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Abstract Genome rearrangement problems arise in both species evolution and can-
cer research. Basic genome rearrangement models assume that the genome contains
a single copy of each gene and the only changes in the genome are structural, i.e.
reordering of segments. In contrast, numerical changes such as deletions and dupli-
cations, which change the number of copies of genes, have been observed in species
evolution and prominently in tumorigenesis. Here, we review various computational
models of evolution by rearrangements designed for the analysis of species or can-
cer genomes, focusing mainly on genomes with multiple gene copies. Models differ
in the assumptions taken on the genome structure and in the type of rearrangements
allowed during their evolution. Most problems regarding genomes with multiple
gene copies are computationally hard, and practical methods for their analysis are
reviewed. As more high resolution genomes become available, especially in cancer,
better models and efficient algorithms will be needed.

Prologue

The computational study of genome rearrangements is a sub-area of computational
biology born about 25 years ago [87, 89]. Over that period, it has flourished and
developed into a fascinating research area, combining beautiful combinatorial mod-
els, elegant theory and applications. Models of the first generation, motivated by
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species evolution, were simple (though their analysis was sometimes quite sophis-
ticated) and assumed that genomes contain only one copy of each gene. With the
explosion of biological data, new analysis opportunities arose, necessitating more
complex models and theory.

This manuscript describes some of the problems and results related to rearrange-
ment models allowing multiple gene copies. This research area is motivated by
evolution of species and of cancer genomes. Studies of cancer genome evolution
are stimulated by the recent large scale deep sequencing of thousands of tumor
genomes, which has brought about a plethora of novel challenges. Our main fo-
cus is on multi-copy models, but key single-copy models are also reviewed briefly
for context.

This review is by no means exhaustive. The field of modeling genome rearrange-
ments is vast and cannot be covered in one paper. The selection of topics reflects
our knowledge (or lack thereof) and taste, and we apologize to the many researchers
whose work is not mentioned. For further reading see, e.g., [126, 42, 39].

This review is intended for researchers and graduate students in Computer Sci-
ence and Bioinformatics. Experts in computational genome rearrangements can use
it as a reference source. For newcomers to the field it can be a roadmap of key mod-
els and problems in the rich literature on genome rearrangements. As the motivation
to the field comes from biology and medicine, we describe very briefly the biologi-
cal context. However, by and large, the review can be read and understood without
that context.

1 Introduction

In this section we give biological introduction and motivation to genome rearrange-
ments (GR) in both species evolution and cancer.1 Section 2 gives computational
background and some fundamental results in the analysis of single copy genomes.
In Sections 3 and 4 we review GR models that handle genomes with multiple gene
copies in the context of species and cancer evolution.

1.1 Genomes and rearrangements

The genome2 encodes instructions used in the development and functioning of
all living organisms (bacteria, plants, animals etc.). Genomes are built of DNA, a
double-stranded molecule in which each strand is a long sequence of nucleotides
(or bases). Each base can be of four types A, C, G and T. The two strands are com-

1 See the Box 3 for a list of abbreviations
2 Since this review concentrates mainly on the computational aspects of GR, we only give a brief
biological introduction. We italicize terms that actually require definitions. For concise biological
definitions see, e.g., [65]. Box 1 defines some biological terms that are mentioned in the text.
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plementary such that an A on one strand is coupled with a T on the other strand, and
similarly C is coupled with G. Because of this complementarity, one strand com-
pletely determines the other, and DNA molecules are usually represented by the
sequence of one strand.

The genome is the total DNA material in the cell. It is partitioned into physi-
cally disjoint subsequences called chromosomes. Chromosomes can be either linear
and contain two ends called telomeres, or circular. A gene is a segment along the
chromosome containing information for the construction of a protein. Proteins are
molecules that form the “machines” and building blocks of most cellular functions.
The direction in which a gene is transcribed into a protein on a given strand deter-
mines its orientation. Genes are a basic unit of heredity passed from one generation
to the other.

The causes of diversity of organisms are changes in the DNA between genera-
tions. Such changes, which arise due to inaccurate replication and also due to envi-
ronmental effects on the DNA, open the possibilities for modified genes, new genes,
and eventually new species.

Genomes can evolve in a local and global manner. Local alterations refer to point
mutations in the DNA sequence that can either substitute a single base (or a very
short subsequence) with a different one, insert a single base into the sequence or
delete a base from the sequence. Such local alterations can also involve very short
sequence segments. On the other hand, a sequence can also evolve by modifying
its organization on a large scale. These global mutations, called genome rearrange-
ments or structural variations, relocate, duplicate, or delete large fragments of the
DNA. The main rearrangement types include the following (compare Figure 1):

• Deletion. A segment of DNA is lost. A chromosome deletion is a deletion of an
entire chromosome.

• Inversion or reversal. A segment is cut and reinserted in the opposite orientation.
Since the insertion reverses the two strands, the result is an inverted and reverse
complemented DNA sequence.

• Transposition. A DNA segment is moved to a different location.
• Duplication. A genomic segment is copied and reinserted into the genome. In a

tandem duplication the copy is inserted right after the original one. An arbitrary
(non tandem) duplication inserts the new copy at an arbitrary position (one partic-
ular type of such is retrotransposition). A whole chromosome duplication makes
another copy of an entire chromosome. A whole genome duplication duplicates
all the genome’s chromosomes.

• Translocation. Two linear chromosomes exchange their end segments.
• Fusion. Two chromosomes are joined into one.
• Fission. A chromosome splits into two chromosomes.

The above rearrangement operations affect DNA segments rather than nucleotides
and thus genomes are often represented by sequences of segments in this context.
Two segments are called homologous if they derive from a common ancestor either
by speciation (in that case the segments appear in the genomes of different species)
or by duplication (where they occur on the same genome).
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Fig. 1 Genome rearrangements. a. Deletion. b. Reversal. c. Transposition. d. Tandem duplication.
e. Translocation. f. Fusion. g. Fission.

1.2 Genome rearrangements in species evolution

The genomes of related species are very similar. For instance, most of the mouse and
human genomes can be divided into segments in which gene content is conserved
[27]. However, the order of these segments along the human and mouse genomes
is different. This difference is attributed to rearrangement events occurring after the
divergence of the two lineages.

The phenomenon of GR in evolution was discovered by Sturtevant and Dobzhan-
sky who demonstrated inversions between genomes of drosophila species [100].
Palmer and colleagues observed that mitochondrial DNA of related plant species
have similar gene content but different segment ordering (Figure 2) [77, 99]. This
immediately raises the question of how this change came about, the fundamental
problem that underlies the GR field.

The detection of GRs in the studies mentioned was largely based on molecular
cytogenetics techniques such as chromosome banding and in-situ hybridization [82].
These studies mostly focused on relatively close species and a small number of
rearrangements between them [90]. With the advent of sequencing technologies,
bioinformatic methods enabled locating homologous segments in different genome
sequences, thus creating finer comparative maps based on genome sequences [79].
See Box 2 for details on the technologies for rearrangement detection.
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Fig. 2 The basic sorting problem. Given Genome I and Genome II, and a set of allowed operations,
we wish to find a shortest sequence of operations transforming Genome I into Genome II. The
sequence is called a sorting scenario and the number of operations in it is called the sorting distance.
See Figure 3 for a sorting scenario.
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Fig. 3 A sorting scenario for the chloroplast genome evolution between two conifers. The genome
at the top is transformed to the one at the bottom in five steps. The first is a deletion and the next
four are inversions of genomic segments. The ends of the involved segments are indicated by the
broken lines. Adapted and simplified from Strauss et al. [99].
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Sankoff pioneered the computational study of GR in species evolution [87, 89].
The basic assumption of most mathematical models is that evolution is parsimonious
and prefers a shortest or most likely sequence of events. In their seminal works,
Hannenhalli and Pevzner gave the first polynomial algorithm for the problem of
transforming one genome into the other by the minimum number of reversals and of
reversals and translocations, respectively [49, 50]. They used their algorithm to give
a shortest event sequence between men and mice, and between cabbage and turnip.

