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SUMMARY 
This work aimed at analyzing the transcriptomic and proteomic repertoire of the auditory and 

vestibular systems to define the mechanisms of deafness and balance disorders. For this 

purpose, mRNA and protein was produced for the cochlea and the vestibule in mice of ages 

embryonic day (E)16.5 and post-natal day (P)0. 

The inner ear is composed of two major systems: the hearing or auditory system, and the 

balance or vestibular system. While these systems have extensive similarities, there are 

structural and functional differences. The mouse has long been a model for studying human 

inner ear structure and function, due in part to the ability to breed and select offspring with 

desired traits, including those affecting hearing and balance. We took an interest in the cochlear 

and vestibular tissues in mice of ages E16.5 and P0, as they correspond to ages before and 

during the acquisition of mechanosensitivity. To date, only limited work has been done to 

compare the transcriptome of the two tissues before and after this developmental stage. We 

applied systematic transcriptomic approaches to decipher the regulatory pathways of the 

auditory system, with the primary goal of identifying transcription factors that serve as key 

regulators of proliferation and differentiation 

Most research articles comparing expression levels do so for a single omics technique, most 

commonly RNA-seq for transcriptomics and protein mass spectrometry for proteomics. By 

analyzing a single omics type, one reduces the ability to identify post-transcriptional regulation 

mechanisms. Integrated analyses show that the correlation between expression levels of 

protein and mRNA in mammals is relatively modest, with a Pearson correlation coefficient of 

~0.40. Suggested explanations for this low correlation include post-transcriptional regulation 

and measurement noise. We obtained mRNA and protein expression levels for the inner ear 

tissues at P0, and used them, along with other datasets of RNA and protein, to identify a pattern 

of post-transcriptional regulation that exists in non-proliferating tissues. A subsequent 



analysis, comparing enrichments in the protein and mRNA domains, offered a possible 

biological advantage for this mechanism. 

Exploring the transcriptomics in the dimensions of age and tissue expanded our knowledge 

about the development of the inner ear. We found the cochlea to be more enriched in 

neurological functions, and to contain a higher percentage of hair cells than the vestibule, but 

also to have a delayed development of its sensory perception compared with the vestibule. The 

vestibule, on the other hand, was found to be more vascular and more accessible to the 

immunological system. The majority of transcription factors that we predicted to be key 

regulators of the differentiation process have known functions that agree with this 

characterization. Some of these were further suggested as possible candidates in inducing hair 

cell regeneration. 

Focusing on known deafness genes, we found that they tend to be differentially expressed 

between the tissues. During development, they increase both in expression, and in cochlea-to-

vestibule expression ratio. We showed how this can be leveraged to build a classifier to identify 

candidate genes for deafness. 

A joint analysis of the mRNA and protein data for P0 was used to demonstrate that the protein-

to-mRNA ratio in steady state varies in a direction that lessens the change in protein levels as 

a result of changes in the transcript abundance. This trend was also shown in two other 

datasets, one of mouse organ tissues, and another of lymphoblastoid primate samples. A fourth 

dataset, of human cancer cell lines, failed to show this trend. 

We suggest that partial buffering between transcription and translation ensures that proteins 

can be made rapidly in response to a stimulus, and we show that accounting for the buffering 

can improve the prediction of protein levels from mRNA levels.
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1 INTRODUCTION 

1.1 Inner ear 

The inner ear (IE) is composed of two major systems: the hearing or auditory system, and the 

balance or vestibular system. While these systems have extensive similarities, there are 

structural and functional differences. In the auditory system, the organ of Corti in the cochlea 

contains the sensory epithelium responsible for hearing. The vestibular system contains five 

organs, including the three semicircular canals with cristae sensory epithelium that detect 

angular acceleration by fluid motion and the saccule and the utricle, which contain the 

macula sensory epithelium that detects linear acceleration due to gravity. The development 

of the IE requires a complex dynamic process to produce the final sensory organ with both 

hearing and balance capabilities [1]. 

1.1.1 Use of mice as models in inner ear studies 

The mouse has long been a model for studying human IE structure and function, due in part 

to the ability to breed and select offspring with desired traits, including those affecting 

hearing and balance [2]. More recently, the similarities between the genomes, and the ability 

to manipulate the mouse phenotype by gene-targeted mutagenesis and genome editing, have 

reaffirmed the mouse as an ideal vehicle for studying human auditory and vestibular 

dysfunction [3, 4]. As a result, mouse inner ear development has been studied in detail on a 

molecular level [5, 6]. 

1.1.2 Gene expression profiling in specific inner ear tissues and cell types 

Isolation of biological material from specific tissues and cell populations in the IE is 

complicated by the paucity of tissue. This, together with the great variety of cell types found 
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in the IE, makes it difficult to understand the complexity of gene expression within it [7]. In 

2005, laser capture microdissection was used for the first time in the analysis of sub-

compartments in the IE [8] . This method has led to the identification of hundreds of genes 

that are uniquely expressed in either hair cells (HCs) or supporting cells (SCs), in mouse, rat, 

and zebrafish [7]. A finer separation can be achieved using fluorescence-activated cell sorting 

(FACS). Only a few experiments have employed this expensive method in the IE [7]. The most 

comprehensive gene profiling study covering IE development in sorted cells used the 

expression of the transcription factor (TF) Pou4f3 to select for HCs [9]. This process was 

performed in mouse cochlea and utricle in the mouse at ages embryonic day (E)16, post-natal 

days (P)0, P4, and P7. Afterwards, RNA-seq was used to build transcription profiles for HCs 

and SCs; i.e., all other cells. One important outcome of this research is the demonstration of 

changes in biological processes with age in each cell population, as they manifest in the 

expressed genes. One of the major limitations of this study is the lack of repeats for all ages 

except one. 

As mRNA levels do not necessarily reflect protein expression levels, in part due to post-

transcriptional regulation; and in light of the broad utility of proteomics for identification of 

biomarkers and pathophysiological mechanisms in multiple diseases, some proteomic studies 

were performed in the IE [10]. Still, proteomics platforms are underused in otology because 

of technical challenges and complex features of auditory and vestibular morbidities. Most 

large-scale IE proteomics studies were conducted using a multidimensional separation 

technique, such as two-dimensional difference gel electrophoresis or liquid chromatography, 

coupled with mass spectrometry (MS) [10]. In some, common add-on labeling techniques 

such as stable isotope labeling of amino acids in cell culture (SILAC) helped to achieve more 

accurate quantification. Current proteomic research focus on both profiling the normal inner 

ear proteome and characterizing protein changes in disease states. Animal models used 
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include guinea pigs, mice, chicken, zebrafish and chinchilla rodents, as well as bovine models 

[10]. Similar to the techniques used in the mRNA field to separate cell populations, both 

microdissection and FACS sorting are used in proteomic studies of the organ of Corti. In [11], 

for example, microdissection of cochlear and vestibular sensory epithelia was performed in 

order to attain protein, mRNA and microRNA profiles of the two tissues. In [12], FACS sorting 

was exploited for the comparison of HCs and non-HCs in the vestibular system. 

1.1.3 Gaining mechanosensitivity 

We took an interest in the mouse ages E16.5 and P0, as they correspond to ages before and 

during the acquisition of mechanosensitivity [9]. More precisely, while the vestibule is known 

to acquire mechanosensitivity between E16 and E17 [13], the cochlea's outer HCs became 

functional between P0 and P2 [14]. In terms of structural development, both E16.5 and P0 

are ages after the formation of the cochlear organ of Corti (at E14.5 [15]) and the vestibular 

semi-circular and utriculo-saccular canals (E12 and E15), and the octonia (E16) [16]. 

Subsequent to the formation of the organ of Corti, a morphological differentiation takes place, 

with the opening of the tunnel of Corti composed of one row of inner HCs, three rows of outer 

HCs and supporting cells (SCs) [15]. In comparison, the differentiation of HCs to type I and 

type II in the vestibule occurs later, between E16 and E18 [16]. Between E15.5 and E17.5, the 

IE grows and extend, forming one and three-quarter turns of the cochlea and the semicircular 

canals [17]. At P0, the cellular patterning of the cochlear duct is essentially complete [6]. Both 

organs are morphologically well developed, but continue to mature. In the cochlea, the period 

of onset and maturation of acoustically evoked signal processing is between P12 and P14 

[18]. In the vestibule, the type I cells are only partly surrounded by calyces until birth. The 

first calyces with adult type appear at P4, and the innervation is comparable to the adult at 

P10 [16]. 
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During early development, transcriptional pathways have been elucidated that govern the 

differentiation of the otocyst towards sensory or nonsensory regions (reviewed in [17]). A 

number of temporal and spatial triggers of development and maturation have been 

characterized, including the molecular controls on the patterning, hair bundle heights and 

numbers of stereocilia. Knowledge about transcriptional pathways has laid the groundwork 

for establishing early and late developmental pathways of the IE. Mutations in some of these 

critical developmental genes lead to mouse [19] and human IE defects and deafness [20], 

although in most cases null mutations of these critical genes would lead to lethality due to 

their crucial role in early development in other organs. 

1.1.4 Gene therapy for deafness 

WHO estimates 466 million people worldwide have a disabling hearing loss (HL), and 34 

million of these are children (http://www.who.int/deafness/estimates/en/; updated 

06/23/18). Despite its widespread effects, the medical disability currently has no cure. 

Nonetheless, gene therapy is an emerging treatment, designed to tackle the root causes of this 

morbidity. Gene therapy can be employed to either fix a genetic problem of improperly 

functioning HCs and/or to promote proliferation of SCs in the cochlea, and their 

transdifferentiation into HCs [21]. In the last decade dozens of new deafness genes have been 

discovered [22]. In parallel, there were advances in the field of reprogramming and 

regeneration of HCs, including a clinical study, in which ATOH1's potential in causing 

transdifferentiation in SCs is being used to improve hearing function (CGF166). In order to 

extend the applicability of gene therapy to problems of HL and balance, the scientific 

community is focusing its efforts on both identifying new mutations underlying these 

conditions, as well as discovering other factors that can be manipulated in a coordinated 

manner, in order to improve the efficacy of HC regeneration in vivo. These topics will be 

discussed in detail in the next two sections. 

http://www.who.int/deafness/estimates/en/
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1.1.5 Hair cell regeneration 

Regeneration after cellular damage shares some similarities with normal organ development. 

In birds, regeneration of HCs involves proliferation of nearby epithelial supporting cells, 

which then differentiate to form replacement HCs and SCs [23, 24]. However, while mature 

mammalian vestibular organs are also able to regenerate at least a subpopulation of HCs after 

damage [18, 25, 26], the adult cochlea is incapable of any regeneration. It should be noted 

that there is some evidence that the cochlea may contain supporting cells with the ability to 

form new HCs in very young animals [27] or upon misexpression of Atoh1 [28]. Given the 

limitations in the mammalian systems, the resemblance of the auditory sensory epithelia and 

cochlea between birds and mammals [5], and the ability of birds to regenerate HCs in the 

cochlea and vestibule, it is relevant to compare the gene expression profiles of the 

mammalian and avian inner ears. To this end, we applied systemic transcriptomic 

approaches to decipher the regulatory pathways of the auditory system and to make relevant 

comparisons to the avian transcriptome. 

Sensorineural HL most commonly results from degeneration of cochlear HCs. As mentioned, 

if these are lost through damage or the natural aging process, they are not replaced. Gene 

therapy could potentially be used to induce HC regeneration [21]. For many tissues, 

reprogramming and regeneration is achieved by coordinated manipulation of multiple 

factors. Initial evidence shows this approach might be successful in the cochlea. In embryonic 

and neonatal mouse cochlear tissue, ectopic expression of ETV4, TCF3, GATA3, MYCN, or ETS2 

in combination with ATOH1 yielded more HC-like cells than did overexpression of ATOH1 

alone [29, 30]. Another promising method for inducing cochlear cell regeneration, included a 

temporal modification of the expression of the retinoblastoma-1 (Rb1) gene in mice [31]; 

however, the response to Rb1 inactivation was shown to dependent on the differentiation 

stages of HCs, with mature post-natal HCs re-enter cell-cycle but rapidly die afterwards [32]. 
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The efficacy of these interventions is partial, rendering the search for other TFs that can be 

manipulated to enhance this process extremely relevant. As the number of TFs in human is 

estimated to be in the range of a few thousands [33], one cannot perform an exhaustive 

experimental search on all possible manipulations of TFs and their combinations. Instead one 

should focus its efforts on TFs that are more likely to participate in tissue differentiation. In 

some of the aforementioned studies [29, 30], the manipulation was performed on TFs that 

have conserved binding sites near ATOH1 on the POU4F3 gene. Here, we suggest yet another 

method to identify these candidate TFs, which focus on the concordance between TFs 

involved in tissue identity in early stages of development, and those participating in avian HC 

regeneration. 

A different problem holds for the mammalian vestibular system that do possess restorative 

capacity, but for which an external intervention, in the form of growth factors infusion or 

gene therapy, is needed to induce the renewal of HCs [34]. While regeneration using Atoh1 

gene transfer is a promising method, the discovery of new genes whose replacement may 

restore IE function, can improve the treatment of balance disorders. 

1.1.6 Deafness gene discovery 

About 50%–60% of HL cases have a genetic etiology [35]. Approximately 80% of genetic 

deafness is nonsyndromic, i.e. not associated with other clinical features. HL is a recognized 

feature of more than 400 syndromes, the most common of which are Usher syndrome, 

Pendred syndrome (PS), and Jervell and Lange-Nielson. Nonsyndromic HL is classified by the 

inheritance pattern, and relatively common clinical features have been noted for each 

inheritance pattern. For autosomal recessive HL, the most frequent causative genes in order 

of frequency are GJB2, SLC26A4, MYO15A, OTOF, CDH23, and TMC1. Autosomal dominant 
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common mutations include WFS1, MYO7A, and COCH. Several of these genes are also 

implicated in syndromic HL. 

Other classifications of HL are based on the impaired structure and phenotypic features such 

as time of onset (prelingual or postlingual), severity, and the affected frequencies [36]. 

Abnormalities of the external ear and/or the ossicles of the middle ear causes conductive HL, 

malfunction of inner ear structures leads to sensorineural HL, mixed HL is a combination of 

the aforementioned HL types, and damage or dysfunction at the level of the eighth cranial 

nerve results in central auditory dysfunction.  

The search of disease genes is performed mainly by studying familial segregation [22]. 

Examples for mutations identified in families of patients include those found in the genes 

MYO15A, TMC1, and COCH [35]. Using the technique of whole-genome linkage analysis, or the 

less general method of homozygosity mapping, critical chromosomal intervals are mapped 

[22].  These approaches typically identify large chromosomal regions that include hundreds 

of genes. Before the availability of the next-generation sequencing technique, candidate genes 

were selected after positional cloning. Since 2010, techniques such as massively parallel 

sequencing and exome sequencing were used in conjunction with these loci-mapping 

approaches, removing the need for positional cloning. Such next-generation sequencing 

powered methods can be used to some degree in small families without the need for linkage 

analysis. However, the analysis of the data obtained, in particular through whole exome 

sequencing, is a complicated process, and filters must be applied to prioritize candidate 

variants [37].  

Importantly, there are dozens of loci published in peer-reviewed journals without a causative 

gene assigned, most of which are from before the era of next-generation sequencing [22]. The 

mutation analysis of all genes encoded by a large genomic interval is extremely labor-
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intensive. In [38], a bioinformatic approach was used to reduce the number of candidate 

genes in regions associated with nonsyndromic HL. The filtering criteria were based on 

evidence of cochlear expression, in human or in the orthologous gene in mouse, and a known 

interaction of the gene's product with a gene involved in IE development or function or, 

alternatively, with a candidate gene from a different locus. A list of 2378 genes mapping to 

various genomic intervals were narrowed down to 92 genes as candidates. Unfortunately, the 

authors did not provide any measure for estimating the accuracy of their prediction. 

As outlined above, prioritization of candidate genes for deafness is important when multiple 

candidates arise from a familial segregation study, even in the more recent works that use 

whole exome sequencing. Here, we present a machine learning method that offers such a 

prioritization. 

1.2 mRNA versus protein levels 

1.2.1 Steady-state versus non-steady-state (perturbed) systems 

The correlation between expression levels of protein and mRNA in mammals is relatively low, 

with a Pearson correlation coefficient of ~0.40 [39, 40]. Suggested explanations for this low 

correlation include post-transcriptional regulation and measurement noise [39]. This low 

correlation makes it difficult to integrate mRNA and protein data. Tools for this integration 

are sparse and not yet adopted by the bioinformatics community (reviewed in [41]). Initial 

findings from such tools suggest that the transcriptional and the translational regulation 

evolved independently, except in the rare occasions where strong selection in favor of 

correlation was present [42]. However, such claims are based on data from perturbed 

systems, where the observed discordance between the transcriptome and the proteome is 

strongly affected by the lack of temporal synchronization between the transcriptional and 
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translational regulation levels [43]. In this study we focus on the connection of mRNA and 

protein levels in non-proliferating tissues. 

Virtually all data in "omics" experiments is obtained from systems that can be either 

described as perturbed (i.e., subjected to a stimulus) or that are said to be in a "steady-state" 

[44]. It is challenging to rigorously define this latter term, as it is often used for cells 

undergoing long-term dynamic processes such as continuous proliferation, differentiation, or 

other types of fate decisions. Molecule concentrations in an individual cell may change 

substantially. However, as the average concentrations are measured across a population, they 

remain roughly constant with time, namely, in a "steady-state". Among such systems, the one 

of non-proliferating cells is especially simple, as the rates of synthesis and degradation of 

molecules in the tissue are independent of the cell cycle length, as opposed to a system of 

dividing cells in log phase [45]. 

1.2.2 Determinants of protein abundance 

Protein abundance reflects a dynamic balance among multiple processes, spanning the 

transcription, processing and degradation of mRNAs to the translation, localization, 

modification and programmed destruction of the proteins themselves [39]. A large effort was 

made in order to decipher the relative contributions of these processes to the variation in 

protein levels. Schwanhäusser et al. [45] determined that about 40% of the variance of 

protein levels between different proteins could be explained by mRNA levels. A follow-up 

study re-analyzing the same dataset with a different statistical model concluded that about 

56%–84% of the protein variance could be explained by mRNA variance, while the 

translation rate could only explain 9% of the protein abundance variability [46]. The 

buffering effect presented later in this thesis supports some coupling between transcriptional 

and post-transcriptional regulation mechanisms, and challenges the simplistic models used in 



10 

 

the aforementioned studies, in which the contributions of different levels of regulation are 

independent, and thus sum up to 100%. 

1.2.3 Conservation of protein abundances 

We will refer to a gene’s protein level divided by its transcript level as the gene’s protein-

transcript ratio or PTR, also called the gene's translation efficiency [47]. We note that this 

measure is affected by both translation and protein degradation rates, and under steady-state 

conditions it should be equal to the ratio of the rates [48]. It was observed that across taxa, 

protein levels are more conserved than mRNA levels [49], although some exceptions exist 

[50]. Also, it was noticed that differences in protein levels between primates are less common 

than differences in mRNA levels [51]. While PTR was claimed to be highly conserved between 

tissues for each given protein [52], it was demonstrated that it somewhat varies between 

tissues in a direction that buffers or compensates for the change in protein levels from 

changes in the transcript abundance [48], similar to what was shown across taxa. However, 

these observations originated from a small number of tissues, and were based mainly on 

regression coefficients that are affected by regression dilution bias [53]. 

1.2.4 Protein level prediction 

Many experiments only measure transcript abundance in a tissue and use it as a proxy for 

protein levels. Previous articles that predicted protein levels from mRNA [47, 54] did not use 

PTR measured in other tissues, and relied mainly on sequence related features; they reached 

a correlation of 0.75 between the predicted and the observed levels. It has been suggested to 

use the average PTRs measured in other tissues in order to predict the protein levels for the 

tissue in question [49]. This assumes the PTR of a gene is constant across tissues. We suggest, 

instead, a model that assigns a higher PTR in a tissue where the mRNA level is lower. 

1.3 Research aims 
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This project is aimed at analyzing the transcriptomic and proteomic repertoire of the 

auditory and vestibular systems in order to define the mechanisms of deafness and balance 

disorders. The aims of the research were as follows: 

1. Separate analysis of RNA-seq and MS-based proteomics of cellular components of the

inner ear.

2. Integrated analysis of transcriptomics and proteomics.

3. Analysis of transcriptomics prior to and during the acquisition of mechanosensitivity.

Aims 1 and 2 of the research plan were fulfilled to completion. In fact, we achieved much 

more than what we committed to in the goals, as many of the conclusions made were 

examined in a broader context, using multiple datasets of RNA and protein 

In aim 3 we originally declared that a comparison of the proteomics will be performed as 

well. However, we were not satisfied with the quality of the proteomic samples, and focused 

only on the transcriptomics. This change of aims was approved by the PhD committee. Using 

transcriptomics data alone, we still derived strong biological conclusions regarding the 

development of the cochlea and the vestibule in the examined period. 

We note that the author of this thesis performed the bioinformatics analysis of the data, and 

did not conduct the biological experiments described below. 

Note also that some textual segments of the thesis are taken verbatim from [55] and a 

manuscript in preparation (Perl K, Shamir R, Avraham KB. mRNA expression profiling in the 

inner ear reveals candidate transcription factors associated with proliferation and 

differentiation. 2017;). The original text was written by the author and revised by the 

supervisors for the paper, and is repeated and often expanded here. 
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UPDATE (20/06/18): The manuscript in preparation listed above was published after the 

original submission of the thesis but before its final approval [56] . 
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2 MATERIALS AND METHODS 

2.1 Inner ear mRNA data generation 

Cochlear and vestibular sensory epithelia were dissected from 20 inner ears of 10 P0 

C57Bl/6J mice, generating 2.4 and 1.5 µg of total RNA, respectively. Tissue dissection of E16.5 

mice followed a similar process, and resulted in 2.5 and 1 µg of total RNA, respectively. 450 

ng RNA from each sample was used to create libraries with the TruSeq Stranded mRNA 

Sample Prep Kit (Illumina), followed by high-throughput sequencing at 100 bp paired end 

(PE) at the Technion Genome Center, Haifa, Israel. Six samples were generated for each 

developmental age, 3 cochlear and 3 vestibular, for sequencing in triplicate. Read quality was 

assessed using ShortRead and reads were aligned using tophat2 against a mouse reference 

genome (Mus_musculus.GRCm38.74). BAM files were manipulated using Samtools and per-

gene counts of the reads were computed using htseq-count. edgeR was used for calculating 

DE, fold changes and RPKM normalized values. Only genes that have one read per million in 

three or more of the samples were included in the analysis. See [57] for references to each 

software tool. The mRNA unit of measurement is RPKM (Reads Per Kilobase per Million 

mapped reads) [58]. For DE analysis using edgeR [59], the read counts were used. The mRNA 

data for P0 and E16.5 were deposited to the Gene Expression Omnibus (GEO) repository 

under accession number GSE76149 and GSE97270, respectively. RNA data was also 

deposited in the gEAR portal (http://umgear.org/). 

2.2 Inner ear proteomics data generation 

Cochlear and vestibular sensory epithelia were dissected from 15 P0 C57Bl/6J mice, with 

samples from each set of 5 mice pooled to generate one of 3 replicates of protein from 

cochlear of vestibular tissues. Protein samples were reduced with DTT and alkylated with 
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iodoacetamide followed by in-solution digestion with trypsin. Peptides from two replicates 

were analyzed by single LC-MS runs and one replicate was further separated into six 

fractions, each analyzed by LC-MS on the EASY-nLC1000 UHPLC coupled to the Q-Exactive 

MS. Raw MS files were analyzed with MaxQuant and the Andromeda search engine. The label-

free algorithm was used for protein quantification with a minimum two ratio counts for 

normalization. The database search was performed against the Mouse Uniprot database 

(2013) with 50,807 entries and a list of common contaminants. False discovery rate (FDR) 

was determined using the forward-reverse approach, and set to 1% FDR on the peptide and 

protein levels. Database search parameters included Trypsin/P as the proteolytic enzyme, N-

terminal acetylation and methionine oxidation as variable modifications, and 

carbmidomethyl cysteine as a fixed modification. A maximum of two miscleavages and a 

maximum peptide charge of +7 were allowed. First database search was used for mass 

recalibration with an error tolerance of 20 ppm followed by the main Andromeda search with 

mass tolerance of 4.5 ppm for MS spectra and 20 ppm for the MS/MS spectra. Peptide length 

was set to a minimum of seven amino acids. Analysis of the raw MS data identified 7244 

proteins, with correlations of 0.9 and 0.95 between biological replicates of cochlea and 

vestibule, respectively. The MS proteomics data have been deposited to the ProteomeXchange 

Consortium [60] via the PRIDE partner repository with the dataset identifier PXD003379. 

The protein unit of measurement is 2LFQ MW⁄ , where LFQ is a commonly used normalization 

for protein intensity [61], and MW is the molecular weight in kDa. 

2.3 Transcriptomics analysis 

2.3.1 Principal component analysis 

Principal components were calculated with R, after scaling and centring the log2-transformed 

RPKM values, and plotted using ggbiplot (http://github.com/vqv/ggbiplot). To test the 
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association between the principal components and the samples' annotations of age and 

tissue, swamp (http://CRAN.R-project.org/package=swamp) was used. 

2.3.2 Linear mixed models 

The following model was used to describe the expression level Eg,s of gene g in sample s, 

which originated from tissue t at age a: 

Eg,s = αg + βs + Tg,t + Ag,a + Ig,t,a 

Equation 2.3-1 Expression levels decomposition to tissue and age variance components. 

The expression levels are in logged RPKM (Reads per kilo base per million mapped reads). 

Random variables Tg,t correspond to the effect of tissue identity on expression, Ag,a 

correspond to the effect of age on expression, and Ig,t,a correspond to a combined effect of 

tissue and age on expression. The parameters αg correspond to the base expression levels of 

genes, and βs correspond to the normalizing constants of expression between replicates.  

Using lmer [62], we fitted this model to our data, and estimated the percentage of variance 

explained by each variance component. The high number of measurements did not allow 

fitting the model for all genes at once. Instead, we randomly selected 760 genes (5% of all 

genes) and fitted the model using their expression data. We performed this process 100 

times. In 10 of those times, we used restricted likelihood ratio test to test whether the 

variance of the random effect Ig,t,a is zero [63]. We reported the median p-value in the text. 

2.3.3 Differential expression 

Differential expression analysis was done using edgeR [59]. The design formula included the 

combination of age and tissue of each sample. The tested contrasts were the average 

difference between the two ages across tissues, the average difference between the two 

tissues across ages, and the difference of the differences at both ages. This last contrast is 

http://cran.r-project.org/package=swamp
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sometimes referred to as the interaction term of tissue and age. edgeR detection threshold 

was q−value≤0.05. FDR correction was applied for each contrast separately. 

2.3.4 GO and KEGG enrichment analysis 

We performed the enrichment analysis using the Expander software (27), exploring all GO 

ontologies, ’biological process’ (BP), ’molecular function’ (MF) and ’cellular component’ (CC) 

(corrected p−value≤0.05), and KEGG pathways (q-value≤0.01). For each contrast, we looked 

separately for enrichments in the set of genes up-regulated and down-regulated, using as a 

background set all the genes that passed the filter and were tested for differential expression. 

2.3.5 Illustrating age-tissue interacting GO terms 

We calculated the expression ratios between the cochlea and the vestibule for E16.5 and P0 

separately, using edgeR. We then z-scored the ratios at each age, to allow a fair comparison of 

the ages. These ratios were used both to select which GO terms to display, and to calculate a 

median ratio for each of these terms. 

To select GO terms, we began with the lists of terms enriched in genes with increased 

cochlear to vestibular (C/V) or vestibular to cochlear (V/C) ratios between E16.5 and P0 (see 

GO and KEGG enrichment analysis). From each of these lists separately, we filtered only the 

GO terms for which the expression ratios of annotated genes are higher at P0 than at E16.5 

(one-sided Wilcoxon signed rank test at the respected direction, q−value≤0.05). FDR 

correction was applied for each list separately. 

