.

The phenomenon of GR in evolution was discovered by Sturtevant and Dobzhan-
sky who demonstrated inversions between genomes of drosophila species [103]. Palmer
and colleagues observed that mitochondrial DNA of related plant species have similar
gene content but different segment ordering (Figure 1.2) [79, 102]. This immediately
raises the question of how this change came about, the fundamental problem that
underlies the GR field.
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Figure 1.2: The basic sorting problem. Given Genome I and Genome II, and a set of
allowed operations, we wish to find a shortest sequence of operations transforming
Genome [ into Genome II. The sequence is called a sorting scenario and the number
of operations in it is called the sorting distance. See Figure 1.3 for a sorting scenario.

The detection of GRs in the studies mentioned was largely based on molecular
cytogenetics techniques such as chromosome banding and in-situ hybridization [84].
These studies mostly focused on relatively close species and a small number of
rearrangements between them [92]. With the advent of sequencing technologies,
bioinformatic methods enabled locating homologous segments in different genome
sequences, thus creating finer comparative maps based on genome sequences [81].
See Box 2 for details on the technologies for rearrangement detection. Note that
these techniques do not give evidence to atomic rearrangement events but only

measure the final genome.

Sankoff pioneered the computational study of GR in species evolution [89, 91].
The basic assumption of most mathematical models is that evolution is parsimonious
and prefers a shortest or most likely sequence of events. In their seminal works,
Hannenhalli and Pevzner gave the first polynomial algorithm for the problem of
transforming one genome into the other by the minimum number of reversals and of
reversals and translocations, respectively [49, 50]. They used their algorithm to give

a shortest event sequence between men and mice, and between cabbage and turnip.

Classical computational rearrangement models assume that each gene in the two
genomes under study appears only once and that 1-1 homology between the genes
of the genomes has been established. While this assumption may hold for closely
related genomes, it is unwarranted for divergent species with several copies of the

same genes or highly similar genes. Duplications are an important source of new
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Figure 1.3: A sorting scenario for the chloroplast genome evolution between two
conifers. The genome at the top is transformed to the one at the bottom in five
steps. The first is a deletion and the next four are inversions of genomic segments.
The ends of the involved segments are indicated by the broken lines. Adapted and
simplified from Strauss et al. [102].

gene functions since new gene copies tend to diverge through mutations and develop
new functions. For instance, evidence of whole genome duplication events have been

observed in most angiosperm genomes [20].

1.1.3 Genome rearrangements in cancer

Cancer is a complex disease driven by the accumulation of somatic DNA mutations
over generations of cell divisions. Such mutations affect tumor growth, clinical

progression, immune escape, and drug resistance [31].

Mutations in cancer cells can be local, affecting single DNA base pairs. These
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Box 1 Some biological jargon

Angiosperms - the flowering plants

Chloroplasts - specialized compartments in plant cells responsible for photosynthesis
Conifers - cone-bearing seed plants

Drosophila - fruit fly

Metaphase - a stage in cell division. During metaphase chromosomes can be distin-
guished under the microscope after appropriate painting

Orthologs - descendant copies of the same gene sequence in different species. Or-
thologs can usually be identified by their sequence similarity

Somatic cell - any cell forming the organism body other than the reproductive cells.
The genome in sperm and egg cells is inherited in sexual reproduction, along with
any mutations in it. In contrast, the genome of somatic cells is not inherited, but
mutations in cancer genomes are inherited in cell division.

Somatic mutation - a mutation occurring in somatic cells.

mutations, called single nucleotide variants (SNV'), can number in the thousands
per cancer cell. On the other hand, large scale mutations, i.e. GRs, can relocate
fragments of the DNA. Aberrations that change the amount of genomic content,
called copy number alterations (CNAs) include duplications and deletions of genomic
regions. The karyotype of a cell is its complete set of chromosomes, consisting of the
number and structure of the chromosomes in it. Large-scale aberrations can have a

dramatic effect on the cancer karyotype (see Figure 1.4).

Somatic mutations may amplify genes that promote cancer (oncogenes) or harm
genes that inhibit cancer development (tumor suppressor genes). In addition, re-
arrangements such as translocations and inversions may change gene structure and
regulation and create novel fusion genes, with or without additional changes in copy
number (CN).

Cancer is an evolutionary process in which a normal genome accumulates mu-
tations that eventually transform it into a cancerous one [11]. The gain of advan-
tageous mutations leads to a clonal expansion, forming a larger population of the
mutated cells. Subsequent clonal expansions occur as additional advantageous mu-
tations accumulate in descendant cells. A single tumor biopsy will often contain a

mixture of several competing tumor clones. These tumor clones frequently differ in
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Figure 1.4: A schematic of the karyotype of the T47D breast cancer cell line. The
chromosome numbers in the normal diploid are indicated below each subfigure. In
a normal karyotype, each chromosome has two copies, as for Chr. 4, 13, 17 and 18.
Among the GRs in this cancer genome we see chromosomal duplications (e.g., four
copies of Chr. 11), translocations (between Chr. 8 and Chr. 14), and more complex
events (e.g., tandem duplication of one arm of Chr. 1 and fusion with an extra arm
of Chr. 16). Image source: [10] and Wikimedia Commons [52]. This image is used
under license CC BY-SA 3.0.

their genomic content and structure. When sequencing the tumor, one actually ob-
tains a mixture of several tumor clones and of normal cells. Recent research suggests

that this heterogeneity has profound clinical implications [31].
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Box 2 Detection of genome rearrangements

The classical ways to detect chromosomal abnormalities in cytogenetics are G-
banding and fluorescence in situ hybridization (FISH), which allow viewing the
chromosome in metaphase at low resolution [83]. FISH measures the CN of tens
to hundreds of targeted genes [28]. Array comparative genomic hybridization (array
CGH) gives a higher resolution of CN estimation for a cell population [110].
Today, next generation sequencing techniques are the main data source for cancer
mutation analyses [32]. Whole genome sequencing provides tens to hundreds of
millions of DNA reads that enable the detection of variants. These short reads
are assembled into longer DNA sequences and alignment to a reference genome can
determine sequence similarity and structural changes. This reference genome can
be of a related species for evolutionary studies or of a normal tissue in the case of
cancer.

Paired-end read technologies generate pairs of short reads such that the approxi-
mate distance between them and their relative orientations in the target genome
are known. Read pairs in which the location or orientation in the reference genome
is not as expected are called discordant. These reads give evidence of structural
rearrangement operations [75]. The read depth data, i.e. the number of concordant
reads mapped to each region in the reference genome, can also be used to assess CN
and CNAs [75].

1.2 Single gene models, operation types and dis-

tance measures

In this section we give a brief introduction to GR models. We start by giving the
definitions and terminology used in computational GR analysis. We then review

several classical single gene models.

1.2.1 Genome representation

Here we describe simple mathematical representations of genomes for GR analysis.
A genome representation should preserve the information about the order, orien-
tation and homology between segments (see Figure 1.3). In some representations,
different copies of similar segments can be distinguished while in other represen-
tations they cannot. For instance, the two copies of chromosome 1 in Figure 1.4
are indistinguishable. On the other hand, in some cases gene copies can be dis-

tinguished from one another, for example due to gene sequence changes since its
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speciation. Different GR models may use different representations depending on the

model assumptions or data used.

Consider a set G of n segments in the genome. For convenience, we call the
segments in G genes, though they do not necessarily represent biological gene entities
, 1.e., sequence segments that encode proteins. A gene g is an oriented sequence of
DNA that starts with a tail and ends with a head, denoted as ¢g; and gy, respectively.
The default orientation of a gene, and thus its head and tail, can be determined
arbitrarily or according to its transcription in some reference genome. The set of
extremities of the genes is € = {g:|g € G} U{gnlg € G}.

An adjacency between two consecutive genes in a genome is an unordered pair
of extremities. Thus, an adjacency between two genes a,b € G can take one of
four forms, depending on their orientation: {an, b}, {as, bn}, {a, b}, {an, br}. An
extremity that is not adjacent to another extremity is called a telomere, and is

represented by a singleton set, e.g. {a}.

In some formulations, a gene may have multiple copies corresponding, for exam-
ple, to homologous yet distinguishable genes. The copies of such a gene g € G are
identified by a superscript. For example, ¢!, g, ¢° are three distinct copies of gene g.
Such a gene with multiple distinguishable copies is called a labeled gene. A gene that
has a single copy or has multiple indistinguishable copies is called unlabeled. For a
gene g, we call the number of copies it has its copy number and denote it by cn(g).
A gene set G with one copy for each gene is called an ordinary gene set. A labeled
gene set is a set GF = {g'lg € G,1 < i < cn(g)}} and an unlabeled gene set GY is
a multiset GY = Ugeg Ur<i<en(g) {9}. For instance, G¥' = {a',a? b',c', 2, ¢} and
GY = {a,a,b,c,c,c} are labeled and unlabeled gene sets, respectively, that have two
copies of gene a, one of b and three of c. Similar to genes, extremities belonging to
labeled genes are distinguishable (e.g., a; # a}), while extremities of unlabeled gene
are indistinguishable. Furthermore, unlabeled heads and tails of the same unlabeled
gene cannot be matched. In other words, we do not know which tail and head come

from the same gene copy.

A labeled genome 11 over a labeled gene set G¥ is a set of adjacencies and telomeres
such that every labeled extremity ¢! € £F appears exactly once in an adjacency
or telomere of II. Similarly, an unlabeled genome II over an unlabeled gene set
GY is a multiset of adjacencies and telomeres such that every unlabeled extremity

e € EY of gene g appears exactly cn(g) times in adjacencies or telomeres of II.



1.2. SINGLE GENE MODELS, OPERATION TYPES AND DISTANCE MEASURES11

I = {{atl}v {a}w b}L}7 {bg, C%}’ {C}L}’ {a?}’ {a%w b?}’ {b%}, {b?}a {b?p 6}21}’ {Cf}} and I' =
{{at}7 {ahu bh}a {bt7 Ct}> {Ch}7 {at}v {ahv bt}u {bh}> {bt}7 {bh7 Ch}7 {Ct}} arc examples of
labeled and unlabeled genomes. If the gene set of a genome is ordinary, we call it

an ordinary genome (or a single copy genome).

The graph representation of a genome II is an undirected graph Gy = (€, E).
Its nodes are the extremities of II (either labeled or unlabeled) and E consists of
interval edges and adjacency edges. An interval edge connects the head and tail of
a gene. For unlabeled genomes there are cn(g) parallel interval edges of the edge
(gn, g:) for every gene g. For labeled genomes, each labeled gene copy ¢ has a single
interval edge (g:, gi). Adjacency edges connect the extremities = and y where {z,y}
is an adjacency of II. We call G the genome graph of 1. The representations 11
and Gy are equivalent and thus we use them interchangeably. Notice that for each
node (extremity), its number of interval edges (interval-degree) equals its number
of adjacency edges (adjacency-degree) plus the number of telomeres it belongs to.
Figures 1.5, 1.6 and 1.7 show genome graphs for ordinary, labeled and unlabeled

genomes, respectively.

An alternating route in Gy is either a path or a cycle in which no two consecutive
edges are of the same type (interval/adjacency). A chromosome decomposition Dy
of the genome II is a decomposition of Gy into a set of edge disjoint maximal alter-
nating cycles and alternating paths that cover all edges. Note that a chromosome
decomposition is always possible since the interval-degree is equal to the adjacency-
degree for every node that is not in a telomere, and that maximal paths must start
and end with telomeres. Labeled and ordinary genomes have a unique chromosome
decomposition by simply taking the set of connected components, since the interval-
degree and the adjacency-degree of every non-telomere node is 1 (see Figures 1.5
and 1.6). There may be several decompositions for a multi-copy unlabeled genome
(see Figure 1.7). Each alternating route in a decomposition is called a chromosome.
A chromosome is called circular if the corresponding route is a cycle, and linear
otherwise. A decomposition is called linear if all its chromosomes are linear, circu-
lar if all its chromosomes are circular, and otherwise mized. Figure 1.5 shows an
ordinary genome with one linear and one circular chromosome. An ordinary genome

composed of a single linear chromosome is called a signed permutation.

A signed genomic string is a sequence of oriented genes, e.g. 1 —2 3. For a

chromosome C' € Dy, we define the chromosome string of C' as follows. Start at
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one of the ends of a linear chromosome with the string ‘(’. Traverse the route until
all edges along the route are covered. For each traversal of an interval edge from
a tail g; to a head g;, append ¢ to the string. For traversal from g, to ¢g; append
—g to the string. After finishing the traversal, append the string with ‘). For a
chromosome string C, let —C' be the chromosome string in which the order and
orientation of all gene are in inverted, e.g. if C'= (1 2 3) then —C' = (-3 —2 —1).
C and —C are equivalent as they correspond to the same set of adjacencies. For
a circular chromosome, do the same starting from an arbitrary extremity interval
edge without appending brackets. The resulting sequence is cyclic and all shifts and
inversions of it are equivalent. We use <> to denote circular genomes (Figures 1.5,
1.6 and 1.7).

A string representation of a genome decomposition Dy is the multi-set of chro-
mosome strings for each chromosome in the decomposition (Figures 1.5, 1.6 and
1.7). Two string representations are equivalent if there is a bijective mapping be-
tween equivalent chromosome strings in them. For labeled and ordinary genomes,
the string representation is unique (up to equivalence) and therefore we sometime

use this representation.

(@~ ~(o)—— )

Figure 1.5: A genome graph Gp of an ordinary genome II =
{{ac}, {an, b}, {bn}, {ct,cn}}. Bold edges correspond to interval edges; dashed
edges correspond to adjacencies. Since II is an ordinary genome, it has a unique
decomposition Dy whose string representation is {(a b),<c> }

Given an unlabeled genome II over the gene set GV, a labeling of II produces a
labeled genome I' over the gene set G* such that distinct gene copies of a gene g
are mapped to distinct labeled genes ¢', ..., g9 in GY. For example, the labeled
genomes in Figure 1.6 and 1.7B are two possible labelings of the unlabeled genome
in Figure 1.7A. We denote L(II) to be the set of all possible labelings of II.

Given a genome II; over the gene set Gy, an operation creates a new genome
I # II; over a new gene set Go. An operation is said to be structural if G = Gs.
An operation is said to be numerical if the CN of some gene is different under G,

and Gy. Notice that a structural operation only changes the structure, i.e. 115 # Iy,
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Figure 1.6: A genome graph Ga of a labeled genome A =
{{al}, {ab, 01}, {Bh et} {ch), (a2}, fad, 02}, {62}, {63}, {0, 2}, {2)}.  Bold edge
correspond to interval edges; dashed edges correspond to adjacencies. Since A is an
ordinary genome, it has a unique decomposition Da whose string representation is

{(al bl Cl)7 (a2 b2), (bg _02>}

—_———-

whereas a numerical operation also changes the gene set, i.e. G; # Gs.

A genome rearrangement model is composed of a set of allowed operations O and
additional constraints on genomes. A sorting scenario of length d from II into I' is a
series of genomes Iy, ..., II; such that IIy = II, II; = I" and for each i, 11,1, is a legal
genome (under the model constraints) that is a result of an allowed operation on II;.
The sorting distance is the length of a shortest sorting scenario from II into I'. We
call IT the source genome and I' the target genome. The sorting problem under model
O receives as input II and I', and looks for a sorting scenario of minimum length
from II to I'. Figure 1.3 shows a sorting scenario of length 5 from (A B C' D E F)

to (A —F —C' D —F) in a model allowing deletions and inversions.

Operations

Reversal. An inversion of a signed genomic string reverses the string and multiplies
all elements by —1. Hence the inversion of (2 —3 5 —1) denoted as —(2 =3 5 —1), is
(1 =53 —2). For a string S = s;...s,, S[i,j] is the substring s;...s;. Let C be a
chromosome string. A reversal p(i, j) inverts C[i, j], resulting in a new chromosome
C'=Cl,...,i—1]-=Cl[i,...,j] - Clj + 1,...,m], where - is the concatenation
operator. For example, p(3,5) of C = (132456)is C" = (13 =5 —4 —2 6).

Reversals can be similarly defined on a single chromosome in the genome graph, by
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Figure 1.7:  A: A genome graph Gr of an unlabeled genome I' =
{{a't}7 {aha bt}7 {bh7 Ct}v {Ch}a {at}a {aha bt}a {bh}a {bt}a {bha Ch}a {Ct}}' Bold edges cor-

respond to interval edges; dashed edges correspond to adjacencies. B: One possible
decomposition D} of T', whose string representation is {(a b ¢),(a b —c), (b)}. A
different decomposition D3 corresponding to {(a b ¢), (a b), (b —¢)} can be seen in
Figure 1.6 by suppressing the superscripts.

cutting two adjacencies and reconnecting the loose extremities such that the result
is a linear chromosome. A reversal on a labeled or ordinary genome is a reversal on
one of its chromosomes. Reversals for general (not ordinary) unlabeled genomes are
not defined as they may have several chromosome decompositions. See Figure 1.1B
and Figure 1.8A,B.

Translocation. Let C' = ¢;...¢,, and D = d;...d, be two linear chromo-
somes in string representation of an ordinary or labeled genome. A translocation
tr(C, D,i,j) transforms C' and D into two new chromosomes, either C[1,..., 1] -
Djj+1,....,n] and D[1,...,5] - Cli + 1,...,m], or C[1,...,7] - =D[1,...,j] and
—C[i+1,...,m|-D[j+1,...,n]. Thatis, the adjacencies C;, C;1y and D;, D;.; are
cut, and the four loose ends are reconnected in a new way. An equivalent definition

can be made on chromosome graphs, i.e., breaking an adjacency on each chromo-
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some and reconnecting the nodes (see Figure 1.1e and Figure 1.9). Again notice

that translocations are not uniquely defined for general unlabeled genomes.

DCJ. A double-cut-and-join (DCJ) is an operation that cuts two adjacencies
and reconnects the four loose ends in a new way into two adjacencies. It can be
applied on labeled and unlabeled genomes. A DCJ can take one of the following

forms:

1. If adjacencies {p, ¢}, {r, s} € II are cut, replace them with either {p,r}, {q, s}
or {p,s},{r,q} (Figures 1.8, 1.9).

2. If adjacency {p, ¢} € II is cut and telomere {r} € II is involved, replace them
with either {p,r},{q} or {r, ¢}, {p} (Figure 1.10).

3. If telomeres {q}, {r} € II are involved, replace them with an adjacency {r, q}
thereby joining the two chromosomes (Figure 1.11). This operation is referred

as a fusion or a join.

4. If adjacency {p,q} € II is cut and an empty adjacency is involved, replace
them with two telomeres {p}, {q} (Figure 1.11). Hence, a linear chromosome
containing the adjacency is cut into two chromosomes, or becomes linear if it

was circular. This operation is referred as a fission or a cut.

Note that a DCJ realizes both reversals (when the two adjacencies come from the
same chromosome) and translocations (when they are from different chromosomes).
When the adjacencies that are cut are from the same chromosome the result of a
DCJ can also be splicing out of a segment between the cuts into a separate cyclic
chromosome. This circular excision is somehow artificial and does not necessarily

correspond to real biological phenomenon.

SColJ. A single-cut-or-join (SCoJ) operation either cuts an adjacency or joins

two telomeres, respectively (Figure 1.11).

In the next section we briefly review basic results on ordinary genome models.
As our focus is primarily on multiple-copy problems, we only skim selected results.
The interested reader can find much more information on this topic in [130] and
[42].
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Figure 1.8: Reversal and DCJ. A: The genome graph of (a b ¢); the two diagonal
stripes correspond to the cut adjacencies. B: The genome (a —b ¢) is a result of
a reversal or a DCJ. C. The genome {(a ¢), < b >} corresponds to the other DCJ
option.

1.2.2 Breakpoint distance

The breakpoint (BP) distance is a simple measure of dissimilarity between two
genomes that is not related to a specific type of operation. Generally speaking,
the breakpoint distance measures the number of adjacencies and telomeres that are
in one genome but not in the other. The breakpoint distance has several definitions

depending on the different weights of common adjacencies and telomeres [82, 106].

For two ordinary genomes IT and T" over the same n genes, Tannier et al. [106]

give the following formula for the breakpoint distance:
dpp =n—(A+ E/2) (1.1)

where A is the number of common adjacencies and E the number of common telom-

eres of Il and I'. Clearly, the distance is computable in linear time.
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Figure 1.9: Translocation. A: Two chromosomes {(a b), (¢ d)}; the two diagonal
stripes correspond to the cut adjacencies. B,C: Two possible translocations (or
DCJs) corresponding to {(a —c), (=bd)} (B) and {(a d), (c b)} (C).
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Figure 1.10: DCJs on telomeres. A: Chromosome (a b); the diagonal stripes and
the dotted circle show the cut adjacency and telomere involved. B,C: Two possible
DClJs corresponding to (a —b) (B), i.e. reversal, and {(a), < b >} (C).
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Figure 1.11: Single cut or join. A cut breaks an adjacency into two telomeres
corresponding to the transition from the top to the bottom genome. A join is
the reverse operation corresponding to the transition from the bottom to the top
genome.

1.2.3 Reversal and translocation distances

Given signed permutations II and I' over the same n genes, we seek a shortest
sequence of reversals from II into I'. We can assume w.l.o.g. that I is the identity

permutation (1...n).

Sorting signed permutations by reversals is undoubtedly the most famous GR
problem [9]. In their seminal work, Hannenhalli and Pevzner gave the first poly-
nomial time algorithm for the problem [51]. Since then, the theory was greatly
simplified [16, 59, 6, 12]. Bader, Moret and Yan have shown that finding the re-
versal distance can be done in linear time [6], whereas computing a shortest sorting
scenario can be done in O(n?*/?) [46, 105]. Interestingly, sorting unsigned permuta-

tions (i.e., without gene orientations) by reversals is NP-hard [24].

The problem of sorting multi-chromosomal genomes by translocations was first
introduced by Kececioglu and Ravi [61]. Hannenhalli [48] gave the first polyno-
mial time algorithm for the problem and an improved, linear time algorithm was

introduced by Bergeron et al. [14].

Sorting by reversals and translocations was proved to be polynomial by Hannen-
halli and Pevzner [50], who reduced the problem to sorting by reversals. The theory
and algorithm were later slightly corrected and revised [108, 76, 77, 55, 15]. The
algorithm was used to compute for the first time a sorting scenario and distance
between the mouse and human genome [50]. Interestingly, the distance achieved
closely matched a prediction by Nadeau and Taylor from the 1980s [71]. Efficient

implementations of the algorithms for sorting by reversals and translocations are
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available as part of the GRAPPA [6] and GRIMM [109] tools. Those tools also
use the ability to compute exact pairwise distances efficiently in order to compute
a tree of evolution by reversals and translocations among multiple species, albeit

heuristically.

The main representation used for the analysis of this problem (and other rear-
rangement models) is the Breakpoint Graph (BG). Given two genomes II and I, the
breakpoint graph BG(IL,T") is an undirected graph whose nodes are the extremities
of both genomes, and whose edges are the adjacencies of both genomes distinguished
by color. Edges corresponding to II (I') adjacencies are called red or II-edges (blue

or I'-edges, respectively). See an example in Figure 1.12.
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Figure 1.12: A breakpoint graph for II = {(a b ¢ d),(e f)} and I' =
{(a —=fbec),(d—e)}. l-edges are solid; I'-edges are dashed;

Hannenhalli and Pevzner [51] gave a formula for the reversal distance between
signed permutations based on the number of cycles in the BG and certain structures
in it called “hurdles” and “fortresses”. The distance formula for sorting by reversals
and translocations has been devised over the years and depends on more complex
structures in the BG [50, 108, 76, 55, 15]. The definitions of these structures are
beyond the scope of this review, so the exact distance formulas are omitted. Bergeron
[12], and Jean and Nikolski [55], give fairly elementary presentations for sorting by
reversals and sorting by reversals and translocations, respectively, including good

expositions of structures and the distance formulas.

