
Sackler Faculty of Exact Sciences,

Blavatnik School of Computer Science

Models for Structural and

Numerical Alterations in Cancer

THESIS SUBMITTED FOR THE DEGREE OF

“DOCTOR OF PHILOSOPHY”

by

Ron Zeira

The work on this thesis has been carried out

under the supervision of

Prof. Ron Shamir

Submitted to the Senate of Tel-Aviv University

August 2018

Acknowledgments

This dissertation summarizes most of my research in the last five years. I would like

to express my sincere thanks to my advisor, Ron Shamir, for his guidance, advice

and support.

I would also like to thank all the sources who funded my research: Israeli Science

Foundation, Dotan Hemato-Oncology Research Center at Tel Aviv University, Bella

Walter Memorial Fund of the Israel Cancer Association and Len Blavatnik and

the Blavatnik Family foundation. In addition I would like to thank the generous

fellowships I received from the Edmond J. Safra Center for Bioinformatics at Tel

Aviv University and from the Israeli Center of Research Excellence (I-CORE) Gene

Regulation in Complex Human Disease.

I would like to thank all my friends, collaborators and computational genomics

lab members for their support and cooperation. Last but definitely not least, I

would like to thank my dear family for their support over these years.

i

Preface

This thesis is based on the following three articles that were published throughout

the PhD period in scientific journals:

1. Sorting by cuts, joins and whole chromosome duplications

Ron Zeira and Ron Shamir

Published in Proceedings of the 26th Annual Symposium on Combinatorial Pat-

tern Matching (CPM 2015) [124] and as a full version in Journal of Compu-

tational Biology (JCB) [125]

2. A linear-time algorithm for the copy number transformation prob-

lem

Ron Zeira, Meirav Zehavi and Ron Shamir

Published in Proceedings of the 27th Annual Symposium on Combinatorial Pat-

tern Matching (CPM 2016) [95] and as a full version in Journal of Computa-

tional Biology (JCB) [127]

3. Sorting cancer karyotypes using double-cut-and-joins, duplications

and deletions

Ron Zeira and Ron Shamir

Published in Bioinformatics [126]

In addition, the introduction (Sections 1.1-1.4) is based on the review article

“Genome Rearrangement Problems with Single and Multiple Gene Copies:

A Review” by Ron Zeira and Ron Shamir

The article was peer reviewed and will be published as a chapter in the book

“Festschrift in honor of Bernard M.E. Moret” (T. Warnow, editor), Springer (2019).

ii

Abstract

Genome rearrangement problems arise in both species evolution and cancer research.

Basic genome rearrangement models assume that the genome contains a single copy

of each gene and the only changes in the genome are structural, i.e. reordering of

segments. In contrast, numerical changes such as deletions and duplications, which

change the number of copies of genes, have been observed in species evolution and

prominently in tumorigenesis. In this thesis we describe our studies in which we de-

veloped models for structural and numerical alterations in cancer. The models differ

in the assumptions taken on the genome structure and in the type of rearrangements

allowed during their evolution. We give efficient algorithms and hardness results on

these models, and use them to analyze tumor genomes. This thesis advances the

state of the art of multi copy genome rearrangements in cancer in two ways. Our

models allow a broader set of operations than extant models, thus being more real-

istic. Furthermore, they attempt to reconstruct the full sequence of structural and

numerical events during cancer evolution.

iii

Contents

Acknowledgments i

Preface ii

Abstract iii

1 Introduction 1

1.1 Introduction to genome rearrangements 2

1.1.1 Genomes and rearrangements 2

1.1.2 Genome rearrangements in species evolution 4

1.1.3 Genome rearrangements in cancer 6

1.2 Single gene models, operation types and distance measures 9

1.2.1 Genome representation . 9

1.2.2 Breakpoint distance . 16

1.2.3 Reversal and translocation distances 18

1.2.4 DCJ distance . 19

1.2.5 SCoJ distance . 21

1.3 Multi copy models in evolution . 21

1.3.1 Polyploidy . 22

1.3.2 Single copy models with indels 23

1.3.3 Multi-copy models without duplications/deletions 24

iv

CONTENTS v

1.3.4 Models with duplications or deletions 26

1.4 Multi-copy models in cancer . 28

1.4.1 Models with duplications/deletions 29

1.4.2 Copy number profile distances 30

1.4.3 Other cancer models . 32

1.5 Summary of articles included in this thesis 34

2 Sorting by Cuts, Joins, and Whole Chromosome Duplications 36

3 A Linear-Time Algorithm for the Copy Number Transformation

Problem 48

4 Sorting cancer karyotypes using double-cut-and-joins, duplications

and deletions 65

5 Discussion 80

5.1 Sorting by cuts, joins and chromosome duplications 81

5.2 Copy number transformation problems 81

5.3 Sorting cancer karyotypes . 83

5.4 Future research in cancer rearrangements 84

Acronyms 86

Bibliography 87

Chapter 1

Introduction

The computational study of genome rearrangements is a sub-area of computational

biology born about 25 years ago [89, 91]. Over that period, it has flourished and

developed into a fascinating research area, combining beautiful combinatorial mod-

els, elegant theory and applications. Models of the first generation, motivated by

species evolution, were simple (though their analysis was sometimes quite sophis-

ticated) and assumed that genomes contain only one copy of each gene. With the

explosion of biological data, new analysis opportunities arose, necessitating more

complex models and theory.

This chapter describes some of the problems and results related to rearrangement

models allowing multiple gene copies. This research area is motivated by evolution of

species and of cancer genomes. Studies of cancer genome evolution are stimulated

by the recent large scale deep sequencing of thousands of tumor genomes, which

has brought about a plethora of novel challenges. Our main focus is on multi-copy

models, but key single-copy models are also reviewed briefly for context.

This chapter is by no means exhaustive. The field of modeling genome rearrange-

ments is vast and cannot be covered in one paper. The selection of topics reflects

our knowledge (or lack thereof) and taste, and we apologize to the many researchers

whose work is not mentioned. For further reading see, e.g., [130, 42, 39].

In the following section we give biological introduction and motivation to genome

rearrangements (GR) in both species evolution and cancer.1 Section 1.2 gives com-

putational background and some fundamental results in the analysis of single copy

1See the Acronyms chapter for a list of abbreviations

1

2 CHAPTER 1. INTRODUCTION

genomes. In Sections 1.3 and 1.4 we review GR models that handle genomes with

multiple gene copies in the context of species and cancer evolution.

1.1 Introduction to genome rearrangements

1.1.1 Genomes and rearrangements

The genome2 encodes instructions used in the development and functioning of all

living organisms (bacteria, plants, animals etc.). Genomes are built of DNA, a

double-stranded molecule in which each strand is a long sequence of nucleotides

(or bases). Each base can be of four types A, C, G and T. The two strands are

complementary such that an A on one strand is coupled with a T on the other

strand, and similarly C is coupled with G. Because of this complementarity, one

strand completely determines the other, and DNA molecules are usually represented

by the sequence of one strand.

The genome is the total DNA material in the cell. It is partitioned into physi-

cally disjoint subsequences called chromosomes. Chromosomes can be either linear

and contain two ends called telomeres, or circular. A gene is a segment along the

chromosome containing information for the construction of a protein. Proteins are

molecules that form the “machines” and building blocks of most cellular functions.

The direction in which a gene is transcribed into a protein on a given strand deter-

mines its orientation. Genes are a basic unit of heredity passed from one generation

to the other.

The causes of diversity of organisms are changes in the DNA between gener-

ations. Such changes, which arise due to inaccurate replication and also due to

environmental effects on the DNA, open the possibilities for modified genes, new

genes, and eventually new species.

Genomes can evolve in a local and global manner. Local alterations refer to point

mutations in the DNA sequence that can either substitute a single base (or a very

short subsequence) with a different one, insert a single base into the sequence or

delete a base from the sequence. Such local alterations can also involve very short

2Since this chapter concentrates mainly on the computational aspects of GR, we only give a brief
biological introduction. We italicize terms that actually require definitions. For concise biological
definitions see, e.g., [66]. Box 1 defines some biological terms that are mentioned in the text.

1.1. INTRODUCTION TO GENOME REARRANGEMENTS 3

sequence segments. On the other hand, a sequence can also evolve by modifying its

organization on a large scale. These global mutations, called genome rearrangements

or structural variations, relocate, duplicate, or delete large fragments of the DNA.

The main rearrangement types include the following (compare Figure 1.1):

• Deletion. A segment of DNA is lost. A chromosome deletion is a deletion of

an entire chromosome.

• Inversion or reversal. A segment is cut and reinserted in the opposite orien-

tation. Since the insertion reverses the two strands, the result is an inverted

and reverse complemented DNA sequence.

• Transposition. A DNA segment is moved to a different location.

• Duplication. A genomic segment is copied and reinserted into the genome.

In a tandem duplication the copy is inserted right after the original one. An

arbitrary (non tandem) duplication inserts the new copy at an arbitrary posi-

tion (one particular type of such is retrotransposition). A whole chromosome

duplication makes another copy of an entire chromosome. A whole genome

duplication duplicates all the genome’s chromosomes.

• Translocation. Two linear chromosomes exchange their end segments.

• Fusion. Two chromosomes are joined into one.

• Fission. A chromosome splits into two chromosomes.

The above rearrangement operations affect DNA segments rather than nucleotides

and thus genomes are often represented by sequences of segments in this context.

Two segments are called homologous if they derive from a common ancestor either

by speciation (in that case the segments appear in the genomes of different species)

or by duplication (where they occur on the same genome).

While these operations represent the common rearrangements observed in genomes

they do not necessarily correspond to atomic biological events. For instance, even

though fusions and fissions are observed in genomic data, they may be a result of

multiple operations and not a single one.

4 CHAPTER 1. INTRODUCTION

a

b

c

d

e

f

g

Figure 1.1: Genome rearrangements. a. Deletion. b. Reversal. c. Transposition. d.
Tandem duplication. e. Translocation. f. Fusion. g. Fission.

1.1.2 Genome rearrangements in species evolution

The genomes of related species are very similar. For instance, most of the mouse and

human genomes can be divided into segments in which gene content is conserved

[26]. However, the order of these segments along the human and mouse genomes is

different. This difference is attributed to rearrangement events occurring after the

divergence of the two lineages.

The phenomenon of GR in evolution was discovered by Sturtevant and Dobzhan-

sky who demonstrated inversions between genomes of drosophila species [103]. Palmer

and colleagues observed that mitochondrial DNA of related plant species have similar

gene content but different segment ordering (Figure 1.2) [79, 102]. This immediately

raises the question of how this change came about, the fundamental problem that

underlies the GR field.

1.1. INTRODUCTION TO GENOME REARRANGEMENTS 5

A B C D E F

A

C

D

E F

?

Genome I

Genome II

Figure 1.2: The basic sorting problem. Given Genome I and Genome II, and a set of
allowed operations, we wish to find a shortest sequence of operations transforming
Genome I into Genome II. The sequence is called a sorting scenario and the number
of operations in it is called the sorting distance. See Figure 1.3 for a sorting scenario.

The detection of GRs in the studies mentioned was largely based on molecular

cytogenetics techniques such as chromosome banding and in-situ hybridization [84].

These studies mostly focused on relatively close species and a small number of

rearrangements between them [92]. With the advent of sequencing technologies,

bioinformatic methods enabled locating homologous segments in different genome

sequences, thus creating finer comparative maps based on genome sequences [81].

See Box 2 for details on the technologies for rearrangement detection. Note that

these techniques do not give evidence to atomic rearrangement events but only

measure the final genome.

Sankoff pioneered the computational study of GR in species evolution [89, 91].

The basic assumption of most mathematical models is that evolution is parsimonious

and prefers a shortest or most likely sequence of events. In their seminal works,

Hannenhalli and Pevzner gave the first polynomial algorithm for the problem of

transforming one genome into the other by the minimum number of reversals and of

reversals and translocations, respectively [49, 50]. They used their algorithm to give

a shortest event sequence between men and mice, and between cabbage and turnip.

Classical computational rearrangement models assume that each gene in the two

genomes under study appears only once and that 1-1 homology between the genes

of the genomes has been established. While this assumption may hold for closely

related genomes, it is unwarranted for divergent species with several copies of the

same genes or highly similar genes. Duplications are an important source of new

6 CHAPTER 1. INTRODUCTION

A B C D E

A C D E

F

F

A C D E

F

A

C

D E

F

A C

D E F

A
C

D
E F

Figure 1.3: A sorting scenario for the chloroplast genome evolution between two
conifers. The genome at the top is transformed to the one at the bottom in five
steps. The first is a deletion and the next four are inversions of genomic segments.
The ends of the involved segments are indicated by the broken lines. Adapted and
simplified from Strauss et al. [102].

gene functions since new gene copies tend to diverge through mutations and develop

new functions. For instance, evidence of whole genome duplication events have been

observed in most angiosperm genomes [20].

1.1.3 Genome rearrangements in cancer

Cancer is a complex disease driven by the accumulation of somatic DNA mutations

over generations of cell divisions. Such mutations affect tumor growth, clinical

progression, immune escape, and drug resistance [31].

Mutations in cancer cells can be local, affecting single DNA base pairs. These

1.1. INTRODUCTION TO GENOME REARRANGEMENTS 7

Box 1 Some biological jargon

Angiosperms - the flowering plants

Chloroplasts - specialized compartments in plant cells responsible for photosynthesis

Conifers - cone-bearing seed plants

Drosophila - fruit fly

Metaphase - a stage in cell division. During metaphase chromosomes can be distin-
guished under the microscope after appropriate painting

Orthologs - descendant copies of the same gene sequence in different species. Or-
thologs can usually be identified by their sequence similarity

Somatic cell - any cell forming the organism body other than the reproductive cells.
The genome in sperm and egg cells is inherited in sexual reproduction, along with
any mutations in it. In contrast, the genome of somatic cells is not inherited, but
mutations in cancer genomes are inherited in cell division.

Somatic mutation - a mutation occurring in somatic cells.

mutations, called single nucleotide variants (SNV), can number in the thousands

per cancer cell. On the other hand, large scale mutations, i.e. GRs, can relocate

fragments of the DNA. Aberrations that change the amount of genomic content,

called copy number alterations (CNAs) include duplications and deletions of genomic

regions. The karyotype of a cell is its complete set of chromosomes, consisting of the

number and structure of the chromosomes in it. Large-scale aberrations can have a

dramatic effect on the cancer karyotype (see Figure 1.4).

Somatic mutations may amplify genes that promote cancer (oncogenes) or harm

genes that inhibit cancer development (tumor suppressor genes). In addition, re-

arrangements such as translocations and inversions may change gene structure and

regulation and create novel fusion genes, with or without additional changes in copy

number (CN).

Cancer is an evolutionary process in which a normal genome accumulates mu-

tations that eventually transform it into a cancerous one [11]. The gain of advan-

tageous mutations leads to a clonal expansion, forming a larger population of the

mutated cells. Subsequent clonal expansions occur as additional advantageous mu-

tations accumulate in descendant cells. A single tumor biopsy will often contain a

mixture of several competing tumor clones. These tumor clones frequently differ in

8 CHAPTER 1. INTRODUCTION

Figure 1.4: A schematic of the karyotype of the T47D breast cancer cell line. The
chromosome numbers in the normal diploid are indicated below each subfigure. In
a normal karyotype, each chromosome has two copies, as for Chr. 4, 13, 17 and 18.
Among the GRs in this cancer genome we see chromosomal duplications (e.g., four
copies of Chr. 11), translocations (between Chr. 8 and Chr. 14), and more complex
events (e.g., tandem duplication of one arm of Chr. 1 and fusion with an extra arm
of Chr. 16). Image source: [10] and Wikimedia Commons [52]. This image is used
under license CC BY-SA 3.0.

their genomic content and structure. When sequencing the tumor, one actually ob-

tains a mixture of several tumor clones and of normal cells. Recent research suggests

that this heterogeneity has profound clinical implications [31].

1.2. SINGLE GENEMODELS, OPERATION TYPES ANDDISTANCEMEASURES9

Box 2 Detection of genome rearrangements

The classical ways to detect chromosomal abnormalities in cytogenetics are G-
banding and fluorescence in situ hybridization (FISH), which allow viewing the
chromosome in metaphase at low resolution [83]. FISH measures the CN of tens
to hundreds of targeted genes [28]. Array comparative genomic hybridization (array
CGH) gives a higher resolution of CN estimation for a cell population [110].
Today, next generation sequencing techniques are the main data source for cancer
mutation analyses [32]. Whole genome sequencing provides tens to hundreds of
millions of DNA reads that enable the detection of variants. These short reads
are assembled into longer DNA sequences and alignment to a reference genome can
determine sequence similarity and structural changes. This reference genome can
be of a related species for evolutionary studies or of a normal tissue in the case of
cancer.
Paired-end read technologies generate pairs of short reads such that the approxi-
mate distance between them and their relative orientations in the target genome
are known. Read pairs in which the location or orientation in the reference genome
is not as expected are called discordant. These reads give evidence of structural
rearrangement operations [75]. The read depth data, i.e. the number of concordant
reads mapped to each region in the reference genome, can also be used to assess CN
and CNAs [75].

1.2 Single gene models, operation types and dis-

tance measures

In this section we give a brief introduction to GR models. We start by giving the

definitions and terminology used in computational GR analysis. We then review

several classical single gene models.

1.2.1 Genome representation

Here we describe simple mathematical representations of genomes for GR analysis.

A genome representation should preserve the information about the order, orien-

tation and homology between segments (see Figure 1.3). In some representations,

different copies of similar segments can be distinguished while in other represen-

tations they cannot. For instance, the two copies of chromosome 1 in Figure 1.4

are indistinguishable. On the other hand, in some cases gene copies can be dis-

tinguished from one another, for example due to gene sequence changes since its

10 CHAPTER 1. INTRODUCTION

speciation. Different GR models may use different representations depending on the

model assumptions or data used.

Consider a set G of n segments in the genome. For convenience, we call the

segments in G genes, though they do not necessarily represent biological gene entities

, i.e., sequence segments that encode proteins. A gene g is an oriented sequence of

DNA that starts with a tail and ends with a head, denoted as gt and gh respectively.

The default orientation of a gene, and thus its head and tail, can be determined

arbitrarily or according to its transcription in some reference genome. The set of

extremities of the genes is E = {gt|g ∈ G} ∪ {gh|g ∈ G}.
An adjacency between two consecutive genes in a genome is an unordered pair

of extremities. Thus, an adjacency between two genes a, b ∈ G can take one of

four forms, depending on their orientation: {ah, bt}, {at, bh}, {at, bt}, {ah, bh}. An

extremity that is not adjacent to another extremity is called a telomere, and is

represented by a singleton set, e.g. {ah}.
In some formulations, a gene may have multiple copies corresponding, for exam-

ple, to homologous yet distinguishable genes. The copies of such a gene g ∈ G are

identified by a superscript. For example, g1, g2, g3 are three distinct copies of gene g.

Such a gene with multiple distinguishable copies is called a labeled gene. A gene that

has a single copy or has multiple indistinguishable copies is called unlabeled. For a

gene g, we call the number of copies it has its copy number and denote it by cn(g).

A gene set G with one copy for each gene is called an ordinary gene set. A labeled

gene set is a set GL = {gi|g ∈ G, 1 ≤ i ≤ cn(g)}} and an unlabeled gene set GU is

a multiset GU = ∪g∈G ∪1≤i≤cn(g) {g}. For instance, GL = {a1, a2, b1, c1, c2, c3} and

GU = {a, a, b, c, c, c} are labeled and unlabeled gene sets, respectively, that have two

copies of gene a, one of b and three of c. Similar to genes, extremities belonging to

labeled genes are distinguishable (e.g., a1
h 6= a2

h), while extremities of unlabeled gene

are indistinguishable. Furthermore, unlabeled heads and tails of the same unlabeled

gene cannot be matched. In other words, we do not know which tail and head come

from the same gene copy.

A labeled genome Π over a labeled gene set GL is a set of adjacencies and telomeres

such that every labeled extremity ei ∈ EL appears exactly once in an adjacency

or telomere of Π. Similarly, an unlabeled genome Π over an unlabeled gene set

GU is a multiset of adjacencies and telomeres such that every unlabeled extremity

e ∈ EU of gene g appears exactly cn(g) times in adjacencies or telomeres of Π.

1.2. SINGLE GENEMODELS, OPERATION TYPES ANDDISTANCEMEASURES11

Π = {{a1
t}, {a1

h, b
1
h}, {b1

t , c
1
t}, {c1

h}, {a2
t}, {a2

h, b
2
t}, {b2

h}, {b3
t}, {b3

h, c
2
h}, {c2

t}} and Γ =

{{at}, {ah, bh}, {bt, ct}, {ch}, {at}, {ah, bt}, {bh}, {bt}, {bh, ch}, {ct}} are examples of

labeled and unlabeled genomes. If the gene set of a genome is ordinary, we call it

an ordinary genome (or a single copy genome).

The graph representation of a genome Π is an undirected graph GΠ = (E , E).

Its nodes are the extremities of Π (either labeled or unlabeled) and E consists of

interval edges and adjacency edges. An interval edge connects the head and tail of

a gene. For unlabeled genomes there are cn(g) parallel interval edges of the edge

(gh, gt) for every gene g. For labeled genomes, each labeled gene copy gi has a single

interval edge (gih, g
i
t). Adjacency edges connect the extremities x and y where {x, y}

is an adjacency of Π. We call GΠ the genome graph of Π. The representations Π

and GΠ are equivalent and thus we use them interchangeably. Notice that for each

node (extremity), its number of interval edges (interval-degree) equals its number

of adjacency edges (adjacency-degree) plus the number of telomeres it belongs to.

Figures 1.5, 1.6 and 1.7 show genome graphs for ordinary, labeled and unlabeled

genomes, respectively.

An alternating route in GΠ is either a path or a cycle in which no two consecutive

edges are of the same type (interval/adjacency). A chromosome decomposition DΠ

of the genome Π is a decomposition of GΠ into a set of edge disjoint maximal alter-

nating cycles and alternating paths that cover all edges. Note that a chromosome

decomposition is always possible since the interval-degree is equal to the adjacency-

degree for every node that is not in a telomere, and that maximal paths must start

and end with telomeres. Labeled and ordinary genomes have a unique chromosome

decomposition by simply taking the set of connected components, since the interval-

degree and the adjacency-degree of every non-telomere node is 1 (see Figures 1.5

and 1.6). There may be several decompositions for a multi-copy unlabeled genome

(see Figure 1.7). Each alternating route in a decomposition is called a chromosome.

A chromosome is called circular if the corresponding route is a cycle, and linear

otherwise. A decomposition is called linear if all its chromosomes are linear, circu-

lar if all its chromosomes are circular, and otherwise mixed. Figure 1.5 shows an

ordinary genome with one linear and one circular chromosome. An ordinary genome

composed of a single linear chromosome is called a signed permutation.

A signed genomic string is a sequence of oriented genes, e.g. 1 −2 3. For a

chromosome C ∈ DΠ, we define the chromosome string of C as follows. Start at

12 CHAPTER 1. INTRODUCTION

one of the ends of a linear chromosome with the string ‘(’. Traverse the route until

all edges along the route are covered. For each traversal of an interval edge from

a tail gt to a head gh append g to the string. For traversal from gh to gt append

−g to the string. After finishing the traversal, append the string with ‘)’. For a

chromosome string C, let −C be the chromosome string in which the order and

orientation of all gene are in inverted, e.g. if C = (1 2 3) then −C = (−3 −2 −1).

C and −C are equivalent as they correspond to the same set of adjacencies. For

a circular chromosome, do the same starting from an arbitrary extremity interval

edge without appending brackets. The resulting sequence is cyclic and all shifts and

inversions of it are equivalent. We use <> to denote circular genomes (Figures 1.5,

1.6 and 1.7).

A string representation of a genome decomposition DΠ is the multi-set of chro-

mosome strings for each chromosome in the decomposition (Figures 1.5, 1.6 and

1.7). Two string representations are equivalent if there is a bijective mapping be-

tween equivalent chromosome strings in them. For labeled and ordinary genomes,

the string representation is unique (up to equivalence) and therefore we sometime

use this representation.

Figure 1.5: A genome graph GΠ of an ordinary genome Π ={
{at}, {ah, bt}, {bh}, {ct, ch}

}
. Bold edges correspond to interval edges; dashed

edges correspond to adjacencies. Since Π is an ordinary genome, it has a unique
decomposition DΠ whose string representation is

{
(a b), < c >

}

Given an unlabeled genome Π over the gene set GU , a labeling of Π produces a

labeled genome Γ over the gene set GL such that distinct gene copies of a gene g

are mapped to distinct labeled genes g1, . . . , gcn(g) in GL. For example, the labeled

genomes in Figure 1.6 and 1.7B are two possible labelings of the unlabeled genome

in Figure 1.7A. We denote L(Π) to be the set of all possible labelings of Π.

Given a genome Π1 over the gene set G1, an operation creates a new genome

Π2 6= Π1 over a new gene set G2. An operation is said to be structural if G1 = G2.

An operation is said to be numerical if the CN of some gene is different under G1

and G2. Notice that a structural operation only changes the structure, i.e. Π2 6= Π1,

1.2. SINGLE GENEMODELS, OPERATION TYPES ANDDISTANCEMEASURES13

Figure 1.6: A genome graph G∆ of a labeled genome ∆ =
{{a1

t}, {a1
h, b

1
t}, {b1

h, c
1
t}, {c1

h}, {a2
t}, {a2

h, b
2
t}, {b2

h}, {b3
t}, {b3

h, c
2
h}, {c2

t}}. Bold edges
correspond to interval edges; dashed edges correspond to adjacencies. Since ∆ is an
ordinary genome, it has a unique decomposition D∆ whose string representation is{

(a1 b1 c1), (a2 b2), (b3 −c2)
}

whereas a numerical operation also changes the gene set, i.e. G1 6= G2.

A genome rearrangement model is composed of a set of allowed operations O and

additional constraints on genomes. A sorting scenario of length d from Π into Γ is a

series of genomes Π0, . . . ,Πd such that Π0 = Π,Πd = Γ and for each i, Πi+1 is a legal

genome (under the model constraints) that is a result of an allowed operation on Πi.

The sorting distance is the length of a shortest sorting scenario from Π into Γ. We

call Π the source genome and Γ the target genome. The sorting problem under model

O receives as input Π and Γ, and looks for a sorting scenario of minimum length

from Π to Γ. Figure 1.3 shows a sorting scenario of length 5 from (A B C D E F)

to (A −E −C D −F) in a model allowing deletions and inversions.

Operations

Reversal. An inversion of a signed genomic string reverses the string and multiplies

all elements by −1. Hence the inversion of (2 −3 5 −1) denoted as −(2 −3 5 −1), is

(1 −5 3 −2). For a string S = s1 . . . sn, S[i, j] is the substring si . . . sj. Let C be a

chromosome string. A reversal ρ(i, j) inverts C[i, j], resulting in a new chromosome

C ′ = C[1, . . . , i − 1] · −C[i, . . . , j] · C[j + 1, . . . ,m], where · is the concatenation

operator. For example, ρ(3, 5) of C = (1 3 2 4 5 6) is C ′ = (1 3 −5 −4 −2 6).

Reversals can be similarly defined on a single chromosome in the genome graph, by

14 CHAPTER 1. INTRODUCTION

Figure 1.7: A: A genome graph GΓ of an unlabeled genome Γ =
{{at}, {ah, bt}, {bh, ct}, {ch}, {at}, {ah, bt}, {bh}, {bt}, {bh, ch}, {ct}}. Bold edges cor-
respond to interval edges; dashed edges correspond to adjacencies. B: One possible
decomposition D1

Γ of Γ, whose string representation is
{

(a b c), (a b −c), (b)
}

. A
different decomposition D2

Γ corresponding to
{

(a b c), (a b), (b −c)
}

can be seen in
Figure 1.6 by suppressing the superscripts.

cutting two adjacencies and reconnecting the loose extremities such that the result

is a linear chromosome. A reversal on a labeled or ordinary genome is a reversal on

one of its chromosomes. Reversals for general (not ordinary) unlabeled genomes are

not defined as they may have several chromosome decompositions. See Figure 1.1B

and Figure 1.8A,B.

Translocation. Let C = c1 . . . cm and D = d1 . . . dn be two linear chromo-

somes in string representation of an ordinary or labeled genome. A translocation

tr(C,D, i, j) transforms C and D into two new chromosomes, either C[1, . . . , i] ·
D[j + 1, . . . , n] and D[1, . . . , j] · C[i + 1, . . . ,m], or C[1, . . . , i] · −D[1, . . . , j] and

−C[i+ 1, . . . ,m] ·D[j+1, . . . , n]. That is, the adjacencies Ci, Ci+1 and Dj, Dj+1 are

cut, and the four loose ends are reconnected in a new way. An equivalent definition

can be made on chromosome graphs, i.e., breaking an adjacency on each chromo-

1.2. SINGLE GENEMODELS, OPERATION TYPES ANDDISTANCEMEASURES15

some and reconnecting the nodes (see Figure 1.1e and Figure 1.9). Again notice

that translocations are not uniquely defined for general unlabeled genomes.

DCJ. A double-cut-and-join (DCJ) is an operation that cuts two adjacencies

and reconnects the four loose ends in a new way into two adjacencies. It can be

applied on labeled and unlabeled genomes. A DCJ can take one of the following

forms:

1. If adjacencies {p, q}, {r, s} ∈ Π are cut, replace them with either {p, r}, {q, s}
or {p, s}, {r, q} (Figures 1.8, 1.9).

2. If adjacency {p, q} ∈ Π is cut and telomere {r} ∈ Π is involved, replace them

with either {p, r}, {q} or {r, q}, {p} (Figure 1.10).

3. If telomeres {q}, {r} ∈ Π are involved, replace them with an adjacency {r, q}
thereby joining the two chromosomes (Figure 1.11). This operation is referred

as a fusion or a join.

4. If adjacency {p, q} ∈ Π is cut and an empty adjacency is involved, replace

them with two telomeres {p}, {q} (Figure 1.11). Hence, a linear chromosome

containing the adjacency is cut into two chromosomes, or becomes linear if it

was circular. This operation is referred as a fission or a cut.

Note that a DCJ realizes both reversals (when the two adjacencies come from the

same chromosome) and translocations (when they are from different chromosomes).

When the adjacencies that are cut are from the same chromosome the result of a

DCJ can also be splicing out of a segment between the cuts into a separate cyclic

chromosome. This circular excision is somehow artificial and does not necessarily

correspond to real biological phenomenon.

SCoJ. A single-cut-or-join (SCoJ) operation either cuts an adjacency or joins

two telomeres, respectively (Figure 1.11).

In the next section we briefly review basic results on ordinary genome models.

As our focus is primarily on multiple-copy problems, we only skim selected results.

The interested reader can find much more information on this topic in [130] and

[42].

16 CHAPTER 1. INTRODUCTION

Figure 1.8: Reversal and DCJ. A: The genome graph of (a b c); the two diagonal
stripes correspond to the cut adjacencies. B: The genome (a −b c) is a result of
a reversal or a DCJ. C. The genome {(a c), < b >} corresponds to the other DCJ
option.

1.2.2 Breakpoint distance

The breakpoint (BP) distance is a simple measure of dissimilarity between two

genomes that is not related to a specific type of operation. Generally speaking,

the breakpoint distance measures the number of adjacencies and telomeres that are

in one genome but not in the other. The breakpoint distance has several definitions

depending on the different weights of common adjacencies and telomeres [82, 106].

For two ordinary genomes Π and Γ over the same n genes, Tannier et al. [106]

give the following formula for the breakpoint distance:

dBP = n− (A+ E/2) (1.1)

where A is the number of common adjacencies and E the number of common telom-

eres of Π and Γ. Clearly, the distance is computable in linear time.

1.2. SINGLE GENEMODELS, OPERATION TYPES ANDDISTANCEMEASURES17

Figure 1.9: Translocation. A: Two chromosomes {(a b), (c d)}; the two diagonal
stripes correspond to the cut adjacencies. B,C: Two possible translocations (or
DCJs) corresponding to {(a −c), (−b d)} (B) and {(a d), (c b)} (C).

Figure 1.10: DCJs on telomeres. A: Chromosome (a b); the diagonal stripes and
the dotted circle show the cut adjacency and telomere involved. B,C: Two possible
DCJs corresponding to (a −b) (B), i.e. reversal, and {(a), < b >} (C).

18 CHAPTER 1. INTRODUCTION

Figure 1.11: Single cut or join. A cut breaks an adjacency into two telomeres
corresponding to the transition from the top to the bottom genome. A join is
the reverse operation corresponding to the transition from the bottom to the top
genome.

1.2.3 Reversal and translocation distances

Given signed permutations Π and Γ over the same n genes, we seek a shortest

sequence of reversals from Π into Γ. We can assume w.l.o.g. that Γ is the identity

permutation (1 . . . n).

Sorting signed permutations by reversals is undoubtedly the most famous GR

problem [9]. In their seminal work, Hannenhalli and Pevzner gave the first poly-

nomial time algorithm for the problem [51]. Since then, the theory was greatly

simplified [16, 59, 6, 12]. Bader, Moret and Yan have shown that finding the re-

versal distance can be done in linear time [6], whereas computing a shortest sorting

scenario can be done in O(n3/2) [46, 105]. Interestingly, sorting unsigned permuta-

tions (i.e., without gene orientations) by reversals is NP-hard [24].

