
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Sorting cancer karyotypes using
double-cut-and-joins, duplications and deletions
Ron Zeira and Ron Shamir 1,∗

1Blavatnik School of Computer Science, Tel Aviv university, Tel Aviv, 6997801, Israel

∗To whom correspondence should be addressed.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Problems of genome rearrangement are central in both evolution and cancer research. Most
genome rearrangement models assume that the genome contains a single copy of each gene and the
only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also
undergo numerical changes such as deletions and duplications, and thus the number of copies of genes
varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date.
More realistic models are needed to help trace genome evolution during tumorigenesis.
Results: Here we present a model for the evolution of genomes with multiple gene copies using the
operation types double-cut-and-joins, duplications and deletions. The events supported by the model are
reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and
deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal
is to find a series of operations of minimum length that transform one karyotype into the other. We show
that the problem is NP-hard and give an integer linear programming formulation that solves the problem
exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer
genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than
extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence
of structural and numerical events during cancer evolution.
Availability: Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes
Contact: ronzeira@post.tau.ac.il, rshamir@tau.ac.il
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
During cancer, the tumor genome rapidly accumulates somatic mutations.
While some mutations are small, affecting one or a few bases, other
are large-scale events. Here we focus on the latter. They include
inversions, chromosomal translocations, tandem duplications, segmental
deletions, and whole chromosome amplifications or losses (Vogelstein
et al., 2013). Some cancer types are predominately characterized by these
types of mutations (Ciriello et al., 2013). Understanding these changes
can assist in predicting disease progression and the outcome of medical
interventions (Fielding, 2010). For instance, early translocations and
tandem duplications in ovarian cancer were shown to contribute to drug
sensitivity and clonal expansion (Ng et al., 2012).

1.1 Aberration types and cancer genome data

The copy number (CN) of a genomic segment is the number of copies of
the segment a genome contains. In a healthy diploid genome, each segment
has CN = 2. In a segmental deletion, a segment of the DNA is deleted
resulting in a genome with one less copy of the segment. In chromosomal
deletion, an entire chromosome is deleted. In a tandem duplication, a
segment of a chromosome is duplicated and inserted right after the original
one. A chromosomal duplication (or amplification) creates an additional
copy of an entire chromosome. Overall, deletions and duplications can
change both the structure and the CN of the genome.

Other aberrations change only the structure of the genome but not its
CNs. In an inversion (or reversal), a segment of a chromosome is reversed
relative to its original orientation. In a translocation, two chromosomes
exchange ends segments.

© The Author(s) (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email:
journals.permissions@oup.com

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

2 Ron Zeira and Ron Shamir

Given the germline genome G and the tumor genome T , a
breakpoint is a position between two bases that are consecutive in G

but not in T . Inversions and translocations introduce two breakpoints,
segmental deletions and tandem duplications introduce one breakpoint,
and chromosomal duplications/deletions introduce no breakpoints.

The primary source of data for cancer genome analysis today is deep
sequencing. It allows inference of CN changes based on read depth (Ding
et al., 2014), and facilitates inferring breakpoints in the genome, detecting
structural variants and identifying rearrangements (Korbel et al., 2007). If
the mapped locations of the two ends of a paired-end read do not match the
read length, the read is called discordant and suggests a breakpoint in the
genome. The location and orientation of such discordant reads can help
detect the type of event (Abo et al., 2014). Accurate reconstruction of the
numerical and structural variations from deep sequencing data remains a
challenge, and a myriad of computational methods have been devised for
this task (Ding et al., 2014).

