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Abstract

High throughput experimental methods developed in recent years have been used to collect large

biomedical omics datasets. Clustering of such datasets has proven invaluable for biological and medical

research, and helped reveal structure in data from several domains. Such analysis is often based on

investigation of a single omic. The decreasing cost and development of additional high throughput

methods now enable measurement of multi-omic data. Clustering multi-omic data has the potential

to reveal further systems-level insights, but raises computational and biological challenges. Here we

review algorithms for multi-omics clustering, and discuss key issues in applying these algorithms. Our

review covers methods developed specifically for multi-omic data as well as generic multi-view methods

developed in the machine learning community for joint clustering of multiple data types.

In addition, using cancer data from TCGA, we perform an extensive benchmark spanning ten different

cancer types, providing the first systematic benchmark comparison of leading multi-omics and multi-

view clustering algorithms. The results highlight several key questions regarding the use of single- vs.

multi-omics, the choice of clustering strategy, the power of generic multi-view methods and the use of

approximated p-values for gauging solution quality. Due to the rapidly increasing use of multi-omics

data, these issues may be important for future progress in the field.

1 Introduction

Deep sequencing and other high throughput methods measure a large number of molecular parameters in

a single experiment. The measured parameters include DNA genome sequence [1], RNA expression [2, 3],

DNA methylation [4] etc. Each such kind of data is termed ”omic” (genomics, transcriptomics, methylomics,

respectively). As costs decrease and technologies mature, larger and more diverse omic datasets are available.

Computational methods are imperative for analyzing such data. One fundamental analysis is clustering -

finding coherent groups of samples in the data, such that samples within a group are similar, and samples in

different groups are dissimilar [5]. This analysis is often the first step done in data exploration. Clustering

has many applications for biomedical research, such as discovering modules of co-regulated genes and finding

subtypes of diseases in the context of precision medicine [6]. Clustering is a highly researched computational

problem, investigated by multiple scientific communities, and a myriad algorithms exist for this task.

While clustering each omic separately reveals patterns in the data, integrative clustering using several

omics for the same set of samples has the potential to expose more fine-tuned structures that are not

revealed by examining only a single data type. For example, cancer subtypes can be defined based on

both gene expression and DNA methylation together. Multi-omics clustering can also reduce the effect of

experimental and biological noise in the data, and find structures that involve different cellular mechanisms.
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A problem akin to multi-omics clustering was investigated independently by the machine learning com-

munity, and is termed ”multi-view clustering” [7, 8]. Multi-view clustering algorithms can be used to perform

clustering of multi-omic data. In the past, methods developed within the machine learning community have

proven useful in the analysis of biomedical datasets. However, by and large, multi-view clustering have not

penetrated bioinformatics yet.

In this paper, we review methods for multi-omics clustering, and benchmark them on real cancer data.

The data source is TCGA (The Cancer Genome Atlas) [9] - a large multi-omic repository of data on thou-

sands of cancer patients. We survey both multi-omics and multi-view methods, with the goal of exposing

computational biologists to these algorithms. Throughout this review, we use the terms view and multi-view

instead of omic and multi-omics in the context of Machine Learning algorithms.

Several recent reviews discussed multi-omics integration. [10], [11] and [12] review methods for multi-

omics integration, and [13] review multi-omics clustering for cancer application. These reviews do not include

a benchmark, and do not focus on multi-view clustering. [14] reviews only dimension reduction multi-omics

methods. To the best of our knowledge, [15] is the only benchmark performed for multi-omics clustering, but

it does not include machine learning methods. Furthermore, we believe the methods tested in the benchmark

do not represent the current state of the art for multi omics clustering. Finally, [7] is a thorough review of

multi-view methods, directed to the Machine Learning community. It does not discuss algorithms developed

by the bioinformatics community, and does not cover biological applications.

2 Review of multi-omics clustering methods

We divide the methods into several categories based on their algorithmic approach. Early integration is the

most simple approach. It concatenates omic matrices to form a single matrix with features from multiple

omics, and applies single-omic clustering algorithms on that matrix. In late integration, each omic is clustered

separately and the clustering solutions are integrated to obtain a single clustering solution. Other approaches

try to build a model that incorporates all omics, and are collectively termed intermediate integration. Those

include: (1) methods that integrate sample similarities, (2) methods that use joint dimension reduction for

the different omics datasets, and (3) methods that use statistical modeling of the data.

The categories we present here are not clear-cut, and some of the algorithms presented fit into more

than one category. For example, iCluster [16] is an early integration approach that also uses probabilistic

modeling to project the data to a lower dimension. The algorithms are described in the categories where we

consider them to fit most.

Multi-omics clustering algorithms can also be distinguishable by the set of omics that they support.

General algorithms support any kind of omics data, and are therefore easily extendible to novel future

omics. Omic specific algorithms are tailored to a specific combination of data types, and can therefore

utilize known biological relationships (e.g. the correlation between copy number and expression). A mixture

of these two approaches is to perform feature learning in an omic specific way, but then cluster those features

using general algorithms. For example, one can replace a gene expression omic with an omic that scores

expression in cellular pathways, and thus take advantage of existing biological knowledge.

Throughout this review, we use the following notation: a multi-omic dataset contains M omics. n is the

number of samples (or patients for medical datasets), pm is the number of features in the m’th omics, and

Xm is the n x pm matrix with measurements from the m’th omic. Xm
ij is therefore the value of the j’th

feature for the i’th patient in the m’th omic. p = ΣM
m=1pm is the total number of features, and X is the n x

p matrix formed by the concatenation of all Xm matrices.

Figure 1 summarizes pictorially the different approaches to multi-omics clustering. A summary table of
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Figure 1: Overview of multi-omics clustering approaches.

the methods reviewed here is given in Table 1.

2.1 Alternate optimization

Early research for integration of two views was performed in [77]. This work improved classification accuracy

for semi-supervised data with two views using an approach termed co-training, and inspired others to analyze

multi-view data. One of the first attempts to perform multi-view clustering was [17]. In this work, EM and k-

means, which are widely used single-omic clustering algorithms, were adapted for multi-view clustering. Both

EM and k-means are iterative algorithms, where each iteration improves the objective function value. The

suggested multi-view versions perform optimization in each iteration with respect to a different omic in an

alternating manner. This approach loses theoretical guarantees for convergence, but was found to outperform

algorithms that use each view separately, and also algorithms that cluster the concatenated matrix of the two

views. Interestingly, [17] report improved results using the multi-view clustering algorithms on single-view

datasets that were randomly split to simulate multi-view data. This was the first evidence for improved

clustering using multiple views, and for the utility of a multi-view algorithm in clustering single-view data.

2.2 Early integration

Early integration is an approach that first concatenates all omic matrices, and then applies single-omic clus-

tering algorithms on that concatenated matrix. It therefore enables the use of existing clustering algorithms.