The problem of sorting multi-chromosomal genomes by translocations was first

introduced by Kececioglu and Ravi [61]. Hannenhalli [48] gave the first polyno-

mial time algorithm for the problem and an improved, linear time algorithm was

introduced by Bergeron et al. [14].

Sorting by reversals and translocations was proved to be polynomial by Hannen-

halli and Pevzner [50], who reduced the problem to sorting by reversals. The theory

and algorithm were later slightly corrected and revised [108, 76, 77, 55, 15]. The

algorithm was used to compute for the first time a sorting scenario and distance

between the mouse and human genome [50]. Interestingly, the distance achieved

closely matched a prediction by Nadeau and Taylor from the 1980s [71]. Efficient

implementations of the algorithms for sorting by reversals and translocations are

1.2. SINGLE GENEMODELS, OPERATION TYPES ANDDISTANCEMEASURES19

available as part of the GRAPPA [6] and GRIMM [109] tools. Those tools also

use the ability to compute exact pairwise distances efficiently in order to compute

a tree of evolution by reversals and translocations among multiple species, albeit

heuristically.

The main representation used for the analysis of this problem (and other rear-

rangement models) is the Breakpoint Graph (BG). Given two genomes Π and Γ, the

breakpoint graph BG(Π,Γ) is an undirected graph whose nodes are the extremities

of both genomes, and whose edges are the adjacencies of both genomes distinguished

by color. Edges corresponding to Π (Γ) adjacencies are called red or Π-edges (blue

or Γ-edges, respectively). See an example in Figure 1.12.

Figure 1.12: A breakpoint graph for Π = {(a b c d), (e f)} and Γ =
{(a −f b c), (d −e)}. Π-edges are solid; Γ-edges are dashed;

Hannenhalli and Pevzner [51] gave a formula for the reversal distance between

signed permutations based on the number of cycles in the BG and certain structures

in it called “hurdles” and “fortresses”. The distance formula for sorting by reversals

and translocations has been devised over the years and depends on more complex

structures in the BG [50, 108, 76, 55, 15]. The definitions of these structures are

beyond the scope of this review, so the exact distance formulas are omitted. Bergeron

[12], and Jean and Nikolski [55], give fairly elementary presentations for sorting by

reversals and sorting by reversals and translocations, respectively, including good

expositions of structures and the distance formulas.

1.2.4 DCJ distance

The inputs for this model are two ordinary genomes Π and Γ over the same set of

n genes. The operations allowed in this model are DCJs.

20 CHAPTER 1. INTRODUCTION

The DCJ operation, introduced by Yancopoulos et al. [118], has gained much

attention in GR models in the last decade. The reason is that DCJs capture both

reversals and translocations while allowing much simpler algorithms. On the other

hand DCJs also allow splicing out circular sub-chromosomes, and fusions and fis-

sions, which have less evidence as atomic biological events. Both the distance and

an optimal sorting scenario can be computed in linear time [13].

In the analysis of this problem a new graph representation was introduced. The

adjacency graph AG(Π,Γ) of genomes Π and Γ is a bipartite undirected multigraph

whose set of nodes are the adjacencies and telomeres of Π and Γ. Therefore each

node is a set of one or two extremities. Nodes belonging to Π (Γ) are called red- or

Π-nodes (blue- or Γ-nodes, respectively). For every Π-node u and Γ-node v, there

are |u ∩ v| edges between u and v, i.e., there is an edge for each common extremity

between the two nodes. Note that BG(Π,Γ) is the line graph of AG(Π,Γ) and vice

versa. (The line graph of G = (V,E) is the graph on E in which x, y ∈ E are

adjacent as vertices iff they are adjacent as edges in G). See Figure 1.13.

Figure 1.13: An adjacency graph for Π = {(a b c d), (e f)} and Γ =
{(a −f b c), (d −e)}. Π-nodes are solid; Γ-nodes are dashed;

Bergeron et al. [13] prove that for ordinary genomes Π and Γ defined over the

same set of n genes:

dDCJ = n− (C + I/2) (1.2)

where C is the number of cycles and I the number of odd length paths starting and

ending in telomeres in AG(Π,Γ). For example, the AG in Figure 1.13 has one cycle

and two odd length paths. Thus, since there are 6 genes, the DCJ distance between

the two genomes in this case is 4. Notice that there are two additional even length

1.3. MULTI COPY MODELS IN EVOLUTION 21

paths in the graph but they do not affect the distance formula.

1.2.5 SCoJ distance

The inputs for this model are two ordinary genomes Π and Γ over the same set of

n genes. The operations allowed in this model are SCoJs.

Similar to DCJ, the SCoJ distance and scenario can be found in linear time [41].

Some rearrangements problems for which no polynomial solution is known for DCJ

and other operations, are known to be tractable for SCoJ distance. We give examples

of such problems in Section 1.3.1. While this simplistic rearrangement distance does

not correspond to real biological events, it has been shown to corroborate with the

evolutionary distance [17].

For two ordinary genomes Π and Γ over the same n genes, let AΠ (AΓ) be the

set of adjacencies of Π (Γ, respectively). The SCoJ distance is given by [41]:

dSCoJ = |AΠ|+ |AΓ| − 2|AΠ ∩ AΓ| (1.3)

1.3 Multi copy models in evolution

This section discusses multi-copy GR models inspired by species evolution. In Sec-

tion 1.3.1 we present models allowing whole genome duplication events, but no other

copy number changes. The models in Section 1.3.2 allow for the insertion and dele-

tion of new genomic segments but do not account for multiple copies of segments.

Models in Section 1.3.3 handle genomes with multiple copies of each gene but do

not allow numeric operations. Section 1.3.4 describes a few models that can handle

genomes with multiple gene copies and allow numerical operations such as deletions

or duplications.

We limit our discussion here to distance problems between two genomes. We refer

the reader to the review by El-Mabrouk and Sankoff on the analysis of gene order

evolution beyond single-copy genes [39], which discusses in depth the phylogenetic

aspects of GR models in the context of species evolution.

22 CHAPTER 1. INTRODUCTION

1.3.1 Polyploidy

We discuss here problems motivated by whole genome duplication (WGD) events in

species evolution. WGD is viewed as a fundamental step in evolution, as doubling

of the gene contents allows great diversification of gene functions. For example,

strong evidence for WGD events was reported for yeast [117] and for plant genomes

[20]. The basic question tackled by these formulations is finding a shortest sorting

scenario between a given ancestral genome (before or right after WGD) and a given

extant genome under GD models allowing only structural operations. In addition,

an underlying assumption is that the extant genome has significantly evolved since

the duplication event and therefore the genes can be labeled.

A duplicated genome (either labeled or unlabeled) is a genome in which every

gene has CN=2. For an ordinary genome Π over G, a doubled genome 2Π = Π ∪ Π

is an unlabeled duplicated genome over 2G = G ∪ G in which every gene, adjacency

and telomere has two copies. For example, if Π = {{at}, {ah, bh}, {bh}} then 2Π =

{{at}, {ah, bh}, {bh}, {at}, {ah, bh}, {bh}}.
The double distance problem [2] is defined as follows. Given an ordinary genome

Π over G, a labeled duplicated genome Θ and an operation distance measure d, find

the minimum distance of Θ to some labeling of 2Π. Formally, the double distance

between Π and Θ is:

dd(Π,Θ) = min
Γ∈L(2Π)

d(Γ,Θ) (1.4)

where L(2Π) is the set of all possible labelings of 2Π.

The double distance problem can be solved in linear time for the BP [63] and

the SCoJ measures [41]. However, it is NP-hard under the DCJ distance [106].

Given a labeled duplicated genome Θ and an operation distance measure d, the

genome halving problem seeks to find an ordinary genome Π that minimizes the

double distance to Θ [38]. Formally, the halving distance of Θ is defined as:

hd(Θ) = min
Π
dd(Π,Θ) (1.5)

The halving distance can be solved in linear time for the BP measure, but if we

restrict the genome Π to be linear or unichromsomal it becomes NP-hard [63]. For

the SCoJ distance, the problem is solvable in linear time even when Π is restricted

to be a linear or circular genome [41]. Under the DCJ distance the halving problem

1.3. MULTI COPY MODELS IN EVOLUTION 23

can be solved in linear time [69, 114] even with Π restricted to a unichromsomal

genome [1].

A generalization of the halving problem for finding an ordinary pre-WGD genome

given an extant genome with exactly m > 2 copies is called genome aliquoting [114].

Aliquoting is polynomially solvable for the BP [115] and SCoJ [41] distances, while

a 2-approximation algorithm is known for the problem under the DCJ distance

[115]. Recently, efficient ILP formulations were suggested for genome halving and

aliquoting under the DCJ distance [5].

The guided genome halving problem tries to combine both the genome halv-

ing and double distance [129]. Given an ordinary genome ∆, a labeled duplicated

genome Θ, and an operation distance measure d, find an ordinary genome Π that

minimizes the sum of the double distance between Π and Θ, plus the distance be-

tween Π and ∆. Formally, the guided halving distance is:

ghd(∆,Θ) = min
Π

[
dd(Π,Θ) + d(Π,∆)

]
(1.6)

The problem can be solved in O(n1.5) time for the BP distance, but it becomes

NP-hard with additional restrictions [63]. For the SCoJ distance, the problem has

linear solutions even with restrictions to linear or circular genomes [41]. It is NP-

hard for the DCJ distance [106].

1.3.2 Single copy models with indels

Models presented in this section allow new numerical operations while maintaining

the assumptions of ordinary genomes. The input is two ordinary genomes Π and

Γ over potentially different gene sets G1 and G2. The goal is to transform Π into

Γ with structural operations and additional operations that introduce new genes or

remove genes. All genomes in the sorting scenario must be ordinary. Thus, the use

of these models requires to uniquely resolve the homology between the two genomes

or introduce exclusive segments.

Given a chromosome string C = c1 . . . cn, a deletion del(i, j) produces a new

chromosome C[1, i−1] ·C[j+1, n]. An insertion ins(S, i) of a sequence S = s1 . . . sm

into a chromosome C at position i results in C[1, i] · S · C[i+ 1, n] (see Figure 1.1).

Insertions and deletions are commonly referred to as indel operations [22]. Since

24 CHAPTER 1. INTRODUCTION

these models assume that all genomes are ordinary, insertions cannot introduce new

copies of genes. Instead, indels are used to add and remove genes that appear in

one genome but not in the other.

El-Mabrouk was the first to address sorting permutations by reversals and indels

and gave exact an algorithm and a heuristic for specific cases [37]. Improved bound

for this problem were later devised [116]. Yancopoulos and Friedberg [119] analyzed

the problem of sorting ordinary genomes with DCJs and indels. Their model allowed

to insert and delete genes that appear in the source or target genomes, and thus a

possible sorting scenario can delete all the chromosomes of the source genome and

insert the chromosomes of the target genome. Braga et al. [22] gave a linear time

algorithm for finding a minimum sorting scenario with DCJs and indels, restricting

indels to affect genes that are not common to the source and target genomes. The

problem is solvable in linear time even when DCJs and indels have different weights

[29].

Braga et al. [21] introduced a new operation that generalizes both insertions

and deletions. A substitution is an operation that replaces a sequence of consecutive

genes with another sequence. This operation can be thought of as a deletion of the

sequence to be replaced followed by an insertion of the new sequence in the same

place. Notice that this operation can implement both deletions and insertions by

taking an empty sequence as the new or old sequence, respectively. Sorting ordinary

genomes with DCJs and substitutions can be solved in linear time [21], even when

substitutions have different weights than DCJs [30].

1.3.3 Multi-copy models without duplications/deletions

In this section we focus on comparing genomes with multiple gene copies but without

explicit deletion or duplication operations. The comparison can be used to assign

orthology relationship between gene copies in the source and target genomes [25].

Given a source genome and a target genome with multiple gene copies, the general

approach is to find a matching of the gene copies that minimizes some structural

operation distance. Gene copies that are not matched are ignored, so they are

implicitly deleted and do not incur the cost of a true deletion operation. Most

formulations result in NP-hard problems.

There are three main formulation strategies depending on the cardinality of the

1.3. MULTI COPY MODELS IN EVOLUTION 25

Table 1.1: Multi-copy model results

Operations Exemplar Intermediate Matching

BP NP-hard [23]
Branch and bound
[90, 73]
ILP [3, 98]

NP-hard [18]
ILP [4, 99]
Heuristics [4]

NP-hard [18]
Branch and bound
[19]
ILP [4, 99]
Heuristics [4]

Reversals
and translo-
cations

NP-hard [23] NP-hard [25]
ILP [104]
Heuristics [25, 43]

NP-hard [25]
ILP [104]
Heuristics [25, 43]

DCJ Branch and bound
[120]

NP-hard [97] NP-hard [97]
ILP [97]
Branch and bound
[120]
Approximation [96,
87]

matching of multi-copy genes:

• Exemplar strategy [90], in which in each genome, exactly one copy of each

gene is selected and all other copies are ignored. It thus assumes that the

exemplar is the ancestor that all other gene copies have evolved from.

• Intermediate strategy [4], in which the same predefined number of copies (at

least one) for each gene are selected and matched between genomes, and all

other copies are ignored.

• Maximum matching strategy [19], in which for each gene, the maximum possi-

ble gene copies (the smaller of the gene’s CNs in the two genomes) are selected

and matched between genomes, and the remaining copies are ignored.

Although most formulations are NP-hard, several exhaustive and heuristic al-

gorithms have been suggested. In recent years, Integer Linear Programming (ILP)

formulations presented by Shao and Moret were used to solve such problems, and

have shown good results and scalability [97, 98, 99]. Table 1.1 summarizes selected

results for different operations and different formulations.

The majority of hardness results, as well as exact and heuristic algorithms for

these problems, originate from the breakpoint graph decomposition problem [60, 24].

26 CHAPTER 1. INTRODUCTION

The goal in this problem is to find a decomposition of a breakpoint graph into a

maximum number of edge-disjoint alternating red/blue cycles. A similar maximum

cycle decomposition can also be defined for the adjacency graph [96, 97]. Such

decomposition induces a matching between genes and the maximum number of cycles

minimizes an operation distance measure [96, 97].

1.3.4 Models with duplications or deletions

We now describe several models that include deletions or duplications as explicit

numerical operations. The goal of all these models is to transform one genome

representation into the other with minimum number of structural and numerical

operations. Unlike the classical structural operations, numerical operations such as

deletions and duplications have no standard definitions.

Chen et al. [25] analyzed a model for sorting unlabeled genomes with multiple

gene copies using only reversals. Their heuristic, called SOAR, was the first method

to assign orthology relationship between genes based on not only sequence similarity

but also GRs. In a follow-up paper [43], the authors studied a model that allows

reversals and single gene duplications. The latter can insert new gene copies at

arbitrary positions in the genome. They developed a heuristic called MSOAR for

matching gene copies between the two input genomes such that the number of

reversals plus gene duplications would be minimal. While SOAR requires every gene

to have an equal number of copies in the two input genomes, MSOAR alleviates this

assumption. In MSOAR 2.0 [101], only tandem single gene duplications are allowed,

and again, an efficient heuristic for this sorting problem is given.

Kahn and Raphael [58] introduced a measure called the string duplication dis-

tance that models building a target string by repeatedly copying substrings of a

fixed source string. The string duplication operation, δs,t,p(X), copies a substring

xs . . . xt of string X and pastes it into another string Z at position p. Given a source

string X without duplicate genes and a target string Y the goal is to find a minimum

length sequence of string duplications needed to build the string Y . The authors

described a polynomial dynamic programming algorithm for computing the distance

[58]. In a follow-up work, they enhanced the model to allow substring deletions and

inversions. A polynomial dynamic programming algorithm is given for computing

the sorting problem [57]. The string duplication model was used for the analysis of

1.3. MULTI COPY MODELS IN EVOLUTION 27

repetitive segments in the human genome [56].

A model introduced by Bader [7] allows tandem duplications, segmental deletions

and DCJs. Given a labeled chromosome C in string representation, a tandem dupli-

cation td(i, j) inserts a new copy of the segment C[i, . . . , j] after the j’th position,

i.e., the new chromosome is C ′ = C[1, . . . , i−1]·C[i, . . . , j]·C[i, . . . , j]·C[j+1, . . . , n]

(Figure 1.1). A deletion del(i, j) removes the segment C[i,. . . ,j] and produces C ′ =

C[1, . . . , i− 1] ·C[j + 1, . . . , n] (Figure 1.1). The goal in the model is to find a mini-

mum sorting scenario of the identity chromosome into the input multi copy labeled

chromosome. The author gave a lower bound and heuristic for the problem based

on the structure of the breakpoint graph.

In a model presented by Shao and Moret [100], labeled genomes are sorted using

DCJs and segmental duplications. A segmental duplication copies a segment of

labeled genes g1, . . . , gm of a genome Σ and inserts the new labeled copy in Σ in

a spot outside the original segment. The model allows different costs for different

duplications and unit cost for DCJs. However, the optimization problem implicitly

assumes that all segmental duplications either precede or follow all DCJ events.

Given two labeled genomes Π,Γ, the goal is to find segmental duplications in Π

and Γ, remove them, and then find a bijection between the remaining genes such

that the cost of segmental duplications plus the DCJ distance is minimized. The

authors analyzed this problem and gave an ILP formulation. It is based on the

adjacency graph cycle decomposition formulation proposed in [97], applied to a

problem instance simplified by detection of optimal substructures.

Paten et al. [80] presented a model for genome evolution that does not fit en-

tirely into the standard GR terminology. This model can represent both single base

substitutions and structural/numerical rearrangements such as DCJs, deletions and

duplications. They defined a data structure called history graph, which holds partial

order information on the sequence of events. The goal is to find a full sequence of

events consistent with the input history graph that minimizes the cost of substitu-

tions and DCJs, while gene deletions and WGDs are free. The authors analyzed this

problem and gave polynomially tractable bounds for the cost. In a follow-up paper,

Zerbino et al. [128] further analyzed the history graph model and showed that the

space of possible evolutionary histories can be sampled ergodically.

28 CHAPTER 1. INTRODUCTION

1.4 Multi-copy models in cancer

Cancer is an evolutionary process driven by the accumulation genomic mutations

leading to the aberrant function of genes. Those mutations ultimately give cancer

cells their proliferative nature. Inferring the evolution of these mutations is an im-

portant problem in the research of cancer, both for diagnosis and prognosis [93].

Furthermore, the order in which mutations are acquired can affect disease progres-

sion and drug resistance [72], and can identify “driver aberrations” and their order

of occurrence in specific cancer types [62].

Cancer genomes are known to undergo structural and numerical changes [47].

These include inversions, chromosomal translocations, tandem duplications, seg-

mental deletions, whole chromosome amplifications or losses and more [112]. Figure

1.4 shows an example of a real cancer karyotype and Figure 1.14 shows a hypo-

thetical sorting scenario for cancer evolution. A large research effort has focused

on detecting signatures of these events in tumor genomic data. Currently the effort

uses mainly deep sequencing data [32], though traditional methods such as FISH

and aCGH are still used to assess the CN of genomic regions. Accurate reconstruc-

tion of the numerical and structural variations remains a challenge, and a myriad

of computational methods has been devised for this task [32, 107]. Some evolu-

tionary GR models such as those presented in Section 1.3 could also be applied

to cancer genomes. Nevertheless, the complexity of tumor karyotypes and their

unique characteristics necessitate development of dedicated cancer GR models. For

instance, usually different copies of the same segment cannot be distinguished in

cancer genomes, and thus they cannot always be labeled.

DCJs can express both reversals and translocations which are frequently observed

in cancer genomes and thus can be useful to model tumor evolution. Furthermore,

double minutes, small circular DNA fragments, have been observed in a large number

of human tumors [88], and can be modeled by circular excision operations. However,

there is no specific biological evidence that supports the use of the DCJ distance

measure.

In Section 1.4.1 we discuss several classical GR models that were applied to

cancer data. Section 1.4.2 describes CN edit distance problems in cancer. Section

1.4.3 presents a few other cancer models involving GRs.

1.4. MULTI-COPY MODELS IN CANCER 29

A B C D E F
A B C D E F

G
G

A B

C D E

F
A B C D E F

G
G

A B

C D E

F
A B C

G

A B

C D E

F
A B C

G

A B C

A B

D E

A B C C

F G

A B C

a

b

c

d

e

f
A B

D E
A B C C

F G A C

Figure 1.14: A hypothetical sorting scenario for cancer evolution. a. Normal diploid
karyotype with two chromosomes. a-b. Translocation. b-c. Chromosome deletion
c-d. Chromosome duplication d-e. Fusion e-f. Internal deletion. f. The cancer
karyotype. The breakpoints and telomeres involved in each operation are indicated
by the broken lines.

1.4.1 Models with duplications/deletions

Here we present several GR models with both structural and numerical operations,

that were designed to cancer data analysis. All models aim to find a sorting scenario

between one genome representation into the another. The source genome is usually

the normal genome from a healthy tissue and the target genome is the tumor.

Ozery-Flato and Shamir [78] proposed a GR model designed specifically to an-

alyze chromosomal aberrations in cancer. The inputs for the model are a normal

unlabeled source genome with two identical copies of each chromosome and a tu-

mor (target) genome. Both genomes are described as sets of chromosomes, each

consisting of a sequence of segments. The goal is to sort the normal genome into

30 CHAPTER 1. INTRODUCTION

the tumor with the fewest cuts, joins, chromosome duplications and chromosome

deletions. The authors proved a lower bound for the distance, and presented a

polynomial-time 3-approximation algorithm for the problem. They applied the al-

gorithm to over 50,000 low-resolution karyotypes from the Mitelman database [68],

which records cancer karyotypes reported in the scientific literature. Interestingly,

the approximation algorithm gave an optimal solution in all but 30 karyotypes.

Bader [8] extended his previous model [7] in order to cope with cancer alter-

ations. The revised model accepts multi-chromosomal genomes and allows chro-

mosome deletions and duplications, tandem duplications, segmental deletions and

DCJs. A lower bound and a heuristic algorithm were devised, and applied to the

Mitelman database [68]. The average calculated distance was 4.08 while the average

lower bound was 2.72.

In Chapter 2, we present an analysis of a model for genome sorting using cuts,

joins and whole chromosome duplications. A more comprehensive model presented

in Chapter 4 accounts for the evolution of unlabeled genomes via DCJs, tandem

duplications, segmental deletions, and chromosomal amplifications and deletions.

1.4.2 Copy number profile distances

In this section we discuss several models for edit distance between CN profiles.

Unlike the genome representations in Section 1.2.1, these profiles give the number of

copies of each segment (gene) but do not hold information about their order along

the genome. A copy number profile (CNP) of a chromosome is a vector mapping

each gene to a non-negative integer corresponding to the number of copies of the gene

in the chromosome. As the order of the genes in a CNP is unknown, it is assumed

to be some predefined order (typically the normal genome order). A genome CNP

is a collection of its chromosome CNPs. We now define operations that transform

CNPs and present several models for finding a sorting distance between CNPs.

Let V = (v1, . . . , vn) where vi ∈ N∪{0} be a CNP of a chromosome with n genes.

A copy number operation (CNO) is a triple c = (`, h, w) where 1 ≤ ` ≤ h ≤ n

and w ∈ {1,−1}. We say that the operation is a deletion if w = −1 and an

amplification if w = 1. Applying an operation c to a CNP V results in a new CNP

c(V) = (c(v1), . . . , c(vn)) such that for every ` ≤ i ≤ h, vi > 0 we have c(vi) = vi+w,

and otherwise c(vi) = vi. In other words, the operation increases or decreases the

1.4. MULTI-COPY MODELS IN CANCER 31

CN of the genes in the interval [`, h] if they have a positive CN, while the values of

genes outside the interval and zero values are unchanged (see Figure 1.15).

2 2 2 2 2 2

3 2 0 2 1 2 2 1 2 2 3 2

3 0 2 3 4 2 2 2 3 2 4 3 4 2 0 3 0 4 5 4 0 4 3 4

A

B C

D E F G

Figure 1.15: Copy number profile evolution. A diploid CNP (A) evolves via CNOs
into four extant CNPs (D, E, F, G). Dotted lines represent deletions and bold
lines represent amplifications. The order of operations is from top to bottom. For
instance, CNP A evolves into CNP B by a deletion of positions 2-3, a deletion of
positions 3-5 and an amplification of positions 1-4 (in this order). The corresponding
sequence of profiles is 2 2 2 2 2 2 → 2 1 1 2 2 2 → 2 1 0 1 1 2 → 3 2 0 2 1 2. The
entire tree has six deletions and eight amplifications.

Chowdhury et al. [28] defined edit distance between CNPs obtained from FISH,

where the edit operations are amplification or deletion of single genes, single chromo-

somes, or the whole genome, and presented an algorithm for calculating the distance.

The algorithm was exponential in the number of genes and therefore is limited to

low-resolution FISH data. An algorithm based on the pairwise distance matrix was

used to heuristically infer tumor phylogenies from FISH single cell data. A follow

up paper [27] accounted for different weights for different types of operations, again

providing an exponential time algorithm.

Schwartz et al. [94] introduced a model that admits amplifications and deletions

of general contiguous segments in a chromosome CNP. The edit distance between two

CNPs is the minimum number of CNOs over all possible separations of the profiles

into two alleles. The authors developed an algorithm called MEDICC for computing

the edit distance, which uses finite-state transducers [70] and is exponential in the

maximum CN. MEDICC was used to infer tumor phylogenies from CGH arrays of

32 CHAPTER 1. INTRODUCTION

high grade serous ovarian cancer samples [93].

In Chapter 3, we analyze the problem of sorting one CNP into another using a

minimum number of CNOs and give a linear time algorithm to solve it. Notice that

this edit distance is not symmetric and in fact there may not be any sequence of

CNOs from one given CNP to another since genes with zero copies cannot reappear

later in the sequence. To cope with this drawback, we analyzed a symmetric ver-

sion that given two CNPs aims to find a common ancestor profile that minimizes

the sum of distances to these CNPs [36]. We gave a pseudo-polynomial dynamic

programming algorithm that is linear in the profile length, and an ILP formulation.

In the more general cancer context, we showed that it is NP-hard to build a phy-

logenetic tree whose leaves are the input CNPs that minimizes the total number of

CNOs along edges in the tree (see Figure 1.15), and gave a practical ILP formulation

for this problem. Extending the CNP tree model, Zaccaria et al. [121] considered a

model in which a fractional (non integer) CNP is allowed, due to the superposition

of several CNPs of different subclones. The goal in this case is to deconvolve the

fractional CNPs into a weighted sum of integer CNPs such that the phylogenetic

tree built over them has minimum CNOs. A heuristic algorithm was given for the

problem.

1.4.3 Other cancer models

Reconstruction of the exact cancer chromosomes based on short paired-end deep

sequencing read data remains a hard challenge. There is a plethora of methods for

detection of local rearrangement events and breakpoints [32], but only a few methods

try to reconstruct the entire genome. Here we describe a few methods designed for

reconstructing cancer genomes. The output genome representation of such methods

can be used as input to genome rearrangement models described earlier.

Oesper et al. [75] expanded the genome graph into a structure called the interval

adjacency graph, which represents breakpoints, discordant reads and CN informa-

tion. Their method, called PREGO, uses the number of reads supporting each edge

to resolve the CN of genomic segments and identify discordant adjacencies in the

tumor genome, and maps this information to the graph. PREGO was shown to ef-

ficiently identify complex rearrangements in ovarian cancer data. Eitan and Shamir

[35] expanded this model and tested it in extensive simulations and on real can-

1.4. MULTI-COPY MODELS IN CANCER 33

cer data. Their analysis shows that perfect reconstruction of a complete karyotype

based on short read data is very hard, but that by several measures, reasonably

good reconstructions are obtainable.

Weaver, developed by Li et al. [65], is a different probabilistic graph model

proposed in order to estimate both the CNs and inter-connectivity of SVs. Weaver

detects and quantifies CNs and SVs specific for each allele, and was also used for

predicting partial timing of SVs relative to chromosome amplifications. A recent

expansion of Weaver based on ILP formulation enabled improved prediction of SV

phasing and interconnectivity [85].

A probabilistic framework based on breakpoint graphs was presented by Green-

man et al. [45] for the analysis of mutations and karyotypes from sequencing data.

This work tries to reconstruct both the temporal sequence of rearrangements and

assemble genomic segments into karyotypes. It uses allelic integer CNs for each seg-

ment, the adjacencies between segments and the multiplicity distribution of somatic

SNVs. Taking into consideration SNVs can disambiguate some sorting scenarios,

since duplicated segments carry the SNVs of the original one. The method can de-

rive partial order of accumulating numerical and single nucleotide mutations. The

framework, called GRAFT, was demonstrated to work well with a breast cancer

sample and cancer cell lines, albeit with limitations imposed by the data quality

and the genome complexities.

In contrast to local genome rearrangement operations, complex genomic rear-

rangements (CGRs) events are also emerging as a feature of cancer genomes. These

events are characterized by multiple genomic breakpoints and fusion, and thus si-

multaneously affect multiple genes. CGRs involve three or more distant regions of

the genome abnormally joining together. nFuse [67] has been designed to discover

CGRs in cancer using high-throughput sequencing. The algorithmic method behind

nFuse is inspired by DG analysis and is based on shortest alternating paths in break-

point graphs. CouGaR [34] is a method for characterizing the genomic structure of

amplified CGRs, leveraging both depth of coverage and discordant pair-end map-

ping techniques similar to PREGO [75]. Both methods were successfully applied to

cancer genome data and some of their predicted CGRs have been experimentally

validated.

34 CHAPTER 1. INTRODUCTION

1.5 Summary of articles included in this thesis

1. Sorting by cuts, joins and whole chromosome duplications

Ron Zeira and Ron Shamir

Published in Proceedings of the 26th Annual Symposium on Combinatorial

Pattern Matching (CPM 2015) [124] and Journal of Computational Biology

(JCB) [125]

Genome rearrangement problems have been extensively studied due to their

importance in biology. Most studied models assumed a single copy per gene.

However, in reality duplicated genes are common, most notably in cancer. Here

we make a step towards handling duplicated genes by considering a model that

allows the atomic operations of cut, join and whole chromosome duplication.

Given two linear genomes, Γ with one copy per gene, and ∆ with two copies

per gene, we give a linear time algorithm for computing a shortest sequence of

operations transforming Γ into ∆ such that all intermediate genomes are linear.

We also show that computing an optimal sequence with fewest duplications is

NP-hard.

2. A linear-time algorithm for the copy number transformation prob-

lem

Ron Zeira, Meirav Zehavi and Ron Shamir

Published in Proceedings of the 27th Annual Symposium on Combinatorial

Pattern Matching (CPM 2016) [95] and Journal of Computational Biology

(JCB) [127]

Problems of genome rearrangement are central in both evolution and cancer.

Most evolutionary scenarios have been studied under the assumption that

the genome contains a single copy of each gene. In contrast, tumor genomes

undergo deletions and duplications, and thus the number of copies of genes

varies. The number of copies of each segment along a chromosome is called

its copy number profile. Understanding copy number profile changes can assist

in predicting disease progression and treatment. To date, questions related to

distances between copy number profiles gained little scientific attention. Here

we focus on the following fundamental problem, introduced by Schwarz et al.

[94]: given two copy number profiles, u and v, compute the minimum number

of operations transforming u into v, where the edit operations are segmental

1.5. SUMMARY OF ARTICLES INCLUDED IN THIS THESIS 35

deletions and amplifications. We establish the computational complexity of

this problem, showing that it is solvable in linear time and constant space.

3. Sorting cancer karyotypes using double-cut-and-joins, duplications

and deletions

Ron Zeira and Ron Shamir

Published in Bioinformatics [126]

Motivation: Problems of genome rearrangement are central in both evolu-

tion and cancer research. Most genome rearrangement models assume that the

genome contains a single copy of each gene and the only changes in the genome

are structural, i.e., reordering of segments. In contrast, tumor genomes also

undergo numerical changes such as deletions and duplications, and thus the

number of copies of genes varies. Dealing with unequal gene content is a very

challenging task, addressed by few algorithms to date. More realistic models

are needed to help trace genome evolution during tumorigenesis.

Results: Here we present a model for the evolution of genomes with mul-

tiple gene copies using the operation types double-cut-and-joins, duplications

and deletions. The events supported by the model are reversals, translocations,

tandem duplications, segmental deletions, and chromosomal amplifications and

deletions, covering most types of structural and numerical changes observed in

tumor samples. Our goal is to find a series of operations of minimum length

that transform one karyotype into the other. We show that the problem is

NP-hard and give an integer linear programming formulation that solves the

problem exactly under some mild assumptions. We test our method on simu-

lated genomes and on ovarian cancer genomes. Our study advances the state of

the art in two ways: It allows a broader set of operations than extant models,

thus being more realistic, and it is the first study attempting to reconstruct

the full sequence of structural and numerical events during cancer evolution.