Classical computational rearrangement models assume that each gene in the two
genomes under study appears only once and that 1-1 homology between the genes
of the genomes has been established. While this assumption may hold for closely
related genomes, it is unwarranted for divergent species with several copies of the
same genes or highly similar genes. Duplications are an important source of new
gene functions since new gene copies tend to diverge through mutations and develop
new functions. For instance, evidence of whole genome duplication events have
been observed in most angiosperm genomes [20].

Box 1 Some biological jargon

Angiosperms - the flowering plants
Chloroplasts - specialized compartments in plant cells responsible for photosynthe-
sis
Conifers - cone-bearing seed plants
Drosophila - fruit fly
Metaphase - a stage in cell division. During metaphase chromosomes can be distin-
guished under the microscope after appropriate painting
Orthologs - descendant copies of the same gene sequence in different species. Or-
thologs can usually be identified by their sequence similarity
Somatic cell - any cell forming the organism body other than the reproductive cells.
The genome in sperm and egg cells is inherited in sexual reproduction, along with
any mutations in it. In contrast, the genome of somatic cells is not inherited, but
mutations in cancer genomes are inherited in cell division.
Somatic mutation - a mutation occurring in somatic cells.

1.3 Genome rearrangements in cancer

Cancer is a complex disease driven by the accumulation of somatic DNA mutations
over generations of cell divisions. Such mutations affect tumor growth, clinical pro-
gression, immune escape, and drug resistance [32].

Mutations in cancer cells can be local, affecting single DNA base pairs. These
mutations, called single nucleotide variants (SNV), can number in the thousands
per cancer cell. On the other hand, large scale mutations, i.e. GRs, can relocate frag-
ments of the DNA. Aberrations that change the amount of genomic content, called
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copy number alterations (CNAs) include duplications and deletions of genomic re-
gions. The karyotype of a cell is its complete set of chromosomes, consisting of the
number and structure of the chromosomes in it. Large-scale aberrations can have a
dramatic effect on the cancer karyotype (see Figure 4).

Somatic mutations may amplify genes that promote cancer (oncogenes) or harm
genes that inhibit cancer development (tumor suppressor genes). In addition, re-
arrangements such as translocations and inversions may change gene structure and
regulation and create novel fusion genes, with or without additional changes in copy
number (CN).

Fig. 4 A schematic of the karyotype of the T47D breast cancer cell line. The chromosome numbers
in the normal diploid are indicated below each subfigure. In a normal karyotype, each chromosome
has two copies, as for Chr. 4, 13, 17 and 18. Among the GRs in this cancer genome we see chromo-
somal duplications (e.g., four copies of Chr. 11), translocations (between Chr. 8 and Chr. 14), and
more complex events (e.g., tandem duplication of one arm of Chr. 1 and fusion with an extra arm
of Chr. 16). Image source: [10] and Wikimedia Commons [52]. This image is used under license
CC BY-SA 3.0.
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Cancer is an evolutionary process in which a normal genome accumulates mu-
tations that eventually transform it into a cancerous one [11]. The gain of advan-
tageous mutations leads to a clonal expansion, forming a larger population of the
mutated cells. Subsequent clonal expansions occur as additional advantageous mu-
tations accumulate in descendant cells. A single tumor biopsy will often contain a
mixture of several competing tumor clones. These tumor clones frequently differ in
their genomic content and structure. When sequencing the tumor, one actually ob-
tains a mixture of several tumor clones and of normal cells. Recent research suggests
that this heterogeneity has profound clinical implications [32].

Box 2 Detection of genome rearrangements

The classical ways to detect chromosomal abnormalities in cytogenetics are G-
banding and fluorescence in situ hybridization (FISH), which allow viewing the
chromosome in metaphase at low resolution [81]. FISH measures the CN of tens to
hundreds of targeted genes [29]. Array comparative genomic hybridization (array
CGH) gives a higher resolution of CN estimation for a cell population [107].
Today, next generation sequencing techniques are the main data source for cancer
mutation analyses [33]. Whole genome sequencing provides tens to hundreds of
millions of DNA reads that enable the detection of variants. These short reads are
assembled into longer DNA sequences and alignment to a reference genome can
determine sequence similarity and structural changes. This reference genome can
be of a related species for evolutionary studies or of a normal tissue in the case of
cancer.
Paired-end read technologies generate pairs of short reads such that the approxi-
mate distance between them and their relative orientations in the target genome are
known. Read pairs in which the location or orientation in the reference genome is
not as expected are called discordant. These reads give evidence of structural rear-
rangement operations [73]. The read depth data, i.e. the number of concordant reads
mapped to each region in the reference genome, can also be used to assess CN and
CNAs [73].

2 Single gene models, operation types and distance measures

In this section we give a brief introduction to GR models. We start by giving the
definitions and terminology used in computational GR analysis. We then review
several classical single gene models.
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2.1 Genome representation

Here we describe simple mathematical representations of genomes for GR analysis.
A genome representation should preserve the information about the order, orien-
tation and homology between segments (see Figure 3). In some representations,
different copies of similar segments can be distinguished while in other represen-
tations they cannot. For instance, the two copies of chromosome 1 in Figure 4 are
indistinguishable. On the other hand, in some cases gene copies can be distinguished
from one another, for example due to gene sequence changes since its speciation.
Different GR models may use different representations depending on the model as-
sumptions or data used.

Consider a set G of n segments in the genome. For convenience, we call the seg-
ments in G genes, though they do not necessarily represent biological gene entities.
A gene g is an oriented sequence of DNA that starts with a tail and ends with a head,
denoted as gt and gh respectively. The default orientation of a gene, and thus its head
and tail, can be determined arbitrarily or according to some reference genome. The
set of extremities of the genes is E = {gt |g ∈ G }∪{gh|g ∈ G }.

An adjacency between two consecutive genes in a genome is an unordered pair
of extremities. Thus, an adjacency between two genes a,b ∈ G can take one of
four forms, depending on their orientation: {ah,bt},{at ,bh},{at ,bt},{ah,bh}. An
extremity that is not adjacent to another extremity is called a telomere, and is repre-
sented by a singleton set, e.g. {ah}.

In some formulations, a gene may have multiple copies corresponding, for exam-
ple, to homologous yet distinguishable genes. The copies of such a gene g ∈ G are
identified by a superscript. For example, g1,g2,g3 are three distinct copies of gene
g. Such a gene with multiple distinguishable copies is called a labeled gene. A gene
that has a single copy or has multiple indistinguishable copies is called unlabeled.
For a gene g, we call the number of copies it has its copy number and denote it by
cn(g). A gene set G with one copy for each gene is called an ordinary gene set. A
labeled gene set is a set G L = {gi|g ∈ G ,1≤ i≤ cn(g)}} and an unlabeled gene set
G U is a multiset G U =∪g∈G ∪1≤i≤cn(g){g}. For instance, G L = {a1,a2,b1,c1,c2,c3}
and G U = {a,a,b,c,c,c} are labeled and unlabeled gene sets, respectively, that have
two copies of gene a, one of b and three of c. Similar to genes, extremities belonging
to labeled genes are distinguishable (e.g., a1

h 6= a2
h), while extremities of unlabeled

gene are indistinguishable. Furthermore, unlabeled heads and tails of the same unla-
beled gene cannot be matched. I.e., we do not know which tail and head come from
the same gene copy.