However, this approach has several drawbacks. First, without proper normalization, it may give more weight
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Method Description Refs. Implementation
Alternate optimization
MV k-means, MV EM Alternating k-means and EM. Each iteration is done w.r.t

a different view
[17] NA

Early integration
LRAcluster• Data originate from low rank matrix, omic data distribu-

tions modeled based on it
[18] R

Structured sparsity Linear transformation projects data into a cluster member-
ship orthogonal matrix

[19] Matlab

Late integration
COCA Per omic clustering solutions integrated with hierarchical

clustering
[20] NA

Late fusion using la-
tent models

Per omic clustering solutions integrated with PLSA [21] NA

PINS• Integration of co-clustering patterns in different omics. The
clusterings are based on perturbations to the data

[22] R

Similarity-based methods
Spectral clustering
generalizations

Generalizations of similarity based spectral clustering to
multi-omics data

[23, 24, 25, 26] Matlab

Spectral clustering
with random walks

Generalizations of spectral clustering by random walks
across similarity graphs

[? 27] NA

SNF• Integration of similarity networks by message passing [28] R, Matlab
rMKL-LPP• DR using multiple kernel learning; similarities maintained

in lower dimension
[29] NA

Dimension reduction
General DR framework General framework for integration with DR [30] NA
JIVE Variation in data partitioned into joint and omic-specific [31] Matlab,R [32]
CCA• DR to axes of max correlation between datasets. Gener-

alizations: Bayesian, kernels, > 2 omics, sparse solutions,
deep learning, count data

[33, 34, 35, 36,
37, 38, 39, 40,
41, 42, 43]

R, two omics [44],
R, multiple omics

PLS DR to axes of max covariance between datasets. General-
izations: kernels, > 2 omics, sparse solutions, partition into
omic-specific and joint variation

[45, 46, 47, 48,
49, 50, 51, 52]

R, two omics, Mat-
lab, multiple omics

MCIA DR to axes of max covariance between multi-omic datasets [53] R
NMF generalizations• DR using generalizations of NMF to multi-omic data [54, 55, 56, 57,

58, 59, 60]
MultiNMF (Mat-
lab)

Matrix tri- factoriza-
tion

DR. Each omic describes the relationship between two en-
tities

[61] NA

Convex methods DR with convex objective functions, allowing unique opti-
mum and efficient computation

[62, 63, 18] Matlab

Low-rank tensor MV
clustering

Factorization based on low-rank tensors [64] Matlab

Statistical methods
iCluster/Plus/Bayes• Data originate from low dimensional representation, which

determines the distribution of the observed data
[16, 65, 66] R

PARADIGM Probabilistic model of cellular pathways using factor graphs [67] REST API
Disagreement between
clusters

Methods based mainly on hierarchical Dirichlet processes;
clustering in different omics need not agree

[68, 69, 70, 71,
72]

BCC (R)

Survival-based Probabilistic model; patient survival data used in the clus-
tering process

[73, 74] SBC (R)

Deep learning
Deep learning methods Neural networks used for integration. A variant of CCA,

early integration and middle integration approaches
[36, 75, 76] DeepCCA

(Python)

Table 1: Multi-omic clustering methods. DR: dimension reduction; EM: Expectation maximization; MV:
multi-view; NMF: Non-negative matrix factorization.•Methods included in the benchmark. Single-omic
K-means and spectral clustering were also included in the benchmark.
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to omics with more features. Second, it does not consider the different distribution of data in the different

omics. Finally, it increases the data dimension (the number of features), which is a challenge even in some

single-omic datasets.

One way to handle the high dimension of the data is by using regularization, i.e., adding additional

constraints to a problem to avoid overfitting [78]. Specifically, LASSO regularization creates models where

the number of features with non-zero effect on the model is low [79], and regularization of the nuclear norm is

often used to induce data sparsity. Indeed, LASSO regularization is used by iCluster [16] (reviewed in a later

section), and LRACluster uses nuclear norm regularization (reviewed in this section). While any clustering

algorithm can be applied using early integration, we highlight here algorithms that were specifically developed

for this task.

LRACluster [18] uses a probabilistic model, where numeric, count and binary features have distributions

determined by a latent representation of the samples Θ. For example, Xm
ij is distributed ∝ exp(− 1

2 (Xm
ij −

Θm
ij )2), where Θm is of the same dimensions as Xm. The latent representation matrix is encouraged to be

of low rank, by adding a regularization on its nuclear norm. The objective function for the algorithm is

− log(model’s likelihood) + µ · |Θ|∗ where Θ is the concatenation of all Θm matrices, and | · |∗ is the nuclear

norm. This objective is convex and provides a global optimal solution, which is found using a fast gradient-

ascent algorithm. Θ is subsequently clustered using k-means. This method was used to analyze pan-cancer

TCGA data from eleven cancer types using four different omics, and to further find subtypes within these

cancer types.

In [19], all omics are concatenated to a matrix X and the algorithm minimizes the following objective:

||XW + 1nb
t − F ||22 + γ||W ||G1

. W is a p x k projection matrix, F is an n x k cluster indicator matrix such

that F tF = Ik, 1n is a column vector of length n of 1’s, b is an intercept column vector of dimension k and

γ is a scalar. The algorithm therefore seeks a linear transformation such the projected data are as close

to a cluster indicator matrix as possible. That indicator matrix is subsequently used for clustering. The

regularization term uses the G1 norm, which is the l2 norm for W entries associated with a specific cluster

and view, summed over all views and clusters. Therefore, features that do not contribute to the structure

of a cluster will be assigned with low coefficients in W .

2.3 Late integration

Late integration is another approach that allows to use existing single-omic clustering algorithms. First, each

omic is clustered separately using a single-omic algorithm. Different algorithms can be used for each omic.

Then, the different clusterings are integrated. The strength of late integration lies in that any clustering

algorithm can be used for each omic. Algorithms that are known to work well on a particular omic can

therefore be used, without having to create a model that unifies all of these algorithms. However, by

utilizing only clustering solutions in the integration phase we can lose signals that are weak in each omic

separately.

COCA [20] was applied to pan-cancer TCGA data, to investigate how tumors from different tissues

cluster, and whether the obtained clusters match the tissue of origin. The algorithm first clusters each omic

separately, such that the m’th omic has cm clusters. The clustering of sample i for omic m is encoded in a

binary vector vim of length cm, where vim(j) = 1 if i belongs to cluster j and 0 otherwise. The concatenation

of the vim vectors across all omics results in a binary cluster indicator vector for sample i. The n x c binary

matrix B of these indicator vectors, where c = ΣM
i=1cm, is used as input to consensus clustering [80] to obtain

the final clustering of the samples. Alternatively, in [21] a model based on Probabilistic Latent Semantic

Analysis [81] was proposed for clustering B.
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PINS [22] integrates clusters by examining their connectivity matrices for the different omics. Each such

matrix Sm is a binary n x n matrix, where Sm
ij = 1 if patients i and j are clustered together in omic m, and

0 otherwise. These Sm matrices are averaged to obtain a single connectivity matrix, which is then clustered

using different methods based on whether the different Sm matrices highly agree with each other or not. The

obtained clusters are tested if they can be further split into smaller clusters. To determine the number of

clusters for each omic and for the integrated clustering, perturbations are performed on the data by adding

Gaussian noise to it, and the number of clusters is chosen such that the resulting clustering is robust to the

perturbations.