Chapter 2

Sorting by Cuts, Joins, and Whole

Chromosome Duplications

36

Research Articles

Sorting by Cuts, Joins, and Whole

Chromosome Duplications

RON ZEIRA and RON SHAMIR

ABSTRACT

Genome rearrangement problems have been extensively studied due to their importance in
biology. Most studied models assumed a single copy per gene. However, in reality, duplicated
genes are common, most notably in cancer. In this study, we make a step toward handling
duplicated genes by considering a model that allows the atomic operations of cut, join, and whole
chromosome duplication. Given two linear genomes, G with one copy per gene and D with two
copies per gene, we give a linear time algorithm for computing a shortest sequence of operations
transforming G into D such that all intermediate genomes are linear. We also show that com-
puting an optimal sequence with fewest duplications is NP-hard.

Keywords: computational genomics, genome rearrangements, SCJ.

1. INTRODUCTION

Genome organization evolves over time by undergoing rearrangement operations. Finding a

shortest sequence of operations (also called a sorting scenario) between two genomes is the focus of the

field of genome rearrangements. Such problems were studied extensively over the last two decades due to

their importance in evolution (Fertin et al., 2009).

The combinatorial problems in genome rearrangements depend on the allowed operations. Hannenhalli

and Pevzner (1995) showed in their seminal work that finding the minimal number of inversions that

transform one signed genome into another is polynomial. Many other models were studied later, allowing

one or several types of operations (Hannenhalli and Pevzner, 1995; Christie, 1996; Hannenhalli, 1996;

Caprara, 1997; Dias and Meidanis, 2001; Lu et al., 2006; Mira and Meidanis, 2007; Bulteau et al., 2012).

The double cut and join (DCJ) operation (Yancopoulos et al., 2005) models reversals, transpositions,

translocations, fusions, fissions, and block-interchanges as variations of one basic operation. A DCJ op-

eration cuts the genome in two places, producing four open ends, and rejoins them in two new pairs.

Finding the DCJ distance between two gene permutations can be done in linear time (Bergeron et al., 2006).

The single cut or join (SCJ) model (Feijão and Meidanis, 2011) further simplifies the model and allows

polynomial solutions to some rearrangement problems that are NP-hard under most formulations. An SCJ

operation either cuts a chromosome or joins two chromosome ends. This simple model gives good results in

real biological applications (Biller et al., 2013).

Models of genomes that assume a single copy of each gene are too restrictive for many real biological

problems. Duplications are frequent in cancer genomes, especially in oncogenic regions (Bayani et al.,

Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv, Israel.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 24, Number 2, 2017

Mary Ann Liebert, Inc.

Pp. 127–137

DOI: 10.1089/cmb.2016.0045

127

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

2007). Most plant genomes contain large duplicated segments (Blanc et al., 2000). A major evolutionary

event is whole genome duplication, wherein all chromosomes are duplicated (Savard et al., 2011).

In spite of their importance, models that allow duplications as rearrangement operations have not been

the subject of extensive research to date. Ozery-Flato and Shamir (2009) considered a model that includes

certain duplications, deletions, and SCJ operations. Under some simplifying assumptions, they provided a

3-approximation algorithm that performed well on cancer genomes. Bader (2009, 2010) provided a heu-

ristic for sorting by DCJs, duplications, and deletions. Shao et al. (2013) studied sorting genomes using

DCJs and segmental duplications and provided an algorithm to improve an initial sorting scenario. The

majority of extant models for genomes with multiple gene copies result in NP-hard problems (Tannier

et al., 2009; Savard et al., 2011; Shao and Lin, 2012; Shao et al., 2014).

In this article, we present a model that allows the operations, cut, join, and whole chromosome duplication.

We call it the SCJD model. The model tries to combine the simplicity and applicability of the SCJ model while

allowing chromosomal duplications observed in cancer genomes. In fact, aneuploidy (whole chromosome

duplication or deletion) is a hallmark of cancer, and how cancer cells can adapt to tolerate aneuploidy remains a

key enigma (Gordon et al., 2012; Giam and Rancati, 2015). The SCJD model is applicable for tumor genomes

where one copy of each chromosome remains unaffected and the other is duplicated at most once. Thus, we view

this model as moving one step closer to a realistic model of cancer genome evolution. Such model should allow

multiple gene copies and reversals, translocations, duplications, and deletions.

Given two linear genomes, G with one copy per gene and D with two copies per gene, we give a linear

time algorithm for computing a shortest sequence of operations transforming G into D, where all inter-

mediate genomes must be linear too. We provide a closed-form formula for that sequence length. In

addition, we show that there is an optimal sequence in which all duplications are consecutive.

While cuts or joins are local events, a duplication of an entire chromosome is a more drastic event. We

show that our algorithm actually gives an optimal scenario with a maximum number of duplications. On the

other hand, we prove that finding a conservative optimal SCJD scenario with fewest duplications is NP-hard.

The structure of this article is as follows. We give computational background in Section 2. In Section 3, we

present the SCJD model. Section 4 gives the algorithm for the SCJD sorting problem and Section 5 shows the

NP-hardness result. Finally, in Section 6, we present a brief discussion and suggest future directions. A

preliminary version of this article appeared in the proceedings of CPM 2015 (Zeira and Shamir, 2015).

2. PRELIMINARIES

2.1. Genome representation

We use the following standard terminology in genome rearrangements (Bergeron et al., 2006). The basic

entities are genes, denoted by a‚ b‚ c etc. Gene a has extremities: a head ah and a tail at. Gene a is assumed

to be oriented from its tail to its head and is positively oriented if at is to the left of ah. A negatively oriented

gene a is denoted by - a. A chromosome is a sequence of oriented genes, for example, C = ab - c - d. An

adjacency in a chromosome is a consecutive pair of extremities from distinct neighboring genes. For

example, the adjacencies in C above are fah; btg, fbh; chg, and fct; dhg. A telomere is an extremity that is

not adjacent to any other gene, corresponding to the end of a chromosome, for example, fatg,fdtg in C.

Hence, a chromosome can be equivalently represented by its set of adjacencies, where the telomeres are

implicit. Note that the set of adjacencies defining a chromosome is identical to that of the reverse chro-

mosome, where order and orientation of genes are inverted (the reverse of C is - C = dc - b - a). Hence, a

chromosome and its reverse are equivalent.

A genome over gene set G is a collection of chromosomes. We assume for now that each gene appears once,

for example,G = fab; c - dg. Equivalently, it can be defined by a set of adjacencies such that for each gene inG,

each extremity appears at most once. Hence, G = ffah; btg‚ fch; dhgg. The size of a genome G, denoted by jGj,
is the number of adjacencies in it. A chromosome is called linear if it starts and ends with a telomere and

circular if it does not contain any telomere, for example, D = ffah; btg‚ fbh; atgg. For a sequence of genes S,

denote by S and (S) the corresponding linear and circular chromosomes, respectively. For example, the linear

chromosome a - b is defined by the set of adjacencies ffah; bhgg and the circular chromosome (a - b) is

defined by the set ffah; bhg‚ fbt; atgg. A genome is called linear if all its chromosomes are linear.

A gene that has several copies in the genome is called duplicated. We label different copies of the same

gene by superscripts, for example, copies a1 and a2 of gene a. A duplicated genome has exactly two copies

128 ZEIRA AND SHAMIR

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

of each gene. A genome with a single copy of each gene is called ordinary. The duplication of an ordinary

genome P creates a special kind of genome (Warren and Sankoff, 2011): each gene and each adjacency in

P is doubled, producing the genome P� P. Note that in P� P, the two copies of each gene are

unlabeled. The set of all possible labeled genomes corresponding to P� P is denoted by 2P. A genome

S 2 2P is called a perfectly duplicated genome. Hence, for G above, G� G = fab; ab; c - d‚ c - dg and

S = ffa2
h‚ b2

t g‚ fc2
h‚ d1

hg‚ fa1
h‚ b1

t g‚ fc1
h‚ d2

hgg 2 2G.

2.2. SCJ distance

A cut operation takes an adjacency fx‚ yg and breaks it into two telomeres, fxg and fyg. The reverse

operation, called a join, combines two telomeres, fxg and fyg, into an adjacency fx‚ yg. An SCJ operation

is either a cut or a join (Feijão and Meidanis, 2011). Given two ordinary genomes, P and G, on the same

gene set, a sequence of SCJ operations that transforms P into G is called a sorting scenario. The SCJ

distance, denoted by dSCJ(P‚G), is the length of a shortest sorting scenario between P and G. Feijão and

Meidanis give the following solution for the SCJ distance:

Theorem 1. (Feijão and Meidanis, 2011) dSCJ(P‚G) = jPnGj+ jGnPj = jPj + jGj- 2jP \ Gj. PnG
defines the set of cuts and GnP defines the set of joins in an optimal sorting scenario.

2.3. Double distance

The SCJ double distance between an ordinary genome, G, and a duplicated genome, D, is defined as

ddSCJ(G‚D) � min
S22G

dSCJ(S‚D) (1)

Hence, in the double distance problem, one seeks a labeling of each gene copy in a perfectly duplicated

genome S 2 2G that minimizes the SCJ distance to D.

For a genome S and an adjacency a = fx‚ yg, let Sa be the set of all adjacencies of the form fxi; yjg in S.

Hence, jSaj can be 0, 1, or 2 if S is duplicated and 0 or 1 if S is ordinary. Let A = fa = fx‚ ygjx 6¼ yg be the

set of all possible adjacencies with extremities belonging to distinct genes. A solution to the double distance

problem is given by the following theorem:

Theorem 2. (Feijão and Meidanis, 2011) The SCJ double distance between an ordinary genome, G,

and a duplicated genome, D, is

ddSCJ(G‚D) = jDj + 2
X
a2A

jGaj(1 - jDaj):

A perfectly duplicated genome, S 2 2G, realizing the distance is obtained by taking for each adjacency

a = fx‚ yg 2 G (1) the labeled adjacencies of Da and (2) adjacencies fxi; yjg with arbitrary labeling that do

not conflict with (1) or among themselves.

3. THE SCJD MODEL

In this section, we generalize the SCJ model to allow duplications.

A duplication operation on a genome, P, takes a linear chromosome, C, in P and produces a new genome,

P0, with an additional copy of the chromosome. For example, ifP = fabcd‚ efgg, then a duplication of the first

chromosome will give P0 = fabcd‚ abcd‚ efgg. An SCJD operation is either an SCJ or a duplication.

Given two linear genomes on the same gene set of size n, an ordinary one, G, and a duplicated one, D, a

sequence of SCJD operations that transformsG intoD is called an SCJD sorting scenario. The SCJD distance,

denoted by dSCJD(G‚D), is the number of operations in a shortest SCJD sorting scenario between G and D.

Since we focus on linear genomes, we will assume from now on that all chromosomes, including

intermediate ones, are linear unless specified otherwise. The following simple lemma shows that this can be

satisfied when using only SCJ operations:

Lemma 1. A sequence of SCJ operations transforming one linear genome into another linear genome can

be reordered, producing another sequence with the same length such that all intermediate genomes are linear.

SORTING BY CUTS, JOINS, AND WHOLE CHROMOSOME DUPLICATIONS 129

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Proof. LetP and G be two ordinary linear genomes and let o1; . . . ‚ od be a sequence of SCJ operations

transforming P into G. Suppose there is a join operation, oi, which creates a circular chromosome C by joining

its two telomeres, x and y. Since G is linear, there is a cut operation oi for i < j that breaks C into a linear

chromosome by cutting an adjacency fw‚ zg. We create a new sequence of the same length by replacing oi

with a cut of fw‚ zg and replacing oj with a join of x and y. In the new sequence, the chromosome C is

linear. By repeating the argument for every intermediate circular chromosome, the lemma holds. -

The examples below demonstrate SCJ double distances and SCJD sorting scenarios. For simplicity, we

drop the braces around genomes from now on.

Example 1. G = a, D = a - a; ddSCJ(G‚D) = 1; dSCJD(G‚D) = 2:

G!
dup

a‚ a!
join

D

Example 2. G = ab, D = ab; ab; ddSCJ(G‚D) = 0; dSCJD(G‚D) = 1:

G!
dup

D

Example 3. G = a‚ bc, D = ab; abcc; ddSCJ(G‚D) = 4; dSCJD(G‚D) � 4:

G!
join

abc!
dup

abc‚ abc!
cut

abc‚ ab; c!
join

D

Example 4. G = acb, D = abab; cc; ddSCJ(G‚D) = 8; dSCJD(G‚D) � 7:

G!
cut

a‚ cb!
cut

a‚ b; c!
join

ab; c!
dup

ab; ab; c!
dup

ab; ab; c‚ c!
join

abab; c‚ c!
join

D

Let #cP be the number of linear chromosomes in genome P. Let G be an ordinary linear genome and let

D be a duplicated linear genome on the same gene set. A trivial upper bound for the SCJD distance between

G and D is given by solving the double distance between D and G. This corresponds to first duplicating

each chromosome in G and then computing the SCJ distance between D and G � G. We get

dSCJD(G‚D) � ddSCJ(G‚D) + #cG. However, Example 3 shows that this bound is not tight. It is tempting to

guess that ddSCJ(G‚D) � dSCJD(G‚D). Alas, Example 4 shows this conjecture is incorrect.

4. COMPUTING THE SCJD DISTANCE

In this section, we will solve the SCJD distance problem. The key idea is to show that there is an optimal

scenario in which all the duplication operations are performed in sequence, one after the other. Having

shown that, the sorting scenario between G and D can be presented as follows:

1. Transform G into another ordinary linear genome, G0, using only SCJ operations.

2. Duplicate all the chromosomes of G0 resulting in a duplicated genome, G0 � G0.
3. Solve the SCJ double distance problem between G0 and D.

Let O� = o1; . . . ‚ od be an optimal SCJD sorting scenario. Let G0 � G and for every 1 � i � d, let

Gi = oi(Gi - 1) be the genome resulting from performing oi on Gi - 1. By definition, Gd � D. Let Di be the set

of duplicated genes in Gi. We have D0 = ; and Dd =G. Given a gene set H, denote its extremity set by

EH = fatja 2 Hg [fahja 2 Hg.

Proposition 1. In an optimal sorting scenario O�, if oi is a join operation acting on the two

telomeres, x and y, then either both x‚ y 2 EDi
or both x‚ y =2EDi

.

Proof. Since oi is not a duplication, we have Di - 1 = Di. Suppose by contradiction that x 2 EDi
, but

y =2EDi
. Let oj (i < j) be the first duplication such that y 2 EDj

. The duplication operation must act on a

chromosome in which all genes are not yet duplicated. Therefore, there is a cut operation ok(i < k < j) that

breaks the adjacency fx‚ yg created by oi.

Let O0 = o01; . . . ‚ o0d - 2 = o1; . . . ‚ oi - 1; oi + 1; . . . ‚ ok - 1; ok + 1; . . . ‚ od be an alternative sorting sequence that

results from removing oi and ok from O�. Let G00 � G, and denote G0l = o0l(G
0
l - 1). For every l with

1 � l � i - 1, by definition, o0l = ol and therefore G0l =Gl.

130 ZEIRA AND SHAMIR

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

We first show that for every l with i � l � k - 2, G0l =Gl + 1nffx‚ ygg. Since oi creates the adjacency

fx‚ yg, we have Gi =Gi - 1 [ffx‚ ygg. For every such l, o0l = ol + 1 and since none of these operations creates a

new copy of y, we have G0l =Gl + 1nffx‚ ygg.
Next, we show that for every l with k - 1 � l � d - 2, G0l =Gl + 2. From the previous result and the fact that

Gk =Gk - 1nffx‚ ygg, we have G0k - 2 =Gk. Now, for every such l, o0l = ol + 2 and therefore G0l =Gl + 2.

We have established that O0 is an SCJD sorting sequence of length, d - 2, contradicting the optimality

of O�. -

Proposition 2. In an optimal sorting scenario O�, if oi is a cut operation acting on the adjacency

fx‚ yg, then either x‚ y 2 EDi
or x‚ y =2EDi

.

Proof. Suppose by contradiction, x 2 EDi
, but y =2 EDi

. Let oj (j < i) be the first duplication such that

x 2 EDj
. Since x was duplicated as part of a chromosome that did not contain y, there is subsequently a join

operation ok (j < k < i) that creates the adjacency fx‚ yg. Defining O0 = o01; . . . ‚ o0d - 2 = o1; . . . ‚ ok - 1;
ok + 1; . . . ‚ oi - 1; oi + 1; . . . ‚ od, we can get a shorter SCJD sorting scenario in a similar manner as the proof of

Proposition 1. -

Corollary 1. In an optimal sequence of SCJD operations, at the time of a cut or a join operation on the

two extremities, x and y, either the genes corresponding to both x and y have already been duplicated or

none of them have. -

We say that a join operation in a sorting scenario is valid only if the two extremities it joins are not

already part of any other adjacency. Similarly, a cut operation is valid only if the adjacency it breaks exists.

A duplication operation is valid only if it duplicates a linear chromosome such that all its genes were not

previously duplicated. A sorting scenario is valid if all its operations are valid.

Let S = s1; . . . ‚ sm be a valid SCJD sorting scenario between G and D. We say the operation, si + 1, can

preempt the operation, si, if the sequence, S0 = s1; . . . ‚ si + 1; si; . . . ‚ sm, is also a valid SCJD sorting scenario

between G and D.

Proposition 3. In a valid SCJD scenario, S transforming G into D, if si + 1 is an SCJ operation acting

on two extremities x‚ y that were not duplicated and si is a duplication, then si + 1 can preempt si.

Proof. Suppose si duplicates the linear chromosome C and produces another copy of it C0. Since si + 1

operates on genes that are not duplicated yet, none of those genes belong to C or C0. Therefore, the

sequence, s1; . . . ‚ si - 1; si + 1, is valid. Any operation that creates an adjacency or a telomere of C must

precede si. Hence, s1; . . . ‚ si - 1; si + 1; si is valid. Finally, any sj for j > i + 1 that requires the results of si or

si + 1 is still valid. Thus, S0 = s1; . . . ‚ si - 1; si + 1; si; si + 2; . . . ‚ sm is a valid sequence.

To conclude the proof, we need to show that Gi + 1 � G0i + 1. Indeed, si + 1 does not alter any of the

adjacencies or telomeres of C or C0, and therefore, Gi + 1 = si + 1(Gi - 1 [C0) � si + 1(Gi - 1) [C0 =G0i + 1. -

Proposition 4. In a valid SCJD scenario, S transforming G into D, if si + 1 is a duplication and si is a

cut or join acting on two duplicated extremities, then si + 1 can preempt si.

Proof. Suppose si is an SCJ operation acting on the two extremities, x and y, such that the genes

corresponding have both already been duplicated. Let si + 1 be a duplication operation that takes the linear

chromosome, C, and produces another copy of it, C0.
Since S is a valid sorting sequence, duplication operations that act on the genes corresponding to x and y

must precede si. In addition, none of these genes are in C. Thus, the sequence, s1; . . . ‚ si - 1; si + 1; si, is still

valid. Any subsequent operation has its required set of adjacencies and telomeres and thus the sequence

S0 = s1; . . . ‚ si - 1; si + 1; si; si + 2; . . . ‚ sm is valid. In addition, for the same reasons, Gi + 1 = si(Gi - 1) [C0 �
si(Gi - 1 [C0) =G0i + 1. -

Proposition 5. In a valid SCJD scenario, S transforming G into D, if si + 1 is an SCJ acting on two

extremities that were not duplicated yet and si is an SCJ acting on two duplicated extremities, then si + 1 can

preempt si.

SORTING BY CUTS, JOINS, AND WHOLE CHROMOSOME DUPLICATIONS 131

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Proof. If a 2 G, then a0 =2 G since G is an ordinary genome. In addition, since g(a) > 0, jDaj > 0,

therefore jDa0 j < 2. Thus, g(a0) � 0. If a =2 G, then to achieve g(a) > 0, we must have jDaj = 2, so in

particular jDa0 j = 0 and therefore g(a0) � 0. -

For a sequence of SCJ operations, S, let SD (S
D

, respectively) be the subsequence of operations that act

on two extremities of genes that have (have not, respectively) already been duplicated at the time of the

operation. By Corollary 1, for optimal S, S
D

is indeed the complement of SD.

Proposition 6. There exists an optimal sorting scenario in which all duplication events are consecutive.

Proof. Let oi1 ; . . . ‚ oip be the duplication events in an optimal sorting scenario. Denote by Sij the

sequence of SCJ operations occurring between the duplications, oij and oij + 1
. In addition, denote by Si0 and

Sip the sequence of SCJ operations before the first duplication and after the last duplication, respectively.

Given an optimal scenario, O� = Si0 ; oi1 ; Si1 ; oi2 ; Si2 ; . . . ‚ Sip - 1
; oip ; Sip , we modify it into a new sorting

scenario O0 as follows: using Propositions 3 and 5, preempt SCJ operations acting on unduplicated genes.

Using Proposition 4, preempt duplication events. These steps are iterated until no preemption is possible.

We get that O0 = Si0 ; S
D

i1
‚ . . . ‚ S

D

ip
‚ oi1 ; . . . ‚ oip ; S

D
i1

‚ . . . ‚ SD
ip - 1

‚ Sip is a valid SCJD optimal sequence in which

all duplications are consecutive. -

Corollary 2. There exists an optimal SCJD sorting scenario, consisting, in this order, of (1) SCJ

operations on single-copy genes, (2) duplications, and (3) SCJ operations acting on duplicated genes.-

Denote by G0 the intermediate (ordinary) genome after step (1). Then, we can conclude the following:

Theorem 3. dSCJD(G‚D) = minG0 dSCJ(G‚G0) + #cG0 + ddSCJ(G0;D)ð Þ -

Recall that n is the number of genes in G. Using Theorems 1 and 2 and the fact that #cP = n - jPj, the

distance formula can be simplified as follows:

dSCJD = min
G0
jGj + jG0j - 2jG \ G0j + n - jG0j + jDj + 2

X
a2A

jG0aj(1 - jDaj)
 !

= n + jDj + jGj - 2 max
G0
jG \ G0j +

X
a2A

jG0aj(jDaj - 1)

 !

= n + jDj + jGj - 2 max
G0

X
a2G0

(jGaj + jDaj - 1)

= n + jDj + jGj - 2 max
G0

X
a2G0

g(a) = n + jDj + jGj - 2 max
G0

H(G0)

(2)

where g(a) = g(a‚G‚D) = jGaj + jDaj - 1 and H(G0) =
P

a2G0 g(a). Intuitively, H(G0) measures the similarity

of G0 to G and D in terms of adjacencies. Since we want to maximize H(G0), we will focus on adjacencies

with positive contribution in Equation (2).

Lemma 2. Let a = fx‚ yg be an adjacency such that g(a) > 0. Then, for every extremity z 6¼ y, the

conflicting adjacency a0 = fx‚ zg has g(a0) � 0.

Proof. If a 2 G, then a0 =2 G since G is an ordinary genome. In addition, since g(a) > 0, jDaj > 0,

therefore jDa0 j < 2. Thus, g(a0) � 0. If a =2 G, then to achieve g(a) > 0, we must have jDaj = 2, so in

particular jDa0 j = 0 and therefore g(a0) � 0. -
Combining Lemma 2 and Theorem 3, we get a closed formula for the SCJD distance:

Theorem 4. The genome G0 = fa = fx‚ ygjg(a) > 0g minimizes Equation (2). If G0 is a linear genome,

then the SCJD distance is given by dSCJD(G‚D) = n + jDj + jGj - 2H(G0). -

Let us return to the examples in Section 3:

- Example 1: n = 1, jDj = 1, jGj = 0, G0 = ;, H(G0) = 0! d = 1 + 1 + 0 - 2 � 0 = 2

- Example 2: n = 2, jDj = 2, jGj = 1, G0 = ffah; btgg, H(G0) = 2! d = 2 + 2 + 1 - 2 � 2 = 1

- Example 3: n = 3, jDj = 4, jGj = 1, G0 = ffah; btg‚ fbh; ctgg, H(G0) = 1 + 1! d = 3 + 4 + 1 - 2 � 2 = 4

- Example 4: n = 3, jDj = 4, jGj = 2, G0 = ffah; btgg, H(G0) = 1! d = 3 + 4 + 2 - 2 � 1 = 7

132 ZEIRA AND SHAMIR

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Example 5. G = abc and D= cab; bca. According to Theorem 4, we get G0 = (abc) because

g(fah; btg) = g(fbh; ctg) = g(fch; atg) = 1. The corresponding distance is d = 3‚ providing the following in-

valid sorting scenario:

G!
join

(abc) !
dup�

(abc); (abc)!
cut

cab; (abc)!
cut

D

dup� indicates a duplication of a circular chromosome, an operation that is not allowed in the SCJD model

(and has no cost). It is not difficult to verify that there is no valid sorting scenario with d � 3.

The reason for the discrepancy in Example 5 is that #c(G0) = n - jG0j = 0 is not equal to the number of

duplications if there are circular chromosomes. Therefore, to minimize the SCJD distance given by

Equation (2), we need to maximize H(G0) under the constraint that G0 is a linear genome, that is,

H(G0) � H(~G) for every linear genome ~G. Lemma 3 shows that we can do so simply by removing one

adjacency with g = 1 from each circular chromosome in G0 and that such adjacency must exist.

Lemma 3. Let G0 = fa = fx‚ ygjg(a) > 0g and let G00 be a genome obtained by removing one adjacency

a with g(a) = 1 from each circular chromosome in G0. Then, G00 is a linear genome that maximizes H(�) and

the SCJD distance is given by dSCJD(D‚G) = n + jDj + jGj - 2H(G00).

Proof. Let P be an ordinary linear genome maximizing H(P). From the maximality of H(P), we may

assume w.l.o.g. that P does not contain adjacencies with g(a) � 0. By the definition of G0 and from Lemma

2, we have that 8a 2 P if g(a) > 0, then a 2 G0. It follows that P � G0. Therefore, every linear chro-

mosome in G0 is also in P.

Since P � G0, any linear chromosome C in P that is not in G0 must be fully contained in a circular

chromosome C0 of G0. From the maximality of P, C must contain all adjacencies in C0 except for one

adjacency a with minimum g(a).

Since G0 contains only adjacencies with g(a) = 1 or 2, the minimal value is an adjacency with g(a) = 1 if

one exists. If C0 contains only adjacencies with g(a) = 2, it follows that jGaj = 1 for every a 2 C0, so G
contains the circular chromosome C0, contradicting the linearity of G. Hence, C0 must contain at least one

adjacency with g(a) = 1. -
Applying Lemma 3 to Example 5, we get G00 = abc and d = 5:

G!
dup

abc‚ abc!
cut

a‚ bc‚ abc!
join

bca‚ abc!
cut

bca‚ ab; c!
join

D

Instead, we can choose G00= cab, which gives a different optimal sorting scenario:

G!
cut

ab; c!
join

cab!
dup

cab; cab!
cut

cab; a‚ bc!
join

D

Algorithm 1 gives the full procedure for solving the SCJD distance and sorting problems. Each step of

the algorithm takes O(jGj + jDj) time. In conclusion:

Algorithm 1 SCJD distance.

Input: An ordinary genome, G, and a duplicated genome, D, (both linear) on the same gene set.

Output: The SCJD distance, dSCJD(G‚D), and an optimal sorting scenario, o1; . . . ‚ od, in which all intermediate

genomes are linear.

1: G0)fa = fx‚ ygjg(a) > 0g (Theorem 4)

2: Create a linear genome, G00, by removing one adjacency, a, with g(a) = 1 from each circular chromosome in G0

(Lemma 3)

3: dSCJD(G‚D))n + jDj + jGj - 2H(G00) (Theorem 4, Lemma 3)

4: o1; . . . ‚ oi) Sort G into G00 (Theorem 1, Lemma 1)

5: oi + 1; . . . ‚ oj) Duplicate all chromosomes in G00.
6: oj + 1; . . . ‚ od) Sort 2G00 into D (Theorem 2, Lemma 1).

7: return d‚ o!

Theorem 5. Algorithm 1 computes the SCJD distance in linear time. -

SORTING BY CUTS, JOINS, AND WHOLE CHROMOSOME DUPLICATIONS 133

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

5. CONTROLLING THE NUMBER OF DUPLICATIONS

In this section, we discuss how to control the number of duplications in an optimal SCJD sequence. Since

the number of duplications is n - jG00j, selecting different intermediate genomes G00 that preserve the SCJD

distance can produce scenarios with different number of duplications.

An optimal SCJD scenario with fewer duplications can be viewed as more conservative. The assumption

behind this is that duplications are more radical events than breakage (cut) or fusion (join), which are local

events.

Lemma 4. Algorithm 1 gives an optimal sorting scenario with a maximum number of duplications.

Proof. Observe first that for any sorting scenario (optimal or suboptimal) transforming G into D, we can

assume w.l.o.g. that all duplications are consecutive without affecting the number of operations (Corollary

2). Call the genome right before the duplications the last ordinary genome. Denote by d(G‚P‚D) the

shortest scenario transforming G into D given that the last ordinary genome is P. The proof of Theorem 3

implies that d(G‚P‚D) = n + jDj + jGj - 2H(P).

Let G0 be the last ordinary genome produced by the algorithm. Consider an optimal scenario O with a

maximum number of duplications and let ~G be the last ordinary linear genome in O. Since O is optimal,

H(~G) must be maximal. Hence, ~G cannot contain adjacencies with g < 0. Moreover, it cannot contain

adjacencies with g = 0 as such adjacencies increase j~Gj and thus decrease the number of duplications in O.

Therefore, ~G � G0.
We now show that 8a 2 G0n~G, g(a) = 1. Suppose by contradiction that there is an adjacency a 2 G0n~G

with g(a) > 1 and let P = ~G [fag. If P is a linear genome, d(G‚P‚D) < d(G‚ ~G‚D), contradicting the

optimality of O. Otherwise, P contains a circular chromosome and by Lemma 3, there is an adjacency

b 2 ~G with g(b) = 1 such that Pnfbg is a linear genome with H(Pnfbg) > H(~G), again contradicting the

optimality of O. Thus, jG0n~Gj = jG0j - j~Gj = H(G0) - H(~G).

G0 may contain circular chromosomes. By Lemma 3, G00 is produced by removing one adjacency with

g = 1 from each circular chromosome in G0. Hence, jG0nG00j = jG0j - jG00j = H(G0) - H(G00).
Since both ~G and G00 are last ordinary genomes, in optimal SCJD scenarios, H(~G) = H(G00). Thus,

jG0j - j~Gj = H(G0) - H(~G) = H(G0) - H(G00) = jG0j - jG00j, which implies that j~Gj = jG00j. -
One can decrease the number of duplications in an optimal SCJD scenario by adding adjacencies with

g(a) = 0 to G00. However, we need to make sure that the resulting genome is still linear. Consider the

following example:

Example 6: G = a‚ b; c, D = abccba. From Theorem 4, we have that G0 =G and so the SCJD distance is 8.

The scenario produced by Algorithm 1 will first duplicate the three chromosomes of G and then perform

five joins to create D. An alternative optimal sorting scenario is as follows:

G!
JJ

abc!
D

abc‚ abc!
CC

abc‚ a‚ b; c!
JJJ

D

Here, since each adjacency a 2 D has g(a) = 0, we chose G00 = abc and obtained an optimal scenario with

a single duplication. In contrast, if we add to G00 the adjacencies fbh; ctg and fch; btg (which also have

g = 0), we create a circular chromosome and an invalid SCJD sorting scenario.

To minimize the number of duplications, we must add to G00 a maximum set of adjacencies with g = 0

such that the resulting genome is still linear. Here, we show that this problem is NP-hard using a reduction

similar to (Ková�c, 2014).

Theorem 6. Given an ordinary linear genome, G, a duplicated linear genome, D, on the same gene set,

and an integer, k, the problem of finding an optimal SCJD scenario with at most k duplications is NP-hard.

Proof. Call a directed graph in which all in- and out-degrees are 2 a 2-digraph. Deciding if a 2-digraph

contains a Hamiltonian cycle is NP-hard (Plesnik, 1979; Ková�c, 2014). This implies that the following

variant is also NP-hard: given a 2-digraph, G, with an edge, (x‚ y), decide if there is a Hamiltonian path

from y to x in G.

134 ZEIRA AND SHAMIR

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Let G = (V‚ E) be a 2-digraph with an edge (x‚ y) as above. We may assume w.l.o.g. that G is strongly

connected since otherwise it would not contain a Hamiltonian path from y to x. Notice that Gn(x‚ y)

contains an Eulerian path from y to x (Cormen et al., 2001). Denote it by P = e1; e2; . . . ‚ em.

We construct a duplicated genome S as follows: for each eq = (u‚ v) 2 P, add the adjacency, fui
h‚ v

j
tg,

where i = 2 if there is an edge el = (u‚ v0) with l < q and i = 1 otherwise. Similarly, j = 2 if there is an edge

em = (u0; v) with m < q and j = 1 otherwise. The result is a linear chromosome created by traversing P and

numbering the first occurrence of each vertex v in P as the gene copy v1 and the second occurrence as v2.

Denote by P the sequence of genes along the path P. In addition, we add two new genes w‚ z and the

adjacencies fw1
h‚ y1

t g‚ fx2
h‚ z1

t g. Thus, S has three linear chromosomes: w1y1P x2z1‚ w2 and z2. Let

P = ffwh; ytg‚ fxh; ztgg be an ordinary genome with n chromosomes over the same set of genes. (Note that

every vertex in Vnfx‚ yg corresponds to a separate chromosome in P).