A labeled genome Π over a labeled gene set G L is a set of adjacencies and
telomeres such that every labeled extremity ei ∈ E L appears exactly once in an ad-
jacency or telomere of Π . Similarly, an unlabeled genome Π over an unlabeled
gene set G U is a multiset of adjacencies and telomeres such that every unlabeled
extremity e ∈ E U of gene g appears exactly cn(g) times in adjacencies or telomeres
of Π . Π = {{a1

t },{a1
h,b

1
h},{b1

t ,c
1
t },{c1

h},{a2
t },{a2

h,b
2
t },{b2

h},{b3
t },{b3

h,c
2
h},{c2

t }}
and Γ = {{at},{ah,bh},{bt ,ct},{ch},{at},{ah,bt},{bh},{bt},{bh,ch},{ct}} are
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examples of labeled and unlabeled genomes. If the gene set of a genome is ordinary,
we call it an ordinary genome (or a single copy genome).

The graph representation of a genome Π is an undirected graph GΠ = (E ,E).
Its nodes are the extremities of Π (either labeled or unlabeled) and E consists of
interval edges and adjacency edges. An interval edge connects the head and tail of
a gene. For unlabeled genomes there are cn(g) parallel interval edges of the edge
(gh,gt) for every gene g. For labeled genomes, each labeled gene copy gi has a sin-
gle interval edge (gi

h,g
i
t). Adjacency edges connect the extremities x and y where

{x,y} is an adjacency of Π . We call GΠ the genome graph of Π . The representa-
tions Π and GΠ are equivalent and thus we use them interchangeably. Notice that
for each node (extremity), its number of interval edges (interval-degree) equals its
number of adjacency edges (adjacency-degree) plus the number of telomeres it be-
longs to. Figures 5, 6 and 7 show genome graphs for ordinary, labeled and unlabeled
genomes, respectively.

An alternating route in GΠ is either a path or a cycle in which no two consecutive
edges are of the same type (interval/adjacency). A chromosome decomposition DΠ

of the genome Π is a decomposition of GΠ into a set of edge disjoint maximal al-
ternating cycles and alternating paths that cover all edges. Note that a chromosome
decomposition is always possible since the interval-degree is equal to the adjacency-
degree for every node that is not in a telomere, and that maximal paths must start
and end with telomeres. Labeled and ordinary genomes have a unique chromosome
decomposition by simply taking the set of connected components, since the interval-
degree and the adjacency-degree of every non-telomere node is 1 (see Figures 5 and
6). There may be several decompositions for a multi-copy unlabeled genome (see
Figure 7). Each alternating route in a decomposition is called a chromosome. A
chromosome is called circular if the corresponding route is a cycle, and linear oth-
erwise. A decomposition is called linear if all its chromosomes are linear, circular
if all its chromosomes are circular, and otherwise mixed. Figure 5 shows an ordi-
nary genome with one linear and one circular chromosome. An ordinary genome
composed of a single linear chromosome is called a signed permutation.

A signed genomic string is a sequence of oriented genes, e.g. 1−2 3. For a chro-
mosome C ∈ DΠ , we define the chromosome string of C as follows. Start at one of
the ends of a linear chromosome with the string ‘(’. Traverse the route until all edges
along the route are covered. For each traversal of an interval edge from a tail gt to a
head gh append g to the string. For traversal from gh to gt append −g to the string.
After finishing the traversal, append the string with ‘)’. For a chromosome string C,
let −C be the chromosome string in which the order and orientation of all gene are
in inverted, e.g. if C = (1 2 3) then −C = (−3−2−1). C and −C are equivalent as
they correspond to the same set of adjacencies. For a circular chromosome, do the
same starting from an arbitrary extremity interval edge without appending brackets.
The resulting sequence is cyclic and all shifts and inversions of it are equivalent. We
use <> to denote circular genomes (Figures 5, 6 and 7).

A string representation of a genome decomposition DΠ is the multi-set of chro-
mosome strings for each chromosome in the decomposition (Figures 5, 6 and 7).
Two string representations are equivalent if there is a bijective mapping between
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equivalent chromosome strings in them. For labeled and ordinary genomes, the
string representation is unique (up to equivalence) and therefore we sometime use
this representation.

Fig. 5 A genome graph GΠ of an ordinary genome Π =
{
{at},{ah,bt},{bh},{ct ,ch}

}
. Bold

edges correspond to interval edges; dashed edges correspond to adjacencies. Since Π is an ordinary
genome, it has a unique decomposition DΠ whose string representation is

{
(a b),< c >

}

Fig. 6 A genome graph G∆ of a labeled genome ∆ =
{{a1

t },{a1
h,b

1
t },{b1

h,c
1
t },{c1

h},{a2
t },{a2

h,b
2
t },{b2

h},{b3
t },{b3

h,c
2
h},{c2

t }}. Bold edges corre-
spond to interval edges; dashed edges correspond to adjacencies. Since ∆ is an ordinary genome,
it has a unique decomposition D∆ whose string representation is

{
(a1 b1 c1),(a2 b2),(b3 −c2)

}
Given an unlabeled genome Π over the gene set G U , a labeling of Π produces

a labeled genome Γ over the gene set G L such that distinct gene copies of a gene g
are mapped to distinct labeled genes g1, . . . ,gcn(g) in G L. For example, the labeled
genomes in Figure 6 and 7B are two possible labelings of the unlabeled genome in
Figure 7A. We denote L(Π) to be the set of all possible labelings of Π .

Given a genome Π1 over the gene set G1, an operation creates a new genome
Π2 6= Π1 over a new gene set G2. An operation is said to be structural if G1 = G2.
An operation is said to be numerical if the CN of some gene is different under G1
and G2. Notice that a structural operation only changes the structure, i.e. Π2 6= Π1,
whereas a numerical operation also changes the gene set, i.e. G1 6= G2.

A genome rearrangement model is composed of a set of allowed operations O
and additional constraints on genomes. A sorting scenario of length d from Π into
Γ is a series of genomes Π0, . . . ,Πd such that Π0 = Π ,Πd = Γ and for each i,
Πi+1 is a legal genome (under the model constraints) that is a result of an allowed
operation on Πi. The sorting distance is the length of a shortest sorting scenario
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Fig. 7 A: A genome graph GΓ of an unlabeled genome Γ =
{{at},{ah,bt},{bh,ct},{ch},{at},{ah,bt},{bh},{bt},{bh,ch},{ct}}. Bold edges correspond
to interval edges; dashed edges correspond to adjacencies. B: One possible decomposition D1

Γ

of Γ , whose string representation is
{
(a b c),(a b −c),(b)

}
. A different decomposition D2

Γ

corresponding to
{
(a b c),(a b),(b−c)

}
can be seen in Figure 6 by suppressing the superscripts.

from Π into Γ . We call Π the source genome and Γ the target genome. The sorting
problem under model O receives as input Π and Γ , and looks for a sorting scenario
of minimum length from Π to Γ . Figure 3 shows a sorting scenario of length 5 from
(A B C D E F) to (A−E −C D−F) in a model allowing deletions and inversions.