1.2.4 DCJ distance

The inputs for this model are two ordinary genomes II and I" over the same set of

n genes. The operations allowed in this model are DCJs.
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The DCJ operation, introduced by Yancopoulos et al. [118], has gained much
attention in GR models in the last decade. The reason is that DCJs capture both
reversals and translocations while allowing much simpler algorithms. On the other
hand DCJs also allow splicing out circular sub-chromosomes, and fusions and fis-
sions, which have less evidence as atomic biological events. Both the distance and

an optimal sorting scenario can be computed in linear time [13].

In the analysis of this problem a new graph representation was introduced. The
adjacency graph AG(IL,T") of genomes II and I is a bipartite undirected multigraph
whose set of nodes are the adjacencies and telomeres of Il and I'. Therefore each
node is a set of one or two extremities. Nodes belonging to IT (") are called red- or
[I-nodes (blue- or I'-nodes, respectively). For every II-node u and I'-node v, there
are |u No| edges between u and v, i.e., there is an edge for each common extremity
between the two nodes. Note that BG(II, T") is the line graph of AG(II,T") and vice
versa. (The line graph of G = (V, E) is the graph on E in which z,y € E are

adjacent as vertices iff they are adjacent as edges in (). See Figure 1.13.

ahbt bhct chdt dh &, ehft fh
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Figure 1.13: An adjacency graph for II = {(a b ¢ d),(e f)} and I' =
{(a —=f be),(d —e)}. II-nodes are solid; ['-nodes are dashed;

Bergeron et al. [13] prove that for ordinary genomes II and I' defined over the

same set of n genes:
dDCJ:n—(C'+I/2) (12)

where C'is the number of cycles and I the number of odd length paths starting and
ending in telomeres in AG(II,I'). For example, the AG in Figure 1.13 has one cycle
and two odd length paths. Thus, since there are 6 genes, the DCJ distance between

the two genomes in this case is 4. Notice that there are two additional even length



1.3. MULTI COPY MODELS IN EVOLUTION 21

paths in the graph but they do not affect the distance formula.

1.2.5 SCoJ distance

The inputs for this model are two ordinary genomes Il and I" over the same set of

n genes. The operations allowed in this model are SColJs.

Similar to DCJ, the SColJ distance and scenario can be found in linear time [41].
Some rearrangements problems for which no polynomial solution is known for DCJ
and other operations, are known to be tractable for SCoJ distance. We give examples
of such problems in Section 1.3.1. While this simplistic rearrangement distance does
not correspond to real biological events, it has been shown to corroborate with the

evolutionary distance [17].

For two ordinary genomes II and I over the same n genes, let Ay (Ar) be the
set of adjacencies of II (I', respectively). The SColJ distance is given by [41]:

dscos = |An| + |Ar| — 2|An N Ar| (1.3)

1.3 Multi copy models in evolution

This section discusses multi-copy GR models inspired by species evolution. In Sec-
tion 1.3.1 we present models allowing whole genome duplication events, but no other
copy number changes. The models in Section 1.3.2 allow for the insertion and dele-
tion of new genomic segments but do not account for multiple copies of segments.
Models in Section 1.3.3 handle genomes with multiple copies of each gene but do
not allow numeric operations. Section 1.3.4 describes a few models that can handle
genomes with multiple gene copies and allow numerical operations such as deletions

or duplications.

We limit our discussion here to distance problems between two genomes. We refer
the reader to the review by El-Mabrouk and Sankoff on the analysis of gene order
evolution beyond single-copy genes [39], which discusses in depth the phylogenetic

aspects of GR models in the context of species evolution.
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1.3.1 Polyploidy

We discuss here problems motivated by whole genome duplication (WGD) events in
species evolution. WGD is viewed as a fundamental step in evolution, as doubling
of the gene contents allows great diversification of gene functions. For example,
strong evidence for WGD events was reported for yeast [117] and for plant genomes
[20]. The basic question tackled by these formulations is finding a shortest sorting
scenario between a given ancestral genome (before or right after WGD) and a given
extant genome under GD models allowing only structural operations. In addition,
an underlying assumption is that the extant genome has significantly evolved since

the duplication event and therefore the genes can be labeled.

A duplicated genome (either labeled or unlabeled) is a genome in which every
gene has CN=2. For an ordinary genome II over G, a doubled genome 2I1 = IT U I
is an unlabeled duplicated genome over 2G = G U G in which every gene, adjacency
and telomere has two copies. For example, if IT = {{a;}, {an, br}, {bn}} then 2I1 =

{{&t}7 {ahu bh}’ {bh}’ {at}v {afw bh}> {bh}}'

The double distance problem [2] is defined as follows. Given an ordinary genome

IT over G, a labeled duplicated genome © and an operation distance measure d, find

the minimum distance of © to some labeling of 2I1. Formally, the double distance
between Il and © is:

dd(I1,0) = min d(T',0) (1.4)

TeL(210)
where L(2II) is the set of all possible labelings of 2II.

The double distance problem can be solved in linear time for the BP [63] and
the SCoJ measures [41]. However, it is NP-hard under the DCJ distance [106].

Given a labeled duplicated genome © and an operation distance measure d, the
genome halving problem seeks to find an ordinary genome II that minimizes the
double distance to © [38]. Formally, the halving distance of © is defined as:

hd(©) = mHin dd(11, ©) (1.5)

The halving distance can be solved in linear time for the BP measure, but if we
restrict the genome II to be linear or unichromsomal it becomes NP-hard [63]. For
the SColJ distance, the problem is solvable in linear time even when II is restricted

to be a linear or circular genome [41]. Under the DCJ distance the halving problem
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can be solved in linear time [69, 114] even with II restricted to a unichromsomal

genome [1].

A generalization of the halving problem for finding an ordinary pre-WGD genome
given an extant genome with exactly m > 2 copies is called genome aliquoting [114].
Aliquoting is polynomially solvable for the BP [115] and SColJ [41] distances, while
a 2-approximation algorithm is known for the problem under the DCJ distance
[115]. Recently, efficient ILP formulations were suggested for genome halving and

aliquoting under the DCJ distance [5].

The guided genome halving problem tries to combine both the genome halv-
ing and double distance [129]. Given an ordinary genome A, a labeled duplicated
genome O, and an operation distance measure d, find an ordinary genome II that
minimizes the sum of the double distance between Il and O, plus the distance be-

tween Il and A. Formally, the guided halving distance is:

ghd(A,©) = mr}n [dd(I1, ©) + d(I1, A)] (1.6)

The problem can be solved in O(n!®) time for the BP distance, but it becomes
NP-hard with additional restrictions [63]. For the SCoJ distance, the problem has
linear solutions even with restrictions to linear or circular genomes [41]. It is NP-
hard for the DCJ distance [106].

1.3.2 Single copy models with indels

Models presented in this section allow new numerical operations while maintaining
the assumptions of ordinary genomes. The input is two ordinary genomes II and
I' over potentially different gene sets G; and G,. The goal is to transform II into
[ with structural operations and additional operations that introduce new genes or
remove genes. All genomes in the sorting scenario must be ordinary. Thus, the use
of these models requires to uniquely resolve the homology between the two genomes

or introduce exclusive segments.

Given a chromosome string C' = ¢;...¢,, a deletion del(i,j) produces a new
chromosome C[1,i—1]-C[j+1,n|. An insertion ins(S,i) of a sequence S = s;... 5,
into a chromosome C' at position ¢ results in C[1,i] - S - C[i + 1,n] (see Figure 1.1).

Insertions and deletions are commonly referred to as indel operations [22]. Since
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these models assume that all genomes are ordinary, insertions cannot introduce new
copies of genes. Instead, indels are used to add and remove genes that appear in

one genome but not in the other.

El-Mabrouk was the first to address sorting permutations by reversals and indels
and gave exact an algorithm and a heuristic for specific cases [37]. Improved bound
for this problem were later devised [116]. Yancopoulos and Friedberg [119] analyzed
the problem of sorting ordinary genomes with DCJs and indels. Their model allowed
to insert and delete genes that appear in the source or target genomes, and thus a
possible sorting scenario can delete all the chromosomes of the source genome and
insert the chromosomes of the target genome. Braga et al. [22] gave a linear time
algorithm for finding a minimum sorting scenario with DCJs and indels, restricting
indels to affect genes that are not common to the source and target genomes. The
problem is solvable in linear time even when DCJs and indels have different weights
[29].

Braga et al. [21] introduced a new operation that generalizes both insertions
and deletions. A substitution is an operation that replaces a sequence of consecutive
genes with another sequence. This operation can be thought of as a deletion of the
sequence to be replaced followed by an insertion of the new sequence in the same
place. Notice that this operation can implement both deletions and insertions by
taking an empty sequence as the new or old sequence, respectively. Sorting ordinary
genomes with DCJs and substitutions can be solved in linear time [21], even when
substitutions have different weights than DCJs [30].

1.3.3 Multi-copy models without duplications/deletions

In this section we focus on comparing genomes with multiple gene copies but without
explicit deletion or duplication operations. The comparison can be used to assign
orthology relationship between gene copies in the source and target genomes [25].
Given a source genome and a target genome with multiple gene copies, the general
approach is to find a matching of the gene copies that minimizes some structural
operation distance. Gene copies that are not matched are ignored, so they are
implicitly deleted and do not incur the cost of a true deletion operation. Most

formulations result in NP-hard problems.

There are three main formulation strategies depending on the cardinality of the
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Table 1.1: Multi-copy model results

Operations H Exemplar ‘ Intermediate ‘ Matching
BP NP-hard [23] NP-hard [18] NP-hard [18]
Branch and bound | ILP [4, 99] Branch and bound
90, 73] Heuristics [4] [19]
ILP [3, 98] ILP [4, 99]
Heuristics [4]
Reversals NP-hard [23] NP-hard [25] NP-hard [25]
and translo- ILP [104] ILP [104]
cations Heuristics [25, 43] Heuristics [25, 43]
DCJ Branch and bound | NP-hard [97] NP-hard [97]
[120] ILP [97]
Branch and bound
[120]
Approximation [96,
87]

matching of multi-copy genes:

o Fzemplar strategy [90], in which in each genome, exactly one copy of each
gene is selected and all other copies are ignored. It thus assumes that the

exemplar is the ancestor that all other gene copies have evolved from.

e Intermediate strategy [4], in which the same predefined number of copies (at
least one) for each gene are selected and matched between genomes, and all

other copies are ignored.

e Mazimum matching strategy [19], in which for each gene, the maximum possi-
ble gene copies (the smaller of the gene’s CNs in the two genomes) are selected

and matched between genomes, and the remaining copies are ignored.

Although most formulations are NP-hard, several exhaustive and heuristic al-
gorithms have been suggested. In recent years, Integer Linear Programming (ILP)
formulations presented by Shao and Moret were used to solve such problems, and
have shown good results and scalability [97, 98, 99]. Table 1.1 summarizes selected

results for different operations and different formulations.

The majority of hardness results, as well as exact and heuristic algorithms for

these problems, originate from the breakpoint graph decomposition problem [60, 24].
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The goal in this problem is to find a decomposition of a breakpoint graph into a
maximum number of edge-disjoint alternating red/blue cycles. A similar maximum
cycle decomposition can also be defined for the adjacency graph [96, 97]. Such
decomposition induces a matching between genes and the maximum number of cycles

minimizes an operation distance measure [96, 97].

1.3.4 Models with duplications or deletions

We now describe several models that include deletions or duplications as explicit
numerical operations. The goal of all these models is to transform one genome
representation into the other with minimum number of structural and numerical
operations. Unlike the classical structural operations, numerical operations such as

deletions and duplications have no standard definitions.

Chen et al. [25] analyzed a model for sorting unlabeled genomes with multiple
gene copies using only reversals. Their heuristic, called SOAR, was the first method
to assign orthology relationship between genes based on not only sequence similarity
but also GRs. In a follow-up paper [43], the authors studied a model that allows
reversals and single gene duplications. The latter can insert new gene copies at
arbitrary positions in the genome. They developed a heuristic called MSOAR for
matching gene copies between the two input genomes such that the number of
reversals plus gene duplications would be minimal. While SOAR requires every gene
to have an equal number of copies in the two input genomes, MSOAR alleviates this
assumption. In MSOAR 2.0 [101], only tandem single gene duplications are allowed,

and again, an efficient heuristic for this sorting problem is given.

Kahn and Raphael [58] introduced a measure called the string duplication dis-
tance that models building a target string by repeatedly copying substrings of a
fixed source string. The string duplication operation, ds;,(X), copies a substring
Zs...xy of string X and pastes it into another string Z at position p. Given a source
string X without duplicate genes and a target string Y the goal is to find a minimum
length sequence of string duplications needed to build the string Y. The authors
described a polynomial dynamic programming algorithm for computing the distance
[58]. In a follow-up work, they enhanced the model to allow substring deletions and
inversions. A polynomial dynamic programming algorithm is given for computing

the sorting problem [57]. The string duplication model was used for the analysis of
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repetitive segments in the human genome [56].

A model introduced by Bader [7] allows tandem duplications, segmental deletions
and DCJs. Given a labeled chromosome C' in string representation, a tandem dupli-
cation td(i,j) inserts a new copy of the segment C|[i, ..., j] after the j'th position,
i.e., the new chromosome is C' = C[1,...,i—1]-Cli,...,j]-Cli,...,j]-C[j+1,...,n]
(Figure 1.1). A deletion del(i, j) removes the segment Cli,...,j] and produces C" =
C[l,...,i—1]-C[j+1,...,n] (Figure 1.1). The goal in the model is to find a mini-
mum sorting scenario of the identity chromosome into the input multi copy labeled
chromosome. The author gave a lower bound and heuristic for the problem based

on the structure of the breakpoint graph.

In a model presented by Shao and Moret [100], labeled genomes are sorted using
DCJs and segmental duplications. A segmental duplication copies a segment of
labeled genes ¢y, ..., g, of a genome ¥ and inserts the new labeled copy in ¥ in
a spot outside the original segment. The model allows different costs for different
duplications and unit cost for DCJs. However, the optimization problem implicitly
assumes that all segmental duplications either precede or follow all DCJ events.
Given two labeled genomes II, I, the goal is to find segmental duplications in II
and I', remove them, and then find a bijection between the remaining genes such
that the cost of segmental duplications plus the DCJ distance is minimized. The
authors analyzed this problem and gave an ILP formulation. It is based on the
adjacency graph cycle decomposition formulation proposed in [97], applied to a

problem instance simplified by detection of optimal substructures.

Paten et al. [80] presented a model for genome evolution that does not fit en-
tirely into the standard GR terminology. This model can represent both single base
substitutions and structural /numerical rearrangements such as DCJs, deletions and
duplications. They defined a data structure called history graph, which holds partial
order information on the sequence of events. The goal is to find a full sequence of
events consistent with the input history graph that minimizes the cost of substitu-
tions and DCJs, while gene deletions and WGDs are free. The authors analyzed this
problem and gave polynomially tractable bounds for the cost. In a follow-up paper,
Zerbino et al. [128] further analyzed the history graph model and showed that the

space of possible evolutionary histories can be sampled ergodically.
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1.4 Multi-copy models in cancer

Cancer is an evolutionary process driven by the accumulation genomic mutations
leading to the aberrant function of genes. Those mutations ultimately give cancer
cells their proliferative nature. Inferring the evolution of these mutations is an im-
portant problem in the research of cancer, both for diagnosis and prognosis [93].
Furthermore, the order in which mutations are acquired can affect disease progres-
sion and drug resistance [72], and can identify “driver aberrations” and their order

of occurrence in specific cancer types [62].

Cancer genomes are known to undergo structural and numerical changes [47].
These include inversions, chromosomal translocations, tandem duplications, seg-
mental deletions, whole chromosome amplifications or losses and more [112]. Figure
1.4 shows an example of a real cancer karyotype and Figure 1.14 shows a hypo-
thetical sorting scenario for cancer evolution. A large research effort has focused
on detecting signatures of these events in tumor genomic data. Currently the effort
uses mainly deep sequencing data [32], though traditional methods such as FISH
and aCGH are still used to assess the CN of genomic regions. Accurate reconstruc-
tion of the numerical and structural variations remains a challenge, and a myriad
of computational methods has been devised for this task [32, 107]. Some evolu-
tionary GR models such as those presented in Section 1.3 could also be applied
to cancer genomes. Nevertheless, the complexity of tumor karyotypes and their
unique characteristics necessitate development of dedicated cancer GR models. For
instance, usually different copies of the same segment cannot be distinguished in

cancer genomes, and thus they cannot always be labeled.

DClJs can express both reversals and translocations which are frequently observed
in cancer genomes and thus can be useful to model tumor evolution. Furthermore,
double minutes, small circular DNA fragments, have been observed in a large number
of human tumors [88], and can be modeled by circular excision operations. However,
there is no specific biological evidence that supports the use of the DCJ distance

measure.

In Section 1.4.1 we discuss several classical GR models that were applied to
cancer data. Section 1.4.2 describes CN edit distance problems in cancer. Section

1.4.3 presents a few other cancer models involving GRs.
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Figure 1.14: A hypothetical sorting scenario for cancer evolution. a. Normal diploid
karyotype with two chromosomes. a-b. Translocation. b-c. Chromosome deletion
c-d. Chromosome duplication d-e. Fusion e-f. Internal deletion. f. The cancer
karyotype. The breakpoints and telomeres involved in each operation are indicated
by the broken lines.

1.4.1 Models with duplications/deletions

Here we present several GR models with both structural and numerical operations,
that were designed to cancer data analysis. All models aim to find a sorting scenario
between one genome representation into the another. The source genome is usually

the normal genome from a healthy tissue and the target genome is the tumor.

Ozery-Flato and Shamir [78] proposed a GR model designed specifically to an-
alyze chromosomal aberrations in cancer. The inputs for the model are a normal
unlabeled source genome with two identical copies of each chromosome and a tu-
mor (target) genome. Both genomes are described as sets of chromosomes, each

consisting of a sequence of segments. The goal is to sort the normal genome into
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the tumor with the fewest cuts, joins, chromosome duplications and chromosome
deletions. The authors proved a lower bound for the distance, and presented a
polynomial-time 3-approximation algorithm for the problem. They applied the al-
gorithm to over 50,000 low-resolution karyotypes from the Mitelman database [68],
which records cancer karyotypes reported in the scientific literature. Interestingly,

the approximation algorithm gave an optimal solution in all but 30 karyotypes.

Bader [8] extended his previous model [7] in order to cope with cancer alter-
ations. The revised model accepts multi-chromosomal genomes and allows chro-
mosome deletions and duplications, tandem duplications, segmental deletions and
DCJs. A lower bound and a heuristic algorithm were devised, and applied to the
Mitelman database [68]. The average calculated distance was 4.08 while the average

lower bound was 2.72.

In Chapter 2, we present an analysis of a model for genome sorting using cuts,
joins and whole chromosome duplications. A more comprehensive model presented
in Chapter 4 accounts for the evolution of unlabeled genomes via DCJs, tandem

duplications, segmental deletions, and chromosomal amplifications and deletions.

1.4.2 Copy number profile distances

In this section we discuss several models for edit distance between CN profiles.
Unlike the genome representations in Section 1.2.1, these profiles give the number of
copies of each segment (gene) but do not hold information about their order along
the genome. A copy number profile (CNP) of a chromosome is a vector mapping
each gene to a non-negative integer corresponding to the number of copies of the gene
in the chromosome. As the order of the genes in a CNP is unknown, it is assumed
to be some predefined order (typically the normal genome order). A genome CNP
is a collection of its chromosome CNPs. We now define operations that transform

CNPs and present several models for finding a sorting distance between CNPs.

Let V = (vy,...,v,) where v; € NU{0} be a CNP of a chromosome with n genes.
A copy number operation (CNO) is a triple ¢ = (¢, h,w) where 1 < ¢ < h < n
and w € {1,—1}. We say that the operation is a deletion if w = —1 and an
amplification if w = 1. Applying an operation ¢ to a CNP V results in a new CNP
c(V) = (e(vy),...,c(v,)) such that for every ¢ <i < h, v; > 0 we have c(v;) = v;+w,
and otherwise ¢(v;) = v;. In other words, the operation increases or decreases the



1.4. MULTI-COPY MODELS IN CANCER 31

CN of the genes in the interval [, h] if they have a positive CN, while the values of

genes outside the interval and zero values are unchanged (see Figure 1.15).

A 222222

B 320212 C 212232

D E F G

420304 540434 223.2.43 302342

Figure 1.15: Copy number profile evolution. A diploid CNP (A) evolves via CNOs
into four extant CNPs (D, E, F, G). Dotted lines represent deletions and bold
lines represent amplifications. The order of operations is from top to bottom. For
instance, CNP A evolves into CNP B by a deletion of positions 2-3, a deletion of
positions 3-5 and an amplification of positions 1-4 (in this order). The corresponding
sequence of profiles i 222222 —5211222—-210112—=320212. The
entire tree has six deletions and eight amplifications.

Chowdhury et al. [28] defined edit distance between CNPs obtained from FISH,
where the edit operations are amplification or deletion of single genes, single chromo-
somes, or the whole genome, and presented an algorithm for calculating the distance.
The algorithm was exponential in the number of genes and therefore is limited to
low-resolution FISH data. An algorithm based on the pairwise distance matrix was
used to heuristically infer tumor phylogenies from FISH single cell data. A follow
up paper [27] accounted for different weights for different types of operations, again

providing an exponential time algorithm.

Schwartz et al. [94] introduced a model that admits amplifications and deletions
of general contiguous segments in a chromosome CNP. The edit distance between two
CNPs is the minimum number of CNOs over all possible separations of the profiles
into two alleles. The authors developed an algorithm called MEDICC' for computing
the edit distance, which uses finite-state transducers [70] and is exponential in the

maximum CN. MEDICC was used to infer tumor phylogenies from CGH arrays of
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high grade serous ovarian cancer samples [93].

In Chapter 3, we analyze the problem of sorting one CNP into another using a
minimum number of CNOs and give a linear time algorithm to solve it. Notice that
this edit distance is not symmetric and in fact there may not be any sequence of
CNOs from one given CNP to another since genes with zero copies cannot reappear
later in the sequence. To cope with this drawback, we analyzed a symmetric ver-
sion that given two CNPs aims to find a common ancestor profile that minimizes
the sum of distances to these CNPs [36]. We gave a pseudo-polynomial dynamic
programming algorithm that is linear in the profile length, and an ILP formulation.

In the more general cancer context, we showed that it is NP-hard to build a phy-
logenetic tree whose leaves are the input CNPs that minimizes the total number of
CNOs along edges in the tree (see Figure 1.15), and gave a practical ILP formulation
for this problem. Extending the CNP tree model, Zaccaria et al. [121] considered a
model in which a fractional (non integer) CNP is allowed, due to the superposition
of several CNPs of different subclones. The goal in this case is to deconvolve the
fractional CNPs into a weighted sum of integer CNPs such that the phylogenetic
tree built over them has minimum CNOs. A heuristic algorithm was given for the

problem.

1.4.3 Other cancer models

Reconstruction of the exact cancer chromosomes based on short paired-end deep
sequencing read data remains a hard challenge. There is a plethora of methods for
detection of local rearrangement events and breakpoints [32], but only a few methods
try to reconstruct the entire genome. Here we describe a few methods designed for
reconstructing cancer genomes. The output genome representation of such methods

can be used as input to genome rearrangement models described earlier.