2.3.6 Identifying involved transcription factors 

2.3.6.1 TF enrichment analysis 

We performed the enrichment analysis using PRIMA [65] with detection threshold 

q−value≤0.1. FDR correction was applied for each list separately. 
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2.3.6.2 Connecting motifs to target genes 

We used the same mapping as PRIMA [65] uses by default. It contains for every gene and for 

every TRANSFAC motif the number of hits (putative binding-sites) of the motif in the 

promoter of the gene (spanning from 1000 bp upstream the transcription start site [TSS] to 

200 bp downstream the TSS). If there was at least one hit of a motif in the promoter of a gene, 

we considered the gene to be its target. 

2.3.6.3 Integration with avian sensory epithelia regeneration experiment 

In [66], TF expression was measured in consecutive time points after the infliction of damage 

(either laser or Neomycin [NEO]) to an IE tissue (either cochlea [CO] or utricle[UTR]). We 

adopted the authors' thresholds for declaring a TF as DE in a single time point (FC≥1.2 and p-

value≤0.05, compared with the background). Then, we found overlaps between TFs that are 

DE in at least a single time point in [66], and those arising from the enrichment analysis. 

2.3.7 Deafness genes expression patterns 

One hundred and forty deafness genes (DGs) were manually curated from 

http://hereditaryhearingloss.org/ (updated for 3/13/17). Using BioMart [67], we mapped 

133 of the genes to mouse orthologs. Three genes were filtered out due to missing expression 

data of their orthologs. To resolve multiple mapping, we preferably mapped to orthologs for 

which we have expression data. The DGs were annotated according to the type of deafness as 

syndromic, nonsyndromic or mitochondrial. Nine genes that were associated with both 

syndromic and nonsyndromic deafness were treated as if they were syndromic in subsequent 

analyses. For all five mitochondrial genes we found no homologs. In total, 34 homologs were 

classified as syndromic and 96 as nonsyndromic. 

2.3.8 Classifying deafness genes by expression 

http://hereditaryhearingloss.org/
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We built a classifier in order to categorize each gene as DG or non-DG. We were aware that 

some of the genes currently categorized as non-DGs are in fact DGs not yet discovered. Our 

classifier thus learned to distinguish between positive and unlabeled genes. The features for 

the classifier were, for each gene: (1) the averaged expression over all samples, in log counts 

per million (CPM), (2) the logarithm of the fold-change (FC) of expression between the ages. 

(3) the logarithm of FC of expression between the tissues, and (4) the logarithm of the FC of 

the tissue expression ratio between the ages [i.e., log((cochlea to vestibule expression ratio at 

P0)/ (cochlea to vestibule expression ratio at E16.5))]. This last feature represents the 

interaction of age and tissue. All four features were computed using edgeR [59]; the FCs 

specifically were obtained under the model presented in section 2.3.3. We trained the 

classifier with 75% of the genes, leaving the other 25% for testing. Our classifier bagged over 

1000 decision trees. Down-sampling was used to account for the imbalance in the frequencies 

of the deafness and non-DGs (130 and 15,076 genes, respectively). That is, to build each 

decision tree, we chose 130 non-DGs at random and used them together with all DGs in the 

building process. The R package caret was used for machine learning [68]. 

For the comparison of the classifier with a classifier using the averaged RPKM values in each 

condition as features, we used only 25 repeated training/test splits. For assigning genes with 

probabilities, we used 2000 repeated splits, although internal testing showed the ROC score 

reaches a plateau after about 150 iterations. In each iteration, we used the classifier to 

predict the probabilities in the test set, corrected these probabilities for the undersampling 

bias and corrected them again for the bias caused by the PU scenario. The correction methods 

are detailed below. 

The correction of both biases did not affect the ranking of the genes in that iteration, and was 

performed in order to produce well-calibrated probabilities. We averaged the probabilities 

over all iterations. The averaging caused minor differences in ranking between different 
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methods of calibration, but the ROC score did not change significantly (p>0.05, DeLong's test 

for two correlated ROC curves [69]).We then assessed the calibration of the probabilities 

produced by each method. Under the assumption that most DGs are yet to be discovered, 

calibration curves that treat only known DGs as positive cases will falsely portray the 

probabilities as inflated. For this reason, we downloaded lists of genes that were associated 

with hearing loss according to the text mining tools. For the purpose of choosing the 

correction method that produced the most calibrated probabilities, we assumed that these 

deafness associated genes together with the known DGs comprise the full list of DGs. The 

annotation of deafness associated genes and the comparison of the calibration are detailed 

below. An illustration of the classification process is provided in Figure 2.3-1. 

 

Figure 2.3-1 Illustration of the classification of genes as deafness genes. The input to this process is an 
assignment of genes to deafness genes and non-deafness genes, expression pattern data (not portrayed in the figure) 
and annotation of genes as deafness associated according to text mining tools. This last input type is only used in 
selecting the bias correction method. The output of the process is the predicted probability for each gene to be a DG. 

We then used these probabilities to build an improved classifier. Let pg be our estimation of 

the probability of gene g. We reran our bagging-like algorithm, but this time we chose to treat 
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a gene g as a positive example with probability pg, and as a negative example with probability 

1 - pg. This reassignment was performed before each iteration, independently for each gene, 

and only for the unlabeled genes. Labeled genes were always treated as positive examples. 

This idea is inspired by [70], where the authors achieve slightly better results by rerunning 

their classifier with weights based on the initial probabilities learnt, also after fixing for the 

PU bias. Instead of reweighing the samples, we decided to reassign their classes, as 

reassignment (of only a few hundred genes) still allows us to perform undersampling. We 

again used 2000 repeated splits and averaged the probabilities over all iterations. We did not 

perform any bias correction until the end of the run, when we performed a correction only 

due to undersampling, as detailed below. We compared the ability to predict deafness 

associated genes among all unlabeled genes between the initial classifier and the "rerun" 

classifier using DeLong's test for two correlated ROC curves. We note that the probabilities 

assigned by the classifiers to known DGs are ignored in this comparison, because the 

annotation of these genes as positive in the training of the initial classifier can lead to an 

artificial inflation of the probabilities assigned to them by the "rerun" classifier. An 

illustration of the classification process improvement is provided in Figure 2.3-2. 
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Figure 2.3-2 Illustration of the improved classification process of deafness genes. This "rerun" classifier uses 
the output probabilities of the original classifier (Figure 2.3-1) and refines them by randomly reassigning genes with 
unknown role in deafness as deafness genes during the learning process. The probability of a gene to be reassigned 
as a deafness gene is equal to the probability assigned to it by the original classifier. 

Finally, we converted the mouse genes back to human genes. We resolved multiple mapping 

with averaging of the assigned probabilities. 

2.3.8.1 Calibration of the estimator 

The calibration of the probabilities was tested using calibration plots produced with the R 

package caret. The prediction space was discretized into 11 bins. Cases with predicted value 

between 0 and 0.09 fell in the first bin, between 0.09 and 0.18 in the second bin, etc. For each 

bin, the mean predicted value was plotted against the true fraction of positive cases, along 

with the 95% binomial confidence interval. If the model is well calibrated the points should 

fall near the diagonal line. We also used Brier score (BS) to measure probabilities calibration 

[71]. The lower the BS the more accurate are the probabilistic predictions of a model. Let 

�̂�𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) be the probability estimate of sample 𝑥𝑥𝑖𝑖  to have class 𝑦𝑦𝑖𝑖 ∈ {0,1}. BS is defined as: 
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Equation 2.3-2 Brier score for calibration assessment of DG classifier. 

2.3.8.2 Correcting undersampling bias 

Undersampling creates an upward bias of the probabilities. To fix for this bias we used the 

transformation suggested in [72]. ps is the probability assigned by the model learnt on the 

balanced training set. p' is the bias-corrected probability obtained from ps: 

𝑝𝑝′ =
𝛽𝛽𝑝𝑝𝑠𝑠

𝛽𝛽𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑠𝑠 + 1

Equation 2.3-3 Correction of undersampling bias in DG classifier. 

Where β is the probability of selecting a negative instance with undersampling. 

We used this method twice. First, we adapted our PU classifier. Since we know for each gene 

whether it is positive or unlabeled ("negative"), then the estimation of β is trivial. We set 𝛽𝛽 =

𝑁𝑁+

𝑁𝑁−
, with 𝑁𝑁+ = 130 and 𝑁𝑁− = 15,076. Second, we adapted the "rerun" classifier, which used 

initial, well-calibrated, probabilities as input. The expected number of DG according to these 

input probabilities was 𝐸𝐸(𝑁𝑁+) = 435. We thus set 𝛽𝛽 ≅ 𝐸𝐸(𝑁𝑁+)
15,206−𝐸𝐸(𝑁𝑁+).

2.3.8.3 Correcting positive-unlabeled bias 

PU classifiers create a downward bias of the probabilities. Let x be an example and let 𝑦𝑦 ∈

{0,1} be a binary label. Let s = 1 if the example x is labeled, and let s = 0 if x is unlabeled. 

According to [70], 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥) = 𝑝𝑝(𝑠𝑠 = 1|𝑥𝑥)/𝑐𝑐 where 𝑐𝑐 = 𝑝𝑝(𝑠𝑠 = 1|𝑦𝑦 = 1). Our PU classifier 

estimates 𝑝𝑝(𝑠𝑠 = 1|𝑥𝑥), the probability of the example to be labeled. In order to obtain an 

estimate for 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥), the positivity probability, we need to divide the first probability by 

an estimate of c. Three estimators were suggested for c:  
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Equation 2.3-4 Correction methods for positive-unlabeled bias in DG classifier. 

Where 𝑔𝑔(𝑥𝑥) = 𝑝𝑝(𝑠𝑠 = 1|𝑥𝑥) is the posterior probability according to the PU classifier, V is the 

validation set, and P is the subset of examples in V that are labeled. We used the same set V 

for validation (estimating c) and for testing (estimating probabilities). 

Methods 𝑒𝑒1 and 𝑒𝑒2 can give estimated probabilities higher than 1. For the calibration plots 

and calculation of BSs, we truncated them at 1 (1128 and 1897 probabilities exceeded 1 for 𝑒𝑒1 

and 𝑒𝑒2, respectively). 

We note that 𝑒𝑒1 should theoretically have a lower variance than 𝑒𝑒3, since the first is based on 

averaging over multiple samples instead of using just one [70]. However, we did not assume 

that 𝑒𝑒1 is necessarily more accurate than 𝑒𝑒3, especially as the number of positive samples in a 

validation set used for 𝑒𝑒1 calculation is only 32 whereas the 𝑒𝑒3 is the maximum of 3801 

probabilities, and as such, might be more accurate. In practice, we used all three estimates 

and chose the one that produced the most calibrated probabilities, which was 𝑒𝑒3. 

2.3.8.4 Deafness associated genes annotation 

We downloaded lists of genes that were associated with hearing loss according to the text 

mining tools DigSeE [73], DisGeNET [74] and DISEASES [75]. We searched the disease terms 

'Hearing Loss' in DigSeE and DisGeNET and the 'Sensorineural Hearing Loss' in DISEASES. All 

tools returned lists of human genes. We converted them to mouse homologs using BioMart 

[67]. In DisGeNET and DISEASES an association has a score. In DiGSeE the association of gene 
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g is characterized by the number of articles 𝑛𝑛𝑔𝑔,𝑎𝑎 and the number of sentences within articles 

𝑛𝑛𝑔𝑔,𝑠𝑠 supporting it. We assigned this association the score 𝑛𝑛𝑔𝑔,𝑎𝑎 + 𝑛𝑛𝑔𝑔,𝑠𝑠

max
𝑥𝑥∈𝐺𝐺

𝑛𝑛𝑥𝑥,𝑠𝑠+1
, i.e. the number of 

sentences served as a tie breaker between associations with the same number of articles. For 

the computation of ROC scores and BSs we treated association as a binary trait. For 

demonstrating the effect of choosing different thresholds, we compared the scoring of genes 

with a probability above the threshold with the scoring of the other genes using Wilcoxon 

signed-rank test. The score of a gene not associated with deafness was set to 0. In this 

analysis we also used a combined association score, which is the mean rank across the three 

lists of scores. We set the minimum "Combined" score to zero. 

2.3.9 Deconvolution of heterogeneous tissue samples 

Using RNA-seq expression data from [9], we created an expression signature for each 

combination of tissue (cochlea/utricle), type (GFP+/GFP-) and age (E16/P0). For the process 

of deconvolution of heterogeneous tissues data, limiting signatures to few hundred genes that 

best separate the reference cell types, result in good prediction accuracy [76, 77]. Therefore, 

we selected such subset of genes for each age separately, using the following heuristics. First, 

we ordered the genes in decreasing order of expression variance across the four reference 

samples. Then, we took the first k genes in the list, with k selected to minimize a specific error 

in the deconvolution on our mixed data (see details below). Once k was determined, we built 

the expression signatures, and used them to assess the proportion of cells, under two 

different scenarios. In one, the cells composing a tissue were confined to cells originating 

from that tissue, while in the other we allowed cells composing a tissue to originate also from 

the other tissue, mimicking a contamination of samples. The property we minimized in the 

selection of k was the estimated percentage of contamination in our mixed data under this 

second scenario, i.e., the estimated percentage of cochlear cells in vestibular samples plus the 



25 

estimated percentage of vestibular cells in cochlear samples. We tested all possible k's in the 

range 1…1000. For E16.5 we chose the minimizing k=453. For P0, we ignored the first local 

minimum, which was narrow (~5 genes), and instead chose k=193 (Figure 2.3-3). 

Figure 2.3-3 Choosing k: number of genes to keep for deconvolution. The estimated percentage of 
contamination is plotted against k for E16.5 and P0 (solid black line, left and right subfigures, respectively). The 
contaminations in cochlear and in vestibular samples are marked by the red and blue lines, respectively. The value 
of k chosen to minimize the contamination is marked by the dashed black line. 

The expression data of the mixture was given in units of RPKM, and of the reference in counts 

per million (CPM). We did not normalize the reference data to the gene length, because the 

technique used in [78] of sequencing the 3' end, is not biased by gene length. Before building 

a signature, we filtered out genes for which the CPM was less than 1 in any of the conditions 

(within an age). The calculation of the variance in the expression of a gene was done on log-

transformed expression. 

We used DeconRNASeq for estimating the mixing proportions [78]. We used the default 

setting of the R package, except we chose not to scale the data. We performed the 
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deconvolution on the log-transformed expression. This is not generally recommended, 

specifically of microarray data, as it introduces a bias [79]. However, when we tried to work 

with the expression in the linear-scale without log-transformation, we got results that 

deviated extremely from what is known about the ratio of HCs to SCs in both ages. To be 

specific, the estimated percentage of HCs at E16.5 and P0 were ~12.5% and ~70% in both 

tissues. The gap is higher than expected, and also, the second estimate is much higher than 

parallel quantities in other species; in adult human from the age of 27 to 67, 46.5% of the 

cells of the crista ampullaris are HCs [80], and in posthatch chick 28.2% of the cells in the 

utricular macula are HCs [81]. Reference samples from E16 were used to estimate the 

proportions in our E16.5 samples. Also, reference samples originating from the utricle were 

used to estimate proportion in our whole-vestibule samples. The estimation was done for 

each sample separately, and afterwards we averaged the predictions across each group. 

2.4 Protein and mRNA joint analysis 

2.4.1 External protein and mRNA datasets 

2.4.1.1 MMT RNA data preprocessing 

Multiple Mouse Tissues (MMT) data were downloaded as fastq files from ArrayExpress 

database (www.ebi.ac.uk/arrayexpress) under accession number E-GEOD-30352 and 

processed into read counts using the same protocol and reference genome as the EAR data. 

Out of 36,441 genes, only 16,969 genes that have one read per million in three or more of the 

samples were included in the analysis. We used samples for both wild mice and C57Bl/6J 

mice. There was clear separation of the samples by tissue and only poor separation by strain 

(figure not shown). Therefore, we chose to summarize tissue information from both strains to 

increase the statistical power. 

2.4.1.2 MMT protein data preprocessing 
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Proteomic data was taken from [82]. For each tissue, the study provides two types of 

measurements, the MS intensity of the light version of the peptide, and the intensity ratio of 

heavy and light versions of the peptide. The choice of which quantity to use in each analysis is 

detailed in section 2.4.1.4. 

Protein samples of three different brain regions were merged into a single summary sample 

by computing a weighted mean. This summary sample can be compared to the RNA brain 

samples that were produced from entire brain except olfactory bulb and cerebellum [83]. The 

weights used, based on the volume proportions of the regions in an adult C57BL/6J mouse 

brain [84], were 61.9%, 24.3%, and 13.8% for the cortex, medulla and midbrain respectively. 

The midbrain volume is computed from the sum of volumes of the superior and inferior 

colliculi, central gray, and the structure named "the rest of midbrain". Similarly, protein 

samples of two different kidney regions were merged into a single representing sample. The 

weights used here were volume proportions of the regions in a newborn Swiss Webster 

mouse [85] (58.5% and 41.5% for the cortex and medulla, respectively). 

2.4.1.3 NCI60 RNA data retrieval 

Transcriptomics (series accession GSE32474 [86, 87]) and proteomics [88] data were 

downloaded from: http://129.187.44.58:7070/NCI60/. 

2.4.1.4 Units of measurement in external datasets 

In the MMT and PRIMATE datasets proteins were quantified using the SILAC technique, 

which gives for each protein the ratio of expression between an individual sample to an 

internal standard (SILAC tissue). In both datasets, we also quantified the protein levels based 

of the absolute intensity of the peptides in the light version, which corresponds to peptides 

from the non-SILAC tissue. The absolute levels were used in the production of summary 

statistics, calculation of correlations, and prediction of protein levels, whereas the SILAC 

http://129.187.44.58:7070/NCI60/


28 

 

ratios were used in MDS plotting, DE analysis, and testing whether PTRs vary in a direction 

that reduces protein divergence. The usage of SILAC ratios was preferred in the last scenarios 

as it yields a more accurate estimate of protein abundance between two proteomes [89]. 

MMT: The unit used for absolute protein levels is .Intensity L MW , where Intensity.L is the 

sum of the measured intensities of the light version of the peptides composing the protein. 

The unit used for relative protein levels is Ratio.H.L.normalized, where Ratio.H.L.normalized 

is the ratio of the heavy to light intensities, after applying normalization as in [82]. A mix of 

SILAC mouse tissues served as an internal standard. The mRNA unit is RPKM. For DE analysis 

using edgeR, the read counts were used.  

NCI60: The protein unit is LFQ Intensity MW . The mRNA unit is the intensity level 

measured from the microarray chip, normalized as in [87].  

PRIMATE: The unit used for absolute protein levels is iBAQ [45], based on the intensities of 

the light version of the peptides composing the protein. The unit used for absolute mRNA 

levels is RPKM. The unit used for relative protein levels is Ratio.H.L.normalized. A single 

human SILAC served as an internal standard. The unit used for relative mRNA levels is 

RPKMsample/RPKMstandard, using the same reference cell line. The relative mRNA levels were 

used for the same purposes as the relative protein levels. 

2.4.2 MDS plots 

Multi-dimensional scaling was used to plot and visualize sample similarity. Plots were 

calculated using the function cmdscale in package stats (www.R.project.org). For the MMT 

dataset, the relative protein levels were used.  

2.4.3 Measuring correlation between protein and mRNA levels 

2.4.3.1 Avoiding biases in correlation measurements  
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mRNA and protein levels were log2-transformed, and averaged across all samples from the 

same group, disregarding missing values. Correlation was measured between pairs of groups, 

for mRNA and protein separately. Protein-mRNA correlations for each group were also 

calculated.  

For each pair, correlation was measured between all genes that were expressed in at least 

one sample of protein, and one sample of mRNA, in both groups. Applying this filter is critical, 

as lowly expressed genes and proteins suffer from low detection rates, with a higher 

detection threshold in the protein domain. By applying this filter, we reduced the bias that is 

caused by the difference in the detection abilities.  

Another bias that should be accounted for is the different levels of noise in the mRNA and 

protein domains. The mRNA replicates are more correlated with each other than the protein 

replicates in all relevant datasets (see Results). The higher noise in the protein domain would 

cause a larger reduction in the observed correlations compared to the real correlations (i.e. 

before the induction of noise) for protein. To account for this bias, we used Spearman’s 

method to correct for attenuation of correlation, and obtained better estimators for protein-

protein and mRNA-mRNA correlations. The effect of the correction is demonstrated in Figure 

2.4-1 for the NCI60 dataset. 
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Figure 2.4-1 Corrected correlation plot for the NCI60 dataset. Left: Pearson's correlation (r) before correction. 
Right: After applying Spearman’s method to correct for attenuation of protein-protein and mRNA-mRNA 
correlations. Note that a corrected correlation is not bound by 1. Before applying the correction only 8/36 pairs 
had higher correlations in the protein domain. After applying the correction the number increased to 24. See 
caption in Fig. 1 for the structure of the plot. 

2.4.3.2 Spearman’s correction 

When we wish to compute the correlation between two parameters, measurement errors of 

each parameter weaken our results. Spearman's correction accounts for this effect and 

utilizes repeated measurements to correct it. We can infer the Pearson correlation between 

the latent variables φ and ψ, given N measurements of φ, marked x1, … , xN, and M 

measurements of ψ, marked y1, … , yM. The following estimator for the Pearson correlation 

between φ and ψ is then used [53]:  
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Equation 2.4-1 Spearman's correction for attenuation of correlation. 

Where rxi,yj  is the empirical correlation between measurements xi and yj. We assume that all 

the empirical correlations are positive. The estimator is in [0,∞). 

To correct the mRNA correlation between the groups, we treat φ as the levels of mRNA in one 

group, and ψ as the levels in the other group. We do the same for protein levels. Note that this 

method can also be used to correct mRNA-protein correlations within a group, treating φ as 

the levels of mRNA, and ψ as the levels of protein in that group. 

2.4.4 Comparing magnitude of differences in protein and mRNA 

2.4.4.1 Regressing log FCprotein on log FCmRNA 

For all pairs of groups in all datasets, we regressed log FCprotein on log FCmRNA using ordinary 

least square (OLS) or a variant of the major axis (MA) regression. For EAR, MMT, and 

PRIMATE we used regular MA. For NCI60 we used scaled MA (SMA). The choice of which 

variant of MA to use followed [90] (see next section). We employed three different versions of 

F−test supplied in the smatr package [91] to test whether the slope is significantly different 

from 1 for OLS and (S)MA regression. We applied FDR correction for each dataset and 

method separately. Example for regression result is demonstrated in Figure 2.4-2. 
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Figure 2.4-2 Discordance between SMA and OLS regression methods. Comparing the CNS and the breast 
NCI60 cell lines, the protein fold changes (y-axis) were regressed on the mRNA fold changes (x-axis). The fitted 
regression lines using either OLS (red, solid) or SMA (blue, dashed) were plotted, along with their 95 percent 
confidence interval (thinner lines). The black line is y=x. While the OLS slope is significantly lower than 1, 
suggesting range compression, the more reliable SMA slope is significantly higher than 1, in accordance with range 
expansion. 

2.4.4.2 Choice of variant of major axis 

We followed the recommendations in [90] in order to choose which variant of major axis 

(MA) to use. For a pair of groups, the variance of error of log FCmRNA, EmRNA, is 

approximately the sum of the variances of error of the log-transformed mRNA expression 

levels in both groups. We make the simplistic assumption that the errors are independently 

and normally distributed with the same variance across genes and replicates. Hence, within a 

group, the variance of error in a single measurement can be estimated from replicates, by 
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taking the mean of gene expression levels' variances. To account for the averaging we do over 

the replicates when calculating gene expression, we divide the variance by the number of 

replicates in order to get the variance of error in a group. The same can be done to estimate 

the variance of error of log FCprotein, Eprotein. For protein, the estimator Eproteın�  would be an

underestimate, due to the large number of missing measurements. The variance of the 

variable log FCmRNA, VmRNA, can be estimated by reducing EmRNA from the observed variance. 

The same can be done to estimate the variance of log FCprotein, Vprotein. If the ratio 

EmRNA� /Eproteın�  is closer to 1 than to the ratio VmRNA� /Vproteın�  , MA is preferred over Scaled

MA (SMA) and vice-versa. Performing these calculations on our data, we observed that for the 

EAR and PRIMATE MA is preferred, and for NCI60 SMA is preferred (for most pairs). For 

MMT, since there are no replicates in protein, the error cannot be estimated. Assuming that 

the error in protein for MMT is similar to the error in other MS platforms, the data supports 

the overall use of MA. 

2.4.4.3 Non-parametric approach 

We used a nonparametric approach to test whether genes that are up-regulated in one group 

versus the other in the mRNA domain will show lower PTR in that same group versus the 

other. This idea allows us to use established tools for differential expression (DE) analysis of 

mRNA that have high power in discovering such genes.  

For each dataset, for each pair of groups, we conducted the following analysis (compare 

Figure 2.4-3):  

1. We separated one mRNA sample from each group for PTR calculation.

2. For each group, we took the matching protein sample for PTR calculation. For

unpaired datasets (EAR and MMT) we took the average over all protein samples in

the group for PTR calculation.



34 

3. For each group we divided the protein levels in the mRNA levels, to get a PTR vector.

We will refer to the difference log PTRgroup2 - log PTRgroup1 as log FCPTR.

4. Using the remaining mRNA samples, we performed DE analysis. edgeR [59] was used

for the analysis in EAR and MMT RNA-seq datasets and samr (https://cran.r-

project.org/web/packages/samr, see [92]) was used for the NCI60 microarray-based

data, as well as the PRIMATE RNA-seq dataset (as the counts matrix was not directly

available). Both methods also output estimations of log FCmRNA =

log mRNAgroup2 - log mRNAgroup1 for every gene, referred to as the DE value. These

estimations differ slightly from those calculated by us in the regression analysis. We

chose to work with them, in order for the PTR calculation to be consistent with the DE

analysis.

5. We tested the significance of the Spearman’s rank correlation between the log FCPTR

and the log FCmRNA vectors, using the function cor.test in stats package (www.R-

project.org). If our decoupling assumption is correct, we expect significant negative

correlations. We refer to this test as a global test.

6. We tried two FDR thresholds (0.05, 0.1) for defining which genes are DE. For each

FDR threshold, we tested whether the genes up-regulated in the first group have

higher log FCPTR than the genes in the other group. We used a one-tailed Wilcoxon

rank sum test. We refer to this test as a local test.

In the DE testing, we excluded genes for which one or both protein values were missing and 

thus the PTR could not be calculated. We repeated this analysis by for every possible pair of 

repeats selected in step 1 for the PTR calculations. In order to summarize the results we took 

a median over the results of all pairs. We report both original p-values and FDR corrected q-

values. The correction was applied for each dataset and for each test (correlation, Wilcoxon 

rank sum with FDR 0.05, and with FDR 0.1) separately, over all pairs of groups.  

https://cran.r-project.org/web/packages/samr
https://cran.r-project.org/web/packages/samr
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Figure 2.4-3 Illustration of how mRNA samples are split in order to decouple differential expression 
analysis from protein-transcript ratios calculation. The latter requires integration with protein data, that can 
be a matched sample when such pairing exists, or averaged protein levels otherwise. This decoupling is needed for 
the Wilcoxon test to be unbiased. 

2.4.5 Protein levels prediction 

Assuming we have T−1 groups with matching mRNA and protein profiles, and we want to 

predict the protein levels in a new group T, using the data from the first T−1 groups and the 

mRNA levels in group T. 

2.4.5.1 Prediction models 

We compared three different estimators: 

1. Average PTR (APTR): It was previously suggested to use the average translational

efficiencies measured in the first T−1 groups, and multiply them by the matching mRNA 

levels in group T [49]. A trivial linear model describing this prediction for a single gene is: 

log𝑃𝑃𝑇𝑇 =
1

𝑇𝑇 − 1
� log

𝑃𝑃𝑖𝑖
𝑅𝑅𝑖𝑖
𝑅𝑅𝑇𝑇

𝑇𝑇−1

𝑖𝑖=1

 

Equation 2.4-2 APTR protein prediction model. 
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Where iP Pi and iR  are the measured protein and mRNA levels, respectively, in group i. This 

model can be generalized by giving weights to the different groups. The result is called 

Weighted Average PTR (WAPTR) estimator. Weights are obtained by regression. 