1.2 Genome rearrangement models

Over the past two decades, many genome rearrangement models were
studied. The classical model seeks a shortest sequence of inversions and
translocations that transform one genome into another (Hannenhalli and
Pevzner, 1995b,a). Such a sequence is called a sorting scenario. Later,
a simpler model based on double-cut-and-join (DCJ) was proposed. In
a DCJ, the genome is cut in two locations and the four loose ends are
reconnected as two pairs. This model can represent both inversions and
translocations (Yancopoulos et al., 2005; Bergeron et al., 2006). Feijão
and Meidanis (2011) provided a simpler model called single-cut-or-join
(SCoJ), in which every operation either cuts the genome or joins two
loose ends. These DCJ and SCoJ models assumed a single copy of each
genomic segment and no operation that alters copy number. Extant models
with multiple segment copies often result in NP-hard problems (Tannier
et al., 2009; Shao and Lin, 2012). Some rearrangement models assume
that a breakpoint cannot be used twice in a sorting scenario (Pevzner and
Tesler, 2003).

Several models have addressed multiple copies along with other
operation types. Some allow insertions or deletions of genomic segments
along with DCJs, but only for non-duplicated segments (da Silva et al.,
2012). For sorting multiple copy genomes using DCJs only, both an exact
integer linear program (ILP) and an approximation have been given (Shao
et al., 2015; Shao and Lin, 2012). Bader (2010) provided a heuristic for
sorting by DCJs, duplications, and deletions. Shao and Moret (2015)
devised an ILP for sorting genomes with multiple copies via DCJs and
certain type of segmental duplications. Zeira and Shamir (2017) gave a
linear algorithm for sorting with SCoJs and chromosomal duplications on
genomes with at most two copies. Ozery-Flato and Shamir (2009) studied
a model with certain duplications, deletions and SCoJs, and provided a
3-approximation algorithm that performed well on cancer genomes.

Several models attempted to introduce CN-modifying operations.
Chowdhury et al. (2014) defined an edit distance between CN profiles
obtained from FISH, where the edit operations are amplification or deletion
of single genes, single chromosomes, or the whole genome. However,
these methods are tailored to FISH data with a limited number of genes.
Schwarz et al. (2014) introduced a model that allows amplifications and
deletions of contiguous segments. A linear time algorithm for this edit
distance was later given (Zeira et al., 2017). However, all these models
consider only CN modifications but not structural rearrangements.

1.3 Graph models for tumor rearrangements

Graph theory contributed remarkably to the area of genomic
rearrangements. Breakpoint graphs are widely used for representation and
analysis of rearranged genomes in evolution (Bafna and Pevzner, 1993;

Hannenhalli and Pevzner, 1995b) and in cancer genomes (Raphael et al.,
2003). Greenman et al. (2012) created models that expanded the breakpoint
graph and they used them in order to infer some order over tumor mutations.

Oesper et al. (2012) further expanded the breakpoint graph with
a structure called the interval adjacency graph, which represents
breakpoints, discordant reads and CN information. Their method, called
PREGO, uses the number of reads supporting each edge to resolve the
CN of genomic segments and identify discordant adjacencies in the tumor
genome. Decomposition of this graph into a set of paths corresponds to a
set of chromosomes. PREGO was shown to efficiently identify complex
rearrangement in ovarian cancer sequencing data. Eitan and Shamir (2017)
expanded this model and tested it in extensive simulations and on real
cancer data.

1.4 Our contribution

We propose here a model for the structural and numerical changes
that a genome with multiple segmental copies undergoes. The allowed
operations are DCJs, tandem duplications, segmental deletions and whole
chromosome duplications and deletions. This model encompasses many
of the common aberrations in cancer, and does not preclude breakpoint
reuse. However, we restrict both duplications and deletions to simple paths
that include at most one copy of each segment. Similarly to Oesper et al.
(2012), genomes are represented by the copy number of each segment
and the adjacencies between them. Our goal is to find a shortest series
of operations that transform one genome into the other, e.g., a normal
genome to an observed tumor genome. Unlike most models, we focus
here on finding the actual sequence of events. We show that the problem
is NP-hard, give an ILP formulation for solving this problem and apply it
on simulated and ovarian tumor data. The algorithm is able to resolve the
sequence of events for tumors of average complexity.