Let S(i) and P(i) be genomes in which every gene v 2 V is renamed v(i). We define D =
Sk

i = 1 S(i) and

G =
Sk

i = 1 P(i) to be the disjoint union of k different copies of S and P, respectively. This completes the

reduction, which is clearly polynomial. We will show that there is an optimal SCJD scenario between G and

D with at most k duplications if G admits a Hamiltonian path from y to x.

For each edge e = (u‚ v) 2 E and every i‚ the corresponding adjacency a = f(u(i))
j
h‚ (v(i))

l
tg has g(a) = 1 if

there are two parallel edges from u to v and g(a) = 0 otherwise. In addition, for every i, g(f(w(i))h;
(y(i))tg) = g(f(x(i))h; (z(i))tg) = 1, and every other adjacency of w(i); z(i) has g < 0.

Suppose G contains a Hamiltonian path S from y to x. Let G0 be the genome formed by the set of

adjacencies ff(w(i))h; (y(i))tg‚ f(x(i))h; (z(i))tgji = 1 . . . kg [ff(u(i))h; (v(i))tgj(u‚ v) 2 S; i = 1 . . . kg. Since S is

a Hamiltonian path, G0 is a valid ordinary linear genome with k chromosomes of the form w(i)y(i) S x(i)z(i).

To prove that G0 maximizes H(�), we need to show it contains every adjacency with g = 1 and no adjacency

with g < 0. Indeed (suppressing the copy index i for clarity), the only adjacencies a with g(a) = 1 are

fwh; ytg‚ fxh; ztg (jDaj = jGaj = 1) and parallel edges in G (jDaj = 2‚ jGaj = 0), one copy of which must be

included in S. All other adjacencies in G0 have jDaj = 1‚ jGaj = 0 and g(a) = 0. We conclude that G0 is part of

an optimal scenario with k duplications.

Conversely, suppose there is an optimal scenario O� with at most k duplications and let ~G be the last

ordinary genome in O�. Let G0 = fajg(a) > 0g be a genome that minimizes the SCJD distance according to

Theorem 4. First, notice that G0 is indeed a linear genome. Otherwise, a circular chromosome of adjacencies

with g(a) = 1 would imply a strongly connected component without the vertices x‚ y, contradicting the

strong connectivity of G. It follows that G0 � ~G, H(G0) = H(~G), and #c
~G � k.

Since S(i) and S(j) for i 6¼ j contain different genes, an adjacency between a gene in S(i) and a gene S(j)

has negative g. Therefore, ~G contains no such adjacencies. Since ~G has at most k linear chromosomes, it

must contain exactly k linear chromosomes, each containing all the genes of S(i) for one i.

Let C = w(1)y(1) . . . x(1)z(1) be the linear chromosome in ~G that contains all the genes of S(1). Define an

edge set S in G by taking for each adjacency f(u(1))h; (v(1))tg 2 Cnff(w(1))h; (y(1))tg‚ f(x(1))h; (z(1))tgg the

edge (u‚ v). Since C is an ordinary linear chromosome containing all the genes of S(1), S is a Hamiltonian

path in G from y to x. -

6. DISCUSSION

In this article, we presented the SCJD rearrangement model, which allows the operations, cut, join, and

whole chromosome duplication. We analyzed the problem of finding the minimum number of SCJD

operations that transform an ordinary linear genome into a duplicated linear genome and provided a linear

time algorithm for it. Furthermore, we showed that this algorithm gives an optimal scenario with a

maximum number of duplications and that finding one with fewest duplications is NP-hard.

In the analysis, we focused on the SCJD sorting problem, which restricts the target genome to have

exactly two copies of each gene. However, it is not difficult to generalize our algorithm to address the more

general situation where each gene in the target genome has at most two copies. One can show that in this

case too, an optimal solution in which all duplications are consecutive exists. In addition, each adjacency in

the original genome between a gene that has two copies and a gene that has one copy in the target genome

must first be cut. This is true because duplications are defined over linear chromosomes in which every

gene is unduplicated.

SORTING BY CUTS, JOINS, AND WHOLE CHROMOSOME DUPLICATIONS 135

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Our algorithm relies on the property that all duplications in the optimal solution can be clustered (Corollary

2). In this sense, the problem we study is similar to the SCJ Guided Genome Halving problem (Feijão and

Meidanis, 2011). In that model, the whole genome is duplicated at once, while in ours, there is one duplication

per chromosome, and accounting for these duplications is part of the optimization challenge.

Many aspects in the analysis of the SCJD model require further research: How can we address the

problem if there are more than two copies of each gene? Can we find the SCJD distance between two

arbitrary genomes—each containing single copy and multiple copy genes? How does removing the re-

quirement of linearity affect various SCJD problems? Moreover, duplications may be defined differently,

for example, tandem duplications (Bader, 2009) and segmental duplications (Shao et al., 2013). Finally,

developing a rigorous model that will allow both duplications and deletions is needed to analyze the full

complexity of real biological data such as cancer samples.

ACKNOWLEDGMENTS

This study was supported by the Israeli Science Foundation (Grant No. 317/13) and the Dotan Hemato-

Oncology Research Center at Tel Aviv University. R.Z. was supported, in part, by fellowships from the

Edmond J. Safra Center for Bioinformatics at Tel Aviv University and from the Israeli Center of Research

Excellence (I-CORE) Gene Regulation in Complex Human Disease (Center No 41/11).

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bader, M. 2009. Sorting by reversals, block interchanges, tandem duplications, and deletions. BMC Bioinformatics 10

(Suppl 1), S9.

Bader, M. 2010. Genome rearrangements with duplications. BMC Bioinformatics 11 (Suppl 1), S27.

Bayani, J., Selvarajah, S., Maire, G., et al. 2007. Genomic mechanisms and measurement of structural and numerical

instability in cancer cells. Semin. Cancer Biol. 170, 5–18.

Bergeron, A., Mixtacki, J., and Stoye, J. 2006. A unifying view of genome rearrangements, 163–173. In Bücher, P., and

Moret, B.M.E., eds. Algorithms in Bioinformatics, volume 4175 of Lecture Notes in Computer Science. Springer:

Berlin, Heidelberg.

Biller, P., Feijão, P., and Meidanis, J. 2013. Rearrangement-based phylogeny using the Single-Cut-or-Join operation.

IEEE/ACM Trans. Comput. Biol. Bioinform. 100, 122–134.

Blanc, G., Barakat, A., Guyot, R., et al. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant

Cell 120, 1093–1101.

Bulteau, L., Fertin, G., and Rusu, I. 2012. Sorting by transpositions is difficult. SIAM J. Discrete Math. 26, 1148–1180.

Caprara, A. 1997. Sorting by reversals is difficult, 75–83. In Proceedings of the First Annual International Conference

on Computational Molecular Biology (RECOMB). ACM: New York, New York.

Christie, D.A. 1996. Sorting permutations by block-interchanges. Inform. Process. Lett. 60, 165–169.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al. 2001. Introduction to Algorithms, volume 2. MIT press, Cambridge.

Dias, Z., and Meidanis, J. 2001. Genome rearrangements distance by fusion, fission, and transposition is easy, 250. In

International Symposium on String Processing and Information Retrieval. IEEE Computer Society.

Feijão, P., and Meidanis, J. 2011. SCJ: A breakpoint-like distance that simplifies several rearrangement problems.

IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1318–1329.

Fertin, G., Labarre, A., Rusu, I., et al. 2009. Combinatorics of Genome Rearrangements. MIT Press: Cambridge, MA.

Gordon, D.J., Resio, B., and Pellman, D. 2012. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189.

Giam, M., and Rancati, G. 2015. Aneuploidy and chromosomal instability in cancer: A jackpot to chaos. Cell Div. 10, 3.

Hannenhalli, S. 1996. Polynomial-time algorithm for computing translocation distance between genomes. Discrete

Appl. Math. 71, 137–151.

Hannenhalli, S., and Pevzner, P.A. 1995. Transforming cabbage into turnip, 178–189. In Proceedings of the Twenty-

Seventh Annual ACM Symposium on Theory of Computing (STOC), volume 46. New York, New York.

Ková�c, J. 2014. On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21, 1–15.

136 ZEIRA AND SHAMIR

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Lu, C.L., Huang, Y.L., Wang, T.C., et al. 2006. Analysis of circular genome rearrangement by fusions, fissions and

block-interchanges. BMC Bioinformatics 7, 295.

Mira, C.V.G., and Meidanis, J. 2007. Sorting by block-interchanges and signed reversals. ITNG 7, 670–676.

Ozery-Flato, M., and Shamir, R. 2009. Sorting cancer karyotypes by elementary operations. J. Comput. Biol. 16, 1445–1460.

Plesnik, J. 1979. The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two.

Inform. Process. Lett. 8, 199–201.

Savard, O.T., Gagnon, Y., Bertrand, D., et al. 2011. Genome halving and double distance with losses. J. Comput. Biol.

18, 1185–1199.

Shao, M., and Lin, Y. 2012. Approximating the edit distance for genomes with duplicate genes under DCJ, insertion

and deletion. BMC Bioinformatics 13 (Suppl 19), S13.

Shao, M., Lin, Y., and Moret, B. 2013. Sorting genomes with rearrangements and segmental duplications through

trajectory graphs. BMC Bioinformatics 14 (Suppl 15), S9.

Shao, M., Lin, Y., and Moret, B. 2014. An exact algorithm to compute the DCJ distance for genomes with duplicate

genes, 280–292. In Sharan, R., ed. Research in Computational Molecular Biology, volume 8394 of Lecture Notes in

Computer Science. Springer: Berlin, Heidelberg.

Tannier, E., Zheng, C., and Sankoff, D. 2009. Multichromosomal median and halving problems under different

genomic distances. BMC Bioinformatics 10, 120.

Warren, R., and Sankoff, D. 2011. Genome aliquoting revisited. J. Comput. Biol. 18, 1065–1075.

Yancopoulos, S., Attie, O., and Friedberg, R. 2005. Efficient sorting of genomic permutations by translocation,

inversion and block interchange. Bioinformatics 21, 3340–3346.

Zeira, R., and Shamir, R. 2015. Sorting by cuts, joins and whole chromosome duplications, 396–409. In Proceedings of

the 26th Annual Symposium on Combinatorial Pattern Matching. Springer.

Address correspondence to:

Mr. Ron Zeira

Tel Aviv University

Schreiber 011

Tel-Aviv 69978

Israel

E-mail: ronzeira@post.tau.ac.il

SORTING BY CUTS, JOINS, AND WHOLE CHROMOSOME DUPLICATIONS 137

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Chapter 3

A Linear-Time Algorithm for the

Copy Number Transformation

Problem

48

A Linear-Time Algorithm for the Copy

Number Transformation Problem

RON ZEIRA,1,* MEIRAV ZEHAVI,2,* and RON SHAMIR1

ABSTRACT

Problems of genome rearrangement are central in both evolution and cancer. Most evolu-
tionary scenarios have been studied under the assumption that the genome contains a single
copy of each gene. In contrast, tumor genomes undergo deletions and duplications, and
thus, the number of copies of genes varies. The number of copies of each segment along a
chromosome is called its copy number profile (CNP). Understanding CNP changes can assist
in predicting disease progression and treatment. To date, questions related to distances
between CNPs gained little scientific attention. Here we focus on the following fundamental
problem, introduced by Schwarz et al.: given two CNPs, u and v, compute the minimum
number of operations transforming u into v, where the edit operations are segmental deletions
and amplifications. We establish the computational complexity of this problem, showing that
it is solvable in linear time and constant space.

Keywords: copy number, edit distance, genome rearrangement.

1. INTRODUCTION

The genome of a species evolves by undergoing small and large mutations over generations. Large

mutations modify genome organization by rearrangement of genomic segments. Computational analysis

of the process of genome rearrangement has been the subject of extensive research over the last two decades

(Fertin et al., 2009). The majority of these studies to date were restricted to a single copy of each gene and

were concerned with the reordering of segments. Extant models that do not make this assumption often result

in NP-hard problems (Tannier et al., 2009; Savard et al., 2011; Shao and Lin, 2012).

While most work on genome rearrangements to date was done in the context of species evolution, there

is today great opportunity in analysis of cancer genome evolution. Cancer is a dynamic process charac-

terized by the rapid accumulation of somatic mutations, which produce complex tumor genomes. Species

evolution happens over eons and changes are carried over from one generation to the next. In contrast,

cancer evolution happens within a single individual over a few decades. In many tumor genomes, a lot of

the changes are segmental deletions and amplifications (The Cancer Genome Atlas Research Network,

2011). As a result, the number of copies of each segment along a chromosome, known as its copy number

profile (CNP), changes during cancer development, compared to the normal genome that has two copies

1Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
2Department of Informatics, University of Bergen, Bergen, Norway.
*These authors contributed equally to this work.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 24, Number 12, 2017

Mary Ann Liebert, Inc.

Pp. 1179–1194

DOI: 10.1089/cmb.2017.0060

1179

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

(or alleles) for each segment. Understanding these changes can assist in predicting disease progression and

the outcome of medical interventions. However, computational questions related to distances between

CNPs received little scientific attention to date. Such questions are the topic of this article.

Over the years, a variety of methods were used to determine the CNP of a cancer genome, at different

resolutions. G-banding allows viewing the chromosome bands (Pinkel et al., 1986). Fluoroscent In Situ

Hybridization (FISH) measures the copy numbers of tens to hundreds of targeted genes (Chowdhury et al.,

2014). Array comparative genomic hybridization gives a higher resolution of CN estimation for a cell

population (Urban et al., 2006). Most recently, deep sequencing techniques yield CNPs by using read depth

data (Oesper et al., 2012). While it would have been preferable to analyze the genome (karyotype) itself

and not its CNP, detection of structural variations from sequencing data is still problematic (McPherson

et al., 2012; Abo et al., 2014). Today it is a routine procedure to obtain detailed CNPs of cancer genomes,

but utilizing them to understand cancer evolution is still an open problem.

Given two CNPs, the healthy tissue’s and the tumor’s, evaluating the distance between them can help in

understanding cancer progression. A naive measure of distance is the Euclidean distance between the two

profiles (Schwarz et al., 2014). Chowdhury et al. defined edit distance between CNPs obtained from FISH,

where the edit operations are amplification or deletion of single genes, single chromosomes, or the whole

genome (Chowdhury et al., 2013, 2014, 2015). However, calculating these distances requires exponential

time in the number of genes and therefore is limited to low-resolution FISH data. The TuMult algorithm

uses the number of breakpoints (loci where the CNs change) between two profiles as a simple distance

measure (Letouzé et al., 2010).

Schwartz et al. introduced a model that admits amplification and deletion of contiguous segments

(Schwarz et al., 2014). The edit distance between two CNPs was defined as the minimum number of

segmental deletions and duplications over all separations of the profiles into two alleles (a procedure known

as phasing). Their algorithm MEDICC for computing the edit distance uses finite-state transducers (FSTs)

(Mohri, 2003) to model the profiles and efficiently compute the distance. However, the complexity of this

method was not analyzed. Even without the phasing computation, the method needs to compose a three-

state transducer with itself B times, resulting in a transducer with 3B states (Mohri, 2004; Schwarz et al.,

2014). Here, B is the maximum CN in the input. The running time of FST procedures relies on the number

of states and transitions, and in some cases may be exponential (Mohri, 2003, 2004).

1.1. Copy number transformation

We investigate the following problem, which underlies the model of Schwarz et al. (2014): Given two

CNPs, u and v, compute the minimum number of segmental duplications and deletions needed to transform

u into v. We call this problem the Copy Number Transformation Problem (CNTP). A CNP is represented by

a vector of non-negative integers (the number of copies of each segment). A segmental deletion (ampli-

fication) decreases (resp. increases) by 1 the values of a contiguous interval of the vector, where zero values

are not affected. Formal definitions are given in Section 2.

1.2. Our contribution

We show that the CNTP is solvable in linear time and constant space. The algorithm relies on several

properties of the problem that we establish in Section 3.1, which may also be relevant to the analysis of

other problems involving CNPs. By exploiting these properties, we obtain a pseudopolynomial dynamic

programming algorithm for CNTP, presented in Section 3.2. In Section 3.3, by establishing that a certain

function in the dynamic programming recursion is piecewise linear, we improve its performance and obtain

our main result, namely, a linear-time algorithm for CNTP.

Preliminary version of this article appeared in the proceedings of CPM 2016 (Shamir et al., 2016).

2. PRELIMINARIES

In this section, we give definitions and notations that are used throughout the article. Let n 2 N. A CNP

is a vector V = (v1‚ v2‚ . . . ‚ vn), where vi 2 N [f0g. Each position in V corresponds to a segment in the

normal genome, where the segments are ordered as in the normal genome. For simplicity we call a position

a gene. A CN operation (CNO) is a triple c = (‘‚ h‚ w), where 1 � ‘ � h � n and w 2 f - 1‚ 1g. We say that

1180 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

a CNO c = (‘‚ h‚ - 1) is a deletion and c = (‘‚ h‚ 1) is an amplification. Given a CNP V = (v1‚ v2‚ . . . ‚ vn)

and a CNO c = (‘‚ h‚ w), we define the operation c(V) = (c(v1)‚ c(v2)‚ . . . ‚ c(vn)) as follows. For each

i 2 f1‚ 2‚ . . . ‚ ng, if ‘ � i � h and vi � 1, then c(vi) = vi + w, otherwise (i.e., if i < ‘ or i > h or vi = 0)

c(vi) = vi. A triple c = (‘‚ h‚ w) with h < ‘ has no effect on the CNP, that is, c(V) = V . Given two CNPs,

S = (s1‚ s2‚ . . . ‚ sn) (source) and T = (t1‚ t2‚ . . . ‚ tn) (target), a CN transformation (CNT) is a vector C =
(c1‚ c2‚ . . . ‚ cm), where m 2 N and each ci = (‘i‚ hi‚ wi) is a CNO, such that C(S) = cm(cm - 1(� � � (c1(S)))) = T .

The size of C, denoted jCj, is m. An example is given in Figure 1. Finally, we denote the number of

operations of weight w 2 f - 1‚ 1g affecting si by op(C‚ w‚ i) = jf(‘‚ h‚ w) 2 C : ‘ � i � hgj. For example, in

Figure 1, op(C‚ - 1‚ 2) = 1.

The CN distance from S to T, dist(S‚ T), is the smallest size of a CNT C that satisfies C(S) = T , where if

no such CNT exists, dist(S‚ T) =1. Note that dist is not symmetric. For example, for S = (1) and T = (0),

dist(S‚ T) = 1 but dist(T‚ S) =1. Given two CNPs, S = (s1‚ s2‚ . . . ‚ sn) and T = (t1‚ t2‚ . . . ‚ tn), the CNTP

seeks dist(S‚ T) (if one exists). We say that a CNT C is optimal if it realizes dist(S‚ T)‚ that is,

jCj = dist(S‚ T) (there may exist several optimal CNTs). We let B = maxfmaxn
i = 1fsig‚ maxn

i = 1ftigg denote

the maximum CN in the input. Finally, for all 1 � i � n, we define ui = si - ti.

3. AN ALGORITHM FOR CNTP

We first present an O(nB2)-time and O(B)-space algorithm for CNTP, based on dynamic programming

(Sections 3.1 and 3.2). Recall that B is the maximal integer in the input, so that algorithm is pseudopo-

lynomial. Then, we modify this algorithm to run in linear time (Section 3.3). On a high level, the modi-

fication is based on the observation that the table used by the algorithm to store values of partial solutions

can be described by O(n) piecewise linear functions, where each function encapsulates O(B) entries of the

table. We show that each function has only three linear segments, and so, the computation of an entry can

be performed in time O(1) rather than O(B). Furthermore, since each function can be represented in a

compact manner, the size of table shrinks from O(nB) to O(n). The precise definitions of the table and the

functions are given in Sections 3.2 and 3.3. Our proof of the correctness of the use of these functions

requires a somewhat extensive case analysis that is presented separately in Section 3.4.

3.1. Key propositions

We start by developing DpCntpAlg, an O(nB2)-time dynamic programming algorithm for CNTP. Let

(S = (s1‚ s2‚ . . . ‚ sn)‚ T = (t1‚ t2‚ . . . ‚ tn)) be the input. Observe that there exists a CNT C such that C(S) = T

if and only if there does not exist an index 1 � i � n such that si = 0 and ti > 0. Since the existence of such

an index can be determined in linear time (where, if such an index is found, we return1), we will assume

that dist(S‚ T) <1. To simplify the presentation, we further assume w.l.o.g. that t1‚ tn 6¼ 0. Indeed, if t1 = 0

or tn = 0, we can solve the input (S¢ = (1‚ s1‚ s2‚ . . . ‚ sn‚ 1)‚ T ¢ = (1‚ t1‚ t2‚ . . . ‚ tn‚ 1)) instead, since it holds

that dist(S‚ T) = dist(S¢‚ T ¢). Finally, we assume w.l.o.g. for all 1 � i � n, si > 0. Indeed, if there exists

1 � i � n such that si = 0, then also ti = 0, and we can solve the input (S¢ = (s1‚ . . . ‚ si - 1‚ si + 1‚ . . . ‚

sn)‚ T ¢ = (t1 . . . ‚ ti - 1‚ ti + 1‚ . . . ‚ tn)) since dist(S‚ T) = dist(S¢‚ T ¢).
DpCntpAlg exploits four key observations about the nature of the problem at hand, summarized as

follows: (1) it is sufficient to examine CNTs where all of the deletions precede all of the amplifications; (2)

FIG. 1. The CNT C = (c1‚ c2‚ c3) transforms

S into T. The size of C is 3. Red (dotted) and green

(solid) blocks indicate deletions and amplifica-

tions, respectively. CNT, CN transformation.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1181

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

it is sufficient to examine CNTs that do not contain both a deletion that affects si but not si + 1 and a deletion

that affects si + 1 but not si, and the same is true for amplifications; (3) when seeking an optimal solution, it

is not necessary to store information indicating how many deletions/amplifications affect si if ti = 0; and

(4) the maximum number of deletions/amplifications that affect each si can be bounded by B.

To formally state the first observation, we need the following definition.

Definition 1. A CNT C = (c1‚ c2‚ . . . ‚ cm) is ordered if for all 1 � i < j � m, if cj is a deletion, then ci

is also a deletion.

Proposition 1. There exists an optimal ordered CNT.

We note that the ‘‘opposite’’ proposition, stating that there exists an optimal CNT where all of the

amplifications precede all of the deletions, does not hold: consider, for example, S = (1‚ 1‚ 1‚ 1‚ 1) and

T = (2‚ 0‚ 2‚ 0‚ 2). To prove this proposition, we will need the following claim.

Claim 1. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal CNT and let i be an index such that ci = (‘i‚ hi‚ 1) and

ci + 1 = (‘i + 1‚ hi + 1‚ - 1). Then, there exists an optimal CNT C¢ = (c1‚ . . . ‚ ci - 1‚ ci¢‚ c¢i + 1‚ ci + 2‚ . . . ‚ cm), where

c¢i = (‘¢i‚ h¢i‚ w¢i) and c¢i + 1 = (‘¢i + 1‚ h¢i + 1‚ w¢i + 1), such that one of the following conditions holds.

1. (h¢i - ‘¢i) + (h¢i + 1 - ‘¢i + 1) < (hi - ‘i) + (hi + 1 - ‘i + 1).

2. (h¢i - ‘¢i) + (h¢i + 1 - ‘¢i + 1) = (hi - ‘i) + (hi + 1 - ‘i + 1) and w¢i = - 1.

Proof. Consider the following exhaustive case analysis (Fig. 2). -

I. hi < ‘i + 1 or hi + 1 < ‘i: In this case, the segments corresponding to ci and ci + 1 are disjoint. Thus, we

can simply define ci¢ = ci + 1 and c¢i + 1 = ci. Then, Condition 2 is satisfied.

II. ‘i � ‘i + 1 � hi � hi + 1: Define ci¢ = (hi + 1‚ hi + 1‚ - 1) and c¢i + 1 = (‘i‚ ‘i + 1 - 1‚ 1). For any CNP

V = (v1‚ v2‚ . . . ‚ vn), c¢i + 1(c¢i(V)) = ci + 1(ci(V)). This argument holds because an application of ci, fol-

lowed by an application of ci + 1, does not change any entry vk such that ‘i + 1 � k � hi. We have that

C¢(S) = T . Since jC¢j = jCj, C¢ is an optimal CNT. Now, Condition 1 is satisfied.

III. ‘i + 1 � ‘i � hi + 1 � hi: Define ci¢ = (‘i + 1‚ ‘i - 1‚ - 1) and c¢i + 1 = (hi + 1 + 1‚ hi‚ 1). As in the second case,

we obtain an optimal CNT that satisfies Condition 1.

IV. ‘i � ‘i + 1 � hi + 1 � hi: Define ci¢ = (‘i‚ ‘i + 1 - 1‚ 1) and c¢i + 1 = (hi + 1 + 1‚ hi‚ 1). As in the second case,

we obtain an optimal CNT that satisfies Condition 1.

V. ‘i + 1 � ‘i � hi � hi + 1: Define ci¢ = (‘i + 1‚ ‘i - 1‚ - 1) and c¢i + 1 = (hi + 1‚ hi + 1‚ - 1). As in the second

case, we obtain an optimal CNT that satisfies Condition 1.

As we show below, Claim 1 implies the existence of an ordered optimal CNT. In each of the cases in

Claim 1, a local change is made in the CNT. Note, however, that just performing enough local operations

does not guarantee reaching an ordered optimal CNT. For example, in a CNT with three consecutive CNOs,

ci = (‘i‚ hi‚ 1)‚ ci + 1 = (‘i + 1‚ hi + 1‚ 1)‚ ci + 2 = (‘i + 2‚ hi + 2‚ - 1), one may loop between changing ci + 1 into a

deletion and then into an amplification.

Proof (Proof of Proposition 1). Let C be the set of optimal CNTs, and suppose, by way of contradiction,

that it does not contain an ordered CNT. The three following phases sieve some solutions out of C.
Informally, we initially consider only optimal CNTs that minimize the sum of the sizes of the segments

corresponding to their CNOs (C1); then, we further consider only the CNTs whose first amplification is as

late as possible (C2); finally, we only take the CNTs whose first deletion after their first amplification is as

early as possible (C3). An illustration is given in Figure 3.

FIG. 2. The proof of Claim 1. The green (solid)

lines correspond to ci, and the red (dotted) lines

correspond to ci + 1.

1182 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

� Given C = (c1‚ c2‚ . . . ‚ cm) 2 C, define x(C) =
Pm

i = 1 (hi - ‘i). Let C1 be the set of every C 2 C for which

there does not exist C¢ 2 C such that x(C) > x(C¢).
� Given C = (c1‚ c2‚ . . . ‚ cm) 2 C1, let y(C) be the largest index 0 � i � m such that for all 1 � j � i, cj is

a deletion. Note that y(C) = 0 if and only if c1 is an amplification. Let C2 be the set of every C 2 C1 for

which there does not exist C¢ 2 C1 such that y(C) < y(C¢).
� Given C = (c1‚ c2‚ . . . ‚ cm) 2 C2, let z(C) be the smallest index i 2 fy(C) + 1‚ . . . ‚ mg such that ci is a

deletion. By the definition of y(C) and since C is not ordered, we have that z(C) is well defined and

z(C) � y(C) + 2. Let C3 be the set of every C 2 C2 for which there does not exist C¢ 2 C2 such that

z(C) > z(C¢).

Since C 6¼ ;, we have that C3 6¼ ;. Thus, we can let C = (c1‚ c2‚ . . . ‚ cm) be a solution in C3. Let i be the

smallest index such that ci is an amplification and ci + 1 is a deletion. Now, consider the conditions in Claim

1: if Condition 1 holds, we have a contradiction to the fact that C 2 C1, while if Condition 2 holds, we have

a contradiction either to the fact that C 2 C2 (if i = 1 or ci - 1 is a deletion) or to the fact that C 2 C3

(otherwise). Thus, we conclude that C contains an ordered CNT.

Definition 2. A CNT C is elongated if for all 1 � i < n and w 2 f - 1‚ 1g,

minfop(C‚ w‚ i)‚ op(C‚ w‚ i + 1)g = jf(‘‚ h‚ w) 2 C : ‘ � i‚ i + 1 � hgj:

Equivalently, C is elongated if no two amplifications (or deletions) ‘‘dovetail,’’ that is, one ending at

i and the other starting at i + 1. It is clear that for any CNT C, the inequality � holds above (since

f(‘‚ h‚ w) 2 C : ‘ � i‚ i + 1 � hg is a subset of both f(‘‚ h‚ w) 2 C : ‘ � i � hg and f(‘‚ h‚ w) 2 C :
‘ � i + 1 � hg). Our second key proposition implies the inequality � holds as well. An example for an

elongated CNT is given in Figure 4A.

To prove Proposition 2, we will need the following claim.

FIG. 3. The proof of Proposition 1.

A

B

FIG. 4. (A) Elongated and nonelongated CNTs. (B) A

zero-skipping solution. The top lines indicate the range

of deletions.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1183

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Claim 2. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal ordered CNT, and let 1 � i < j � m be indices such that

either both ci and cj are deletions or both ci and cj are amplifications. Then, the CNT C¢ obtained from C by

swapping the locations of ci and cj is also an optimal ordered CNT.

Proof. Clearly, C¢ is ordered and jC¢j = jCj. Thus, it is sufficient to show that C¢(S) = C(S). Observe

that because C is ordered, for any 1 � q � n, the value of the qst CN in C(S) is x + y, where

x = maxfsq - op(C‚ - 1‚ q)‚ 0g, y = 0 if x = 0, and y = op(C‚ 1‚ q) otherwise. By the definition of C¢ (which is

also ordered and contains the same CNOs as C), this is also the value of the qst CN in C¢(S). -
We are now ready to show the following property.

Proposition 2. Every ordered optimal CNT is elongated.

Proof. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal ordered CNT. Suppose that, by way of contradiction, C is

not elongated. Thus, there exist 1 � i < n and w 2 f - 1‚ 1g such that

minfop(C‚ w‚ i)‚ op(C‚ w‚ i + 1)g > jf(‘‚ h‚ w) 2 C : ‘ � i‚ i + 1 � hgj:

Therefore, C contains two CNOs cp = (‘p‚ hp‚ w) and cq = (‘q‚ hq‚ w) such that hp = i and ‘q = i + 1. By

Claim 2, we can assume that p = q + 1. Now, by removing cp and replacing cq by the CNO c = (‘p‚ hq‚ w), we

obtain a CNT C¢ such that C¢(S) = T . However, jC¢j < jCj, which contradicts the optimality of C. -
To formalize our third key proposition, we need the following definition.

Definition 3. A CNT C is zero-skipping if for every 1 � i < j � n such that for all i < r � j‚ tr = 0

we have

op(C‚ - 1‚ j) = max max
j

r = i + 1
fsrg‚ op(C‚ - 1‚ i)

� �
‚ and op(C‚ 1‚ j) = op(C‚ 1‚ i):

In words, for a block of consecutive zeros in the target profile, all deletions that span the block also

include its flanking positions. An example of a zero-skipping CNT is given in Figure 4B.

Proposition 3. There exists an optimal ordered zero-skipping CNT.

Proof. By Proposition 1, there is an optimal ordered CNT C = (c1‚ c2‚ . . . ‚ cm). If C is zero-skipping, we

are done, and thus we next suppose that it does not. Thus, there exists 1 � i < j � n such that tr = 0 for all

i < r � j, for which at least one of the following conditions is satisfied. -

1. op(C‚ - 1‚ j) 6¼ maxfmax
j
r = i + 1fsrg‚ op(C‚ - 1‚ i)g.

2. op(C‚ 1‚ j) 6¼ op(C‚ 1‚ i).

We can assume w.l.o.g. that j is the smallest index that is larger than i for which at least one of the above

conditions is satisfied. Thus, at least one of the following conditions is satisfied.

1. op(C‚ - 1‚ j) 6¼ maxfsj‚ op(C‚ - 1‚ j - 1)g.
2. op(C‚ 1‚ j) 6¼ op(C‚ 1‚ j - 1).

Since tj = 0, jf(‘‚ h‚ - 1) 2 C : ‘ � j � hgj � sj. Moreover, because C is ordered and tj = 0, we can re-

place each CNO c = (‘‚ h‚ w) in C such that h = j - 1 by the CNO c¢ = (‘‚ j‚ w). Thus, we overall obtain an

optimal ordered CNT C¢, such that, if it is not zero-skipping (in which case we are done), at least one of the

following conditions is satisfied.

1. op(C‚ - 1‚ j) > maxfsj‚ op(C‚ - 1‚ j - 1)g.
2. op(C‚ 1‚ j) > op(C‚ 1‚ j - 1).

Since C¢ is ordered and tj = 0, we can choose a CNO c = (‘‚ h‚ w) in C¢ such that ‘ = j, as well as w = - 1 if the

first condition is satisfied and w = 1 otherwise, and replace it by the CNO c¢ = (j + 1‚ h‚ w). This operation results in

an optimal ordered CNT. By repeating it enough times, we obtain an optimal ordered CNT that is zero-skipping.-
For a position with positive target value, knowing the number of deletions that affected it uniquely

determines the number of amplifications that affected it. This simple fact will help the efficiency of our

procedures. Formally:

1184 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Observation 1. Let 1 � i � n be an index such that ti > 0, and let C = (c1‚ c2‚ . . . ‚ cm) be a CNT such

that C(S) = T. Then, op(C‚ 1‚ i) = - ui + op(C‚ - 1‚ i).