Oesper et al. [75] expanded the genome graph into a structure called the interval
adjacency graph, which represents breakpoints, discordant reads and CN informa-
tion. Their method, called PREGO, uses the number of reads supporting each edge
to resolve the CN of genomic segments and identify discordant adjacencies in the
tumor genome, and maps this information to the graph. PREGO was shown to ef-
ficiently identify complex rearrangements in ovarian cancer data. Eitan and Shamir

[35] expanded this model and tested it in extensive simulations and on real can-
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cer data. Their analysis shows that perfect reconstruction of a complete karyotype
based on short read data is very hard, but that by several measures, reasonably

good reconstructions are obtainable.

Weaver, developed by Li et al. [65], is a different probabilistic graph model
proposed in order to estimate both the CNs and inter-connectivity of SVs. Weaver
detects and quantifies CNs and SVs specific for each allele, and was also used for
predicting partial timing of SVs relative to chromosome amplifications. A recent
expansion of Weaver based on ILP formulation enabled improved prediction of SV

phasing and interconnectivity [85].

A probabilistic framework based on breakpoint graphs was presented by Green-
man et al. [45] for the analysis of mutations and karyotypes from sequencing data.
This work tries to reconstruct both the temporal sequence of rearrangements and
assemble genomic segments into karyotypes. It uses allelic integer CNs for each seg-
ment, the adjacencies between segments and the multiplicity distribution of somatic
SNVs. Taking into consideration SNVs can disambiguate some sorting scenarios,
since duplicated segments carry the SNVs of the original one. The method can de-
rive partial order of accumulating numerical and single nucleotide mutations. The
framework, called GRAFT, was demonstrated to work well with a breast cancer
sample and cancer cell lines, albeit with limitations imposed by the data quality

and the genome complexities.

In contrast to local genome rearrangement operations, complex genomic rear-
rangements (CGRs) events are also emerging as a feature of cancer genomes. These
events are characterized by multiple genomic breakpoints and fusion, and thus si-
multaneously affect multiple genes. CGRs involve three or more distant regions of
the genome abnormally joining together. nFuse [67] has been designed to discover
CGRs in cancer using high-throughput sequencing. The algorithmic method behind
nFuse is inspired by DG analysis and is based on shortest alternating paths in break-
point graphs. CouGaR [34] is a method for characterizing the genomic structure of
amplified CGRs, leveraging both depth of coverage and discordant pair-end map-
ping techniques similar to PREGO [75]. Both methods were successfully applied to
cancer genome data and some of their predicted CGRs have been experimentally
validated.
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1.5 Summary of articles included in this thesis

1. Sorting by cuts, joins and whole chromosome duplications
Ron Zeira and Ron Shamir
Published in Proceedings of the 26th Annual Symposium on Combinatorial
Pattern Matching (CPM 2015) [124] and Journal of Computational Biology
(JCB) [125]

Genome rearrangement problems have been extensively studied due to their
importance in biology. Most studied models assumed a single copy per gene.
However, in reality duplicated genes are common, most notably in cancer. Here
we make a step towards handling duplicated genes by considering a model that
allows the atomic operations of cut, join and whole chromosome duplication.
Given two linear genomes, I' with one copy per gene, and A with two copies
per gene, we give a linear time algorithm for computing a shortest sequence of
operations transforming I' into A such that all intermediate genomes are linear.
We also show that computing an optimal sequence with fewest duplications is
NP-hard.

2. A linear-time algorithm for the copy number transformation prob-
lem
Ron Zeira, Meirav Zehavi and Ron Shamir
Published in Proceedings of the 27th Annual Symposium on Combinatorial
Pattern Matching (CPM 2016) [95] and Journal of Computational Biology
(JCB) [127]

Problems of genome rearrangement are central in both evolution and cancer.
Most evolutionary scenarios have been studied under the assumption that
the genome contains a single copy of each gene. In contrast, tumor genomes
undergo deletions and duplications, and thus the number of copies of genes
varies. The number of copies of each segment along a chromosome is called
its copy number profile. Understanding copy number profile changes can assist
in predicting disease progression and treatment. To date, questions related to
distances between copy number profiles gained little scientific attention. Here
we focus on the following fundamental problem, introduced by Schwarz et al.
[94]: given two copy number profiles, u and v, compute the minimum number

of operations transforming u into v, where the edit operations are segmental
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deletions and amplifications. We establish the computational complexity of

this problem, showing that it is solvable in linear time and constant space.

3. Sorting cancer karyotypes using double-cut-and-joins, duplications
and deletions
Ron Zeira and Ron Shamir
Published in Bioinformatics [126]

Motivation: Problems of genome rearrangement are central in both evolu-
tion and cancer research. Most genome rearrangement models assume that the
genome contains a single copy of each gene and the only changes in the genome
are structural, i.e., reordering of segments. In contrast, tumor genomes also
undergo numerical changes such as deletions and duplications, and thus the
number of copies of genes varies. Dealing with unequal gene content is a very
challenging task, addressed by few algorithms to date. More realistic models
are needed to help trace genome evolution during tumorigenesis.

Results: Here we present a model for the evolution of genomes with mul-
tiple gene copies using the operation types double-cut-and-joins, duplications
and deletions. The events supported by the model are reversals, translocations,
tandem duplications, segmental deletions, and chromosomal amplifications and
deletions, covering most types of structural and numerical changes observed in
tumor samples. Our goal is to find a series of operations of minimum length
that transform one karyotype into the other. We show that the problem is
NP-hard and give an integer linear programming formulation that solves the
problem exactly under some mild assumptions. We test our method on simu-
lated genomes and on ovarian cancer genomes. Our study advances the state of
the art in two ways: It allows a broader set of operations than extant models,
thus being more realistic, and it is the first study attempting to reconstruct

the full sequence of structural and numerical events during cancer evolution.
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Sorting by Cuts, Joins, and Whole
Chromosome Duplications

RON ZEIRA and RON SHAMIR

ABSTRACT

Genome rearrangement problems have been extensively studied due to their importance in
biology. Most studied models assumed a single copy per gene. However, in reality, duplicated
genes are common, most notably in cancer. In this study, we make a step toward handling
duplicated genes by considering a model that allows the atomic operations of cut, join, and whole
chromosome duplication. Given two linear genomes, I" with one copy per gene and 4 with two
copies per gene, we give a linear time algorithm for computing a shortest sequence of operations
transforming " into 4 such that all intermediate genomes are linear. We also show that com-
puting an optimal sequence with fewest duplications is NP-hard.

Keywords: computational genomics, genome rearrangements, SCJ.

1. INTRODUCTION

GENOME ORGANIZATION EVOLVES OVER TIME by undergoing rearrangement operations. Finding a
shortest sequence of operations (also called a sorting scenario) between two genomes is the focus of the
field of genome rearrangements. Such problems were studied extensively over the last two decades due to
their importance in evolution (Fertin et al., 2009).

The combinatorial problems in genome rearrangements depend on the allowed operations. Hannenhalli
and Pevzner (1995) showed in their seminal work that finding the minimal number of inversions that
transform one signed genome into another is polynomial. Many other models were studied later, allowing
one or several types of operations (Hannenhalli and Pevzner, 1995; Christie, 1996; Hannenhalli, 1996;
Caprara, 1997; Dias and Meidanis, 2001; Lu et al., 2006; Mira and Meidanis, 2007; Bulteau et al., 2012).

The double cut and join (DCJ) operation (Yancopoulos et al., 2005) models reversals, transpositions,
translocations, fusions, fissions, and block-interchanges as variations of one basic operation. A DCJ op-
eration cuts the genome in two places, producing four open ends, and rejoins them in two new pairs.
Finding the DCJ distance between two gene permutations can be done in linear time (Bergeron et al., 2006).
The single cut or join (SCJ) model (Feijao and Meidanis, 2011) further simplifies the model and allows
polynomial solutions to some rearrangement problems that are NP-hard under most formulations. An SCJ
operation either cuts a chromosome or joins two chromosome ends. This simple model gives good results in
real biological applications (Biller et al., 2013).

Models of genomes that assume a single copy of each gene are too restrictive for many real biological
problems. Duplications are frequent in cancer genomes, especially in oncogenic regions (Bayani et al.,
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2007). Most plant genomes contain large duplicated segments (Blanc et al., 2000). A major evolutionary
event is whole genome duplication, wherein all chromosomes are duplicated (Savard et al., 2011).

In spite of their importance, models that allow duplications as rearrangement operations have not been
the subject of extensive research to date. Ozery-Flato and Shamir (2009) considered a model that includes
certain duplications, deletions, and SCJ operations. Under some simplifying assumptions, they provided a
3-approximation algorithm that performed well on cancer genomes. Bader (2009, 2010) provided a heu-
ristic for sorting by DCJs, duplications, and deletions. Shao et al. (2013) studied sorting genomes using
DClJs and segmental duplications and provided an algorithm to improve an initial sorting scenario. The
majority of extant models for genomes with multiple gene copies result in NP-hard problems (Tannier
et al., 2009; Savard et al., 2011; Shao and Lin, 2012; Shao et al., 2014).

In this article, we present a model that allows the operations, cut, join, and whole chromosome duplication.
We call it the SCJD model. The model tries to combine the simplicity and applicability of the SCJ model while
allowing chromosomal duplications observed in cancer genomes. In fact, aneuploidy (whole chromosome
duplication or deletion) is a hallmark of cancer, and how cancer cells can adapt to tolerate aneuploidy remains a
key enigma (Gordon et al., 2012; Giam and Rancati, 2015). The SCJD model is applicable for tumor genomes
where one copy of each chromosome remains unaffected and the other is duplicated at most once. Thus, we view
this model as moving one step closer to a realistic model of cancer genome evolution. Such model should allow
multiple gene copies and reversals, translocations, duplications, and deletions.

Given two linear genomes, I" with one copy per gene and 4 with two copies per gene, we give a linear
time algorithm for computing a shortest sequence of operations transforming I" into 4, where all inter-
mediate genomes must be linear too. We provide a closed-form formula for that sequence length. In
addition, we show that there is an optimal sequence in which all duplications are consecutive.

While cuts or joins are local events, a duplication of an entire chromosome is a more drastic event. We
show that our algorithm actually gives an optimal scenario with a maximum number of duplications. On the
other hand, we prove that finding a conservative optimal SCJD scenario with fewest duplications is NP-hard.

The structure of this article is as follows. We give computational background in Section 2. In Section 3, we
present the SCJD model. Section 4 gives the algorithm for the SCJD sorting problem and Section 5 shows the
NP-hardness result. Finally, in Section 6, we present a brief discussion and suggest future directions. A
preliminary version of this article appeared in the proceedings of CPM 2015 (Zeira and Shamir, 2015).

2. PRELIMINARIES
2.1. Genome representation

We use the following standard terminology in genome rearrangements (Bergeron et al., 2006). The basic
entities are genes, denoted by a, b, c etc. Gene a has extremities: a head a;, and a tail a,. Gene a is assumed
to be oriented from its tail to its head and is positively oriented if a, is to the left of a;,. A negatively oriented
gene a is denoted by —a. A chromosome is a sequence of oriented genes, for example, C=ab—c—d. An
adjacency in a chromosome is a consecutive pair of extremities from distinct neighboring genes. For
example, the adjacencies in C above are {a;, b}, {bn,cn}, and {c;,d,}. A telomere is an extremity that is
not adjacent to any other gene, corresponding to the end of a chromosome, for example, {a,},{d;} in C.
Hence, a chromosome can be equivalently represented by its set of adjacencies, where the telomeres are
implicit. Note that the set of adjacencies defining a chromosome is identical to that of the reverse chro-
mosome, where order and orientation of genes are inverted (the reverse of C is —C=dc—b—a). Hence, a
chromosome and its reverse are equivalent.

A genome over gene set G is a collection of chromosomes. We assume for now that each gene appears once,
forexample, I'={ab, c—d}. Equivalently, it can be defined by a set of adjacencies such that for each gene in G,
each extremity appears at most once. Hence, I' ={{ay, b }, {cn, dy } }. The size of a genome I, denoted by |I'],
is the number of adjacencies in it. A chromosome is called linear if it starts and ends with a telomere and
circular if it does not contain any telomere, for example, D= {{ay, b}, {bn, a,}}. For a sequence of genes S,
denote by § and () the corresponding linear and circular chromosomes, respectively. For example, the linear
chromosome a—b is defined by the set of adjacencies {{ay, b,}} and the circular chromosome (a—b) is
defined by the set {{a;, b}, {b;,a;}}. A genome is called linear if all its chromosomes are linear.

A gene that has several copies in the genome is called duplicated. We label different copies of the same
gene by superscripts, for example, copies a’ and a® of gene a. A duplicated genome has exactly two copies
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of each gene. A genome with a single copy of each gene is called ordinary. The duplication of an ordinary
genome [ creates a special kind of genome (Warren and Sankoff, 2011): each gene and each adjacency in
II is doubled, producing the genome II & II. Note that in II & II, the two copies of each gene are
unlabeled. The set of all possible labeled genomes corresponding to I1 & II is denoted by 2II. A genome
2 € 211 is called a perfectly duplicated genome. Hence, for I' above, I' & I'={ab,ab,c—d, c—d} and
= {{a}. b2} {c}. d}}. {a). b} }. {c). d}}} € 2T

2.2. SC/J distance

A cut operation takes an adjacency {x, y} and breaks it into two telomeres, {x} and {y}. The reverse
operation, called a join, combines two telomeres, {x} and {y}, into an adjacency {x, y}. An SCJ operation
is either a cut or a join (Feijao and Meidanis, 2011). Given two ordinary genomes, II and I', on the same
gene set, a sequence of SCJ operations that transforms IT into I is called a sorting scenario. The SCJ
distance, denoted by dgcy(I1, I'), is the length of a shortest sorting scenario between I1 and I'. Feijdo and
Meidanis give the following solution for the SCJ distance:

Theorem 1. (Feijao and Meidanis, 2011) dsc;(II, [)=|O\T'|+|\II|=|II|+|T|=-2|I N T|. II\I
defines the set of cuts and I'\II defines the set of joins in an optimal sorting scenario.

2.3. Double distance
The SCJ double distance between an ordinary genome, I', and a duplicated genome, 4, is defined as

ddsc,(I', 4) = gélzl}dsa(l A4) (D

Hence, in the double distance problem, one seeks a labeling of each gene copy in a perfectly duplicated
genome 2 € 2I" that minimizes the SCJ distance to 4.

For a genome X and an adjacency «={x, y}, let X, be the set of all adjacencies of the form {x,y'} in X.
Hence, |X,| can be 0, 1, or 2 if X is duplicated and 0 or 1 if X' is ordinary. Let A= {o.={x, y}|x # y} be the
set of all possible adjacencies with extremities belonging to distinct genes. A solution to the double distance
problem is given by the following theorem:

Theorem 2. (Feijao and Meidanis, 2011) The SCJ double distance between an ordinary genome, T,
and a duplicated genome, A, is

ddsc)(I', A)=4]+2) " |I,|(1=|4,)).

€A

A perfectly duplicated genome, X € 2I', realizing the distance is obtained by taking for each adjacency
a={x,y} € I' (1) the labeled adjacencies of A, and (2) adjacencies {x',y'} with arbitrary labeling that do
not conflict with (1) or among themselves.

3. THE SCJD MODEL

In this section, we generalize the SCJ model to allow duplications.

A duplication operation on a genome, 11, takes a linear chromosome, C, in I1 and produces a new genome,
IT', with an additional copy of the chromosome. For example, if IT = {abcd, efg}, then a duplication of the first
chromosome will give IT' ={abcd, abcd, efg}. An SCJID operation is either an SCJ or a duplication.

Given two linear genomes on the same gene set of size n, an ordinary one, I', and a duplicated one, 4, a
sequence of SCJD operations that transforms I” into 4 is called an SCJD sorting scenario. The SCJD distance,
denoted by dscyp(I', 4), is the number of operations in a shortest SCJD sorting scenario between I” and 4.

Since we focus on linear genomes, we will assume from now on that all chromosomes, including
intermediate ones, are linear unless specified otherwise. The following simple lemma shows that this can be
satisfied when using only SCJ operations:

Lemma 1. A sequence of SCJ operations transforming one linear genome into another linear genome can
be reordered, producing another sequence with the same length such that all intermediate genomes are linear.
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Proof. Letll and I' be two ordinary linear genomes and let oy, ..., 04 be a sequence of SCJ operations
transforming I into I'. Suppose there is a join operation, o;, which creates a circular chromosome C by joining
its two telomeres, x and y. Since I' is linear, there is a cut operation o; for i < j that breaks C into a linear
chromosome by cutting an adjacency {w, z}. We create a new sequence of the same length by replacing o;
with a cut of {w, z} and replacing o; with a join of x and y. In the new sequence, the chromosome C is
linear. By repeating the argument for every intermediate circular chromosome, the lemma holds. |

The examples below demonstrate SCJ double distances and SCJD sorting scenarios. For simplicity, we
drop the braces around genomes from now on.

Example 1. I'=a, A=a—a; ddsc;(I', A)=1; dscip(I', A)=2:

I'—a,a— 4
dup Jjoin

Example 2. I'=ab, A=ab, ab; ddsc;(I', A)=0; dsc;p(I’, A)=1:

r—4
dup

Example 3. I'=a, bc, A=ab,abcc; ddsc;(I'y A)=4; dscyp(I', A) < 4:

I' — abc — abc, abc — abc, ab,c — A
Jjoin dup cut Jjoin

Example 4. I'=acb, A=abab, cc; ddsc;(I', A)=8; dscjp(I', 4) < T:

I'—a,cb—a,b,c —ab,c—ab,ab,c — ab,ab,c,c — abab,c,c — 4
cut cut Jjoin dup dup Jjoin Jjoin

Let #.11I be the number of linear chromosomes in genome I1. Let I" be an ordinary linear genome and let
A be a duplicated linear genome on the same gene set. A trivial upper bound for the SCJD distance between
I' and 4 is given by solving the double distance between A and I'. This corresponds to first duplicating
each chromosome in I’ and then computing the SCJ distance between A4 and I' @ I'. We get
dscip(I', A) < ddscy(I', A)+#.I'. However, Example 3 shows that this bound is not tight. It is tempting to
guess that ddgsc;(I', 4) < dscjp(I', A). Alas, Example 4 shows this conjecture is incorrect.

4. COMPUTING THE SCJD DISTANCE

In this section, we will solve the SCJD distance problem. The key idea is to show that there is an optimal
scenario in which all the duplication operations are performed in sequence, one after the other. Having
shown that, the sorting scenario between I' and 4 can be presented as follows:

1. Transform I into another ordinary linear genome, I", using only SCJ operations.
2. Duplicate all the chromosomes of I resulting in a duplicated genome, I @ I"'.
3. Solve the SCJ double distance problem between I and 4.

Let O*=o0y,...,04 be an optimal SCID sorting scenario. Let I'o =" and for every 1 <i <d, let
I';=0;(I';_1) be the genome resulting from performing o; on I';_;. By definition, I'; = 4. Let D; be the set
of duplicated genes in I';. We have Dg=0 and D;=G. Given a gene set H, denote its extremity set by
En={ala € H} U{apla € H}.

Proposition 1. In an optimal sorting scenario O, if o; is a join operation acting on the two
telomeres, x and y, then either both x,y € Ep, or both x,y¢ Ep,.

Proof.  Since o; is not a duplication, we have D;_; =D;. Suppose by contradiction that x € £p,, but
y¢ Ep,. Let 0; (i <) be the first duplication such that y € €p,. The duplication operation must act on a
chromosome in which all genes are not yet duplicated. Therefore there is a cut operation o (i < k < j) that
breaks the adjacency {x, y} created by o;.

Let O'=0,...,0,_,=01,...,0i-1,0i41,. ., 0k=1,0k+1,- .., 04 be an alternative sorting sequence that
results from removing o; and o, from O*. Let I 6 =T, and denote I §:0;(F ;_1). For every [ with
1 <1< i-1, by definition, 0;:01 and therefore F§:F;.
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We first show that for every [ with i <1 <k—2, I''=T;41\{{x,y}}. Since o; creates the adjacency
{x,y}, wehave I';=T";_; U {{x, y} }. For every such [, 0; =0, and since none of these operations creates a
new copy of y, we have I'j=T". 1 \{{x, y}}.

Next, we show that for every [ withk—1 <1< d-2,T } =TI";;,. From the previous result and the fact that
Iy=Tx_1\{{x,y}}, we have I',_,=T. Now, for every such I, o)=0,4> and therefore I';)=1",.

We have established that O’ is an SCJD sorting sequence of length, d —2, contradicting the optimality
of O*. |

Proposition 2. [n an optimal sorting scenario O*, if o; is a cut operation acting on the adjacency
{x,y}, then either x,y € Ep, or x,y ¢ Ep,.

Proof.  Suppose by contradiction, x € £p,, but y ¢ Ep,. Let 0; (j < i) be the first duplication such that
x € &p,. Since x was duplicated as part of a chromosome that did not contain y, there is subsequently a join

operation oy (j < k < i) that creates the adjacency {x,y}. Defining O'=0,...,0,_,=01,..., 01,
Ok+1y-++50i—1,0i41,---,0q, W& can get a shorter SCJD sorting scenario in a similar manner as the proof of
Proposition 1. |

Corollary 1. In an optimal sequence of SCJD operations, at the time of a cut or a join operation on the
two extremities, x and y, either the genes corresponding to both x and y have already been duplicated or
none of them have. |

We say that a join operation in a sorting scenario is valid only if the two extremities it joins are not
already part of any other adjacency. Similarly, a cut operation is valid only if the adjacency it breaks exists.
A duplication operation is valid only if it duplicates a linear chromosome such that all its genes were not
previously duplicated. A sorting scenario is valid if all its operations are valid.

Let S=s1,..., s, be a valid SCJD sorting scenario between I and 4. We say the operation, s;41, can
preempt the operation, s;, if the sequence, §'=sy,..., Si+1,5i,-- -, Sm, is also a valid SCJID sorting scenario
between I" and 4.

Proposition 3. In a valid SCJID scenario, S transforming I into A, if s;+1 is an SCJ operation acting
on two extremities x,y that were not duplicated and s; is a duplication, then s;,| can preempt s;.

Proof.  Suppose s; duplicates the linear chromosome C and produces another copy of it C'. Since s;4
operates on genes that are not duplicated yet, none of those genes belong to C or C'. Therefore, the

sequence, si,...,S8—1,5+1, is valid. Any operation that creates an adjacency or a telomere of C must
precede s;. Hence, sq,..., Si—1,58i+1,5; is valid. Finally, any s; for j > i+1 that requires the results of s; or
s;+1 is still valid. Thus, 8’ =s1,...,8_1,8+1, S, 5i+2,--.» Sy is a valid sequence.

To conclude the proof, we need to show that I';| =TI ; +1- Indeed, s;41 does not alter any of the
adjacencies or telomeres of C or C’, and therefore, I';11=s;+1(I'i-1 UC) = s;01(T'i-1) U C’=F§+1. [ |
Proposition 4. In a valid SCJD scenario, S transforming I into A, if s;+1 is a duplication and s; is a

cut or join acting on two duplicated extremities, then s;.1 can preempt ;.

Proof. Suppose s; is an SCJ operation acting on the two extremities, x and y, such that the genes
corresponding have both already been duplicated. Let s;,; be a duplication operation that takes the linear
chromosome, C, and produces another copy of it, C'.