The study advances the state of the art in genome rearrangement
analysis in cancer in two ways: It allows a broader set of operations than
extant models, thus being more realistic, and it is also the first model
attempting to reconstruct the full sequence of structural and numerical
events during cancer evolution.

2 Methods
In this section we present our model and formulate an ILP to solve it.

2.1 Notation

A genome contains a set G = G∗ ∪ TG of entities. G∗ is a set of n genes,
denoted 1, . . . , n. Each gene g ∈ G has two extremities, a head gh and
a tail gt. W.l.o.g., denote gt = 2g and gh = 2g + 1 for every g ∈ G.
TG is a set of special genes called telomeres. Each telomere has only one
extremity. Telomeres come in pairs distinguished as the left telomere and
the right telomere. A left telomere has only a head and a right telomere has
only a tail. The left and right telomeres correspond to the start and end of
chromosomes in the real genome. The genes in G∗ are also called internal
genes.

Denote by T the set of extremities corresponding to telomeres, and by
E∗ = {gt, gh|g ∈ G∗} the set of extremities of internal genes. The set of
all extremities is denoted by E = E∗ ∪ T . Throughout, for an extremity
e we shall denote by g(e) the gene it belongs to.

A karyotype is represented by a pair K = (cn, adj). cn : G → N
is a gene copy number profile and adj : E × E → N is an adjacency
copy number matrix, such that ∀e ∈ E, cn(g(e)) =

∑
e′∈E adj(e, e

′).
Notice that adj is symmetric, and different copies of a gene or adjacency
are indistinguishable.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

Sorting cancer karyotypes 3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

DCJ Tandem
duplication

Segmental
deletion

3

2

2

2

3

2

2

2

1

1

3

2

1

1

3

2

2

2

1

1

a,b,c,d
a,b,c,d

a,-c,-b,d
a,b,c,d

a,-c, a,-c,-b,d
a,b,c,d

a,-c, a,-c,d
a,b,c,d

Fig. 1. The effect of model operations on the karyotype graph. Solid edges: interval
edges; dotted edges: adjacencies; numbers on edges: CN; lightning signs: breakpoints.
The scribbled lines show the path affected by the operation. The sequences of genes
corresponding to possible chromosomes are shown below each graph, with each
chromosome in a separate line. The genes a, b, c, d correspond to the graph segments
from top to bottom of colors blue, yellow, red and green, respectively.

The karyotype graph of K is a weighted undirected graph G =

(E, E,W) akin to the interval adjacency graph (Oesper et al., 2012)
(see Figure 1). The edge set E = EI ∪ EA consists of interval edges
EI and adjacency edges EA. Interval edges Ei = {(gt, gh)|g ∈
G∗, cn(g) > 0} correspond to genes and adjacency edges Ei =

{(u, v)|u, v ∈ E, adj(u, v) > 0} correspond to adjacencies in the
karyotype. The weight W : E → N is defined as the CN of the edge, i.e.,

W (u, v) =

{
cn(g) if (u, v) = (gt, gh) ∈ EI

adj(u, v) if (u, v) ∈ EA

Removing a copy of an existing edge (u, v) from G results in a new
graph in which the CN of (u, v) is lower by 1 and the edge is deleted from
the graph if its new CN is zero. Similarly, adding a copy of an edge (u, v)
to G results in a new graph G′ = (E, E′,W ′) in which the CN of the
edge (u,v) increases by 1 if it exists in G, or adding the new edge (u, v)

with CN = 1.
An alternating path is a simple path in G in which odd edges are

interval edges and even edges are adjacency edges, or vise-versa.
A chromosome in a karyotype is an alternating path starting and

ending with telomeres. Note that a karyotype may be decomposable into
chromosomes in several ways.

2.2 Model

We now turn to define the possible operations that alter a karyotype in our
model (compare Figure 1).