2. FC Based (FCB): A different model assumes linear relationship between logP and

logR (similar to [48]). If for group i log Pi = α log Ri + β, then for two groups: log P1
P2

= α log R1
R2

. 

α is estimated by regression. We expect 0<α<1, in concordance with our previous results. By 

averaging over all groups, we obtain the following estimator for log TP :

log𝑃𝑃𝑇𝑇 =
1

𝑇𝑇 − 1
��𝛼𝛼 log

𝑅𝑅𝑇𝑇
𝑅𝑅𝑖𝑖

+ log𝑃𝑃𝑖𝑖�
𝑇𝑇−1

𝑖𝑖=1

Equation 2.4-3 WAPTR protein prediction model. 

Or in a different form, which shows the relation to the APTR estimator: 

log𝑃𝑃𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹 = log𝑃𝑃𝑇𝑇 𝐴𝐴𝑃𝑃𝑇𝑇𝐴𝐴 +
1

𝑇𝑇 − 1
�(1 − 𝛼𝛼) log

𝑅𝑅𝑖𝑖
𝑅𝑅𝑇𝑇

𝑇𝑇−1

𝑖𝑖=1

 

Equation 2.4-4 WAPTR protein prediction model, alternative form. 

To generalize the model by allowing group weights, the simplest way assumes an exponential 

scaling of the protein levels between different groups, that is γi log Pi = α log Ri + β, with 

γT = 1. This would yield the Relaxed FCB (RFCB) estimator: 

log𝑃𝑃𝑇𝑇 =
1

𝑇𝑇 − 1
��𝛼𝛼 log

𝑅𝑅𝑇𝑇
𝑅𝑅𝑖𝑖

+ 𝛾𝛾𝑖𝑖 log𝑃𝑃𝑖𝑖�
𝑇𝑇−1

𝑖𝑖=1

Equation 2.4-5 RFCB protein prediction model. 

The group-specific exponents are obtained by regression. 
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3. Average Protein (AP): The simplest estimator is averaging over the protein levels in

the other groups, ignoring the mRNA data: 

log𝑃𝑃𝑇𝑇 =
1

𝑇𝑇 − 1
� log𝑃𝑃𝑖𝑖

𝑇𝑇−1

𝑖𝑖=1

 

Equation 2.4-6 AP protein prediction model. 

This model can also be expanded to give weights for the different groups (Weighted Average 

Protein (WAP) estimator). Weights are obtained by regression. 

2.4.5.2 Scoring prediction models 

For each dataset we included only the genes for which we had proteomic and transcriptomic 

data from each of the groups, i.e. a measurement was available for at least one sample 

belonging to the group (5048, 3514, 3223, and 3394 genes in EAR, MMT, NCI60, and 

PRIMATE datasets, respectively). We then averaged the data over the repeats in each group. 

We iterated over the groups, each time setting another one as missing. For each of the 

aforementioned models we fitted a regression model that allowed scaling of the original 

estimator and also included an intercept. We performed 10-fold cross-validation on the fitted 

model, and collected the Root Mean Square Error (RMSE), using the DAAG package (cran.r-

project.org/web/packages/DAAG). For each group we divided the RMSE by the standard 

deviation of the protein levels in the group. The result is a dimensionless measure for 

prediction quality called NRMSE, which can be used to compare predictions across datasets.  

We followed a different procedure when calculating how much of the variance in protein 

level is explained by a specific model. We fitted the model for each group separately, and took 

the median percentage of variance explained. A similar technique [93], which is more 

appropriate for the evaluation of prediction under a cross-validation scenario, gave results 

within a range of <1% of the reported results. 
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For the prediction of protein levels of oncogenes in the NCI60 dataset, we fitted the 

regression models using data from all genes except the selected oncogenes. 

2.4.6 Comparing enrichments in protein and mRNA 

2.4.6.1 EAR enrichment analysis 

We reran DE and subsequent enrichment analysis using different filters on the genes 

included in the analysis. The filters were based on the number of measurements in the 

protein domain: (1) No filter. (2) At least one measurement. (3) At least one, two or three 

measurements in both tissues (the last one is the complete cases filter). For mRNA DE we 

used the edgeR package, with a detection threshold of q−value≤0.05. For protein we used the 

samr package, two class unpaired test, with threshold q−value≤0.1. We used a less strict FDR 

threshold for the protein in order to obtain a large enough list of genes for this analysis. The 

default parameters of samr allow some missing data imputation using the k-nearest neighbor 

algorithm. Still, for some genes samr could not assign a test score, and they were removed 

from the background set. 

We performed the enrichment analysis using the Expander software [64], checking for 

enrichment in Gene Ontology (GO) (http://www.geneontology.org) ’biological process’ (BP) 

ontology (corrected p−value≤0.05). For mRNA and protein, we looked for enrichments in the 

set of genes up-regulated in the cochlea versus the vestibule and vice-versa, using as a 

background set all the genes that passed the filter and were tested for DE.  

For comparing lists of enrichments terms we used the REVIGO tool [94]. A threshold of 0.7 

was used to define similar terms.  

2.4.6.2 EAR GOProfile analysis 
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Comparing the sets of terms emerging in enrichment analysis is sensitive to the significance 

threshold set for the analysis. In order to gain another perspective on the difference in 

functions between the mRNA and the protein, we used goProfiles [95], which enabled us to 

ask whether the functional profiles of the DE genes are different between the domains 

without presuming a threshold on term significance. A functional profile is defined here as 

the joint frequencies of annotation in a given set of GO classes. 

For each tissue, we compared the functional profile of the genes up-regulated in the protein 

domain, with the functional profile of the genes up-regulated in the mRNA domain using 

goProfiles [95]. We followed the methodology described in [95] by starting the comparison in 

a deep level of the GO (’biological process’, 6th level), performing a global test for difference 

of function profiles, and only if it was significant, doing a class-by-class test to identify 

significant. If such were not found we restarted the process at a level less deep. For the global 

test, we used the function ’compareGOProfiles’ with the default parameters. For the class-by-

class test, we performed Fisher’s exact test with FDR correction using the function 

'fisherGOProfiles' and the FDR threshold 0.05. 

2.4.6.3 MMT enrichment analysis 

For each pair of tissues, and each direction of comparison, we calculated log FCprotein and 

log FCmRNA (for log FCprotein the relative protein levels were used). We filtered out genes for 

which we could not calculate either quantity. We created two different orderings of the genes, 

one by proteinFC  and the other by mRNAFC . We ran GOrilla [96] on both lists, using the 

’biological process’ (BP) ontology, with an FDR threshold of 1*10-3 (see 'Choice of 

Enrichment Analysis Tool' as to why GOrilla was used). This analysis provided us with two 

lists of terms for each combination of tissues and comparison direction.  
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 In order to determine the semantic similarity between an mRNA list and a protein list of 

terms, we adopted the method of [97]. The semantic transcriptome specificity is defined as 1 

minus the averaged maximal similarities between each term in the mRNA list with any term 

in the protein list; the semantic translatome specificity is defined as 1 minus the averaged 

maximal similarities between each term in the protein list with any term in the mRNA list. 

The semantic similarity between two GO terms is a score between 0 (no similarity) to 1 (full 

similarity), and it is calculated using the Rel method [98] provided by GOSemSim [99]. The 

difference between the semantic translatome and transcriptome specificities is a score 

between -1 to 1. 

To calculate the transcriptome versus translatome specificity degree associated to GO slim 

terms, we followed [97]. For each GO slim term t the transcriptome specificity degree is 

calculated as the ratio between the number of times a descendant term of t was mRNA 

specific to the number of times a descendant term of t appeared, across all combinations of 

tissue pairs and direction. The translatome specificity is calculated similarly, using the 

protein specific list of terms. These measures are slightly different from [97], in which the 

aggregation at the level of GO slim was performed after calculating term specificity scores. 

This modification provides a more accurate estimator in a scenario with relatively low 

number of terms. In order to set a significance threshold on the term specificity to one of the 

domains, we assumed that the unique enrichments we see are randomly sampled, with each 

enrichment coming from the mRNA domain in probability p and the protein domain in 

probability 1-p. We estimated p=0.56 as the proportion of unique enrichments that were 

found in the mRNA domain. Then, we asked for each GO slim term whether the 

corresponding proportion is different than p (two-sided proportion test, q-value≤0.1). A 

proportion larger than p would indicate transcriptome specificity, and vice versa. This 

simplistic null hypothesis, made for the sake of the test, ignores the inherent dependence that 
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exists between the uniqueness of mRNA terms and protein terms. The same significant terms 

were obtained when using a semantic similarity threshold to determine whether a GO term is 

unique (threshold=0.7, Rel method [98]). 

2.4.6.4 Choice of enrichment analysis tool 

We used different tools to check for functional enrichment in the EAR and the MMT datasets. 

For the EAR we used the TANGO algorithm in Expander [64]. This algorithm considers the 

hierarchical tree-like structure of the gene ontology, using it to provide a good estimation of 

statistical significance for each term, one that takes multiple testing into account. Also, the 

reported terms are filtered for redundancy. 

For the MMT we decided to forfeit these advantages, in favor of an approach that is cut-off 

independent. In the MMT dataset there are no replicates (in protein), so a gene DE status 

cannot be assigned a p-value. If we had chosen to use a cut-off dependent tool like Expander, 

we would have had to set some arbitrary threshold on the fold-changes in order to define 

target gene sets. This is different from the analysis in the EAR, where we used a statistical 

threshold on the corrected p-values, and not on a threshold based on fold-changes. A 

statistical threshold allows estimating the amount of noise that enters the enrichment 

analysis, whereas a threshold on the fold-changes would not allow such estimation and would 

make the enrichment results questionable. For this reason we chose to work with GOrilla 

[96], to which we entered the genes in order of decreasing fold-changes. 

2.4.7 Identifying post-transcriptionally repressed genes 

In order to find the post-transcriptionally repressed genes of a group, we ordered the genes 

in decreasing levels of mRNA expression. We then iterated over the list and calculated the 

fraction of genes that have a valid measurement in the protein domain, out of those that we 

already iterated upon. For a given value q, the index of the last iteration, before which we saw 
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ten fractions in a row above q, was used as a threshold. All genes appearing before this index 

that have no protein measurements were defined as post-transcriptionally repressed. We 

note that this definition is more robust than the one used [50], as it avoids inclusion of 

borderline genes. 

We then used the Expander software [64] to perform enrichment analysis on these genes, 

exploring all ontologies, ’biological process’ (BP), ’molecular function’ (MF) and ’cellular 

component’ (CC) (corrected p−value ≤0.05). As background we chose all genes with 

expression above the threshold.  

We ran this process for all the groups in datasets EAR, MMT, and NCI60. For PRIMATE, we 

ran the process on the entire dataset without separation into groups, as an internal test 

showed that the post-transcriptionally repressed functions in LCLs are similar between 

species, and such separation would only reduce our power in detecting these functions. 
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3 RESULTS 

3.1 Transcriptomics analysis 

Sensory epithelia were dissected from the cochlea and vestibule of mice at two stages of 

development - embryonic day 16.5 (E16.5) and postnatal day 0 (P0). RNA-seq was 

performed. Our analysis identified 39,178 Ensembl genes (including non-coding genes and 

pseudogenes), 15,206 of which have at least one read per million in three or more of the 

samples and were included in the analysis. 

3.1.1 Tissue source and age are associated with differences in transcription 

A principal component analysis (PCA) plot demonstrates the four groups are easily separable 

(Figure 3.1-1). The first principal component (PC1) explains almost half the variance, and is 

associated with the age of the sample, whereas PC2 explains about a quarter of the variance 

and is associated with the originating tissue (F-test on associations, p-values=1.99×10-5, 

1.31×10-5 respectively). Additional PCs are not associated with either tissue or age (p-

value≥0.05). The E16.5 groups show less intra-variability than the P0 groups. This might 

reflect differences in the rate of development of the different organs between mice from the 

same population in the period between E16.5 and P0. We stress that this is likely to be a real 

biological phenomenon and not an artifact of the quality of the dissections, as the dissection 

of the IE is considered easier and more anatomically accurate at an older age. 
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Figure 3.1-1 PCA plot comparing samples in the different ages and tissues according to their mRNA 
expression. The x- and y-axis are the first and second coordinates, respectively. The samples are colored by their 
originating tissue, and their shape is determined by age. A normal contour line is drawn for each group for 68% 
probability. 

Using linear mixed models, we estimated the percentage of variance that can be attributed to 

age, tissue or the interaction of age and tissue. According to our estimates, the majority of 

variance is attributed to either age (44.0±6.5) or tissue (39.6±5.4) (± stands for standard 

deviation). Still, a non-negligible percentage is attributed to the interaction term (8.0±1.5), 

and a model with this interaction term better describes the data according to a restricted 

likelihood ratio test (p-value≤2.2×10-16). Less than 10% of the variance was left unexplained 

(8.4±1.08). 

3.1.2 Change in hair cells proportion in sensory epithelia 

When dissecting the sensory epithelia, the HCs are not easily isolated from the adjacent SCs. 

Thus, all samples contain varying amounts of two roughly defined populations of cells: HCs 

and SCs. As a result, differences in expression between conditions can be attributed to 

differences in the expression profiles with a population or to a change in the cell mixture 
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composition. In order to explore the second option, we used expression signatures of HCs and 

SCs from a previous experiment [9], in order to estimate the proportion of HCs and SCs in 

each condition. 

We assumed that our P0 cochlear data is a mixture of expression of two types of cells, HCs 

and SCs, and computed the proportion of each type from the RNA-seq data measured in [9] 

for in the GFP+ and GFP- P0 cochlear samples, respectively. We made similar assumptions for 

the other conditions, with the exceptions that we used the E16 samples from the original 

article as surrogates for E16.5 samples, and utricle samples as surrogate for vestibule 

samples. We also assessed the proportions under an alternative assumption, in which the 

cochlear sample contains both cells from the cochlea and cells from the vestibule (or utricle) 

as contamination, and vice versa. 

The subset of genes used to create the signature was different for E16.5 and P0. For each age, 

we ordered the genes in decreasing order of expression variance across the four reference 

samples (cochlear and vestibular GFP+ and GFP- samples). We took the expression of the first 

k genes in the list, with k equals 453 for E16.5 and 193 for P0. The value of k was chosen so 

that it minimized the estimated percentage of contamination in our mixed data, i.e., the 

estimated percentage of cochlear cells in vestibular samples plus the estimated percentage of 

vestibular cells in cochlear samples. We assume this heuristic improved the overall 

prediction accuracy, although it did not optimize directly the precision of the HCs percentage 

estimation, which is our main goal. We used DeconRNASeq for estimating the mixing 

proportions [78]. 

The estimated proportions of HCs are similar in both scenarios (Figure 3.1-2), so we will 

focus on the scenario without tissue contamination. The estimated percentages are 

32.6(±1.6) and 23.8(± 1.0) in the cochlea and the vestibule at E16.5, and 44.0(±1.1), and 
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40.1(±0.2) in the cochlea and the vestibule at P0, respectively (± stands for standard 

deviation). The percentage of HCs is higher in the cochlea at both ages, and increases with 

development in both tissues, with the increase in the vestibule being more prominent (1.9-

fold increase compared to 1.4-fold in the cochlea). Strikingly, in all estimations, the 

percentage of SCs is higher than 50%, suggesting that they have a dominant influence on the 

expression profiles. 

Figure 3.1-2 Estimated proportion of HCs and SCs in samples. This estimated proportion of each cell type in 
each of the groups is displayed in a stack bar chart, where the color of a stack identifies the cell type. In the left 
figure, the cells composing a tissue were confined to cells originating from that tissue, without allowing cross-tissue 
contamination, whereas in the right figure, cross-tissue contamination is assumed to occur. A light color indicates 
contaminated content. For example, focusing on the cochlear tissue at age P0 (P0.CO), the estimated proportion of 
HCs, when contamination is not allowed, is 44.1% (in red). When contamination is allowed, the estimated 
proportion of HCs slightly decreases to 44.0%; a percentage composed of 26.6% cochlear HCs (in dark red) and 
17.4% contaminating vestibular HCs (in light red). The three other samples show a majority of non-contaminated 
tissue (darker colors). 

Even with k selected to minimize the contamination, our calculation gives 51.8% 

contamination in the cochlea at P0.  We are unsure how to interpret this high number: If that 

number does not reflect the reality and is inflated, it may be due to (1) experimental noise, 

either in our data or the data used to generate the expression signatures at P0, or 

(2) inaccuracy of the deconvolution method when the signatures are similar. This similarity
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manifests in high correlations between signatures of the same cell type in the cochlea and the 

vestibule (r=0.65, 0.83 for signatures of HCs and SCs, respectively). 

3.1.3 Variations in tissue functionalities and developmental timeline 

We extracted genes that are differentially expressed between tissues or between ages, and 

genes for which the interaction of tissue and age is significant in determining expression. 

3306 were found to be up-regulated at P0 compared to E16.5, and 6890 down-regulated. 

4159 were found to be up-regulated in the vestibule compared to the cochlea, and 2382 

down-regulated. For 745 transcripts the cochlea to vestibule expression ratio increases with 

development, and for 1211 the ratio decreases. 

We performed GO and KEGG enrichment analyses on the three lists. The enrichment results 

are summarized below.  

3.1.3.1 Expression change with age 

Genes that were upregulated at E16.5 are enriched for terms related to cell cycle, DNA 

replication, cytoskeleton organization, and other terms that are in accordance with a highly 

proliferative state (Table 3.1-1, red). In contrast, genes that were upregulated at P0 are 

enriched for ribosomes, indicating high protein synthesis, mainly of plasma membrane and 

extracellular matrix proteins (Table 3.1-1, green). The lipid and oxphos-related metabolic 

activities are also high in this group. The cells at this stage of development are more adhesive, 

communicate more with one another, and are more responsive to external cues. They are also 

responsive to a variety of signaling receptors, including calcium signaling, and have high ion 

transport activity. The upregulated terms are typical of a less proliferative environment, 

where the highly expressed genes promote homeostatic processes and inhibit peptidase 

activity. Some terms show signs of cell specialization, in terms of sensory perception, 

cartilage-related metabolism, and the regulation of ossification; the last might indicate a 
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cross-talk between sensory epithelium cells and endochondral cells. Another marker for the 

more differentiated state is an up-regulation of the MHC protein complex. In summary, the 

enrichment suggests that the inner ear is in a more proliferative state at E16.5 than at P0, 

whereas at P0 the tissues are more differentiated and exhibit specialization for sensory 

perception. 

KEGG enrichment (Table 3.1-2) generally confirmed the aforementioned differences and 

provided more details regarding specific metabolic processes activated at P0. For example, 

we could attribute the enriched lipid metabolism to sphingolipids, arachidonic acid, and 

retinol, the enriched aminoglycan metabolism to glycan degradation, and the biosynthesis of 

chondroitin and keratan sulfate. Pathways enriched at P0 suggest that the activity of the 

immune system increases during development, with leukocytes migrating into the tissue and 

intercellular communication using cytokines. As the complement and coagulation cascades 

and the renin-angiotensin system are also enriched at P0, we can hypothesize that the inner 

ear is more exposed to blood circulation at this age. 

Table 3.1-1 GO Enrichments in genes differentially expressed between ages. Enrichments found in genes up-
regulated at E16.5 or P0 (marked red and green, respectively, in the 'Set' column) using gene ontology (GO). For 
each enrichment, we provide the number of genes annotated with term (#genes), the significance of the 
enrichment (raw and corrected p-values), and the frequency of genes annotated with the term. 

Set Enriched 
with 

#genes Raw 
p-value

Corrected 
p-Value

Frequency 
in set (%) 

Up in E16.5 nucleic acid
metabolic 
process - 
GO:0090304 

1506 3.36E-70 1.00E-04 22 

chromosome - 
GO:0005694 

368 3.58E-38 1.00E-04 5.3 

nuclear lumen - 
GO:0031981 

792 1.52E-31 1.00E-04 11 

non-membrane-
bounded 
organelle - 
GO:0043228 

1406 1.71E-30 1.00E-04 20 

DNA binding - 
GO:0003677 

845 8.60E-30 1.00E-04 12 

DNA repair - 
GO:0006281 

228 6.30E-28 1.00E-04 3.3 

M phase - 
GO:0000279 

256 1.84E-27 0.0001 3.7 
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cell cycle phase 
- GO:0022403

312 5.06E-26 0.0001 4.5 

cell cycle -
GO:0007049

501 2.26E-22 0.0001 7.3 

chromatin
organization -
GO:0006325

272 7.42E-22 0.0001 3.9 

organelle
organization -
GO:0006996

881 7.93E-22 0.0001 13 

chromatin
modification -
GO:0016568

251 8.85E-22 0.0001 3.6 

mitotic cell
cycle -
GO:0000278

258 6.88E-21 0.0001 3.7 

DNA replication
- GO:0006260

122 6.88E-21 0.0001 1.8 

ATP binding -
GO:0005524

750 4.87E-20 0.0001 11 

mRNA
metabolic
process -
GO:0016071

227 6.11E-16 0.0001 3.3 

methylation -
GO:0032259

139 4.68E-13 0.0001 2 

ncRNA
metabolic
process -
GO:0034660

160 3.87E-12 0.0001 2.3 

microtubule
cytoskeleton
organization -
GO:0000226

141 2.71E-11 0.0001 2 

DNA geometric
change -
GO:0032392

37 2.00E-10 0.0001 0.54 

tRNA metabolic
process -
GO:0006399

86 1.28E-09 0.0001 1.2 

nucleoside-
triphosphatase
regulator
activity -
GO:0060589

216 1.59E-09 0.0001 3.1 

chromatin
binding -
GO:0003682

161 5.65E-09 0.0002 2.3 

nuclease
activity -
GO:0004518

83 1.00E-08 0.0002 1.2 

regulation of
DNA metabolic
process -
GO:0051052

113 1.86E-08 0.0003 1.6 

purine NTP-
dependent
helicase activity
- GO:0070035

58 3.41E-08 0.0003 0.84 

gene silencing -
GO:0016458

45 1.17E-07 0.0009 0.65 
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metal ion 
binding - 
GO:0046872 

1469 1.27E-07 0.001 21 

regulation of 
cell cycle 
process - 
GO:0010564 

164 2.11E-07 0.0011 2.4 

phosphotransfe
rase activity, 
alcohol group 
as acceptor - 
GO:0016773 

347 3.51E-07 0.0015 5 

hydrolase 
activity, acting 
on acid 
anhydrides - 
GO:0016817 

345 7.66E-07 0.0025 5 

condensed 
chromosome, 
centromeric 
region - 
GO:0000779 

27 1.02E-06 0.0031 0.39 

negative 
regulation of 
DNA metabolic 
process - 
GO:0051053 

41 1.02E-06 0.0031 0.6 

macromolecule 
modification - 
GO:0043412 

882 1.20E-06 0.0034 13 

replication fork - 
GO:0005657 

29 1.21E-06 0.0034 0.42 

histone lysine 
methylation - 
GO:0034968 

35 1.31E-06 0.0034 0.51 

reciprocal 
meiotic 
recombination - 
GO:0007131 

18 1.45E-06 0.0039 0.26 

regulation of 
microtubule 
cytoskeleton 
organization - 
GO:0070507 

56 1.90E-06 0.0055 0.81 

spindle pole - 
GO:0000922 

41 5.89E-06 0.0194 0.6 

centrosome 
organization - 
GO:0051297 

35 9.67E-06 0.0344 0.51 

regulation of 
GTPase activity 
- GO:0043087

158 1.19E-05 0.0453 2.3 

Up in P0 extracellular
region -
GO:0005576

505 1.35E-81 0.0001 15 

extracellular
space -
GO:0005615

238 5.49E-45 0.0001 7.2 

endoplasmic
reticulum -
GO:0005783

370 2.36E-30 0.0001 11 
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proteinaceous 
extracellular 
matrix - 
GO:0005578 

141 2.09E-26 0.0001 4.3 

plasma 
membrane - 
GO:0005886 

800 1.88E-25 0.0001 24 

vacuole - 
GO:0005773 

141 1.49E-24 0.0001 4.3 

biological 
adhesion - 
GO:0022610 

205 6.31E-17 0.0001 6.2 

plasma 
membrane part 
- GO:0044459

363 1.27E-13 0.0001 11 

Golgi apparatus
- GO:0005794

300 5.50E-13 0.0001 9.1 

response to
wounding -
GO:0009611

128 2.04E-12 0.0001 3.9 

chemical
homeostasis -
GO:0048878

194 3.18E-12 0.0001 5.9 

transmembrane
transporter
activity -
GO:0022857

227 4.63E-12 0.0001 6.9 

negative
regulation of
peptidase
activity -
GO:0010466

63 4.67E-12 0.0001 1.9 

response to
chemical
stimulus -
GO:0042221

432 5.58E-12 0.0001 13 

MHC protein
complex -
GO:0042611

17 1.53E-11 0.0001 0.51 

cytosolic
ribosome -
GO:0022626

46 2.89E-11 0.0001 1.4 

polysaccharide
binding -
GO:0030247

65 3.18E-11 0.0001 2 

monovalent
inorganic cation
transmembrane
transporter
activity -
GO:0015077

94 3.27E-11 0.0001 2.8 

collagen -
GO:0005581

41 4.35E-11 0.0001 1.2 

enzyme
inhibitor activity
- GO:0004857

78 4.43E-11 0.0001 2.4 

carbohydrate
binding -
GO:0030246

101 5.80E-11 0.0001 3.1 

negative
regulation of
multicellular

94 1.05E-10 0.0001 2.8 
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organismal 
process - 
GO:0051241 
apical part of 
cell - 
GO:0045177 

97 1.22E-10 0.0001 2.9 

regulation of 
biological 
quality - 
GO:0065008 

443 1.25E-10 0.0001 13 

antigen 
processing and 
presentation of 
peptide antigen 
- GO:0048002

24 2.22E-10 0.0001 0.73 

endopeptidase
regulator
activity -
GO:0061135

44 3.11E-10 0.0001 1.3 

oxidoreductase
activity -
GO:0016491

187 4.70E-10 0.0001 5.7 

establishment
of localization -
GO:0051234

649 8.33E-10 0.0001 20 

receptor activity
- GO:0004872

202 1.07E-09 0.0001 6.1 

response to
organic
substance -
GO:0010033

273 1.80E-09 0.0001 8.3 

organelle
membrane -
GO:0031090

324 1.93E-09 0.0001 9.8 

aminoglycan
metabolic
process -
GO:0006022

34 2.82E-09 0.0002 1 

sulfur
compound
metabolic
process -
GO:0006790

56 3.75E-09 0.0002 1.7 

extracellular
matrix
organization -
GO:0030198

59 4.01E-09 0.0002 1.8 

vesicle -
GO:0031982

218 4.27E-09 0.0002 6.6 

peptide binding
- GO:0042277

52 1.06E-08 0.0002 1.6 

cellular cation
homeostasis -
GO:0030003

87 1.79E-08 0.0003 2.6 

hydrogen ion
transmembrane
transporter
activity -
GO:0015078

38 2.05E-08 0.0003 1.1 

growth factor
binding -
GO:0019838

45 2.56E-08 0.0003 1.4 
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cation transport 
- GO:0006812

167 2.90E-08 0.0003 5.1 

lipid metabolic
process -
GO:0006629

205 4.42E-08 0.0006 6.2 

negative
regulation of
molecular
function -
GO:0044092

177 1.66E-07 0.0011 5.4 

regulation of
hormone levels
- GO:0010817

51 2.46E-07 0.0013 1.5 

calcium ion
binding -
GO:0005509

135 7.86E-07 0.0026 4.1 

regulation of
response to
external
stimulus -
GO:0032101

92 8.56E-07 0.0027 2.8 

regulation of
ossification -
GO:0030278

54 1.32E-06 0.0035 1.6 

negative
regulation of
transport -
GO:0051051

79 1.42E-06 0.0037 2.4 

regulation of
localization -
GO:0032879

317 1.54E-06 0.0041 9.6 

secondary
metabolic
process -
GO:0019748

15 3.24E-06 0.0107 0.45 

regulation of
multicellular
organismal
process -
GO:0051239

380 3.86E-06 0.0135 11 

secretory
granule -
GO:0030141

56 5.36E-06 0.0173 1.7 

positive
regulation of
cell migration -
GO:0030335

70 8.00E-06 0.0281 2.1 

Golgi
membrane -
GO:0000139

56 8.50E-06 0.0305 1.7 

oxidoreductase
activity, acting
on paired
donors, with
incorporation or
reduction of
molecular
oxygen -
GO:0016705

44 8.58E-06 0.0305 1.3 

chondroitin
sulfate
proteoglycan

14 1.00E-05 0.0354 0.42 
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metabolic 
process - 
GO:0050654 
sensory 
perception - 
GO:0007600 

88 1.15E-05 0.0432 2.7 

response to 
other organism 
- GO:0051707

89 1.23E-05 0.047 2.7 

Table 3.1-2 KEGG Enrichments in genes differentially expressed between ages. Enrichments found in genes 
up-regulated at E16.5 or P0 using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. See caption in 
Table 3.1-1 for the structure of the table. 