Finally, we formalize our fourth key proposition.

Definition 4. A CNT C is bounded if for all 1 � i � n and every w 2 f - 1‚ 1g, we have

op(C‚ w‚ i) � B.

Proposition 4. Every optimal ordered CNT that is zero-skipping is also bounded.

Proof. Let C be an optimal ordered CNT that is zero-skipping. Suppose, by way of contradiction, that C

is not bounded. That is, there exists 1 � i � n and w 2 f - 1‚ 1g such that op(C‚ w‚ i) > B. First suppose

that ti > 0. Then, since C is ordered and C(S) = T , we have that w = 1. However, this contradicts the

correctness of Observation 1. Thus, we can next suppose that ti = 0, which also implies that i > 1. We also

assume w.l.o.g. that i is the smallest index such that op(C‚ w‚ i) > B. Therefore, at least one of the

following conditions is satisfied.

1. op(C‚ - 1‚ j) > maxfsj‚ op(C‚ - 1‚ j - 1)g.
2. op(C‚ 1‚ j) > op(C‚ 1‚ j - 1).

Thus, we necessarily obtain a contradiction to the fact that C is zero-skipping. -

3.2. An O(nB2)-time algorithm for CNTP

On a high-level, the dynamic programming algorithm works as follows. It considers increasing prefixes

Si = (s1‚ s2‚ . . . ‚ si) and Ti = (t1‚ t2‚ . . . ‚ ti) of the input. It computes a table M having n(B + 1) entries where

M[i‚ d] is the best value of a solution on (Si‚ Ti) that uses exactly d deletions that affect the ith position. The

parameter d ranges between zero and B, and the values for each i are computed based on values M[j‚�] for a

single specific j < i. In particular, at each point of time, only two rows of the table M are stored. By

Propositions 1–4, the algorithm considers only ordered, elongated, zero-skipping and bounded solutions.

We call such solutions good.

More formally, given 1 � i � n and 0 � d � B, we say that a CNT C is an (i‚ d)-CNT if C(Si) = Ti,

d = op(C‚ - 1‚ i), and C is good. We say that an (i‚ d)-CNT C is optimal if there is no (i‚ d)-CNT C¢ such

that jC¢j < jCj. Our goal will be to ensure that each entry M[i‚ d] stores the size of an optimal (i‚ d)-CNT,

where if no such CNT exists, it stores 1. We do not compute entries M[i‚ d] such that ti = 0; indeed, by

relying on Property 3, we are able to skip such entries (although our recursive formula does consider CNs si

referring to indices i such that ti = 0). In this context, observe that any ordered CNT C such that C(S) = T

consists of at least ui deletions that affect si, and if ti > 0, it cannot consist of more than si - 1 such deletions

(since after decreasing si to 0, it remains 0). Moreover, if ui � d < si, there exists an (i‚ d)-CNT—by

independently adjusting the value of each position < i to its target position and the value at position i with d

deletions, using operations of span 1.

Observation 2. Given 1 � i � n such that ti > 0 and 0 � d � B, there exists an (i‚ d)-CNT if and only if

ui � d < si.

In case si < ti, Observation 2 states that there exists an (i‚ d)-CNT if and only if d < si. In light of this

observation, we will use the following assumption.

Assumption 1. In the computation below, we assume that maxfui‚ 0g � d < si. Entries M[i‚ d] for which

it is not true that maxfui‚ 0g � d < si store 1.

By Observation 1, if a solution involved d deletions at position i with ti > 0, then it involved - ui + d

amplifications at that position. For convenience denote that number by a(i‚ d) = - ui + d for all 1 � i � n

satisfying ti > 0 and maxfui‚ 0g � d < si, and a(i‚ d) =1 otherwise.

For input profiles S‚ T , the algorithm precomputes two vectors. Given an index 1 < i � n such that ti > 0,

let prev(i) denote the largest index j < i such that tj > 0. Moreover, if prev(i) = i - 1, let Qi = 0, and otherwise

let Qi = maxprev(i)<j<ifsjg. A zero-skipping solution (Fig. 5) will skip the positions between i and prev(i) in the

computation, but will make sure to perform at least Qi deletions spanning the skipped positions.

Initialization: The initialization step sets all entries M[1‚ d] as follows.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1185

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

M[1‚ d])d + a(1‚ d):

Recursion: If ti = 0 position i is skipped. Suppose that i > 1, ti > 0, and maxfui‚ 0g � d < si. The order

of the computation is determined by the first argument. The computation is summarized in the following

formula and illustrated in Figure 5.

M[i‚ d]) min
0�d¢�B

fM[prev(i)‚ d¢] + maxfd - d¢‚ 0g

+ maxfa(i‚ d) - a(prev(i)‚ d¢)‚ 0g + maxfQi - maxfd‚ d¢g‚ 0gg
(1)

Roughly speaking, to compute M[i‚ d] we look back to the previous nonzero position in T, and for each

value d¢ in that position add the difference from d if needed, the number of amplifications to be added if

needed, and the number of additional deletions if such are needed to take care of the zero positions that

were skipped. After filling the table M, DpCntpAlg returns min0�d�B M[n‚ d]. The full algorithm is given

in Algorithm 1. An example of a partially filled table is given in Figure 6.

Algorithm 1: DpCntpAlg

Input: S, T, Q, prev

Output: dist(S, T)

for d = 1, ., B do

M[1, d]) d + a(1, d)

end for

for i = 2, ., n, ti > 0 do

for d = 0, ., B do

if max{ui, 0} £ d < si then

M[i,d]) min0£d ¢£B{M[prev(i), d ¢] + max{d – d ¢, 0} + max{a(i, d) - a(prev(i), d ¢), 0}

else

M[i, d]) N
end if

end for

end for

return min0£d£B M[n, d]

FIG. 5. Zero-skipping in the recursive formula. T has a maxi-

mal block of zeros between positions prev(i) and i, S has values 2

and 3, respectively, in these positions and a maximum value 4

within the interval of genes, attained at position Qi. d¢ deletions

can be elongated from prev(i) up to position i. d - d¢ deletions can

be extended forward up to position i and backward to position

prev(i) + 1. In addition, Qi - d additional deletions are needed to

delete Qi.

FIG. 6. The DP M[i‚ d] matrix for the two CNPs in Figure 4B.

1186 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Correctness: First, we claim that the entries of the table M are computed properly.

Lemma 1. For all 1 � i � n such that ti > 0 and for all 0 � d � B, M[i‚ d] stores the size of an optimal

(i‚ d)-CNT, where if no such CNT exists, it stores N.

Proof. We prove the lemma by induction on the order of the computation. -
The correctness of the initialization step follows from the definition of an (i‚ d)-CNT and Observation 1.

Now, fix 1 < i � n such that ti > 0, and fix maxfui‚ 0g � d < si. Let m be the size of an optimal (i‚ d)-

CNT. Suppose that the lemma is correct for all i¢ < i and 0 � d¢ � B. We need to show that M[i‚ d] = m.

First Direction: First, we show that M[i‚ d] � m. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal (i‚ d)-CNT, and

for all 1 � j � m, denote cj = (‘j‚ hj‚ wj). For all 1 � j � m, let c¢j = (‘j‚ minfhj‚ prev(i)g‚ wj). Now, define

C¢ = (c¢1‚ c¢2‚ . . . ‚ c¢m). We further let Ĉ = (ĉ1‚ ĉ2‚ . . . ‚ ĉq) denote the CNT obtained from C¢ by removing all

of the CNOs c = (‘‚ h‚ w) such that h < ‘. Denote d̂ = op(Ĉ‚ - 1‚ prev(i)). Observe that d̂ � B and that Ĉ is a

(prev(i)‚ d̂)-CNT (because C is an (i‚ d)-CNT). Therefore, by the induction hypothesis, M[prev(i)‚ d̂] � q

(recall that q = jĈj). If prev(i) = i - 1, then Qi = 0 and since C is ordered and elongated, by Observation 1 we

have that m - q = maxfd - d̂‚ 0g + maxfa(i‚ d) - a(prev(i)‚ d̂)‚ 0g. Thus, by the recursive formula, in this

case we get that M[i‚ d] � m.

Now, suppose that prev(i) < i - 1. Then, since C is ordered and zero-skipping, and by the definition of

Qi, the two following conditions hold.

1. op(C‚ - 1‚ i - 1) = maxfQi‚ op(C‚ - 1‚ prev(i))g.
2. op(C‚ 1‚ i - 1) = op(C‚ 1‚ prev(i)).

Thus, since C is ordered and elongated, by Observation 1 we have that m - q = maxfd - d̂‚ 0g + maxfa(i‚ d) -
a(prev(i)‚ d̂)‚ 0g + maxfQi - maxfd‚ d̂g‚ 0g. Again, by the recursive formula, this implies that M[i‚ d] � m.

Second Direction: Next, we show that M[i‚ d] � m. To this end, it is sufficient to show that there exists an

(i‚ d)-CNT C such that M[i‚ d] � jCj. Let d̂ be an argument d¢ at which the value computed by using the re-

cursive formula is minimized. By the inductive hypothesis, there exists a (prev(i)‚ d̂)-CNT Ĉ = (ĉ1‚ ĉ2‚ . . . ‚ ĉq)

such that M[prev(i)‚ d̂] � q. For all 1 � j � q, denote ĉj = (‘j‚ hj‚ wj). Now, if prev(i) = i - 1, define eC = Ĉ, else

define eC as follows. For all 1 � j � q, let ~cj = (‘j‚ eh‚ wj), where eh = hj if hj < prev(i) and eh = i - 1 otherwise. LeteC = (~c1‚ ~c2‚ . . . ‚ ~cq). Moreover, as long as there exists prev(i) < j < i such that op(eC‚ - 1‚ j) < sj, choose the

smallest such j, and append to the beginning of eC the CNO (j‚ i - 1‚ - 1). Let C¢ be the CNT obtained at the end

of this process. Denote C¢ = (c¢1‚ c¢2‚ . . . ‚ c¢r), and for all 1 � j � r, denote c¢j = (‘¢j‚ h¢j‚ w¢j). Now, let p and q be the

number of deletions and amplifications in C¢ whose segments include i - 1, respectively. If p < d, append to the

beginning of C¢ d - p ‘‘dummy’’ deletions of the form (i‚ i - 1‚ - 1), and if a(i‚ d) < q, append to the end of C¢
a(i‚ d) - q ‘‘dummy’’ amplifications of the form (i‚ i - 1‚ 1). Let C† = (c†1‚ c†2‚ . . . ‚ c†k) be the resulting CNT, and

for all 1 � j � k, denote c†j = (‘†j‚ h†j‚ w†j). Finally, we define C as follows. Let D (A) be a set of exactly d deletions

(resp. amplifications) in C† whose second argument is i - 1. We let C be defined as C†, except that each CNO

(‘‚ h‚ w) 2 D [A is replaced by the CNO (‘‚ i‚ w). It is straightforward to verify that C is an (i‚ d)-CNT such

that jCj = q + maxfd - d̂‚ 0g + maxfa(i‚ d) - a(prev(i)‚ d̂)‚ 0g + maxfQi - maxfd‚ d̂g‚ 0g, which concludes

the correctness of the second direction.

Now, we turn to consider the correctness and running time of DpCntpAlg.

Theorem 1. DpCntpAlg solves CNTP in time O(nB2) and space O(B).

Proof. The table M contains O(nB) entries, and each entry can be computed in time O(B). Therefore, the

time complexity of DpCntpAlg is bounded by O(nB2). Moreover, for the computation of M[i‚ �], it is

only necessary to keep O(B) entries for position prev(i), and therefore, the space complexity is bounded by

O(B). Since every (n‚ d)-CNT C satisfies C(S) = T , and since for every good optimal CNT C, there exists

0 � d � B such that C is an (n‚ d)-CNT, we have that Lemma 1 implies that DpCntpAlg returns the

smallest size of a good optimal CNT (if such a CNT exists). By Propositions 1–4, such a CNT indeed

exists, and therefore DpCntpAlg solves CNTP. -

3.3. A linear-time algorithm for CNTP

In this section we show how to modify DpCntpAlg to obtain an algorithm, called LinearCntpAlg, that

solves CNTP in linear time. The central lemma that leads to this improvement states that each column in

the table M can be described by a piecewise linear function of at most three segments.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1187

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

To present this lemma, we need the following notation. For all i 2 f1‚ 2‚ . . . ‚ ng such that ti > 0, let

dmin
i = maxfui‚ 0g and dmax

i = maxfsi - 1‚ 0g be the least and largest values of d for which M[i‚ d] is finite.

Now, the function fi : fdmin
i ‚ . . . ‚ dmax

i g ! N [f0g will satisfy fi(d) = M[i‚ d]. Observe that the function fi is

discrete. We stress that in this section, we do not explicitly compute the entries of M—the definition of the

functions concerns the values that would have been stored in these entries if they were computed by using

DpCntpAlg.

Lemma 2. For each i 2 f1‚ 2‚ . . . ‚ ng such that ti > 0, there exist basei‚ ai‚ bi 2 N [f0g such that for

all d 2 fdmin
i ‚ . . . ‚ dmax

i g:

fi(d) =
basei if dmin

i � d � ai

(basei - ai) + d if ai � d � bi

(basei - ai - bi) + 2d if bi � d � dmax
i

8<
:

Moreover, base1‚ a1 and b1 can be computed in constant time, and for each i 2 f2‚ 3‚ . . . ‚ ng such that

ti > 0, given baseprev(i)‚ aprev(i) and bprev(i), basei‚ ai and bi can be computed in constant time.

An example is given in Figure 7. The proof is based on Lemma 1 and on an exhaustive case analysis,

which, for the sake of clarity of presentation, is handled separately in Section 3.4.

Our algorithm, LinearCntpAlg, performs the following computation, using PiecewiseAlg, an

algorithm that computes basei, ai, and bi in constant time. That algorithm is described in the next sub-

section.

We are now ready to prove our main result.

Algorithm 2: LinearCntpAlg

Input: S, T, Q, prev

Output: dist(S, T)

base0) 0; a0) 0; b0) 0.

for i = 1,.,n, ti > 0 do

basei; ai, bi) PiecewiseAlg(si, ti, Qi, baseprev(i), aprev(i), bprev(i)).

end for

return basen

Theorem 2. LinearCntpAlg solves CNTP in time O(n) and space O(1).

Proof. According to Lemma 2, fi(d) = M[i‚ d] is a piecewise linear function described by three values:

basei, ai and bi. Lemma 2 shows that PiecewiseAlg calculates these values in constant time and space

given the previous values. The time and space complexity of LinearCntpAlg follow directly. -

FIG. 7. An example of the piecewise linear

function fi(d) described in Lemma 2. The number

of segments is three but can be smaller, depending

on the values involved.

1188 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Now, by the correctness of DpCntpAlg, it is sufficient to prove that LinearCntpAlg returns the

value min0�d�B M[n‚ d]. By Observation 2, min0�d�B M[n‚ d] = mindmin
n �d�dmax

n
M[n‚ d]. By Lemma 2, we

further have that mindmin
n �d�dmax

n
M[n‚ d] = basen. Thus, by the inductive proof of Lemma 2, we conclude that

LinearCntpAlg solves CNTP. -

3.4. Case analysis

This section is to prove the correctness of Lemma 2. That is, we want to show that fi(d) is a piecewise

linear function described by three parameters, and these parameters can be calculated in constant time. To

this end, let j = prev(i) and Ri = uj - ui. Accordingly, the term a(i‚ d) - a(j‚ d¢) can be written as Ri + d - d¢.
Moreover, let d¢opt be the argument d¢ that minimizes the recursive formula we use to compute M[i‚ d] under

certain conditions that will be clear from context.

We prove Lemma 2 by induction on i. To simplify the proof, let a0 = b0 = base0 = 0 and f0(d) = 2d for

every 0 � d � B. This definition is equivalent to adding the new entries s0 = t0 = B + 1 (which do not affect

the distance from S to T), and thus, it can serve as the basis of our induction. Next, suppose that Lemma 2

holds for j = prev(i) < i, we will prove that it holds for i.

The proof is based on an exhaustive case analysis that examines the position of Qi relative to dmin
j , aj,

bj, and dmax
j , as well as the sign of Ri. For example, Case 2(a)ii is defined by the conditions

dmin
j � Qi � aj, Ri � 0, and aj - Ri � Qi. In each case, we analyze the behavior of M[i‚ d] as we increase

d. More precisely, we examine several intervals that together contain all of the values that can be

assigned to d. For example, in the abovementioned case, we consider the intervals d � aj - Rj,

aj - Rj � d � Qi, and Qi � d. For each interval, we let d¢opt be an argument d¢ that minimizes M[i‚ d]

under the conditions of the examined case. These conditions along with d¢opt allow us to remove

the minimization and maximization functions from the formula defining M[i‚ d], and thus, we obtain

fi(d). In the latter example, if d � aj - Rj we can choose d¢opt = aj and get fi(d) = M[i‚ d] = M[j‚ aj] +
maxfd - aj‚ 0g + maxfRi + d - aj‚ 0g + maxfQi - maxfd‚ ajg‚ 0gg = basej. As a corollary of the analysis,

we get that indeed fi(d) is piecewise linear, and that ai, bi, and basei can be calculated in constant time

given aj, bj, basej, Ri, and Qi.

The full case analysis is given in the Appendix. The analysis shows that in all cases, fi(d) is indeed

a piecewise linear function with at most three linear segments defined by some ai, bi, and basei. After

applying straightforward operations that reorganize the analysis (to present the results in a compact

manner), we obtain the algorithm PiecewiseAlg, whose pseudocode is given below. This algorithm

performs the iterative step of LinearCntpAlg, that is, it calculates ai, bi, basei given aj, bj, basej, and Qi

in constant time and space.

PiecewiseAlg first calculates Ri‚ dmin
i and dmax

i based on si and ti. Next, according to the sign of Ri and

the relative position of Qi in comparison to the previous aj and bj, the algorithm calculates the structure of

fi(d) defined by ai and bi. Finally, since fi(d) is defined only for the range dmin
i � d � dmax

i , we calculate

basei = fi(d
min
i). Similarly, we limit the values of ai and bi to that range.

Algorithm 3: PiecewiseAlg

Input: si‚ ti‚ Qi‚ aj‚ bj‚ basej

Output: ai‚ bi‚ basei

Ri)uj - ui

dmin
i) maxfui‚ 0g

dmax
i) maxfsi - 1‚ 0g

ai) minfmaxfaj‚ Qig‚ bj - minfRi‚ 0gg- maxfRi‚ 0g
bi) maxfQi‚ bj - minfRi‚ 0gg

basei)basej + maxfQi - aj‚ 0g +
0 if dmin

i � ai

dmin
i - ai if ai < dmin

i � bi

2dmin
i - ai - bi if bi < dmin

i � dmax
i

8<
:

ai) maxfdmin
i ‚ minfai‚ dmax

i gg; bi) maxfai‚ minfbi‚ dmax
i gg

return basei‚ ai‚ bi

A LINEAR-TIME ALGORITHM FOR THE CNTP 1189

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

4. CONCLUSION

In this article, we introduced the study of distances between CNPs from a theoretical point of view. We

focused on one fundamental problem, CNTP, and showed that it is solvable in linear time and constant

space. To this end, we proved several properties of CNTP that may be useful in solving other problems

involving CNPs. Our algorithm can be modified to return a transformation that realizes dist(S‚ T) in linear

time and linear space by backtracking the dynamic programming vector. We have implemented the algorithm

as well as a linear programming formulation of CNTP, and the implementations are available on request.

Many computational and combinatorial aspects in the analysis of distances between CNPs require further

research. Indeed, this article can be viewed as a first step toward understanding them. In our follow-up

article by El-Kebir et al. (2016), we investigated a generalization of CNTP where the input is a set of

profiles, and one seeks to construct a tree with the profile labels at the leaves and additional profile labeling

of internal nodes that minimizes the transformation distances along the edges. We showed this problem is

NP-hard and gave an Integer Linear Programming (ILP) formulation to solve it. Additional directions for

further research involve the introduction of edit operations other than basic segmental deletions and ampli-

fications, dealing with phasing of the profiles, as well as the handling of noise.

ACKNOWLEDGMENTS

We thank the referees for many helpful comments. This study was supported by the Israeli Science

Foundation (grant 317/13), the Israel Cancer Association, and the Dotan Hemato-Oncology Research

Center at Tel Aviv University. R.Z. was supported by fellowships from the Edmond J. Safra Center for

Bioinformatics at Tel Aviv University and from the Israeli Center of Research Excellence (I-CORE) Gene

Regulation in Complex Human Disease (Center No 41/11). M.Z. was supported by a fellowship from the

I-CORE in Algorithms and the Simons Institute for the Theory of Computing in Berkeley and by the

Postdoctoral Fellowship for Women of Israel’s Council for Higher Education.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Abo, R.P., Ducar, M., Garcia, E.P., et al. 2015. BreaKmer: Detection of structural variation in targeted massively

parallel sequencing data using kmers. Nucleic Acids Res. 18; 43(3):e19.

Chowdhury, S.A., Gertz, E.M., Wangsa, D., et al. 2015. Inferring models of multiscale copy number evolution for

single-tumor phylogenetics. Bioinformatics 31, i258–i267.

Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., et al. 2013. Phylogenetic analysis of multiprobe fluores-

cence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198.

Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., et al. 2014. Algorithms to model single gene, single chro-

mosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput. Biol. 10, e1003740.

El-Kebir, M., Raphael, B.J., Shamir, R., et al. 2016. Copy-Number Evolution Problems: Complexity and Algorithms,

pages 137–149. Springer International Publishing, Cham.

Fertin, G., Labarre, A., Rusu, I., et al. 2009. Combinatorics of Genome Rearrangements. MIT Press, Cambridge, MA.

Letouzé, E., Allory, Y., Bollet, M.A., et al. 2010. Analysis of the copy number profiles of several tumor samples from

the same patient reveals the successive steps in tumorigenesis. Genome Biol. 11, R76.

McPherson, A., Wu, C., Wyatt, A.W., et al. 2012. nFuse: Discovery of complex genomic rearrangements in cancer

using high-throughput sequencing. Genome Res. 22, 2250–2261.

Mohri, M. 2003. Edit-distance of weighted automata: General definitions and algorithms. Int. J. Found. Comput. Sci.

14, 957–982.

Mohri, M. 2004. Weighted finite-state transducer algorithms. An overview. In Formal Languages and Applications. pp.

551–563. Springer, Berlin-Heidelberg.

Oesper, L., Ritz, A., Aerni, S.J., et al. 2012. Reconstructing cancer genomes from paired-end sequencing data. BMC

Bioinformatics 13 Suppl 6, S10.

1190 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Pinkel, D., Straume, T., and Gray, J.W. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence

hybridization. Proc. Natl Acad. Sci. U. S. A. 83, 2934–2938.

Savard, O.T., Gagnon, Y., Bertrand, D., et al. 2011. Genome halving and double distance with losses. J. Comput. Biol.

18, 1185–1199.

Schwarz, R.F., Trinh, A., Sipos, B., et al. 2014. Phylogenetic quantification of intra-tumour heterogeneity. PLoS

Comput. Biol. 10, e1003535.

Shamir, R., Zehavi, M., and Zeira, R. 2016. A linear-time algorithm for the copy number transformation problem. In

Grossi, R., and Lewenstein, M., eds, 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016),

volume 54 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany.

Shao, M., and Lin, Y. 2012. Approximating the edit distance for genomes with duplicate genes under DCJ, insertion

and deletion. BMC Bioinformatics 13, S13.

Tannier, E., Zheng, C., and Sankoff, D. 2009. Multichromosomal median and halving problems under different

genomic distances. BMC Bioinformatics 10, 120.

The Cancer Genome Atlas Research Network. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615.

Urban, A.E., Korbel, J.O., Selzer, R., et al. 2006. High-resolution mapping of DNA copy alterations in human

chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl Acad. Sci. U. S. A. 103, 4534–4539.

Address correspondence to:

Ron Zeira

Blavatnik School of Computer Science

Tel-Aviv University

Tel-Aviv 69978

Israel

E-mail: ronzeira@post.tau.ac.il

5. APPENDIX

5.1. Detailed case analysis

In this appendix, we present the details of the case analysis outlined in Section 3.4. We analyze the

behavior of M[i‚ d] as we increase d. We assume, by induction, that fj(d) is a piecewise linear function with

parameters aj‚ bj and basej for j = prev(i). Then, we examine several intervals that together contain all of the

values that can be assigned to d. For each interval, we let d¢opt be an argument d¢ that minimizes M[i‚ d]

under the conditions of the examined case. Finally, we obtain the behavior of fi(d) in each interval, which is

the behavior of the form we desire (i.e., fi(d) is a piecewise linear function defined by three segments).

Denote maxfQi - maxfd‚ d¢g‚ 0g as arg3.

1. Qi � dmin
j (then‚ arg3 = 0):

(a) Ri � 0:

i. d � aj - Ri:

d¢opt = aj : fi(d) = basej.

ii. aj - Ri � d � bj:

d¢opt = d : fi(d) = basej + Ri - aj + d.

iii. bj � d � dmax
j :

d¢opt = d : fi(d) = basej + Ri - aj - bj + 2d.

iv. dmax
j � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

(b) Ri � 0:

i. d � aj + Ri:

d¢opt = aj : fi(d) = basej.

ii. aj + Ri � d � aj + Ri:

d¢opt = d : fi(d) = basej.

iii. aj � d � bj:

d¢opt = d : fi(d) = basej - aj + d.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1191

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

iv. bj � d � bj - Ri:

d¢opt = bj : fi(d) = basej - aj + d.

v. bj - Ri � d � dmax
j - Ri:

d¢opt = bj : fi(d) = basej + Ri - aj - bj + 2d.

vi. dmax
j - Ri � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

2. dmin
j � Qi � aj:

(a) Ri � 0:

i. Qi � aj - Ri : arg3 = 0 and the analysis is the same as in Case 1a.

ii. aj - Ri � Qi:

A. d � aj - Ri:

d¢opt = aj : fi(d) = basej.

B. aj - Ri � d � Qi:

d¢opt = aj : fi(d) = basej + Ri - aj + d.

C. Qi � d : arg3 = 0 and the rest of the analysis is the same as in Case 1a.

(b) Ri � 0:

i. Qi � aj + Ri : arg3 = 0 and the analysis is the same as in Case 1b.

ii. aj + Ri � Qi:

A. d � aj + Ri:

d¢opt = aj : fi(d) = basej.

B. aj + Ri � d � Qi:

d¢opt = aj : fi(d) = basej.

C. Qi � d : arg3 = 0 and the rest of the analysis is the same as in Case 1b.

3. aj � Qi � bj:

(a) Ri � 0:

i. d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. aj - Ri � d � Qi - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

iii. Qi - Ri � d � Qi:

d¢opt = d + Ri : fi(d) = basej + Ri - aj + d.

iv. Qi � d � bj:

d¢opt = d : fi(d) = basej + Ri - aj + d.

v. bj � d � dmax
j :

d¢opt = d : fi(d) = basej + Ri - aj - bj + 2d.

vi. dmax
j � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

(b) Ri � 0:

i. d � aj:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. Qi � aj - Ri:

A. aj � d � Qi:

d¢opt = d : fi(d) = basej + Qi - aj.

B. Qi � d � aj - Ri:

d¢opt = d : fi(d) = basej - aj + d.

iii. aj - Ri � Qi:

A. aj � d � aj - Ri:

d¢opt = d : fi(d) = basej + Qi - aj.

B. aj - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi - aj.

iv. Qi � d � bj:

d¢opt = d : fi(d) = basej - aj + d.

1192 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

v. bj � d � bj - Ri:

d¢opt = bj : fi(d) = basej - aj + d.

vi. bj - Ri � d � dmax
j - Ri:

d¢opt = bj : fi(d) = basej + Ri - aj - bj + 2d.

vii. dmax
j - Ri � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

4. bj � Qi � dmax
j :

(a) Ri � 0:

i. d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. Qi - Ri � aj:

A. aj - Ri � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � Qi - Ri:

d¢opt = bj : fi(d) = basej + Qi + Ri - aj - bj + d.

C. Qi - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi + Ri - aj - bj + d.

iii. aj � Qi - Ri � bj:

A. aj - Ri � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � Qi - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi + Ri - aj - bj + d.

C. Qi - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi + Ri - aj - bj + d.

iv. bj � Qi - Ri:

A. aj - Ri � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � Qi - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi + Ri - aj - bj + d.

C. Qi - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi + Ri - aj - bj + d.

v. Qi � d:

d¢opt = Qi : fi(d) = basej + Ri - aj - bj + 2d.

(b) Ri � 0:

i. d � aj:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. Qi � aj - Ri:

A. aj � d � Qi:

d¢opt = aj : fi(d) = basej + Qi - aj.

B. Qi � d � aj - Ri:

d¢opt = aj : fi(d) = basej - aj + d.

C. aj - Ri � d � bj - Ri:

d¢opt = aj : fi(d) = basej - aj + d.

D. bj - Ri � d � Qi - Ri:

d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

iii. aj - Ri � Qi � bj - Ri:

A. aj � d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

B. aj - Ri � d � Qi:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

C. Qi � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej - aj + d.

D. bj - Ri � d � Qi - Ri: d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

A LINEAR-TIME ALGORITHM FOR THE CNTP 1193

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

iv. bj - Ri � Qi:

A. aj � d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj

B. aj - Ri � d � bj - Ri:

d¢opt = p + Ri : fi(d) = basej + Qi - aj.

C. bj - Ri � d � Qi:

d¢opt = bj : fi(d) = basej + Mi + Qi - aj - bj + d.

D. Qi � d � Qi - Ri:

d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

v. Qi - Ri � d:

d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

5. dmax
j � Qi:

(a) Ri � 0:

i. Qi - Ri � dmax
j : The analysis is the same as in Case 4a for d � dmax

j .

A. dmax
j � d � Qi:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

ii. Qi - Ri � dmax
j :

A. d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � dmax
j - Ri:

d¢opt = d + Ri : fi(d) = basej + Mi + Qi - aj - bj + d.

C. dmax
j - Ri � d � dmax

j :

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

D. dmax
j � d � Qi - Ri:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

E. Qi - Ri � d � Qi:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

iii. Qi � d:

d¢opt = dmax
j : fi(d) = basej + Mi - aj - bj + 2d.

(b) Ri � 0:

i. The analysis of the cases obtained by adding the constraints defining Cases 4(b)ii, 4(b)iii, and

4(b)iv is similar.

ii. dmax
j � Qi � dmax

j - Ri:

A. d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

B. aj - Ri � d � bj - Ri:

d¢opt = bj : fi(d) = basej + Qi - aj.

C. bj - Ri � d � dmax
j :

d¢opt = d : fi(d) = basej + Mi + Qi - aj - bj + d.

D. dmax
j � d � Qi:

d¢opt = d + Ri : fi(d) = basej + Mi + Qi - aj - bj + d.

E. Qi � d � dmax
j - Ri:

d¢opt = dmax
j + Ri : fi(d) = basej + Mi - aj - bj + 2d.

F. dmax
j - Ri � d:

d¢opt = dmax
j + Ri : fi(d) = basej + Mi - aj - bj + 2d.

iii. dmax
j - Ri � Qi:

A. For d � dmax
j , the analysis remains the same as in Case 5(b)ii.

B. dmax
j � d � dmax

j - Ri:

d¢opt = d + Ri : fi(d) = basej + Mi + Qi - aj - bj + d.

C. dmax
j - Ri � d � Qi:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

D. Qi � d:

d¢opt = dmax
j + Ri : fi(d) = basej + Mi - aj - bj + 2d.

1194 ZEIRA ET AL.

D
ow

nl
oa

de
d

by
 T

el
 A

vi
v

U
ni

v
Pa

ck
ag

e
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
7/

05
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Chapter 4

Sorting cancer karyotypes using

double-cut-and-joins, duplications

and deletions

65

Genome analysis

Sorting cancer karyotypes using double-cut-

and-joins, duplications and deletions

Ron Zeira* and Ron Shamir*

Blavatnik School of Computer Science, Tel Aviv university, Tel Aviv 6997801, Israel

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received and revised on March 15, 2018; editorial decision on April 27, 2018; accepted on May 2, 2018

Abstract

Motivation: Problems of genome rearrangement are central in both evolution and cancer

research. Most genome rearrangement models assume that the genome contains a single copy of

each gene and the only changes in the genome are structural, i.e. reordering of segments. In con-

trast, tumor genomes also undergo numerical changes such as deletions and duplications, and

thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging

task, addressed by few algorithms to date. More realistic models are needed to help trace genome

evolution during tumorigenesis.

Results: Here, we present a model for the evolution of genomes with multiple gene copies using

the operation types double-cut-and-joins, duplications and deletions. The events supported by the

model are reversals, translocations, tandem duplications, segmental deletions and chromosomal

amplifications and deletions, covering most types of structural and numerical changes observed in

tumor samples. Our goal is to find a series of operations of minimum length that transform one

karyotype into the other. We show that the problem is NP-hard and give an integer linear program-

ming formulation that solves the problem exactly under some mild assumptions. We test our

method on simulated genomes and on ovarian cancer genomes. Our study advances the state of

the art in two ways: It allows a broader set of operations than extant models, thus being more real-

istic and it is the first study attempting to re-construct the full sequence of structural and numerical

events during cancer evolution.