Double-cut-and-join (DCJ): A DCJ operation selects two adjacency
edges (a, b), (c, d), removes a copy of each from the graph, and adds
copies of new edges by joining two loose ends, either (a, c), (b, d)

or (a, d), (b, c). In order to support splitting of a chromosome and
introducing additional telomere copies, we also allow a special case of DCJ
called Single-cut-and-join (SCJ). SCJ cuts an existing adjacency (a, b)

and connects each loose end to a new telomere copy t1, t2 ∈ T . The
result of this SCJ is (a, t1), (b, t2), i.e., splitting the adjacency into two
separate chromosomes capped with new copies of telomeres t1, t2. Note
that SCJs create new telomere copies that may or may not be part of the
final karyotype. The identity of each ti can be arbitrary chosen.

Tandem duplication: Let v1, . . . , v2m be an alternating path
without telomeres starting with an interval edge. A tandem duplication

adds edge copies for each edge in the path and adds another
adjacency edge copy (v1, v2m). We call v1, v2m the anchors of
the duplication. In terms of the sequence, this operation corresponds
to . . . g0g1g2 . . . gm−1gmgm+1 . . . → . . . g0g1g2 . . . gm−1gm

g1g2 . . . gm−1gmgm+1 . . . where gi is the gene corresponding to node
v2i−1.

Chromosome duplication: Let t0, v1, . . . , v2m, t2m+1 be an
alternating path such that t0, t2m+1 are telomeric extremities and (v1, v2)
is an interval edge. A chromosome duplication adds edge copies for each
edge along the path and increases the CN of the two telomeres by one.

Segmental deletion: Let v1, . . . , v2m be an alternating path without
telomeres staring with an adjacency edge. A segmental deletion
removes edge copies for each edge along the path and adds an
adjacency edge copy (v1, v2m). We call v1, v2m the anchors of
the deletion. In terms of the sequence, this operation corresponds to
. . . g0g1g2 . . . gm−1gmgm+1 . . .→ . . . g0g1gmgm+1

Chromosome deletion: This is a special case of segmental deletion
where v1 and v2m are telomeric nodes. We do not add the edge
(v1, v2m) and thus it corresponds to deleting an entire chromosome with
its telomeres.

The Karyotype Sorting Problem: The input is S, T, d, where S =

(s_cn, s_adj) is a source karyotype, T = (t_cn, t_adj) is a target
karyotype, and d is an integer. Our goal is to find a shortest series of ≤ d

operations transforming S into T , or declare that no such sequence exists.
An example of a series of operations of length 11 is given in Figure 3.

Notice that the sorting problem is not symmetric. Moreover, there may
be a sorting scenario from S to T , but not from T to S if, for example,
T has lost all copies of some segment in S. New material can be gained
in the model by duplications (tandem and chromosomal). Telomeres can
also be gained by SCJs.

Theorem 1. The karyotype sorting problem is NP-hard.

Proof. LetG = (V,E) be a directed graph withn nodes in which all in-
and out-degrees are 2. Deciding if a such a graph contains a Hamiltonian
cycle is NP-hard (Plesnik, 1979). Let (y, x) ∈ E be some edge. Deciding
if there is a Hamiltonian path from x to y in G is still NP-hard. We assume
w.l.o.g. that G is strongly connected, since otherwise it would not contain
a Hamiltonian path from x to y. Notice that in that case G is also Eulerian.

We construct a source karyotype S as follows: for each node in v ∈ V

we create a gene gv with CN=2 and for each (u, v) ∈ E \ {(y, x)} we
add one copy of the adjacency (ghu , g

t
v). In addition, we add two genes

w, z with CN=1 and connect them with adjacencies (wh, gtx), (g
h
y , z

t)

of CN=1. To make it a valid karyotype, we add a left and right telomeres
t1, t2 and connect them to wt and zh respectively. In other words, S is
a karyotype with a single chromosome t1, w, x, Pe, y, z, t2, where Pe

corresponds to some Eulerian path from x to y in G. Our target karyotype
T would be composed ofn single gene chromosomes of the form t1, gv , t2
and an additional chromosome t1, w, z, t2. Namely, each gene will have
CN=1, for telomeres CN=n+1, and the adjacencies would be of the form
(t1, gtv) and (gtv , t2) for v ∈ V plus (t1, wt), (wh, zt), (zh, t2). Notice
that all chromosome paths start and end with the same telomeres t1, t2.
We will show that there is a sorting scenario of S to T of length n+ 1 if
and only if G admits a Hamiltonian path from x to y.