Set Enriched with #genes Raw 
p-value

Corrected 
p-Value

Frequency 
in set (%) 

Up in 
E16.5 

Homologous recombination 26 6.51E-08 6.51E-08 2.02 
Mismatch repair 22 8.62E-08 8.62E-08 2.09 
DNA replication 31 1.03E-07 1.03E-07 1.91 
Base excision repair 27 1.99E-05 1.99E-05 1.77 
Cell cycle 79 3.03E-05 3.03E-05 1.39 
Aminoacyl-tRNA 
biosynthesis 

33 4.26E-05 4.26E-05 1.64 

Non-homologous end-joining 10 6.18E-04 0.000618 2.09 
Pyrimidine metabolism 55 2.62E-03 0.00262 1.32 

Up in 
P0 

Lysosome 60 6.55E-14 6.55E-14 2.47 
Ribosome 50 2.94E-13 2.94E-13 2.63 
Cell adhesion molecules 
(CAMs) 

50 2.82E-09 2.82E-09 2.18 

ECM-receptor interaction 41 4.23E-09 4.23E-09 2.35 
Oxidative phosphorylation 55 8.05E-09 8.05E-09 2.05 
Metabolic pathways 269 3.30E-07 0.00000033 1.31 
Cytokine-cytokine receptor 
interaction 

52 2.37E-06 0.00000237 1.81 

Parkinson's disease 48 3.82E-06 0.00000382 1.84 
Antigen processing and 
presentation 

25 6.27E-06 0.00000627 2.32 

Sphingolipid metabolism 20 1.29E-05 0.0000129 2.49 
Other glycan degradation 11 1.63E-05 0.0000163 3.43 
Complement and coagulation 
cascades 

19 1.84E-05 0.0000184 2.51 

Glycosaminoglycan 
degradation 

13 3.09E-05 0.0000309 2.98 

Leukocyte transendothelial 
migration 

40 5.60E-05 0.000056 1.78 

Drug metabolism - 
cytochrome P450 

17 6.71E-05 0.0000671 2.47 

Arachidonic acid metabolism 20 1.04E-04 0.000104 2.24 
Graft-versus-host disease 11 1.23E-04 0.000123 3 
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Metabolism of xenobiotics by 
cytochrome P450 

15 2.44E-04 0.000244 2.42 

Type I diabetes mellitus 13 5.08E-04 0.000508 2.47 
Allograft rejection 11 5.63E-04 0.000563 2.67 
Asthma 7 7.63E-04 0.000763 3.39 
Systemic lupus 
erythematosus 

20 7.98E-04 0.000798 1.98 

Retinol metabolism 11 1.06E-03 0.00106 2.53 
Autoimmune thyroid disease 11 1.06E-03 0.00106 2.53 
Renin-angiotensin system 9 1.10E-03 0.0011 2.8 
Sulfur metabolism 6 2.62E-03 0.00262 3.27 
Circadian rhythm - mammal 8 3.16E-03 0.00316 2.68 
Alzheimer's disease 49 3.34E-03 0.00334 1.43 
Chondroitin sulfate 
biosynthesis 

11 4.96E-03 0.00496 2.18 

Keratan sulfate biosynthesis 8 5.89E-03 0.00589 2.49 
Cardiac muscle contraction 23 6.55E-03 0.00655 1.64 

3.1.3.2 Expression change between tissues 

According to the enrichment analysis (Table 3.1-3), a number of the differentially expressed 

(DE) genes in both the cochlea and vestibule are involved in signal transduction. In the 

cochlea, the majority of the signaling is mediated by voltage- and ligand-gated ion channels 

and can be attributed to neuron-neuron synaptic transmission. In agreement with this 

finding, other upregulated activities are neurogenesis and neuron projection. In contrast, the 

signaling in the vestibule is probably required for the coordination of both innate and 

acquired immune responses, an observation that relates to the main function enriched in this 

tissue. The signaling, some of which involves purinergic receptors, plays a role in the 

response to external stimulus and stress, and also in taxis. Another function enriched in the 

vestibule is locomotion, with the cilium and the axoneme being two enriched cellular 

components related to the movement of the HCs’ stereocilia. The vestibule is richer in blood 

vessel formation and hematopoiesis, and the extracellular matrix is more evolved than in the 

cochlea. Together with the high immune-related activity, these factors may explain why the 

vestibular cells are more adhesive. We also detected enrichment for replacement ossification, 
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suggesting the development of bone. As a generalization, upregulated genes were associated 

with neurological terms in the cochlear, but to vascular, structural, and immunological terms 

in the vestibule. This partitioning was not perfect as we could detect enrichment for 

mesenchymal cell differentiation in the cochlea, and 3.1% of the upregulated genes in the 

vestibule were annotated for a role in sensory perception. 

The KEGG enrichment (Table 3.1-4) data also agreed with the characterization of the cochlea 

as more neurological versus a more vascular vestibule. In addition, the data provided more 

information about the typical signaling in each apparatus. Neuroactive ligand signaling was 

identified in both, although the cochlea was associated with the TGF-beta, MAPK, and ErbB 

signaling pathways, while cytokine-mediated, calcium, and Toll-like receptor signaling were 

more important in the vestibule. Three pathways shown to be unique to the cochlea affect cell 

proliferation, survival, differentiation, and migration [100–102], suggesting that these 

developmental processes are more activated in the cochlea. Other unique metabolic 

pathways enriched in the cochlea were O-glycan and chondroitin sulfate biosynthesis. The 

vestibule, on the other hand, was enriched for glycan degradation and metabolic pathways 

concerning arachidonic acid, retinol, and glutathione. 

Table 3.1-3 GO Enrichments in genes differentially expressed between tissues. Enrichments found in genes 
up-regulated in the cochlea or in the vestibule (abbreviated 'coch' and 'vest' and marked green and red, 
respectively, in the 'Set' column) using GO. See caption in Table 3.1-1 for the structure of the table. 

Set Enriched with #genes Raw p-
value 

Corrected 
p-Value

Frequency 
in set (%) 

Up in 
Coch 

neuron projection - GO:0043005 195 7.65E-21 0.0001 8.2 
cell morphogenesis involved in 
differentiation - GO:0000904 

114 5.86E-17 0.0001 4.8 

multicellular organismal signaling - 
GO:0035637 

119 8.92E-17 0.0001 5 

cell morphogenesis involved in 
neuron differentiation - GO:0048667 

93 9.76E-17 0.0001 3.9 

synapse - GO:0045202 150 4.38E-16 0.0001 6.3 
signaling - GO:0023052 527 4.19E-15 0.0001 22 
gated channel activity - 
GO:0022836 

81 1.32E-14 0.0001 3.4 

regulation of neurogenesis - 
GO:0050767 

115 3.46E-14 0.0001 4.8 
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regulation of cell development - 
GO:0060284 

131 4.10E-14 0.0001 5.5 

cell-cell signaling - GO:0007267 118 2.30E-13 0.0001 5 
cell periphery - GO:0071944 559 8.81E-13 0.0001 23 
regulation of ion transmembrane 
transport - GO:0034765 

74 2.62E-12 0.0001 3.1 

system development - GO:0048731 458 3.96E-12 0.0001 19 
cell development - GO:0048468 213 4.64E-12 0.0001 8.9 
voltage-gated cation channel activity 
- GO:0022843

44 2.82E-11 0.0001 1.8 

postsynaptic membrane -
GO:0045211

58 9.64E-11 0.0001 2.4 

cell projection morphogenesis -
GO:0048858

103 1.02E-10 0.0001 4.3 

regulation of multicellular
organismal process - GO:0051239

310 1.21E-10 0.0001 13 

regulation of localization -
GO:0032879

259 1.64E-10 0.0001 11 

cellular developmental process - 
GO:0048869 

390 4.48E-10 0.0001 16 

regulation of cell differentiation - 
GO:0045595 

192 5.48E-10 0.0001 8.1 

regulation of multicellular 
organismal development - 
GO:2000026 

209 1.96E-09 0.0001 8.8 

receptor activity - GO:0004872 154 2.71E-09 0.0001 6.5 
behavior - GO:0007610 92 5.93E-09 0.0001 3.9 
regulation of system process - 
GO:0044057 

101 6.77E-09 0.0001 4.2 

cell body - GO:0044297 100 3.28E-08 0.0002 4.2 

signal transducer activity - 
GO:0004871 

158 3.55E-08 0.0002 6.6 

neuron projection terminus - 
GO:0044306 

32 3.86E-08 0.0002 1.3 

transmembrane signaling receptor 
activity - GO:0004888 

106 4.77E-08 0.0002 4.5 

transporter activity - GO:0005215 186 2.11E-07 0.0009 7.8 

extracellular ligand-gated ion 
channel activity - GO:0005230 

21 4.31E-07 0.0015 0.88 

presynaptic membrane - 
GO:0042734 

21 4.31E-07 0.0015 0.88 

neurotransmitter transport - 
GO:0006836 

30 1.01E-06 0.0031 1.3 

anatomical structure morphogenesis 
- GO:0009653

263 1.05E-06 0.0032 11 

intrinsic to plasma membrane -
GO:0031226

112 1.23E-06 0.0037 4.7 

regulation of biological quality -
GO:0065008

308 1.51E-06 0.0048 13 

regulation of transmembrane
transporter activity - GO:0022898

33 1.55E-06 0.0049 1.4 

sensory perception - GO:0007600 71 1.82E-06 0.0057 3 
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regulation of cell communication - 
GO:0010646 

243 2.42E-06 0.008 10 

mesenchymal cell differentiation - 
GO:0048762 

32 5.96E-06 0.0215 1.3 

sensory organ development - 
GO:0007423 

86 6.80E-06 0.0245 3.6 

neuron-neuron synaptic 
transmission - GO:0007270 

18 7.31E-06 0.026 0.76 

cyclic nucleotide metabolic process 
- GO:0009187

18 7.31E-06 0.026 0.76 

chemical homeostasis -
GO:0048878

126 7.93E-06 0.0292 5.3 

regulation of signaling -
GO:0023051

306 1.04E-05 0.0385 13 

cyclic nucleotide catabolic process -
GO:0009214

9 1.15E-05 0.0424 0.38 

positive regulation of transport -
GO:0051050

93 1.21E-05 0.0443 3.9 

Up in 
Vest 

extracellular region - GO:0005576 515 7.07E-52 1.00E-04 12 
plasma membrane - GO:0005886 1018 2.33E-39 1.00E-04 24 
plasma membrane part - 
GO:0044459 

500 2.72E-31 1.00E-04 12 

extracellular space - GO:0005615 234 9.16E-27 1.00E-04 5.6 
response to wounding - 
GO:0009611 

179 1.62E-25 1.00E-04 4.3 

inflammatory response - 
GO:0006954 

107 1.20E-20 1.00E-04 2.6 

regulation of multicellular 
organismal process - GO:0051239 

540 1.10E-19 1.00E-04 13 

proteinaceous extracellular matrix - 
GO:0005578 

144 2.34E-18 1.00E-04 3.5 

response to chemical stimulus - 
GO:0042221 

549 7.77E-18 1.00E-04 13 

biological adhesion - GO:0022610 242 8.37E-18 1.00E-04 5.8 
receptor activity - GO:0004872 269 1.65E-17 1.00E-04 6.5 
response to organic substance - 
GO:0010033 

356 6.61E-16 1.00E-04 8.6 

cell activation - GO:0001775 143 1.35E-15 1.00E-04 3.4 

signaling - GO:0023052 848 3.95E-15 1.00E-04 20 
innate immune response - 
GO:0045087 

88 7.56E-15 1.00E-04 2.1 

intrinsic to plasma membrane - 
GO:0031226 

204 2.03E-14 1.00E-04 4.9 

system development - GO:0048731 753 3.14E-14 1.00E-04 18 
signal transduction - GO:0007165 765 3.47E-14 1.00E-04 18 

regulation of immune response - 
GO:0050776 

121 4.23E-14 1.00E-04 2.9 

vasculature development - 
GO:0001944 

162 2.18E-13 1.00E-04 3.9 

regulation of developmental process 
- GO:0050793

425 3.54E-13 1.00E-04 10 

regulation of cellular component
movement - GO:0051270

163 1.80E-12 1.00E-04 3.9 

signal transducer activity - 
GO:0004871 

266 2.04E-12 1.00E-04 6.4 
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regulation of cell proliferation - 
GO:0042127 

329 2.14E-12 1.00E-04 7.9 

defense response to bacterium - 
GO:0042742 

41 2.32E-12 1.00E-04 0.99 

response to other organism - 
GO:0051707 

127 2.81E-12 1.00E-04 3.1 

positive regulation of cell migration - 
GO:0030335 

100 3.37E-12 1.00E-04 2.4 

regulation of response to stimulus - 
GO:0048583 

591 5.41E-12 0.0001 14 

regulation of angiogenesis - 
GO:0045765 

69 6.27E-12 0.0001 1.7 

apical part of cell - GO:0045177 115 1.27E-11 0.0001 2.8 
positive regulation of biological 
process - GO:0048518 

893 2.01E-11 0.0001 21 

developmental process - 
GO:0032502 

944 3.27E-11 0.0001 23 

immune effector process - 
GO:0002252 

82 3.98E-11 0.0001 2 

positive regulation of developmental 
process - GO:0051094 

221 1.54E-10 0.0001 5.3 

cellular developmental process - 
GO:0048869 

633 1.98E-10 0.0001 15 

anatomical structure morphogenesis 
- GO:0009653

452 2.01E-10 0.0001 11 

regulation of response to external
stimulus - GO:0032101

119 4.59E-10 0.0001 2.9 

regulation of biological quality -
GO:0065008

529 6.36E-10 0.0001 13 

anatomical structure formation 
involved in morphogenesis - 
GO:0048646 

222 1.47E-09 0.0001 5.3 

lipid metabolic process - 
GO:0006629 

251 2.37E-09 0.0001 6 

negative regulation of multicellular 
organismal process - GO:0051241 

105 2.52E-09 0.0001 2.5 

cilium - GO:0005929 95 3.11E-09 1.00E-04 2.3 

chemical homeostasis - 
GO:0048878 

215 6.79E-09 1.00E-04 5.2 

myeloid leukocyte activation - 
GO:0002274 

38 1.10E-08 2.00E-04 0.91 

vacuole - GO:0005773 121 2.83E-08 2.00E-04 2.9 

regulation of leukocyte migration - 
GO:0002685 

38 4.04E-08 2.00E-04 0.91 

positive regulation of defense 
response - GO:0031349 

52 4.25E-08 2.00E-04 1.3 

positive regulation of cytokine 
production - GO:0001819 

64 4.46E-08 2.00E-04 1.5 

multicellular organismal 
homeostasis - GO:0048871 

50 6.39E-08 4.00E-04 1.2 

locomotion - GO:0040011 211 7.81E-08 4.00E-04 5.1 

receptor binding - GO:0005102 298 1.07E-07 5.00E-04 7.2 
cell-cell junction - GO:0005911 102 1.60E-07 8.00E-04 2.5 
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cytokine production - GO:0001816 37 1.61E-07 8.00E-04 0.89 
activation of innate immune 
response - GO:0002218 

26 1.73E-07 8.00E-04 0.63 

blood circulation - GO:0008015 77 1.76E-07 8.00E-04 1.9 

regulation of localization - 
GO:0032879 

390 1.98E-07 9.00E-04 9.4 

membrane raft - GO:0045121 84 2.43E-07 1.10E-03 2 
hemopoiesis - GO:0030097 125 2.47E-07 1.10E-03 3 
response to external stimulus - 
GO:0009605 

191 2.82E-07 1.10E-03 4.6 

regulation of response to stress - 
GO:0080134 

175 3.80E-07 1.40E-03 4.2 

regulation of plasma lipoprotein 
particle levels - GO:0097006 

19 4.04E-07 1.40E-03 0.46 

adaptive immune response based 
on somatic recombination of 
immune receptors built from 
immunoglobulin superfamily 
domains - GO:0002460 

40 4.61E-07 1.50E-03 0.96 

leukocyte differentiation - 
GO:0002521 

78 4.62E-07 1.50E-03 1.9 

vascular process in circulatory 
system - GO:0003018 

36 5.91E-07 1.90E-03 0.87 

regulation of cell adhesion - 
GO:0030155 

92 6.83E-07 2.20E-03 2.2 

phagocytosis - GO:0006909 34 8.48E-07 2.50E-03 0.82 
unsaturated fatty acid metabolic 
process - GO:0033559 

28 1.29E-06 3.70E-03 0.67 

carbohydrate binding - GO:0030246 103 1.66E-06 5.30E-03 2.5 
lipid binding - GO:0008289 197 1.82E-06 5.70E-03 4.7 
positive regulation of signal 
transduction - GO:0009967 

212 1.84E-06 5.80E-03 5.1 

antigen processing and 
presentation - GO:0019882 

27 2.84E-06 1.00E-02 0.65 

regulation of hormone levels - 
GO:0010817 

56 2.86E-06 1.01E-02 1.3 

positive regulation of cell adhesion - 
GO:0045785 

51 2.98E-06 1.09E-02 1.2 

production of molecular mediator 
involved in inflammatory response - 
GO:0002532 

12 3.00E-06 1.10E-02 0.29 

leukocyte chemotaxis - 
GO:0030595 

29 3.65E-06 1.32E-02 0.7 

polysaccharide binding - 
GO:0030247 

62 3.88E-06 1.37E-02 1.5 

calcium ion binding - GO:0005509 157 3.99E-06 1.39E-02 3.8 
taxis - GO:0042330 95 4.69E-06 1.59E-02 2.3 
cellular cation homeostasis - 
GO:0030003 

93 5.47E-06 1.92E-02 2.2 

axoneme - GO:0005930 21 6.45E-06 2.36E-02 0.5 
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plasma lipoprotein particle - 
GO:0034358 

15 7.62E-06 2.77E-02 0.36 

purinergic receptor activity - 
GO:0035586 

15 7.62E-06 2.77E-02 0.36 

regulation of protein secretion - 
GO:0050708 

41 8.14E-06 0.0302 0.99 

replacement ossification - 
GO:0036075 

16 8.24E-06 0.0306 0.38 

regulation of tumor necrosis factor 
production - GO:0032680 

30 8.98E-06 0.0342 0.72 

cytokine biosynthetic process - 
GO:0042089 

11 9.59E-06 0.036 0.26 

Table 3.1-4 KEGG Enrichments in genes differentially expressed between tissues. Enrichments found in 
genes up-regulated in the cochlea or in the vestibule using KEGG enrichment. See caption in Table 3.1-3 for the 
structure of the table. 

Set Enriched with #genes Raw 
p-value

Corrected 
p-Value

Frequency 
in set (%) 

Up in 
Coch 

TGF-beta signaling pathway 29 1.84E-
06 

1.84E-06 2.41 

Neuroactive ligand-receptor 
interaction 

40 2.27E-
06 

2.27E-06 2.07 

Axon guidance 39 3.42E-
05 

3.42E-05 1.89 

Long-term depression 21 3.88E-
04 

3.88E-04 2.12 

O-Glycan biosynthesis 10 8.96E-
04 

8.96E-04 2.88 

MAPK signaling pathway 56 0.0017 0.0017 1.46 
Fc epsilon RI signaling 
pathway 

20 0.00385 0.00385 1.83 

ErbB signaling pathway 24 0.00386 0.00386 1.73 
Chondroitin sulfate 
biosynthesis 

9 0.00573 0.00573 2.48 

Gap junction 21 0.00608 0.00608 1.74 
Up in 
Vest 

Cytokine-cytokine receptor 
interaction 

74 1.26E-
12 

1.26E-12 2.05 

Leukocyte transendothelial 
migration 

54 4.39E-
08 

4.39E-08 1.91 

Cell adhesion molecules 
(CAMs) 

53 3.18E-
07 

0.000000318 1.84 

ECM-receptor interaction 41 3.73E-
06 

0.00000373 1.87 

Lysosome 52 8.33E-
06 

0.00000833 1.7 

Hematopoietic cell lineage 28 1.07E-
05 

0.0000107 2.07 

Arachidonic acid metabolism 22 2.85E-
04 

0.000285 1.96 
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Neuroactive ligand-receptor 
interaction 

50 8.87E-
04 

0.000887 1.48 

Complement and coagulation 
cascades 

18 1.71E-
03 

0.00171 1.89 

Focal adhesion 72 1.91E-
03 

0.00191 1.35 

Retinol metabolism 12 1.93E-
03 

0.00193 2.19 

Calcium signaling pathway 53 2.27E-
03 

0.00227 1.41 

Toll-like receptor signaling 
pathway 

33 2.77E-
03 

0.00277 1.55 

Metabolism of xenobiotics by 
cytochrome P450 

15 3.25E-
03 

0.00325 1.93 

Drug metabolism - 
cytochrome P450 

16 4.13E-
03 

0.00413 1.85 

Graft-versus-host disease 10 5.21E-
03 

0.00521 2.17 

Glutathione metabolism 21 6.08E-
03 

0.00608 1.65 

Other glycan degradation 9 6.21E-
03 

0.00621 2.23 

Renin-angiotensin system 9 6.21E-
03 

0.00621 2.23 

3.1.3.3 Tissues expression ratio change with age 

Genes for which the cochlea to vestibule expression ratio increased with age � 𝐹𝐹𝐶𝐶𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑎𝑎
𝑉𝑉𝑙𝑙𝑠𝑠𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙

↑�, 

were enriched with processes related to sensory perception and central nervous system 

development, as well as signaling through G-coupled receptors, ligand-gated ion channels, or 

calcium (Table 3.1-5). Accordingly, a significant number of genes were annotated to be in the 

apical part of the cell. Other genes annotated to the extracellular region might mediate the 

biological adhesion, which increases during development. Another enriched component was 

identified as the sarcomere, which most closely resembles the stereocilia in the inner ear. 
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Table 3.1-5 GO Enrichments in genes for which the cochlea to vestibule expression ratio changes with age. 
Enrichments found in genes for which the cochlea to vestibule expression ratio is increasing or decreasing with 
age (marked green and red, respectively, in the 'Set' column) using GO. See caption in Table 3.1-1 for the 
structure of the table. 

Set Enriched with #genes Raw p-
value 

Corrected 
p-Value

Frequency 
in set (%) 

𝑪𝑪
𝑽𝑽
↑ extracellular region - GO:0005576 127 3.21E-21 1.00E-04 17 

inner ear development - 
GO:0048839 29 6.77E-11 1.00E-04 3.9 
calcium ion binding - GO:0005509 54 1.28E-10 1.00E-04 7.2 
sensory organ development - 
GO:0007423 48 1.37E-10 1.00E-04 6.4 
sensory perception - GO:0007600 40 2.78E-10 1.00E-04 5.4 
system development - GO:0048731 163 2.42E-08 1.00E-04 22 
plasma membrane - GO:0005886 190 3.18E-08 1.00E-04 26 
receptor activity - GO:0004872 63 5.19E-08 1.00E-04 8.5 
anatomical structure morphogenesis 
- GO:0009653 106 7.57E-08 1.00E-04 14 
gated channel activity -
GO:0022836 31 1.22E-07 2.00E-04 4.2 
transmembrane signaling receptor
activity - GO:0004888 46 1.48E-07 3.00E-04 6.2 
cell-cell signaling - GO:0007267 44 2.38E-07 7.00E-04 5.9 
behavior - GO:0007610 39 2.95E-07 8.00E-04 5.2 
excitatory extracellular ligand-gated 
ion channel activity - GO:0005231 11 2.98E-07 8.00E-04 1.5 
cation channel activity - 
GO:0005261 28 4.54E-07 0.0014 3.8 
mechanoreceptor differentiation - 
GO:0042490 13 7.35E-07 0.0022 1.7 
detection of stimulus involved in 
sensory perception - GO:0050906 12 8.27E-07 0.0023 1.6 
response to mechanical stimulus - 
GO:0009612 13 1.19E-06 0.0038 1.7 
G-protein coupled receptor activity -
GO:0004930 27 1.61E-06 0.0048 3.6 
chemical homeostasis -
GO:0048878 53 3.42E-06 0.0113 7.1 
sarcomere - GO:0030017 17 4.09E-06 0.0123 2.3 
negative regulation of neuron 
differentiation - GO:0045665 12 5.92E-06 0.0195 1.6 
biological adhesion - GO:0022610 51 7.12E-06 0.0221 6.8 
apical part of cell - GO:0045177 29 7.46E-06 0.0227 3.9 
embryonic morphogenesis - 
GO:0048598 40 7.81E-06 0.0235 5.4 
central nervous system 
development - GO:0007417 42 9.24E-06 0.0272 5.6 
cellular developmental process - 
GO:0048869 132 9.75E-06 0.029 18 
plasma membrane part - 
GO:0044459 90 1.08E-05 0.0318 12 
negative regulation of astrocyte 
differentiation - GO:0048712 6 1.31E-05 0.0375 0.81 
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𝑪𝑪
𝑽𝑽
↓ plasma membrane - GO:0005886 331 1.80E-18 1.00E-04 27 

neuron projection - GO:0043005 105 1.39E-12 1.00E-04 8.7 
extracellular region - GO:0005576 146 1.97E-11 1.00E-04 12 
multicellular organismal signaling - 
GO:0035637 67 3.02E-11 1.00E-04 5.5 
transmembrane transporter activity - 
GO:0022857 105 3.19E-11 1.00E-04 8.7 
synapse - GO:0045202 84 4.35E-11 1.00E-04 6.9 
regulation of multicellular 
organismal process - GO:0051239 181 4.58E-11 1.00E-04 15 
cell-cell signaling - GO:0007267 70 7.87E-11 1.00E-04 5.8 
plasma membrane part - 
GO:0044459 155 9.09E-11 1.00E-04 13 
ion transmembrane transporter 
activity - GO:0015075 86 1.03E-10 1.00E-04 7.1 
regulation of localization - 
GO:0032879 151 2.39E-10 1.00E-04 12 

extracellular space - GO:0005615 77 3.51E-10 1.00E-04 6.4 
passive transmembrane transporter 
activity - GO:0022803 58 3.79E-10 1.00E-04 4.8 
regulation of ion transmembrane 
transport - GO:0034765 44 2.25E-09 1.00E-04 3.6 
signaling - GO:0023052 271 9.90E-09 1.00E-04 22 
regulation of system process - 
GO:0044057 62 1.53E-08 1.00E-04 5.1 
cellular developmental process - 
GO:0048869 212 3.62E-08 1.00E-04 18 

system development - GO:0048731 240 5.37E-08 1.00E-04 20 
intrinsic to plasma membrane - 
GO:0031226 69 3.24E-07 0.0012 5.7 
establishment of localization - 
GO:0051234 255 3.59E-07 0.0013 21 
proteinaceous extracellular matrix - 
GO:0005578 46 1.12E-06 0.0038 3.8 

cell development - GO:0048468 108 1.47E-06 0.0047 8.9 
regulation of neurotransmitter 
secretion - GO:0046928 12 2.04E-06 0.0062 0.99 
cell projection morphogenesis - 
GO:0048858 54 2.15E-06 0.0066 4.5 
cell morphogenesis involved in 
neuron differentiation - GO:0048667 42 2.55E-06 0.008 3.5 
locomotion - GO:0040011 76 2.67E-06 0.0085 6.3 
cell body - GO:0044297 56 3.10E-06 0.0107 4.6 
regulation of action potential - 
GO:0001508 24 3.23E-06 0.0112 2 
pigment granule - GO:0048770 9 4.39E-06 0.0129 0.74 
regulation of biological quality - 
GO:0065008 169 5.82E-06 0.0193 14 
polysaccharide binding - 
GO:0030247 27 7.27E-06 0.0223 2.2 
regulation of cell communication - 
GO:0010646 135 7.28E-06 0.0224 11 
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neurotransmitter transport - 
GO:0006836 19 8.34E-06 0.0246 1.6 
behavior - GO:0007610 49 9.65E-06 0.0285 4 

We can envision two possible scenarios for each of these enrichments. The first option is that 

genes annotated for enrichment were upregulated in the cochlea at E16.5 and the gap 

between the cochlea and the vestibule increased during development. The second option is 

that these genes were upregulated in the vestibule at E16.5 and the gap between the cochlea 

and the vestibule decreased during development. To distinguish between the two, we 

compared the expression of all genes that are annotated for each GO term. The median 

expression log-ratio between the cochlea and the vestibule at P0 was plotted against the 

value of the same parameter at E16.5 (Figure 3.1-3, circles). The plot only contains the terms 

for which the gap between the cochlea and the vestibule significantly increased with age. 