Several methods for ensemble clustering were developed over the years, and are reviewed in [82]. While

these were not originally developed for this purpose, they can be used for late multi-omics clustering as well.

2.4 Similarity-based methods

Similarity-based methods use similarities or distances between samples in order to cluster data. These

methods compute the similarities between samples in each omic separately, and vary in the way these

similarities are integrated. The integration step uses only similarity values. Since in current multi-omic

datasets, the number of samples is much smaller than the number of features, these algorithms are usually

faster than methods that consider all features while performing integration. However, in such methods it

may be more difficult to interpret the output in terms of the original features. An additional advantage

of similarity-based methods is that they can easily support diverse omic types, including categorical and

ordinal data. Each omic only requires a definition of a similarity measure.

2.4.1 Spectral clustering generalizations

Spectral clustering [83] is a widely used similarity-based method for clustering single-view data. The objective

function for single-view spectral clustering is maxU trace(U
tLU) s.t. U tU = I, where L is the Laplacian [84]

of the similarity matrix of dimension n x n, and U is of dimension n x k, where k is the number of clusters

in the data. Intuitively, it means that samples that are similar to one another have similar row vectors in

U . This problem is solved by taking the k first eigenvectors of L (details vary between versions that use the

normalized and the unnormalized graph Laplacian), and clustering them with a simple algorithm such as

k-means. The spectral clustering objective was shown to be a relaxation of the discrete normalized cut in

a graph, providing an intuitive explanation for the clustering. Several multi-view clustering algorithms are

generalizations of spectral clustering.

An early extension to two views performs clustering by computing a new similarity matrix, using the two

views’ similarities [23]. Denote by W1 and W2 the similarity matrices for the two views. Then the integrated

similarity, W , is defined as W1W2. Spectral clustering is performed on the block matrix[
0 W

W t 0

]

Note that each eigenvector for this matrix is of length 2n. Either half of the vector or an average of the two

halves are used instead of the whole eigenvectors for clustering using k-means.

[24] generalizes spectral clustering for more than two views. Instead of finding a global U matrix, a

matrix Um is defined for each omic. The optimization problem is:

maxU1,...,UM Σmtrace(U
mtLmUm) + λ · Reg s.t. ∀m UmtUm = I.
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Lm is the graph Laplacian for omicm and Reg is a regularization term equal to either Σm1 6=m2U
m1Um1 tUm2Um2 t

or ΣmU
mUmtU∗U∗t with the additional constraint that U∗ is an n x k matrix such that U∗tU∗ = I.

The first regularization allows each omic to have a different low rank Um representation, but requires

that these representations are close to each other. The second regularization requires that the Um matrices

are close to a consensus matrix U∗. Each of the Um matrices, or U∗, can then be used for clustering.

[25] uses a different formulation, which does not require a different Um for each omic, but instead uses

the same U for all matrices. The following objective function is used:

maxUΣmtrace(U
tLmU) s.t. U tU = I

This is equivalent to performing spectral clustering on the Laplacian ΣmL
m. The obtained clusters are

then further improved in a greedy manner, by changing the assignment of samples to clusters, while looking

directly at the discrete normalized cut objective, rather than the continuous spectral clustering objective.

[26] suggests a runtime improvement over [24]. Instead of looking at the similarity matrix for all the

samples, a small set of ”representative” vectors, termed salient points, are calculated by running k-means

on the concatenation of all omics and selecting the cluster centers. A similarity matrix is then computed

between these all samples in the data and their s nearest salient points. Denote this similarity matrix for

the m’th omic by Wm, and let Zm be its normalization such that rows sum to 1. These matrices are of

dimension n x the number of salient points. Next, the matrices[
0 Zm

Zmt 0

]

are given as input to an algorithm with the same objective as [25]. This way, similarities are not computed

between all pairs of samples.

[? ] views similarity matrices as networks, and examines random walks on these networks. Random

walks define a stationary distribution on each network, which captures its similarity patterns [85]. Since

that stationary distribution is less noisy than the original similarity measures, [? ] uses them instead to

integrate the networks. [27] also examines random walks on the networks, but argues that the stationary

distribution in each network can still be noisy. Instead, the authors compute a consensus transition matrix,

that has minimum total distance to the per-omic transition matrices and is of minimal rank.

2.4.2 Similarity Network Fusion

SNF (Similarity Network Fusion) first constructs a similarity network for every omic separately [28]. In each

such network, the nodes are samples, and the edge weights measure the sample similarity. The networks

are then fused together using an iterative procedure based on message passing [86]. The similarity between

samples is propagated between each node and its k nearest neighbors.

More formally, denote by W (m) the similarity matrix for the m’th omic. Initially a transition probability

matrix between all samples is defined by:

P
(m)
1 (i, j) =


W (m)(i,j)

Σk 6=iW (m)(i,k)
, j 6= i

1
2 , j = i

and a transition porbability matrix between nearest neighbors is defined by:
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S(m)(i, j) =


W (m)(i,j)

Σk 6=iW (m)(i,k)
, j ∈ Ni

0, otherwise

where Ni are i’s k nearest neighbors in the input Xm matrices. The P matrices are updated iteratively

using message passing between the nearest neighbors: P
(m)
t+1 = S(m) Σk 6=mP

(k)
t

M−1 S(m)t where P
(m)
t is the matrix

for omic m at iteration t. This process converges to a single similarity network, summarizing the similarity

between samples across all omics. This network is partitioned using spectral clustering.

In [28], SNF is used on gene expression, methylation and miRNA expression data for several cancer

subtypes from TCGA. In addition to partitioning the graph to obtain cancer sutbypes, the authors show

that the fused network can be used for other computational tasks. For example, they show how to fit Cox

proportional hazards [87], a model that predicts prognosis of patients, with a constraint such that similar

patients in the integrated network will have similar predicted prognosis.

2.4.3 Multiple Kernel Learning

Kernel functions implicitly map samples to a high (possibly infinite) dimension, and can efficiently measure

similarity between the samples in that dimension. Multiple kernel learning uses several kernels (similarity

measures), and is often used in supervised analysis. [29] developed rMKL-LPP, which uses multiple kernel

learning in unsupervised settings. The algorithm performs dimension reduction on the input omics such that

similarities (defined using multiple kernels) between each sample and its nearest neighbors are maintained

in low dimension. This representation is subsequently clustered with k-means. rMKL-LPP allows the use

of diverse kernel functions, and even multiple kernels per omic. A regularization term is added to the

optimization problem to avoid overfitting. The authors run the algorithm on five cancer types from TCGA,

and show that using multiple kernels per omic improves the prognostic value of the clustering, and that

regularization improves robustness.