Availability and implementation: Code and data are available in https://github.com/Shamir-Lab/

Sorting-Cancer-Karyotypes.

Contact: ronzeira@post.tau.ac.il or rshamir@tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During cancer, the tumor genome rapidly accumulates somatic

mutations. While some mutations are small, affecting one or a few

bases, others are large-scale events. Here, we focus on the latter.

They include inversions, chromosomal translocations, tandem dupli-

cations, segmental deletions and whole chromosome amplifications

or losses (Vogelstein et al., 2013). Some cancer types are predomin-

ately characterized by these types of mutations (Ciriello et al.,

2013). Understanding these changes can assist in predicting disease

progression and the outcome of medical interventions (Fielding,

2010). For instance, early translocations and tandem duplications in

ovarian cancer were shown to contribute to drug sensitivity and clo-

nal expansion (Ng et al., 2012).

1.1 Aberration types and cancer genome data
The copy number (CN) of a genomic segment is the number of cop-

ies of the segment a genome contains. In a healthy diploid genome,

each segment has CN¼2. In a segmental deletion, a segment of the

DNA is deleted resulting in a genome with one less copy of the seg-

ment. In chromosomal deletion, an entire chromosome is deleted.

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2018, 1–8

doi: 10.1093/bioinformatics/bty381

Advance Access Publication Date: 3 May 2018

Original Paper

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

In a tandem duplication, a segment of a chromosome is duplicated

and inserted right after the original one. A chromosomal duplication

(or amplification) creates an additional copy of an entire chromo-

some. Overall, deletions and duplications can change both the struc-

ture and the CN of the genome.

Other aberrations change only the structure of the genome but

not its CNs. In an inversion (or reversal), a segment of a chromo-

some is reversed relative to its original orientation. In a transloca-

tion, two chromosomes exchange ends segments.

Given the germline genome G and the tumor genome T, a break-

point is a position between two bases that are consecutive in G but

not in T. Inversions and translocations introduce two breakpoints,

segmental deletions and tandem duplications introduce one break-

point and chromosomal duplications/deletions introduce no

breakpoints.

The primary source of data for cancer genome analysis today is

deep sequencing. It allows inference of CN changes based on read

depth (Ding et al., 2014), and facilitates inferring breakpoints in the

genome, detecting structural variants and identifying rearrange-

ments (Korbel et al., 2007). If the mapped locations of the two ends

of a paired-end read do not match the read length, the read is called

discordant and suggests a breakpoint in the genome. The location

and orientation of such discordant reads can help detect the type of

event (Abo et al., 2015). Accurate re-construction of the numerical

and structural variations from deep sequencing data remain a chal-

lenge, and a myriad of computational methods have been devised

for this task (Ding et al., 2014).

1.2 Genome rearrangement models
Over the past two decades, many genome rearrangement models

were studied. The classical model seeks a shortest sequence of inver-

sions and translocations that transform one genome into another

(Hannenhalli and Pevzner, 1996, 1999). Such a sequence is called a

sorting scenario. Later, a simpler model based on double-cut-and-

join (DCJ) was proposed. In a DCJ, the genome is cut in two loca-

tions and the four loose ends are re-connected as two pairs. This

model can represent both inversions and translocations (Bergeron

et al., 2006; Yancopoulos et al., 2005). Feij~ao and Meidanis (2011)

provided a simpler model called single-cut-or-join (SCoJ), in which

every operation either cuts the genome or joins two loose ends.

These DCJ and SCoJ models assumed a single copy of each genomic

segment and no operation that alters CN. Extant models with mul-

tiple segment copies often result in NP-hard problems (Shao and

Lin, 2012; Tannier et al., 2009). Some rearrangement models as-

sume that a breakpoint cannot be used twice in a sorting scenario

(Pevzner and Tesler, 2003).

Several models have addressed multiple copies along with other

operation types. Some allow insertions or deletions of genomic

segments along with DCJs, but only for non-duplicated segments

(da Silva et al., 2012). For sorting multiple copy genomes using

DCJs only, both an exact integer linear program (ILP) and an

approximation have been given (Shao et al., 2015; Shao and Lin,

2012). Bader (2010) provided a heuristic for sorting by DCJs,

duplications and deletions. Shao and Moret (2015) devised an ILP

for sorting genomes with multiple copies via DCJs and certain type

of segmental duplications. Zeira and Shamir (2017) gave a linear

algorithm for sorting with SCoJs and chromosomal duplications on

genomes with at most two copies. Ozery-Flato and Shamir (2009)

studied a model with certain duplications, deletions and SCoJs and

provided a three-approximation algorithm that performed well on

cancer genomes.

Several models attempted to introduce CN-modifying opera-

tions. Chowdhury et al. (2014) defined an edit distance between CN

profiles obtained from FISH, where the edit operations are amplifi-

cation or deletion of single genes, single chromosomes, or the whole

genome. However, these methods are tailored to FISH data with a

limited number of genes. Schwarz et al. (2014) introduced a model

that allows amplifications and deletions of contiguous segments. A

linear time algorithm for this edit distance was later given (Zeira

et al., 2017). However, all these models consider only CN modifica-

tions but not structural rearrangements.

1.3 Graph models for tumor rearrangements
Graph theory contributed remarkably to the area of genomic

rearrangements. Breakpoint graphs are widely used for representa-

tion and analysis of rearranged genomes in evolution (Bafna and

Pvezner, 1996; Hannenhalli and Pevzner, 1995b) and in cancer

genomes (Raphael et al., 2003). Greenman et al. (2012) created

models that expanded the breakpoint graph and they used them in

order to infer some order over tumor mutations.

Oesper et al. (2012) further expanded the breakpoint graph with

a structure called the interval adjacency graph, which represents

breakpoints, discordant reads and CN information. Their method,

called PREGO, uses the number of reads supporting each edge to re-

solve the CN of genomic segments and identify discordant adjacen-

cies in the tumor genome. Decomposition of this graph into a set of

paths corresponds to a set of chromosomes. PREGO was shown to

efficiently identify complex rearrangement in ovarian cancer

sequencing data. Eitan and Shamir (2017) expanded this model and

tested it in extensive simulations and on real cancer data.

1.4 Our contribution
We propose here a model for the structural and numerical changes

that a genome with multiple segmental copies undergoes. The

allowed operations are DCJs, tandem duplications, segmental dele-

tions and whole chromosome duplications and deletions. This model

encompasses many of the common aberrations in cancer, and does

not preclude breakpoint reuse. However, we restrict both duplica-

tions and deletions to simple paths that include at most one copy of

each segment. Similarly to Oesper et al. (2012), genomes are repre-

sented by the CN of each segment and the adjacencies between

them. Our goal is to find a shortest series of operations that trans-

form one genome into the other, e.g. a normal genome to an

observed tumor genome. Unlike most models, we focus here on find-

ing the actual sequence of events. We show that the problem is NP-

hard, give an ILP formulation for solving this problem and apply it

on simulated and ovarian tumor data. The algorithm is able to re-

solve the sequence of events for tumors of average complexity.

The study advances the state of the art in genome rearrangement

analysis in cancer in two ways: It allows a broader set of operations

than extant models, thus being more realistic and it is also the first

model attempting to re-construct the full sequence of structural and

numerical events during cancer evolution.

2 Materials and methods

In this section, we present our model and formulate an ILP to

solve it.

2.1 Notation
A genome contains a set G ¼ G� [T G of entities. G� is a set of n

genes, denoted 1; . . . ;n. Each gene g 2 G has two extremities, a head

2 R.Zeira and R.Shamir

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

gh and a tail gt. W.l.o.g., denote gt ¼ 2g and gh ¼ 2gþ 1 for every

g 2 G. T G is a set of special genes called telomeres. Each telomere

has only one extremity. Telomeres come in pairs distinguished as the

left telomere and the right telomere. A left telomere has only a head

and a right telomere has only a tail. The left and right telomeres cor-

respond to the start and end of chromosomes in the real genome.

The genes in G� are also called internal genes.

Denote by T the set of extremities corresponding to telomeres,

and by E� ¼ fgt; ghjg 2 G�g the set of extremities of internal genes.

The set of all extremities is denoted by E ¼ E� [T . Throughout, for

an extremity e we shall denote by g(e) the gene it belongs to.

A karyotype is represented by a pair K ¼ cn; adjð Þ. cn : G ! N is

a gene CN profile and adj : E � E ! N is an adjacency CN matrix,

such that 8e 2 E; cn g eð Þð Þ ¼
P

e02E adj e; e0ð Þ. Notice that adj is sym-

metric, and different copies of a gene or adjacency are

indistinguishable.

The karyotype graph of K is a weighted undirected graph G ¼
E;E;Wð Þ akin to the interval adjacency graph (Oesper et al., 2012;

Fig. 1). The edge set E ¼ EI [EA consists of interval edges EI and

adjacency edges EA. Interval edges Ei ¼ f gt; gh
� �

jg 2 G�; cn gð Þ > 0g
correspond to genes and adjacency edges Ei ¼ f u; vð Þju; v 2 E;
adj u; vð Þ > 0g correspond to adjacencies in the karyotype. The

weight W : E! N is defined as the CN of the edge, i.e.

W u; vð Þ ¼
cn gð Þ if u; vð Þ ¼ gt; gh

� �
2 EI

adj u; vð Þ if u; vð Þ 2 EA

(

Removing a copy of an existing edge (u, v) from G results in a new

graph in which the CN of (u, v) is lower by 1 and the edge is deleted

from the graph if its new CN is zero. Similarly, adding a copy of an

edge (u, v) to G results in a new graph G0 ¼ E;E0;W0ð Þ in which the

CN of the edge (u, v) increases by 1 if it exists in G, or adding the

new edge (u, v) with CN¼1.

An alternating path is a simple path in G in which odd edges are

interval edges and even edges are adjacency edges, or vise-versa.

A chromosome in a karyotype is an alternating path starting and

ending with telomeres. Note that a karyotype may be decomposable

into chromosomes in several ways.

2.2 Model
We now turn to define the possible operations that alter a karyotype

in our model (compare Fig. 1).

DCJ: A DCJ operation selects two adjacency edges a; bð Þ; c; dð Þ,
removes a copy of each from the graph and adds copies of new edges

by joining two loose ends, either a; cð Þ; b; dð Þ or a;dð Þ; b; cð Þ. In order

to support splitting of a chromosome and introducing additional

telomere copies, we also allow a special case of DCJ called Single-

cut-and-join (SCJ). SCJ cuts an existing adjacency (a, b) and con-

nects each loose end to a new telomere copy t1; t2 2 T . The result of

this SCJ is a; t1ð Þ; b; t2ð Þ, i.e. splitting the adjacency into two separate

chromosomes capped with new copies of telomeres t1, t2. Note that

SCJs create new telomere copies that may or may not be part of the

final karyotype. The identity of each ti can be arbitrary chosen.

Tandem duplication: Let v1; . . . ; v2m be an alternating path with-

out telomeres starting with an interval edge. A tandem duplication

adds edge copies for each edge in the path and adds another adjacency

edge copy v1; v2mð Þ. We call v1; v2m the anchors of the duplication. In

terms of the sequence, this operation corresponds to . . . g0

g1g2 . . . gm�1gmgmþ1 . . .! . . . g0g1g2 . . . gm�1gm g1g2 . . . gm�1gm

gmþ1 . . . where gi is the gene corresponding to node v2i�1.

Chromosome duplication: Let t0; v1; . . . ; v2m; t2mþ1 be an alter-

nating path such that t0; t2mþ1 are telomeric extremities and (v1, v2)

is an interval edge. A chromosome duplication adds edge copies for

each edge along the path and increases the CN of the two telomeres

by one.

Segmental deletion: Let v1; . . . ; v2m be an alternating path with-

out telomeres staring with an adjacency edge. A segmental deletion

removes edge copies for each edge along the path and adds an adja-

cency edge copy v1; v2mð Þ. We call v1; v2m the anchors of the dele-

tion. In terms of the sequence, this operation corresponds to . . . g0

g1g2 . . . gm�1gmgmþ1 . . .! . . . g0g1gm gmþ1

Chromosome deletion: This is a special case of segmental dele-

tion where v1 and v2m are telomeric nodes. We do not add the edge

v1; v2mð Þ and thus it corresponds to deleting an entire chromosome

with its telomeres.

The Karyotype Sorting Problem: The input is S, T, d, where

S ¼ s cn; s adjð Þ is a source karyotype, T ¼ t cn; t adjð Þ is a target

karyotype and d is an integer. Our goal is to find a shortest series of

� d operations transforming S into T, or declare that no such se-

quence exists. An example of a series of operations of length 11 is

given in Figure 3.

Notice that the sorting problem is not symmetric. Moreover,

there may be a sorting scenario from S to T, but not from T to S if,

for example, T has lost all copies of some segment in S. New mater-

ial can be gained in the model by duplications (tandem and chromo-

somal). Telomeres can also be gained by SCJs.

THEOREM 1. The karyotype sorting problem is NP-hard.

PROOF. Let G ¼ V;Eð Þ be a directed graph with n nodes in which

all in- and out-degrees are 2. Deciding if a such a graph contains a

Hamiltonian cycle is NP-hard (Ples�nIk, 1979). Let y;xð Þ 2 E be

some edge. Deciding if there is a Hamiltonian path from x to y in G

is still NP-hard. We assume w.l.o.g. that G is strongly connected,

since otherwise it would not contain a Hamiltonian path from x to

y. Notice that in that case G is also Eulerian.

We construct a source karyotype S as follows: for each node in

v 2 V we create a gene gv with CN¼2 and for each u; vð Þ 2 Enf y; xð Þg
we add one copy of the adjacency gh

u; g
t
v

� �
. In addition, we add two

genes w, z with CN¼1 and connect them with adjacencies wh; gt
x

� �
;

gh
y ; z

t
� �

of CN¼1. To make it a valid karyotype, we add a left and

Fig. 1. The effect of model operations on the karyotype graph. Solid edges:

interval edges; dotted edges: adjacencies; numbers on edges: CN; lightning

signs: breakpoints. The scribbled lines show the path affected by the oper-

ation. The sequences of genes corresponding to possible chromosomes are

shown below each graph, with each chromosome in a separate line. The

genes a,b,c,d correspond to the segments in the leftmost karyotype graph

from top to bottom.

Sorting cancer karyotypes 3

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

right telomeres t1, t2 and connect them to wt and zh, respectively.

In other words, S is a karyotype with a single chromosome

t1;w; x;Pe; y; z; t2, where Pe corresponds to some Eulerian path from x

to y in G. Our target karyotype T would be composed of n single gene

chromosomes of the form t1; gv; t2 and an additional chromosome

t1;w; z; t2. Namely, each gene will have CN¼1, for telomeres

CN¼nþ1, and the adjacencies would be of the form t1; g
t
v

� �
and

gt
v; t2

� �
for v 2 V plus t1;w

tð Þ; wh; zt
� �

; zh; t2

� �
. Notice that all

chromosome paths start and end with the same telomeres t1, t2. We will

show that there is a sorting scenario of S to T of length nþ1 if and only

if G admits a Hamiltonian path from x to y.

Suppose G contains a Hamiltonian path P ¼ x; v2; . . . ; vn�1; y.

To construct a sorting scenario, first perform n SCJs for each adja-

cency of the form gh
u; g

t
v

� �
that is not part of P, and connect them as

t1; g
t
v

� �
and gt

u; t2

� �
. Now, perform a segmental deletion of the path

gx; gv2
; . . . ; gvn�1

; gy connecting wh and zt. The total length of the

sorting scenario is nþ1.

For the other direction, suppose there is a sorting scenario with

nþ1 operations from S to T. Since each gene in T has CN¼1, the

scenario must contain at least one deletion. Notice that T has n add-

itional copies of the telomeres and the only way to increase the CN

of telomeres in the model is either by chromosome duplication or by

SCJ. However, each chromosome duplication would require add-

itional deletions to reduce the gene CN to 1 in T. We conclude that

the sorting scenario must contain n SCJs and one deletion covering

all genes gv. Since w and z are adjacent in T, the segmental deletion

must be anchored at wh and zt. Denote the path of this deletion

P ¼ gx; gv2
; . . . ; gvn�1

; gy. The corresponding path P0 ¼ x; v2; . . . ; vn�1

; y is a Hamiltonian path in G. h

2.3 ILP formulation
We present an ILP formulation for the karyotype sorting problem.

The formulation describes dþ1 karyotype graphs G0; . . . Gd corre-

sponding to the genome after each operation. G0 is set to S and

Gd ¼ T. The formulation guarantees that difference between con-

secutive graphs corresponds to one valid operation of the model.

2.3.1 Variables

We define integer variables for each Gk, as follows. For every k 2 0; d½ �
and every i 2 G let cnk

i 2 N be the variable for the CN of gene i after k

operations. By definition, cn0
i ¼ s cni and cnd

i ¼ t cni for every i 2 G.
Similarly, for every k 2 0;d½ � and every u; v 2 E let adjku;v be the

CN of a adjacency edge (u, v) after k operations. By definition,

adj0u;v ¼ s adju;v and adjdu;v ¼ t adju;v for every u; v 2 E.
Now, we define binary variables for each type of operation. For

every k 2 0; d½ � and every u; v 2 E let cutk
u;v 2 f0; 1g be an indicator

variable for cutting the interval adjacency between u and v in the

k’th operation. Similarly, joink
u;v is an indicator variable for joining

the two extremities u and v in the k’th operation. By convention, the

cut and join are not symmetric, in order to support cutting or joining

the same adjacency twice. An SCJ is a DCJ with one existing adja-

cency and an implicit adjacency of telomeres. To support SCJ opera-

tions, binary variables addTelkt1 ;t2
are introduced for every two

telomeres t1 � t2 2 T . addTelkt1 ;t2
¼ 1 means that new copies of

telomeres t1; t2 2 T are created.

For every k 2 0;d½ � and every u � v 2 E� let ampAnchk
u;v 2 f0;1g

be an indicator variable for a tandem duplication starting at u and end-

ing at v in the k’th operation. In addition, the variable ampAnchk
t1 ;t2

2 f0; 1g for t1 � t2 2 T indicates a chromosome amplification for the

chromosome starting and ending at telomeres t1 and t2, respectively. Let

ampGenek
i 2 f0; 1g be an indicator variable that gene i [i.e. the interval

edge it; ih
� �

] is a part of the duplicated segment, and let

ampAdjku;v 2 f0; 1g be an indicator variable that the adjacency

edge (u, v) is a part of the duplicated segment.

Similarly, for every k 2 0; d½ � and every u � v 2 E; delAnchk
u;v

2 f0; 1g is an indicator variable for a deletion starting at u and

ending at v in the k’th operation. delGenek
i 2 f0; 1g is an indicator

variable that gene i is a part of the deleted segment, and delAdjku;v
2 f0; 1g is an indicator variable that the adjacency edge (u, v) is a

part of the deleted segment.

2.3.2 Constraints

We now describe the ILP constraints for each stage 0 � k � d � 1.

We will describe constraints for each type of operation and general

constraints for updating the karyotype graph.

Updating the karyotypes: The CN of a non-telomeric gene i 2 G�

is increased by amplifications and decreased by deletions:

cnkþ1
i ¼ cnk

i þ ampGenek
i � delGenek

i

For telomeric gene i 2 T G with a corresponding extremity t 2 T ,

the CN can increase if new copies of the telomere are introduced via

SCJ. An SCJ can add either two copies of the same telomere or one

copy of two telomeres:

cnkþ1
i ¼ cnk

i þ ampGenek
i � delGenek

i þ 2addTelkt;t þ
X

t0 6¼t2T
addTelkt;t0

Updating adjacency CNs for internal nodes u 6¼ v 2 E�:

adjkþ1
u;v ¼ adjku;v þ ampAnchk

u;v þ ampAdjku;v þ delAnchk
u;v

�delAdjku;v � cutk
u;v � cutk

v;u þ joink
u;v þ joink

v;u (1)

In words, we increase the CN of the adjacency if it is either, the

anchor of a duplication, along the duplication path, the anchor of a

deletion or its ends are joined. The adjacency CN is decreased if it is

along a deletion path or it is cut. The cut and join variable can de-

crease or increase the CN by at most 2 if the same adjacency is used

twice in a DCJ.

Updating adjacency CN for loop edges (u, u) is similar to

Equation (1), but uses only single cutk
u;u; joink

u;u variables.

For telomere t 2 T and internal node v 2 E� we update the CN

as follows:

adjkþ1
t;v ¼ adjkt;v þ ampAdjkt;v þ delAnchk

t;v � delAdjkt;v

�cutk
t;v þ joink

t;v

In addition, we require that in each stage k there will be at most

one operation:

1

2

X
u;v2E

cutk
u;v þ

X
u� v2E�

ampAnchk
u;v þ

X
u� v2E

delAnchk
u;v

þ
X

t1 � t22T
ampAnchk

u;v � 1

DCJs: An adjacency cannot be cut more times than its CN.

Therefore, for every u 2 E; v 2 E and u 6¼ v:

cutk
u;v þ cutk

v;u � adjku;v

Similarly, for adjacencies of the form (u, u): cutk
u;u � adjku;u.

For each adjacency u 2 E, the number of cuts equals to the num-

ber of joins:X
v2E

cutk
u;v þ

X
v2E

cutk
v;u ¼

X
v2E

joink
u;v þ

X
v2E

joink
v;u

4 R.Zeira and R.Shamir

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

For every pair of telomeres t1 � t2 2 T , SCJ introduces an explicit

adjacency (t1, t2) which is cut immediately as part of a DCJ:

cutk
t1 ;t2
¼ addTelkt1 ;t2

In addition, if t1 < t2, set cutk
t2 ;t1
¼ 0. We also restrict that at

most one pair of telomere copies is introduced as an SCJ in every

stage: X
t1� t22T

addTelkt1 ;t2
� 1

Amplifications: A gene i 2 G cannot be amplified if it has

CN¼0:

ampGenek
i � cnk

i (2)

Similarly, an adjacency u; v 2 E can only be amplified if it has a

positive CN:

ampAdjku;v � adjku;v (3)

For every internal node u 2 E�, its corresponding gene is ampli-

fied if and only if one of its adjacencies is amplified or it is an anchor

of an amplification:

ampGenek
g uð Þ ¼

X
v2E�

ampAnchk
u;v þ

X
v2E

ampAdjku;v:

A telomere t 2 T can only be involved in whole chromosome

duplications. Therefore, the telomere is amplified iff it is an anchor

iff one of its adjacencies is amplified:

ampGenek
g tð Þ ¼

X
t02T

ampAnchk
t;t0 ¼

X
v2E�

ampAdjkt;v

Enforcing path connectivity: One problem with this formulation

is that in addition to the amplification path, we may get a collection

of disjoint cycles composed of alternating interval and adjacency

edges with their corresponding variables ampGenek
g uð Þ; ampAdjku;v

set to one. For example, consider S ¼ 1;1;2; 2 and

T ¼ 1;1; 1; 2;2;2. To get from S to T we need to do two tandem

duplications of the genes 1 and 2. However, according to the current

formulation, this can be done in one step by assigning

ampGene0
1 ¼ 1; ampGene0

2 ¼ 1; ampAnch0
1t ;1h ¼ 1; ampAdj02t ;2t ¼ 1.

To force the alternating path of the amplification to be connected,

we add flow-like constraints (Bruckner et al., 2010). Suppose q> r

are the anchors of the amplification and denote r as the sink. Each

node along the path from q to r (excluding r) will be as a source of

one unit of flow, and we require that all flow will eventually be

drained at r. This enforces the connectivity of the path.

Let �2 nþ 1ð Þ � f k
u;v � 2 nþ 1ð Þ be an integer variable for the

directed amount of flow from u 2 E to v 2 E. Let ampNodesk ¼ 2P
i2G ampGenek

i be an integer variable for the number nodes that are

amplified along the path. We seek ampNodesk � 1 source nodes,

each providing one unit of flow, and one sink that drains the

ampNodesk � 1 units of flow. Let sinkk
v ¼

P
u>v ampAnchk

v;u be a

binary variable indicating that v is a sink. We have the following

constraints:

The flow is anti-symmetric: f k
u;v ¼ �f k

v;u.

An edge can contain flow only if it is amplified: f k
u;v � 2 nþ 1ð Þ

ampAdjku;v if u, v are not from the same gene, and f k
u;v � 2 nþ 1ð Þ

ampGenek
i if u, v are nodes of gene i.

Production and conservation of flow in every node u 2 E:X
v

f k
u;v ¼ ampGenek

g uð Þ � ampNodesk � sinkk
u

By this constraint, if u is not part of an amplification path, we

have
P

v f k
u;v ¼ 0. If u is part of the amplification path, but not

the sink, we have
P

v f k
u;v ¼ 1, i.e. u adds one unit to the flow.

If u is part of the amplification path and the sink, we have
P

v f k
u;v ¼

1� ampNodesk and it drains all the flow.

Since the term ampNodesk � sinkk
u is not linear we introduce a

new non-negative integer variable productk
u such that productk

u ¼
ampNodesk � sinkk

u using the following constraints:

productk
u � ampNodesk

productk
u � 2 nþ 1ð Þ � sinkk

u

ampNodesk � 2 nþ 1ð Þ 1� sinkk
u

� �
� productk

u

If ampNodesk ¼ 0 or sinkk
u ¼ 0 then the first two constraints

force productk
u ¼ 0, otherwise productk

u � ampNodesk. If

sinkk
u ¼ 1, we have ampNodesk � productk

u and therefore

productk
u ¼ ampNodesk.

Deletions: Genes or adjacencies cannot be deleted if they have a

CN of zero. Therefore, we add constraint similar to 2 and 3 using

delGenek
i and delAdjku;v instead.

For every internal node u 2 E�, one of its adjacencies is deleted if

and only if it is an anchor of a deletion or its gene is deleted:X
v2E

delAdjku;v ¼ delGenek
g uð Þ þ

X
v2E�

delAnchk
u;v

A telomere t 2 T can be deleted only if it is part of a whole

chromosome deletion:

delGenek
g tð Þ ¼

X
t02T

delAnchk
t;t0

If a telomere t 2 T is an anchor of a segmental deletion then one

of its adjacencies must be deleted:X
v2E

delAnchk
t;v ¼

X
v2E

delAdjkt;v

As for amplifications, we add flow constraints to guarantee that

the deletion path is connected.

2.3.3 Objective function

Our goal is to minimize the number of amplifications, deletions and

DCJs:

min
X

1� k� d

X
t1 � t22T

ampAnchk
t1 ;t2
þ

X
u� v2E�

ampAnchk
u;vþ

X
u� v2E

delAnchk
u;v þ

1

4

X
u;v2E

cutk
u;v þ joink

u;v

h i!

DCJs have two cuts and two joins and therefore contribute one

to the objective function. The objective function can be modified to

give different weights to different operations, and even to specific

events, e.g. amplifying regions with oncogenes.

2.3.4 Complexity

Overall, the ILP formulation has O dn2
� �

variables and O dn2
� �

con-

straints. We can relax the integrality constraints for all non-binary

variables since each of them is constrained to be a sum of binary

variables.

Since we do not know the optimal value d� of d, we can perform

either a binary or sequential search on d. If there is no feasible solu-

tion for some d, we increase d. If d � d�, the ILP will find a solution

Sorting cancer karyotypes 5

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

with d� operations since it can always add stages with no operations

in them.

Each DCJ introduces two new adjacencies, while segmental dele-

tions and tandem duplications introduce one new adjacency. A triv-

ial lower bound on d is the number of breakpoints divided by two.

A trivial upper bound is d �
P

u� v2E js adju;v � t adju;vjþP
i2G js cni � t cnij. That is, changing the CN of each gene and each

adjacency separately.

The ILP problem is NP-hard (Karp, 1972) and the runtime of

ILP algorithms is not polynomially bounded. However, modern ILP

solvers incorporate powerful heuristics and can handle many large-

scale problems. ILP has been a powerful tool in formulating and

solving other rearrangement models (Rahmann and Klau, 2006;

Shao et al., 2015; Shao and Moret, 2015).

3 Results

3.1 Simulations
To assess performance, we simulated tumor karyotypes and applied

the algorithm to them. Here is an overview of the simulation: We

start with a diploid karyotype S0 with two identical chromosomes

1; . . . ;m, and perform d operations to derive a tumor karyotype T 0.

We then compress maximal identical segments in S0 and T 0 into sin-

gletons. The resulting shorter source and target karyotypes are used

as input to the algorithm.

Initially, each chromosome is represented by a sequence of

m¼100 atomic segments. We perform a series of operations on the

karyotype by applying duplications (tandem or chromosomal), dele-

tions (segmental or chromosomal) and DCJs (reversals or transloca-

tions). Whole chromosome events are given low probability (5%

each), while all other types are chosen uniformly at random. The

span of segmental deletions, duplications and inversions was chosen

at random and was limited to 30 units in order to avoid rapid loss of

the middle segments.

In order to decrease the size of the karyotypes, we compress

maximal identical sequences in S0 and T 0. That is, a simple path that

appears in S0 and T 0 is compressed if all interval and adjacency edges

along the path have the same CN, and nodes along the path have no

other branching edges beside the path edges. The result is new kar-

yotypes S and T with n � m segments. This way, every segment in

the compressed karyotypes must be involved in at least one break-

point. Since all operations act on contiguous paths in the graph and

all segments inside a compressed path are symmetric, we conjecture

this procedure preserves the optimal distance. This compressed

karyotype structure conforms with information provided by most

assembly tools in which contiguous segments are determined by

detecting breakpoints.

We simulated karyotypes with three to eight operations. Eitan

and Shamir (2017) observed based on the analysis of tumor samples

from Malhotra et al. (2013) that the average number of operations

observed in real deep sequencing cancer data were 5–8 per con-

nected component. For each distance, 20 instances were simulated

and the optimal distance was computed by the algorithm. In

Table 1, we see that the computed distance is bounded by the simu-

lated distance but can sometimes be shorter when d increases.

To test if the scenarios inferred are close to the simulated ones,

we performed two additional comparisons, in terms of the types of

operations and in terms of the actual operations. The results

(Supplementary Figs S1 and S2) show that the scenarios are quite

similar. We also observed that the distance from the karyotype back

to the diploid genome is usually lower than the distance from the

diploid to the karyotype (Supplementary Fig. S3). This is because

one can use a few deletions to get rid of a mutated chromosome,

and then create another copy of a normal chromosome in one

operation.

Figure 2 shows the running time of the ILP algorithm as a function

of the optimal distance it calculated. The time grows exponentially

with the distance. The ILP was solved using Gurobi Optimizer 7.5

(Gurobi optimizer reference manual, Gurobi Optimization, 2018) on

a shared Unix server with 72 2.3 GHz cores and 800 Gb of RAM.

3.2 Cancer karyotypes
We analyzed karyotypes from five ovarian cancer genomes that

were sequenced as part of TCGA (Bell et al., 2011) and were used in

the analysis of PREGO (Oesper et al., 2012). PREGO outputs CN

per segment as well as for adjacencies based on the read coverage.

For each autosome in the genome, two telomeres were connected

to the tail of the first segment and the head of the last segment with

their CNs matching these segments (Supplementary Fig. S7). In each

sample, we analyzed each connected component in the karyotype

graph separately. For each such connected component, we calcu-

lated the distance from a matching diploid genome with the same

subset of chromosomes. An example of the sequence of operations

transforming OV4 chromosome 8 is shown in Figure 3.

To speed up the algorithm on real data we used several pre-proc-

essing steps. First, simple tandem duplications were removed from

the karyotype and added to the distance. That is, for each g 2 G, we

remove adjgt ;gh edges of the form gt; gh
� �

from the graph as they can

only be a result of tandem duplications. We again compress the kar-

yotypes after this step.

In addition, some chromosome components exhibit large repeti-

tions of complex chromosomal structures that are not simple tan-

dem duplications. In such cases, we search for the longest path from

one telomere to another that repeats itself k � 2 times. Such a path

corresponds to an amplified chromosomal structure and thus we re-

move k – 1 repetitions from the karyotype. We use the algorithm to

Table 1. The optimal number of events computed by the algorithm

versus the simulated number of events

Simulated events 1 2 3 4 5 6 7 8

Max 1 2 3 4 5 6 7 8

Median 1 2 3 4 5 6 7 7

Min 1 1 1 2 1 2 3 6

1 2 3 4 5 6 7 8

1e
−0

2
1e

+0
0

1e
+0

2
1e

+0
4

ILP running time

Optimal distance

Ti
m

e
[s

ec
]

Fig. 2. ILP running time as a function of the optimal distance on simulated

instances

6 R.Zeira and R.Shamir

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

calculate the edit distance of this path separately and add it k – 1

times to the total distance of the reduced graph.

We observed several examples of balanced (Supplementary Fig.

S5) and unbalanced (Supplementary Fig. S4) translocations and also

provide possible scenarios causing these phenomena. We also

observed a breakage/fusion/bridge (BFB) cycle in chromosome 18 of

OV2 (Supplementary Fig. S6). BFB cycles are a known source of

genome instability (Greenman et al., 2012). This aberrant chromo-

some is further amplified seven times, and is part of a complex con-

nected component with chromosomes 12 and 16 (Supplementary

Fig. S7). Similar observations were also shown by Oesper et al.