More precisely, only terms for which the log-ratios at P0 were larger than their paired values 

at E16.5 were included (Wilcoxon signed rank test, q values ≤ 0.05). 

Interestingly, the vestibule is appeared to be more specialized for sensory perception at 

E16.5 than the cochlea, as manifested by a negative median log-ratio for terms sensory 

perception, mechanoreceptor differentiation, and detection of stimulus involved in sensory 

perception. However, by P0, the cochlea surpassed the vestibule in all of these fields. In 

contrast, ligand-gated ion channel activity was already higher in the cochlea at E16.5, and the 

gap only increased with development. 

Genes for which the vestibule to cochlea ratio increased with age �Vestibule
Cochlea

↑� were enriched 

for signaling, neuron projection, neurotransmitter transport, and secretion. These are all 

functions that were higher in the cochlea at E16.5, and for which the difference between the 

vestibule and the cochlea decreased with time (Figure 3.1-3, triangles). 



66 

Figure 3.1-3 GO terms enriched with genes affected by age-tissue interaction. The median cochlea to vestibule 
(C/V) expression ratios of genes annotated for GO terms at P0 (y-axis) against E16.5 (x-axis). Circles mark GO terms 
enriched in genes with increased C/V ratios between E16.5 and P0, and for which the ratios of all annotated genes 
are higher at P0 than at E16.5. Triangles mark GO terms with parallel properties for the reciprocal ratio (V/C). 

3.1.4 Deafness genes can be predicted using expression patterns 

A list of 140 different genes associated with human deafness was compiled from a public 

dataset (http://hereditaryhearingloss.org/). Expression data for homologous mouse genes of 

130 of them is available in our dataset. We observed general patterns of expression for these 

syndromic and non-syndromic deafness genes (DGs). First, when comparing vestibular and 

cochlear expression, the fold-changes (FCs) of the DGs are higher in absolute value than the 

background FCs (p-value = 1.98*10-5, one-sided Wilcoxon rank sum test; Figure 3.1-4, upper 

subfigure). Also, the FCs of nonsyndromic DGs are slightly higher in absolute value than the 

http://hereditaryhearingloss.org/
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FCs of syndromic DGs (p-value = 7.00*10-2, same test). That is, DGs tend to be tissue-specific, 

with the nonsyndromic genes being even more specific. Interestingly, the majority of the DE 

DGs are higher in the vestibule than in the cochlea, in spite of the cochlea's role in hearing (57 

out of 76, p-value = 2.19*10-5, two-sided proportion test). 

Second, when comparing P0 and E16.5 expressions, DGs tend to have higher FCs compared to 

background FCs (p-values = 6.32*10-6, one-sided Wilcoxon rank sum test; Figure 3.1-4, 

middle subfigure). I.e., their expression tends to increase with development. Third, their 

cochlea to vestibule expression ratio tends to increase with development compared to 

background (p-values = 5.15*10-6, same test; Figure 3.1-4, lower subfigure). Moreover, the 

increase in the ratio of nonsyndromic DGs is higher than that for syndromic genes (p-value = 

3.48*10-3, same test). 

3.1.4.1 Deafness genes prediction 

Using the three types of FCs and the averaged expression (see Methods), we built a classifier 

that can predict whether a gene is a DG. The classifier achieved a ROC score of 0.66±0.04 

across repeated training/test splits. A ROC score higher than 0.5 means that these expression 

data have some predictive value on whether a gene is related to deafness. This classifier 

performs better than a similar classifier that uses the averaged RPKM values in each 

condition as features (ROC score: 0.60±0.05). Also, removing one of more of the four feature 

types from the original classifier resulted in a lower score. 
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Figure 3.1-4 FCs against average expression for deafness and non-deafness genes. Each point is a gene. The 
logarithm of the FCs of genes between tissues (upper), ages (middle), and age-tissue combinations (lower), are 
plotted against their averaged expression across samples (in log counts per million [CPM]). Transparent points 
correspond to genes that are not differentially expressed in the corresponding comparison. Deafness genes are 
marked with larger points, and are colored based on the type of deafness they are involved at.  

Genes not marked as DGs might still be undiscovered DGs. In this sense our classifier was 

trained to distinguish between known DGs and genes with unknown role in deafness. We 

refer to the first group of genes as positive and the second group as unlabeled. We wished to 

adapt our positive-unlabeled (PU) classifier to output the probability that an unlabeled gene 

is a positive gene. This type of classification is referred to as transductive PU learning [103]. 

Suppose that the known DGs are a random subset of all DGs, i.e. the features we explored 

impose no bias over which of the positive genes is labeled. Then, the probability that the PU 

classifier assigns to the positivity of new genes [70]: (i) correctly ranks the genes; (ii) the 

probabilities are only off by a constant factor. We used a bagging-like algorithm similar to the 

one presented in [103] in order to calculate the probabilities for the set of unlabeled genes, 
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with some differences detailed in Methods. One main difference between our approach and 

the one in [103] was that we kept the same proportion of positive (labeled) samples in the 

training set as in the test set, whereas in [103] all positive samples were included in training. 

This property allowed us to fix biases in the probabilities at the price of losing some 

predictive power. One source of bias was due to undersampling in the learning process [72]. 

A second source of bias was the one described above for a PU classifier. We addressed the 

latter using methods presented in [70]. 

To gain some insight about the accuracy of our estimator, in spite of the lack of true labeling 

for the unlabeled set, we downloaded lists of genes that were associated with HL according to 

the text mining tools DigSeE [73], DisGeNET [74] and DISEASES [75]. We refer to these genes 

as deafness associated genes. We found 1313 genes associated with deafness by at least one 

tool, 115 of which are known DGs, covering 82% of all known DGs. The respective numbers 

for mouse homologs were 1021, 106 and 82%. See Figure 3.1-5 for a comparison of the lists 

provided by the tools. Assuming a considerable portion of these genes are undiscovered DGs 

we wished our algorithm to rank those higher than genes that are neither known DGs nor 

deafness associated. 
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Figure 3.1-5 Number of genes associated with hearing loss. Left: A Venn diagram of the number of human genes 
associated with HL according to the text mining tools DigSeE, DisGeNET and DISEASES (see Methods). A darker 
region corresponds to a higher fraction of known deafness genes in the relevant set. Right: similar figure after 
converting the human genes to their mouse homologs. The text mining tools used showed marked differences in the 
numbers of associated genes and percentages of known DG within them (DiGSeE: 1009 genes, 10.5% are known DG; 
DISEASES: 412 genes, 19.4% are known DG; DisGeNet: 115 genes, 13.0%). A higher percentage of known DG 
indicates a higher specificity. Thus, the largest list provided by DigSeE is relatively nonspecific, but might be more 
sensitive than the other lists, and the medium size list provided by DISEASES might not be as sensitive, but it is more 
specific. As expected, the higher the number of text mining tools associating a gene with deafness, the higher the 
probability of the gene to be a known DG. 

Our bagging-like algorithm resulted in a PU classifier with a ROC score of 0.694. The 

probabilities from this native classifier were biased upward due to undersampling. 

Correcting for this bias resulted in a better calibration of the probabilities, as demonstrated 

by a calibration plot (Figure 3.1-6, left), and the lowering of the Brier Score (BS) from 

2.07*10-1 to 8.47*10-3. 
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Figure 3.1-6 Probability calibration plots for classification models. The prediction space was discretized into 
11 bins. Genes with predicted DG probability between 0 and 0.09 fell in the first bin, between 0.09 and 0.18 in the 
second bin, etc. For each bin, the mean predicted value was plotted against the true fraction of positive cases, along 
with the 95% binomial confidence interval. If the model is well calibrated the points should fall near the diagonal 
line. Left: The predicted probabilities of the PU classifier were either used directly (red) or calibrated for 
undersampling [72] (yellow). The plot shows how consistent the probabilities are with known deafness genes rates. 
Right: Three methods (e1, e2, e3) were used in order to calibrate the probabilities of the PU classifier for the 
classification of deafness genes versus non deafness genes [70]. The calibration was performed after an initial 
calibration for undersampling. As the true label of an unlabeled gene is unknown, we use as proxy the association 
of such gene with deafness according to text mining tools. The calibration data for e1, e2, and e3 are colored green, 
blue, and purple, respectively. For some combinations of bins and calibration methods, there were no samples in 
the bin, and thus the mean predicted values were not plotted. For example, no gene was predicted to be a DG with a 
probability over 60% using the e3 method, so no purple points are plotted above this value in the x-axis. 

 We tried three different methods (e1,e2,e3; see [70]) to correct the bias in the probabilities 

caused by the PU scenario. All three methods first estimate the probability that a known DG is 

labeled 𝑝𝑝(𝑠𝑠 = 1|𝑦𝑦 = 1) in order to perform the calibration. The estimates for this probability 

according to e1, e2, and e3 were 0.032±0.014, 0.022±0.007, and 0.518±0.248, respectively. 

The estimates made by e1 and e2 support the existence of a few thousands DG, compared 

with a few hundred according to e3 (4.1*103, 5.9*103, and 2.5*102, respectively). We believe 

that given the status of deafness research, the last estimate is more reasonable. To test it 

further, we assessed the calibration of the probabilities produced by each method. For this, 

we assumed that deafness associated genes are in fact deafness genes. The e3 method resulted 

in the best calibration, as demonstrated by a calibration plot (Figure 3.1-6, right), and the 
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lowest BS (scores: 6.64*10-2, 1.20*10-1, 2.84*10-1, 6.45*10-2 for no fix, e1, e2, and e3, 

respectively). Hence, we decided to use e3 probabilities in the subsequent stages. We mark 

the probability that gene g is positive according to e3 estimate pg. 

We reran our bagging-like algorithm, but this time we chose to treat a gene g as a positive 

example with probability pg, and as a negative example with probability 1 - pg. This 

reassignment was performed before each iteration. Finally, we recalculated the ROC score of 

our classifier. For this, we ignored known deafness genes in this scoring to allow proper 

separation of training and test stages. With the rerun we achieved a slightly better ROC score 

(0.602 vs 0.600, p<0.05, DeLong's test for two correlated ROC curves [69]). We chose to 

continue with the rerun classifier. We performed the calibration due to undersampling on 

these probabilities as well. The predictions for both human genes and mouse orthologs are 

available upon request. The twenty mouse genes with the highest predicted probabilities 

contain the known nonsyndromic DGs Smpx and Ptprq, seven deafness associated genes (Gfi1, 

Lhx3, Erbb4, Ephx1, Il33, Slc52a3, and Ttr), and nine genes not associated with deafness (Mlf1, 

Nell1, Espnl, Rbm24, Lrrc10b, Agr3, Tgm2, Id4Cd164l2, and Faim2). 

In order to choose a discrimination threshold for our binary classifier, we offer two assisting 

plots. Both of which demonstrate how well our classifier predicts deafness associated genes, 

again ignoring known DGs. The first is a ROC curve, which visualizes the balance between 

specificity and sensitivity (Figure 3.1-7, top). The threshold maximizing the sum of the two is 

suggested as a candidate threshold.  
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Figure 3.1-7 Choosing a threshold probability for discriminating deafness associated genes. The two plots 
demonstrate the effect of choosing a threshold on the balance between sensitivity and specificity of prediction. Top: 
a standard ROC curve. A gene associated with deafness according to any of the text mining tools is considered a 
positive gene, all others are considered negative. Bottom: Threshold determination based on comparison of 
association scores. At each threshold, it assigns significance to the difference between the association scores of 
genes above the threshold and all other genes, according to Wilcoxon rank sum test. A higher− 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝑷𝑷 value suggests 
a more significant difference, in direction of higher association scores for genes above the threshold. Line color 
indicates the source of the association scores used. Two thresholds are marked in both graphs. The first is the 
threshold value for which the sum of specificity and sensitivity of the ROC curve is highest (upper: circle shape; 
lower: solid vertical line). The second is the threshold value which the Wilcoxon test is most significant for the 
"Combined" association score (upper: triangle shape; lower: dotted line). 
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A disadvantage of a ROC curve in our context is that it ignores the association scores provided 

by the text mining tools. In order to account for these scores, we considered the range of 

values of the threshold and for each one compared the association scores of the genes with 

probabilities higher than the threshold with all other genes using a non-parametric test (one-

tailed Wilcoxon rank sum test). We hypothesized that genes above the 'right' threshold will 

tend to have higher association scores. We analyzed separately the association scores from 

each tool and also ran this analysis on scoring based on all three tools (see Methods). We 

plotted − log2 𝑃𝑃 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒 against the threshold (Figure 3.1-7, bottom). The threshold 

minimizing the p-value for the combined scoring is suggested as a candidate threshold. The 

suggested thresholds according to the ROC curve and the Wilcoxon test are 0.027 and 0.043, 

respectively. The respective numbers of genes passing the thresholds are 4764 and 1934. 

Other thresholds may also be considered, depending on the required number of candidates, 

specificity and sensitivity. We recommend choosing thresholds that give local maxima using 

either curve. 

3.1.5 Transcription factors affecting expression 

We searched for enrichments of transcription factor (TF) binding sites in the three sets of DE 

genes. We associated 6, 43, and 10 motifs with the expression change across age, tissue, and 

age-tissue interaction (i.e., the change in the cochlea to vestibule expression ratio throughout 

development). Considering that the number of genes DE between the two tissues is about 

35% less than the number DE between the ages, it is very surprising that the number of 

motifs regulating tissue differences is almost seven-fold the number regulating age 

differences. Overall, we found 50 unique motifs across all comparisons, and manually 

connected them with 64 mouse TFs (i.e., few motifs were associated with multiple TFs). 
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For each TF, we tested whether the gene itself was DE in the same comparison where its 

targets were DE. This property interests us for three reasons: (i) It suggests whether the 

regulation of the TF activity is (at least partially) transcriptional. Knowing how a TF is 

regulated makes it a better candidate for experimental interventions. (ii) The direction in 

which a TF is DE implies whether it works as a repressor or an activator. (iii) It strengthens 

our faith that the associated motif, found in the enrichment analysis, is important for 

regulation, and not a false-positive. 30/64 of the TF were DE (in at least one comparison). 

In order to obtain more insight as to how the levels of the TFs affect their targets, we plotted 

the median FC (FC) of all targets of a specific motif, against the median FC of the TFs 

associated with that motif (Figure 3.1-8). In all comparisons, we observed a positive, yet 

insignificant correlation between the two (Pearson's r=0.51, 0.05, 0.52 for the comparisons 

across tissue, age, and age-tissue interaction, respectively; combined p-value [104]=0.15). 

Among the factors that contribute to the incomplete correlation is the post-transcriptional 

regulation of TFs, which reduces the correlation between the transcript levels of a TF and its 

activity. Also, while most TFs activate transcription of the targets, others repress 

transcription of some or all of their targets. And third, taking the median FC of the TFs 

associated with a motif ignores complex relationships between them, such as the ability of a 

subset to activate transcription without the others (we will later see an example for the motif 

AHRHIF).  

Then, we intersected the TFs found in our developmental experiment, with those shown to 

change their expression in avian regeneration of IE sensory epithelia [66] (Figure 3.1-9). This 

was done in the hope of finding common pathways to IE development and regeneration, and 

specifically revealing those essential for either proliferation of support cells or 

transdifferentiation to HCs. Out of 712 DE TFs in the regeneration experiment, we mapped 



76 

596 to orthologous mouse genes. The intersection with our list of 64 TFs yielded 33 TFs 

involved in both development and regeneration, 8 of which are also DE. 

Figure 3.1-8 Expression of Transcription factors and their targets. For the motifs enriched in the differentially 
expressed genes, we plotted the average log fold-change (FC) of the genes with the motif in their promoter, against 
the median logFC of the transcription factors associated with the motif. The subset of relevant motifs and the fold-
changes were determined separately for each comparison: between ages (upper left), tissues (lower), and the 
interaction of age and tissue (upper right). The color indicates the gene set in which the motif was enriched. A linear 
regression line was added to each plot. 

Finally, we performed a comprehensive literature search for the motifs found in the context 

of IE development. For a small subset, the results are detailed in the following sections 

(3.1.5.1-3) (complete list available upon request). 



77 

Figure 3.1-9 Transcription factors involved in avian HC regeneration. For the motifs enriched in the 
differentially expressed genes, we illustrated how their associated transcription factors (TFs) changed during a 
previous avian sensory epithelia regeneration experiment [66]. In that study, TF expression was measured in 
consecutive time points after the infliction of damage (either laser or Neomycin [NEO]) to an IE tissue (either 
cochlea [CO] or utricle [UTR]). Each tile represents a single measurement. The color indicates whether the TF 
expression was significantly high (red) or low (green) at this time point. The TFs and their associated TRANSFAC 
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motifs [105] are indicated on the x-axis. The subset of relevant TFs was determined separately for each comparison: 
between ages (upper left), tissues (lower), and the interaction of age and tissue (upper right).  

3.1.5.1 Expression change with age 

In the set of genes up-regulated at E16.5, we see enrichments of binding sites for the motifs: 

Elk-1, Nrf-1, E2F-1, E2F, NF-Y, and AHRHIF (Table 3.1-6). The subset Elk-1, Nrf-1, NF-Y, E2F-

1, and some TFs associated with the motifs AHRHIF (Arnt and AhR) are up-regulated at E16.5 

(Table 3.1-7), in concordance with the change of expression of their regulated genes. Hif1a, 

also associated with AHRHIF, is up-regulated at P0, suggesting that the up-regulation of Arnt 

controlled genes, is achieved by an increase in the formation of the heterodimer Arnt:AhR 

and not Arnt:Hif1a [106].  

ELK1 and TFs associated with AHRHIF are changing their expression during regeneration. In 

[66], the expression of ELK1 increased 30 min after wounding cochlear HCs with laser, 

marking an early signaling event that occurs after epithelial damage. As for the expression of 

the AHRHIF TFs, ARNT increased 24 hrs after exposing cochlear HCs to neomycin, and then 

by 48 hrs it decreased along with HIF1A and AHR. These time points reflect a change of 

expression in the SCs [66]. ARNT transient increase during regeneration resembles its 

transient expression pattern during normal IE development, where it expresses between E13 

to E17 in mouse cochlear epithelial cells [107]. The three TFs are known to mediate tissue 

damage caused by a different toxic compound (TCDD [108]). 

In the set of genes up-regulated at P0, we do not see enrichments of binding sites. 

Table 3.1-6 Motifs enriched in genes differentially expressed between ages. Enrichments for motif binding 
sites found in genes up-regulated at E16.5. For each motif, we provide the TRANSFAC motif name [105], the 
number of genes with the motif in their promoter (#genes), the significance of the enrichment, and the ratio of the 
fraction of genes with the motif in their promoter in the set to the analogous fraction in the background 
(Enrichment factor). Notably, no enrichments were found in genes up-regulated at P0. 

Set Enriched with #genes p-Value Enrichment
factor 

Up in E16.5 M00025[Elk-1] 1542 4.80E-13 1.152 
M00652[Nrf-1] 2195 6.77E-08 1.085 



79 

M00940[E2F-1] 717 1.56E-05 1.136 
M00024[E2F] 423 1.30E-02 1.152 
M00287[NF-Y] 1529 1.80E-02 1.058 
M00976[AHRHIF] 1659 2.20E-02 1.068 

Table 3.1-7 Levels of transcription factors affecting expression change with age. Each motif in 6 was 
associated with one or more TFs. For each such TF we provide the average expression across samples (in log 
counts per million [CPM]), the logarithm of the fold-change of its expression between conditions (P0/E16.5), the 
q-value for testing of differential expression of the TF between conditions, and an indicator for whether the TF is 
differentially expressed (DE) using the threshold q-value≤0.05.

Set Motif TF Log CPM Log FC FDR DE 
Up in E16.5 M00025[Elk-1] Elk1 5.43 -0.23 1.95E-02 TRUE 

M00652[Nrf-1] Nrf1 5.41 -0.47 3.38E-05 TRUE 
M00940[E2F-1] E2f1 3.68 -1.37 1.38E-32 TRUE 
M00024[E2F] E2f1 3.68 -1.37 1.38E-32 TRUE 
M00287[NF-Y] Nfya 5.93 -1.50 6.54E-35 TRUE 

M00976[AHRHIF] Arnt 6.44 -0.38 6.46E-05 TRUE 
M00976[AHRHIF] Hif1a 7.85 0.45 3.40E-07 TRUE 
M00976[AHRHIF] Arntl 4.78 0.41 2.45E-04 TRUE 
M00976[AHRHIF] Ahr 5.95 -0.46 3.57E-04 TRUE 

3.1.5.2 Expression change between tissues 

In the set of genes up-regulated in the cochlea, we see enrichments of binding sites for the 

motifs: HIC1, E2F, ZNF219, ZF5, UF1H3BETA, MOVO-B, MAZ, VDR, MAZR, MTF-1, c-Myc:Max, 

AP-2, CAC-binding protein, ETF, E47, Lmo2 complex, RREB-1, LBP-1, CP2/LBP-1c/LSF, and 

Spz1 (Table 3.1-8, green). TFs associated with E2F, ZF5, and MAZ are significantly up-

regulated in the cochlea, while TFs associated with MOVO-B, VDR, and Lmo2 complex are up-

regulated in the vestibule (Table 3.1-9, green). TFs associated with 10 of these 20 motifs 

(LBP-1, Lmo2 complex, E47, E2F, ZNF219, ZF5, MTF-1, c-Myc:Max, AP-2, CP2/LBP-1c/LSF) 

change their expression during the regeneration of IE sensory epithelia [66]. 

We will focus on the overlap of the lists. The E2F enrichment marks a higher proliferation 

rate in the cochlea at the relevant period of development. Given the role of this TF family in 

inducing proliferation, their involvement in HC regeneration is not surprising, and is 
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currently in active research [31]. ZF5 is known mainly as a repressor of transcription, 

specifically regulating cell cycle progression (through c-myc [109]) and cognitive 

development (through FMR1 [110]). Thus, it is unexpected to see its expression up-regulated 

in the cochlea, where its targets are up-regulated. This might indicate that ZF5 has an 

additional activating role, or that another TF is activating the transcription these targets, and 

ZF5 is up-regulated as part of a negative feedback loop. In avian HC regeneration ZF5 cochlear 

expression increases in late recovery from neomycin damage, suggesting it has a role in 

cochlear HC differentiation. Another TF with the same pattern of expression during HC 

regeneration is LMO2. Enrichments for LMO2 binding sites were found both in the cochlear 

and the vestibular up-regulated genes. While the results of the regeneration experiment 

support a function for LMO2 in the cochlea, the expression of the TF in our experiment is 

higher in the vestibule. A possible explanation to this duality is that the partners with which 

LMO2 interacts might be different in the cochlea and the vestibule, and thus a different subset 

of genes is increased in each. Lmo2 complex typically contains a single GATA factor and a 

single TAL1/E47 heterodimer, but the GATA factor can be replaced for an additional 

TAL1/E47 heterodimer, changing the set of regulated genes [111]. As GATA2 is up-regulated 

in the vestibule, and TAL1 is up-regulated in the cochlea (DE q-values=7.32×10-18, 5.29×10-7, 

respectively), the complexes formed in each tissue might differ in composition. 

In the set of genes up-regulated in the vestibule, we see enrichments of binding sites for the 

motifs: HNF4, SREBP-1, NF-1, PEA3, TEF-1, AP-2rep, NF-kappaB (p65), LBP-1, LUN-1, E2A, 

PU.1, MyoD, Nrf2, Lmo2 complex, COUPTF, ISRE, HEB, E47, SMAD, AML-1a, and c-Ets-1 (Table 

3.1-8, red). TFs associated with five motifs (TEF-1, PU.1, Nrf2, Lmo2 complex, ISRE) are 

significantly up-regulated in the vestibule, while TFs associated with four other motifs (Etv4, 

COUPTF, most SMADs, AML-1a) are up-regulated in the cochlea (Table 3.1-9, red). TFs 

associated with 15 of these 21 motifs (HNF4, SREBP-1, NF-kappaB (p65), LBP-1, E2A, PU.1, 
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MyoD, Nrf2, Lmo2 complex, COUPTF, ISRE, HEB, E47, SMAD, c-Ets-1) change their expression 

during the regeneration experiment [66]. 

As noted, SPI1 [PU.1] and NFE2L2 [Nrf2] are associated with TFs that are up-regulated in the 

vestibule, supporting their role as inducers of transcription. For both, cochlear expression 

decreases in late (48h) recovery from neomycin, suggesting their repression is needed for 

proper differentiation of SCs to cochlear cells. SPI1 is involved in hematopoietic development 

and induces proliferation of immune cells [112]; therefore it might up-regulate the immune 

functions that are enriched in the vestibule. Similarly, NFE2L2 can up-regulate functions 

related to stress response, and specifically to antioxidant defense [113]. The expression 

pattern of Nr2f1 and Nr2f2 associated with the COUPTF motif fit their role as repressors of 

transcription, as they are down-regulated in the vestibule, but the motif is enriched in the 

genes up-regulated in the vestibule. Following laser damage, the expression of NR2F2 

increases in the cochlea for three hours. An increase in cochlear expression is also evident in 

late (48h) recovery from neomycin. Nr2f2 is known to work as a repressor of myogenesis, 

inhibiting MyoD [114], another TF whose targets are up-regulated in the vestibule. Our data 

suggests that their repressive effect might have a role in cochlea development. 

SMADs are intracellular proteins that transduce extracellular signals from transforming 

growth factor beta (TGF-β) ligands to the nucleus where they active downstream gene 

transcription [115]. As previously mentioned, TGF-β signaling is an enriched function in the 

cochlea. Nevertheless, according to this analysis, the downstream targets of this pathway are 

enriched in the vestibule. In order to settle this controversy, we examined the expression 

levels of individual SMADs. Most receptor-regulated SMADs (R-SMADs) are up-regulated in 

the cochlea (Smad1, Smad2, Smad5, Smad9), fitting the hypothesis of higher TGF-β activity in 

the cochlea. However, inhibitors of this signaling pathway (Smad6, Smad7) are also up-

regulated in the cochlea, and with relatively high FCs (1.9 and 1.6, respectively). The 
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inhibition they induce lower the transcription of the downstream genes in the cochlea 

compared to the vestibule. The story become more complex when examining the two 

intracellular pathways SMADs are involved in. The R-SMADS Smad2 and Smad3 mediate the 

response to TGF-β ligands, which participate in the regulation of IE development by retinoic 

acid [116]. Smad2 is up-regulated in the cochlea, and Smad3 is up-regulated in the vestibule. 