Since S is a valid sorting sequence, duplication operations that act on the genes corresponding to x and y

must precede s;. In addition, none of these genes are in C. Thus, the sequence, s, ..., 8_1,8+1,S;, 1S still
valid. Any subsequent operation has its required set of adjacencies and telomeres and thus the sequence
S =81,y Sic1,8i41,8i,8i4+2,-..,8, 1s valid. In addition, for the same reasons, I';y=s;(I;_)UC =
si(F,-_]UC’):ﬂH. ]

Proposition 5. In avalid SCJD scenario, S transforming I into A, if s;+1 is an SCJ acting on two
extremities that were not duplicated yet and s; is an SCJ acting on two duplicated extremities, then s;. can
preempt s;.
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Proof. If o €T, then o ¢ I' since I' is an ordinary genome. In addition, since n(a) > 0, |4,] > 0,
therefore |4,| < 2. Thus, n(o/) <O0. If o ¢ I', then to achieve n(x) > 0, we must have |4,|=2, so in
particular |4,|=0 and therefore n(c’) < 0. |

For a sequence of SCJ operations, S, let S” (§D, respectively) be the subsequence of operations that act
on two extremities of genes that have (have not, respectively) already been duplicated at the time of the
operation. By Corollary 1, for optimal S, 5" is indeed the complement of S”.

Proposition 6. There exists an optimal sorting scenario in which all duplication events are consecutive.

Proof. Let 0;,...,0;, be the duplication events in an optimal sorting scenario. Denote by S; the
sequence of SCJ operations occurring between the duplications, o;, and o;,,,. In addition, denote by S;, and
S;, the sequence of SCJ operations before the first duplication and after the last duplication, respectively.

Given an optimal scenario, O*=S;,, 0;,,S;,,0i,,Si, - - - s Si,_150i,5 S, We modify it into a new sorting
scenario O’ as follows: using Propositions 3 and 5, preempt SCJ operations acting on unduplicated genes.
Using Proposition 4, preempt duplication events. These steps are iterated until no preemption is possible.
We get that 0'=S;,,S, , .. .,_,-p, iy v 0,80, . ,Sf;fl ,S; is a valid SCJD optimal sequence in which

all duplications are consecutive. |

Ip

Corollary 2. There exists an optimal SCJD sorting scenario, consisting, in this order, of (1) SCJ
operations on single-copy genes, (2) duplications, and (3) SCJ operations acting on duplicated genes. R

Denote by I the intermediate (ordinary) genome after step (1). Then, we can conclude the following:

Theorem 3.  dscip(I', A)= minp (dscy(I', I') + 41" +ddsc; (I, 4)) u
Recall that n is the number of genes in I'. Using Theorems 1 and 2 and the fact that #.II=n—|II|, the
distance formula can be simplified as follows:
dscip= min<F+ \r'=2[rnr'|+n- |F/|+|A|+ZZ [T |(1- Aoc|)>
I‘I
ocA
=n+|A|+|F|—2mz}x<|Fﬂ I+ 7[(4.] - 1))
r zeA @)

=n+|A|+|F|—2mra,1xz’(|l"a|+|4|“|—1)
acl”
=n+|A|+|F|—2maxZn(m)=n+|A|+|F|—2maxH(F’)
r r

acl”

where n(o)=n(o, I', A)=|I,|+|4,|—1 and HUI")= ", n(o). Intuitively, H(I'") measures the similarity
of I'" to I' and 4 in terms of adjacencies. Since we want to maximize H(I"), we will focus on adjacencies
with positive contribution in Equation (2).

Lemma 2. Let a={x,y} be an adjacency such that n(o) > 0. Then, for every extremity z #y, the
conflicting adjacency o' ={x, z} has n(o') < 0.

Proof. If €T, then o ¢ I' since I' is an ordinary genome. In addition, since #(x) > 0, |4,| > 0,
therefore |4,| < 2. Thus, (/) < 0. If o ¢ I, then to achieve n() > 0, we must have |4,]=2, so in
particular |4,|=0 and therefore n(a’) < 0. |

Combining Lemma 2 and Theorem 3, we get a closed formula for the SCID distance:

Theorem 4. The genome I = {a={x, y}|n() > 0} minimizes Equation (2). If "' is a linear genome,
then the SCID distance is given by dscyp(I', A)=n+|A|+||-2H(I"). [ |

Let us return to the examples in Section 3:

— Example 1: n=1, |4]=1, |[['|=0, I"=0, HI")=0 - d=1+140-2%0=2

— Example 2: n=2, |4|=2, |I|=1, I"={{ap, b} }, HI")=2 — d=2+2+1-22=1

— Example 3: n=3, |4|=4, |['|=1, I"'={{an,b;}, {bp,c:}}, HI')=1+1 - d=3+4+1-2x2=4
— Example 4: n=3, |A|=4, |[|=2, I"={{ap, b} }, HI')=1 — d=3+4+2-2% 1=7
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Example 5. I'=abc and A=cab,bca. According to Theorem 4, we get I'=(abc) because
n{an, b })=n{bn,c.})=n{{cn,a;})=1. The corresponding distance is d=3, providing the following in-
valid sorting scenario:

F — (abc) (abc) (abc) - cab, (abc) - A

dup® indicates a duplication of a circular chromosome, an operation that is not allowed in the SCJD model
(and has no cost). It is not difficult to verify that there is no valid sorting scenario with d < 3.

The reason for the discrepancy in Example 5 is that #.(I")=n—|I"'|=0 is not equal to the number of
duplications if there are circular chromosomes. Therefore, to minimize the SCJD distance given by
Equation (2) we need to maximize H(F ) under the constraint that I” is a linear genome, that is,
H(I'") > H(I') for every linear genome I'. Lemma 3 shows that we can do so simply by removing one
adjacency with 77=1 from each circular chromosome in I and that such adjacency must exist.

Lemma 3. Let I'={a={x, y}|n(x) > 0} and let I''1 be a genome obtained by removing one adjacency
o with n(a)=1 from each circular chromosome in I''. Then, I''1 is a linear genome that maximizes H() and
the SCID distance is given by dscip(A, I)=n+ |A|+|T|-2H(I')).

Proof. Let Il be an ordinary linear genome maximizing H(II). From the maximality of H(II), we may
assume w.l.0.g. that IT does not contain adjacencies with 7(x) < 0. By the definition of I and from Lemma
2, we have that Vo € IT if n(a) > 0, then o € I". It follows that IT C I"'. Therefore, every linear chro-
mosome in I" is also in IT.

Since IT C I', any linear chromosome C in I1 that is not in I’ must be fully contained in a circular
chromosome C’ of I". From the maximality of II, C must contain all adjacencies in C’ except for one
adjacency o with minimum 7().

Since I’ contains only adjacencies with #7(x)=1 or 2, the minimal value is an adjacency with n(x)=1 if
one exists. If C’ contains only adjacencies with n(x)=2, it follows that |I'y|=1 for every o € C’, so I’
contains the circular chromosome C’, contradicting the linearity of I'. Hence, C’ must contain at least one
adjacency with n(x)=1. |

Applying Lemma 3 to Example 5, we get I =abc and d=5:

I' — abc, abc—>a bc, abc — bca, abc — bca, ab,c — A
dup Jjoin cut Jjoin

Instead, we can choose I'//=cab, which gives a different optimal sorting scenario:

I' —ab,c — cab — cab, cab—>cab a,bc— A
cut Join dup Jjoin

Algorithm 1 gives the full procedure for solving the SCJD distance and sorting problems. Each step of
the algorithm takes O(|I'| +|4]) time. In conclusion:

Algorithm 1 SCJD distance.

Input: An ordinary genome, I', and a duplicated genome, 4, (both linear) on the same gene set.

Output: The SCID distance, dscyp(I’, 4), and an optimal sorting scenario, oy, ..., 04, in which all intermediate
genomes are linear.

I: I'" —{o={x, y}n(x) > 0} (Theorem 4)

2: Create a linear genome, I'”, by removing one adjacency, o, with n(x)=1 from each circular chromosome in I
(Lemma 3)

s dscip(I', A) —n+|A|+|T'|—2H(I"") (Theorem 4, Lemma 3)

:01,...,0;«< Sort I' into I'" (Theorem 1, Lemma 1)

: 0i41,. .., 0;< Duplicate all chromosomes in I"".

1 0j41,...,04¢ Sort 2I"" into A (Theorem 2, Lemma 1).

: return d, 0’

~N oL AW

Theorem 5. Algorithm 1 computes the SCJD distance in linear time. |
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5. CONTROLLING THE NUMBER OF DUPLICATIONS

In this section, we discuss how to control the number of duplications in an optimal SCJD sequence. Since
the number of duplications is n—|I""|, selecting different intermediate genomes I'” that preserve the SCID
distance can produce scenarios with different number of duplications.

An optimal SCJD scenario with fewer duplications can be viewed as more conservative. The assumption
behind this is that duplications are more radical events than breakage (cut) or fusion (join), which are local
events.

Lemma 4. Algorithm 1 gives an optimal sorting scenario with a maximum number of duplications.

Proof. Observe first that for any sorting scenario (optimal or suboptimal) transforming I" into 4, we can
assume w.l.o.g. that all duplications are consecutive without affecting the number of operations (Corollary
2). Call the genome right before the duplications the last ordinary genome. Denote by d(I', II, A) the
shortest scenario transforming I" into 4 given that the last ordinary genome is II. The proof of Theorem 3
implies that d(I', IT, A)=n+ |4|+ || - 2H(II).

Let I" be the last ordinary genome produced by the algorithm. Consider an optimal scenario O with a
maximum number of duplications and let I" be the last ordinary linear genome in O. Since O is optimal,
H(I') must be maximal. Hence, I" cannot contain adjacencies with n < 0. Moreover, it cannot contain
adjacencies with #=0 as such adjacencies increase |f | and thus decrease the number of duplications in O.
Therefore, I' C I

We now show that Vo € I ’\f , () =1. Suppose by contradiction that there is an adjacency o € I" ’\f
with 7(a) > 1 and let n=TU {a}. If I is a linear genome, d(I', IT, A) < d(T, f, A), contradicting the
optimality of O. Otherwise, II contains a circular chromosome and by Lemma 3, there is an adjacency
B € T with n(f)=1 such that IT\{f} is a linear genome with H(IT\{B}) > H(I'), again contradicting the
optimality of O. Thus, [I"\I'|=|I"'| = |I'|=HI")—H(I).

I’ may contain circular chromosomes. By Lemma 3, I'" is produced by removing one adjacency with
n=1 from each circular chromosome in I"’. Hence, |I"\I""|=|I"'|—|I""|=HT'")— HI").

Since both I and I'” are last ordinary genomes, in optimal SCJD scenarios, H(f):H(F”). Thus,
\["|=|T'|=HI"—-H)=HI")-HI"n=|I"|-|I""|, which implies that |I'|=|I"|. [ |

One can decrease the number of duplications in an optimal SCJD scenario by adding adjacencies with
n(®)=0 to I'". However, we need to make sure that the resulting genome is still linear. Consider the
following example:

Example 6: I'=a, b, c, A=abccba. From Theorem 4, we have that I” =T and so the SCJD distance is 8.
The scenario produced by Algorithm 1 will first duplicate the three chromosomes of I' and then perform
five joins to create 4. An alternative optimal sorting scenario is as follows:

I' — abc — abc, abc — abc, a, b,c — A
JJ D cC JiJ

Here, since each adjacency « € 4 has 1(e) =0, we chose I"” =abc and obtained an optimal scenario with
a single duplication. In contrast, if we add to I'” the adjacencies {by,c,} and {c;,b,} (which also have
n=0), we create a circular chromosome and an invalid SCJD sorting scenario.

To minimize the number of duplications, we must add to I a maximum set of adjacencies with 7=0
such that the resulting genome is still linear. Here, we show that this problem is NP-hard using a reduction
similar to (Kovac, 2014).

Theorem 6. Given an ordinary linear genome, I', a duplicated linear genome, A, on the same gene set,
and an integer, k, the problem of finding an optimal SCJD scenario with at most k duplications is NP-hard.

Proof. Call a directed graph in which all in- and out-degrees are 2 a 2-digraph. Deciding if a 2-digraph
contains a Hamiltonian cycle is NP-hard (Plesnik, 1979; Kovac, 2014). This implies that the following
variant is also NP-hard: given a 2-digraph, G, with an edge, (x, y), decide if there is a Hamiltonian path
from y to x in G.
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Let G=(V, E) be a 2-digraph with an edge (x, y) as above. We may assume w.l.o.g. that G is strongly
connected since otherwise it would not contain a Hamiltonian path from y to x. Notice that G\(x, y)
contains an Eulerian path from y to x (Cormen et al., 2001). Denote it by P=ey,ea,.. ., e,. '

We construct a duplicated genome X as follows: for each e,=(u, v) € P, add the adjacency, {u}, v},
where ;=2 if there is an edge ¢;=(u, V') with [ < g and i=1 otherwise. Similarly, j=2 if there is an edge
e, =, v) with m < g and j=1 otherwise. The result is a linear chromosome created by traversing P and
numbering the first occurrence of each vertex v in P as the gene copy v’ and the second occurrence as v°.
Denote by P the sequence of genes along the path P. In addition, we add two new genes w, z and the
adjacencies {wj,y!}, {x},z/}. Thus, X has three linear chromosomes: w'y'Px*z!,w? and 7. Let
II={{wn,y:}, {xn, 2.} } be an ordinary genome with n chromosomes over the same set of genes. (Note that
every vertex in V\{x, y} corresponds to a separate chromosome in IT).

Let 2; and Il ;) be genomes in which every gene v € V is renamed v;). We define 4= Uf:] 2 and
I'= U;‘:l I1; to be the disjoint union of k different copies of 2 and II, respectively. This completes the
reduction, which is clearly polynomial. We will show that there is an optimal SCJD scenario between I" and
A with at most k duplications if G admits a Hamiltonian path from y to x. .

For each edge e=(u, v) € E and every i, the corresponding adjacency o= {(u)), (v([))ﬁ} has (o) =1 if
there are two parallel edges from u to v and n(x)=0 otherwise. In addition, for every i, n({(w)p,
0w ) =1 &xan, @) }) =1, and every other adjacency of w, z;) has n < 0.

Suppose G contains a Hamiltonian path S from y to x. Let I be the genome formed by the set of
adjacencies {{(Wa)n, O@): bs {Cain, @i Hi=1.. .k} U {{an, Vi) H@w, v) € S,i=1...k}. Since S is
a Hamiltonian path, I'" is a valid ordinary linear genome with k chromosomes of the form w)yg ) S xz()-
To prove that I'" maximizes H( - ), we need to show it contains every adjacency with #=1 and no adjacency
with 7 < 0. Indeed (suppressing the copy index i for clarity), the only adjacencies o with n(e)=1 are
{wn,:}, {xn, 2} (|44 =|'y|=1) and parallel edges in G (|4,]|=2, |I'y|=0), one copy of which must be
included in S. All other adjacencies in I have |4,|=1, |I',|=0 and 5(e)=0. We conclude that I'" is part of
an optimal scenario with k duplications.

Conversely, suppose there is an optimal scenario O* with at most k duplications and let I be the last
ordinary genome in O*. Let I = {«|n(x) > 0} be a genome that minimizes the SCJD distance according to
Theorem 4. First, notice that I” is indeed a linear genome. Otherwise, a circular chromosome of adjacencies
with n(e)=1 would imply a strongly connected component without the vertices x, y, contradicting the
strong connectivity of G. It follows that I'" C I, HI"y=H(T), and #.I < k.

Since X(; and X; for i # j contain different genes, an adjacency between a gene in X(;) and a gene 2
has negative y. Therefore, I" contains no such adjacencies. Since I has at most k linear chromosomes, it
must contain exactly k linear chromosomes, each containing all the genes of 2; for one i.

Let C=w)yq)- - - X1)Z1) be the linear chromosome in I that contains all the genes of Xj). Define an
edge set S in G by taking for each adjacency {(ua1))n, vay):} € C\{{wa)n, ¥y):}s {ayns @ay)}} the
edge (u, v). Since C is an ordinary linear chromosome containing all the genes of 2(;), S is a Hamiltonian
path in G from y to x. |

6. DISCUSSION

In this article, we presented the SCJD rearrangement model, which allows the operations, cut, join, and
whole chromosome duplication. We analyzed the problem of finding the minimum number of SCJD
operations that transform an ordinary linear genome into a duplicated linear genome and provided a linear
time algorithm for it. Furthermore, we showed that this algorithm gives an optimal scenario with a
maximum number of duplications and that finding one with fewest duplications is NP-hard.

In the analysis, we focused on the SCJD sorting problem, which restricts the target genome to have
exactly two copies of each gene. However, it is not difficult to generalize our algorithm to address the more
general situation where each gene in the target genome has at most two copies. One can show that in this
case too, an optimal solution in which all duplications are consecutive exists. In addition, each adjacency in
the original genome between a gene that has two copies and a gene that has one copy in the target genome
must first be cut. This is true because duplications are defined over linear chromosomes in which every
gene is unduplicated.



Downloaded by Tel Aviv Univ Package from www.liebertpub.com at 07/05/18. For personal use only.

136 ZEIRA AND SHAMIR

Our algorithm relies on the property that all duplications in the optimal solution can be clustered (Corollary
2). In this sense, the problem we study is similar to the SCJ Guided Genome Halving problem (Feijdo and
Meidanis, 2011). In that model, the whole genome is duplicated at once, while in ours, there is one duplication
per chromosome, and accounting for these duplications is part of the optimization challenge.

Many aspects in the analysis of the SCJD model require further research: How can we address the
problem if there are more than two copies of each gene? Can we find the SCJD distance between two
arbitrary genomes—each containing single copy and multiple copy genes? How does removing the re-
quirement of linearity affect various SCJD problems? Moreover, duplications may be defined differently,
for example, tandem duplications (Bader, 2009) and segmental duplications (Shao et al., 2013). Finally,
developing a rigorous model that will allow both duplications and deletions is needed to analyze the full
complexity of real biological data such as cancer samples.
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ABSTRACT

Problems of genome rearrangement are central in both evolution and cancer. Most evolu-
tionary scenarios have been studied under the assumption that the genome contains a single
copy of each gene. In contrast, tumor genomes undergo deletions and duplications, and
thus, the number of copies of genes varies. The number of copies of each segment along a
chromosome is called its copy number profile (CNP). Understanding CNP changes can assist
in predicting disease progression and treatment. To date, questions related to distances
between CNPs gained little scientific attention. Here we focus on the following fundamental
problem, introduced by Schwarz et al.: given two CNPs, u and v, compute the minimum
number of operations transforming u into v, where the edit operations are segmental deletions
and amplifications. We establish the computational complexity of this problem, showing that
it is solvable in linear time and constant space.

Keywords: copy number, edit distance, genome rearrangement.

1. INTRODUCTION

THE GENOME OF A SPECIES evolves by undergoing small and large mutations over generations. Large
mutations modify genome organization by rearrangement of genomic segments. Computational analysis
of the process of genome rearrangement has been the subject of extensive research over the last two decades
(Fertin et al., 2009). The majority of these studies to date were restricted to a single copy of each gene and
were concerned with the reordering of segments. Extant models that do not make this assumption often result
in NP-hard problems (Tannier et al., 2009; Savard et al., 2011; Shao and Lin, 2012).

While most work on genome rearrangements to date was done in the context of species evolution, there
is today great opportunity in analysis of cancer genome evolution. Cancer is a dynamic process charac-
terized by the rapid accumulation of somatic mutations, which produce complex tumor genomes. Species
evolution happens over eons and changes are carried over from one generation to the next. In contrast,
cancer evolution happens within a single individual over a few decades. In many tumor genomes, a lot of
the changes are segmental deletions and amplifications (The Cancer Genome Atlas Research Network,
2011). As a result, the number of copies of each segment along a chromosome, known as its copy number
profile (CNP), changes during cancer development, compared to the normal genome that has two copies
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(or alleles) for each segment. Understanding these changes can assist in predicting disease progression and
the outcome of medical interventions. However, computational questions related to distances between
CNPs received little scientific attention to date. Such questions are the topic of this article.

Over the years, a variety of methods were used to determine the CNP of a cancer genome, at different
resolutions. G-banding allows viewing the chromosome bands (Pinkel et al., 1986). Fluoroscent In Situ
Hybridization (FISH) measures the copy numbers of tens to hundreds of targeted genes (Chowdhury et al.,
2014). Array comparative genomic hybridization gives a higher resolution of CN estimation for a cell
population (Urban et al., 2006). Most recently, deep sequencing techniques yield CNPs by using read depth
data (Oesper et al., 2012). While it would have been preferable to analyze the genome (karyotype) itself
and not its CNP, detection of structural variations from sequencing data is still problematic (McPherson
et al., 2012; Abo et al., 2014). Today it is a routine procedure to obtain detailed CNPs of cancer genomes,
but utilizing them to understand cancer evolution is still an open problem.

Given two CNPs, the healthy tissue’s and the tumor’s, evaluating the distance between them can help in
understanding cancer progression. A naive measure of distance is the Euclidean distance between the two
profiles (Schwarz et al., 2014). Chowdhury et al. defined edit distance between CNPs obtained from FISH,
where the edit operations are amplification or deletion of single genes, single chromosomes, or the whole
genome (Chowdhury et al., 2013, 2014, 2015). However, calculating these distances requires exponential
time in the number of genes and therefore is limited to low-resolution FISH data. The TuMult algorithm
uses the number of breakpoints (loci where the CNs change) between two profiles as a simple distance
measure (Letouzé et al., 2010).

Schwartz et al. introduced a model that admits amplification and deletion of contiguous segments
(Schwarz et al., 2014). The edit distance between two CNPs was defined as the minimum number of
segmental deletions and duplications over all separations of the profiles into two alleles (a procedure known
as phasing). Their algorithm MEDICC for computing the edit distance uses finite-state transducers (FSTs)
(Mohri, 2003) to model the profiles and efficiently compute the distance. However, the complexity of this
method was not analyzed. Even without the phasing computation, the method needs to compose a three-
state transducer with itself B times, resulting in a transducer with 3B states (Mohri, 2004; Schwarz et al.,
2014). Here, B is the maximum CN in the input. The running time of FST procedures relies on the number
of states and transitions, and in some cases may be exponential (Mohri, 2003, 2004).

1.1. Copy number transformation

We investigate the following problem, which underlies the model of Schwarz et al. (2014): Given two
CNPs, u and v, compute the minimum number of segmental duplications and deletions needed to transform
u into v. We call this problem the Copy Number Transformation Problem (CNTP). A CNP is represented by
a vector of non-negative integers (the number of copies of each segment). A segmental deletion (ampli-
fication) decreases (resp. increases) by 1 the values of a contiguous interval of the vector, where zero values
are not affected. Formal definitions are given in Section 2.

1.2. Our contribution

We show that the CNTP is solvable in linear time and constant space. The algorithm relies on several
properties of the problem that we establish in Section 3.1, which may also be relevant to the analysis of
other problems involving CNPs. By exploiting these properties, we obtain a pseudopolynomial dynamic
programming algorithm for CNTP, presented in Section 3.2. In Section 3.3, by establishing that a certain
function in the dynamic programming recursion is piecewise linear, we improve its performance and obtain
our main result, namely, a linear-time algorithm for CNTP.

Preliminary version of this article appeared in the proceedings of CPM 2016 (Shamir et al., 2016).