(2012) without addressing the operation sequence.

Table 2 shows the distance calculated by the algorithm for each

non-trivial connected component of the ovarian samples. The running

time on the real karyotypes per connected component ranged from a

few seconds for a simple component of distance at most four, to a few

hours for more complex components. In three cases, the algorithm did

not find any feasible solution within 24 h. These cases have very high

CN or complex structural variations. All cases involve six or more

interconnected chromosomes and contain interval CNs as high as 30.

4 Conclusions

In this study, we present a model for sorting a karyotype using dele-

tions, amplifications, translocations and reversals. This model sup-

ports both structural and numerical alternations observed in cancer

genomes. It focuses on finding a sequence of operations between

two karyotypes and allows breakpoint reuse. We show the sorting

problem is NP-hard and devise an ILP formulation that can find a

shortest sequence of events that transform a normal into a tumor

genome. We apply the algorithm on simulated karyotypes as well as

real data of ovarian cancer. The algorithm is able to solve most com-

ponents of the real tumor genomes.

The algorithm has limited applicability on highly complex kar-

yotypes. As shown on simulated data (Fig. 2), running time grows

exponentially with the number of operations. Additional work on

the ILP formulation may make the approach more practical. On the

real karyotype data, the algorithm could not resolve a few extremely

rearranged connected components of chromosomes. Nevertheless,

typical cancer samples exhibit modest complexity, making this algo-

rithm useful in the majority of real cases (Eitan and Shamir, 2017).

Moreover, a highly rearranged karyotype could be a result of noisy

read data, tumor heterogeneity or unmodeled global events. Better

methods are needed to address these cases.

While the model addresses a relatively wide array of operations,

it still has some limitations. For instance, our duplication and dele-

tion operations are restricted to simple paths with a single copy of

each segment. However, in some scenarios we may benefit from per-

forming operations on non-simple paths. For example, for a single

segment with m tandem repetitions, our model would require m tan-

dem duplications, but only log m operations will suffice if we allow

non-simple path duplications. Other events like non-tandem seg-

mental duplications and BFB (Zakov et al., 2013) are not included

(but are expressible, e.g. Supplementary Fig. S6) in the model.

Our karyotypes are represented using their CNs and adjacencies,

but this representation is not unique for a specific set of chromo-

somes. That is, there could be several chromosome sets that may

give the same karyotype. Since we do not model chromosomes expli-

citly, some operations may be artificial and would not correspond to

operations on sequences.

In order to apply our method on more cancer data, we intend to

improve the running time further. Then, a more systematic employ-

ment of the algorithm on a larger set of karyotypes can reveal

sequences of operations common to several tumors. In addition, the

algorithm can derive a sequence of operations between two tumor

genomes (for example, from different time points) and thus help

understand the evolution of tumors.

Ultimately, we would like to represent the chromosomes them-

selves and perform all operations on them. The goal in this case

would be to decompose the source and target karyotypes into chro-

mosomes such that the number of operations between them is min-

imum. Nonetheless, it was recently argued that re-construction of

the exact cancer chromosomes remains a hard challenge (Eitan and

Shamir, 2017).

Table 2. Results of the algorithm on TCGA ovarian samples

Sample Components Distance Sample Components Distance Sample Components Distance

OV1 (16),(13) 1 OV1 (12, 15) 3 OV1 (11, 20) 5

OV1 (1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 17, 19) NA OV2 (8, 20) 5 OV2 (3, 4),(9) 6

OV2 (14, 21) 10 OV2 (12, 16, 18) 26 OV2 (1, 2, 5, 7, 10, 11, 15, 19, 22) NA

OV3 (13),(17),(21) 1 OV3 (9),(18) 2 OV3 (2) 6

OV3 (4, 8) 7 OV4 (1),(13),(20),(21) 1 OV4 (18) 2

OV4 (3),(15) 6 OV4 (22) 4 OV4 (11) 10

OV4 (8),(9, 12) 11 OV4 (5, 10, 16, 19) 20 OV4 (2, 4, 6, 7, 14, 17) NA

OV5 (7),(16) 1 OV5 (1, 3),(2, 17),(9, 10) 3 OV5 (12, 21),(18) 4

Note: The chromosomes involved in each component are shown within brackets. OV1: TCGA-13-0890; OV2: TCGA-13-0723; OV3: TCGA-24-0980; OV4:

TCGA-24-1103 and OV5: TCGA-13-1411.

3
3

10

3

5

3

3

1

1

1
3

2

2

7

Del.

Chrom
amp.

2
Tandem
dup.

7
Tandem
dup.

3
3

3

3

5

3

3

1

1

1
3

2

2

3
3

3

3

3

3

3

1

1

1
3

2

2
2

2

2

2

2

2

1

1

1
2

1

2
2

2

2

2

2

2

2

2

2
2

Fig. 3. Example of ovarian cancer sample OV4 chromosome 8 transformation

from diploid (left) to tumor (right). Square nodes represent segment extrem-

ities and trapezoid nodes represent telomeres. Dotted edges correspond to

adjacency edges, full straight edges correspond to interval edges and

rounded edges correspond to novel adjacencies caused by the tumor pro-

cess. The number next to each edge is its CN

Sorting cancer karyotypes 7

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

Acknowledgement

The authors thank Layla Oesper for providing the pre-processed ovarian can-

cer data and Nimrod Rappoport for helpful comments.

Funding

This study was supported in part by the Bella Walter Memorial Fund of the

Israel Cancer Association and by Len Blavatnik and the Blavatnik Family

foundation. R.Z. was supported by a fellowship from the Edmond J. Safra

Center for Bioinformatics at Tel-Aviv University.

Conflict of Interest: none declared.

References

Abo,R.P. (2015) BreaKmer: detection of structural variation in targeted mas-

sively parallel sequencing data using kmers. NAR, 43, e19–e19.

Bader,M. (2010) Genome rearrangements with duplications. BMC

Bioinformatics, 11, S27.

Bafna,V. and Pevzner,P. (1996) Genome rearrangements and sorting by rever-

sals. SIAM J. Comput., 25, 272–289.

Bell,D. et al. (2011) Integrated genomic analyses of ovarian carcinoma.

Nature, 474, 609–615.

Bergeron,A. et al. (2006) A unifying view of genome rearrangements. In:

Bücher, P. and Moret, B.M. (eds.) Algorithms in Bioinformatics, Vol. 4175

of LNCS. Springer, Berlin, Heidelberg, pp. 163–173.

Bruckner,S. et al. (2010) Topology-free querying of protein interaction net-

works. JCB, 17, 237–252.

Chowdhury,S.A. et al. (2014) Algorithms to model single gene, single chromo-

some, and whole genome copy number changes jointly in tumor phyloge-

netics. PLoS Comp. Bio., 10, e1003740.

Ciriello,G. et al. (2013) Emerging landscape of oncogenic signatures across

human cancers. Nat. Genet., 45, 1127–1133.

da Silva,P.H. et al. (2012) Restricted DCJ-indel model: sorting linear genomes

with DCJ and indels. BMC Bioinformatics, 13, S13.

Ding,L. et al. (2014) Expanding the computational toolbox for mining cancer

genomes. Nat. Rev. Genet., 15, 556–570.

Eitan,R. and Shamir,R. (2017) Reconstructing cancer karyotypes from short

read data: the half empty and half full glass. BMC Bioinformatics, 18, 488.

Feij~ao,P. and Meidanis,J. (2011) SCJ: a breakpoint-like distance that simplifies

several rearrangement problems. TCBB, 8, 1318–1329.

Fielding,A.K. (2010) Current treatment of Philadelphia chromosome-positive

acute lymphoblastic leukemia. Haematologica, 95, 8–12.

Greenman,C.D. et al. (2012) Estimation of rearrangement phylogeny for can-

cer genomes. Genome Res., 22, 346–361.

Gurobi optimizer reference manual, Gurobi Optimization. (2018).

Hannenhalli,S. and Pevzner,P.A. (1996) Transforming men into mice (polyno-

mial algorithm for genomic distance problem). In: Proceedings of FOCS,

Vol. 36, pp. 581–592. IEEE.

Hannenhalli,S. and Pevzner,P.A. (1999) Transforming cabbage into turnip:

polynomial algorithm for sorting signed permutations by reversals. J. ACM,

46, 1–27.

Karp,R.M. (1972) Reducibility Among Combinatorial Problems. Springer US,

Boston, MA, pp. 85–103.

Korbel,J.O. et al. (2007) Paired-end mapping reveals extensive structural vari-

ation in the human genome. Science, 318, 420–426.

Malhotra,A. et al. (2013) Breakpoint profiling of 64 cancer genomes reveals

numerous complex rearrangements spawned by homology-independent

mechanisms. Genome Res., 23, 762–776.

Ng,C.K. et al. (2012) The role of tandem duplicator phenotype in tumour evo-

lution in high-grade serous ovarian cancer. J. Pathol., 226, 703–712.

Oesper,L. et al. (2012) Reconstructing cancer genomes from paired-end

sequencing data. BMC Bioinformatics, 13(Suppl. 6), S10.

Ozery-Flato,M. and Shamir,R. (2009) Sorting cancer karyotypes by elemen-

tary operations. JCB, 16, 1445–1460.

Pevzner,P. and Tesler,G. (2003) Human and mouse genomic sequences reveal

extensive breakpoint reuse in mammalian evolution. PNAS, 100, 7672–7677.

Ples�nik,J. (1979) The NP-completeness of the Hamiltonian cycle problem in

planar digraphs with degree bound two. Inf. Process. Lett., 8, 199–201.

Rahmann,S. and Klau,G.W. (2006) Integer linear programs for discovering

approximate gene clusters. In: Proceedings of WABI, Vol. 4175 of LNCS.

Springer, Berlin Heidelberg, pp. 298–309.

Raphael,B.J. et al. (2003) Reconstructing tumor genome architectures.

Bioinformatics, 19, ii162–ii171.

Schwarz,R.F. et al. (2014) Phylogenetic quantification of intra-tumour hetero-

geneity. PLoS Comp. Bio., 10, e1003535.

Shao,M. and Lin,Y. (2012) Approximating the edit distance for genomes with

duplicate genes under DCJ, insertion and deletion. BMC Bioinformatics,

13, S13.

Shao,M. and Moret,B.M.E. (2015) Comparing genomes with rearrangements

and segmental duplications. Bioinformatics, 31, i329–i338.

Shao,M. et al. (2015) An exact algorithm to compute the double-cut-and-join

jistance for jenomes with duplicate genes. JCB, 22, 425–435.

Tannier,E. et al. (2009) Multichromosomal median and halving problems

under different genomic distances. BMC Bioinformatics, 10, 120.

Vogelstein,B. et al. (2013) Cancer genome landscapes. Science, 339, 1546–1558.

Yancopoulos,S. et al. (2005) Efficient sorting of genomic permutations by trans-

location, inversion and block interchange. Bioinformatics, 21, 3340–3346.

Zakov,S. et al. (2013) An algorithmic approach for breakage-fusion-bridge de-

tection in tumor genomes. PNAS, 110, 5546–5551.

Zeira,R. and Shamir,R. (2017) Sorting by cuts, joins, and whole chromosome

duplications. JCB, 24, 127–137.

Zeira,R. et al. (2017) A linear-time algorithm for the copy number transform-

ation problem. JCB, 24, 1179–1194.

8 R.Zeira and R.Shamir

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 05 July 2018

Sorting cancer karyotypes using
DCJs, duplications and deletions

Ron Zeira and Ron Shamir

Supplementary information

1 Additional analysis of the simulation re-

sults

To test if the operations inferred by the ILP solutions are close to the simu-
lated ones we compared them in two ways.

(1) We compared the difference in types of operations. We count the
number of operations of each type (segmental deletion, chromosome dele-
tion, segmental amplification, chromosome amplification and DCJ) in the
simulated and inferred scenarios, and sum their absolute difference. The re-
sulting value is OpDiff =

∑
X∈Ops |X̂ −X|, where X and X̂ are the number

of operations in the simulated and the optimal sorting scenario and ops is the
possible operation set. We call this value the operation difference. Figure S1
presents the operation difference of the simulated solution vs. the inferred
solution.

1 2 3 4 5 6 7 8

0
1

2
3

4
5

Operation difference as function of optimal distance

Optimal distance

O
p

e
ra

ti
o

n
 d

if
fe

re
n

c
e

1 2 3 4 5 6 7 8

0
.0

0
.5

1
.0

1
.5

2
.0

Operation difference for sim=opt instances

Simulated distance

O
p

e
ra

ti
o

n
 d

if
fe

re
n

c
e

Figure S1: Operation difference. Left: difference as a function of the optimal
distance. Right: difference as a function of the simulated distance, computed
only for instances where the simulated distance equals the optimal distance.

1

(2) We compared the actual operations found by the optimal sorting sce-
nario and in the simulated scenario. We define two operations to be the
identical if they are of the same type and affect the same segments or adja-
cencies. They are similar if their segments or adjacencies are overlapping.
In figure S2 we plot the number of identical and similar operations.

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Identical operations in the sim and opt scenarios

Optimal distance

Id
e

n
ti
c
a

lly
 m

a
tc

h
e

d
 o

p
e

ra
ti
o

n
s

1 2 3 4 5 6 7 8

0
1

2
3

4

Partially matched operations in sim/opt scenarios

Optimal distance

P
a

rt
ia

lly
 m

a
tc

h
e

d
 o

p
e

ra
ti
o

n
s

Figure S2: Comparing the operations in the simulated and inferred scenarios.
Left: The number of operations that are identical in the optimal sorting
scenario and the simulated scenario. Right: The number of operations that
are similar in the optimal sorting scenario and the simulated scenario.

Both types of analysis show that the inferred operations are close to the
simulated ones.

The distance between two karyotypes is not symmetric. For each simu-
lated instance, we computed the optimal distance from the diploid karyotype
D to the simulated karyotype K, and the distance from K to D. We call
these the forward and reverse distance, respectively. Figure S3 plots the two
distances. We see that the forward distance usually larger than the backward
distance. The reason is that for a chromosome with multiple forward events,
the backward scenario can delete or undo all events, and then add another
copy of a normal chromosome to obtain a diploid chromosome.

2

1 2 3 4 5 6 7 8

1
2

3
4

5

Forward (diploid to karyotype) vs. reverse distance

Diploid to karyotype distance

K
a

ry
o

ty
p

e
 t

o
 d

ip
lo

id
 d

is
ta

n
c
e

Figure S3: Comparison of the forward and reverse distance between the
diploid and simulated karyotype. The figure shows only instances where
both directions are feasible.

2 Additional tumor figures

The figures below show the inferred solutions for several TCGA ovarian can-
cer patient samples.

Figures S4 and S5 include examples of balanced and unbalanced translo-
cations. In a balanced translocation two chromosomes exchange end segments,
resulting in two mixed chromosome. In an unbalanced translocation a pair
of the exchanged segments a missing, resulting with only one mixed chromo-
some.

3

Figure S4: Unbalanced translocation for sample OV5. A sequence of
inferred operations transforming chromosomes 2 (pink-upper) and 17 (teal-
lower) from a diploid genome (top) to tumor genome (bottom). One oper-
ation (yellow triangle) transforms each genome into the next genome. The
operation type is listed in the yellow triangle and the affected genes or adja-
cencies are dashed in each predecessor genome.

4

Figure S5: Balanced translocation. A sequence operations transforming
chromosomes 11 (pink-upper) and 20 (teal-lower) from a diploid genome
(top) to tumor genome (bottom) in sample OV1.

Figure S6: BFB cycle. An example of a Breakage/Fusion/Bridge Cycle
in chromosome 18 of OV2. A normal chromosome 18 (top) is transformed
into a BFB mutated genome (bottom) via a sequence of 4 operations. This
mutated chromosome is further amplified 7 more times in OV2.

5

Figure S7: Complex connected component. A connected component of
chromosome 12 (pink-upper), 16 (teal-middle) and 18 (green-lower) in sample
OV2. Chromosome 18 is also a part of an amplified BFB cycle (figure S6).

6

Chapter 5

Discussion

In this thesis we developed computational models for structural and numerical aber-

rations occurring in cancer genomes. We presented three computational models of

genome evolution by rearrangements designed for the analysis of cancer genomes.

The first and simplest model accounted for breaking, joining and duplicating lin-

ear chromosomes. We gave a linear time algorithm for the sorting problem while

showing a hardness result of a specific case. In the second model, we analyzed the

transformation of vectors holding the number of copies each gene has in the genome

via amplifications and deletions of contiguous segments. We showed linear, pseudo-

polynomial and integer linear programming algorithms for several sorting problems

under this model. Our third and most general model handled both structural and

numerical rearrangements. We showed that the underlying sorting problem is com-

putationally hard, gave an integer linear programming formulation to it and applied

it on real samples from ovarian cancer.

In this chapter, we first summarize the models described in this thesis before

characterizing possible extensions of them. Then, we outline a few possible directions

for future research in cancer rearrangement models.

80

5.1. SORTING BY CUTS, JOINS AND CHROMOSOME DUPLICATIONS 81

5.1 Sorting by cuts, joins and chromosome dupli-

cations

Chapter 2 presented the SCJD model, in which each operation may be either a

breakage of a chromosome, a joining of two chromosomes or a duplication of a linear

chromosome. The SCJD sorting problem seeks to find a shortest series of SCJD

operations that transforms a given source genome with a single copy of each gene

into another given target genome with exactly two copies for each gene. The SCJD

distance is the length of such a sorting scenario.

We first showed that there exists an optimal SCJD sorting scenario where all

duplication events are consecutive and separated from cuts and joins. Using this

property, we gave a an optimization formula for the SCJD distance, and showed how

to solve it optimally. The result is a linear time algorithm for the SCJD distance in

which all intermediate genomes are linear. An optimal SCJD scenario that contains

fewer duplication events can be viewed as more conservative. The assumption behind

this is that duplications are more “radical” events than breakage or fusion, which are

local events. We showed that the optimal scenario given by the algorithm performs

a maximum number of duplications. In contrast, we also showed that finding an

optimal scenario with a minimum number of duplications is NP-hard.

The SCJD model assumes that the source genome is ordinary and the target

genome has two copies of every gene. The assumption on the target genome can be

alleviated to at most two copies of each gene. But an extension required for it to

be applicable to real data is allowing an arbitrary number of copies for each gene.

Incorporating deletions into the model can make it more appropriate for cancer

analysis. Finally, we might want to weight different operations according to their

probability in order to reflect biology better. Nevertheless, we suspect a weight

version could be NP-hard since we showed that finding an optimal sorting scenario

with minimum duplications is hard.

5.2 Copy number transformation problems

In Chapter 3 we discussed a rearrangement model for the evolution of CNPs. The

CNP of a tumor is an important tool in its analysis. Such profiles can be obtained

5.2. COPY NUMBER TRANSFORMATION PROBLEMS 82

by CGH arrays and deep sequencing. Schwarz et al. [94] define the edit distance

between two copy number profiles as the number of segmental amplifications or

deletions requires to transform one profile into the other. Nevertheless, the solution

suggested in [94] is quite complex and its complexity appears to be exponential.

In this study we focused on the following fundamental problem: Given two CNPs,

u and v, compute the edit distance from u to v, where the edit operations are seg-

mental deletions and amplifications. We first showed the existence of an optimal

sorting scenario with special properties such that all deletions precede all amplifi-

cations. These properties were then used to derive a pseudo-polynomial dynamic

programming algorithm. Further analysis showed that partial solutions of this prob-

lem can be modeled with a piecewise linear function with three segments. We showed

that the parameters of this function can be calculated in constant time and space,

thus admitting a linear time, constant space algorithm for the CN transformation

problem.

In a follow-up paper [36], in collaboration with Mohammed El-Kebir, Benjamin

J. Raphael, Roded Sharan, Simone Zaccaria and Meirav Zehavi, we considered two

extensions of this problem. Given two profiles, our first problem aims to find a

parental profile that minimizes the sum of distances to the two profiles as its children.

Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose

k leaves are labeled by the given profiles and whose internal vertices are labeled by

ancestral profiles such that the sum of edge distances is minimum. For the former

problem we gave a pseudo-polynomial dynamic programming algorithm that is linear

in the profile length, and an integer linear program formulation. For the latter

problem we showed it is NP-hard and gave an integer linear program formulation.

We assessed the efficiency and quality of our algorithms on simulated instances.

Several extensions of our model can be considered. Schwarz et al. [94] analyzed

a model in which each CNP should be a sum of two CNPs corresponding to the

maternal and paternal alleles and the goal is to minimize the transformation distance

for these phased CNPs between the source and the target. The complexity aspects of

the latter problem were not addressed and remain open. Giving different weight to

amplifications and deletions, or even position dependent weighting is also possible.

We conjecture that some of the properties we have shown on the optimal sorting

scenario will not hold in the weighted case and additional analysis is needed in this

case. Finally, experiments may give fractional copy numbers or have missing calls

5.3. SORTING CANCER KARYOTYPES 83

for certain positions due to noise and sample impurity. A recent paper tried to to

decompose the clone mixture in order to reconstruct the evolutionary tree [121].

5.3 Sorting cancer karyotypes

Our final and most comprehensive model was presented in Chapter 4. We presented

a model for the evolution of genomes with multiple gene copies using the operation

types double-cut-and-joins, duplications and deletions. We studied the problem of

finding a series of operations of minimum length that transforms one input karyotype

graph into another.

We first showed that the problem is NP-hard and gave an integer linear pro-

gramming formulation that solves the problem exactly under some mild assump-

tions. We tested our method on simulated genomes, showing it correctly detects

the rearrangement operations and distance. We additionally applied our method on

ovarian cancer genomes, displaying complex series of events.

Our method has a few limitations. First, the running time can become an issue

for highly rearranged genomes, though we show its applicability to genomes of typical

complexity. Proving additional properties on this model, such as restriction on the

order of events or affected adjacencies, can be incorporated into the ILP and improve

its run time. Second, the model has some assumptions on the operations affecting

the genome. Third, the model uses an unlabeled graph representation of the genome

and thus some operations may be artificial and would not correspond to operations

on sequences. Further research on better modeling the genome and operations is

needed.

One relatively simple extension of the model is adding weights to different op-

erations. This would give the model a probabilistic interpretation and a shortest

scenario would correspond to the most likely scenario. Such changes can be directly

incorporated into the current ILP formulation. Another assumption in this model is

that there is no noise in the source and target graphs. However, one might extend

this model to allow noisy representation such as false adjacencies or fractional CNs.

Finally, another possible expansion of this model can be phasing the parental and

maternal alleles. Currently, the chromosomes are unlabeled and alleles are collapsed.

We can modify our method to separate the source and target karyotypes into two

5.4. FUTURE RESEARCH IN CANCER REARRANGEMENTS 84

graphs such that the distance between the pairs of phased genome is minimized.

Alternatively, we can use as inputs phased or partially phased karyotype such as

produced by [65, 85]

5.4 Future research in cancer rearrangements

Some cancer genomes were explained by complex structural and numerical events

that are beyond the models discussed here. For example, a breakage-fusion-bridge

(BFB) is an event in which a loss of a chromosome’s end is followed by “doubling-up”

and fusion of the surviving part (i.e., a chromosome (a, b) is replaced by (a,−a)).

In a BFB cycle, this process is repeated several times. Detection of BFB cycles can

be done using sequencing and CN data [123, 122]. Dramatic rearrangement events

also include chromothripsis and chromoplexy, in which one or more chromosomes

are shattered into many pieces and some of the pieces are assembled in random

order. Identifying these events in cancer genomes from sequencing data is still a

hard challenge [74]. Computational models are in need to account for such events

in the analysis of cancer evolution. Nevertheless, these events can sometimes be

modeled by a series of simpler operations.

Advanced sequencing technologies could help in tackling GR problems in cancer.

Long read sequencing techniques such as those of Pacific Biosciences and Oxford

Nanopore can link distant DNA segments providing additional information on the

relative location of different copies and simplify breakpoint identification [86, 54].

The linked short reads sequencing technology of 10X Genomics was recently shown

to help in identifying structural variations in cancer genomes [40]. In addition,

combining several sequencing technologies and sampling strategies together may

improve rearrangement detection. A recent method by Dixon et al. [33] integrated

optical mapping, high-throughput chromosome conformation capture (Hi-C), and

whole-genome sequencing to accurately detect SVs in cancer genomes. We expect

these technologies and others to play a prominent role in GR analysis in cancer in

the years to come.

Single-cell sequencing technologies open new opportunities and challenges in

computational cancer analysis [113]. Specifically, variations between individually

sequenced cells taken from a tumor have been used to identify its evolutionary his-

tory [53, 64]. Detection of SVs and CNAs in single-cell sequencing is still a tough

5.4. FUTURE RESEARCH IN CANCER REARRANGEMENTS 85

challenge due to the noise and biases in the data [111, 44]. The use of single-cell

SVs or CNAs for clonal reconstruction has not been addressed yet, to the best of

our knowledge. Additionally, one might use the heterogeneity among cells and their

abundance in order to guide the rearrangement scenario. Alternatively, given a

rearrangements scenario, we can try to map cells to stages along this sequence.

Acronyms

aCGH - array comparative genomic hybridization

AG - adjacency graph

BFB - breakage-fusion-bridge

BG - breakpoint graph

BP - breakpoint

CGR - complex genomic rearrangement

CN - copy number

CNA - copy number alteration

CNO - copy number operation

CNP - copy number profile

DCJ - double cut and join

DNA - DeoxyriboNucleic Acid;

FISH - fluorescence in situ hybridization

GR - genome rearrangement

ILP - integer linear programming

SCoJ - single cut or join

SNV - single nucleotide variation

SV - structural variation

WGD - whole genome duplication

86

Bibliography

[1] M. A. Alekseyev and P. A. Pevzner. Colored de Bruijn graphs and the genome

halving problem. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 4(1):98–107, 2007.

[2] M. A. Alekseyev and P. A. Pevzner. Whole genome duplications and con-

tracted breakpoint graphs. SIAM Journal on Computing, 36(6):1748–1763,

2007.

[3] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. A pseudo-

boolean programming approach for computing the breakpoint distance be-

tween two genomes with duplicate genes. In Proc. RECOMB Comparative

Genomics, pages 16–29. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[4] S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. Efficient tools

for computing the number of breakpoints and the number of adjacencies be-

tween two genomes with duplicate genes. Journal of Computational Biology,

15(8):1093–115, 2008.

[5] P. Avdeyev, N. Alexeev, Y. Rong, and M. A. Alekseyev. A unified ILP frame-

work for genome median, halving, and aliquoting problems under DCJ. In

J. Meidanis and L. Nakhleh, editors, Proc. RECOMB Comparative Genomics,

pages 156–178, Cham, 2017. Springer International Publishing.

[6] D. A. Bader, B. M. Moret, and M. Yan. A linear-time algorithm for computing

inversion distance between signed permutations with an experimental study.

Journal of Computational Biology, 8(5):483–491, 2001.

[7] M. Bader. Sorting by reversals, block interchanges, tandem duplications, and

deletions. BMC Bioinformatics, 10 Suppl 1:S9, 2009.

[8] M. Bader. Genome rearrangements with duplications. BMC Bioinformatics,

11 Suppl 1:S27, 2010.

[9] V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals.

87

BIBLIOGRAPHY 88

SIAM Journal on Computing, 25(2):272–289, 1996.

[10] E. Barillot, L. Calzone, P. Hupé, J.-P. Vert, and A. Zinovyev. Computational

systems biology of cancer. CRC Press, 2012.

[11] N. Beerenwinkel, C. D. Greenman, and J. Lagergren. Computational can-

cer biology: An evolutionary perspective. PLOS Computational Biology,

12(2):e1004717, 2016.

[12] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner the-

ory. Discrete Applied Mathematics, 146(2):134–145, 2005.

[13] A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrange-

ments. In P. Bücher and B. M. Moret, editors, Proc. Workshop on Algorithms

in Bioinformatics, volume 4175 of LNCS, pages 163–173. Springer, 2006.

[14] A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. Journal

of Computational Biology, 13(2):567–578, 2006.

[15] A. Bergeron, J. Mixtacki, and J. Stoye. A new linear time algorithm to com-

pute the genomic distance via the double cut and join distance. Theoretical

Computer Science, 410(51):5300–5316, 2009.

[16] P. Berman and S. Hannenhalli. Fast sorting by reversal. In Proc. Combinato-

rial Pattern Matching, pages 168–185. Springer, Berlin, Heidelberg, 1996.

[17] P. Biller, P. Feijão, and J. Meidanis. Rearrangement-based phylogeny using

the Single-Cut-or-Join operation. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 10(1):122–34, 2013.

[18] G. Blin, C. Chauve, G. Fertin, R. Rizzi, and S. Vialette. Comparing genomes

with duplications: A computational complexity point of view. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 4(4):523–534,

2007.

[19] G. Blin, G. Fertin, and C. Chauve. The breakpoint distance for signed se-

quences. In Proc. 1st Conference on Algorithms and Computational Methods

for biochemical and Evolutionary Networks, volume 3, pages 3–16. King’s Col-

lege London publications, 2004.

[20] J. E. Bowers, B. A. Chapman, J. Rong, and A. H. Paterson. Unravelling

angiosperm genome evolution by phylogenetic analysis of chromosomal dupli-

cation events. Nature, 422(6930):433, 2003.

[21] M. D. V. Braga, R. Machado, L. C. Ribeiro, and J. Stoye. Genomic distance

under gene substitutions. BMC Bioinformatics, 12 Suppl 9(Suppl 9):S8, 2011.

[22] M. D. V. Braga, E. Willing, and J. Stoye. Double cut and join with insertions

BIBLIOGRAPHY 89

and deletions. Journal of Computational Biology, 18(9):1167–84, 2011.

[23] D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff

and J. H. Nadeau, editors, Comparative Genomics: Empirical and Analytical

Approaches to Gene Order Dynamics, Map Alignment and the Evolution of

Gene Families, pages 207–211. Springer Netherlands, Dordrecht, 2000.

[24] A. Caprara. Sorting by reversals is difficult. In Proc. First annual international

conference on Research in Computational Molecular Biology, pages 75–83, New

York, New York, USA, 1997.

[25] X. Chen, J. Zheng, Z. Fu, et al. Assignment of orthologous genes via genome re-

arrangement. IEEE/ACM Transactions on Computational Biology and Bioin-

formatics, 2(4):302–15, 2005.

[26] A. T. Chinwalla, L. L. Cook, K. D. Delehaunty, et al. Initial sequencing and

comparative analysis of the mouse genome. Nature, 420(6915):520–562, 2002.

[27] S. A. Chowdhury, E. M. Gertz, D. Wangsa, et al. Inferring models of multi-

scale copy number evolution for single-tumor phylogenetics. Bioinformatics,

31(12):i258–67, 2015.

[28] S. A. Chowdhury, S. E. Shackney, K. Heselmeyer-Haddad, et al. Algorithms to

model single gene, single chromosome, and whole genome copy number changes

jointly in tumor phylogenetics. PLoS Computational Biology, 10(7):e1003740,

2014.

[29] P. H. da Silva, R. Machado, S. Dantas, and M. D. V. Braga. Restricted

DCJ-indel model: sorting linear genomes with DCJ and indels. BMC Bioin-

formatics, 13 Suppl 1(Suppl 19):S14, 2012.

[30] P. H. da Silva, R. Machado, S. Dantas, and M. D. V. Braga. DCJ-indel

and DCJ-substitution distances with distinct operation costs. Algorithms for

Molecular Biology, 8(1):21, 2013.

[31] L. Ding, T. J. Ley, D. E. Larson, et al. Clonal evolution in relapsed

acute myeloid leukaemia revealed by whole-genome sequencing. Nature,

481(7382):506–10, 2012.

[32] L. Ding, M. C. Wendl, J. F. McMichael, and B. J. Raphael. Expanding the

computational toolbox for mining cancer genomes. Nature Reviews Genetics,

15(8):556–570, 2014.

[33] J. R. Dixon, J. Xu, V. Dileep, et al. Integrative detection and analysis of

structural variation in cancer genomes. Nature Genetics, page 1, 2018.

[34] M. Dzamba, A. K. Ramani, P. Buczkowicz, et al. Identification of com-

BIBLIOGRAPHY 90

plex genomic rearrangements in cancers using CouGaR. Genome Research,

27(1):107–117, 2017.

[35] R. Eitan and R. Shamir. Reconstructing cancer karyotypes from short read

data: the half empty and half full glass. BMC Bioinformatics, 18(1):488, 2017.

[36] M. El-Kebir, B. J. Raphael, R. Shamir, et al. Complexity and algorithms for

copy-number evolution problems. Algorithms for Molecular Biology, 12(1):13,

2017.

[37] N. El-mabrouk. Sorting signed permutations by reversals and inser-

tions/deletions of contiguous segments. Journal of Discrete Algorithms,

1(1):105–122, 2001.

[38] N. El-Mabrouk, J. H. Nadeau, and D. Sankoff. Genome halving. In M. Farach-

Colton, editor, Proc. Combinatorial Pattern Matching, pages 235–250, Berlin,

Heidelberg, 1998. Springer Berlin Heidelberg.

[39] N. El-Mabrouk and D. Sankoff. Analysis of gene order evolution beyond single-

copy genes. Methods in Molecular Biology, 855:397–429, 2012.