In the regeneration experiment, SMAD2's vestibular expression increases in late response to 

neomycin damage in the utricle, emphasizing the importance of TGF-β signaling for 

vestibular differentiation. In a different pathway, the R-SMADS Smad1, Smad5, and Smad9 

mediate the response to bone morphogenetic proteins (BPMs), which are involved in 

generation of IE sensory epithelia [117], as well as chondrogenesis [118]. All three are up-

regulated in the cochlea, with Smad9 showing a very impressive FC of 3.4. SMAD9 also 

increases in response to late neomycin damage in the cochlea. This, together with its high 

cochlear levels, implies it has a role in cochlear differentiation. 

Table 3.1-8 Motifs enriched in genes differentially expressed between tissues. Enrichments for motif binding 
sites found in genes up-regulated in the cochlea of in the vestibule (marked green and red, respectively, in the 'Set' 
column). See caption in Table 3.1-6 for the structure of the table. 

Set Enriched with #genes p-Value Enrichment 
factor 

Up in 
Cochlea 

M01072 [HIC1] 903 9.38E-13 1.181 
M00803 [E2F] 1146 4.58E-10 1.098 
M01122 [ZNF219] 822 1.04E-09 1.176 
M00716 [ZF5] 977 2.23E-09 1.141 
M01068 
[UF1H3BETA] 

1122 1.61E-08 1.113 

M01104 [MOVO-B] 681 1.78E-08 1.22 
M00649 [MAZ] 690 2.02E-08 1.218 
M00444 [VDR] 486 1.29E-05 1.187 
M00491 [MAZR] 622 1.05E-04 1.186 
M00650 [MTF-1] 457 2.56E-04 1.203 
M00322 [c-Myc:Max] 613 2.88E-04 1.184 
M00189 [AP-2] 806 9.39E-04 1.106 
M00720 [CAC-
binding_protein] 

655 1.00E-03 1.163 

M00333 [ZF5] 528 2.00E-03 1.198 
M00695 [ETF] 763 3.00E-03 1.102 
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M00002 [E47] 368 3.00E-03 1.203 
M00277 
[Lmo2_complex] 

349 7.00E-03 1.202 

M00800 [AP-2] 763 1.50E-02 1.115 
M00257 [RREB-1] 590 1.80E-02 1.094 
M00644 [LBP-1] 602 2.50E-02 1.119 
M00947 [CP2/LBP-
1c/LSF] 

402 4.80E-02 1.195 

M00446 [Spz1] 350 8.10E-02 1.212 
Up in 
vestibule 

M01033 [HNF4] 2114 1.51E-08 1.081 
M00749 [SREBP-1] 1033 3.43E-06 1.131 
M00193 [NF-1] 417 6.74E-06 1.253 
M00655 [PEA3] 1308 1.29E-04 1.089 
M00704 [TEF-1] 1639 3.65E-04 1.064 
M00468 [AP-2rep] 871 4.76E-04 1.126 
M00052 [NF-
kappaB_(p65)] 

277 2.00E-03 1.253 

M00644 [LBP-1] 1071 3.00E-03 1.124 
M00480 [LUN-1] 409 4.00E-03 1.194 
M00804 [E2A] 588 4.00E-03 1.148 
M00658 [PU.1] 541 8.00E-03 1.131 
M00001 [MyoD] 388 8.00E-03 1.194 
M00821 [Nrf2] 365 9.00E-03 1.193 
M00277 [Lmo2 
complex] 

588 1.10E-02 1.143 

M01036 [COUPTF] 713 1.20E-02 1.118 
M00258 [ISRE] 430 1.50E-02 1.132 
M00698 [HEB] 332 1.70E-02 1.201 
M00002 [E47] 614 2.40E-02 1.133 
M00974 [SMAD] 322 6.00E-02 1.183 
M00271 [AML-1a] 1639 8.30E-02 1.047 
M00339 [c-Ets-1] 682 9.00E-02 1.119 

Table 3.1-9 Levels of transcription factors affecting expression change between tissues. Each motif in 6 was 
associated with one or more TFs. See caption in Table 3.1-7 regarding which data is provided for each TF. Here, 
the fold-changes are measured between the cochlea and the vestibule.  

Set Motif TF Log CPM Log FC FDR DE 
Up in 

Cochlea 
M01072 [HIC1] Hic1 4.42 0.11 5.89E-01 FALSE 
M00803 [E2F] E2f1 3.68 -0.11 4.54E-01 FALSE 
M00803 [E2F] E2f3 5.58 -0.16 2.10E-01 FALSE 
M00803 [E2F] E2f4 5.70 0.01 9.56E-01 FALSE 
M00803 [E2F] Tfdp1 6.54 0.24 4.39E-02 TRUE 

M01122 [ZNF219] Zfp219 7.19 -0.19 1.24E-01 FALSE 
M00333 [ZF5] Zbtb14 5.53 0.30 2.06E-03 TRUE 
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M01068 
[UF1H3BETA] 

? NA NA NA NA 

M01104 [MOVO-B] Ovol2 2.08 -0.31 4.68E-02 TRUE 
M00649 [MAZ] Maz 7.81 0.21 3.86E-02 TRUE 
M00444 [VDR] Vdr 3.57 -1.54 7.30E-32 TRUE 

M00491 [MAZR] Patz1 6.79 0.09 4.09E-01 FALSE 
M00650 [MTF-1] Mtf1 4.56 -0.16 1.78E-01 FALSE 

M00322 [c-Myc:Max] Myc 4.72 0.14 2.49E-01 FALSE 
M00322 [c-Myc:Max] Max 6.10 0.06 6.35E-01 FALSE 

M00800 [AP-2] Tfap2a 0.35 0.18 4.96E-01 FALSE 
M00720 [CAC-binding 

protein] 
? NA NA NA NA 

M00716 [ZF5] Zbtb14 5.53 0.30 2.06E-03 TRUE 
M00695 [ETF] Tead2 7.74 0.16 2.00E-01 FALSE 
M00002 [E47] Tcf3 7.76 -0.10 4.25E-01 FALSE 
M00277 [Lmo2 

complex] 
Lmo2 3.88 -0.88 2.19E-11 TRUE 

M00189 [AP-2] Tfap2a 0.35 0.18 4.96E-01 FALSE 
M00257 [RREB-1] Rreb1 5.75 -0.21 3.34E-01 FALSE 
M00644 [LBP-1] Ubp1 6.54 -0.21 3.37E-01 FALSE 
M00644 [LBP-1] Tfcp2 5.66 -0.21 2.41E-01 FALSE 

M00947 [CP2/LBP-
1c/LSF] 

Tfcp2 5.66 -0.21 2.41E-01 FALSE 

M00446 [Spz1] Spz1 NA NA NA NA 
Up in 

vestibule 
M01033 [HNF4] Hnf4a NA NA NA NA 

M00749 [SREBP-1] Srebf1 7.47 -0.19 8.82E-02 FALSE 
M00193 [NF-1] Nf1 6.70 0.06 7.38E-01 FALSE 
M00655 [PEA3] Etv4 5.23 0.26 2.01E-02 TRUE 
M00704 [TEF-1] Tead1 7.20 -0.52 2.44E-07 TRUE 

M00468 [AP-2rep] Klf12 3.79 -0.21 2.39E-01 FALSE 
M00052 [NF-kappaB 

(p65)] 
Rela 6.15 -0.04 7.64E-01 FALSE 

M00644 [LBP-1] Ubp1 6.54 -0.21 3.37E-01 FALSE 
M00644 [LBP-1] Tfcp2 5.66 -0.21 2.41E-01 FALSE 
M00480 [LUN-1] Topors 5.81 0.07 5.97E-01 FALSE 
M00804 [E2A] Tcf3 7.76 -0.10 4.25E-01 FALSE 
M00804 [E2A] Myog NA NA NA NA 
M00804 [E2A] Myod1 NA NA NA NA 
M00804 [E2A] Myf6 NA NA NA NA 
M00658 [PU.1] Spi1 2.66 -1.70 1.42E-28 TRUE 
M00001 [MyoD] Myod1 NA NA NA NA 
M00821 [Nrf2] Nfe2l2 5.31 -0.39 1.68E-02 TRUE 
M00821 [Nrf2] Mafk 3.55 -0.37 2.59E-03 TRUE 
M00277 [Lmo2 

complex] 
Lmo2 3.88 -0.88 2.19E-11 TRUE 

M01036 [COUPTF] Nr2f1 7.02 2.38 7.08E-54 TRUE 
M01036 [COUPTF] Nr2f2 6.08 1.21 5.82E-22 TRUE 
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M00258 [ISRE] Irf9 4.97 -0.39 1.22E-03 TRUE 
M00698 [HEB] Tcf12 8.08 0.13 3.79E-01 FALSE 
M00002 [E47] Tcf3 7.76 -0.10 4.25E-01 FALSE 

M00974 [SMAD] Smad1 5.27 0.28 1.11E-02 TRUE 
M00974 [SMAD] Smad2 5.84 0.28 6.90E-03 TRUE 
M00974 [SMAD] Smad3 7.22 -0.22 4.16E-02 TRUE 
M00974 [SMAD] Smad4 6.84 0.19 6.05E-02 FALSE 
M00974 [SMAD] Smad5 7.88 0.27 1.55E-02 TRUE 
M00974 [SMAD] Smad6 4.63 0.98 2.89E-23 TRUE 
M00974 [SMAD] Smad7 4.25 0.65 1.32E-06 TRUE 
M00974 [SMAD] Smad9 3.62 1.77 9.48E-26 TRUE 

M00271 [AML-1a] Runx1 3.33 1.52 1.59E-23 TRUE 
M00339 [c-Ets-1] Ets1 6.56 0.18 2.22E-01 FALSE 

3.1.5.3 Transcription factors affecting expression ratio change with age 

In the set of genes for which the cochlea to vestibule expression ratio increases with age 

� 𝐹𝐹𝐶𝐶𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑎𝑎
𝑉𝑉𝑙𝑙𝑠𝑠𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙

↑�, we see enrichments of binding sites for the motifs: HNF4, E47, a group of 

nuclear receptors (LXR, PXR, CAR, COUP, RAR), AP-4, and SMAD (Table 3.1-10, green). Out of 

the associated TFs, the expression ratio of Nr2f1, a COUP TF, significantly increases in the 

same direction as its targets (Table 3.1-11, green); this might have a positive downstream 

effect on retinoic acid receptor (RAR) signaling [119]. TFs associated with all motifs change 

their expression during the regeneration of IE sensory epithelia [66]. 

Retinoid signaling is critical during IE embryonic development, as well as in postnatal 

maintenance of its function [120]. Both vitamin A deficiency and intake of excess retinoic acid 

(RA) during pregnancy resulted in malformations in ear development. In rodents, in utero 

exposure of fetuses to RA results in a reduction of the semicircular canals and of the cochlea. 

Key components in retinoid signaling show spatiotemporal expression patterns, and the 

interactions that excess RA interferes with are dependent on the developmental stage. KEGG 

enrichment of our DE genes shows that metabolism of RA is higher in the vestibule and at P0. 

Taken together with the motif enrichment, we deduce that retinoid signaling is important to 
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both cochlear and vestibular development, with its role in the cochlea becoming more 

prominent in the period between E16.5 and P0. In the HC regeneration experiment, the 

cochlear expression of the retinoid receptor Rara decreases 24h after neomycin damage, and 

later on by 48h, NR2F1 expression increases [66]. This later increase might mimic the 

increase in retinoid signaling seen in normal development. 

In the set of genes for which the vestibule to cochlea expression ratio increases with age 

�𝑉𝑉𝑙𝑙𝑠𝑠𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙
𝐹𝐹𝐶𝐶𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑎𝑎

↑�, we see enrichment of binding sites for: AML-1a, LEF1, LBP-1, HEB, and POU6F1 

(Table 3.1-10, red). The expression ratio of Runx1 [AML-1a] significantly increases in the 

same direction as its targets (Table 3.1-11, red). TFs associated with LBP-1 and HEB change 

their expression during the regeneration of IE sensory epithelia. 

Table 3.1-10 Motifs enriched in genes for which the cochlea to vestibule expression ratio changes with age. 
Enrichments for motif binding sites found in genes for which the cochlea to vestibule expression ratio is increasing 
or decreasing with age (marked green and red, respectively, in the 'Set' column). See caption in Table 3.1-6 for the 
structure of the table. 

Set Enriched with #genes p-Value Enrichment 
factor 

𝑪𝑪
𝑽𝑽
↑ M01033 [HNF4] 398 1.00E-02 1.136 

M00002 [E47] 131 4.90E-02 1.349 
M00965 [LXR, PXR,  CAR,  
COUP, RAR] 

99 5.50E-02 1.363 

M00175 [AP-4] 97 6.10E-02 1.482 
M00974 [SMAD] 74 8.80E-02 1.518 

𝑪𝑪
𝑽𝑽
↓ M00271 [AML-1a] 528 4.98E-04 1.163 

M00805 [LEF1] 567 1.00E-02 1.106 
M00644 [LBP-1] 336 7.50E-02 1.216 
M00698 [HEB] 107 9.50E-02 1.335 
M00465 [POU6F1] 114 9.70E-02 1.274 

Table 3.1-11 Levels of transcription factors affecting expression ratio change with age. Each motif in Table 
3.1-10 was associated with one or more TFs. See caption in Table 3.1-7 regarding which data is provided for each 
TF. Here, the fold-changes are measured between the cochlea to vestibule expression ratios in P0 and E16.5.  

Set Motif TF Log CPM Log FC FDR DE 
𝑪𝑪
𝑽𝑽
↑ M01033 [HNF4] Hnf4a NA NA NA FALSE 

M00002 [E47] Tcf3 7.76 -0.05 7.92E-01 FALSE 
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M00965 [LXR,  PXR,  
CAR,  COUP,  RAR] 

Nr2f1 7.02 0.50 7.93E-03 TRUE 

M00965 [LXR,  PXR,  
CAR,  COUP,  RAR] 

Nr2f2 6.08 0.17 3.84E-01 FALSE 

M00965 [LXR,  PXR,  
CAR,  COUP,  RAR] 

Nr1i2 NA NA NA FALSE 

M00965 [LXR,  PXR,  
CAR,  COUP,  RAR] 

Nr1i3 NA NA NA FALSE 

M00965 [LXR,  PXR,  
CAR,  COUP,  RAR] 

Rara 5.77 0.07 7.62E-01 FALSE 

M00965 [LXR,  PXR,  
CAR,  COUP,  RAR] 

Rarb 5.72 0.20 1.39E-01 FALSE 

M00175 [AP-4] Tfap4 3.69 -0.07 7.17E-01 FALSE 
M00974 [SMAD] Smad1 5.27 -0.19 1.92E-01 FALSE 
M00974 [SMAD] Smad2 5.84 0.08 6.46E-01 FALSE 
M00974 [SMAD] Smad3 7.22 0.18 2.09E-01 FALSE 
M00974 [SMAD] Smad4 6.84 0.09 5.36E-01 FALSE 
M00974 [SMAD] Smad5 7.88 0.19 2.06E-01 FALSE 
M00974 [SMAD] Smad6 4.63 0.09 6.13E-01 FALSE 
M00974 [SMAD] Smad7 4.25 0.14 5.38E-01 FALSE 
M00974 [SMAD] Smad9 3.62 -0.14 6.41E-01 FALSE 

𝑪𝑪
𝑽𝑽
↓ M00271 [AML-1a] Runx1 3.33 -0.67 1.47E-04 TRUE 

M00805 [LEF1] Lef1 5.77 0.13 5.13E-01 FALSE 
M00644 [LBP-1] Ubp1 6.54 -0.42 8.44E-02 FALSE 
M00644 [LBP-1] Tfcp2 5.66 -0.23 3.17E-01 FALSE 
M00698 [HEB] Tcf12 8.08 -0.14 4.84E-01 FALSE 

M00465 [POU6F1] Pou6f1 5.61 0.00 9.99E-01 FALSE 
M00465 [POU6F1] Pou6f1 NA NA NA FALSE 

3.2 Protein and mRNA joint analysis 

Previous examinations of mRNA-protein relationships were mainly performed in yeast and in 

cancer cell lines. Aiming to examine these associations in non-transformed cells and 

differentiated tissue samples, we analyzed four different paired datasets of mRNA and 

protein. For the first dataset we generated proteomics and transcriptomic data from the 

cochlea and vestibule of mouse inner ear (dataset termed EAR). The three other datasets 

were publicly available: (i) multiple mouse tissues (termed MMT; RNA-seq [83] and 

proteomics [82]); (ii) primate lymphoblastoid cells (PRIMATE; [51]); and (iii) a panel of 

human cancer cell lines (NCI60; transcription microarrays [87] and proteomics [88]). The 
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results obtained for the NCI60 dataset were compared with those obtained for datasets of 

non-transformed cells. 

The EAR RNA-seq analysis identified 39,178 Ensembl genes (including non-coding genes and 

pseudogenes), 14,722 of which have at least one read per million in three or more of the 

samples and were included in the analysis. MS analysis identified 7244 proteins. 6832 genes 

were common between the two tissues. 

The MMT dataset contains mRNA and protein levels taken from mouse tissues. In the 

proteomic data [82], the stable isotope labeling with amino acids in cell culture (SILAC) 

technique was used as an internal standard for relative quantification of proteins across 28 

mouse tissues. We used five tissues that had both mRNA and protein data: brain, cerebellum, 

heart, kidney, and liver. There were three proteomic samples for brain (cortex, medulla, and 

midbrain) and two for kidney (cortex and medulla), and we weighted the samples' 

contribution by the volumes of the subregions to obtain the tissue protein levels. mRNA 

measurements had three replicates per tissue, and six for the brain. 

The PRIMATE dataset included transcriptomics (RNA-seq) and proteomics (SILAC-based) 

data from lymphoblastoid cell lines (LCLs) derived from five human, five chimpanzees, and 

five rhesus macaques. The species is analogous in the subsequent analysis to the tissue. We 

downloaded the data from [51], and processed it as described in the article, to obtain 

expression levels of (orthologous) genes that have at least three measurements from each of 

the three species, for both mRNA (12,079 genes) and protein (3688 genes). 3394 genes were 

common between mRNA and protein. 

NCI60 is a panel of 59 diverse human cancer cell lines. The type of cancer is analogous in the 

subsequent analysis to the tissue. We note that we do not necessarily expect to see the same 

phenomena in cancer cell lines as in healthy tissues, due to the pathological state of the 
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tissues, and as the cell lines of the same cancer are different samples and not real replicates 

as the healthy tissues. One manifestation of these differences is a lesser ability to separate 

NCI60 samples based on their origin, compared to the EAR and MMT datasets. Indeed, multi-

dimensional scaling (MDS) plots show better separation of the latter datasets on both mRNA 

and protein levels, even between very similar tissues (Figure 3.2-1). Moreover, poor results 

were reported when hierarchical clustering was used to perform such a separation for breast, 

ovary, renal, and prostate cancers using proteomic data [88]. 

We refer to the tissue type (in EAR and MMT), species (in PRIMATE), or cancer type (in 

NCI60) as a group. We refer to samples of the same group as replicates. We refer to mRNA and 

protein as domains. 
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Figure 3.2-1 MDS plots comparing samples in the different datasets according to their mRNA or protein 
expression. The upper and lower figures for each dataset are the MDS plots according to the mRNA or protein 
expression, respectively. The x- and y-axis are the first and second coordinates, respectively. The samples are 
colored by their group. The groups are clearly separable by both mRNA and protein, in all but the NCI60 dataset, 
where the separation becomes less clear. The MDS plots are based on all the data, and not just the portion of genes 
for which we find expression in both domains. 

3.2.1 Comparison of protocols used to collect mRNA and protein data 

Collecting the mRNA and the proteomic data for a dataset from two different published 

articles, raises the concern that different protocols for sample preparation and source 

animals will lead to improper results. While this is not the case for the EAR and the PRIMATE 

datasets, for which the protocols were similar to allow such comparison, the NCI60 and the 

MMT datasets should be carefully analyzed. In the case of NCI60, this concern is alleviated by 
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the genetic identity of the cell lines used in the two experiments, and by the fact that a 

comparison of proteomic and transcriptomic data was previously made and showed a 

significant degree of correlation between the two [88]. As for MMT, we included only adult 

mice samples in the analysis, carefully choosing which samples to include, though not all RNA 

samples were of the same species as the protein data (C57BL/6J). Also, we attentively 

handled tissues for which we had to merge several protein samples from different sub-

regions of a tissue, to create a sample comparable to the RNA data. For the EAR dataset, we 

stress the use of the same mouse species and the identical growth conditions shared between 

the mice from which the mRNA material was produced form, and those from which the 

protein was produced from. This property, together with the assumption of a steady-state in 

mRNA and protein abundances in non-proliferating tissues, assure that  the bias caused by 

using different mice  is minor. 

3.2.2 Protein levels are more conserved than mRNA levels 

mRNA and protein levels were 2log -transformed, and averaged across all samples from the 

same group, disregarding missing values. A comparison of the proteomic and transcriptomic 

data showed, in agreement with previous studies [45], that the overall dynamic range of 

mRNA is significantly lower than protein, as marked by a higher variability in protein 

expression compared with mRNA in all datasets (Figure 3.2-2). 
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Figure 3.2-2 Dynamic range of expression in mRNA and in protein. The absolute levels of expression in mRNA 
(red) and protein (blue) are displayed in a density plot. The levels were centered around 0 to allow comparison of 
the dynamic range between mRNA and protein. For measures of variability (standard deviations and interquartile 
ranges), see Table S2 in [55]. 

We calculated protein-mRNA correlations for each group. The average correlations between 

the two layers were 0.58, 0.44, 0.42, and 0.42 for the EAR, MMT, NCI60 and PRIMATE 

datasets, respectively, similar to the mRNA-protein correlations reported in literature [39]. 

Then, we calculated correlations between pairs of groups for mRNA and protein separately. 

We observed that in all datasets, all the protein-protein and the mRNA-mRNA correlations 

between groups were higher than the protein-mRNA correlations within each group (Figure 

3.2-3). This last trend was somewhat weaker in the MMT dataset, which includes less similar 

tissues. Using either Pearson correlation or Spearman’s rank correlations produced similar 

results, hence we employed the former throughout.  
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Figure 3.2-3 Protein and mRNA correlations between groups for different datasets. Each subfigure describes 
the Pearson's correlation (r) between expression levels in one dataset. The upper and lower triangles contain the 
protein-protein and mRNA-mRNA correlations between pairs of groups, respectively. The diagonal contains the 
protein-mRNA correlations within each group. Darker color corresponds to higher correlation. The correlations 
are not Spearman corrected because the correction cannot be applied on the MMT dataset, and this figure is 
intended for comparison between datasets. 

Next, to allow a fair comparison of the correlation between group pairs in each dataset, we 

had to account for some of the platform differences between RNA-seq and MS, which manifest 

in higher correlation between replicates of RNA-seq (Figure 3.2-4). We thus applied the 

Spearman's correction in our calculations, except for MMT where it was inapplicable. The 

corrected correlations are presented in Figure 3.2-5 (see correction example in Figure 2.4-1). 
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Figure 3.2-4 Correlation between 
replicates. By 'replicates' we mean 
samples from the same group. For 
each dataset we plotted the boxplots 
of the distribution of Pearson's 
correlation (r) between replicates in 
the mRNA levels (pink) and the 
protein levels (light blue) 
aggregated by group. For the MMT 
dataset we had no protein 
replicates, so only mRNA 
correlations are presented. Boxplots 
show median, a box for the middle 
50% and whiskers to the largest and 
smallest values that are not 
classified as outliers. If the distance 
of an observation from the box is 
higher than 1.5 times the box size, it 
is classified as an outlier. The higher 
correlations between replicates in 
the mRNA domain are evident from 
this figure. This trend was 
confirmed by ANOVA testing in the 
two large datasets of NCI60 and 
PRIMATE (data not shown). 

For the EAR dataset the correlation in the protein between the cochlea and the vestibule is 

higher than the correlation in the mRNA (0.97 versus 0.94). This is also the case for the 

PRIMATE dataset (3/3 pairs), the MMT dataset (9/10 pairs), and the NCI60 dataset (24/36). 

For the MMT and NCI60 datasets the protein correlations were significantly higher 

(p−values=2.9×10-3 and 8.0×10-3 respectively, Wilcoxon signed-rank test). As the Spearman's 

correction was not applied on the MMT dataset, we cannot be certain that the higher protein 

correlations in that dataset are not an artifact caused by different levels of noise in the mRNA 

and protein domains. Specifically, a higher degree of noise in the mRNA measurements can 

cause such a bias. However, it is unlikely that the mRNA levels are noisier than the protein 

levels, as the opposite is true for the EAR and the NCI60 datasets (Figure 3.2-4), which were 

produced using similar measuring methods. In fact, the protein levels in the MMT dataset are 

probably even noisier, due to the lack of replicates in the protein, which prevented noise 

reduction by averaging.  
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Figure 3.2-5 Protein and mRNA correlation between group pairs. Each subfigure describes the correlation 
between expression levels of different groups in one dataset. The upper and lower triangles show the protein-
protein and mRNA-mRNA correlations between groups, respectively. Darker color corresponds to higher 
correlation. Pearson's correlation coefficients (r) were corrected using Spearman's method except in the MMT 
dataset (due to the lack of replicates in protein). See Figure 3.2-3 for intra group protein-mRNA correlations. 

3.2.3 PTRs vary in a direction that reduces protein divergence 

The higher correlation between pairs of groups in the protein domain suggests that changes 

in transcription between tissues are coupled to protein-level changes that exert opposite 

effects on the final protein level, hence producing higher similarity between groups. We call 

the phenomenon of reduced ("compressed") change in protein levels compared to the change 

in mRNA levels buffering. Spangenberg et al. showed this phenomenon in the initial phases of 

adipocyte differentiation of adipose-derived human mesenchymal stem cells, by comparing 
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differentiating cells at two time points [48]. Regressing the fold change (FC) of the protein 

levels to the FC of the mRNA levels on a log-log scale led to the observation of a slope lower 

than 1, or, in other words, range compression between protein FC and mRNA FC. They 

hypothesized that a trend of lower PTR with increasing mRNA levels is the cause. 

To test this hypothesis on our data, for all pairs of groups in all datasets, we regressed 

log FCmRNA on log FCmRNA using a variant of major axis (MA) regression, and tested whether 

the slope is significantly different from 1. All slopes were significantly less than 1 for the EAR 

and PRIMATE datasets, and for all except one pair in the MMT dataset (see Figure 3.2-6 for 

examples). For the NCI60 and brain-cerebellum [MMT] the slopes were significantly higher 

than 1. When using ordinary least square (OLS) regression, all the slopes calculated were 

significantly less than 1 (q−value≤0.01), consistent with the aforementioned range 

compression phenomenon (discordance between the regression methods is demonstrated in 

Figure 2.4-2). However, MA regression is not sensitive to regression dilution bias, which can 

severely lower the estimate of the slope in OLS regression [121]. Using MA, it appears that the 

range compression is a common phenomenon for pairs of tissues, or species. For cell lines, an 

opposite phenomenon of range expansion occurs. 
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Figure 3.2-6 Examples of range compression. Comparing either the cochlea and the vestibule EAR tissues (left), 
or the heart and the cerebellum MMT tissues (right), the protein fold changes (y-axis) were regressed on the 
mRNA fold changes (x-axis). The fitted regression lines using ordinary least squares (OLS, red, solid) and major 
axis regression (MA, blue, dashed) were plotted, along with their 95 percent confidence interval (thinner lines). 
The black line is y=x. Both OLS and MA slopes are significantly lower than 1, suggesting range compression. 