2. PRELIMINARIES

In this section, we give definitions and notations that are used throughout the article. Let n € N. A CNP
is a vector V=(v{,va, ..., v,), where v; € NU{0}. Each position in V corresponds to a segment in the
normal genome, where the segments are ordered as in the normal genome. For simplicity we call a position
a gene. A CN operation (CNO) is a triple c=(¢, h, w), where 1 </ < h<mnandw € {-1, 1}. We say that
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§ = (1{1i1,1,1)
Y e1=(22,1)

C](S) — (1, 0, 13; 1,5 1) FI.G. 1. Tht? CNT .C:(cl,cz, c3) transforms
et . S into 7. The size of C'is 3. Red (dotted) and green
€= (4949'1) (solid) blocks indicate deletions and amplifica-
CZ(C ](S)) = (1,0, 1,0, ) tions, respectively. CNT, CN transformation.
v c;=(1,5,+1)

T'=cs(ccS) = (2,0,2,0,2)

a CNO c=(, h, —1) is a deletion and c=({, h, 1) is an amplification. Given a CNP V=(v{, vy, ..., V)
and a CNO c=(/, h,w), we define the operation c¢(V)=(c(vy), c(v2), ..., c(v,)) as follows. For each

ie{l,2,...,n}, if £<i<hand v; > 1, then c(v;)=v;+w, otherwise (i.e., if i < £ or i > h or v;=0)
c(vi)=v;. A triple c=(¢, h, w) with h < ¢ has no effect on the CNP, that is, c(V)=V. Given two CNPs,
S=(s1,582, ..., 8,) (source) and T=(t),1, ..., 1,) (target), a CN transformation (CNT) is a vector C=

(c1,¢2, ..., Cm), where m € N and each ¢; =(4;, h;, w;) is a CNO, such that C(S)=c(cin-1(- - (c1 () =T.
The size of C, denoted |C|, is m. An example is given in Figure 1. Finally, we denote the number of
operations of weight w € {—1, 1} affecting s; by op(C, w, ))=|{(¢, h, w) € C : £ < i < h}|. For example, in
Figure 1, op(C, —1,2)=1.

The CN distance from S to 7, dist(S, T), is the smallest size of a CNT C that satisfies C(S)=T, where if
no such CNT exists, dist(S, 7)=oo. Note that dist is not symmetric. For example, for S=(1) and 7= (0),
dist(S, T)=1 but dist(T, S)=o00. Given two CNPs, S=(s1, 2, ...,s,) and T=(t1, 15, ...,1,), the CNTP
seeks dist(S, 7) (if one exists). We say that a CNT C is optimal if it realizes dist(S,T), that is,
|C|=dist(S, T) (there may exist several optimal CNTs). We let B= max{max/_, {s;}, max’_,{#;}} denote
the maximum CN in the input. Finally, for all 1 <i < n, we define u; =s;—1;.

3. AN ALGORITHM FOR CNTP

We first present an O(nB?)-time and O(B)-space algorithm for CNTP, based on dynamic programming
(Sections 3.1 and 3.2). Recall that B is the maximal integer in the input, so that algorithm is pseudopo-
lynomial. Then, we modify this algorithm to run in linear time (Section 3.3). On a high level, the modi-
fication is based on the observation that the table used by the algorithm to store values of partial solutions
can be described by O(n) piecewise linear functions, where each function encapsulates O(B) entries of the
table. We show that each function has only three linear segments, and so, the computation of an entry can
be performed in time O(1) rather than O(B). Furthermore, since each function can be represented in a
compact manner, the size of table shrinks from O(nB) to O(n). The precise definitions of the table and the
functions are given in Sections 3.2 and 3.3. Our proof of the correctness of the use of these functions
requires a somewhat extensive case analysis that is presented separately in Section 3.4.

3.1. Key propositions

We start by developing DpCntpAlg, an O(nB?)-time dynamic programming algorithm for CNTP. Let
S=(s1,52, --.»8), T=(t1,12, ..., 1,)) be the input. Observe that there exists a CNT C such that C(S)=T
if and only if there does not exist an index 1 < i < n such that s;=0 and #; > 0. Since the existence of such
an index can be determined in linear time (where, if such an index is found, we return co), we will assume
that dist(S, T) < oco. To simplify the presentation, we further assume w.l.0.g. that ¢, t, # 0. Indeed, if t, =0
or t,=0, we can solve the input (S'=(1, sy, 52, ...,5,, 1), T"=(1,11, 12, ..., 1, 1)) instead, since it holds
that dist(S, T)=dist(S’, T7°). Finally, we assume w.l.o.g. for all 1 <i <n, s; > 0. Indeed, if there exists
1 <i<n such that 5;=0, then also #;=0, and we can solve the input (S'=(sy, ..., Si_1,Si+1> --->
s, T'=(t1 ..., t;i_1,tix1, ..., 1)) since dist(S, T)=dist(S", T").

DpCntpAlg exploits four key observations about the nature of the problem at hand, summarized as
follows: (1) it is sufficient to examine CNTs where all of the deletions precede all of the amplifications; (2)
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it is sufficient to examine CNTs that do not contain both a deletion that affects s; but not s;, | and a deletion
that affects s;,; but not s;, and the same is true for amplifications; (3) when seeking an optimal solution, it
is not necessary to store information indicating how many deletions/amplifications affect s; if #;=0; and
(4) the maximum number of deletions/amplifications that affect each s; can be bounded by B.

To formally state the first observation, we need the following definition.

Definition 1. A CNT C=(cy, ¢, ..., cy) is ordered if for all 1 < i < j <m, if ¢; is a deletion, then c;
is also a deletion.

Proposition 1. There exists an optimal ordered CNT.

We note that the “opposite’” proposition, stating that there exists an optimal CNT where all of the
amplifications precede all of the deletions, does not hold: consider, for example, S=(1,1,1,1,1) and
T=(2,0,2,0,2). To prove this proposition, we will need the following claim.

Claim 1. Let C=(cy, ¢a, ..., Cp) be an optimal CNT and let i be an index such that c;=({;, h;, 1) and
civ1=Wis1, hix1, —1). Then, there exists an optimal CNT C’=(cy, ...,Ci_1,C{,Ci+1,Cis2, - .., Cm), Where
=, hi,w)) and ¢j 1=y 1, hiy1, wiv1), such that one of the following conditions holds.

Lo (Wi =€)+ (1 =) < (hi—= )+ (hiv1—Liv1).
2. (W =)+ (hiy =) =(hi =€)+ (hiy1 —Lis1) and wi=—1.

Proof. Consider the following exhaustive case analysis (Fig. 2). |

I. h; < l;yq or hiy1 < ¢;: In this case, the segments corresponding to ¢; and ¢;; are disjoint. Thus, we

can simply define ¢/ =c¢;;1 and ¢/ =c;. Then, Condition 2 is satisfied.

I 4 <ty <hi <hiyr: Define ¢/=hi+1,hi+q, —1) and ¢y 1=;, 4;11—1,1). For any CNP
V=1,v2, ..., Vp), cix1(ci(V))=c;+1(ci(V)). This argument holds because an application of c¢;, fol-
lowed by an application of ¢;, does not change any entry v; such that ¢, < k < h;. We have that
C’'(S)=T. Since |C’|=|C|, C’ is an optimal CNT. Now, Condition 1 is satisfied.

I 4o <4 < hjy1 < hg: Define ¢/ = 1,4—1, —=1)and ¢j.1=(h;+1+1, h;, 1). As in the second case,
we obtain an optimal CNT that satisfies Condition 1.

IV. 4; < liy1 < hiz1 < h;: Define ¢/ =0;, 4;.1—1,1) and ¢/ 1 =(h;+1+1, h;, 1). As in the second case,

we obtain an optimal CNT that satisfies Condition 1.

V. b1 <4 < h; < hjsq: Define ¢/=j+1,4;—1, —1) and ¢/1=(h;+1, hjx1, —1). As in the second

case, we obtain an optimal CNT that satisfies Condition 1.

As we show below, Claim 1 implies the existence of an ordered optimal CNT. In each of the cases in
Claim 1, a local change is made in the CNT. Note, however, that just performing enough local operations
does not guarantee reaching an ordered optimal CNT. For example, in a CNT with three consecutive CNOs,
ci=Wi, hi, ), civ1=Wis1, hiv1, 1), civ2=iv2, hiy2, —1), one may loop between changing c;;; into a
deletion and then into an amplification.

Proof (Proof of Proposition 1). Let C be the set of optimal CNTs, and suppose, by way of contradiction,
that it does not contain an ordered CNT. The three following phases sieve some solutions out of C.
Informally, we initially consider only optimal CNTs that minimize the sum of the sizes of the segments
corresponding to their CNOs (C'); then, we further consider only the CNTs whose first amplification is as
late as possible (C?); finally, we only take the CNTs whose first deletion after their first amplification is as
early as possible (C*). An illustration is given in Figure 3.

FIG. 2. The proof of Claim 1. The green (solid)
lines correspond to ¢;, and the red (dotted) lines
correspond tO Cjy 1.




Downloaded by Tel Aviv Univ Package from www.liebertpub.com at 07/05/18. For personal use only.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1183

All CNTs

C': Minimize the sum of the sizes of
" the segments of the CNOs

(C?: Maximize the position of the first

lificati
amprication FIG. 3. The proof of Proposition 1.

Minimize the position of the first
C*: deletion following the first
amplification

* Given C=(cy, ¢z, ..., cp) € C, define x(C)= > | (h;—¥¢;). Let C' be the set of every C € C for which
there does not exist C’ € C such that x(C) > x(C").

e Given C=(cy, ¢z, ..., Cp) € Cl, let y(C) be the largest index 0 < i < m such that forall 1 <j <7, ¢;is
a deletion. Note that y(C)=0 if and only if ¢; is an amplification. Let C* be the set of every C € C' for
which there does not exist C’ € C' such that y(C) < y(C”).

e Given C=(cy, Ca, ..., cm) € C2, let z(C) be the smallest index i € {MC)+1, ..., m} such that ¢; is a
deletion. By the definition of y(C) and since C is not ordered, we have that z(C) is well defined and
Z2(C) > y(C)+2. Let C* be the set of every C € C?* for which there does not exist C’ € C? such that
2(C) > z(C).

Since C # (), we have that c # (. Thus, we can let C=(cy, ¢y, ..., cy) be a solution in C3. Let i be the
smallest index such that c; is an amplification and c;;; is a deletion. Now, consider the conditions in Claim
1: if Condition 1 holds, we have a contradiction to the fact that C € C', while if Condition 2 holds, we have
a contradiction either to the fact that C € C* (if i=1 or ¢;_; is a deletion) or to the fact that C € C*
(otherwise). Thus, we conclude that C contains an ordered CNT.

Definition 2. A CNT C is elongated if for all 1 <i<nandw € {-1, 1},
min{op(C, w, i), op(C,w, i+ D} =|{(l,h,w) € C: £ < i,i+1 < h}|.

Equivalently, C is elongated if no two amplifications (or deletions) ‘‘dovetail,”” that is, one ending at
i and the other starting at i+1. It is clear that for any CNT C, the inequality > holds above (since
{,h,w) € C: £ <i,i+1 <h} is a subset of both {({,h,w)e C:¢<i<h} and {({,h,w)EC:
¢ <i+1 < h}). Our second key proposition implies the inequality < holds as well. An example for an
elongated CNT is given in Figure 4A.

To prove Proposition 2, we will need the following claim.

A S _—

S= .23 . S= .23, .
T= ..,00,.. T= ..,00,..
Not elongated Elongated

FIG. 4. (A) Elongated and nonelongated CNTs. (B) A
zero-skipping solution. The top lines indicate the range
of deletions.
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Claim 2. Let C=(cy, ¢3, ..., Cnm) be an optimal ordered CNT, and let 1 < i < j < m be indices such that
either both c; and c; are deletions or both c; and c; are amplifications. Then, the CNT C’ obtained from C by
swapping the locations of ¢; and c; is also an optimal ordered CNT.

Proof. Clearly, C’ is ordered and |C’|=|C|. Thus, it is sufficient to show that C’(S)=C(S). Observe
that because C is ordered, for any 1 < g <n, the value of the ¢ CN in C(S) is x+y, where
x=max{s,—op(C, -1, ¢),0}, y=0if x=0, and y=0p(C, 1, g) otherwise. By the definition of C’ (which is
also ordered and contains the same CNOs as C), this is also the value of the ¢ CN in C’(S). [ |

We are now ready to show the following property.

Proposition 2. Every ordered optimal CNT is elongated.

Proof. Let C=(cy, c2, ..., cn) be an optimal ordered CNT. Suppose that, by way of contradiction, C is
not elongated. Thus, there exist 1 <i<n and w € {—1, 1} such that

min{op(C, w, i), op(C,w, i+ 1)} > [{(¢,h,w) € C: £ < i,i+1 < h}|.

Therefore, C contains two CNOs ¢, =({,, h,, w) and ¢, =({,, hy, w) such that h,=i and {,=i+1. By
Claim 2, we can assume that p =g+ 1. Now, by removing ¢, and replacing c, by the CNO c=(¢,, hy, w), we
obtain a CNT C’ such that C’(S)=T. However, |C’| < |C|, which contradicts the optimality of C. |

To formalize our third key proposition, we need the following definition.

Definition 3. A CNT C is zero-skipping if for every 1 <i <j < n such that for all i <r <j,t,=0
we have

op(C, —1,))= max{ m{axl{s,}, op(C, —1, i)}, and op(C, 1,j)=0p(C, 1,i).
r=i+

In words, for a block of consecutive zeros in the target profile, all deletions that span the block also
include its flanking positions. An example of a zero-skipping CNT is given in Figure 4B.

Proposition 3. There exists an optimal ordered zero-skipping CNT.

Proof. By Proposition 1, there is an optimal ordered CNT C=(cy, ¢3, ..., cy). If C is zero-skipping, we
are done, and thus we next suppose that it does not. Thus, there exists 1 < i < j < n such that 7,=0 for all
i < r <j, for which at least one of the following conditions is satisfied. |

1. op(C, —1,j) # max{max._,, {s.},0p(C, — 1, i)}.
2. op(C, 1,)) # op(C, 1,0).

We can assume w.l.0.g. that j is the smallest index that is larger than i for which at least one of the above
conditions is satisfied. Thus, at least one of the following conditions is satisfied.

1. op(C, —1,)) # max{s;, op(C, —1,j—D}.
2. op(C, 1,j) #op(C, 1,j—1).

Since #,=0, [{(¢,h, —1) € C: £ < j < h}| > 5;. Moreover, because C is ordered and #;=0, we can re-
place each CNO c¢= (¥, h, w) in C such that h=j—1 by the CNO ¢’=(/, j, w). Thus, we overall obtain an
optimal ordered CNT C’, such that, if it is not zero-skipping (in which case we are done), at least one of the
following conditions is satisfied.

1. op(C, —1,j) > max{s;, op(C, —1,j—1}.
2. op(C, 1,j) > op(C, 1,j—1).

Since C” is ordered and ¢; =0, we can choose a CNO ¢ =(¢, h, w) in C’ such that /=j, as well as w= — | if the
first condition is satisfied and w = 1 otherwise, and replace it by the CNO ¢’ =(j + 1, h, w). This operation results in
an optimal ordered CNT. By repeating it enough times, we obtain an optimal ordered CNT that is zero-skipping. ll

For a position with positive target value, knowing the number of deletions that affected it uniquely
determines the number of amplifications that affected it. This simple fact will help the efficiency of our
procedures. Formally:



Downloaded by Tel Aviv Univ Package from www.liebertpub.com at 07/05/18. For personal use only.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1185

Observation 1. Let 1 < i < n be an index such that t; > 0, and let C=(cy, ca, ..., cy) be a CNT such
that C(S)=T. Then, op(C, 1,i)=—u;+op(C, —1,i).

Finally, we formalize our fourth key proposition.

Definition 4. A CNT C is bounded if for all 1<i<n and every we€ {—1,1}, we have
op(C,w,i) <B.

Proposition 4. Every optimal ordered CNT that is zero-skipping is also bounded.

Proof. Let C be an optimal ordered CNT that is zero-skipping. Suppose, by way of contradiction, that C
is not bounded. That is, there exists 1 < i <nand w € {—1, 1} such that op(C, w, i) > B. First suppose
that #; > 0. Then, since C is ordered and C(S)=T, we have that w=1. However, this contradicts the
correctness of Observation 1. Thus, we can next suppose that #; =0, which also implies that i > 1. We also
assume w..o.g. that i is the smallest index such that op(C, w, i) > B. Therefore, at least one of the
following conditions is satisfied.

1. op(C, —1,j) > max{s;, op(C, —1,j-1D}.
2. op(C, 1,j) > op(C, 1,j—1).

Thus, we necessarily obtain a contradiction to the fact that C is zero-skipping. |

3.2. An O(nB?)-time algorithm for CNTP

On a high-level, the dynamic programming algorithm works as follows. It considers increasing prefixes
Si=(s1, 82, ...,s))and T'=(t1, ta, ..., t;) of the input. It computes a table M having n(B + 1) entries where
M[i, d] is the best value of a solution on (S', T%) that uses exactly d deletions that affect the jth position. The
parameter d ranges between zero and B, and the values for each i are computed based on values M([j, - ] for a
single specific j < i. In particular, at each point of time, only two rows of the table M are stored. By
Propositions 1-4, the algorithm considers only ordered, elongated, zero-skipping and bounded solutions.
We call such solutions good.

More formally, given 1 <i<n and 0 < d < B, we say that a CNT C is an (i, d)-CNT if C(SH=T',
d=o0p(C, —1,1), and C is good. We say that an (i, d)-CNT C is optimal if there is no (i, d)-CNT C’ such
that |C’| < |C|. Our goal will be to ensure that each entry M[i, d] stores the size of an optimal (i, d)-CNT,
where if no such CNT exists, it stores co. We do not compute entries M[i, d] such that ;=0; indeed, by
relying on Property 3, we are able to skip such entries (although our recursive formula does consider CNSs s;
referring to indices i such that #;=0). In this context, observe that any ordered CNT C such that C(S)=T
consists of at least u; deletions that affect s;, and if ¢; > 0, it cannot consist of more than s; — 1 such deletions
(since after decreasing s; to 0, it remains 0). Moreover, if u; < d < s;, there exists an (i, d)-CNT—by
independently adjusting the value of each position < i to its target position and the value at position i with d
deletions, using operations of span 1.

Observation 2. Given 1 < i < nsuch thatt; > 0 and 0 < d < B, there exists an (i, d)-CNT if and only if
up <d <s;.

In case s; < t;, Observation 2 states that there exists an (i, d)-CNT if and only if d < s;. In light of this
observation, we will use the following assumption.

Assumption 1. In the computation below, we assume that max{u;, 0} < d < s;. Entries M[i, d] for which
it is not true that max{u;, 0} < d < s; store cc.

By Observation 1, if a solution involved d deletions at position i with # > 0, then it involved —u;+d
amplifications at that position. For convenience denote that number by a(i, d)=—u;+d forall 1 <i<n
satisfying #; > 0 and max{u;, 0} < d < s;, and a(i, d) = 0o otherwise.

For input profiles S, T, the algorithm precomputes two vectors. Given an index 1 < i < nsuch that#; > 0,
let prev(i) denote the largest index j < 7 such that #; > 0. Moreover, if prev(i) =i—1, let Q; =0, and otherwise
let Q;= maxprev(,‘)<j<,~{s,‘}. A zero-skipping solution (Fig. 5) will skip the positions between i and prev(i) in the
computation, but will make sure to perform at least Q; deletions spanning the skipped positions.

Initialization: The initialization step sets all entries M[1, d] as follows.
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o . . prev(i) Q i
FIG. 5. Zero-skipping in the recursive formula. 7 has a maxi- _
mal block of zeros between positions prev(i) and i, S has values 2 5_2' """""" '4' """""""" 13
and 3, respectively, in these positions and a maximum value 4 EEEESrm——=======
within the interval of genes, attained at position Q;. d’ deletions e mme====== Q-d

|
can be elongated from prev(i) up to position i. d —d’ deletions can d-d’
be extended forward up to position i and backward to position e e —
prev(i) + 1. In addition, Q; —d additional deletions are needed to d

delete Q;. T=1,O,O,O,O,O,O,O,O,O;O;1

[

M[1, d]—d+a(l, d).

Recursion: If #;=0 position i is skipped. Suppose that i > 1, t; > 0, and max{u;, 0} < d < s;. The order
of the computation is determined by the first argument. The computation is summarized in the following
formula and illustrated in Figure 5.

M[i, d] < On}}nB{M[prev(i), d’'1+ max{d-d’, 0}
<d'< ey
+ max{a(i, d)— a(prev(i), d’), 0} + max{Q; — max{d, d’},0}}

Roughly speaking, to compute M[i, d] we look back to the previous nonzero position in 7, and for each
value d’ in that position add the difference from d if needed, the number of amplifications to be added if
needed, and the number of additional deletions if such are needed to take care of the zero positions that
were skipped. After filling the table M, DpCntpAlg returns ming<ys<g MIn, d]. The full algorithm is given
in Algorithm 1. An example of a partially filled table is given in Figure 6.

Algorithm 1: DpCntpAlg

Input: S, 7, Q, prev
Output: dist(S, T)
for d=1,...,B do
M[1,d] < d+a(l, d)
end for
for i=2,...,n,t;> 0 do
for d=0,...,B do
if max{u; 0} <d < s; then
M[i,d] < ming<y<p{M[prev(i), d'] + max{d — d’, 0} + max{a(i, d) — a(prev(i), d'), 0}
else
M[i, d] «
end if
end for
end for
return ming<;<g M[n, d]

M([i, d]
i=1 i=7
d=0 ) oo
FIG. 6. The DP M[i, d] matrix for the two CNPs in Figure 4B. d=1 1 )
d=2 2 3
d=3 ) 4
d=4 oo oo
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Correctness: First, we claim that the entries of the table M are computed properly.

Lemma 1. Forall 1 <i < nsuch that t; > 0 and for all 0 < d < B, M[i, d] stores the size of an optimal
(i, d)-CNT, where if no such CNT exists, it stores .

Proof. We prove the lemma by induction on the order of the computation. |
The correctness of the initialization step follows from the definition of an (i, d)-CNT and Observation 1.
Now, fix 1 < i < n such that #; > 0, and fix max{u;, 0} < d < s;. Let m be the size of an optimal (i, d)-
CNT. Suppose that the lemma is correct for all i’ < i and 0 < d’ < B. We need to show that M[i, d]=m

First Direction: First, we show that M[i, d] < m. Let C=(cy, ¢3, ..., ¢;y) be an optimal (i, d)-CNT, and
for all 1 gj < m, denote ¢;=({;, hj, wj). For all 1 <j <m, let ¢j=(¢;, min{h;, prev(i)}, w;). Now, define
C'=(ct, 3, ..., cpn). We further let C=(¢y, ¢z, ..., ;) denote the CNT obtamed from C’ by removmg all

of the CNOs c= (¢, h, w) such that & < £. Denote d op(C — 1, prev(i)). Observe that d < B and that C isa
(prev(i), d) CNT (because C is an (i, d)-CNT). Therefore, by the induction hypothesis, M[prev(i), d] <gq
(recall that g= |C D. If prev(z) =i—1, then Q;=0 and since C is ordered and elongated, by Observation 1 we
have that m—g= max{d - d, 0} + max{a(i, d)—a(prev(i), d), 0}. Thus, by the recursive formula, in this
case we get that M[i, d] < m.

Now, suppose that prev(i) < i—1. Then, since C is ordered and zero-skipping, and by the definition of
Q;, the two following conditions hold.

1. op(C, —1,i—1)=max{Q;, op(C, — 1, prev(i))}.
2. op(C, 1,i—1)=0p(C, 1, prev(i)).

Thus, since C is ordered and elongated, by Observation 1 we have that m—g= max{d — d, 0} + max{a(i, d)—
a(prev(i), d), 0} + max{Q; — max{d, d}, 0}. Again, by the recursive formula, this implies that M[i, d] < m.