2.1.1 Operations

Reversal. An inversion of a signed genomic string reverses the string and multiplies
all elements by −1. Hence the inversion of (2−3 5−1) denoted as −(2−3 5−1),
is (1 −5 3 −2). For a string S = s1 . . .sn, S[i, j] is the substring si . . .s j. Let C be a
chromosome string. A reversal ρ(i, j) inverts C[i, j], resulting in a new chromosome
C′ =C[1, . . . , i−1] ·−C[i, . . . , j] ·C[ j+1, . . . ,m], where · is the concatenation oper-
ator. For example, ρ(3,5) of C = (1 3 2 4 5 6) is C′ = (1 3−5−4−2 6). Reversals
can be similarly defined on a single chromosome in the genome graph, by cutting
two adjacencies and reconnecting the loose extremities such that the result is a lin-
ear chromosome. A reversal on a labeled or ordinary genome is a reversal on one
of its chromosomes. Reversals for general (not ordinary) unlabeled genomes are not
defined as they may have several chromosome decompositions. See Figure 1B and
Figure 8A,B.



Genome Rearrangement Problems with Single and Multiple Gene Copies: A Review 13

Translocation. Let C = c1 . . .cm and D = d1 . . .dn be two linear chromosomes in
string representation of an ordinary or labeled genome. A translocation tr(C,D, i, j)
transforms C and D into two new chromosomes, either C[1, . . . , i] ·D[ j+1, . . . ,n] and
D[1, . . . , j] ·C[i+ 1, . . . ,m], or C[1, . . . , i] · −D[1, . . . , j] and −C[i+1, . . . ,m] ·D[ j +
1, . . . ,n]. That is, the adjacencies Ci,Ci+1 and D j,D j+1 are cut, and the four loose
ends are reconnected in a new way. An equivalent definition can be made on chro-
mosome graphs, i.e., breaking an adjacency on each chromosome and reconnecting
the nodes (see Figure 1e and Figure 9). Again notice that translocations are not
uniquely defined for general unlabeled genomes.

DCJ. A double-cut-and-join (DCJ) is an operation that cuts two adjacencies and
reconnects the four loose ends in a new way into two adjacencies. It can be applied
on labeled and unlabeled genomes. A DCJ can take one of the following forms:

1. If adjacencies {p,q},{r,s} ∈Π are cut, replace them with either {p,r},{q,s} or
{p,s},{r,q} (Figures 8, 9).

2. If adjacency {p,q} ∈ Π is cut and telomere {r} ∈ Π is involved, replace them
with either {p,r},{q} or {r,q},{p} (Figure 10).

3. If telomeres {q},{r} ∈ Π are involved, replace them with an adjacency {r,q}
thereby joining the two chromosomes (Figure 11). This operation is referred as a
fusion or a join.

4. If adjacency {p,q} ∈Π is cut and an empty adjacency is involved, replace them
with two telomeres {p},{q} (Figure 11). Hence, a linear chromosome containing
the adjacency is cut into two chromosomes, or becomes linear if it was circular.
This operation is referred as a fission or a cut.

Note that a DCJ realizes both reversals (when the two adjacencies come from the
same chromosome) and translocations (when they are from different chromosomes).
When the adjacencies that are cut are from the same chromosome the result of a
DCJ can also be splicing out of a segment between the cuts into a separate cyclic
chromosome.

SCoJ. A single-cut-or-join (SCoJ) operation either cuts an adjacency or joins
two telomeres, respectively (Figure 11).

In the next section we briefly review basic results on ordinary genome models.
As our focus is primarily on multiple-copy problems, we only skim selected results.
The interested reader can find much more information on this topic in [126] and
[42].

2.2 Breakpoint distance

The breakpoint (BP) distance is a simple measure of dissimilarity between two
genomes that is not related to a specific type of operation. Generally speaking, the
breakpoint distance measures the number of adjacencies and telomeres that are in
one genome but not in the other. The breakpoint distance has several definitions
depending on the different weights of common adjacencies and telomeres [80, 103].
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Fig. 8 Reversal and DCJ. A: The genome graph of (a b c); the two diagonal stripes correspond
to the cut adjacencies. B: The genome (a −b c) is a result of a reversal or a DCJ. C. The genome
{(a c),< b >} corresponds to the other DCJ option.

Fig. 9 Translocation. A: Two chromosomes {(a b),(c d)}; the two diagonal stripes correspond to
the cut adjacencies. B,C: Two possible translocations (or DCJs) corresponding to {(a−c),(−b d)}
(B) and {(a d),(c b)} (C).
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Fig. 10 DCJs on telomeres. A: Chromosome (a b); the diagonal stripes and the dotted circle show
the cut adjacency and telomere involved. B,C: Two possible DCJs corresponding to (a −b) (B),
i.e. reversal, and {(a),< b >} (C).

Fig. 11 Single cut or join. A cut breaks an adjacency into two telomeres corresponding to the
transition from the top to the bottom genome. A join is the reverse operation corresponding to the
transition from the bottom to the top genome.

For two ordinary genomes Π and Γ over the same n genes, Tannier et al. [103]
give the following formula for the breakpoint distance:

dBP = n− (A+E/2) (1)

where A is the number of common adjacencies and E the number of common telom-
eres of Π and Γ . Clearly, the distance is computable in linear time.

2.3 Reversal and translocation distances

Given signed permutations Π and Γ over the same n genes, we seek a shortest
sequence of reversals from Π into Γ . We can assume w.l.o.g. that Γ is the identity
permutation (1 . . .n).

Sorting signed permutations by reversals is undoubtedly the most famous GR
problem [9]. In their seminal work, Hannenhalli and Pevzner gave the first polyno-
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mial time algorithm for the problem [51]. Since then, the theory was greatly sim-
plified [17, 59, 6, 13]. Bader, Moret and Yan have shown that finding the reversal
distance can be done in linear time [6], whereas computing a shortest sorting sce-
nario can be done in O(n3/2) [46, 102]. Interestingly, sorting unsigned permutations
(i.e., without gene orientations) by reversals is NP-hard [25].

The problem of sorting multi-chromosomal genomes by translocations was first
introduced by Kececioglu and Ravi [61]. Hannenhalli [48] gave the first polyno-
mial time algorithm for the problem and an improved, linear time algorithm was
introduced by Bergeron et al. [15].

Sorting by reversals and translocations was proved to be polynomial by Hannen-
halli and Pevzner [50], who reduced the problem to sorting by reversals. The theory
and algorithm were later slightly corrected and revised [105, 74, 75, 55, 16]. The
algorithm was used to compute for the first time a sorting scenario and distance
between the mouse and human genome [50]. Interestingly, the distance achieved
closely matched a prediction by Nadeau and Taylor from the 1980s [70]. Efficient
implementations of the algorithms for sorting by reversals and translocations are
available as part of the GRAPPA [6] and GRIMM [106] tools. Those tools also use
the ability to compute exact pairwise distances efficiently in order to compute a tree
of evolution by reversals and translocations among multiple species, albeit heuristi-
cally.

The main representation used for the analysis of this problem (and other rear-
rangement models) is the Breakpoint Graph (BG). Given two genomes Π and Γ ,
the breakpoint graph BG(Π ,Γ ) is an undirected graph whose nodes are the ex-
tremities of both genomes, and whose edges are the adjacencies of both genomes
distinguished by color. Edges corresponding to Π (Γ ) adjacencies are called red or
Π -edges (blue or Γ -edges, respectively). See an example in Figure 12.

Fig. 12 A breakpoint graph for Π = {(a b c d),(e f )} and Γ = {(a− f b c),(d −e)}. Π -edges are
solid; Γ -edges are dashed;

Hannenhalli and Pevzner [51] gave a formula for the reversal distance between
signed permutations based on the number of cycles in the BG and certain structures
in it called “hurdles” and “fortresses”. The distance formula for sorting by reversals
and translocations has been devised over the years and depends on more complex
structures in the BG [50, 105, 74, 55, 16]. The definitions of these structures are be-
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yond the scope of this review, so the exact distance formulas are omitted. Bergeron
[13], and Jean and Nikolski [55], give fairly elementary presentations for sorting by
reversals and sorting by reversals and translocations, respectively, including good
expositions of structures and the distance formulas.