Next, we used a nonparametric approach to test whether genes that are up-regulated in one 

group versus the other in the mRNA domain will show lower PTR in that same group versus 

the other. If this hypothesis is correct, it can explain the compressed ratios in the non-

cancerous datasets. We formulated two complementary testing approaches: A global test that 

considers all the genes ranked by their mRNA differential expression (DE) values, and a local 

test that focuses on those that are DE. Importantly, we separated the repeats on which PTR 

and DE values are computed in order to avoid bias in the significance evaluation. Figure 3.2-7 

provides an example of the DE-PTR comparison in inner-ear tissues. The PTRs in the cochlea 

were plotted against the PTRs in the vestibule, with the genes DE between the tissues 

highlighted. We observe that genes up-regulated in one tissue tend to have higher PTRs in the 

other tissue. This property is tested by the local approach. 
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Figure 3.2-7 Protein-transcript ratio (PTR) and differential expression between two inner-ear tissues. The 
PTRs in the cochlea (x-axis) are plotted against the PTRs in the vestibule (y-axis), where the PTRs were calculated 
using mRNA data of samples SA623 and SA626 respectively. Marked in red are genes that are up-regulated in the 
cochlea, and in green are genes that are up-regulated in the vestibule (edgeR, q−value≤0.05). Samples SA623 and 
SA626 were excluded from the differential expression analysis. The black line is y=x. There is a clear tendency for 
the genes that are up-regulated in the cochlea (red points) to have higher PTR in the vestibule (be above the black 
line), and vice versa. Note that to emphasize the DE status, significant (colored) genes are drawn at the front and 
may occlude some non-significant ones. 

The global tests were significant for all group pairs in the EAR, MMT, and PRIMATE datasets 

(q−value≤0.01). The results were in complete agreement with those of the local approach. 

The positive results support the buffering observation for all these datasets, and those of the 

local approach specifically indicate that within these datasets reduced protein expression 

changes have a major effect on the DE genes. For the NCI60 dataset, none of the pairs were 

significant, and all the correlations were very close to zero. Therefore, we cannot determine 

the presence of a compression or an amplification effect based on this approach. As 

mentioned before, the different cell lines have very similar expression profiles, and this might 

cause a low signal-to-noise ratio. 

3.2.4 Predicting protein abundance from mRNA levels 
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Next, we examined whether we can predict protein levels based on the mRNA data. More 

specifically, the problem we aimed to solve was the prediction of protein levels in a group, 

when given the mRNA levels in that group, and matching mRNA and protein profiles from 

other groups. We compared three estimators all of which are trained on a subset of each 

dataset, and examined their ability to predict the protein level in the rest of the dataset.  

The first estimator was built on the average PTR (APTR); the second estimator, which is fold 

change based (FCB), assumes a constant compression ratio of the fold changes between 

protein and RNA; the third infers the protein levels from the average protein (AP) levels in 

other tissues. AP and APTR also have a weighted version, which gives higher weight to the 

tissues with higher similarity, and FCB has a relaxed version (RFCB) that allowed for protein 

levels to change exponentially between groups, independent of change in mRNA. This 

accounts for differences between groups in the activity of the translational mechanisms and 

in protein stability. 

In all datasets, the FCB and RFCB models achieved better results than the others (Figure 

3.2-8). For all models, the weighted/relaxed versions achieved better results than their 

unweighted counterparts. The difference was very apparent for the MMT dataset, where the 

presence of two related tissues, brain and cerebellum, lowered the prediction error 

dramatically for those tissues; analysis of this dataset after the removal of one of the two still 

showed an advantage for the weighted versions, albeit smaller (data not shown). These 

findings support the use of a weighted estimator, which gives higher weights to tissues that 

are closer in their protein levels and PTRs. 
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Figure 3.2-8 Performances of methods for protein level prediction. Boxplots show the distribution of the 
normalized root mean square error (NRMSE) in the prediction of protein levels, using six described methods: 
Averaged Protein (AP), Weighted Average Protein (WAP), Average PTR (APTR), Weighted Average PTR (WAPTR), 
FC Based (FCB), and Relaxed FCB (RFCB). In each tissue, RMSE values are divided by the standard deviation of the 
protein levels in that tissue. The error sizes are averages over tissues of 10-fold cross validation. In the EAR 
dataset there are only two groups, so the weighted/relaxed versions are irrelevant. See Figure 3.2-4 for box plot 
structure. Outliers are labeled. 

The average improvement in the Mean Square Error (MSE) using the RFCB model over the 

next best weighted/relaxed model was 24.0%, 15.2%, 14.3%, 8.9% in the EAR, MMT, 

PRIMATE, and NCI60 datasets. Overall, the superiority of the FCB and RFCB supports the 

model of constant compression or expansion ratio between mRNA and protein fold-changes.  
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3.2.4.1 Compression parameter 

Our previous analysis supports compression, at least for the EAR, MMT, and PRIMATE. The 

value of the compression parameter, α, of the FCB model is directly linked to the extent of 

compression. High variance between datasets and between groups was observed in the 

estimated value of this parameter (Figure 3.2-9). We thus conclude that this parameter 

should be adjusted separately for each protein level prediction task. 

 

Figure 3.2-9 Estimated FCB model 
compression coefficient α. The FCB model was 
fitted separately for each group using linear 
regression. The boxplots show the distribution of 
α in the different datasets. See Figure 3.2-4 for 
box plot structure. 
 

 

3.2.4.2 Protein expression prediction power in different datasets 

The error measure presented in Figure 3.2-8 is normalized to allow the comparison of 

prediction quality between datasets. According to this measure, all models perform best on 

the EAR dataset, then on the NCI60, PRIMATE and MMT datasets in decreasing order of 

performance. In addition, we scored these differences by measuring the extent of variance in 

protein levels that is explained by the RFCB model in each of the datasets. In the EAR and 

NCI60 datasets 95.7% and 93.2% were explained respectively, decreasing to 89.8% in the 

PRIMATE dataset, and only 82.4% in the MMT dataset. The ranking is also the same using the 

AP model to score the datasets (94.3%, 91.6%, 87% and 65.7% respectively). We can 

conclude that the task of predicting protein levels, where one is given expression data from a 

similar tissue (EAR), or under the scenario of cancerous cell lines (NCI60, see next section 

regarding outliers), is easier than predicting using data from the same tissue but in different 
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species that were separated millions of years ago (PRIMATE, [122]), or from less similar 

tissues (MMT). 

3.2.4.3 RFCB model is superior across groups and genes 

So far, our analysis showed the superiority of the RFCB method at the level of a dataset. This 

superiority still holds when moving to the level of a group, as in all groups the MSE of the 

RFCB prediction is the lowest among all methods. Focusing on the NCI60 dataset, the greatest 

improvement in predictions in terms of normalized MSE is achieved for the leukemia and 

prostate, these cell lines having the lowest protein prediction power to begin with (Figure 

3.2-10).  

 

Figure 3.2-10 Quality of protein level prediction methods in NCI60 groups. For each group, we plotted the 
normalized root mean square error (NRMSE) in the prediction of protein levels, using six described methods: 
Averaged Protein (AP), Weighted Average Protein (WAP), Average PTR (APTR), Weighted Average PTR (WAPTR), 
FC Based (FCB), and Relaxed FCB (RFCB). Each box contains the prediction quality for a single group. 

Next, we focused on the gene level, checking how well our prediction performs in predicting 

oncogene levels in cancer cell lines. Out of the 24 oncogenes surveyed in [123], we had full 

protein and mRNA data for CTNNB1, NRAS, and RB1. Using the six described methods, we 

predicted their protein levels in each NCI60 group, and compared the results to the measured 
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protein levels (Figure 3.2-11). For 21 out of 27 combinations of gene and group, all six 

predictions method performed well, with less than 2-fold difference between the expected 

and predicted levels. In the few cases where the difference was greater than 2-fold, the six 

methods were biased in their prediction in the same direction. An exception to this 

agreement was found in the prediction of NRAS expression in breast and prostate cell lines, 

where the predictions of the AP and APTR methods suffered from ~1.4-fold prediction biases 

in opposite directions. In both cell lines the FCB and RFCB methods had a nearly perfect 

prediction. 

Figure 3.2-11 Quality of protein level prediction methods for oncogenes in the NCI60 dataset. For each 
group (columns) and gene (rows), we plotted the prediction of protein levels for that gene, using six described 
methods (see legend for Figure 3.2-10). The true (measured) protein levels are marked by horizontal lines. 

3.2.5 Comparing differentially expressed genes in protein and in mRNA 

We compared the DE genes between tissues in the EAR dataset, both at the protein and the 

mRNA domain. This type of comparison, as well as the comparison of the functional 
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enrichment of the DE genes on the mRNA and protein levels, can suffer from several biases 

that must first be addressed. 

3.2.5.1 Biases make it more difficult to compare data between protein and 

mRNA 

One source of bias is the different levels of noise in each domain, which affects the overall 

accuracy of the comparison. As demonstrated in Figure 3.2-4, protein levels are noisier in all 

datasets for which noise levels can be estimated. Resorting to enrichment analysis alleviates 

this last problem, because a failure to see a single gene DE in one domain but not the other, 

due to noise, is more probable than missing an entire group of genes that share a function and 

are coexpressed, because of noise. 

The detection bias against lowly expressed proteins poses a more complex problem. Such 

proteins tend to have more missing measurements, and so our power to detect DE for a lowly 

expressed protein is lower. Consequently, the power to detect up-regulated functions that are 

performed mainly by lowly expressed proteins is lower. 

The problem of missing data was evident in our data for the protein domain. Out of the 7018 

proteins that have at least one measurement, only 5101 have at least one measurement in 

both cochlea and vestibule, 4443 have at least two in each tissue, and 3678 were measured in 

all six samples. The data are clearly not missing at random, as indicated by the increase in 

median logarithmized protein level across the four groups (19.91, 20.11, 20.28, and 20.63, 

respectively), consistent with known literature [53]. For the mRNA data this problem is 

negligible. One of the filtering stages performed in the preprocessing of this data is including 

only the genes that have one read per million in three or more of the samples. After this stage, 

14,722 genes remain, out of which 14,693 genes have full data.  
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Only 201 genes have some measurements in protein, but not in mRNA. For the rest, we can 

compare the mRNA levels distribution of the genes that have some measurements in protein, 

to those without a measurement. We did so separately for the cochlea and vestibule (Figure 

3.2-12), and observed that the levels of genes that have protein measurements is higher than 

the levels of genes without a measurement (p−value<2.2×10-16 for both, one-sided Two-

Sample Kolmogorov-Smirnov test). The mRNA levels that we are comparing do not correlate 

perfectly with the protein levels, yet this still supports the 'missing not at random' quality of 

the protein data.  

Figure 3.2-12 Distribution of mRNA levels in the cochlea (right) and vestibule (left). Density plots are shown 
for the mRNA levels of genes for which measured protein is available (blue), or not available (red). The red area 
marks the fraction of the distribution where genes with no protein measurement are considered post-
transcriptionally repressed (see section 0). 

To account for this effect, we reran DE using different filters on the minimum number of 

measurements in the protein domain. We focus here on the results when analyzing only 

proteins for which all measurements were available. 

3.2.5.2 Differential expression indicates protein profiles are more similar 

than their RNA counterparts 

Plotting the RNA and protein fold-changes of the DE genes (Figure 3.2-13), we observed that 

(i) more DE genes were found in the mRNA domain (235 versus 46 and 358 versus 156,

upregulated in the cochlea and vestibule, respectively), (ii) genes found to be DE in protein 
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were usually DE also in mRNA in the same direction (in the cochlea, of the genes upregulated 

in protein, 78% were upregulated in mRNA and only 2.2% were downregulated; in the 

vestibule, the corresponding numbers were 76% and 2.6%, respectively), and (iii) genes 

found to be DE in both domains had more extreme mRNA fold changes than those found to be 

DE only in mRNA (median FC: 2.90 versus 1.62 and 2.37 versus 1.69 for genes upregulated in 

the cochlea and vestibule, respectively; q−values=9.4×10-11, 4.8×10-20, one-sided Wilcoxon 

rank sum-test). These observations imply that we expect the similarity between protein 

profiles to be higher than between their mRNA counterparts.  

The results above were obtained using different DE tools and thresholds for protein and 

mRNA, in attempt to use the optimal tool for each domain. However, to reaffirm the above 

conclusions, we reran the analysis using the same tool (samr) and the same FDR threshold of 

0.1 for both protein and mRNA. We found 752 and 956 genes up-regulated in the cochlea and 

vestibule respectively in the mRNA domain, and 46 and 156 genes in the protein domain. 

85.1% of the genes found to be differentially expressed (DE) in protein were also DE in the 

same direction in mRNA, and 3.5% in the opposite direction. The 𝐹𝐹𝐶𝐶𝑚𝑚𝐴𝐴𝑁𝑁𝐴𝐴 of genes that were 

up-regulated in one tissue in both mRNA and protein domains, was significantly more 

extreme than the 𝐹𝐹𝐶𝐶𝑚𝑚𝐴𝐴𝑁𝑁𝐴𝐴 of the genes that are DE only in the mRNA domain 

(q−value=4.8×10-16 , 5.5×10-40, where group2 is the cochlea and vestibule respectively, one-

sided Wilcoxon rank sum-test; Median FC: 2.72 versus 1.29 in cochlea, 2.29 versus 1.35 in 

vestibule). To summarize, all the three observations made above using the different tools, 

remain valid in this additional analysis. 

We note that these results also remain valid when using other filters, which allow missing 

measurements in the protein domain  (data not shown). We could not perform this type of 

analysis on the MMT dataset as statistically reliable DE techniques require replicates. 
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Figure 3.2-13 RNA and protein expression fold changes between inner ear tissues. For mRNA differential 
expression and fold-change estimation we used the edgeR package, with a detection threshold of q−value≤0.05. 
For protein we used the samr package (two class unpaired test) with threshold q−value≤0.1. Only proteins with 
measurements in all samples were included. Note that to emphasize the DE status, significant (colored) genes are 
drawn at the front and may occlude some non-significant ones. 

3.2.6 Some tissue-functionalities coded in mRNA are not manifested in 

protein 

For mRNA and protein, we looked for GO enrichment in the set of genes up-regulated in the 

cochlea versus the vestibule and vice-versa (for the full list of enrichments see Table S5 in 

[55]). We observed that the terms found in the mRNA domain represent a far broader list of 

functions than those found in the protein domain, when summarizing over the enrichments 

found using all filters. However, when comparing only the lists of enrichment terms found in 

the full data filter (i.e., using only the proteins with measurements values in all samples), the 
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lists were similar in size, yet quite distinct in content. Only three terms overlapped in the 

vestibule, representing 33% and 30% of the enrichments in the mRNA and protein, 

respectively, and none overlapped in the cochlea. The similar size of the two lists was 

surprising, considering the much higher number of DE genes in the mRNA domain. It was also 

unexpected to see so little overlap between the lists, as 77% of the genes found to be DE in 

protein were also DE in the same direction in mRNA in this analysis. 

The analysis in the cochlea captured the functions of cell morphogenesis and nucleobase 

catabolic process in the mRNA domain, and the function of sensory perception in the protein 

domain. Importantly, the functions enriched in the protein domain were found in the mRNA 

domain when using less stringent filters, but not vice versa. 

The analysis of the vestibule identified functions related to cell development and 

morphogenesis, biological adhesion, and response to wounding in both domains. Responses 

to general stimulus and chemicals, localization and cellular component movement, and renal 

system development, known to be related to ear development [124], were functions observed 

only in mRNA enrichments. Terms relating to anatomical structure morphogenesis, and 

specifically to the process of endochondral bone morphogenesis, were enriched in the 

protein, as was the less expected term of phagocytosis. Here also, all the functions enriched in 

the protein domain were either found, or similar terms to them were found, in the mRNA 

domain with less stringent filters. In contrast, none of the functions unique to the mRNA 

domain were found in the protein domain when using less stringent filters. These 

observations fit the hypothesis that some functionalities coded in mRNA are not manifested 

in protein. 

An exception to this behavior, that is, a function that is relatively more 'active' in the protein 

domain, was found using a different approach for detecting post-transcriptional regulated 
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functionalities, in which we compared the functional profiles [95] of the DE genes between 

protein and mRNA. Using this approach, we concluded that the function of cell adhesion is 

post-transcriptionally controlled in the vestibule, with a relatively large number of genes that 

are not DE in the mRNA, but are so in the protein. In detail, the GOProfiles analysis showed a 

difference in the functional profiles of the genes up-regulated in the vestibule in the two 

domains, and managed to pinpoint the difference in the cell adhesion category (GO:0007155, 

q−value=1.75×10-2), for which 26% of the genes in the protein were annotated, and only 

16% of the genes in the mRNA domain. In the cochlea, the possibility that the functional 

profile of up-regulated genes is the same for mRNA and protein could not be rejected. 

We performed enrichment analysis on the MMT dataset as well, by ranking the genes 

according to their fold-changes in protein and mRNA, and using a cut-off independent 

approach [96] to identify enrichments in both domains (for the full list of enrichments see 

Table S7 in [55]). Inspired by [97], we scored each pair of tissues according to how specific 

the terms that arise from the enrichment analysis are, to either the protein or the mRNA 

domain (Figure 3.2-14). For most pairs of tissues, this analysis showed that there are more 

functions unique to the mRNA than to the protein. This was very prominent in functions 

upregulated in the heart compared to the liver. In contrast, functions up-regulated in the 

cerebellum, compared to the liver and kidney, were more specific to the protein domain. 

Next, we pooled the unique terms from all pairs, to determine which functions are uniquely 

enriched in one of the domains. After aggregating the results at the level of 'GO slim' [125], 

we observed that protein modification and amino acid metabolism, as well as transport, 

including vesicle-mediated transport, tend to be unique in the protein domain (Figure 

3.2-15). In contrast, lipid metabolism and catabolic processes, along with stress response, are 

more transcriptome-specific functions. Terms related to cell death, cell adhesion, and 
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immune system response, all appeared multiple times (≥5) and only in the mRNA 

comparisons. 

Figure 3.2-14 Semantic 
specificity of enrichments 
to protein or mRNA in the 
comparison of pairs of 
tissues [MMT]. Each tile 
represents a comparison 
between a pair of tissues in a 
certain direction, i.e., the 
terms emerged from genes 
that are up-regulated in the 
tissue of the y-axis compared 
to the tissue of the x-axis. The 
color of the tile indicates how 
much the enrichment terms 
tend to be specific to a single 
domain, ranging from full 
specificity to protein (blue) 
to full specificity to mRNA 
(red). Pairs, for which no 
terms were found, are 
colored in gray. The tiles on 
the diagonal do not 
represent a valid 
comparison. 

Figure 3.2-15 
Transcriptome versus 
translatome specificity 
degrees associated with GO 
slim terms [MMT]. The 
heatmap illustrates the 
specificity of GO slim terms 
(rows) to the transcriptome 
and the translatome 
(columns), where a specificity 
of 1 indicates that all 
appearances of the GO term 
and its descendants are 
unique to the respective 
domain, and a specificity of 0 
indicates that all these 
appearances are present in 
the other domain as well. For 
each term, the number of 
unique GO terms that were 
aggregated and the overall 
count of their appearances 
are listed in parenthesis. 
Included in this figure are 
only the GO terms for which 

the proportion of RNA unique terms, out of all unique terms, is significantly different than a background probability 
of 0.56 (two-sided proportion test, q-value≤0.1), or that were spotted only in one of the domains (in such a case the 
tile of the other domain is colored in gray). 
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3.2.6.1 Post-transcriptionally repressed genes 

To complete the analysis, we also analyzed genes that show relatively high expression in the 

mRNA, but their measurements are completely missing from the protein.  

Kwon et al. analyzed genes with high mRNA expression, with not even a single measurement 

in the protein domain [50]. To conduct a similar test on our datasets, for each group 

separately, we found the lowest mRNA expression level above which at least a fraction q of 

the genes have a valid measurement in the protein domain, with some correction for 

robustness. We defined the post-transcriptionally repressed genes as those above the mRNA 

threshold but with no protein measurement. We then performed enrichment analysis for 

each group, comparing the post-transcriptionally repressed genes to the background of all 

genes above the mRNA threshold.  

We wanted to set a single fraction q for all datasets and groups. In Kwon et al. q=0.8 was used 

[50]. To accommodate the sparsity of our data we chose q=0.65. Figure 3.2-12 shows the EAR 

thresholds. For the cochlea and vestibule the thresholds were 3.97 and 2.58 RPKM, 

respectively, and 3603 and 7880 genes (out of 14,722) had higher expression, respectively. In 

both tissues, about one third of these genes were identified as post-transcriptionally 

repressed, as dictated by the parameter q. We note that between datasets and between 

groups within the same dataset, there is high variability in the number of genes with mRNA 

expression above the threshold (Table 3.2-1), suggesting that q could be set per group.  

Table 3.2-1 Number of post-transcriptionally repressed genes. Number of genes for which: both mRNA and 
protein were detected (Detected), only mRNA was detected (Not Detected), mRNA was above ’detectability’ 
expression threshold (Above Threshold), and the number of genes that fit the definition of post-transcriptionally 
repressed. 

Dataset Group Detected 
Not 
Detected 

Above 
Threshold 

Post-Transcriptionally 
Repressed 

EAR cochlea 5169 9553 3603 1260 
EAR vestibule 6638 8084 7880 2755 
MMT brain 5142 11827 668 230 
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MMT cerebellum 5017 11952 986 341 
MMT heart 4173 12796 1453 507 
MMT kidney 5296 11673 3390 1185 
MMT liver 4791 12178 2493 870 
NCI60 breast 5121 17633 2576 900 
NCI60 CNS 4998 17756 2806 979 
NCI60 colon 5116 17638 3105 1085 
NCI60 leukemia 4690 18064 2103 734 
NCI60 melanoma 5241 17513 3122 1092 
NCI60 NSCLC 5367 17387 3220 1123 
NCI60 ovary 4958 17796 2522 880 
NCI60 prostate 4198 18556 1254 438 
NCI60 renal 5066 17688 2473 865 
PRIMATE 3394 8685 2320 810 

We checked the post-transcriptionally repressed genes for enrichments, against the 

background of all genes exceeding the threshold (for the full list of enrichments see Table S8 

in [55]). Some recurrent terms were intuitively explained as artifacts of detectability bias 

(data not shown). In the NCI60 data, other terms, such as ’cellular response to interferon-

gamma - GO:0071346’ in the colon, were more group specific. It was previously shown that 

colon cancer cell lines with Ki-ras mutations display reduced expression of interferon (IFN)-

responsive genes [126]. It is known that IFN-γ regulates the mRNA translation of components 

of the immune system [127, 128]. Combining the two, we can explain why the cellular 

response to IFN-γ is post-transcriptionally repressed in colon cancer. The regulation of the 

immune response is also post-transcriptionally repressed in ovarian cancer according to our 

analysis. Several pathways are known to cause immune suppression in this cancer type [129–

131]. Our findings suggest that some of the suppression is post-transcriptionally mediated. 

Other interesting terms are ’structural constituent of ribosome - GO:0003735’ and ’organellar 

ribosome - GO:0000313’ in leukemia [NCI60]. Indeed, in leukemia [132], as well as in ovarian 

cancer [133], the levels of expression of some ribosomal protein genes were found to be 

positively correlated with favorable clinical course. This suggests that reduction in certain 
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ribosomal proteins is contributing to the progression of cancer. We conclude that this 

reduction is achieved by post-transcriptional repression. The term ’embryonic organ 

development - GO:0048568’ appears in multiple cancer lines, such as breast, CNS, colon and 

NSCLC. It was reported that in poorly differentiated cancers, including breast and CNS 

tumors, the gene expression signature is similar to the one in embryonic stem cells [134]. We 

conclude that post-transcriptional repression is involved in this process. Many of the 

enrichments found in the PRIMATE datasets are related to either the mitotic cell cycle or to 

lymphocyte homeostasis and the immune response. This suggests the involvement of post-

transcriptional repression in the immortalization process used to establish LCLs [135]. The 

EAR and MMT data suggest several other functions that are post-transcriptionally repressed, 

but additional evidence is required to support these hypotheses, as they are based on small 

number of genes or the detectability of the relevant proteins might be reduced (data not 

shown).  

In conclusion, for some of the cancerous cell lines, we found tumor related functionalities that 

are controlled through post-transcriptional repression, namely, functionalities that are coded 

in mRNA but are less 'active' in protein. 
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4 CONCLUSIONS 

In this work we generated RNA-seq and protein MS data for the sensory epithelia of the inner 

ear at mouse ages E16.5 and P0, which correspond to ages before and during the acquisition 

of mechanosensitivity. Except for the proteomics data for E16.5, the data were previously 

published, and are available for download in raw and processed forms. The transcriptomics 

data were also deposited in the gEAR portal, where it can be easily compared with data from 

other studies of the auditory and vestibular systems. 

Our conclusions from the data can be predominantly separated into those resulting from the 

transcriptomic analysis across dimensions of age and tissue, and those resulting from the 

comparison of mRNA and protein levels at P0. Still, this last group of conclusions has an 

important implication to the interpretation of the transcriptomic analysis. Specifically, we 

learn that functionalities that are enriched in the cochlea versus the vestibule or vice versa, 

according to mRNA levels comparison, do not necessarily manifest in different protein levels, 

or they manifest to a lesser extent. 

4.1 Transcriptomics Analysis 

Exploring the transcriptomics data in the dimensions of age and tissue expanded our 

knowledge about the development of the IE. Moreover, we found transcription factors that 

are involved in transcriptional regulation, and focused on those that are also involved in 

regeneration of the avian IE after damage, based on previous work [66]. 

4.1.1 Major differences between the cochlea and the vestibule 

The sensory epithelium constitutes a heterogeneous tissue. It contains two roughly defined 

populations of cells, HCs and SCs, which cannot be easily separated during dissection. In some 

experiments (e.g. [9]), separation is done using FACS sorting. Still, the analysis of data from 
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the native tissue has the advantage of summarizing the expression of the HCs and the milieu 

they interact with. Though we did not separate the cells by type, to better understand how 

the cell type proportions effected our results, we estimated them using expression 

deconvolution. Our estimated proportions showed a higher HC content in the cochlea 

compared to the vestibule, as well as an increase of HC content with development in both 

tissues, with a relatively larger increase in the vestibule. 

Nearly 75% of the variation in the gene expression of our samples was explained by principal 

components associated with age (~47.5%) or tissue (~27.5%). Our analysis focused, 

accordingly, on the comparison of expression across age and across tissue. We also analyzed 

the harder-to-isolate interaction of age and tissue. In the comparison across age, we affirmed 

that both tissues become less proliferative and more differentiated with development, 

showing specialization for their roles in sensory perception. According to our estimations, 

this specialization is accompanied by an increase in the HC proportion in the sensory 

epithelia. 

More surprising enrichments were obtained from the comparison between tissues. While the 

cochlea was characterized mainly by neurological GO terms, the vestibule was shown to be 

enriched in vascular, structural and immunological functions. Some of these differences could 

be attributed to the differences in HC proportion, which is presumably higher in the cochlea 

at both ages. This finding has medical implications, as the higher vascularization of the 

vestibule, and its accessibility to immune cells, might imply different susceptibility of the 

tissues to ototoxic medications and IE infections. 

Examining the interaction of tissue and age, one notable finding is the delay in the 

development of sensory perception in the cochlea versus the vestibule. This finding is 

supported by delayed acquirement of mechanosensitivity in the cochlea (between P0 and P2 
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[14]) compared to the vestibule (between E16 and E17 [13]). On the other hand, at E16.5 the 

vestibule is less developed in neuron projection and signaling compared to the cochlea, and 

by P0 the gap between the two decreases. This decrease can be attributed to the relatively 

larger increase in HC proportion in the vestibule compared to the cochlea. 