Second Direction: Next, we show that M[i, d] > m. To this end, it is sufficient to show that there exists an
(i, d)-CNT C such that M[i, d] > |C|. Let d be an argument d” at which the value computed by using the re-
cursive formula is minimized. By the inductive hypothesis, there exists a (prev(i), d) CNT C= (€1, €, +- -5 Cg)
such that M[prev(i), d] > g.Forall 1 <j < g, denote ¢;= (¢}, h;, w;). Now, if prev(i) =i — 1, define C= C, else
define C as follows. Forall 1 <j < g,letc¢;= £, h w;), Where h h;if by < prev(i) and h=i—1 otherwise. Let
C= (€1, €25 ..., Cy)- Moreover, as long as there exists prev(i) <j < i such that op(C —1,j) < sj, choose the
smallest such j, and append to the beginning of C the CNO (j,i—1, —1). Let C’ be the CNT obtained at the end
of this process. Denote C’=(ci, ¢4, ..., c}),andforall 1 <j < r,denote c/= (¢, hj, wj). Now, let p and ¢ be the
number of deletions and amplifications in C” whose segments include i — 1, respectively. If p < d, append to the
beginning of C’ d —p “dummy”’ deletions of the form (i, i—1, — 1), and if a(i, d) < ¢, append to the end of C”
a(i, d)— q “‘dummy”” amplifications of the form (i, i— 1, 1). Let C”" =(c{, ¢%, ..., ¢t ) be the resulting CNT, and
forall 1 <;j < k,denote ¢/= (¢, hf; w"). Finally, we define C as follows. Let D (A) be a set of exactly d deletions
(resp. amplifications) in C” whose second argument is i — 1. We let C be defined as C”, except that each CNO
(¢, h,w) € D UA is replaced by the CNO (¢, i, w). It is straightforward to verify that C is an (i, d)-CNT such
that |C|=q+ max{d—d, 0} + max{a(i, d)— a(prev(i), d), 0} + max{Q, — max{d, d},0}, which concludes
the correctness of the second direction.

Now, we turn to consider the correctness and running time of DpCntpAlg.

Theorem 1. DpCntpAlg solves CNTP in time O(nB?) and space O(B).

Proof. The table M contains O(nB) entries, and each entry can be computed in time O(B). Therefore, the
time complexity of DpCntpAlg is bounded by O(nB*). Moreover, for the computation of M[i, - ], it is
only necessary to keep O(B) entries for position prev(i), and therefore, the space complexity is bounded by
O(B). Since every (n,d)-CNT C satisfies C(S)=T, and since for every good optimal CNT C, there exists
0 < d < B such that C is an (n,d)-CNT, we have that Lemma 1 implies that DpCntpAlg returns the
smallest size of a good optimal CNT (if such a CNT exists). By Propositions 1-4, such a CNT indeed
exists, and therefore DpCntpAlg solves CNTP. |

3.3. A linear-time algorithm for CNTP

In this section we show how to modify DpCntpAlg to obtain an algorithm, called LinearCntpAlg, that
solves CNTP in linear time. The central lemma that leads to this improvement states that each column in
the table M can be described by a piecewise linear function of at most three segments.
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To present this lemma, we need the following notation. For all i € {1,2, ..., n} such that 7 > 0, let
d"" = max{u;, 0} and d"* = max{s;— 1,0} be the least and largest values of d for which M[i, d] is finite.
Now, the function f; : {d}’”", o d" Y} — N U {0} will satisfy fj(d)=M][i, d]. Observe that the function f; is
discrete. We stress that in this section, we do not explicitly compute the entries of M—the definition of the
functions concerns the values that would have been stored in these entries if they were computed by using
DpCntpAlg.

Lemma 2. For each i € {1,2, ...,n} such that t; > 0, there exist base;, a;, b; € NU {0} such that for
all d € {d", ... d"}:
base; if d;"m <d<a
fild)=q (base;—a;)+d if ai<d<b

(base; —a; — b,) +2d lf b, <d< dlmax

Moreover, basey, a1 and b; can be computed in constant time, and for each i € {2,3, ..., n} such that
ti > 0, given baseprev(iy, Apreviiy and bpreyiiy, base;, a; and b; can be computed in constant time.

An example is given in Figure 7. The proof is based on Lemma 1 and on an exhaustive case analysis,
which, for the sake of clarity of presentation, is handled separately in Section 3.4.

Our algorithm, LinearCntpAlg, performs the following computation, using PiecewiseAlg, an
algorithm that computes base;, a;, and b; in constant time. That algorithm is described in the next sub-
section.

We are now ready to prove our main result.

Algorithm 2: LinearCntpAlg

Input: S, 7, Q, prev
Output: dist(S, T)
basey < 0; ag < 0; by < 0.
for i=1,....n,; >0 do
base;; a;, b; < PiecewiseAlg(s; t; Qi basepeviy Apreviiy Ppreviiy)-
end for
return base,,

Theorem 2. LinearCntpAlg solves CNTP in time O(n) and space O(1).

Proof. According to Lemma 2, f;(d)=M[i, d] is a piecewise linear function described by three values:
base;, a; and b;. Lemma 2 shows that PiecewiseAlg calculates these values in constant time and space
given the previous values. The time and space complexity of LinearCntpAlg follow directly. |

fi(d)
base; ‘
—a; — b
+2d*

FIG. 7. An example of the piecewise linear
function f;(d) described in Lemma 2. The number

of segments is three but can be smaller, depending base i
on the values involved. —-a; + bi
base;

min max
di di

a; b;
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Now, by the correctness of DpCntpAlg, it is sufficient to prove that LinearCntpAlg returns the
value ming<y<p M[n, d]. By Observation 2, ming<y<p M[n, d] = mind;m-nsdgd;m Min, d]. By Lemma 2, we
further have that mindgnn <d<dnas M[n, d] =base,. Thus, by the inductive proof of Lemma 2, we conclude that
LinearCntpAlg solves CNTP. |

3.4. Case analysis

This section is to prove the correctness of Lemma 2. That is, we want to show that f;(d) is a piecewise
linear function described by three parameters, and these parameters can be calculated in constant time. To
this end, let j=prev(i) and R;=u; —u;. Accordingly, the term a(i, d)—a(j, d’) can be written as R;+d—d’.
Moreover, let g, be the argument d’ that minimizes the recursive formula we use to compute M[i, d] under
certain conditions that will be clear from context.

We prove Lemma 2 by induction on i. To simplify the proof, let ay=by=basey =0 and fy(d)=2d for
every 0 < d < B. This definition is equivalent to adding the new entries sy =fy =B+ 1 (which do not affect
the distance from S to 7), and thus, it can serve as the basis of our induction. Next, suppose that Lemma 2
holds for j=prev(i) < i, we will prove that it holds for i.

The proof is based on an exhaustive case analysis that examines the position of Q; relative to d;””’, aj,
b; ‘ and 4", as well as the sign of R;. For example, Case 2(a)ii is defined by the conditions
d]’."’” < Qi <aj,R; >0,and g;—R; < Q;. In each case, we analyze the behavior of M[i, d] as we increase
d. More precisely, we examine several intervals that together contain all of the values that can be
assigned to d. For example, in the abovementioned case, we consider the intervals d < a;—R;
a;j—R; <d < Q;, and Q; <d. For each interval, we let d[,p, be an argument d’ that minimizes M[i, d]
under the conditions of the examined case. These conditions along with dj, allow us to remove
the minimization and maximization functions from the formula defining M[i, d], and thus, we obtain
fi(d). In the latter example, if d <a;—R; we can choose d,,,=a; and get fi(d)=M[i, d]=M[j, a;]1+
max{d—a;, 0} + max{R; +d—a;, 0} + max{Q; — max{d, a;}, 0} } =base;. As a corollary of the analysis,
we get that indeed f;(d) is piecewise linear, and that a;, b;, and base; can be calculated in constant time
given aj, bj, basej, R;, and Q;.

The full case analysis is given in the Appendix. The analysis shows that in all cases, f;(d) is indeed
a piecewise linear function with at most three linear segments defined by some a;, b;, and base;. After
applying straightforward operations that reorganize the analysis (to present the results in a compact
manner), we obtain the algorithm PiecewiseAlg, whose pseudocode is given below. This algorithm
performs the iterative step of LinearCntpAlg, that is, it calculates a;, b;, base; given a;, b;, base;, and Q;
in constant time and space.

PiecewiseAlq first calculates R;, d"" and d/"* based on s; and #;. Next, according to the sign of R; and
the relative position of Q; in comparison to the previous a; and b;, the algorithm calculates the structure of
fi(d) defined by a; and b;. Finally, since f;(d) is defined only for the range d/"" < d < d"**, we calculate
base;= ﬁ(d;’””). Similarly, we limit the values of a; and b; to that range.

Algorithm 3: PiecewiseAlg

Il’lpllt: Si, ti, Oi, aj, bj, basej
Output: g;, b;, base;
Ri —Uuj—Uu;
d"" — max{u;, 0}
d" < max{s; — 1, 0}
a; < min{max{a;, Q;}, bj— min{R;, 0} } — max{R;, 0}
b,‘ «— max{Qi, bj— I’IliIl{R,‘, O}}

0 it drn < g
base; < base; + max{Q; —a;, 0} + d"" —a; if @ <d™ <b;
21 —gi—by if by < d"n < dme

a; < max{d"", min{a;, d/""}}; b; — max{a;, min{b;, d;"*"}}
return base;, a;, b;
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4. CONCLUSION

In this article, we introduced the study of distances between CNPs from a theoretical point of view. We
focused on one fundamental problem, CNTP, and showed that it is solvable in linear time and constant
space. To this end, we proved several properties of CNTP that may be useful in solving other problems
involving CNPs. Our algorithm can be modified to return a transformation that realizes dis#(S, T) in linear
time and linear space by backtracking the dynamic programming vector. We have implemented the algorithm
as well as a linear programming formulation of CNTP, and the implementations are available on request.

Many computational and combinatorial aspects in the analysis of distances between CNPs require further
research. Indeed, this article can be viewed as a first step toward understanding them. In our follow-up
article by El-Kebir et al. (2016), we investigated a generalization of CNTP where the input is a set of
profiles, and one seeks to construct a tree with the profile labels at the leaves and additional profile labeling
of internal nodes that minimizes the transformation distances along the edges. We showed this problem is
NP-hard and gave an Integer Linear Programming (ILP) formulation to solve it. Additional directions for
further research involve the introduction of edit operations other than basic segmental deletions and ampli-
fications, dealing with phasing of the profiles, as well as the handling of noise.
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5. APPENDIX
5.1. Detailed case analysis

In this appendix, we present the details of the case analysis outlined in Section 3.4. We analyze the
behavior of M[i, d] as we increase d. We assume, by induction, that f;(d) is a piecewise linear function with
parameters a;, b; and base; for j=prev(i). Then, we examine several intervals that together contain all of the
values that can be assigned to d. For each interval, we let d’(,,,, be an argument d’ that minimizes M[i, d]
under the conditions of the examined case. Finally, we obtain the behavior of f;(d) in each interval, which is
the behavior of the form we desire (i.e., fi(d) is a piecewise linear function defined by three segments).
Denote max{Q;— max{d, d’}, 0} as arg;.

1.0 < clj’-”i”(then, argy =0):
(a) R; > 0:
i.d S aj—Ri:
opr =4a; : fi(d) =base;.
ii. Clj—R,' S d S bji
dopr=d : fi(d)=basej+R;—a;+d.
iii. by <d < d":
dop=d : fi(d)=basej+R;—a;—b; +2d.
iv. d;"“x <d:
épt:d}nax :f,-(d)zbasej+R,-—aj—bj+2d.
(b) R; <0:
i.d< Clj+RiZ
opt = a;  fi(d) =base;.
ii. aj—i-Ri <d< aj-i-Ri:
ot =d : fi(d) =Dbase;.
iii. ai S d S bji
opr =d : fi(d)=Dbase;—a; +d.
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iv. bj § d § bj—R,‘I
dope =bj : fi(d)=basej—a;+d.
V. bj—Ri S d S d}””x—Ri;
éptzbj :ﬁ(d)zbasej+R,~—aj—bj+2d.
vi. d]max—Ri <d:
dipy = fi(d)=base; + R, - a;— by +2d.

2. d]mm S Q,’ S CljZ
(@ R; > 0:

i. i < aj—R; : arg; =0 and the analysis is the same as in Case la.

ii. Clj—Ri < Q,‘Z
A.d S aj—Ri:

dopr = a; : fi(d) =base;.
B. aj—R,» § d S Q,‘I
opt =a; : fi(d)=base;+R;—a;+d.

C. O; <d:arg; =0 and the rest of the analysis is the same as in Case la.

() R; < 0:
i. Q; < a;j+R; : arg; =0 and the analysis is the same as in Case 1b.
ii. aj+R,~ < Q,‘I
A d< aj+R,-:
opt = : fi(d) = base;.
B. aj+R,» <d<Q;:
opt =a; : fi(d) = base;.
C. O; < d:arg; =0 and the rest of the analysis is the same as in Case 1b.

3. a; S Qi S bj:
(@ R; > 0:
i.d < aj—R,-:
oot =4 : fi(d)=base; + Q; —aj.
ii. aj—Ri S d S Q,’—Rii
dopr=d+R; : fi(d)=basej+ Q; —a;.
ii. 0;-R; <d < Q;:
dép,=d+Ri :f,-(d)=basej+Ri—aj+d.
iv. Q,‘ S d S bjl
ot =d : fi(d)=Dbasej+R;—a;+d.
v.bj<d< d]’"“x
d,',p,:d :f,»(d):basej+R,»—aj—bj+2d.
vi. d;“”x <d:
(’)p,=d]max :f,-(d)=basej+Ri—aj—bj+2d.

(b) R; <0:
i.d S aj:
dypi=aj : fi(d)=base; + Q; —a;.
ii. Q,‘ § aj—Ri:
A. a; S d S Q,’Z
dopr=d : fi(d)=base;+ Qi —a;.
B. Qi < d < aj—R,-:
dope=d : fi(d)=base;—a;+d.
iii. aj—R,- < Q,’Z
A. ai S d S aj—R,-:
dopr=d : fi(d)=base; + Q; —a;.
B. aj—R,» < d < Q,‘I
dopi=d : fi(d)=base;+ Qi —a;.
iv. 0; <d <by
opt =d : fi(d)=Dbasej—aj+d.
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vi.

Vii.

bj S d S bj—RiZ
dopi =b; : fi(d)=base;—a;+d.
bj—R,‘ < d < djmax—RiI
(’)pt:bj :ﬁ(d)Zbasej+Ri—aj—bj+2d.
d;"’”—Ri <d:
(',,,tzd;”“x : fild)=base; + R;—a;—b;+2d.

4.b; < Qi < d"*:
(@) R; > 0

i.

ii.

d S Clj—R,'Z
opt =a;  fi(d)=base;+Q;—aj.
Qi—R; < a;:
A. aj—Ri < d < bj—R,‘I

,’,ptzd'i'R,' :f,-(d):basej+Q,<—aj.
B. bj—R,‘ S d S Q,'—R,‘Z

d(’)pt=bj :f,-(d)=basej+Q,-+Ri—aj—bj+d.

C.O-R <d<Q:

(I,ptzd :f,-(d)zbasej+Q,-+R,~—a_,-—b_,~+d.

1il. a; S Qi_Ri S bji
A. aj—Ri S d § bj—RiZ
d,’,pt=d+Ri :f,-(d)=basej+Qi—aj.
B. bj—R,’ < d < Q,'—Ri:
dopr=d+R; : fi(d)=base;+ Qi+ R;—a;—bj+d.
C.Qi-R <d<Q:
(,,p,Zd :f,-(d)Zbasej+Qi+Ri—aj—bj+d.
1v. bj S Qi—RiZ
A. aj—R; S d S bj—R,'I
dépt=d+R,' :ﬁ(d)=basej+Q[—aj.
B. bj—R; <d < Q;—R;:
:,p,=d+Ri :ﬁ(d)=basq+Q,~+R,~—aj—bj+d.
C.O-R <d<0:
,’,ptzd :f,-(d)Zbasej+Qi+Ri—aj—bj+d.
v. Q; <d:
c’)pt=Qi :f,-(d)=basej+R,-—aj—bj+2d.
(b) R, < 0:
i.d S aj:
opr =a; - fi(d)=base;+ Q; —a;.
ii. Qi S aj—Ri:
A. a; S d S Q,‘Z
dopr=aj : fi(d)=basej+ Q; —aj.
B. Q,’ S d S Clj—R,’Z
opt = : fi(d)=base;—a;+d.
C. aj—Ri S d S bj—RiI
dopi=a; : fi(d)=base;—a;+d.
D. bj—Ri S d S Qi—RiZ
dt;ptzbj :f,-(d)=basej+M,-—aj—bj+2d.
iii. a;—R; < Qi < bj—R;:

A. a; S d S a_,-—R,»:

dope=a; : fi(d)=base;+ Q; —a;.
B. aj—R,- S d S Qii

d,’,pt=d+Ri :f,~(d)=basej+Qi—aj.
C. Q,’ < d < bj—R[Z

dopr=d+R; : fi(d)=basej—a;+d.

D. bj—R,‘ <d< O:—R;: d’optzbj :ﬁ(d)zbasej+Mi—q,~—b_/+2d.
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iv. bj—Ri < Q,‘Z

A. a; < d < aj—R,‘I

opt =a;  fi(d)=Dbase;+Q; —a;
B. (lj—R,’ < d < bj—R,'Z

opt =P+ Ri : fi(d)=basej + Q; —a;.
C. bj—Ri < d < Qi:

gptzbj :f,-(d):basej+M,-+Q,»—aj—bj+d.
D. 0 <d<Qi-R:

dz,)pt=bj :f,-(d)=basej+M,-—aj—bj+2d.

V. Qi_Ri < d:
d:,plzbj :f,~(d)=basej+M,~—aj—bj+2d.
3. d}mx < Qi:
(A R; > 0:

i. Qi—R; < dj"": The analysis is the same as in Case 4a for d < dj"*".
A dr < d < Qy
dl')ptzd;"“x :ﬁ(d)=basej+M,»+Q,-—aj—bj+d.
. Qi—R; < dj"™:
A.d < bj—R;:
dyp=d+R; : f(d)=base; + Q; —a;.
B. bj—Ri § d § djm”x—Ri:
d(,,pz=d+Ri :ﬁ(d):basej+Mi+Qi—aj—bj+d.
C.d" —R, < d < d":
d(,,p;=djmax :ﬁ(d)=base_,-+Mi+Q,-—aj—bj+d.
D. djmax < d < Qi—Rl'Z
(,)pt:d}nax ifi(d)Zbasej+M,-+Q,-—aj—bj+d.
E. Qi_Ri S d S Q,‘Z
d,,,[,l=djmax :ﬁ(d)=basej+Mi+Q;—aj—bj+d.

iii. Q; < d:
dope=d"™  fi(d) = basej+ M; — a;— b; +2d.
(b) R; <O0:

i. The analysis of the cases obtained by adding the constraints defining Cases 4(b)ii, 4(b)iii, and
4(b)iv is similar.
ii. d;”‘”‘ <0 < d;”‘”‘—R,»:
A. d < aj—R,-:
opt =a; : fi(d)=Dbase;+ Q; —a;.
B. a_,-R,- < d < bj—R,‘I
dopi =bj : fi(d)=base; + Qi —a;.
C. bj—R,' § d S d;nax:
dgp[=d :f,-(d)=basej+M,-+Q,-—aj—bj+d.
D. d;”‘”“ <d<Q;:
dopr=d+R; : fi(d)=basej+M;+ Q;—a;—bj+d.
E. 0, <d< d]’."”"—R,-:
d(,)pt :dj(nax +R; : fi(d) zbasej +M; —aj— bj +2d.
F. d}”“"—Ri <d:
dz,)pt =djmax +R; ﬁ(d) =b6lS€j +M,; —a; —bj +2d.
iii. dj’-“"x—Ri <0
A. Ford < d}”‘“, the analysis remains the same as in Case 5(b)ii.
B. d;”“" <d< d;”“"—Ri:
(,,plzd-l-Ri :ﬁ(d)Zbasej+Mi+Qi—aj—bj+d.
C. d;"“x—R,- <d<Q;:
3p[=djmax :ﬁ(d)=basej+M[+Q,-—aj—bj+d.
D. Qi < d:
d;p,:dj’»mx-i-Ri :f,~(d)=basq+M,~—a_,~—b,~+2d.
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Abstract

Motivation: Problems of genome rearrangement are central in both evolution and cancer
research. Most genome rearrangement models assume that the genome contains a single copy of
each gene and the only changes in the genome are structural, i.e. reordering of segments. In con-
trast, tumor genomes also undergo numerical changes such as deletions and duplications, and
thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging
task, addressed by few algorithms to date. More realistic models are needed to help trace genome
evolution during tumorigenesis.

Results: Here, we present a model for the evolution of genomes with multiple gene copies using
the operation types double-cut-and-joins, duplications and deletions. The events supported by the
model are reversals, translocations, tandem duplications, segmental deletions and chromosomal
amplifications and deletions, covering most types of structural and numerical changes observed in
tumor samples. Our goal is to find a series of operations of minimum length that transform one
karyotype into the other. We show that the problem is NP-hard and give an integer linear program-
ming formulation that solves the problem exactly under some mild assumptions. We test our
method on simulated genomes and on ovarian cancer genomes. Our study advances the state of
the art in two ways: It allows a broader set of operations than extant models, thus being more real-
istic and it is the first study attempting to re-construct the full sequence of structural and numerical
events during cancer evolution.

Availability and implementation: Code and data are available in https:/github.com/Shamir-Lab/
Sorting-Cancer-Karyotypes.

Contact: ronzeira@post.tau.ac.il or rshamir@tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During cancer, the tumor genome rapidly accumulates somatic
mutations. While some mutations are small, affecting one or a few
bases, others are large-scale events. Here, we focus on the latter.
They include inversions, chromosomal translocations, tandem dupli-
cations, segmental deletions and whole chromosome amplifications
or losses (Vogelstein et al., 2013). Some cancer types are predomin-
ately characterized by these types of mutations (Ciriello et al.,
2013). Understanding these changes can assist in predicting disease
progression and the outcome of medical interventions (Fielding,

2010). For instance, early translocations and tandem duplications in
ovarian cancer were shown to contribute to drug sensitivity and clo-
nal expansion (Ng ez al., 2012).

1.1 Aberration types and cancer genome data

The copy number (CN) of a genomic segment is the number of cop-
ies of the segment a genome contains. In a healthy diploid genome,
each segment has CN =2. In a segmental deletion, a segment of the
DNA is deleted resulting in a genome with one less copy of the seg-
ment. In chromosomal deletion, an entire chromosome is deleted.

©The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Downl oaded from https://academ c. oup. cont bi oi nformati cs/ advance-articl e-abstract/doi/10. 1093/ bi oi nf or mati cs/ bt y381/ 4992148
by Tel Aviv University user

on 05 July 2018



R.Zeira and R.Shamir

In a tandem duplication, a segment of a chromosome is duplicated
and inserted right after the original one. A chromosomal duplication
(or amplification) creates an additional copy of an entire chromo-
some. Overall, deletions and duplications can change both the struc-
ture and the CN of the genome.

Other aberrations change only the structure of the genome but
not its CNs. In an inversion (or reversal), a segment of a chromo-
some is reversed relative to its original orientation. In a transloca-
tion, two chromosomes exchange ends segments.