2.4 DCJ distance

The inputs for this model are two ordinary genomes Π and Γ over the same set of
n genes. The operations allowed in this model are DCJs.

The DCJ operation, introduced by Yancopoulos et al. [115], has gained much
attention in GR models in the last decade. The reason is that DCJs capture both re-
versals and translocations (but also splicing out a circular sub-chromosome) while
allowing much simpler algorithms. Both the distance and an optimal sorting sce-
nario can be computed in linear time [14].

In the analysis of this problem a new graph representation was introduced. The
adjacency graph AG(Π ,Γ ) of genomes Π and Γ is a bipartite undirected multi-
graph whose set of nodes are the adjacencies and telomeres of Π and Γ . Therefore
each node is a set of one or two extremities. Nodes belonging to Π (Γ ) are called
red- or Π -nodes (blue- or Γ -nodes, respectively). For every Π -node u and Γ -node
v, there are |u∩ v| edges between u and v, i.e., there is an edge for each common
extremity between the two nodes. Note that BG(Π ,Γ ) is the line graph of AG(Π ,Γ )
and vice versa. (The line graph of G = (V,E) is the graph on E in which x,y ∈ E are
adjacent as vertices iff they are adjacent as edges in G). See Figure 13.

Fig. 13 An adjacency graph for Π = {(a b c d),(e f )} and Γ = {(a − f b c),(d −e)}. Π -nodes
are solid; Γ -nodes are dashed;

Bergeron et al. [14] prove that for ordinary genomes Π and Γ defined over the
same set of n genes:

dDCJ = n− (C+ I/2) (2)
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where C is the number of cycles and I the number of odd length paths starting and
ending in telomeres in AG(Π ,Γ ). For example, the AG in Figure 13 has one cycle
and two odd length paths. Thus, since there are 6 genes, the DCJ distance between
the two genomes in this case is 4. Notice that there are two additional even length
paths in the graph but they do not affect the distance formula.

2.5 SCoJ distance

The inputs for this model are two ordinary genomes Π and Γ over the same set of
n genes. The operations allowed in this model are SCoJs.

Similar to DCJ, the SCoJ distance and scenario can be found in linear time [41].
Some rearrangements problems for which no polynomial solution is known for DCJ
and other operations, are known to be tractable for SCoJ distance. We give examples
of such problems in Section 3.1.

For two ordinary genomes Π and Γ over the same n genes, let AΠ (AΓ ) be the
set of adjacencies of Π (Γ , respectively). The SCoJ distance is given by [41]:

dSCoJ = |AΠ |+ |AΓ |−2|AΠ ∩AΓ | (3)

3 Multi copy models in species evolution

This section discusses multi-copy GR models inspired by species evolution. In Sec-
tion 3.1 we present models allowing whole genome duplication events, but no other
copy number changes. The models in Section 3.2 allow for the insertion and dele-
tion of new genomic segments but do not account for multiple copies of segments.
Models in Section 3.3 handle genomes with multiple copies of each gene but do
not allow numeric operations. Section 3.4 describes a few models that can handle
genomes with multiple gene copies and allow numerical operations such as dele-
tions or duplications.

We limit our discussion here to distance problems between two genomes. We re-
fer the reader to the review by El-Mabrouk and Sankoff on the analysis of gene order
evolution beyond single-copy genes [39], which discusses in depth the phylogenetic
aspects of GR models in the context of species evolution.

3.1 Polyploidy

We discuss here problems motivated by whole genome duplication (WGD) events in
species evolution. WGD is viewed as a fundamental step in evolution, as doubling
of the gene contents allows great diversification of gene functions. For example,
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strong evidence for WGD events was reported for yeast [114] and for plant genomes
[20]. The basic question tackled by these formulations is finding a shortest sorting
scenario between a given ancestral genome (before or right after WGD) and a given
extant genome under GD models allowing only structural operations.

A duplicated genome (either labeled or unlabeled) is a genome in which every
gene has CN=2. For an ordinary genome Π over G , a doubled genome 2Π = Π ∪Π

is an unlabeled duplicated genome over 2G = G ∪G in which every gene, adjacency
and telomere has two copies. For example, if Π = {{at},{ah,bh},{bh}} then 2Π =
{{at},{ah,bh},{bh},{at},{ah,bh},{bh}}.

The double distance problem [2] is defined as follows. Given an ordinary genome
Π over G , a labeled duplicated genome Θ and an operation distance measure d, find
the minimum distance of Θ to some labeling of 2Π . Formally, the double distance
between Π and Θ is:

dd(Π ,Θ) = min
Γ∈L(2Π)

d(Γ ,Θ) (4)

where L(2Π) is the set of all possible labelings of 2Π .
The double distance problem can be solved in linear time for the BP [62] and the

SCoJ measures [41]. However, it is NP-hard under the DCJ distance [103].
Given a labeled duplicated genome Θ and an operation distance measure d, the

genome halving problem seeks to find an ordinary genome Π that minimizes the
double distance to Θ [38]. Formally, the halving distance of Θ is defined as:

hd(Θ) = min
Π

dd(Π ,Θ) (5)

The halving distance can be solved in linear time for the BP measure, but if we
restrict the genome Π to be linear or unichromsomal it becomes NP-hard [62]. For
the SCoJ distance, the problem is solvable in linear time even when Π is restricted
to be a linear or circular genome [41]. Under the DCJ distance the halving problem
can be solved in linear time [68, 111] even with Π restricted to a unichromsomal
genome [1].

A generalization of the halving problem for finding an ordinary pre-WGD
genome given an extant genome with exactly m> 2 copies is called genome aliquot-
ing [111]. Aliquoting is polynomially solvable for the BP [112] and SCoJ [41]
distances, while a 2-approximation algorithm is known for the problem under the
DCJ distance [112]. Recently, efficient ILP formulations were suggested for genome
halving and aliquoting under the DCJ distance [5].

The guided genome halving problem tries to combine both the genome halv-
ing and double distance [125]. Given an ordinary genome ∆ , a labeled duplicated
genome Θ , and an operation distance measure d, find an ordinary genome Π that
minimizes the sum of the double distance between Π and Θ , plus the distance be-
tween Π and ∆ . Formally, the guided halving distance is:

ghd(∆ ,Θ) = min
Π

[
dd(Π ,Θ)+d(Π ,∆)

]
(6)
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The problem can be solved in O(n1.5) time for the BP distance, but it becomes
NP-hard with additional restrictions [62]. For the SCoJ distance, the problem has
linear solutions even with restrictions to linear or circular genomes [41]. It is NP-
hard for the DCJ distance [103].

3.2 Single copy models with indels

Models presented in this section allow new numerical operations while maintaining
the assumptions of ordinary genomes. The input is two ordinary genomes Π and
Γ over potentially different gene sets G1 and G2. The goal is to transform Π into
Γ with structural operations and additional operations that introduce new genes or
remove genes. All genomes in the sorting scenario must be ordinary.

Given a chromosome string C = c1 . . .cn, a deletion del(i, j) produces a new
chromosome C[1, i−1] ·C[ j+1,n]. An insertion ins(S, i) of a sequence S = s1 . . .sm
into a chromosome C at position i results in C[1, i] · S ·C[i+ 1,n] (see Figure 1).
Insertions and deletions are commonly referred to as indel operations [23]. Since
these models assume that all genomes are ordinary, insertions cannot introduce new
copies of genes. Instead, indels are used to add and remove genes that appear in one
genome but not in the other.