In conclusion, in our comparison of the cochlea and the vestibule, we found the cochlea to be 

more enriched in neurological functions, and to contain a higher percentage of HCs than the 

vestibule, but also to have a delayed development of its sensory perception compared with 

the vestibule. The vestibule, on the other hand, was found to be more vascular and more 

accessible to the immunological system. 

4.1.2 Deafness genes prediction 

Known DGs tend to be differentially expressed between the tissues. From E16.5 to P0, they 

increase both in expression, and in cochlea to vestibule expression ratio. We built a classifier 

that used expression features to predict the probabilities of genes to be yet undiscovered 

DGs. This classifier achieved a ROC score of 0.602 in predicting which genes are associated 

with deafness according to text mining tools. 

A previous attempt to find candidate deafness genes using bioinformatics [38] was limited to 

a search within genomic regions linked to various nonsyndromic hereditary HL phenotypes, 

did not use machine learning, and did not provide an estimation of the accuracy of the 

predictions. While our classifier achieves a poor ROC score, our work demonstrates many 

advantages over this previous attempt: our classifier considers all genes in the genome, it 

learns from patterns of known DGs, and we provide some estimation of its performance. 

Notably, this estimation may be biased downwards as the classifier learned to classify DGs, 

but it was tested on the task of classifying deafness-associated genes. Ideas for improvement 

of the classifier are presented in section 0  
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Suggestions for future research. 

The list of deafness associated genes might not accurately reflect the true list of DGs, i.e. all 

genes that are essential for hearing. Still, it served to estimate the performance of the 

classifier, because we believe it to be a good proxy for the true list. Our ordering of the genes 

according to their estimated probability of being DGs can be used to prioritize candidate DGs 

in real world scenarios, e.g., when multiple candidates arise from a familial segregation study 

or when exploring very large genomic regions associated with deafness (as done in [38], a list 

of loci associated with deafness is available at http://hereditaryhearingloss.org/). 

4.1.3 Transcription factors in inner ear development 

The main purpose of this research was to elucidate transcriptional pathways that govern 

auditory versus vestibular specification or control cell cycle exit. We used enrichment 

analysis to identify TFs that are responsible for differences in expression between across 

tissues or ages, respectively. Some of the TFs we identified as controlling expression were 

already known, e.g. the E2F family of TFs, which is promoting proliferation in the sensory 

epithelia and is controlled by retinoblastoma 1 during this stage of development [17], or the 

retinoic acid nuclear receptors, which are essential for the proper morphogenesis of the ear 

[120]. Our analysis not only strengthens the evidence connecting these known TFs to IE 

development, but also emphasizes their additional roles in HC regeneration in birds (see 

below). Other TFs found do not have a known function in the IE. Such are Arnt, which activate 

the transcription of its target genes in E16.5; COUP TFs, which we speculate to have a dual 

role, with Nr2f2 inhibiting myogenesis in the cochlea and Nr2f1 promoting retinoid signaling; 

and the hemopoiesis agent Lmo2 [111], which we believe cooperates with different 

coactivators in the vestibule and the cochlea. 

http://hereditaryhearingloss.org/
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It might be beneficial to mimic the transcriptional regulation during a response to IE damage 

in birds, as avian cochlear HCs regenerate [66]. In a previous experiment, thousands of TFs 

changed significantly during such a response. We intersected them with our list of 

developmental TFs, in order to highlight genes that are more likely to be involved in either 

proliferation or differentiation. We found dozens overlapping TFs, but we focused only on 

those that are DE between conditions, because we can more easily interpret how they are 

regulated, and influence this regulation through interventions. We highlighted the complex 

Arnt:AhR, which we believe is important in early development, and its transient increase is 

observed during avian HC regeneration. We also emphasized that an increase in the genes 

Zbtb14 [ZF5], Lmo2, Nr2f1, Nr2f2, and Smad9, and a decrease in Spi1 [PU.1], Nfe2l2 [Nrf2], and 

Mafk [Nrf2], is needed for proper differentiation of the cochlea during HC regeneration. An 

increase in Smad2 is involved in the same process in the vestibule. 

To conclude, the majority of TFs we predicted to be key regulators of the differentiation 

process, have known functions that agree with this dichotomist characterization. Some of 

which were further selected as possible candidates in inducing HC regeneration. 

4.1.4 Summary of transcriptomics analysis 

Our work highlighted differences in biological processes activity, developmental timeline, and 

HC content between the cochlea and the vestibule, as these are manifested in the mRNA 

expression profile of the two tissues. Differential expression of certain TFs was identified as a 

driving force for differentiation into one tissue and not the other, while others were 

associated with proliferation of cells during development. The intersection of the two groups 

with a list of TFs involved in avian HC regeneration provides strong candidates for future 

intervention in HC damage in mammals. Apart from HC damage, there are many other 
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mechanisms of genetic deafness. In our analysis we noted that DGs show a unique pattern of 

spatial and temporal expression, which we used to build a classifier for undiscovered DGs. 

4.1.5 Limitations of the current study 

Any conclusions drawn from naïve enrichment analysis are limited by faulty assumptions 

made by the statistical framework used, inherent error rates (especially of type I, also known 

as "false positives"), biases in the annotations in genes towards more extensively studied 

biological entities and disorders [136], and, of course, errors in the preliminary mRNA data 

and the differential expression analysis. Another source of inaccuracy lies in the 

interpretation of the results, as we made some careful hypotheses about the function of the 

tissues based on the composition of the enrichments that can profit from further biological 

validation.  

4.1.6 Suggestions for future research 

Protein-protein interaction (PPI) networks are used to represent physical binding events 

measured between protein pairs [137]. It was shown that these networks possess a 

"community structure" that groups together proteins that interact more frequently with one 

another and share common functions. This property, among others, is used in research to 

detect relevant regulated genes and pathways in individual samples or disease states. A PPI 

network usually reflects an aggregate of likely networks, which are based on measurements 

across many different conditions that together cover a variety of protein expression profiles  

[137]. This may pose a disadvantage in interpreting a specific biological condition in light of a 

PPI network, as the network contains many interactions that are not active in the condition 

due to some of the interacting proteins not being expressed. Because of this, different 

attempts were made to incorporate PPI networks with the more flexible technologies of 

mRNA and protein expression profiling. A simplistic approach for finding functional modules 
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of interacting proteins that are active in one state and not the other, is to filter the network 

for DE genes between the states, find clusters of highly connected proteins in the resulted 

network and search for functional enrichment within them (for examples in disease states 

see [138, 139]). A similar approach can be used in our research to find modules involved in 

differentiation and proliferation in the IE. Even more importantly, by combining PPI data 

with TF binding site data, we can refine our list of the master regulators of IE regeneration, 

using the established method suggested in [137].  

The development of a classifier for deafness genes is a unique contribution of this study. 

While better than everything else available, it does not perform very well on absolute terms. 

Its development is a first step toward achieving a good classifier. Problems facing the 

development of such a classifier are the very small number of positive samples (around 140 

known deafness genes); and the heterogeneity of hereditary deafness, as HL can be classified 

as conductive, sensorineural, or mixed (a combination of both); syndromic or nonsyndromic; 

and prelingual or postlingual [36]. This latter quality suggests a potential for using multi-

label classification algorithms [140]. 

A new classifier might extend our use of gene expression to data from organisms other than 

mouse, other developmental ages, isolated cell populations, tissues exposed to noise or 

pharmacological treatment, and perhaps even data from non-ear tissues that can implicitly 

suggest ear specific roles for genes (for available inner ear datasets, see [7]). It might also 

benefit from the availability of protein MS data, published by our lab [55]. Another feature 

that can be used is PPIs. The key assumption in using this feature is that a network-neighbor 

of a disease-causing gene is more likely to cause either the same or a similar disease [141]. 

This suggestion is inspired by [38], where the bioinformatic search for candidate genes for 

deafness included a filtering over genes according to the interaction of their products with 

proteins involved in inner ear development or function, as well as from other works that used 
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these interactions to predict disease genes, alone [142] or with the use of co-expression [143] 

and/or gene ontology annotations [144, 145]. In this regard, it might be beneficial to use the 

ensemble method proposed by Yang et al. in the field of positive unlabeled learning for 

disease genes [144]. That method was used to incorporate gene expression, protein 

interactions and gene ontology annotations. 

4.2 Protein and mRNA joint analysis 

4.2.1 Changes in transcription levels are buffered on the protein level 

In this analysis we compared mRNA and protein expression across diverse datasets: mouse 

inner ear tissues, mouse organs, cancer cell lines and primate lymphoblastoids. We observed 

that the correlations in protein expression between groups are higher than the correlations 

in mRNA expression, across all datasets. It was previously observed that across taxa protein 

levels are more conserved than mRNA levels [49]. We showed this phenomenon across 

tissues as well, and explained it by changes in the transcript level that are attenuated at the 

protein levels. A direct outcome of this phenomenon is the compression of large differences 

in mRNA expression to smaller ones in the protein domain. This is the first observation of this 

phenomenon for non-proliferating tissues, though it was previously seen in proliferative ones 

[48]. Moreover, the aforementioned studies used OLS regression, which is known to suffer 

from a strong dilution bias [53]. Using the more robust MA regression instead, we provided 

evidence for such compression in EAR, PRIMATE and in MMT (except for one tissue pair). In 

NCI60 and the brain-cerebellum pair [MMT] the regression results supported expansion, 

instead of compression. 

When comparing tissues that are very similar in level of expression, small biases can render 

the regression invalid. In order to solve this issue, we tried a non-parametric approach, which 

can be less powerful but is not dependent on an underlying linear model. Using this approach, 
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we showed buffering for all datasets except NCI60. We therefore conclude that a partial 

buffering between translation and transcription exists in the MMT, EAR, and PRIMATE 

datasets. For NCI60, the results were insignificant, and supported neither compression nor its 

opposite, signal amplification. Perhaps a more powerful test (for example, a random effects 

model [53]) may provide the answer. For the PRIMATE dataset such an observation was 

made previously [51]. In this study, by addressing some of the limitations of that statistical 

analysis, we reaffirmed the correctness of the observation. Notably, both the parametric and 

non-parametric approaches were statistically robust to the different levels of noise in protein 

and mRNA, which in our study, manifested in the higher correlations between mRNA 

replicates compared to between protein replicates in all datasets (a property that was 

observed also in [53], where the authors reported the median correlation between mRNA 

replicates to be higher than the median in correlation between protein replicates in 13 and 

11 separate studies in yeast, respectively). 

We did not necessarily expect to see the same phenomena in cancer cell lines as in healthy 

tissues, for obvious reasons: cell lines are programmed to proliferate, whereas cells in healthy 

tissues divide slowly, if at all; cell lines somewhat lose their resemblance to their tissue of 

origin, thus becoming more similar to a "global cancer pattern"; and cell lines of the same 

origin may diverge in their transcriptomic and proteomic profiles as they follow different 

paths of cancer evolution. In addition, the post-transcriptional regulation may be altered or 

even damaged in cancer. We showed one manifestation of these biological differences, 

namely the lesser ability to separate NCI60 samples based on their origin, compared to the 

EAR and MMT datasets. Since the cell lines are more similar to each other in their expression 

profiles, the compression effect is expected to be less dominant in cancer. 

A translational model has been proposed, where transcriptional signals are amplified by 

translational regulation [53]. The existence of an amplifying mechanism might appear to 
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contradict the buffering suggested here. However, the authors studied budding yeast, a single 

cell type. In this model an increase in the mRNA level of a transcript would translate into an 

exponential increase of the matching protein, while our analysis is based on multiple tissues. 

In each tissue the transcriptional, translational and post-translational regulations are fine-

tuned to enable the correct function of the tissue. Both mechanisms can coexist, i.e. the 

expression profiles that we observe are the result of a balance between compressing and 

amplifying mechanisms. The first is related to the tissue identity (perhaps through epigenetic 

marks), and the second is connected to the way the translational apparatus of a cell functions. 

A very similar argument was made in [53], in the context of different species. We speculate 

that the contradicting evidence we observe for buffering in groups that are more similar to 

one another might be the result of such balance. I.e., in such groups, the balance between the 

two mechanisms leans towards amplification. 

4.2.2 Possible mechanisms for buffering 

What biological mechanism explains the buffering observation? Decoupling is achieved by 

changing the translation rates, the protein degradation rates, or both. We cannot distinguish 

between these three options using our analysis, yet according to the literature, protein 

translation is assumed to be the major contributor to the variance of protein concentration 

[45], and was shown to change through tissue differentiation [43]. Hence we can speculate 

that the translation rate is the factor that is changing between the two tissues, although in a 

different context, of expression quantitative trait loci in LCLs, the buffering observed between 

protein and mRNA was attributed mainly to protein degradation [146]. 

It has been suggested that translational efficiency decreases with increased mRNA levels due 

to competition for scarce resources, e.g., ribosomes [48]. However, as ribosomes are part of a 

nonspecific translation machinery, that would not work slower in translating a specific gene 
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if it is over-transcribed. Another explanation as to how the coordination of translation and 

transcription is achieved, is that certain proteins, which participate in replication and 

transcription (e.g., Rap1 and Abs1 in yeast), could be incorporated into the mRNA, exported 

from the nucleus, and differentially affect the rate of translation at the ribosome [47]. 

However, to date no proof was provided for this mechanism.  

We propose a third option, inspired by a study on the correlation of transcription and mRNA 

degradation rates in yeast [147]. The authors demonstrated that these rates are negatively 

correlated, and showed that the mutations responsible for this effect usually influence both 

transcription and mRNA degradation. Analogously, perhaps epigenetic changes are involved 

in coordinating the rates of transcription and translation in our system. 

4.2.3 Range compression assumption improves protein levels prediction 

We demonstrated how the prediction of protein can be improved by taking the range 

compression into account. Models that allow PTR to vary between tissues in a direction that 

buffers the change in protein levels (R\FCB), performed better than models that did not allow 

this variation or ignored RNA levels altogether. The improvement in the prediction error was 

between 9% and 24%, depending on the dataset. The largest improvement was achieved in 

the EAR, but in this dataset the prediction was very good to begin with. In the PRIMATE 

dataset the smaller improvement of 14% can make a large difference in the prediction 

quality. This enhanced ability to predict protein levels can be utilized, for example, to better 

predict disease status using machine learning. The higher accuracy exhibited by the RFCB 

method in the prediction of the NRAS protein level in breast cancer cell lines, supports its 

usage in disease status evaluation, as overexpression of NRAS is associated with poor 

prognosis in breast cancer [148]. 
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In the future, as understanding of mRNA-protein relationship improves, more sophisticated 

prediction tools can be developed that will be aware of this mechanism and explore different 

features of it (for example, whether it saturates in higher mRNA expression levels). Notably, 

the ability of sequence transcription features to explain 30% of protein abundance in 

addition to what can be accounted for by mRNA concentrations [149] suggests a large 

influence of gene sequence over post-transcriptional processes such as translation and 

degradation. It is tempting to speculate that they have some impact on the buffering 

mechanism as well; and that this impact can be modeled to improve accuracy. 

If buffering worked in the linear fashion captured by the FCB model, and the noise level was 

similar in the measurements of protein and mRNA, then we would expect the correlations 

between tissue pairs in the protein and the mRNA domains to be almost equal. We observed, 

however, that the correlations in the protein domain were higher. This is a surprising finding, 

especially in light of the higher noise level in protein, suggesting that a more powerful 

nonlinear buffering model could be described. Another support for a stronger buffering 

comes from the number of DE genes we found, which was much higher in the mRNA domain. 

As mentioned, the protein measurements are slightly noisier, though probably not to the 

extent that justifies these high differences. 

4.2.4 Suggested role for buffering mechanism in stress response 

In the enrichment analysis we observed that the functionalities represented at the protein 

domain were, by and large, a subset of the functionalities represented at the mRNA domain, 

which were far more numerous. The fact that we find less enrichment categories in protein is 

partially explained by the missingness pattern in the protein measurements: we have less 

chance to detect categories in which some or all of the genes are lowly expressed in the 

protein domain (or characterized by low detectability by MS). Focusing on the subset of 
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genes with full measurements in protein allows a fairer comparison, but nearly ignores the 

possible differences between those ’low expression’ categories. In that comparison we found 

a similar number of enrichment categories for protein and mRNA. The lists differ greatly; 

however, we notice that the categories that were found in the protein and not in the mRNA, 

were represented in the analysis of the full, non-filtered, mRNA data. We can conclude that all 

the functionalities that are represented in the protein are also evident in the mRNA data. For 

the opposite direction it is much harder to tell; to accurately answer this question we need to 

somehow predict the missing values in the protein, or develop an enrichment analysis tool 

that is aware of the 'missing not at random' nature of the data [150]. 

Why does one tissue maintain higher mRNA levels but the same protein levels compared to 

another, where such practice requires more energy from the cell? We suggest that 

functionally distinct tissues possess different mRNA profiles but similar protein profiles, in 

rest, as part of a preparation for a stimulus. Under some stimulus a translational inhibition is 

removed from a gene (or group of genes) that is DE between the tissues only at the mRNA 

domain, so that the tissue that possesses higher levels of the gene’s transcript will synthesize 

the protein faster. Indeed, one of the virtues attributed to translational control is the 

possibility of rapid response to external stimuli [151]. Moreover, when exposing mammalian 

cells to stress induced by dithiothreitol, mRNA- and protein-level regulation contribute 

equally to the change in protein expression [152], demonstrating the importance of protein-

level regulation under stress. If our suggestion is correct, it might be beneficial to measure 

both mRNA and protein levels in order to deduce functionality of genes. If a gene is DE at the 

protein domain, then the protein is important to the function of the resting tissue. If a gene is 

DE only at the mRNA domain, then it is required for the tissue functionality under some 

stimulus. 
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The fact that the vestibular up-regulated genes are enriched for response to stimulus and 

chemicals only in the mRNA domain might be a manifestation of this hypothesis, as a role for 

these responses in the normal development of the ear is not known. Also fitting this 

hypothesis are the multiple immune related terms found in the mRNA domain, in the analysis 

of the non-filtered data. Nevertheless, the lack of these terms from the protein analysis might 

be related to a relatively low expression of the genes in these categories. In the MMT analysis 

we see a similar pattern. Response to stress terms are enriched in mRNA data and not in 

protein, and those of immune system response are unique only to mRNA. In the literature we 

can find examples where the translational regulation of genes changes in response to heat 

shock [153], hypoxic stress [154], changes in iron concentration [155], and exposure to EGF 

[97]. It is interesting to explore whether the genes activated in these responses are highly 

expressed in the mRNA domain, compared to a tissue that is not normally subjected to these 

types of stress, even before the actual exposure. 

4.2.5 Summary of protein and mRNA joint analysis 

Our work demonstrates that protein levels are more conserved between tissues than mRNA 

levels. We employed this observation to improve the prediction of protein levels in a non-

proliferating tissue based on the mRNA levels measured in that tissue, by using data from 

several other tissues. A biological explanation is proposed as to why tissues maintain 

different levels of mRNA and similar levels of protein, by providing examples where this 

phenomenon serves as a preparation for a stimulus. 

4.2.6 Limitations of the current study 

The number of proteins detected in different proteomic experiments ranges between 3,000 

and 7,000 per sample, whereas the expressed mRNA transcripts covers a much larger portion 

of the genome. As shown in section 3.2.5.1, the data are not missing at random, that is, there is 
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a detection bias against lowly expressed proteins. In our analysis, whenever two groups were 

compared with one another, we filtered genes that were expressed in at least one sample of 

protein and one sample of mRNA, in both groups, in order to reduce the bias that is caused by 

the difference in the detection abilities between protein and mRNA. This is a reasonable 

solution, although it is not as complete as a statistical modelling of this pattern of missingness 

[53]. More importantly, some of our conclusions regarding the buffering effect cannot be 

generalized to the part of the genome that encodes proteins that are lowly expressed. 

Specifically, results indicating a higher conservation of protein levels compared to mRNA 

levels, and others supporting the existence of a buffering mechanism, were based on biased 

measurements. 

Similarly, the manifestation of certain tissue-functionalities in mRNA but not in protein can be 

explained by a detection bias against functionalities that are performed mainly by lowly 

expressed proteins. This problem was somewhat alleviated by rerunning the enrichment 

analysis with different filters on the genes included according to the minimum number of 

measurements in the protein domain, and then comparing the enrichment terms between the 

reruns, yet we cannot reject this explanation altogether. 

4.2.7 Suggestions for future research 

As outlined in the previous section, the problem of missing protein measurements interferes 

with our ability to generalize our finding to the entire genome. Perhaps in the future, the 

technology of MS will advance to a point, where the problem of missing measurements will 

become a non-issue. A more immediate, yet partial, solution using current datasets is to 

examine whether these phenomena exist specifically for the portion of the genes with the 

lowest protein measurements within the datasets. If so, this would provide some support for 

their relevance for the entire genome. Alas, such an analysis might be more prone to effects 
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caused by the detection bias. Another alternative is the use of ribosome profiling data as a 

proxy for protein abundance. In contrast to MS, ribosome profiling is not limited as much by a 

detection threshold, as it is based on deep sequencing ribosome-protected mRNA fragments 

[140]. Therefore, it can be used to investigate whether our results also apply to lowly 

expressed proteins. However, if the buffering mechanism described earlier works by 

changing protein degradation rates, then its effect would not be evident from ribosome 

profiling data, as this method provides a snapshot only of the translational activity of the cell. 

This property of ribosome-seq leads us to yet another proposal for future research. As 

ribosome-seq results are only affected by the part of the buffering mechanism mediated by 

protein degradation, this tool can be used to determine the relative contribution of the 

degradation to the mechanism, and, by subtraction from the full effect as it is measured by 

MS, to estimate the translation component as well. The contribution of protein degradation 

can also be assessed, to some limited degree, by the existing MS data. According to 

Schwanhäusser et al., the protein production rate appears to saturate for very highly 

expressed proteins [45]. Therefore, any buffering seen for these proteins can be ascribed 

primarily to differences in degradation rates. 

Another interesting question relates to the connection between the buffering mechanism 

described here, which reduces variability in proteins level between tissues, and the observed 

buffering of protein levels in the context of "noisy" mRNA levels at other scales. One example 

is the buffering on evolutionary timescales of inter-species variation [49, 51]. This was 

demonstrated here through the PRIMATE dataset. Other examples, of buffering observed in 

the intra- and inter-individual scale are reviewed in [44]. One can ask whether all these 

buffering phenomena share a molecular mechanism or have similar traits. 
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 תקציר
 לזהות במטרההמשקל, -שיוויו השמיעהת ומטרת עבודה זו היא ניתוח מולקולות הרנ"א והחלבונים המתבטאים במערכ

נתונים על רנ"א שליח וחלבון בשבלול האוזן ובוסטיבולה הופקו לצורך זה,  מנגנוני מחלה בחירשות ובהפרעות שיווי משקל.

 בהתאמה). P0-ו E16.5לידתי (הגילאים יסומנו -הבתר 0-ימים ובעכבר ביום ה 16.5בגיל העוברי בעכבר 

האודיטורית, ומערכת שיווי המערכת או בשמה האחר  ,מערכת השמיעההאוזן הפנימית מורכבת משתי מערכות עיקריות: 

אף הדמיון הרב ביניהן, קיימים הבדלים מבניים ותפקודיים בין השתיים. העכבר -המשקל, המכונה גם הווסטיבולרית. על

לימוד המבנה והתפקוד של האוזן הפנימית האנושית, וזאת, בין היתר, בשל היכולת  לצורךמשמש זה זמן רב חיית מודל 

ברקמות אלה המשפיעות על שמיעה ושיווי משקל. אנו התעניינו כהרביע אותו ולבחור צאצאים בעלי תכונות רצויות, כולל ל

אלו מתאימים לנקודות התפתחות של לפני ואחרי הרכישה של  .P0-ו E16.5שבלול האוזן והוסטיבולה בעכברים בגילאי 

עסקה בהשוואת רמות ביטוי הגנים בשתי רקמות האוזן ש מועטה מדעיתעבודה רק  הייתההרגישות לגירוי מכני. עד כה, 

עתוק כדי ששל מערכתי לפני ואחרי שלב התפתחותי זה. השתמשנו בגישות של ניתוח  שבלול האוזן והוסטיבולה, הפנימית,

ראשיים , כשהמטרה העיקרית הייתה זיהוי גורמי שעתוק המשמשים כבקרים השמיעהלפענח את מסלולי הבקרה במערכת 

 של שגשוג והתמיינות.

 פרופיליחידה. עבור  )omicsאומיקס (שמופק בטכניקת רוב מאמרי המחקר המשווים רמות ביטוי עושים זאת עבור מידע 

, )proteomicsפרופיל חלבון (רנ"א, ואילו עבור  , נהוג להשתמש במדידות של ריצוף)transcriptomicsשעתוק (

תהליכים  יכולת הזיהוי של מנגנוני בקרה של מוגבלתבניתוח מידע מסוג אומיקס יחיד . מסותבמדידות של ספקטרומטר 

שעתוק. ניתוחים משולבים מראים כי המתאם בין רמות הביטוי של חלבון ובין רמות ביטוי של רנ"א שליח  אחרי הקורים

למתאם נמוך זה כוללים בקרה . הסברים אפשריים 0.40ביונקים הוא יחסית נמוך, עם קבוע מתאם של פירסון בסביבות 

רמות ביטוי של חלבון ורנ"א שליח ברקמות האוזן הפנימית בגיל השתמשנו במדידות של במדידה. אנו שעתוק ורעש  אחרי

P0 שעתוק המתקיימת ברקמות שאינן י אחרבקרה לזהות תבנית של  כדיוחלבון, שליח , לצד אוספי נתונים אחרים של רנ"א

בניתוח עוקב השווינו העשרות ברמת החלבון וברמת הרנ"א שליח, והצענו יתרון  ).proliferation( של שגשוגבשלב 

 ביולוגי אפשרי למנגנון זה.

בממדים של גיל ורקמה הרחיב את הידע שלנו בנוגע להתפתחות האוזן הפנימית. מצאנו שהשבלול ניתוח פרופיל השעתוק 

עשיר יותר בתפקודים נוירולוגיים ומכיל אחוז גבוה יותר של תאי שערה לעומת הוסטיבולה, ומנגד, ההתפתחות של התפיסה 

רה יותר בכלי דם וחדירה יותר למערכת החושית בו מעוכבת לעומת זו בוסטיבולה. הוסטיבולה, מאידך, התגלתה כעשי



הם בעלי תפקידים ידועים שתואמים את האפיון  החיסונית. רוב גורמי השעתוק שחזינו כבקרים מרכזיים בהתמיינות

 הדיכוטומי הנזכר לעיל. חלק מאלו גם נבחר בהמשך כמועמדים אפשריים בהשראת התחדשות של תאי שערה.

) בין הרקמות. differential expressionמצאנו כי אלו נוטים להתבטאות מובדלת ( גנים ידועים של חרשות,בבהתמקדות 

בהם. הדגמנו כיצד ניתן לנצל זאת כדי במהלך ההתפתחות, הן רמות הביטוי והן יחס הביטוי בין השבלול לוסטיבולה עולים 

 חרשות. בגרימת) המזהה גנים נוספים כמועמדים classifierלבנות מסווג (

להדגים שיחס החלבון לרנ"א שליח במצב שיווי משקל משתנה בכיוון עזר  P0ולב של רנ"א שליח וחלבון בגיל ניתוח מש

המפחית את השינוי ברמות החלבון הנגרם עקב שינויים בכמות התעתיק. מגמה זו נראתה בשני אוספי מידע נוספים, האחד 

רימטים. באוסף מידע רביעי, של שורות תאים מסרטן של רקמות מאיברי עכבר, והשני של דגימות לימפובלסטואידים מפ

 הומני, לא הופיעה נטייה זו.

בין השעתוק לתרגום מבטיח שחלבונים יוכלו להיבנות במהירות חלקי ) buffering(משכך אנו מציעים שקיום אפקט 

חלבון מתוך רמות רנ"א  יכולה לשפר את החיזוי של רמותהמשכך כתגובה לגירוי חיצוני, ומדגימים כיצד התחשבות באפקט 

 שליח.
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