Given the germline genome G and the tumor genome T, a break-
point is a position between two bases that are consecutive in G but
not in T. Inversions and translocations introduce two breakpoints,
segmental deletions and tandem duplications introduce one break-
point
breakpoints.

and chromosomal duplications/deletions introduce no

The primary source of data for cancer genome analysis today is
deep sequencing. It allows inference of CN changes based on read
depth (Ding ef al., 2014), and facilitates inferring breakpoints in the
genome, detecting structural variants and identifying rearrange-
ments (Korbel ez al., 2007). If the mapped locations of the two ends
of a paired-end read do not match the read length, the read is called
discordant and suggests a breakpoint in the genome. The location
and orientation of such discordant reads can help detect the type of
event (Abo et al., 2015). Accurate re-construction of the numerical
and structural variations from deep sequencing data remain a chal-
lenge, and a myriad of computational methods have been devised

for this task (Ding er al., 2014).

1.2 Genome rearrangement models

Over the past two decades, many genome rearrangement models
were studied. The classical model seeks a shortest sequence of inver-
sions and translocations that transform one genome into another
(Hannenhalli and Pevzner, 1996, 1999). Such a sequence is called a
sorting scenario. Later, a simpler model based on double-cut-and-
join (DCJ) was proposed. In a DCJ, the genome is cut in two loca-
tions and the four loose ends are re-connected as two pairs. This
model can represent both inversions and translocations (Bergeron
et al., 20065 Yancopoulos et al., 2005). Feijao and Meidanis (2011)
provided a simpler model called single-cut-or-join (SCoJ), in which
every operation either cuts the genome or joins two loose ends.
These DCJ and SCo] models assumed a single copy of each genomic
segment and no operation that alters CN. Extant models with mul-
tiple segment copies often result in NP-hard problems (Shao and
Lin, 2012; Tannier et al., 2009). Some rearrangement models as-
sume that a breakpoint cannot be used twice in a sorting scenario
(Pevzner and Tesler, 2003).

Several models have addressed multiple copies along with other
operation types. Some allow insertions or deletions of genomic
segments along with DCJs, but only for non-duplicated segments
(da Silva et al., 2012). For sorting multiple copy genomes using
DCJs only, both an exact integer linear program (ILP) and an
approximation have been given (Shao et al., 2015; Shao and Lin,
2012). Bader (2010) provided a heuristic for sorting by DC]Js,
duplications and deletions. Shao and Moret (2015) devised an ILP
for sorting genomes with multiple copies via DCJs and certain type
of segmental duplications. Zeira and Shamir (2017) gave a linear
algorithm for sorting with SCoJs and chromosomal duplications on
genomes with at most two copies. Ozery-Flato and Shamir (2009)
studied a model with certain duplications, deletions and SCoJs and
provided a three-approximation algorithm that performed well on
cancer genomes.

Several models attempted to introduce CN-modifying opera-
tions. Chowdhury et al. (2014) defined an edit distance between CN
profiles obtained from FISH, where the edit operations are amplifi-
cation or deletion of single genes, single chromosomes, or the whole
genome. However, these methods are tailored to FISH data with a
limited number of genes. Schwarz et al. (2014) introduced a model
that allows amplifications and deletions of contiguous segments. A
linear time algorithm for this edit distance was later given (Zeira
et al., 2017). However, all these models consider only CN modifica-
tions but not structural rearrangements.

1.3 Graph models for tumor rearrangements
Graph theory contributed remarkably to the area of genomic
rearrangements. Breakpoint graphs are widely used for representa-
tion and analysis of rearranged genomes in evolution (Bafna and
Pvezner, 1996; Hannenhalli and Pevzner, 1995b) and in cancer
genomes (Raphael et al., 2003). Greenman et al. (2012) created
models that expanded the breakpoint graph and they used them in
order to infer some order over tumor mutations.

Oesper et al. (2012) further expanded the breakpoint graph with
a structure called the interval adjacency graph, which represents
breakpoints, discordant reads and CN information. Their method,
called PREGO, uses the number of reads supporting each edge to re-
solve the CN of genomic segments and identify discordant adjacen-
cies in the tumor genome. Decomposition of this graph into a set of
paths corresponds to a set of chromosomes. PREGO was shown to
efficiently identify complex rearrangement in ovarian cancer
sequencing data. Eitan and Shamir (2017) expanded this model and
tested it in extensive simulations and on real cancer data.

1.4 Our contribution

We propose here a model for the structural and numerical changes
that a genome with multiple segmental copies undergoes. The
allowed operations are DCJs, tandem duplications, segmental dele-
tions and whole chromosome duplications and deletions. This model
encompasses many of the common aberrations in cancer, and does
not preclude breakpoint reuse. However, we restrict both duplica-
tions and deletions to simple paths that include at most one copy of
each segment. Similarly to Oesper et al. (2012), genomes are repre-
sented by the CN of each segment and the adjacencies between
them. Our goal is to find a shortest series of operations that trans-
form one genome into the other, e.g. a normal genome to an
observed tumor genome. Unlike most models, we focus here on find-
ing the actual sequence of events. We show that the problem is NP-
hard, give an ILP formulation for solving this problem and apply it
on simulated and ovarian tumor data. The algorithm is able to re-
solve the sequence of events for tumors of average complexity.

The study advances the state of the art in genome rearrangement
analysis in cancer in two ways: It allows a broader set of operations
than extant models, thus being more realistic and it is also the first
model attempting to re-construct the full sequence of structural and
numerical events during cancer evolution.

2 Materials and methods

In this section, we present our model and formulate an ILP to
solve it.

2.1 Notation
A genome contains a set G = G* U7 of entities. G* is a set of n
genes, denoted 1, ..., 1. Each gene g € G has two extremities, a head
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¢” and a tail g'. W.l.o.g., denote g' = 2g and g” = 2g + 1 for every
g€ G. Tgis a set of special genes called zelomeres. Each telomere
has only one extremity. Telomeres come in pairs distinguished as the
left telomere and the right telomere. A left telomere has only a head
and a right telomere has only a tail. The left and right telomeres cor-
respond to the start and end of chromosomes in the real genome.
The genes in G* are also called internal genes.

Denote by 7 the set of extremities corresponding to telomeres,
and by & = {g’,g"|g € G’} the set of extremities of internal genes.
The set of all extremities is denoted by £ = £" U 7. Throughout, for
an extremity e we shall denote by g(e) the gene it belongs to.

A karyotype is represented by a pair K = (cn,adj). cn: G — N is
a gene CN profile and adj : € x £ — N is an adjacency CN matrix,
such that Ve € £,cn(g(e)) = >, ¢ adj(e, ¢'). Notice that adj is sym-
metric, and different copies of a gene or adjacency are
indistinguishable.

The karyotype graph of K is a weighted undirected graph G =
(€,E, W) akin to the interval adjacency graph (Oesper et al., 2012;
Fig. 1). The edge set E = E; U E,4 consists of interval edges E; and
adjacency edges E . Interval edges E; = {(g',g")|g € G", cn(g) > 0}
correspond to genes and adjacency edges E; = {(u,v)lu,v €€,
adj(u,v) > 0} correspond to adjacencies in the karyotype. The
weight W : E — N is defined as the CN of the edge, i.e.

Www—{m@
’ adj(u,v)

if (u,v) = (g’,g”) cFE;
if (u,v) € Ex

Removing a copy of an existing edge (#, v) from G results in a new
graph in which the CN of (u, v) is lower by 1 and the edge is deleted
from the graph if its new CN is zero. Similarly, adding a copy of an
edge (u, v) to G results in a new graph G’ = (€, E', W) in which the
CN of the edge (u, v) increases by 1 if it exists in G, or adding the
new edge (1, v) with CN=1.

An alternating path is a simple path in G in which odd edges are
interval edges and even edges are adjacency edges, or vise-versa.

A chromosome in a karyotype is an alternating path starting and
ending with telomeres. Note that a karyotype may be decomposable
into chromosomes in several ways.

w
S
-
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H \
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2 | b 1 | n
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Fig. 1. The effect of model operations on the karyotype graph. Solid edges:
interval edges; dotted edges: adjacencies; numbers on edges: CN; lightning
signs: breakpoints. The scribbled lines show the path affected by the oper-
ation. The sequences of genes corresponding to possible chromosomes are
shown below each graph, with each chromosome in a separate line. The
genes a,b,c,d correspond to the segments in the leftmost karyotype graph
from top to bottom.

2.2 Model
We now turn to define the possible operations that alter a karyotype
in our model (compare Fig. 1).

DCJ: A DCJ operation selects two adjacency edges (a, b), (c,d),
removes a copy of each from the graph and adds copies of new edges
by joining two loose ends, either (a,¢c), (b, d) or (a,d), (b, c). In order
to support splitting of a chromosome and introducing additional
telomere copies, we also allow a special case of DCJ called Single-
cut-and-join (SCJ). SCJ cuts an existing adjacency (a, b) and con-
nects each loose end to a new telomere copy #1,#, € 7. The result of
this SCJ is (a,t1), (b, t2), i.e. splitting the adjacency into two separate
chromosomes capped with new copies of telomeres ¢y, ¢,. Note that
SCJs create new telomere copies that may or may not be part of the
final karyotype. The identity of each ¢; can be arbitrary chosen.

Tandem duplication: Let vy, ..., v2, be an alternating path with-
out telomeres starting with an interval edge. A tandem duplication
adds edge copies for each edge in the path and adds another adjacency
edge copy (v1,v2,). We call vy, v2,, the anchors of the duplication. In
terms of the sequence, this operation corresponds to ...go
8182 - - 8m-18m8Em+1 .- = ... 808182 - - - 8m—18m 8182 - -8m-18m
gmi1 - .- where g; is the gene corresponding to node v; 1.

Chromosome duplication: Let #o,v1,. .., V2, tany1 be an alter-

nating path such that #y, 2,1 are telomeric extremities and (v1, v)
is an interval edge. A chromosome duplication adds edge copies for
each edge along the path and increases the CN of the two telomeres
by one.

Segmental deletion: Let vy, ..., v, be an alternating path with-
out telomeres staring with an adjacency edge. A segmental deletion
removes edge copies for each edge along the path and adds an adja-
cency edge copy (v1,vam). We call vy,v2,, the anchors of the dele-
tion. In terms of the sequence, this operation corresponds to ...go
8182 - - - 8m—-18mEm+1 -+ = - - 80818mEm+1 - - -

Chromosome deletion: This is a special case of segmental dele-
tion where v and v2,, are telomeric nodes. We do not add the edge
(v1,v2,) and thus it corresponds to deleting an entire chromosome
with its telomeres.

The Karyotype Sorting Problem: The input is S, T, d, where
S = (s-cn,s-adj) is a source karyotype, T = (¢_cn,.adj) is a target
karyotype and d is an integer. Our goal is to find a shortest series of
< d operations transforming S into T, or declare that no such se-
quence exists. An example of a series of operations of length 11 is
given in Figure 3.

Notice that the sorting problem is not symmetric. Moreover,
there may be a sorting scenario from S to T, but not from T to S if,
for example, T has lost all copies of some segment in S. New mater-
ial can be gained in the model by duplications (tandem and chromo-
somal). Telomeres can also be gained by SC]Js.

TueoreM 1. The karyotype sorting problem is NP-hard.

ProoF. Let G = (V, E) be a directed graph with 7 nodes in which
all in- and out-degrees are 2. Deciding if a such a graph contains a
Hamiltonian cycle is NP-hard (Plesiilk, 1979). Let (y,x) € E be
some edge. Deciding if there is a Hamiltonian path from x toy in G
is still NP-hard. We assume w.l.0.g. that G is strongly connected,
since otherwise it would not contain a Hamiltonian path from x to
y. Notice that in that case G is also Eulerian.

We construct a source karyotype S as follows: for each node in
v € V we create a gene g, with CN =2 and for each (u,v) € E\{(y,x)}
we add one copy of the adjacency (g”,g’). In addition, we add two
genes w, z with CN=1 and connect them with adjacencies (wh, g;),
<g§’,,z’ ) of CN=1. To make it a valid karyotype, we add a left and
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right telomeres #;, #, and connect them to w' and 2”, respectively.
In other words, S is a karyotype with a single chromosome
t,w,x,P,,y,2, 12, where P, corresponds to some Eulerian path from x
to y in G. Our target karyotype T would be composed of 7 single gene
chromosomes of the form #;,g,,, and an additional chromosome
t,w,z,t;. Namely, each gene will have CN=1, for telomeres
CN=#n+1, and the adjacencies would be of the form (¢1,g}) and
(g, 12) for veV plus (11,0'), (wh,z‘), (zh, 17). Notice that all
chromosome paths start and end with the same telomeres #;, #,. We will
show that there is a sorting scenario of S to T of length 7+ 1 if and only
if G admits a Hamiltonian path from x to y.

Suppose G contains a Hamiltonian path P =x,v5,...,v, 1,y.
To construct a sorting scenario, first perform 7 SCJs for each adja-
cency of the form (g2, g’) that is not part of P, and connect them as
(t1,8") and (g}, 12). Now, perform a segmental deletion of the path
8+ 8vs»- -8, 1,8y CONnNecting w” and z'. The total length of the
sorting scenario is 7+ 1.

For the other direction, suppose there is a sorting scenario with
n+ 1 operations from S to T. Since each gene in T has CN =1, the
scenario must contain at least one deletion. Notice that T has # add-
itional copies of the telomeres and the only way to increase the CN
of telomeres in the model is either by chromosome duplication or by
SCJ. However, each chromosome duplication would require add-
itional deletions to reduce the gene CN to 1 in T. We conclude that
the sorting scenario must contain 7 SCJs and one deletion covering
all genes g,. Since w and z are adjacent in T, the segmental deletion
must be anchored at " and z'. Denote the path of this deletion
P=g:,8,, -18v,1,&- The corresponding path P’ = x,v,...,v,4
,¥ is a Hamiltonian path in G.

2.3 ILP formulation

We present an ILP formulation for the karyotype sorting problem.
The formulation describes d + 1 karyotype graphs G°, ... G¢ corre-
sponding to the genome after each operation. G° is set to S and
G? = T. The formulation guarantees that difference between con-
secutive graphs corresponds to one valid operation of the model.

2.3.1 Variables

We define integer variables for each G*, as follows. For every k € [0, d]
and every i € G let cnf € N be the variable for the CN of gene 7 after k
operations. By definition, cn) = s_cn; and cnf = ¢_cn; for every i € G.
Similarly, for every k € [0,d] and every u,v € & let adjﬁ.,/ be the
CN of a adjacency edge (u, v) after k operations. By definition,
adjslyy = s.adj,, and adjz‘y = t.adj,, forevery u,v € £.

Now, we define binary variables for each type of operation. For
every k € [0,d] and every u,v € & let cut® | € {0,1} be an indicator
variable for cutting the interval adjacency between # and v in the
k’th operation. Similarly, joinﬁ‘y is an indicator variable for joining
the two extremities # and v in the k’th operation. By convention, the
cut and join are not symmetric, in order to support cutting or joining
the same adjacency twice. An SCJ is a DCJ with one existing adja-

cency and an implicit adjacency of telomeres. To support SCJ opera-
k
1.t

telomeres ty < t, € 7. addTelf‘Jz =1 means that new copies of
telomeres #1,#) € T are created.
For every k € [0,d] and every u < v € £ let ampAnchfw € {0,1}

be an indicator variable for a tandem duplication starting at # and end-
k
11t

€{0,1} for#; < t; € 7 indicates a chromosome amplification for the

tions, binary variables addTel; , are introduced for every two

ing at v in the k’th operation. In addition, the variable ampAnch

chromosome starting and ending at telomeres #; and #,, respectively. Let
ampGene! € {0, 1} be an indicator variable that gene i [i.e. the interval

edge (#, i’ )1 is a part of the duplicated segment, and let
ampAdjf,_’v €{0,1} be an indicator variable that the adjacency
edge (u, v) is a part of the duplicated segment.

Similarly, for every k € [0,d] and every u < v e €, delAnchfw
€ {0,1} is an indicator variable for a deletion starting at u and
ending at v in the k’th operation. delGene! € {0,1} is an indicator
variable that gene 7 is a part of the deleted segment, and delAdjfm
€ {0,1} is an indicator variable that the adjacency edge (u, v) is a
part of the deleted segment.

2.3.2 Constraints
We now describe the ILP constraints for each stage 0 < k < d — 1.
We will describe constraints for each type of operation and general
constraints for updating the karyotype graph.

Updating the karyotypes: The CN of a non-telomeric gene i € G
is increased by amplifications and decreased by deletions:

enft! = en® 4+ ampGene! — delGene;a
For telomeric gene i € 7 with a corresponding extremity ¢ € 7,
the CN can increase if new copies of the telomere are introduced via
SCJ. An SCJ can add either two copies of the same telomere or one
copy of two telomeres:

enf! = enf 4 ampGene! — delGene! + ZaddTelf, + Z addTelﬁt,
1 FET

Updating adjacency CNs for internal nodes # # v € £*:

adji_:l —adi*, + ampAnchﬁvV + ampAdj® , + delAnchﬁ‘V

fdelAdjiv —cuth, — cutﬁu + joinfw + join’ (1)

uv vu

In words, we increase the CN of the adjacency if it is either, the
anchor of a duplication, along the duplication path, the anchor of a
deletion or its ends are joined. The adjacency CN is decreased if it is
along a deletion path or it is cut. The cut and join variable can de-
crease or increase the CN by at most 2 if the same adjacency is used
twice in a DC]J.

Updating adjacency CN for loop edges (#, u) is similar to
k

For telomere # € 7 and internal node v € £ we update the CN
as follows:

Equation (1), but uses only single cut! joinﬁ}u variables.

adj’f;1 = adjfu + ampAdjfv + delAncth - delAdjfy
k

k . .
—cutt’v + join, ,

In addition, we require that in each stage k there will be at most
one operation:

%Z cutﬁﬁy + Z ampAnchfw + Z delAnchﬁ‘V

uvel u<ve&" u<vel
+ Z ampAnchﬁ‘V <1
t <heT
DCJs: An adjacency cannot be cut more times than its CN.
Therefore, for everyu € £,v € £ and u # v:

k k -k
cut, , +cuty, < adj,,

v
Similarly, for adjacencies of the form (u, u): cutt,, < ad]'ﬁﬂ.
For each adjacency u € &, the number of cuts equals to the num-
ber of joins:

Z cutﬁ‘y + Z cutf‘u = Z joinﬁ‘v + Z joinf_u

vel vel vel vel
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For every pair of telomeres #; < t; € 7, SCJ introduces an explicit
adjacency (ty, £) which is cut immediately as part of a DCJ:
cuti"l_ZZ = addTel*

1.t

k
)t

most one pair of telomere copies is introduced as an SCJ in every

In addition, if #; < t, set cutf , = 0. We also restrict that at

stage:

> addTely , <1

t1<theT

Amplifications: A gene i € G cannot be amplified if it has
CN=0:

ampGenef < cnf»e (2)

Similarly, an adjacency u,v € € can only be amplified if it has a
positive CN:

ampAdj}, < adjy, (3)

For every internal node u € £, its corresponding gene is ampli-
fied if and only if one of its adjacencies is amplified or it is an anchor
of an amplification:

ampGene{;(u) = Z ampAnchﬁ’V + Z ampAdjﬁ‘V.

vel” vel

A telomere # € T can only be involved in whole chromosome
duplications. Therefore, the telomere is amplified iff it is an anchor
iff one of its adjacencies is amplified:

ampGeneg(t) = Z ampAnchﬁt, = Z ampAdjfv

t'eT veg”

Enforcing path connectivity: One problem with this formulation
is that in addition to the amplification path, we may get a collection
of disjoint cycles composed of alternating interval and adjacency
edges with their corresponding variables ampGene’;(M), ampAdst
set to one. For example, consider S=1,1,2,2 and
T=1,1,1,2,2,2. To get from S to T we need to do two tandem
duplications of the genes 1 and 2. However, according to the current
formulation, this step by assigning
ampGene! = 1,ampGene) = LampAnch?,Jh = 17ampAd].gt'21 =1.

To force the alternating path of the amplification to be connected,

can be done in one

we add flow-like constraints (Bruckner et al., 2010). Suppose g >r
are the anchors of the amplification and denote 7 as the sink. Each
node along the path from g to 7 (excluding ) will be as a source of
one unit of flow, and we require that all flow will eventually be
drained at 7. This enforces the connectivity of the path.

Let —2(n+1) < f¥, < 2(n+ 1) be an integer variable for the
directed amount of flow from u € € to v € £. Let ampNodes® = 2
Y icg ampGene¥ be an integer variable for the number nodes that are
amplified along the path. We seek ampNodes® — 1 source nodes,
each providing one unit of flow, and one sink that drains the
ampNodes® — 1 units of flow. Let sink = > usw
binary variable indicating that v is a sink. We have the following
constraints:

ampAnchﬁ‘u be a

The flow is anti-symmetric: f¥, = —f£,..
An edge can contain flow only if it is amplified: ¥, < 2(n+ 1)
ampAdjﬁﬁV if u, v are not from the same gene, and f¥, < 2(n + 1)

ampGenef if u, v are nodes of gene i.
Production and conservation of flow in every node u € &:

fof.v = amPGCHC’g(u) — ampNodes}e . sink’;
v

By this constraint, if # is not part of an amplification path, we
have >, fk, = 0. If u is part of the amplification path, but not
the sink, we have " f¥ =1, i.e. # adds one unit to the flow.
If u is part of the amplification path and the sink, we have 3°, ¥, =
1 — ampNodes* and it drains all the flow.

Since the term ampNodes” - sink” is not linear we introduce
new non-negative integer variable productﬁ such that productﬁ =
ampNodes" - sinkﬁ using the following constraints:

o

productl; < ampNodes*
k s 1k
product, < 2(n+ 1) -sink,,
ampNodes® — 2(n + 1) (l - sinkﬁ) < productl;

If ampNodes® = 0 or sinkﬁ =0 then the first two constraints
product® =0,
sink® =1, we have ampNodes® < product® and therefore
product’; = ampNodes".

Deletions: Genes or adjacencies cannot be deleted if they have a

force otherwise producti < ampNodest. If

CN of zero. Therefore, we add constraint similar to 2 and 3 using
delGenef‘ and delAd]'I;’V instead.

For every internal node u# € £, one of its adjacencies is deleted if
and only if it is an anchor of a deletion or its gene is deleted:

Z delAdjﬁ_v = delGeneé(u) + Z delAnchfw

vel vel”

A telomere t € T can be deleted only if it is part of a whole
chromosome deletion:

delGene{;(t) = Z delAnchfz,
el

If a telomere ¢ € 7 is an anchor of a segmental deletion then one
of its adjacencies must be deleted:

z delAnchfv = Z delAd]'fu

vel vel

As for amplifications, we add flow constraints to guarantee that
the deletion path is connected.

2.3.3 Objective function
Our goal is to minimize the number of amplifications, deletions and
DCJs:

min ( Z ampAnchfllz—i- Z ampAnchl;‘y—',-
1<k<d \t <neT '

u<vel”

Z delAnchﬁw,, +% Z [cutf,_’,, + joinﬁv,,]>

u<vel uvel

DCJs have two cuts and two joins and therefore contribute one
to the objective function. The objective function can be modified to
give different weights to different operations, and even to specific
events, e.g. amplifying regions with oncogenes.

2.3.4 Complexity
Overall, the ILP formulation has O (dn?) variables and O (dn?) con-
straints. We can relax the integrality constraints for all non-binary
variables since each of them is constrained to be a sum of binary
variables.

Since we do not know the optimal value d* of d, we can perform
either a binary or sequential search on d. If there is no feasible solu-
tion for some d, we increase d. If d > d*, the ILP will find a solution
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with d* operations since it can always add stages with no operations
in them.

Each DC]J introduces two new adjacencies, while segmental dele-
tions and tandem duplications introduce one new adjacency. A triv-
ial lower bound on d is the number of breakpoints divided by two.
A trivial upper d < Y, < peelsadi,, —tadj,, |+
Y icg Is-cn; — t_cny|. That is, changing the CN of each gene and each
adjacency separately.