2.5 Dimension reduction-based methods

Dimension reduction-based methods assume the data have an intrinsic low dimensional representation,

with the dimension often corresponding to the number of clusters. The views that we observe are all

transformations of that low dimensional data to a higher dimension, and the parameters for the transfor-

mation differ between views. This general formulation was proposed by [30], which suggest to minimize

ΣM
m=1wml(X

m, fm(B)), where B is a matrix of dimension n x p, fm are the parametrized transformations,

and wm are weights for the different views, and l is a loss function. The work further provides an optimization

algorithm when the fm transformations are given by matrix multiplication. That is, fm(B) = BPm, and l is

the squared Frobenius norm applied to Xm −BPm. Once B is calculated, single-omic clustering algorithm

can be applied to it. This general framework is widely used. Since the transformation is often assumed to

be linear, many of the dimension reduction methods are based on matrix factorization. Dimension reduction

methods work with real-valued data. Applying these methods to discrete binary or count data is technically

possible but often inappropriate.

2.5.1 JIVE

[31] assumes that the variation in each omic can be partitioned to a variation that is joint between all omics,

and an omic-specific variation: Xmt = Jm + Am + Em where Em are error terms. Let J and A be the

concatenated Jm and Am matrices, respectively. The model assumes that JAt = 0, that is, the joint and
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omic specific variations are uncorrelated, and that rank(J) = r and rank(Ai) = ri for each omic, so that the

structure of each omic and the total joint variation are of low rank. In order for the weight of the different

omics to be equal, the input omic matrices are normalized to have equal Frobenius norm. A penalty term

is added to encourage variable sparsity. This method was applied to gene expression and miRNA data of

Glioblastoma Multiforme brain tumors, and identified the joint variation between these omics.

2.5.2 Correlation and covariance-based

Two of the most widely used dimension reduction methods are Canonical Correlation Analysis (CCA) [33]

and Partial Least Squares (PLS) [45]. Given two omics X1 and X2, in CCA the goal is to find two projection

vectors u1 and u2 of dimensions p1 and p2, such that the projected data has maximum correlation:

argmaxu1,u2corr(X1u1, X2u2)

These projections are called the first canonical variates, and are the axis with maximal correlation between the

omics. The k’th pair of canonical variates, u1
k and u2

k are found such that correlation between X1u1
k and X2u2

k

is maximal, given that the new pair is uncorrelated (that is, orthogonal) to the previous canonical variates.

[88] proved and showed empirically that if the data originate from normal or log concave distributions, the

canonical variates can be used to cluster the data. CCA was formulated in a probabilistic framework such

that the optimization solutions are maximum likelihood estimates [89], and further extended to a Bayesian

framework [34]. An additional expansion to perform CCA in high dimension is Kernel CCA [35]. A deep-

learning based CCA method, DeepCCA, was recently developed [36]. Rather than maximize the correlation

between linear projections of the data, the projections are taken to be functions of the data calculated using

neural networks, and the optimization process optimizes the parameters for these networks.

Solving CCA requires inversion of the covariance matrix for the two omics. Omics data usually have a

higher number of features than samples, and these matrices are therefore not invertible. To apply CCA to

omics data, and to increase the interpretability of CCA’s results, sparsity regularization was added [37, 38].

CCA supports only two views. Several works extend it to more than two views, including MCCA [38]

which maximizes the sum of pairwise correlations between projections and CCA-RLS [39]. [40] generalize

CCA to tensors in order to support more than two views.

Another line of work on CCA, with high relevance for omics data, investigated relationships between

the features while performing the dimension reduction. ssCCA (structure constrained sparse CCA) allows

to incorporate into the model known relationships between features in one of the input omics, and force

entries in the ui vector for that view to be close for similar features. This model has been developed by [41]

and utilized microbiome’s phylogenies as the feature structure. Another model that considers relationship

between features was developed in [42]. In this work, rather than defining similarities between features, they

are partitioned into groups. Regularization is performed such that both irrelevant groups and irrelevant

features within relevant groups are removed from the model. Finally, [43] extended CCA to support count

data, which are common in biological datasets.

PLS also follows a linear dimension reduction model, but maximizes the covariance between the projec-

tions, rather than the correlation. More formally, given two omics X1 and X2, PLS computes a sequence of

vectors u1
k and u2

k for k = 1, 2, . . . such that cov(X1u1
k, X

2u2
k) is maximal, given that u1

k
t
u1
k = 1, u2

k
t
u2
k = 1,

and cor(X1u1
k, X

1u1
l ) = 0 for l < k. That is, new projections are not correlated with previous ones. PLS

can be applied to data with more features than samples even without sparsity constraints. A sparse solution

is nonetheless desirable, and one was developed [46, 47]. O2-PLS increases the interpretability of PLS by

partitioning the variation in the datasets into joint variation between them, and variations that are specific
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for each dataset and that are not correlated with one another [48]. While PLS and O2-PLS were originally

developed for chemometrics, they were recently used for omics data as well [90, 91]. PLS was also extended

to use the kernel framework [49], and a combined version of kernel PLS and O2 PLS was developed [50].

Like CCA, PLS was developed for two omics. MBPLS (Multi Block PLS) extends the model to more

than two omics [92], and sMBPLS adds sparsity constraints. sMBPLS was developed specifically for omics

data [51]. It looks for a linear combination of projections of non-gene-expression omics that has maximal

correlation with a projection of gene expression omic. An extension of O2PLS also exists for multi-view

datasets [52].

An additional method that is based on maximizing covariance in low dimension is MCIA [53], an extension

of co-inertia analysis to more than two omics [93]. It aims to find projections for all the omics such that

the sum of squared covariances with a global variation axis is maximal: maxum,vΣM
m=1cov

2(Xmum, v). The

projections of different omics can be used to evaluate the agreement between the different omics (the distance

between projections reflects the level of disagreement between omics). Each of the projections can be used

as a representation for clustering.

2.5.3 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) assumes that the data have an intrinsic low dimensional non-

negative representation, and that a nonnegative matrix projects it to the observed omic [94]. It is therefore

only suitable for non-negative data. For a single omic, denote by k the low dimension. The formulation is

X ≈WH, where X is the n x p observed omic matrix, W is n x k and H is k x p. The objective function is

||X−WH||22, and it is minimized by updating W and H in an alternating manner, using multiplicative update

rules, such that solutions remain non negative after each update [95]. The low dimension representation W

can be clustered using a simple single-omic algorithm.

Several methods generalize this model to multi-omic data. MultiNMF [54] uses the following generaliza-

tion: Each omic Xm is factorized into WmHm. This model is equivalent to performing NMF on each omic

separately. Integration between the omics is done by adding a constraint that the Wm matrices are close to a

”consensus” matrixW ∗. The objective function is therefore: ΣM
m=1||Xm −WmHm||22+λΣM

m=1||Wm −W ∗||22.

[55] generalizes this method to support weights for features’ and samples’ similarity. [56] extend MultiNMF

by further requiring that the low dimensional representation W ∗ maintains similarities between samples

(samples that are close in the original dimension must be close in W ∗). This approach combines factoriza-

tion and similarity-based methods.

Joint NMF [57] uses a different formulation, where a sample has the same low dimensional representation

for all omics: Xm ≈ WHm. Note that by writing X = WH where X and H are obtained by matrix

concatenation, this model is equivalent to early integration. Joint NMF is not directly used for clustering.