El-Mabrouk was the first to address sorting permutations by reversals and in-
dels and gave exact an algorithm and a heuristic for specific cases [37]. Improved
bound for this problem were later devised [113]. Yancopoulos and Friedberg [116]
analyzed the problem of sorting ordinary genomes with DCJs and indels. Their
model allowed to insert and delete genes that appear in the source or target genomes,
and thus a possible sorting scenario can delete all the chromosomes of the source
genome and insert the chromosomes of the target genome. Braga et al. [23] gave
a linear time algorithm for finding a minimum sorting scenario with DCJs and in-
dels, restricting indels to affect genes that are not common to the source and target
genomes. The problem is solvable in linear time even when DCJs and indels have
different weights [30].

Braga et al. [22] introduced a new operation that generalizes both insertions and
deletions. A substitution is an operation that replaces a sequence of consecutive
genes with another sequence. This operation can be thought of as a deletion of the
sequence to be replaced followed by an insertion of the new sequence in the same
place. Notice that this operation can implement both deletions and insertions by
taking an empty sequence as the new or old sequence, respectively. Sorting ordinary
genomes with DCJs and substitutions can be solved in linear time [22], even when
substitutions have different weights than DCJs [31].
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3.3 Multi-copy models without duplications/deletions

In this section we focus on comparing genomes with multiple gene copies but with-
out explicit deletion or duplication operations. The comparison can be used to assign
orthology relationship between gene copies in the source and target genomes [26].
Given a source genome and a target genome with multiple gene copies, the general
approach is to find a matching of the gene copies that minimizes some structural op-
eration distance. Gene copies that are not matched are ignored, so they are implicitly
deleted and do not incur the cost of a true deletion operation. Most formulations re-
sult in NP-hard problems.

There are three main formulation strategies depending on the cardinality of the
matching of multi-copy genes:

• Exemplar strategy [88], in which in each genome, exactly one copy of each gene
is selected and all other copies are ignored.

• Intermediate strategy [4], in which the same number of copies (at least one) for
each gene are selected and matched between genomes, and all other copies are
ignored.

• Maximum matching strategy [19], in which for each gene, the maximum possible
gene copies (the smaller of the gene’s CNs in the two genomes) are selected and
matched between genomes, and the remaining copies are ignored.

Although most formulations are NP-hard, several exhaustive and heuristic al-
gorithms have been suggested. In recent years, Integer Linear Programming (ILP)
formulations presented by Shao and Moret were used to solve such problems, and
have shown good results and scalability [94, 95, 96]. Table 1 summarizes selected
results for different operations and different formulations.

Table 1 Multi-copy model results

Operations Exemplar Intermediate Matching

BP NP-hard [24]
Branch and bound [88, 71]
ILP [3, 95]

NP-hard [18]
ILP [4, 96]
Heuristics [4]

NP-hard [18]
Branch and bound [19]
ILP [4, 96]
Heuristics [4]

Reversals
and translo-
cations

NP-hard [24] NP-hard [26]
ILP [101]
Heuristics [26, 43]

NP-hard [26]
ILP [101]
Heuristics [26, 43]

DCJ Branch and bound [117] NP-hard [94] NP-hard [94]
ILP [94]
Branch and bound [117]
Approximation [93, 85]

The majority of hardness results, as well as exact and heuristic algorithms for
these problems, originate from the breakpoint graph decomposition problem [60,
25]. The goal in this problem is to find a decomposition of a breakpoint graph into a
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maximum number of edge-disjoint alternating red/blue cycles. A similar maximum
cycle decomposition can also be defined for the adjacency graph [93, 94]. Such
decomposition induces a matching between genes and the maximum number of
cycles minimizes an operation distance measure [93, 94].

3.4 Models with duplications or deletions

We now describe several models that include deletions or duplications as explicit
numerical operations. The goal of all these models is to transform one genome rep-
resentation into the other with minimum number of structural and numerical op-
erations. Unlike the classical structural operations, numerical operations such as
deletions and duplications have no standard definitions.

Chen et al. [26] analyzed a model for sorting unlabeled genomes with multiple
gene copies using only reversals. Their heuristic, called SOAR, was the first method
to assign orthology relationship between genes based on not only sequence sim-
ilarity but also GRs. In a follow-up paper [43], the authors studied a model that
allows reversals and single gene duplications. The latter can insert new gene copies
at arbitrary positions in the genome. They developed a heuristic called MSOAR for
matching gene copies between the two input genomes such that the number of re-
versals plus gene duplications would be minimal. While SOAR requires every gene
to have an equal number of copies in the two input genomes, MSOAR alleviates this
assumption. In MSOAR 2.0 [98], only tandem single gene duplications are allowed,
and again, an efficient heuristic for this sorting problem is given.

Kahn and Raphael [58] introduced a measure called the string duplication dis-
tance that models building a target string by repeatedly copying substrings of a fixed
source string. The string duplication operation, δs,t,p(X), copies a substring xs . . .xt
of string X and pastes it into another string Z at position p. Given a source string X
without duplicate genes and a target string Y the goal is to find a minimum length
sequence of string duplications needed to build the string Y . The authors described
a polynomial dynamic programming algorithm for computing the distance [58]. In
a follow-up work, they enhanced the model to allow substring deletions and inver-
sions. A polynomial dynamic programming algorithm is given for computing the
sorting problem [57]. The string duplication model was used for the analysis of
repetitive segments in the human genome [56].

A model introduced by Bader [7] allows tandem duplications, segmental dele-
tions and DCJs. Given a labeled chromosome C in string representation, a tandem
duplication td(i, j) inserts a new copy of the segment C[i, . . . , j] after the j’th posi-
tion, i.e., the new chromosome is C′ = C[1, . . . , i− 1] ·C[i, . . . , j] ·C[i, . . . , j] ·C[ j+
1, . . . ,n] (Figure 1). A deletion del(i, j) removes the segment C[i,. . . ,j] and produces
C′ =C[1, . . . , i−1] ·C[ j+1, . . . ,n] (Figure 1). The goal in the model is to find a min-
imum sorting scenario of the identity chromosome into the input multi copy labeled
chromosome. The author gave a lower bound and heuristic for the problem based
on the structure of the breakpoint graph.
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In a model presented by Shao and Moret [97], labeled genomes are sorted using
DCJs and segmental duplications. A segmental duplication copies a segment of la-
beled genes g1, . . . ,gm of a genome Σ and inserts the new labeled copy in Σ in a spot
outside the original segment. The model allows different costs for different duplica-
tions and unit cost for DCJs. However, the optimization problem implicitly assumes
that all segmental duplications either precede or follow all DCJ events. Given two
labeled genomes Π ,Γ , the goal is to find segmental duplications in Π and Γ , re-
move them, and then find a bijection between the remaining genes such that the
cost of segmental duplications plus the DCJ distance is minimized. The authors an-
alyzed this problem and gave an ILP formulation. It is based on the adjacency graph
cycle decomposition formulation proposed in [94], applied to a problem instance
simplified by detection of optimal substructures.

Paten et al. [78] presented a model for genome evolution that does not fit en-
tirely into the standard GR terminology. This model can represent both single base
substitutions and structural/numerical rearrangements such as DCJs, deletions and
duplications. They defined a data structure called history graph, which holds partial
order information on the sequence of events. The goal is to find a full sequence of
events consistent with the input history graph that minimizes the cost of substitu-
tions and DCJs, while gene deletions and WGDs are free. The authors analyzed this
problem and gave polynomially tractable bounds for the cost. In a follow-up paper,
Zerbino et al. [124] further analyzed the history graph model and showed that the
space of possible evolutionary histories can be sampled ergodically.