Suppose G contains a Hamiltonian path P = x, v2, . . . , vn−1, y.
To construct a sorting scenario, first perform n SCJs for each adjacency
of the form (ghu , g

t
v) that is not part of P , and connect them as

(t1, gtv) and (gtu, t2). Now, perform a segmental deletion of the path
gx, gv2 , . . . , gvn−1 , gy connecting wh and zt. The total length of the
sorting scenario is n+ 1.

For the other direction, suppose there is a sorting scenario with n+ 1

operations from S to T . Since each gene in T has CN=1, the scenario

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

4 Ron Zeira and Ron Shamir

must contain at least one deletion. Notice that T has n additional copies
of the telomeres and the only way to increase the CN of telomeres in the
model is either by chromosome duplication or by SCJ. However, each
chromosome duplication would require additional deletions to reduce the
gene CN to 1 in T . We conclude that the sorting scenario must contain n

SCJs and one deletion covering all genes gv . Since w and z are adjacent
in T , the segmental deletion must be anchored at wh and zt. Denote the
path of this deletion P = gx, gv2 , . . . , gvn−1 , gy . The corresponding
path P ′ = x, v2, . . . , vn−1, y is a Hamiltonian path in G.

2.3 ILP formulation

We present an ILP formulation for the karyotype sorting problem. The
formulation describes d+ 1 karyotype graphs G0, . . . Gd corresponding
to the genome after each operation. G0 is set to S and Gd = T .
The formulation guarantees that difference between consecutive graphs
corresponds to one valid operation of the model.

2.3.1 Variables
We define integer variables for each Gk , as follows. For every k ∈ [0, d]

and every i ∈ G let cnk
i ∈ N be the variable for the CN of gene i after

k operations. By definition, cn0
i = s_cni and cnd

i = t_cni for every
i ∈ G. Similarly, for every k ∈ [0, d] and every u, v ∈ E let adjku,v

be the CN of a adjacency edge (u, v) after k operations. By definition,
adj0u,v = s_adju,v and adjdu,v = t_adju,v for every u, v ∈ E .

Now, we define binary variables for each type of operation. For every
k ∈ [0, d] and everyu, v ∈ E letcutku,v ∈ {0, 1}be an indicator variable
for cutting the interval adjacency between u and v in the k’th operation.
Similarly, joink

u,v is an indicator variable for joining the two extremities
u and v in the k’th operation. By convention, the cut and join are not
symmetric, in order to support cutting or joining the same adjacency twice.
An SCJ is a DCJ with one existing adjacency and an implicit adjacency
of telomeres. To support SCJ operations, binary variables addTelkt1,t2
are introduced for every two telomeres t1 ≤ t2 ∈ T . addTelkt1,t2 = 1

means that new copies of telomeres t1, t2 ∈ T are created.
For every k ∈ [0, d] and every u ≤ v ∈ E∗ let ampAnchk

u,v ∈
{0, 1} be an indicator variable for a tandem duplication starting at
u and ending at v in the k’th operation. In addition, the variable
ampAnchk

t1,t2
∈ {0, 1} for t1 ≤ t2 ∈ T indicates a chromosome

amplification for the chromosome starting and ending at telomeres t1 and
t2 respectively. Let ampGeneki ∈ {0, 1} be an indicator variable that
gene i (i.e., the interval edge (it, ih)) is a part of the duplicated segment,
and let ampAdjku,v ∈ {0, 1} be an indicator variable that the adjacency
edge (u, v) is a part of the duplicated segment.