Rather, the data are reduced to a large dimension (k = 200) and high values in W and Hm are used to

associate samples and features with modules that are termed ”md-modules”. The authors applied Joint

NMF on miRNA, gene expression and methylation data from ovarian cancer patients, and showed that

functional enrichment among features that are associated with md-modules that is more significant than

the enrichment obtained in single-omic modules. In addition, patients in certain modules have significantly

different prognosis compared to the rest of the patients. Much like [56] extends multiNMF, [58] extends

Joint NMF such that similarities in the original omics are maintained in lower dimension. [59] extends NMF

to the case where different views can contain different samples, but constrains certain samples from different

views to belong to the same cluster based on prior knowledge. Finally, PVC [60] performs partial multi-view

clustering. In this setting, not all samples necessarily have measurements for all views.
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2.5.4 Matrix tri-factorization

An alternative factorization approach presented in [61] is tri-matrix factorization. In this framework, each

input omic is viewed as describing a relationship between two entities, which are its rows and columns.

For example, in a dataset with two omics, gene expression and DNA methylation of patients, there are

three entities which are the patients, the genes and the CpG loci. The gene expression matrix describes

a relationship between patients and genes, while the methylation matrix describes a relationship between

patients and CpG loci.

Each omic matrix Rij of dimension ni x nj that describes the relationship between entities i and j is

factorized as Rij = GiSijG
t
j , where Gi and Gj provide a low dimensional representation for entities i and j

respectively and are of dimensions ni x ki and nj x kj , and Sij is an omic-specific matrix of dimension ki

x kj . As in NMF, the Gi matrices are non-negative. The same Gi matrix is used in all omics with entity

i, and in this way data integration is achieved. In the above example, both the gene expression and DNA

methylation omics will use the same G matrix to represent patients, but different matrices to represent genes

and CpG loci. In this model, an additional matrix describing the relationship between genes and CpGs

could optionally be used. [61] adds constraints to the formulation that can encourage entities to have similar

representations. This framework was applied to diverse problems in bioinformatics, including in supervised

settings: It was used to perform gene function prediction [61], and for patient survival regression [96].

2.5.5 Convex formulations

A drawback of most factorization-based methods is that their objective functions are not convex, and there-

fore optimization procedures do not necessarily reach a global optimum, and highly depend on initialization.

One solution to this issue is by formulating dimension reduction as a convex problem. [62] relaxes CCA’s

conditions and defines a convex variant of it. Performance was assessed on reducing noise in images, but

the method can also be used for clustering. However, like CCA, the method only supports two views. [63]

present a different convex formulation for dimension reduction, for the general factorization framework pre-

sented earlier, which minimizes ΣM
m=1||Xm −BPm||2F + γ||B||2,1. || · ||2,1 is the l2,1 norm, namely the sum

of the Euclidean norms of the matrix rows. This relaxation therefore supports multiple views. LRAcluster

[18] also uses matrix factorization and has a convex objective function.

2.5.6 Tensor-based methods

A natural extension of factorization methods for multi-omic data is to use tensors, which are higher order

matrices. One such method is developed in [64]. This method writes each omic matrix as Xm = ZmXm +

Em, diag(Zm) = 0, where Zm is an n x n matrix and Em are error matrices. The idea is that each sample in

each omic can be represented as a linear combination of other samples (hence the diag(Zm) = 0 constraint),

and that its representation in that base (Zm) can then be used for clustering. To integrate the different

views, the different Zm matrices are merged to a 3rd-order tensor, Z. The objective function encourages Z

to be sparse, and the Em error matrices to have a small norm.

2.6 Statistical methods

Statistical methods model the probabilistic distribution of the data. Some of these methods view samples as

originating from different clusters, where each cluster defines a distribution for the data, while other methods

do not explicitly use the cluster structure in the model. An advantage of the statistical approach is that

it allows to include biological knowledge as part of the model when determining the distribution functions.
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This can be done either using Bayesian priors or by choosing probabilistic functions, e.g. using normal

distribution for gene expression data. For most formulations, parameter estimation is computationally hard,

and different heuristics are used. Several models under the Bayesian framework allow for samples to belong

to different clusters in different omics.

2.6.1 iCluster and iCluster+

iCluster [16] assumes that the data originate from a low dimension representation, which determines the

cluster membership for each sample: Xmt = WmZ + εm, where Z is a k x n matrix, Wm is an omic specific

pm x k matrix, k is the number of clusters and εm is a normally distributed noise matrix. This model

resembles other dimension reduction models, but here the distribution of noise is made explicit. Under this

model iCluster maximizes the likelihood of the observed data with an additional regularization for sparse

Wm matrices. Optimization is performed using an EM-like algorithm, and subsequently k-means is run on

the lower dimension representation of the data Z to get the final clustering assignments. iCluster was applied

to breast and lung cancer, using gene expression and copy number variations. iCluster was also recently

used to cluster more than ten thousand tumors from 33 cancers in a pan-cancer analysis [97]. Note that by

concatenating all Wm matrices to a single W matrix, and rewriting the model as Xt = WZ + ε, iCluster

can be viewed as an early integration approach.

iCluster’s runtime grows fast with the number of features, and therefore feature selection is essential

before using it [28]. [16] only use genes located on one or two chromosomes in their analysis.

Since iCluster’s model uses matrix multiplication, it requires real-values features. An extension called

iCluster+ [65] includes different models for numeric, categorical and count data, but maintains the idea that

data originate from a low dimension matrix Z. For categorical data, iCluster+ assumes the following model:

Pr(Xm
ij = c|zi) =

exp(αjcm + βjcm · zi)
Σlexp(αjlm + βjlm · zi)

while for numeric data the model remains linear with normal error:

xijm = γjm + δjm · zi + εijm, εijm ∼ N(0, σ2
jm)

A regularization term encouraging sparse solution is added to the likelihood, and a Monte-Carlo Newton-

Raphson algorithm is used to estimate parameters. The Z matrix is used as in iCluster for the clustering.

The latest extension of iCluster, which builds on iCluster+, is iClusterBayes [66]. This method replaces the

regularization in iCluster+ with full Bayesian regularization. This replacement results in faster execution,

since the algorithm no longer needs to fine tune parameters for iCluster+’s regularization.

2.6.2 PARADIGM

PARADIGM [67] is the most explicit approach to modeling cellular processes and the relations among

different omics. For each sample and each cellular pathway, a factor graph that represents the state of

different entities within that pathway is created. As a degenerate example, a pathway may include nodes

representing the mRNA levels of each gene in that pathway, and nodes representing those genes’ copy number.

Each node in the factor graph can be either activated, nominal or deactivated, and the factor graph structure

defines a distribution over these activation levels. For example, if a gene has high copy number it is more

likely that it will be highly expressed. However, if a repressor for that gene is highly expressed, that gene is

more likely to be deactivated. PARADIGM infers the activity of non-measured cellular entities to maximize
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the likelihood of the factor graph, and outputs an activity score for each entity per patient. These scores are

used to cluster cancer patients from several tissues.