4 Multi-copy models in cancer

Cancer genomes are known to undergo structural and numerical changes [47]. These
include inversions, chromosomal translocations, tandem duplications, segmental
deletions, whole chromosome amplifications or losses and more [109]. Figure 4
shows an example of a real cancer karyotype and Figure 14 shows a hypothetical
sorting scenario for cancer evolution. A large research effort has focused on de-
tecting signatures of these events in tumor genomic data. Currently the effort uses
mainly deep sequencing data [33], though traditional methods such as FISH and
aCGH are still used to assess the CN of genomic regions. Accurate reconstruc-
tion of the numerical and structural variations remains a challenge, and a myriad of
computational methods has been devised for this task [33, 104]. Some evolutionary
GR models such as those presented in Section 3 could also be applied to cancer
genomes. Nevertheless, the complexity of tumor karyotypes and their unique char-
acteristics necessitate development of dedicated cancer GR models.

In Section 4.1 we discuss several classical GR models that were applied to cancer
data. Section 4.2 describes CN edit distance problems in cancer. Section 4.3 presents
a few other cancer models involving GRs.
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Fig. 14 A hypothetical sorting scenario for cancer evolution. a. Normal diploid karyotype with
two chromosomes. a-b. Translocation. b-c. Chromosome deletion c-d. Chromosome duplication
d-e. Fusion e-f. Internal deletion. f. The cancer karyotype. The breakpoints and telomeres involved
in each operation are indicated by the broken lines.

4.1 Models with duplications/deletions

Here we present several GR models with both structural and numerical operations,
that were designed to cancer data analysis. All models aim to find a sorting scenario
between one genome representation into the another. The source genome is usually
the normal genome from a healthy tissue and the target genome is the tumor.

Ozery-Flato and Shamir [76] proposed a GR model designed specifically to ana-
lyze chromosomal aberrations in cancer. The inputs for the model are a normal un-
labeled source genome with two identical copies of each chromosome and a tumor
(target) genome. Both genomes are described as sets of chromosomes, each consist-
ing of a sequence of segments. The goal is to sort the normal genome into the tumor
with the fewest cuts, joins, chromosome duplications and chromosome deletions.
The authors proved a lower bound for the distance, and presented a polynomial-
time 3-approximation algorithm for the problem. They applied the algorithm to over
50,000 low-resolution karyotypes from the Mitelman database [67], which records
cancer karyotypes reported in the scientific literature. Interestingly, the approxima-
tion algorithm gave an optimal solution in all but 30 karyotypes.
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Bader [8] extended his previous model [7] in order to cope with cancer alter-
ations. The revised model accepts multi-chromosomal genomes and allows chro-
mosome deletions and duplications, tandem duplications, segmental deletions and
DCJs. A lower bound and a heuristic algorithm were devised, and applied to the
Mitelman database [67]. The average calculated distance was 4.08 while the aver-
age lower bound was 2.72.

Zeira and Shamir [121] analyzed a model for genome sorting using cuts, joins
and whole chromosome duplications. In this model, an ordinary linear genome is to
be transformed into a duplicated linear genome such that all intermediate genomes
are linear. The authors gave a linear time algorithm for the sorting problem and
showed that finding such a sequence with fewest duplications is NP-hard.

A more comprehensive model presented by Zeira and Shamir [122] accounted
for the evolution of unlabeled genomes via DCJs, tandem duplications, segmen-
tal deletions, and chromosomal amplifications and deletions. They showed that the
sorting problem is NP-hard and gave an ILP formulation that solves the problem
exactly under some mild assumptions. The algorithm was applied to sort complex
ovarian cancer genomes taken from TCGA sequencing data [12]. Figure 15 gives an
example of a sorting scenario inferred by the ILP.

4.2 Copy number profile distances

In this section we discuss several models for edit distance between CN profiles. Un-
like the genome representations in Section 2.1, these profiles give the number of
copies of each segment (gene) but do not hold information about their order along
the genome. A copy number profile (CNP) of a chromosome is a vector mapping
each gene to a non-negative integer corresponding to the number of copies of the
gene in the chromosome. As the order of the genes in a CNP is unknown, it is as-
sumed to be some predefined order (typically the normal genome order). A genome
CNP is a collection of its chromosome CNPs. We now define operations that trans-
form CNPs and present several models for finding a sorting distance between CNPs.

Let V = (v1, . . . ,vn) where vi ∈ N∪ {0} be a CNP of a chromosome with n
genes. A copy number operation (CNO) is a triple c = (`,h,w) where 1≤ `≤ h≤ n
and w ∈ {1,−1}. We say that the operation is a deletion if w = −1 and an am-
plification if w = 1. Applying an operation c to a CNP V results in a new CNP
c(V ) = (c(v1), . . . ,c(vn)) such that for every `≤ i≤ h, vi > 0 we have c(vi) = vi+w,
and otherwise c(vi) = vi. In other words, the operation increases or decreases the CN
of the genes in the interval [`,h] if they have a positive CN, while the values of genes
outside the interval and zero values are unchanged (see Figure 16).

Chowdhury et al. [29] defined edit distance between CNPs obtained from FISH,
where the edit operations are amplification or deletion of single genes, single chro-
mosomes, or the whole genome, and presented an algorithm for calculating the dis-
tance. The algorithm was exponential in the number of genes and therefore is limited
to low-resolution FISH data. An algorithm based on the pairwise distance matrix
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Fig. 15 Inferred GR scenario in ovarian cancer sample (TCGA-13-1411). A sequence of opera-
tions transforming a genome graph of chromosomes 1 (upper) and 3 (lower) from a diploid genome
(A) to tumor genome (D). Square nodes represent segment extremities and trapezoid nodes rep-
resent telomeres. Dashed edges are adjacency edges, full straight (red) edges are interval edges
and dashed arcs (purple) are novel adjacencies caused by the tumor process. The number next to
each edge is its CN. One operation transforms each genome graph into the one below. The oper-
ation type is listed in the triangle and the affected genes or adjacencies appear as dashed nodes
and wavy edges, respectively, in the predecessor genome. The scenario was inferred using the ILP
formulation of [122].

was used to heuristically infer tumor phylogenies from FISH single cell data. A fol-
low up paper [28] accounted for different weights for different types of operations,
again providing an exponential time algorithm.

Schwartz et al. [92] introduced a model that admits amplifications and deletions
of general contiguous segments in a chromosome CNP. The edit distance between
two CNPs is the minimum number of CNOs over all possible separations of the
profiles into two alleles. The authors developed an algorithm called MEDICC for
computing the edit distance, which uses finite-state transducers [69] and is expo-
nential in the maximum CN. MEDICC was used to infer tumor phylogenies from
CGH arrays of high grade serous ovarian cancer samples [91].

Zeira et al. [123] analyzed the problem of sorting one CNP into another using
a minimum number of CNOs. They showed that this problem is solvable in linear
time and constant space. Notice that this edit distance is not symmetric and in fact
there may not be any sequence of CNOs from one given CNP to another since genes
with zero copies cannot reappear later in the sequence. To cope with this drawback,
El-Kebir et al. [36] analyzed a symmetric version that given two CNPs aims to
find a common ancestor profile that minimizes the sum of distances to these CNPs.
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Fig. 16 Copy number profile evolution. A diploid CNP (A) evolves via CNOs into four extant
CNPs (D, E, F, G). Dotted lines represent deletions and bold lines represent amplifications. The
order of operations is from top to bottom. For instance, CNP A evolves into CNP B by a deletion
of positions 2-3, a deletion of positions 3-5 and an amplification of positions 1-4 (in this order).
The corresponding sequence of profiles is 2 2 2 2 2 2→ 2 1 1 2 2 2→ 2 1 0 1 1 2→ 3 2 0 2 1 2. The
entire tree has six deletions and eight amplifications.