Similarly, for everyk ∈ [0, d] and everyu ≤ v ∈ E , delAnchk
u,v ∈

{0, 1} is an indicator variable for a deletion starting at u and ending at v
in the k’th operation. delGeneki ∈ {0, 1} is an indicator variable that
gene i is a part of the deleted segment, and delAdjku,v ∈ {0, 1} is an
indicator variable that the adjacency edge (u, v) is a part of the deleted
segment.

2.3.2 Constraints
We now describe the ILP constraints for each stage 0 ≤ k ≤ d − 1. We
will describe constraints for each type of operation and general constraints
for updating the karyotype graph.

Updating the karyotypes: The CN of a non-telomeric gene i ∈ G∗

is increased by amplifications and decreased by deletions:

cnk+1
i = cnk

i + ampGeneki − delGeneki

For telomeric gene i ∈ TG with a corresponding extremity t ∈ T , the
CN can increase if new copies of the telomere are introduced via SCJ. An

SCJ can add either two copies of the same telomere or one copy of two
telomeres:

cnk+1
i = cnk

i +ampGeneki−delGeneki +2addTelkt,t+
∑

t′ 6=t∈T
addTelkt,t′

Updating adjacency CNs for internal nodes u 6= v ∈ E∗:

adjk+1
u,v = adjku,v + ampAnchk

u,v + ampAdjku,v + delAnchk
u,v

− delAdjku,v − cutku,v − cutkv,u + joink
u,v + joink

v,u (1)

In words, we increase the CN of the adjacency if it is either, the anchor
of a duplication, along the duplication path, the anchor of a deletion or its
ends are joined. The adjacency CN is decreased if it is along a deletion
path or it is cut. The cut and join variable can decrease or increase the CN
by at most 2 if the same adjacency is used twice in a DCJ.

Updating adjacency CN for loop edges (u, u) is similar to (1), but uses
only single cutku,u, joink

u,u variables.
For telomere t ∈ T and internal node v ∈ E∗ we update the CN as

follows:

adjk+1
t,v = adjkt,v + ampAdjkt,v + delAnchk

t,v − delAdjkt,v

− cutkt,v + joink
t,v

In addition, we require that in each stage k there will be at most one
operation:

1

2

∑
u,v∈E

cutku,v +
∑

u≤v∈E∗
ampAnchk

u,v +
∑

u≤v∈E
delAnchk

u,v

+
∑

t1≤t2∈T
ampAnchk

u,v ≤ 1

DCJs: An adjacency cannot be cut more times than its CN. Therefore,
for every u ∈ E, v ∈ E and u 6= v:

cutku,v + cutkv,u ≤ adjku,v

Similarly, for adjacencies of the form (u, u): cutku,u ≤ adjku,u.
For each adjacency u ∈ E , the number of cuts equals to the number

of joins:∑
v∈E

cutku,v +
∑
v∈E

cutkv,u =
∑
v∈E

joink
u,v +

∑
v∈E

joink
v,u

For every pair of telomeres t1 ≤ t2 ∈ T , SCJ introduces an explicit
adjacency (t1, t2) which is cut immediately as part of a DCJ:

cutkt1,t2 = addTelkt1,t2

In addition, if t1 < t2, set cutkt2,t1 = 0. We also restrict that at most one
pair of telomere copies is introduced as an SCJ in every stage:∑

t1≤t2∈T
addTelkt1,t2 ≤ 1

Amplifications: A gene i ∈ G cannot be amplified if it has CN = 0:

ampGeneki ≤ cnk
i (2)

Similarly, an adjacency u, v ∈ E can only be amplified if it has a
positive CN:

ampAdjku,v ≤ adjku,v (3)

For every internal node u ∈ E∗, its corresponding gene is amplified
if and only if one of its adjacencies is amplified or it is an anchor of an

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

Sorting cancer karyotypes 5

amplification:

ampGenekg(u) =
∑
v∈E∗

ampAnchk
u,v +

∑
v∈E

ampAdjku,v .