PARADIGM’s model can be used for more than clustering. For example, PARADIGM-shift [98] predicts

loss-of-function and gain-of-function mutations, by finding genes whose expression value as predicted based

on upstream entities in the factor graph is different from their predicted expression value using downstream

entities. PARADIGM relies heavily on known interactions, and requires specific modeling for each omic. It

is also quite limited to the cellular level; For example, it is not clear how to incorporate into the model an

omic describing the microbiome composition of each patient.

2.6.3 Combining omic-specific and global clustering

All the methods discussed so far assume that there exists a consistent clustering structure across the different

omics, and that analyzing the clusters in an integrative way will reveal this structure more accurately than

analyzing each omic separately. However, this is not necessarily the case for biomedical datasets. For

example, it is not clear that the methylation and expression profiles of cancer tumors really represent the

same underlying cluster structure. Rather, it is possible that each omic represents a somewhat different

cluster structure. Several methods take this view point using Bayesian statistics.

[68] defines a hierarchical Dirichlet process model, which supports clustering on two omics. Each sample

can be either fused or unfused. Fused samples belong to the same cluster in both omics, while unfused

samples can belong to different clusters in different omics. Patterns of fused and unfused samples reveal the

concordance between the two datasets. This model is extended in PSDF [69] to include feature selection.

[68] applies the model to cluster genes using gene expression and ChIP-chip data, while [69] clusters cancer

patients using expression and copy number data.

In MDI [70] each sample can have different cluster assignments in different omics. However, a prior is

given such that the stronger an association between two omics is, the more likely a sample will belong to the

same cluster in these two omics. This association strength adjusts the prior clustering agreement between

two omics. In addition to these priors, MDI’s model uses Dirichlet mixture model, and explicitly represents

the distribution of the data within each cluster and omic. Since samples can belong to different clusters in

different omics, no global clustering solution is returned by the algorithm. Instead, the algorithm outputs

sets of samples that tend to belong to the same cluster.

A different Bayesian formulation is given by BCC [71]. Like MDI, BCC assumes a Dirichlet mixture

model, where the data originate from a mixture of distributions. However, BCC does assume a global

clustering solution, where each sample maps to a single cluster. Given that a sample belongs to a global

cluster, its probability to belong to that cluster in each omic is high, but it can also belong to a different

cluster in that omic. Parameters are estimated using Gibbs sampling [99]. BCC was used on gene expression,

DNA methylation, miRNA expression and RPPA data for breast cancer from TCGA.

Like MDI and BCC, Clusternomics [72] uses a Dirichlet mixture model. Clusternomics suggests two

different formulations. In the first, each omic has a different clustering solution, and the global clusters are

represented as the Cartesian product of clusters from each omic. This approach does not perform integration

of the multi-omic datasets. In the second formulation, global clusters are explicitly mapped to omic-specific

clusters. That way, not all possible combinations of clusters from different omics are considered as global

clusters.
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2.6.4 Survival-based clustering

One of the areas multi-omics clustering is widely used for is discovering disease subtypes. In this context, we

may expect different disease subtypes to have a different prognosis, and this criterion is often used to assess

clustering solutions. [73] develop a Bayesian model for multi-omics clustering that considers patient prognosis

while clustering the data. Patients within a cluster have both similar feature distribution and similar

prognosis. [74] also develop a probabilistic clustering method that considers survival, and that supports a

large number of features compared to [73], which only uses a few dozen features. As the survival data are

used as input to the model, it is not surprising that this approach gives clusters with more significantly

different survival than other approaches. This was demonstrated on Glioblastoma Multiforme data by [73]

and for data from several cancer types by [74], both from TCGA.

2.7 Deep multi-view methods

A recent development in machine learning is the advent of deep learning algorithms [100]. These algorithms

use multi-layered neural networks to perform diverse computational tasks, and were found to improve perfor-

mance in several fields such as image recognition [101] and text translation [102]. Neural networks and deep

learning have also proven useful for multi-view applications [103], including unsupervised feature learning

[36], [104]. Learned features can be used for clustering, as described earlier for DeepCCA. Deep learning is

already used extensively for biomedical data analysis [105].

Recent deep learning uses for multi-omics data include [75] and [76]. [75] use an autoencoder, which

is a deep learning method for dimension reduction. The authors ran it on RNA-seq, methylation and

miRNA-seq data in order to cluster Hapatocellular Carcinoma patients. The architecture implements an

early integration approach, concatenating the features from the different omics. The autoencoder outputs

a representation for each patient. Features from this representation are tested for association with survival,

and significantly associated features are used to cluster the patients. The clusters obtained have significantly

different survival. This result is compared to a similar analysis using the original features, and features

learned with PCA rather than autoencoders. However, the analysis in this work is not unsupervised, since

the feature selection is based on patient survival.

[76] use a different approach. They analyze expression, methylation and miRNA ovarain cancer data using

Deep Belief Networks [106] which explicitly consider the multi-omic strucutre of the data. The architecture

contains separate hidden layers, each having inputs from one omic, followed by layers that receive input from

all the single-omic hidden layers, thus integrating the different omics. A 3-dimensional representation over

{0, 1} is learned for each patient, partitioning the patients into 23 = 8 clusters. The clustering results are

compared to k-means clustering on the concatenation of all omics, but not to other multi-omics clustering

methods.

Deep learning algorithms usually require many samples and few features. They use a large number

of parameters, which makes them prone to overfitting. Current multi-omic datasets have the opposite

characteristics - they have many features and at least one order of magnitude less samples. The works

presented here use only a few layers in their architectures to overcome this limitation, in comparison to the

dozens of layers used by state-of-the-art architectures for imaging datasets. As the number of biomedical

samples increases, deep multi-view learning algorithms might prove more beneficial for biomedical datasets.
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3 Benchmark

In order to test the performance of multi-omics clustering methods, we compared nine algorithms on ten

cancer types available from TCGA. We also compared the performance of the algorithms on each one of

the single-omic datasets that make up the multi-omic datasets, for algorithms that are applicable to single-

omic data. The nine algorithms were chosen to represent diverse approaches to multi-omics clustering.

Three algorithms are early integration methods: LRAcluster, and k-means and spectral clustering on the

omics concatenated into a single matrix. For similarity-based algorithms we used SNF and rMKL-LPP. For

dimension reduction we used MCCA [38] and MultiNMF. We chose iClusterBayes as a statistical method,

and PINS as a late integration approach.

The ten datasets contain cancer tumor multi-omics data, where each dataset is a different cancer type.

All datasets contain three omics: gene expression, DNA methylation and miRNA expression. The number

of patients range from 170 for AML to 621 for BIC. Full details on the datasets and cancer type acronyms

appear in Supplementary File 2.

To assess the performance of a clustering solution, we used three metrics. First, we measured differential

survival between the obtained clusters using the logrank test [107]. Using this test as a metric assumes that

if clusters of patients have significantly different survival, they are different in a biologically meaningful way.

Second, we tested for the enrichment of clinical labels in the clusters. We chose six clinical labels for which we

tested enrichment: gender, age at diagnosis, pathologic T, pathologic M, pathologic N and pathologic stage.