They gave a pseudo-polynomial dynamic programming algorithm that is linear in
the profile length, and an ILP formulation.

In the more general cancer context, El-Kebir et al. [36] showed that it is NP-hard
to build a phylogenetic tree whose leaves are the input CNPs that minimizes the
total number of CNOs along edges in the tree (see Figure 16), and gave a practical
ILP formulation for this problem. Extending the CNP tree model, Zaccaria et al.
[118] considered a model in which a fractional (non integer) CNP is allowed, due to
the superposition of several CNPs of different subclones. The goal in this case is to
deconvolve the fractional CNPs into a weighted sum of integer CNPs such that the
phylogenetic tree built over them has minimum CNOs. A heuristic algorithm was
given for the problem.

4.3 Other cancer models

Reconstruction of the exact cancer chromosomes based on short paired-end deep
sequencing read data remains a hard challenge. There is a plethora of methods for
detection of local rearrangement events and breakpoints [33], but only a few meth-
ods try to reconstruct the entire genome. Here we describe a few methods designed
for reconstructing cancer genomes. The output genome representation of such meth-
ods can be used as input to genome rearrangement models described earlier.

Oesper et al. [73] expanded the genome graph into a structure called the interval
adjacency graph, which represents breakpoints, discordant reads and CN informa-
tion. Their method, called PREGO, uses the number of reads supporting each edge
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to resolve the CN of genomic segments and identify discordant adjacencies in the
tumor genome, and maps this information to the graph. PREGO was shown to ef-
ficiently identify complex rearrangements in ovarian cancer data. Eitan and Shamir
[35] expanded this model and tested it in extensive simulations and on real can-
cer data. Their analysis shows that perfect reconstruction of a complete karyotype
based on short read data is very hard, but that by several measures, reasonably good
reconstructions are obtainable.

Weaver, developed by Li et al. [64], is a different probabilistic graph model pro-
posed in order to estimate both the CNs and inter-connectivity of SVs. Weaver de-
tects and quantifies CNs and SVs specific for each allele, and was also used for
predicting partial timing of SVs relative to chromosome amplifications. A recent
expansion of Weaver based on ILP formulation enabled improved prediction of SV
phasing and interconnectivity [83].

A probabilistic framework based on breakpoint graphs was presented by Green-
man et al. [45] for the analysis of mutations and karyotypes from sequencing data.
This work tries to reconstruct both the temporal sequence of rearrangements and
assemble genomic segments into karyotypes. It uses allelic integer CNs for each
segment, the adjacencies between segments and the multiplicity distribution of so-
matic SNVs. Taking into consideration SNVs can disambiguate some sorting sce-
narios, since duplicated segments carry the SNVs of the original one. The method
can derive partial order of accumulating numerical and single nucleotide mutations.
The framework, called GRAFT, was demonstrated to work well with a breast cancer
sample and cancer cell lines, albeit with limitations imposed by the data quality and
the genome complexities.

Epilogue

GR models and theory have developed significantly in the last couple of decades.
Earlier models focused on species evolution and accounted for simple genomes with
a single copy of each gene. These models concentrated on different operations trans-
forming one genome into the other. The elegant theory and algorithms underlying
the elementary models served as a basis to more complex models to come. Despite
its over-simplification of biology, the research of genomic sorting has been fruitful,
both computationally and biologically.

Later studies started addressing more complex genome models where each seg-
ment may have two copies. These studies were motivated by whole genome duplica-
tion events, which double the gene content of a genome. Most formulated problems
were shown to be NP-hard, but heuristics based on the theory developed were uti-
lized to derive ancestral genomes of several species.

More complex evolutionary models allow for arbitrary number of copies and
numerical operations such as insertions, deletions and duplications. Models vary in
their assumptions and in the operations they allow. Most of the problems are NP-
hard with several heuristic and exact algorithms proposed.
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Family-free genome comparison was recently proposed as an alternative multiple
gene copy model [21, 66, 86, 34]. In this setting, each gene is unique but we are ad-
ditionally provided with a pairwise similarity score between every pair of genes, for
instance based on their sequence similarity. This generalizes the multi-copy mod-
els as one can assign similarity of 1 to copies of the same gene and 0 between all
others. In one formulation of the family-free DCJ distance, the goal is to find a
matching between genes such that the DCJ distance minus the weight of the match-
ing is minimal [66]. Studies showed that this problem is NP-hard and even hard to
approximate, and gave heuristics and ILP formulations [66, 86].

Cancer now provides a key motivation for development of GR models handling
multiple copies. During tumor progression, the genome accumulates both structural
and numerical changes, thus resulting in a complex genome with varying number
of gene copies. The various models trying to represent tumor evolution differ in the
type of data they rely on, types of events they allow, and other assumptions. Even
determining a tumor’s genome and identifying structural and numerical variations
(i.e. reconstructing the tumor karyotype) remains a tough problem due to the data
and genome complexity as well as tumor heterogeneity. Therefore, sorting cancer
genomes remains a challenging task and better models and algorithms are needed.

Some cancer genomes were explained by complex structural and numerical
events that are beyond the models discussed here. For example, a breakage-fusion-
bridge (BFB) is an event in which a loss of a chromosome’s end is followed by
“doubling-up” and fusion of the surviving part (i.e., a chromosome (a,b) is replaced
by (a,−a)). In a BFB cycle, this process is repeated several times. Detection of BFB
cycles can be done using sequencing and CN data [120, 119]. Dramatic rearrange-
ment events also include chromothripsis and chromoplexy, in which one or more
chromosomes are shattered into many pieces and some of the pieces are assembled
in random order. Identifying these events in cancer genomes from sequencing data
is still a hard challenge [72]. Computational models are in need to account for such
events in the analysis of cancer evolution.

Advanced sequencing technologies could help in tackling GR problems in can-
cer. Long read sequencing techniques such as those of Pacific Biosciences and Ox-
ford Nanopore can link distant DNA segments providing additional information
on the relative location of different copies and simplify breakpoint identification
[84, 54]. The linked short reads sequencing technology of 10X Genomics was re-
cently shown to help in identifying structural variations in cancer genomes [40].
We expect these technologies and others to play a prominent role in GR analysis in
cancer in the years to come.

Single-cell sequencing technologies open new opportunities and challenges in
computational cancer analysis [110]. Specifically, variations between individually
sequenced cells taken from a tumor have been used to identify its evolutionary his-
tory [53, 63]. Detection of SVs and CNAs in single-cell sequencing is still a tough
challenge due to the noise and biases in the data [108, 44]. The use of single-cell
SVs or CNAs for clonal reconstruction have not been addressed yet, to the best
of our knowledge. Additionally, one might use the heterogeneity among cells and
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their abundance in order to guide the rearrangement scenario. Alternatively, given a
rearrangements scenario, we can try to map cells to stages along this sequence.
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Box 3 List of acronyms

aCGH - array comparative genomic hybridization
AG - adjacency graph
BFB - breakage-fusion-bridge
BG - breakpoint graph
BP - breakpoint
CN - copy number
CNA - copy number alteration
CNO - copy number operation
CNP - copy number profile
DCJ - double cut and join
DNA - Deoxyribonucleic Acid
FISH - fluorescence in situ hybridization
GR - genome rearrangement
ILP - integer linear programming
SCoJ - single cut or join
SNV - single nucleotide variation
SV - structural variation
WGD - whole genome duplication
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