[40] R. Elyanow, H.-T. Wu, and B. J. Raphael. Identifying structural variants

using linked-read sequencing data. Bioinformatics, 34(2):353–360, 2018.

[41] P. Feijão and J. Meidanis. SCJ: a breakpoint-like distance that simplifies

several rearrangement problems. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 8(5):1318–29, 2011.

[42] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of

Genome Rearrangements. MIT Press, 2009.

[43] Z. Fu, X. Chen, V. Vacic, et al. MSOAR: A high-throughput ortholog as-

signment system based on genome rearrangement. Journal of Computational

Biology, 14(9):1160–1175, 2007.

[44] T. Garvin, R. Aboukhalil, J. Kendall, et al. Interactive analysis and assessment

of single-cell copy-number variations. Nature Methods, 12:1058 EP –, 2015.

[45] C. D. Greenman, E. D. Pleasance, S. Newman, et al. Estimation of rear-

rangement phylogeny for cancer genomes. Genome Research, 22(2):346–61,

2012.

[46] Y. Han. Improving the efficiency of sorting by reversals. In Proc. 2006 Inter-

national Conference on Bioinformatics and Computational Biology, volume 6,

pages 406–409. Citeseer, 2006.

[47] D. Hanahan and R. A. Weinberg. Hallmarks of cancer: the next generation.

Cell, 144(5):646–74, 2011.

BIBLIOGRAPHY 91

[48] S. Hannenhalli. Polynomial-time algorithm for computing translocation dis-

tance between genomes. Discrete Applied Mathematics, 71(1):137 – 151, 1996.

[49] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip. In Proc.

Annual ACM Symposium on the Theory of Computing, volume 46, pages 178–

189, New York, New York, USA, 1995.

[50] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial

algorithm for genomic distance problem). In Proc. IEEE Symposium on Foun-

dations of Computer Science, volume 36, pages 581–592, 1995.

[51] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: poly-

nomial algorithm for sorting signed permutations by reversals. Journal of the

ACM, 46(1):1–27, 1999.

[52] P. Hupé. Karyotype of the t47d breast cancer cell line. Wiki-

media Commons file: https://commons.wikimedia.org/wiki/

File:Karyotype of the T47D breast cancer cell line.svg.

[53] K. Jahn, J. Kuipers, and N. Beerenwinkel. Tree inference for single-cell data.

Genome Biology, 17(1):86, 2016.

[54] M. Jain, S. Koren, K. H. Miga, et al. Nanopore sequencing and assembly of

a human genome with ultra-long reads. Nature Biotechnology, 36(4):338–345,

2018.

[55] G. Jean and M. Nikolski. Genome rearrangements: a correct algorithm for

optimal capping. Information Processing Letters, 104(1):14 – 20, 2007.

[56] C. L. Kahn, B. H. Hristov, and B. J. Raphael. Parsimony and likelihood recon-

struction of human segmental duplications. Bioinformatics (Oxford, England),

26(18):i446–52, 2010.

[57] C. L. Kahn, S. Mozes, and B. J. Raphael. Efficient algorithms for analyzing

segmental duplications with deletions and inversions in genomes. Algorithms

for Molecular Biology, 5(1):11, 2010.

[58] C. L. Kahn and B. J. Raphael. Analysis of segmental duplications via dupli-

cation distance. Bioinformatics (Oxford, England), 24(16):i133–8, 2008.

[59] H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for sort-

ing signed permutations by reversals. SIAM Journal on Computing, 29(3):880,

1997.

[60] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting

by reversals, with application to genome rearrangement. Algorithmica, 13(1-

2):180–210, 1995.

BIBLIOGRAPHY 92

[61] J. D. Kececioglu and R. Ravi. Of mice and men: Algorithms for evolutionary

distances between genomes with translocation. In Proc. Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 604–613, Philadelphia, PA,

USA, 1995. Society for Industrial and Applied Mathematics.

[62] D. G. Kent and A. R. Green. Order Matters: The Order of Somatic Mutations

Influences Cancer Evolution. Cold Spring Harb Perspect Med, 7(4), 2017.

[63] J. Kováč. On the complexity of rearrangement problems under the breakpoint

distance. Journal of Computational Biology, 21(1):1–15, 2014.

[64] J. Kuipers, K. Jahn, B. J. Raphael, and N. Beerenwinkel. Single-cell sequenc-

ing data reveal widespread recurrence and loss of mutational hits in the life

histories of tumors. Genome Research, 2017.

[65] Y. Li, S. Zhou, D. C. Schwartz, and J. Ma. Allele-specific quantification of

structural variations in cancer genomes. Cell Systems, 3(1):21 – 34, 2016.

[66] H. Lodish, A. Berk, J. E. Darnell, et al. Molecular Cell Biology. Macmillan,

2008.

[67] A. McPherson, C. Wu, A. W. Wyatt, et al. nFuse: discovery of complex

genomic rearrangements in cancer using high-throughput sequencing. Genome

Research, 22(11):2250–61, 2012.

[68] F. Mitelman, B. Johansson, and F. Mertens. Mitelman database

of chromosome aberrations and gene fusions in cancer, 2018.

http://cgap.nci.nih.gov/Chromosomes/Mitelman.

[69] J. Mixtacki. Genome halving under DCJ revisited. In X. Hu and J. Wang,

editors, Proc. Computing and Combinatorics, volume 5092 of Lecture Notes

in Computer Science, pages 276–286. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2008.

[70] M. Mohri. Edit-distance of weighted automata: General definitions and

algorithms. International Journal of Foundations of Computer Science,

14(06):957–982, 2003.

[71] J. H. Nadeau and B. A. Taylor. Lengths of chromosomal segments conserved

since divergence of man and mouse. Proceedings of the National Academy of

Sciences, 81(3):814–818, 1984.

[72] C. K. Ng, S. L. Cooke, K. Howe, et al. The role of tandem duplicator pheno-

type in tumour evolution in high-grade serous ovarian cancer. The Journal of

Pathology, 226(5):703–712, 2012.

[73] C. T. Nguyen, Y. C. Tay, and L. Zhang. Divide-and-conquer approach for the

BIBLIOGRAPHY 93

exemplar breakpoint distance. Bioinformatics, 21(10):2171–2176, 2005.

[74] L. Oesper, S. Dantas, and B. J. Raphael. Identifying simultaneous rearrange-

ments in cancer genomes. Bioinformatics, 34(2):346–352, 2018.

[75] L. Oesper, A. Ritz, S. J. Aerni, R. Drebin, and B. J. Raphael. Reconstructing

cancer genomes from paired-end sequencing data. BMC Bioinformatics, 13

Suppl 6(Suppl 6):S10, 2012.

[76] M. Ozery-Flato and R. Shamir. Two notes on genome rearrangement. Journal

of Bioinformatics and Computational Biology, 1(1):71–94, 2003.

[77] M. Ozery-Flato and R. Shamir. Sorting by translocations via reversals theory.

In G. Bourque and N. El-Mabrouk, editors, Proc. RECOMB Comparative

Genomics, pages 87–98, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[78] M. Ozery-Flato and R. Shamir. Sorting cancer karyotypes by elementary

operations. Journal of Computational Biology, 16(10):1445–60, 2009.

[79] J. D. Palmer and L. A. Herbon. Plant mitochondrial DNA evolves rapidly in

structure, but slowly in sequence. Journal of Molecular Evolution, 28(1-2):87–

97, 1988.

[80] B. Paten, D. R. Zerbino, G. Hickey, and D. Haussler. A unifying model of

genome evolution under parsimony. BMC Bioinformatics, 15(1):206, 2014.

[81] P. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution:

Lessons from human and mouse genomes. Genome Research, 13(1):37–45,

2003.

[82] P. Pevzner and G. Tesler. Transforming men into mice. In Proc. Seventh

annual international conference on Research in Computational Molecular Bi-

ology, pages 247–256, New York, New York, USA, 2003. ACM Press.

[83] D. Pinkel, T. Straume, and J. W. Gray. Cytogenetic analysis using quantita-

tive, high-sensitivity, fluorescence hybridization. Proceedings of the National

Academy of Sciences, 83(9):2934–2938, 1986.

[84] P. Popescu and H. Hayes. Techniques in Animal Cytogenetics. Springer Science

& Business Media, 2000.

[85] A. Rajaraman and J. Ma. Toward Recovering Allele-specific Cancer Genome

Graphs. Journal of Computational Biology, 25(7):624–636, 2018.

[86] A. Rhoads and K. F. Au. PacBio sequencing and its applications. Genomics,

Proteomics & Bioinformatics, 13(5):278–289, 2015.

[87] D. P. Rubert, P. Feijão, M. D. V. Braga, J. Stoye, and F. H. V. Martinez. Ap-

proximating the DCJ distance of balanced genomes in linear time. Algorithms

BIBLIOGRAPHY 94

for Molecular Biology, 12(1):3, 2017.

[88] J. Z. Sanborn, S. R. Salama, M. Grifford, et al. Double Minute Chromo-

somes in Glioblastoma Multiforme Are Revealed by Precise Reconstruction of

Oncogenic Amplicons. Cancer Research, 73(19):6036–6045, 2013.

[89] D. Sankoff. Edit distance for genome comparison based on non-local opera-

tions. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors,

Proc. Combinatorial Pattern Matching, pages 121–135, Berlin, Heidelberg,

1992. Springer Berlin Heidelberg.

[90] D. Sankoff. Genome rearrangement with gene families. Bioinformatics,

15(11):909–917, 1999.

[91] D. Sankoff, G. Leduc, N. Antoine, et al. Gene order comparisons for phylo-

genetic inference: Evolution of the mitochondrial genome. Proceedings of the

National Academy of Sciences, 89(14):6575–6579, 1992.

[92] H. Scherthan, T. Cremer, U. Arnason, et al. Comparative chromosome paint-

ing discloses homologous segments in distantly related mammals. Nature Ge-

netics, 6(4):342, 1994.

[93] R. F. Schwarz, C. K. Y. Ng, S. L. Cooke, et al. Spatial and temporal hetero-

geneity in high-grade serous ovarian cancer: A phylogenetic analysis. PLOS

Medicine, 12(2):e1001789, 2015.

[94] R. F. Schwarz, A. Trinh, B. Sipos, et al. Phylogenetic quantification of intra-

tumour heterogeneity. PLoS Computational Biology, 10(4):e1003535, 2014.

[95] R. Shamir, M. Zehavi, and R. Zeira. A Linear-Time Algorithm for the Copy

Number Transformation Problem. In Proc. Combinatorial Pattern Matching,

volume 54 of LIPIcs, pages 16:1—-16:13. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2016.

[96] M. Shao and Y. Lin. Approximating the edit distance for genomes with dupli-

cate genes under DCJ, insertion and deletion. BMC Bioinformatics, 13(Suppl

19):S13, 2012.

[97] M. Shao, Y. Lin, and B. M. Moret. An exact algorithm to compute the

double-cut-and-join distance for genomes with duplicate genes. Journal of

Computational Biology, 22(5):425–435, 2015.

[98] M. Shao and B. M. Moret. A fast and exact algorithm for the exemplar

breakpoint distance. Journal of Computational Biology, 23(5):337–346, 2016.

[99] M. Shao and B. M. Moret. On computing breakpoint distances for genomes

with duplicate genes. Journal of Computational Biology, 24(6):571–580, 2017.

BIBLIOGRAPHY 95

[100] M. Shao and B. M. E. Moret. Comparing genomes with rearrangements and

segmental duplications. Bioinformatics, 31(12):i329–i338, 2015.

[101] G. Shi, L. Zhang, and T. Jiang. MSOAR 2.0: Incorporating tandem du-

plications into ortholog assignment based on genome rearrangement. BMC

Bioinformatics, 11(1):10, 2010.

[102] S. H. Strauss, J. D. Palmer, G. T. Howe, and A. H. Doerksen. Chloroplast

genomes of two conifers lack a large inverted repeat and are extensively rear-

ranged. Proceedings of the National Academy of Sciences, 85(11):3898–3902,

1988.

[103] A. H. Sturtevant and T. Dobzhansky. Inversions in the third chromosome

of wild races of drosophila pseudoobscura, and their use in the study of

the history of the species. Proceedings of the National Academy of Sciences,

22(7):448–450, 1936.

[104] J. Suksawatchon, C. Lursinsap, and M. Bodén. Computing the reversal dis-

tance between genomes in the presence of multi-gene families via binary in-

teger programming. Journal of Bioinformatics and Computational Biology,

5(1):117–33, 2007.

[105] E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals.

Discrete Applied Mathematics, 155(6-7):881–888, 2007.

[106] E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal median and halving

problems under different genomic distances. BMC Bioinformatics, 10(1):120,

2009.

[107] L. Tattini, R. D’Aurizio, and A. Magi. Detection of Genomic Structural Vari-

ants from Next-Generation Sequencing Data. Frontiers in Bioengineering and

Biotechnology, 3:92, 2015.

[108] G. Tesler. Efficient algorithms for multichromosomal genome rearrangements.

J. Comput. Syst. Sci., 65(3):587–609, 2002.

[109] G. Tesler. GRIMM: genome rearrangements web server. Bioinformatics,

18(3):492–493, 2002.

[110] A. E. Urban, J. O. Korbel, R. Selzer, et al. High-resolution mapping of

DNA copy alterations in human chromosome 22 using high-density tiling

oligonucleotide arrays. Proceedings of the National Academy of Sciences,

103(12):4534–9, 2006.

[111] T. Voet, P. Kumar, P. Van Loo, et al. Single-cell paired-end genome sequencing

reveals structural variation per cell cycle. Nucleic Acids Research, 41(12):6119–

BIBLIOGRAPHY 96

6138, 2013.

[112] B. Vogelstein, N. Papadopoulos, V. E. Velculescu, et al. Cancer genome land-

scapes. Science, 339(6127):1546–58, 2013.

[113] Y. Wang, J. Waters, M. L. Leung, et al. Clonal evolution in breast cancer

revealed by single nucleus genome sequencing. Nature, 512:155 EP –, 2014.

Article.

[114] R. Warren and D. Sankoff. Genome halving with double cut and join. Journal

of Computational Biology, 7(2):357–371, 2009.

[115] R. Warren and D. Sankoff. Genome aliquoting revisited. Journal of Compu-

tational Biology, 18(9):1065–1075, 2011.

[116] E. Willing, S. Zaccaria, M. D. Braga, and J. Stoye. On the inversion-indel

distance. BMC Bioinformatics, 14 Suppl 15:S3, 2013.

[117] K. H. Wolfe and D. C. Shields. Molecular evidence for an ancient duplication

of the entire yeast genome. Nature, 387:708 EP –, 1997.

[118] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-

mutations by translocation, inversion and block interchange. Bioinformatics,

21(16):3340–3346, 2005.

[119] S. Yancopoulos and R. Friedberg. DCJ path formulation for genome trans-

formations which include insertions, deletions, and duplications. Journal of

Computational Biology, 16(10):1311–38, 2009.

[120] Z. Yin, J. Tang, S. W. Schaeffer, and D. A. Bader. Exemplar or matching:

modeling DCJ problems with unequal content genome data. Journal of Com-

binatorial Optimization, 2015.

[121] S. Zaccaria, M. El-Kebir, G. W. Klau, and B. J. Raphael. Phylogenetic Copy-

Number Factorization of Multiple Tumor Samples. Journal of Computational

Biology, page cmb.2017.0253, 2018.

[122] S. Zakov and V. Bafna. Reconstructing Breakage Fusion Bridge Architectures

Using Noisy Copy Numbers. Journal of Computational Biology, 22(6):577–594,

2015.

[123] S. Zakov, M. Kinsella, and V. Bafna. An algorithmic approach for breakage-

fusion-bridge detection in tumor genomes. Proceedings of the National

Academy of Sciences, 110(14):5546–51, 2013.

[124] R. Zeira and R. Shamir. Sorting by cuts, joins and whole chromosome du-

plications. In Proc. Combinatorial Pattern Matching, volume 9133 of LNCS,

pages 396–409. Springer, 2015.

BIBLIOGRAPHY 97

[125] R. Zeira and R. Shamir. Sorting by cuts, joins, and whole chromosome dupli-

cations. Journal of Computational Biology, 24(2):127–137, 2017.

[126] R. Zeira and R. Shamir. Sorting cancer karyotypes using double-cut-and-joins,

duplications and deletions. Bioinformatics, page bty381, 2018.

[127] R. Zeira, M. Zehavi, and R. Shamir. A linear-time algorithm for the copy num-

ber transformation problem. Journal of Computational Biology, 24(12):1179–

1194, 2017.

[128] D. R. Zerbino, T. Ballinger, B. Paten, G. Hickey, and D. Haussler. Represent-

ing and decomposing genomic structural variants as balanced integer flows on

sequence graphs. BMC Bioinformatics, 17(1):400, 2016.

[129] C. Zheng, Q. Zhu, and D. Sankoff. Genome halving with an outgroup. Evo-

lutionary Bioinformatics Online, 2:295–302, 2007.

[130] Zimao Li, Lusheng Wang, and Kaizhong Zhang. Algorithmic approaches for

genome rearrangement: a review. IEEE Transactions on Systems, Man and

Cybernetics, Part C (Applications and Reviews), 36(5):636–648, 2006.

3. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions

Ron Zeira and Ron Shamir

Published in Bioinformatics [119]

 מניחים הגנום ארגון-רהל המודלים רוב .בסרטן והן באבולוציה הן מרכזיות הן הגנום ארגון-רה בעיות :מוטיבציה

 לעומת .המקטעים סדר של שינוי ,אומרת זאת ,מבניים הם בגנום היחידים ושהשינויים גן מכל בודד עותק מכיל שהגנום

 טיפול .משתנה גן כל של העותקים מספר ולכן ,והכפלות מחיקות כגון כמותיים שינויים עוברים סרטניים גנומים ,זאת

 נדרשים יותר מציאותיים מודלים .אליה והתייחס אלגוריתמים שמעט מאתגרת משימה היא גנים של שוויוני לא בתוכן

 .הסרטני בתהליך הגנום התפתחות אחר לעקוב לסייע מנת על

-כפול-חיתוך מסוג פעולות בעזרת מרובה עותקים מספר עם גנומים של לאבולוציה מודל מציגים אנו כאן :תוצאות

 מקטעים מחיקות ,עוקבות הכפלות ,שחלופים ,היפוכים הם המודל ידי על שנתמכים האירועים .ומחיקה הכפלה ,והדבקה

 .סרטן בדגימות שנצפים והכמותיים המבניים השינויים סוגי מרבית את המכסים ,כרומוזומים של ומחיקות והכפלות

 קשה היא שהבעיה מראים אנו .לאחר אחד קריוטיפ שממירה ביותר קצר באורך פעולות סדרת למצוא היא מטרתנו

 שלנו השיטה את בודקים אנו .קלות הנחות מספר תחת במדויק הבעיה את ותרשפ בשלמים לינארי תכנות ניסוח ונותנים

 יתבש ביותר העדכני המחקר את מקדם שלנו המחקר .השחלות מסרטן גנומים על כןו בסימולציה שיוצרו בגנומים

 המחקר הוא וכן ,יותר מציאותי הוא ולכן הקיימים המודלים מאשר פעולות של יותר רחב מגוון מתיר הוא :צורות

 .סרטן של באבולוציה ותיותוכמ מבניות פעולות של שלמה הסדר לשחזר שמנסה הראשון

 הסקירה מאמר על מבוסס 1 פרק ,לכן בנוסף

"Genome Rearrangement Problems with Single and Multiple Gene Copies: A Review" by

Ron Zeira and Ron Shamir

.T בעריכת "Moret M.E. Bernard of honor in Festschrift" בספר לפרסום והתקבל שיפוט עבר המאמר

Warnow הוצאת י"ע להתפרסם שאמור Springer 2112-ב.

 בתזה הכלולים המאמרים תקציר

 : זו עבודה מבוססת עליהם המאמרים תקצירי להלן

1. Sorting by cuts, joins and whole chromosome duplications

Ron Zeira and Ron Shamir

Published in Proceedings of the 26
th

 Annual Symposium on Combinatorial Pattern

Matching (CPM 2015) [117] and as a full version in Journal of Computational Biology

(JCB) [118]

 שלכל מניחים שנחקרו המודלים מרבית .בביולוגיה הרבה חשיבותן עקב מקיפה בצורה נחקרו הגנום ארגון-רה בעיות

 לקראת קדימה צעד לוקחים אנו כאן .בסרטן במיוחד ,נפוצים די משוכפלים גנים במציאות ,אולם .יחיד עותק קיים גן

 .שלם כרומוזום של והכפלה יבורח ,חיתוך של בסיסיות פעולות שמתיר מודל הצעת י"ע משוכפלים בגנים טיפול

 לינארי אלגוריתם נותנים אנו ,גן לכל עותקים שני עם ב-ו גן לכל אחד עותק עם א לינאריים גנומים שני בהינתן

 מראים גם אנו .לינארים הם הביניים הגנומי שכל כך ב-ל א את שממירות פעולות של ביותר קצרה סדרה לחישוב

 .קשה בעיה היא הכפלות של ביותר קטן מספר עם אופטימלית סדרה שחישוב

2. A linear-time algorithm for the copy number transformation problem

Ron Zeira, Meirav Zehavi and Ron Shamir

Published in Proceedings of the 27
th

 Annual Symposium on Combinatorial Pattern

Matching (CPM 2016) [88] and as a full version in Journal of Computational Biology

(JCB) [120]

 ההנחה תחת נחקרו האבולוציוניים התרחישים רוב .בסרטן והן באבולוציה הן מרכזיות הן הגנום ארגון-רה בעיות

 העותקים מספר מזה וכתוצאה והכפלות מחיקות עוברים סרטניים גנומים ,זאת לעומת .גן מכל יחדי עותק מכיל שהגנום

 השינויים הבנת .שלו העותקים מספר פרופיל נקרא הכרומוזום לאורך מקטע כל של העותקים מספר .משתנה גן כל של

 בין למרחק הנוגעות שאלות ,להיום נכון .בה והטיפול המחלה התקדמות בחיזוי לסייע יכולה העותקים ספרמ בפרופיל

 ידי על שהוצגה הבאה הבסיסית בבעיה מתמקדים אנו כאן .מועטה מדעית לב לתשומת זכו עותקים מספר פרופילי

 אשר פעולות של המינימלי המספר את חשב ,ב-ו א עותקים מספר של פרופילים שני בהינתן [:78] ושותפיו שווארץ

 .קבוע ומקום לינארי בזמן פתירה שהיא ומראים זו בעיה של חישוביתה היעילות את מיישבים אנו .ב-ל א את ממירים

 תוצאות

 מודלים שלושה מציגים אנו .סרטניים בגנומים שקורים וכמותיים מבניים לשינויים מודלים מפתחים אנו זו בתיזה

 .סרטניים גנומים לניתוח שמיועדים מחדש ארגון ידי על הגנום להתפתחות חישוביים

 מכפילה או כרומוזומים שני מאחדת או ,לשניים כרומוזום חותכת או פעולה כל ובו ,SCJD הנקרא מודל מציג 2 פרק

 גן מכל עותקים שני ובו לגנום גן מכל יחיד עותק ובו גנום להפוך איך היא חוקרים שאנו הסידור בעיית .שלם כרומוזום

 ההכפלה פעולות כל בו זהכ סידור של תרחיש שישנו תחילה מראים אנו .פעולות של האפשר ככל קטן מספר בעזרת

 סדרת למציאת אלגוריתם ונותנים הגנומים בין למרחק נוסחה נותנים אנו זו תכונה בעזרת .ההשניי אחרי אחת באות

 מכיוון שמרנית יותר היא מועט הכפלות מספר המכילה כזו פעולות שסדרת לחשוב ניתן .ביותר הקצרה הפעולות

 מוצא שלנו שהאלגוריתם הפעולות שסדרת מראים אנו .חיתוך או איחוד שרמא "קיצוניות" יותר הן ההכפלה שפעולות

 היא הכפלות של ביותר הקטן המספר עם ביותר קצרה פעולות סדרת למצוא ואילו הכפלות של מרבי מספר מכילה

 .חישובית קשה בעיה

 המספר את שמתאר וקטור אהו העותקים מספר פרופיל .בגנום העותקים במספר שינוי של במודל דנים אנו 3 בפרק

 הכפלות של ביותר קטן מספר בעזרת למשנהו אחד פרופיל להפוך היא זה במודל המטרה .בגנום גן כל של העותקים

 לא עותקיו כל את שמאבד גן כאשר ,סמוכים גנים של העותקים מספר את מורידות או מעלות אלו פעולות .ומחיקות

 מיוחדות תכונות בעלת הפרופים שני בין פעולות סדרת שקיימת ילהתח מראים אנו .אלו מפעולות יותר מושפע

 שירוץ כך אותו לשפר לנו מאפשר האלגוריתם של יותר מדויק ניתוח .דינמי תכנות אלגוריתם לניסוח בהן ומשתמשים

 .קבועה מקום בכמות שתמשיו הפרופילים באורך ילינאר בזמן

 עותקים מספר םע גנומים של להתפתחות מודל בו מציגים אנו .4 בפרק מוצג שלנו ביותר והמקיף האחרון המודל

 סדרת למצוא היא המטרה .(join-and-cut-double) והדבקה-כפול-וחיתוך מחיקה ,הכפלה פעולות בעזרת מרובה

 פתרון נותנים אולם ,חישובית קשה היא שהבעיה תחיל מוכיחים אנו .לשני אחד קריוטיפ שהופכת ביותר קצרה פעולות

 את ובודקים סרטן של אבולוציה מתוך קריוטיפים מדמים אנו .בשלמים לינארי תכנות על המבוסס לבעיה מעשי

 ותפעול סדרות ומזהים השחלות סרטן של דגימות על האלגוריתם את מפעילים אנו ,ףבנוס .עליהם האלגוריתם

 .בהן מורכבות

 כללי רקע

 ,(DNA) א.נ.ד-מ בנויים גנומים .החיים היצורים כל של ובתפקוד בהתפתחות המשמשות הוראות מקודד הגנום

 בתא א.נ.ד-ה כל סך הוא הגנום .סוגים מארבעה דאח להיות יכול בסיס כל כאשר ,בסיסים של מרצף הבנויה מולקולה

 לבניית הדרוש המידע את המכיל הכרומוזום לאורך מקטע הוא גן .כרומוזומים הנקראים רצפים לתתי מופרד והוא

 למגוון הגורמים .לדור מדור המועברת הבסיסית ההורשה יחידת הם גנים .התאי התפקוד למרבית הבניין אבן ,חלבון

 השפעות וכן הגנטי החומר של מדויקת לא מהעתקה נובעים אלו שינויים .דורות בין בגנום שינויים הם החיים היצורים

 .חדשים יצורים למיני ולבסוף משופרים ,חדשים לגנים הזדמנויות פותחים והם ,סביבתיות

 או בודד בסיס של לשינויים םמתייחסי מקומיים שינויים .יםוגלובלי יםמקומי שינויים של בתהליך מתפתחים גנומים

 א.נ.ד-ה רצף ,זאת לעומת .בסיס מוחקים או בסיס מוסיפים ,בבסיס בסיס מחליפים אלו שינויים .בסיסים של קטן מספר

 וםהגנ של מחדש ארגון גם הנקראים ,הגלובליים השינויים .יותר רחבה בצורה שלו המבנה שינוי ידי על להשתנות יכול

(rearrangements genome) מבניים שינויים או (variations structural), מקטעים מוחקים או משכפלים ,מזיזים

 .א.נ.ד של גדולים

 הפיצול לאחר שקרו מבניים משינויים בעיקר נובע הגנומים בין ההבדל .דומים הם קרובים םמיני של הגנומים

 השאלה ,נוצרו אלו שינויים איך השאלה את מעלים והם מינים במגוון נחקרו אלו שינויים .המינים בין האבולוציוני

 והתפתח שגשג הוא מאז .שנה 52-כ לפני נולד הגנום ארגון של החישובי המחקר .הגנומי הארגון תחום של הבסיסית

 המוקדמים המודלים .ביולוגי למידע ויישומים אלגנטית התיאורי ,מתמטיים מודלים בין המשלב ,מרתק מחקר תחוםל

 עותק מכיל שהגנום הניחוו (מתוחכם היה שלהם שהניתוח למרות) פשוטים היו מינים של אבולוציה ידי על שהונעו

 יותר מורכבים למודלים דרישה ויצרו ,נוצרו ניתוחל חדש הזדמנויות ,גדל שנאסף הביולוגי שהמידע ככל .גן מכל בודד

 .חדשה הותיאורי

 שינויים .התא התחלקות של דורות במהלך א.נ.ד-ב שינויים של הצטברות ידי על שמונעת מורכבת מחלה היא סרטן

 חלק ,בסרטן גם .לתרופות ועמידות חיסוןה ממערכת "בריחה" ,המחלה התקדמות ,הגידול התפתחות על משפיעים אלו

 שינויים ,שני מצד .לאלפים להצטבר יכול הללו השגיאות מספר אולם .בודד בסיס ומשנות מקומיות הן מהשגיאות

 יםשינוי נקראות הגנטי החומר כמות את שמשנות שגיאות .א.נ.ד מקטעי להזיז יכולים הגנום ארגון את שמשנים גדולים

 תא של הקריוטיפ .גנומיים מקטעים של ומחיקות הכפלות ומכילות (alterations number pyco) העותקים במספר

 יכולות גדולות מבניות שגיאות .מיםוהכרומוז של המבנה את והן הכמות את הן המכילה ,שלו הכרומוזומים קבוצת הוא

 בגנים לפגוע או סרטן שמעודדים גנים להגביר יכולות אלו שגיאות .התא של הקריוטיפ על משמעותית בצורה להשפיע

 וליצור עליהם הבקרה ואת הגנים מבנה את לשנות יכולות מבניות שגיאות ,בנוסף .המחלה התקדמות את שמרסנים

 .חדשים גנים

 .השינויים את בעין לזהות כדי ומיקרוסקופיה בצביעה השתמשו בכרומוזומים שגיאות של לגילוי המקוריות השיטות

 טכנולוגיות ,כיום .יותר גבוהה באיכות עותקים מספר מדידת אפשרו א.נ.ד מקטעי נדבקים אליהם במערכים שימוש

 משמשים מהגנום שנקראים קצרים א.נ.ד מקטעי .בסרטן שגיאות לזיהוי העיקרי המידע מקור את מהוות עמוק ריצוף

 .שינויים של זיהוי מאפשרת בריא יחוס לגנום והשוואה ,לשחזורו

 תמצית

 הגנום של ארגון-לרה בסיסיים מודלים .הסרטן בחקר והן מינים של באבולוציה הן עולות הגנום של ארגון-רה בעיות

 בין הסדר שינוי כלומר ,מבניים הם שאפשריים היחידים והשינויים ,גן מכל אחד עותק רק מכיל שהגנום מניחים

 נצפו ,גן מכל העותקים מספר את המשנים ,והכפלות מחיקות כגון כמותיים שינויים ,אולם .הגנומיים המקטעים

 לשינויים מודלים פיתחנו בו מחקרנו את מתארים אנו הזו בתיזה .סרטן של בהתפתחות ובמיוחד מינים של באבולוציה

 מתירים שהם השינויים וסוגי הגנום מבנה על מניחים שהם הנחותב מזה זה שונים המודלים .בסרטן וכמותיים מבניים

 גנומים של לניתוח בהם ומשתמשים ,אלו למודלים קושי ותוצאות יעילים אלגוריתמים נותנים אנו .בהתפתחותו

 של יותר נרחב אוסף מרשים שלנו המודלים .אופנים בשני גנומי ארגון-רה של המחקר את מקדמת הזו התיזה .סרטניים

 של השלמה הפעולות דרתס תא לשחזר מנסים הם ,בנוסף .מציאותיים יותר הם ולכן אחרים םמודלי מאשר פעולות

 .סרטן של באבולוציה וכמותיים מבניים שינויים

 סאקלר ובברלי ריימונד ע׳׳ש מדויקים למדעים הפקולטה

 בלבטניק ע׳׳ש המחשב למדעי הספר בית

 בסרטן וכמותיים מבניים לשינויים מודלים

 לפילוסופיה״ ״דוקטור תואר קבלת לשם חיבור

 זעירא רון מאת

 שמיר רון פרופ׳ של בהנחייתו

 ת׳׳א אוניברסיטת של לסנאט הוגש

 8102 אוגוסט

	Acknowledgments
	Preface
	Abstract
	Introduction
	Introduction to genome rearrangements
	Genomes and rearrangements
	Genome rearrangements in species evolution
	Genome rearrangements in cancer

	Single gene models, operation types and distance measures
	Genome representation
	Breakpoint distance
	Reversal and translocation distances
	DCJ distance
	SCoJ distance

	Multi copy models in evolution
	Polyploidy
	Single copy models with indels
	Multi-copy models without duplications/deletions
	Models with duplications or deletions

	Multi-copy models in cancer
	Models with duplications/deletions
	Copy number profile distances
	Other cancer models

	Summary of articles included in this thesis

	Sorting by Cuts, Joins, and Whole Chromosome Duplications
	A Linear-Time Algorithm for the Copy Number Transformation Problem
	Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions
	Discussion
	Sorting by cuts, joins and chromosome duplications
	Copy number transformation problems
	Sorting cancer karyotypes
	Future research in cancer rearrangements

	Acronyms
	Bibliography