The four latter parameters are discrete pathological parameters, measuring the progression of the tumor (T),

metastases (M) and cancer in lymph nodes (N), and the total progression (pathologic stage). Enrichment

for discrete parameters was calculated using the χ2 test for independence, and for numeric parameters using

Kruskal-Wallis test. Not all clinical parameters were available for all cancer types, so a total of 41 clinical

parameters were available for testing. Finally, we recorded the runtime of each method. We did not consider

in the assessment computational measures for clustering quality, such as heterogeneity, homogeneity or the

silhouette score [108], since the different methods perform different normalization on the features (and some

even perform feature selection). Full details about the survival and phenotype data appear in Supplementary

File 2.

To derive a p-value for the logrank test, the χ2 test for independence, and the Kruskal-Wallis test,

the statistic for these three tests is assumed to have χ2 distribution. However, for the logrank test and

χ2 test this approximation is not accurate for small sample sizes and unbalanced cluster sizes, especially

for large values of the test statistic (this was shown for example in [109] for the logrank test in the case

of two clusters). Indeed, we encountered in our analysis cases where the approximation gave extreme p-

values (< 10−10) for very small clusters (n = 3). Instead, we ran permutation tests for each clustering

(where we permuted the cluster labels between samples) and used the test statistic to obtain an empirical

p-value. The obtained empirical p-values were significantly different from the p-values returned by the χ2

approximation. In fact, for the logrank test on multi-omics data, the approximation-based p-values for 54

out of 89 clustering solutions (PINS crashed on BIC dataset, giving a total of 89 solutions) were not within

their 95% confidence intervals constructed using the permutation test. This inaccuracy was exacerbated

for small p-values - 32 out of the 35 significant (< 0.05) approximated p-values did not fall within their

95% confidence intervals. In all these cases, the p-value was higher (less significant) for the permutation-

based computation. An extreme case is MCCA’s solution for KIRC dataset, where the p-value from the

approximation was reported to equal 0, while the permutation test estimated it at 1.4e-4. In several cases,

results that were significant according to the approximation were actually not significant according to the

permutation tests. We observed a similar problem with the approximate p-values computed for the clinical
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Figure 2: Performance of the algorithms on ten multi-omics cancer datasets. For each plot, the x-axis mea-
sures the differential survival between clusters (-log10 of logrank’s test p-value), and the y-axis is the number
of clinical parameters enriched in the clusters. Red vertical lines indicate the threshold for significantly dif-
ferent survival (p-value ≤ 0.05)

parameters. The p-values we report here are therefore estimated using the permutation tests. More details

on the permutation tests appear in Supplementary File 1. After permutation testing, the p-values for the

clinical labels were corrected for multiple hypotheses (since several labels were tested) using Bonferroni

correction for each cancer type and method at significance level 0.05. Results for the statistical analyses are

in Supplementary File 3.

We applied all nine methods to the ten multi-omics datasets, and to the thirty single-omic matrices

comprising them. The only exceptions were MCCA, which we could not apply to single-omic data, and

PINS, which crashed consistently on all BIC datasets. All methods were run on a Windows machine, except

for iCluster which was run on a Linux cluster utilizing up to 15 nodes in parallel. Details on hardware,

data preprocessing and application of the methods appear in Supplementary File 1. Full clustering results

appear in Supplementary File 4. All the processed raw data are available at http://acgt.cs.tau.ac.il/

multi_omic_benchmark/download.html, and all software scripts used are available at https://github.

com/Shamir-Lab/Multi-Omics-Cancer-Benchmark/.

Figure 2 depicts the performance of the benchmarked methods on the different cancer datasets, and

Figures 3 and 4 summarize the performance for multi-omics data and for each single-omic separately across

all cancer types. No algorithm consistently outperformed all others in either differential survival or enriched

clinical parameters. With respect to survival, MCCA had the total best prognostic value (sum of -log10

p-values = 18.19), while MultiNMF was second (16.04) and rMKL-LPP third (14.18). The sum of p-values

can be biased due to outliers, so we also counted the number of datasets for which a method’s solution

obtains significantly different survival. These results are reported in Table 2. Here, with the exception of

iClusterBayes, all methods that were developed for multi-omics or multi-view data had four cancer types

with significantly different survival. These four cancer types are not identical for all the algorithms.

rMKL-LPP achieved the highest total number of significant clinical parameters, with 16 parameters.

Spectral clustering came second with 14 and LRAcluster had 13. MCCA and MultiNMF, which had good

results with respect to survival, had only 11 and 10 enriched parameters, respectively. rMKL-LPP did not

outperform all other methods for all cancer types. For example, it had one enriched parameter for SKCM,
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Figure 3: Mean performance of the algorithms on ten multi-omics cancer datasets. The x-axis measures
the differential survival between clusters (mean -log10 of logrank’s test p-value), and the y-axis is the mean
number of clinical parameters enriched in the clusters.

K-means Spectral LRAcluster PINS SNF rMKL-LPP MCCA MultiNMF iClusterBayes

Significantly
different
survival

1 3 4 4 4 4 4 4 2

Significant
clinical
enrichment

7 8 6 6 7 8 8 6 5

Table 2: Cancer types with significant results per algorithm. For each benchmarked algorithm, the number
of cancer subtypes for which its clustering had significantly different prognosis (first row) and had at least
one enriched clinical label (second row) are shown.

while several other methods had two or three. We also considered the number of cancer types for which an

algorithm had at least one enriched clinical label (Table 2). rMKL-LPP, spectral clustering and MCCA had

enrichment in 8 cancer types, despite MCCA having a total of only 11 enriched parameters. Overall, rMKL-

LPP outperformed all methods except MCCA and multiNMF with respect to both survival and clinical

enrichment. MCCA and multiNMF had better prognostic value, but found less enriched clinical labels.

Each method determines the number of clusters for each dataset. These numbers are presented in Table 3.

The numbers vary drastically among methods, from 2 or 3 (iCluster and MultiNMF) to more than 10 on

average (MCCA). Both MCCA and rMKL-LPP partitioned the data into a relatively high number of clusters

(average of 11.1 and 6.7 respectively), and both had good performance, which may indicate that clustering

cancer patients into more clusters improves prognostic value and clinical significance. The higher number of

clusters is controlled in the logrank and clinical enrichment tests by having more degrees of freedom for its

χ2 statistic.