The ILP problem is NP-hard (Karp, 1972) and the runtime of
ILP algorithms is not polynomially bounded. However, modern ILP

bound is

solvers incorporate powerful heuristics and can handle many large-
scale problems. ILP has been a powerful tool in formulating and
solving other rearrangement models (Rahmann and Klau, 2006;
Shao et al., 2015; Shao and Moret, 2015).

3 Results

3.1 Simulations

To assess performance, we simulated tumor karyotypes and applied
the algorithm to them. Here is an overview of the simulation: We
start with a diploid karyotype S’ with two identical chromosomes
1,...,m, and perform d operations to derive a tumor karyotype T".
We then compress maximal identical segments in S’ and T” into sin-
gletons. The resulting shorter source and target karyotypes are used
as input to the algorithm.

Initially, each chromosome is represented by a sequence of
m =100 atomic segments. We perform a series of operations on the
karyotype by applying duplications (tandem or chromosomal), dele-
tions (segmental or chromosomal) and DCJs (reversals or transloca-
tions). Whole chromosome events are given low probability (5%
each), while all other types are chosen uniformly at random. The
span of segmental deletions, duplications and inversions was chosen
at random and was limited to 30 units in order to avoid rapid loss of
the middle segments.

In order to decrease the size of the karyotypes, we compress
maximal identical sequences in 8’ and T'. That is, a simple path that
appears in 8’ and T’ is compressed if all interval and adjacency edges
along the path have the same CN, and nodes along the path have no
other branching edges beside the path edges. The result is new kar-
yotypes S and T with # < m segments. This way, every segment in
the compressed karyotypes must be involved in at least one break-
point. Since all operations act on contiguous paths in the graph and
all segments inside a compressed path are symmetric, we conjecture
this procedure preserves the optimal distance. This compressed
karyotype structure conforms with information provided by most
assembly tools in which contiguous segments are determined by
detecting breakpoints.

We simulated karyotypes with three to eight operations. Eitan
and Shamir (2017) observed based on the analysis of tumor samples
from Malhotra et al. (2013) that the average number of operations
observed in real deep sequencing cancer data were 5-8 per con-
nected component. For each distance, 20 instances were simulated
and the optimal distance was computed by the algorithm. In
Table 1, we see that the computed distance is bounded by the simu-
lated distance but can sometimes be shorter when d increases.

To test if the scenarios inferred are close to the simulated ones,
we performed two additional comparisons, in terms of the types of
operations and in terms of the actual operations. The results
(Supplementary Figs S1 and S2) show that the scenarios are quite
similar. We also observed that the distance from the karyotype back
to the diploid genome is usually lower than the distance from the

Table 1. The optimal number of events computed by the algorithm
versus the simulated number of events

Simulated events 1 2 3 4 N 6 7 8

Max 1 2 3 4 5 6 7 8
Median 1 2 3
Min 1 1 1 2 1 2 3 6

~
=N
~
~

ILP running time

1e+04
s

16402
L

Time [sec]

1e+00
@

n

- oo * ° o o

16-02

2 3 4 5 6 7 8
Optimal distance

Fig. 2. ILP running time as a function of the optimal distance on simulated
instances

diploid to the karyotype (Supplementary Fig. S3). This is because
one can use a few deletions to get rid of a mutated chromosome,
and then create another copy of a normal chromosome in one
operation.

Figure 2 shows the running time of the ILP algorithm as a function
of the optimal distance it calculated. The time grows exponentially
with the distance. The ILP was solved using Gurobi Optimizer 7.5
(Gurobi optimizer reference manual, Gurobi Optimization, 2018) on
a shared Unix server with 72 2.3 GHz cores and 800 Gb of RAM.

3.2 Cancer karyotypes

We analyzed karyotypes from five ovarian cancer genomes that
were sequenced as part of TCGA (Bell et al., 2011) and were used in
the analysis of PREGO (Oesper et al., 2012). PREGO outputs CN
per segment as well as for adjacencies based on the read coverage.

For each autosome in the genome, two telomeres were connected
to the tail of the first segment and the head of the last segment with
their CNs matching these segments (Supplementary Fig. S7). In each
sample, we analyzed each connected component in the karyotype
graph separately. For each such connected component, we calcu-
lated the distance from a matching diploid genome with the same
subset of chromosomes. An example of the sequence of operations
transforming OV4 chromosome 8 is shown in Figure 3.

To speed up the algorithm on real data we used several pre-proc-
essing steps. First, simple tandem duplications were removed from
the karyotype and added to the distance. That is, for each g € G, we
remove adj, . edges of the form (g, g") from the graph as they can
only be a result of tandem duplications. We again compress the kar-
yotypes after this step.

In addition, some chromosome components exhibit large repeti-
tions of complex chromosomal structures that are not simple tan-
dem duplications. In such cases, we search for the longest path from
one telomere to another that repeats itself £ > 2 times. Such a path
corresponds to an amplified chromosomal structure and thus we re-
move k — 1 repetitions from the karyotype. We use the algorithm to
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calculate the edit distance of this path separately and add it & — 1
times to the total distance of the reduced graph.

We observed several examples of balanced (Supplementary Fig.
S5) and unbalanced (Supplementary Fig. S4) translocations and also
provide possible scenarios causing these phenomena. We also
observed a breakage/fusion/bridge (BFB) cycle in chromosome 18 of
OV2 (Supplementary Fig. S6). BFB cycles are a known source of
genome instability (Greenman et al., 2012). This aberrant chromo-
some is further amplified seven times, and is part of a complex con-
nected component with chromosomes 12 and 16 (Supplementary
Fig. S7). Similar observations were also shown by Oesper et al.
(2012) without addressing the operation sequence.

Table 2 shows the distance calculated by the algorithm for each
non-trivial connected component of the ovarian samples. The running
time on the real karyotypes per connected component ranged from a
few seconds for a simple component of distance at most four, to a few
hours for more complex components. In three cases, the algorithm did
not find any feasible solution within 24 h. These cases have very high
CN or complex structural variations. All cases involve six or more
interconnected chromosomes and contain interval CNs as high as 30.

4 Conclusions

In this study, we present a model for sorting a karyotype using dele-
tions, amplifications, translocations and reversals. This model sup-
ports both structural and numerical alternations observed in cancer
genomes. It focuses on finding a sequence of operations between

two karyotypes and allows breakpoint reuse. We show the sorting
problem is NP-hard and devise an ILP formulation that can find a
shortest sequence of events that transform a normal into a tumor
genome. We apply the algorithm on simulated karyotypes as well as
real data of ovarian cancer. The algorithm is able to solve most com-
ponents of the real tumor genomes.

The algorithm has limited applicability on highly complex kar-
yotypes. As shown on simulated data (Fig. 2), running time grows
exponentially with the number of operations. Additional work on
the ILP formulation may make the approach more practical. On the
real karyotype data, the algorithm could not resolve a few extremely
rearranged connected components of chromosomes. Nevertheless,
typical cancer samples exhibit modest complexity, making this algo-
rithm useful in the majority of real cases (Eitan and Shamir, 2017).
Moreover, a highly rearranged karyotype could be a result of noisy
read data, tumor heterogeneity or unmodeled global events. Better
methods are needed to address these cases.

While the model addresses a relatively wide array of operations,
it still has some limitations. For instance, our duplication and dele-
tion operations are restricted to simple paths with a single copy of
each segment. However, in some scenarios we may benefit from per-
forming operations on non-simple paths. For example, for a single
segment with 7 tandem repetitions, our model would require 72 tan-
dem duplications, but only log 7z operations will suffice if we allow
non-simple path duplications. Other events like non-tandem seg-
mental duplications and BFB (Zakov et al., 2013) are not included
(but are expressible, e.g. Supplementary Fig. S6) in the model.

Our karyotypes are represented using their CNs and adjacencies,
but this representation is not unique for a specific set of chromo-

; . 2 . : . i ‘ ; . somes. That is, there could be several chromosome sets that may
—_ give the same karyotype. Since we do not model chromosomes expli-
2 : 3 : 3 : 7 10 :) Y citly, some operations may be artificial and would not correspond to
2 2 3 3 Tandem 3 operations on sequences.
2 : 3 : —_> 5 :)z dup- g =>2 In order to apply our method on more cancer data, we intend to
, " : ‘T’andem 3 T 3T improve the runnin.g time further. Then, a more systematic employ-
X : s dup. 4 s ment of the algorithm on a larger set of karyotypes can reveal
sequences of operations common to several tumors. In addition, the
2 2 1 12 1 g algorithm can derive a sequence of operations between two tumor
2 : 1 2 1 : 2 1 : 2 genomes (for example, from different time points) and thus help
) 1 13 ' understand the evolution of tumors.
2 3 3 3 Ultimately, we would like to represent the chromosomes them-

Fig. 3. Example of ovarian cancer sample OV4 chromosome 8 transformation
from diploid (left) to tumor (right). Square nodes represent segment extrem-
ities and trapezoid nodes represent telomeres. Dotted edges correspond to
adjacency edges, full straight edges correspond to interval edges and
rounded edges correspond to novel adjacencies caused by the tumor pro-
cess. The number next to each edge is its CN

Table 2. Results of the algorithm on TCGA ovarian samples

selves and perform all operations on them. The goal in this case
would be to decompose the source and target karyotypes into chro-
mosomes such that the number of operations between them is min-
imum. Nonetheless, it was recently argued that re-construction of
the exact cancer chromosomes remains a hard challenge (Eitan and
Shamir, 2017).

Sample Components Distance Sample Components Distance Sample Components Distance
OV1 (16),(13) 1 oVl (12,15 3 OVl (11,20) 5

OoVv1 (1,2,3,4,5,6,8,9,10,14,17,19) NA ov2 (8,20) 5 OV2  (3,4),09) 6

ov2 (14, 21) 10 ov2 (12,16, 18) 26 ov2 (1,2,5,7,10,11,15,19,22) NA
OoV3 (13),(17),(21) 1 OV3  (9),(18) ov3 (2) 6

OV3 (4, 8) OovV4  (1),(13),(20),(21) 1 Oov4 (18) 2

Ov4 (3),(15) ov4  (22) ov4  (11) 10

Ov4 (8),(9,12) 11 ov4  (5,10,16,19) 20 OovV4  (2,4,6,7,14,17) NA
OVsS (7),(16) 1 ovs (1, 3),(2,17),(9, 10) 3 OVs  (12,21),(18) 4

Note: The chromosomes involved in each component are shown within brackets. OV1: TCGA-13-0890; OV2: TCGA-13-0723; OV3: TCGA-24-0980; OV4:
TCGA-24-1103 and OVS: TCGA-13-1411.
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Supplementary information

1 Additional analysis of the simulation re-
sults

To test if the operations inferred by the ILP solutions are close to the simu-
lated ones we compared them in two ways.

(1) We compared the difference in types of operations. We count the
number of operations of each type (segmental deletion, chromosome dele-
tion, segmental amplification, chromosome amplification and DCJ) in the
simulated and inferred scenarios, and sum their absolute difference. The re-
sulting value is OpDif f = 3 ycops |X — X|, where X and X are the number
of operations in the simulated and the optimal sorting scenario and ops is the
possible operation set. We call this value the operation difference. Figure S1
presents the operation difference of the simulated solution vs. the inferred
solution.

Operation difference as function of optimal distance Operation difference for sim=opt instances
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Figure S1: Operation difference. Left: difference as a function of the optimal

distance. Right: difference as a function of the simulated distance, computed
only for instances where the simulated distance equals the optimal distance.



(2) We compared the actual operations found by the optimal sorting sce-
nario and in the simulated scenario. We define two operations to be the
identical if they are of the same type and affect the same segments or adja-
cencies. They are similar if their segments or adjacencies are overlapping.
In figure S2 we plot the number of identical and similar operations.

Identical operations in the sim and opt scenarios Partially matched operations in sim/opt scenarios
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Figure S2: Comparing the operations in the simulated and inferred scenarios.
Left: The number of operations that are identical in the optimal sorting
scenario and the simulated scenario. Right: The number of operations that
are similar in the optimal sorting scenario and the simulated scenario.

Both types of analysis show that the inferred operations are close to the
simulated ones.

The distance between two karyotypes is not symmetric. For each simu-
lated instance, we computed the optimal distance from the diploid karyotype
D to the simulated karyotype K, and the distance from K to D. We call
these the forward and reverse distance, respectively. Figure S3 plots the two
distances. We see that the forward distance usually larger than the backward
distance. The reason is that for a chromosome with multiple forward events,
the backward scenario can delete or undo all events, and then add another
copy of a normal chromosome to obtain a diploid chromosome.
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Figure S3: Comparison of the forward and reverse distance between the
diploid and simulated karyotype. The figure shows only instances where
both directions are feasible.

2 Additional tumor figures

The figures below show the inferred solutions for several TCGA ovarian can-
cer patient samples.

Figures S4 and S5 include examples of balanced and unbalanced translo-
cations. In a balanced translocation two chromosomes exchange end segments,
resulting in two mixed chromosome. In an unbalanced translocation a pair
of the exchanged segments a missing, resulting with only one mixed chromo-
some.
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Figure S4: Unbalanced translocation for sample OV5. A sequence of
inferred operations transforming chromosomes 2 (pink-upper) and 17 (teal-
lower) from a diploid genome (top) to tumor genome (bottom). One oper-
ation (yellow triangle) transforms each genome into the next genome. The
operation type is listed in the yellow triangle and the affected genes or adja-
cencies are dashed in each predecessor genome.



2 3
1
2

2 2

2 2
3 3 —t 3 2 2 2 3 3
2

Figure S5: Balanced translocation. A sequence operations transforming
chromosomes 11 (pink-upper) and 20 (teal-lower) from a diploid genome
(top) to tumor genome (bottom) in sample OV1.
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Figure S6: BFB cycle. An example of a Breakage/Fusion/Bridge Cycle
in chromosome 18 of OV2. A normal chromosome 18 (top) is transformed
into a BFB mutated genome (bottom) via a sequence of 4 operations. This
mutated chromosome is further amplified 7 more times in OV2.
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Figure S7: Complex connected component. A connected component of
chromosome 12 (pink-upper), 16 (teal-middle) and 18 (green-lower) in sample
OV2. Chromosome 18 is also a part of an amplified BFB cycle (figure S6).



Chapter 5

Discussion

In this thesis we developed computational models for structural and numerical aber-
rations occurring in cancer genomes. We presented three computational models of
genome evolution by rearrangements designed for the analysis of cancer genomes.
The first and simplest model accounted for breaking, joining and duplicating lin-
ear chromosomes. We gave a linear time algorithm for the sorting problem while
showing a hardness result of a specific case. In the second model, we analyzed the
transformation of vectors holding the number of copies each gene has in the genome
via amplifications and deletions of contiguous segments. We showed linear, pseudo-
polynomial and integer linear programming algorithms for several sorting problems
under this model. Our third and most general model handled both structural and
numerical rearrangements. We showed that the underlying sorting problem is com-
putationally hard, gave an integer linear programming formulation to it and applied

it on real samples from ovarian cancer.

In this chapter, we first summarize the models described in this thesis before
characterizing possible extensions of them. Then, we outline a few possible directions

for future research in cancer rearrangement models.
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5.1 Sorting by cuts, joins and chromosome dupli-

cations

Chapter 2 presented the SCJD model, in which each operation may be either a
breakage of a chromosome, a joining of two chromosomes or a duplication of a linear
chromosome. The SCJD sorting problem seeks to find a shortest series of SCJD
operations that transforms a given source genome with a single copy of each gene
into another given target genome with exactly two copies for each gene. The SCJD

distance is the length of such a sorting scenario.

We first showed that there exists an optimal SCJD sorting scenario where all
duplication events are consecutive and separated from cuts and joins. Using this
property, we gave a an optimization formula for the SCJD distance, and showed how
to solve it optimally. The result is a linear time algorithm for the SCJD distance in
which all intermediate genomes are linear. An optimal SCJD scenario that contains
fewer duplication events can be viewed as more conservative. The assumption behind
this is that duplications are more “radical” events than breakage or fusion, which are
local events. We showed that the optimal scenario given by the algorithm performs
a maximum number of duplications. In contrast, we also showed that finding an

optimal scenario with a minimum number of duplications is NP-hard.

The SCJD model assumes that the source genome is ordinary and the target
genome has two copies of every gene. The assumption on the target genome can be
alleviated to at most two copies of each gene. But an extension required for it to
be applicable to real data is allowing an arbitrary number of copies for each gene.
Incorporating deletions into the model can make it more appropriate for cancer
analysis. Finally, we might want to weight different operations according to their
probability in order to reflect biology better. Nevertheless, we suspect a weight
version could be NP-hard since we showed that finding an optimal sorting scenario

with minimum duplications is hard.

5.2 Copy number transformation problems

In Chapter 3 we discussed a rearrangement model for the evolution of CNPs. The

CNP of a tumor is an important tool in its analysis. Such profiles can be obtained
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by CGH arrays and deep sequencing. Schwarz et al. [94] define the edit distance
between two copy number profiles as the number of segmental amplifications or
deletions requires to transform one profile into the other. Nevertheless, the solution

suggested in [94] is quite complex and its complexity appears to be exponential.

In this study we focused on the following fundamental problem: Given two CNPs,
u and v, compute the edit distance from u to v, where the edit operations are seg-
mental deletions and amplifications. We first showed the existence of an optimal
sorting scenario with special properties such that all deletions precede all amplifi-
cations. These properties were then used to derive a pseudo-polynomial dynamic
programming algorithm. Further analysis showed that partial solutions of this prob-
lem can be modeled with a piecewise linear function with three segments. We showed
that the parameters of this function can be calculated in constant time and space,
thus admitting a linear time, constant space algorithm for the CN transformation

problem.

In a follow-up paper [36], in collaboration with Mohammed El-Kebir, Benjamin
J. Raphael, Roded Sharan, Simone Zaccaria and Meirav Zehavi, we considered two
extensions of this problem. Given two profiles, our first problem aims to find a
parental profile that minimizes the sum of distances to the two profiles as its children.
Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose
k leaves are labeled by the given profiles and whose internal vertices are labeled by
ancestral profiles such that the sum of edge distances is minimum. For the former
problem we gave a pseudo-polynomial dynamic programming algorithm that is linear
in the profile length, and an integer linear program formulation. For the latter
problem we showed it is NP-hard and gave an integer linear program formulation.

We assessed the efficiency and quality of our algorithms on simulated instances.

Several extensions of our model can be considered. Schwarz et al. [94] analyzed
a model in which each CNP should be a sum of two CNPs corresponding to the
maternal and paternal alleles and the goal is to minimize the transformation distance
for these phased CNPs between the source and the target. The complexity aspects of
the latter problem were not addressed and remain open. Giving different weight to
amplifications and deletions, or even position dependent weighting is also possible.
We conjecture that some of the properties we have shown on the optimal sorting
scenario will not hold in the weighted case and additional analysis is needed in this

case. Finally, experiments may give fractional copy numbers or have missing calls
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for certain positions due to noise and sample impurity. A recent paper tried to to

decompose the clone mixture in order to reconstruct the evolutionary tree [121].

5.3 Sorting cancer karyotypes

Our final and most comprehensive model was presented in Chapter 4. We presented
a model for the evolution of genomes with multiple gene copies using the operation
types double-cut-and-joins, duplications and deletions. We studied the problem of
finding a series of operations of minimum length that transforms one input karyotype

graph into another.

We first showed that the problem is NP-hard and gave an integer linear pro-
gramming formulation that solves the problem exactly under some mild assump-
tions. We tested our method on simulated genomes, showing it correctly detects
the rearrangement operations and distance. We additionally applied our method on

ovarian cancer genomes, displaying complex series of events.

Our method has a few limitations. First, the running time can become an issue
for highly rearranged genomes, though we show its applicability to genomes of typical
complexity. Proving additional properties on this model, such as restriction on the
order of events or affected adjacencies, can be incorporated into the ILP and improve
its run time. Second, the model has some assumptions on the operations affecting
the genome. Third, the model uses an unlabeled graph representation of the genome
and thus some operations may be artificial and would not correspond to operations
on sequences. Further research on better modeling the genome and operations is

needed.

One relatively simple extension of the model is adding weights to different op-
erations. This would give the model a probabilistic interpretation and a shortest
scenario would correspond to the most likely scenario. Such changes can be directly
incorporated into the current ILP formulation. Another assumption in this model is
that there is no noise in the source and target graphs. However, one might extend
this model to allow noisy representation such as false adjacencies or fractional CNs.
Finally, another possible expansion of this model can be phasing the parental and
maternal alleles. Currently, the chromosomes are unlabeled and alleles are collapsed.

We can modify our method to separate the source and target karyotypes into two
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graphs such that the distance between the pairs of phased genome is minimized.
Alternatively, we can use as inputs phased or partially phased karyotype such as
produced by [65, 85]

5.4 Future research in cancer rearrangements

Some cancer genomes were explained by complex structural and numerical events
that are beyond the models discussed here. For example, a breakage-fusion-bridge
(BFB) is an event in which a loss of a chromosome’s end is followed by “doubling-up”
and fusion of the surviving part (i.e., a chromosome (a,b) is replaced by (a, —a)).
In a BFB cycle, this process is repeated several times. Detection of BFB cycles can
be done using sequencing and CN data [123, 122]. Dramatic rearrangement events
also include chromothripsis and chromoplexy, in which one or more chromosomes
are shattered into many pieces and some of the pieces are assembled in random
order. Identifying these events in cancer genomes from sequencing data is still a
hard challenge [74]. Computational models are in need to account for such events
in the analysis of cancer evolution. Nevertheless, these events can sometimes be

modeled by a series of simpler operations.

Advanced sequencing technologies could help in tackling GR problems in cancer.
Long read sequencing techniques such as those of Pacific Biosciences and Oxford
Nanopore can link distant DNA segments providing additional information on the
relative location of different copies and simplify breakpoint identification [86, 54].
The linked short reads sequencing technology of 10X Genomics was recently shown
to help in identifying structural variations in cancer genomes [40]. In addition,
combining several sequencing technologies and sampling strategies together may
improve rearrangement detection. A recent method by Dixon et al. [33] integrated
optical mapping, high-throughput chromosome conformation capture (Hi-C), and
whole-genome sequencing to accurately detect SVs in cancer genomes. We expect
these technologies and others to play a prominent role in GR analysis in cancer in

the years to come.

Single-cell sequencing technologies open new opportunities and challenges in
computational cancer analysis [113]. Specifically, variations between individually
sequenced cells taken from a tumor have been used to identify its evolutionary his-
tory [53, 64]. Detection of SVs and CNAs in single-cell sequencing is still a tough
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challenge due to the noise and biases in the data [111, 44]. The use of single-cell
SVs or CNAs for clonal reconstruction has not been addressed yet, to the best of
our knowledge. Additionally, one might use the heterogeneity among cells and their
abundance in order to guide the rearrangement scenario. Alternatively, given a

rearrangements scenario, we can try to map cells to stages along this sequence.



Acronyms

aCGH - array comparative genomic hybridization
AG - adjacency graph

BFB - breakage-fusion-bridge

BG - breakpoint graph

BP - breakpoint

CGR - complex genomic rearrangement
CN - copy number

CNA - copy number alteration

CNO - copy number operation

CNP - copy number profile

DCJ - double cut and join

DNA - DeoxyriboNucleic Acid;

FISH - fluorescence in situ hybridization
GR - genome rearrangement

ILP - integer linear programming

SColJ - single cut or join

SNV - single nucleotide variation

SV - structural variation

WGD - whole genome duplication
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