The runtime of the different methods is reported in Table 4. Note that as mentioned earlier, iClusterBayes

17

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/371120doi: bioRxiv preprint first posted online Jul. 19, 2018; 

http://dx.doi.org/10.1101/371120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Summarized performance of the algorithms across ten cancer datasets. For each plot, the x-axis
measures the total differential prognosis between clusters (sum across all datasets of -log10 of logrank’s test
p-value), and the y-axis is the total number of clinical parameters enriched in the clusters across all cancer
types. A-C: results for single-omic datasets. D: results when each method uses the single omic that achieves
the highest significance in survival. E: same with respect to enrichment of clinical labels.
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AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

K-means 3 2 2 5 2 2 2 2 2 2 2.4
Spectral 9 3 2 5 2 2 2 2 4 2 3.3
LRAcluster 6 10 6 13 7 15 14 6 9 10 9.6
PINS 4 NA 4 2 2 5 4 15 2 3 4.6
SNF 4 2 3 2 4 2 2 3 3 3 2.8
rMKL-LPP 6 7 6 6 11 6 6 7 6 6 6.7
MCCA 13 15 2 8 13 15 15 3 13 14 11.1
MultiNMF 2 2 2 3 2 3 2 2 2 2 2.2
iClusterBayes 2 3 2 2 2 3 2 2 2 2 2.2

Table 3: Number of clusters chosen by the benchmarked algorithms on ten multi-omics cancer datasets. The
right column is the average number of clusters across all cancer types.

was run on a cluster, while the other methods were run on a desktop computer. All methods except for

LRAcluster and iCluster took less than five minutes per dataset on average. LRAcluster and iClusterBayes

took about 56 and 72 minutes per dataset, respectively.

Figure 4 also shows the performance of the benchmarked methods for single-omic data. While several

methods had worse performance on single-omic datasets, some achieved better performance. For example,

the highest number of enriched clinical parameters for both single and multi-omic datasets (18) was achieved

by rMKL-LPP on gene expression. The gene expression solution also had better prognostic value than the

multi-omic solution. LRAcluster on gene expression data had the most significant prognostic value across

all single-omic and multi-omic experiments, except for MCCA on multi-omics data (sums of -log10 p-values

are 18.15 and 18.19, respectively).

To further test how analysis of single-omic datasets compares to multi-omic datasets, we chose for each

dataset and method the single omic that gave the best results for survival and clinical enrichment. In this

analysis, rMKL-LPP had the highest total number of enriched clinical parameters (21), and the highest

total survival significance was for LRAcluster (22.89). The runtime, number of clusters, and survival and

clinical enrichment analysis for single-omic datasets appear in Supplementary Files 1 and 3. These results

suggest that analysis of multi-omics data does not consistently provide better prognostic value and clinical

significance compared to analysis of single-omic data alone, especially when different single-omics are used

for each cancer types.

4 Discussion

We have reviewed methods for multi-omics and multi-view clustering. In our tests on ten cancer datasets,

overall, rMKL-LPP performed best in terms of clinical enrichment, and outperformed all methods except

MCCA and MultiNMF with respect to survival. The high performance of MCCA and MultiNMF is remark-

able, as these are multi-view methods that were not specifically developed for omics data (though MCCA

was applied to it).

Careful consideration should be given when applying multi-view clustering methods to multi-omic data,

since these data have characteristics that multi-view methods do not necessarily consider. The most promi-

nent of these characteristics is the large number of features relative to the number of samples. For example,
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AML BIC COAD GBM KIRC LIHC LUSC SKCM OV SARC Means

K-means 5 29 8 8 8 12 12 20 13 10 13
Spectral 3 8 3 3 3 5 5 6 4 4 4
LRAcluster 935 11151 1442 1361 1007 4025 3459 6053 2361 2041 3384
PINS 41 NA 112 115 59 125 228 317 214 113 147
SNF 5 42 7 7 6 14 13 21 9 8 13
rMKL-LPP 222 192 205 221 191 255 213 333 263 238 233
MCCA 11 44 11 13 12 26 24 24 17 15 20
MultiNMF 19 51 25 19 17 35 27 45 21 23 28
iClusterBayes* 2628 7832 3213 2569 2756 5195 4682 6077 4057 3969 4298

Table 4: Runtime in seconds of the algorithms on ten multi-omics cancer datasets. The right column is
the average runtime across all cancer types. *For iClusterBayes numbers are elapsed time on a multi-core
platform.

CCA inverts the covariance matrix of each omic. This matrix is not invertible when there are more features

than samples, and sparsity regularization is necessary. Another feature of multi-omic data is the dependen-

cies between features in different omics, but several multi-view algorithms assume conditional independence

of the omics given the clustering structure. This dependency is rarely considered, since it greatly increases

the complexity of models. An additional characteristic of current omic data types is that due to cellular

regulation, they have an intrinsic lower dimensional representation. The characteristic is utilized by many

methods.

In our benchmark, single-omic data alone sometimes gave better results than multi-omics data. This was

intensified when for each algorithm the ”best” single-omic for each cancer type was chosen. These results

question the current assumptions underlying multi-omics analysis in general and multi-omics clustering in

particular.

Several approaches may lead to improved results for multi-omics analysis. First, methods that suggest

different clusterings in different omics were developed and reviewed here, but were not included in the

benchmark, since it is not clear how to compare algorithms that do not output a global clustering solution

to those that do. These methods may be more sensitive to strong signals appearing in only some of the

omics. Second, future algorithms can perform omic selection in the same manner that algorithms today

perform feature selection. In the benchmark, we let each method choose a single-omic for each cancer type

given the results of the analysis, which are usually not available for real data. Methods that filter omics with

contradicting signals might obtain a clearer clustering. Finally, most methods for multi-omics clustering

do not incorporate prior biological knowledge, and especially the relationship between omics. A notable

exception is PARADIGM, which formulates both the relationships between different omics and between

genes using known pathways. Other statistical methods also include some form of biological modeling by

describing the distribution of the omics, and MDI tunes the similarity of clustering solutions in different

omics based on the omics similarity. However, these methods do not model the biological relationship

between omics. Methods that model such relations might benefit from additional biological knowledge, even

without modeling whole pathways. For example, one can incorporate in a model the fact that promoter

methylation is anti-correlated with gene expression. As far as we know, such methods were only developed

for copy-number variation and gene expression data (e.g. [110]), and not in the context of clustering.

We detected large differences between the p-values derived from the χ2 approximation compared to the

p-values derived from the permutation tests in the statistical tests we used. The differences were especially

large due to the small sample size, small cluster sizes (in solutions with a high number of clusters) and due to
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a low number of events (high survival) for the logrank test. These p-values are used by single and multi-omic

methods to assess their performance, and the logrank p-value is often the main argument for an algorithm’s

merit. The large differences between the p-values question the validity of analyses that are based on the χ2

approximation, at least for TCGA data. Future work must use exact or permutation-based calculations of

the p-value in datasets with similar characteristics to those used here for the benchmark.

The benchmark we performed is not without limitations. Gauging performance using patient survival is

somewhat biased to known cancer subtypes, which may have been used in treatment decisions. Additionally,

cancer subtypes that are biologically different may have similar survival. This is also true for enrichment of

clinical parameters, although we attempted to choose parameters that would not lead to this bias. However,

these measures are widely used for clustering assessment, including in the papers describing some of the

benchmarked methods. Another limitation of the benchmark is that it only examines clustering, while some

of the methods have additional goals and output. For example, in dimension reduction algorithms, the

low dimensional data can be used to analyze features, and not only patients, e.g., by calculating axes of

variation common to several omics. With respect to feature analysis, multi-omic algorithms can have an

advantage over single-omic algorithms that we did not test. Finally, though we selected the parameters of

each benchmarked method according to the guidelines given by the authors, judicious fine-tuning of the

parameters may improve results.
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