A telomere t ∈ T can only be involved in whole chromosome
duplications. Therefore, the telomere is amplified iff it is an anchor iff
one of its adjacencies is amplified:

ampGenekg(t) =
∑
t′∈T

ampAnchk
t,t′ =

∑
v∈E∗

ampAdjkt,v

Enforcing path connectivity: One problem with this formulation is
that in addition to the amplification path, we may get a collection of
disjoint cycles composed of alternating interval and adjacency edges with
their corresponding variables ampGenek

g(u)
,ampAdjku,v set to one. For

example, consider S = 1, 1, 2, 2 and T = 1, 1, 1, 2, 2, 2. To get from
S to T we need to do two tandem duplications of the genes 1 and 2.
However, according to the current formulation, this can be done in one step
by assigning ampGene01 = 1, ampGene02 = 1, ampAnch0

1t,1h
=

1, ampAdj0
2t,2t

= 1.
To force the alternating path of the amplification to be connected, we

add flow-like constraints (Bruckner et al., 2010). Suppose q > r are the
anchors of the amplification and denote r as the sink. Each node along the
path from q to r (excluding r) will be as a source of one unit of flow, and
we require that all flow will eventually be drained at r. This enforces the
connectivity of the path.

Let −2(n + 1) ≤ fk
u,v ≤ 2(n + 1) be an integer variable for the

directed amount of flow from u ∈ E to v ∈ E . Let ampNodesk =

2
∑

i∈G ampGeneki be an integer variable for the number nodes that are
amplified along the path. We seek ampNodesk − 1 source nodes, each
providing one unit of flow, and one sink that drains the ampNodesk − 1

units of flow. Let sinkkv =
∑

u>v ampAnchk
v,u be a binary variable

indicating that v is a sink. We have the following constraints:
The flow is antisymmetric: fk

u,v = −fk
v,u.

An edge can contain flow only if it is amplified: fk
u,v ≤ 2(n +

1)ampAdjku,v if u, v are not from the same gene, and fk
u,v ≤ 2(n +

1)ampGeneki if u, v are nodes of gene i.
Production and conservation of flow in every node u ∈ E :∑

v

fk
u,v = ampGenekg(u) − ampNodesk · sinkku

By this constraint, if u is not part of an amplification path, we have∑
v fk

u,v = 0. If u is part of the amplification path, but not the sink,
we have

∑
v fk

u,v = 1, i.e., u adds one unit to the flow. If u is part of the
amplification path and the sink, we have

∑
v fk

u,v = 1 − ampNodesk

and it drains all the flow.
Since the term ampNodesk · sinkku is not linear we introduce a

new non-negative integer variable productku such that productku =

ampNodesk · sinkku using the following constraints:

productku ≤ ampNodesk

productku ≤ 2(n+ 1) · sinkku

ampNodesk − 2(n+ 1)(1− sinkku) ≤ productku

If ampNodesk = 0 or sinkku = 0 then the first two constraints force
productku = 0, otherwise productku ≤ ampNodesk . If sinkku =

1, we have ampNodesk ≤ productku and therefore productku =

ampNodesk .
Deletions: Genes or adjacencies cannot be deleted if they have a CN

of zero. Therefore, we add constraint similar to 2 and 3 using delGeneki
and delAdjku,v instead.

For every internal node u ∈ E∗, one of its adjacencies is deleted if
and only if it is an anchor of a deletion or its gene is deleted:∑

v∈E
delAdjku,v = delGenekg(u) +

∑
v∈E∗

delAnchk
u,v

A telomere t ∈ T can be deleted only if it is part of a whole
chromosome deletion:

delGenekg(t) =
∑
t′∈T

delAnchk
t,t′

If a telomere t ∈ T is an anchor of a segmental deletion then one of
its adjacencies must be deleted:∑

v∈E
delAnchk

t,v =
∑
v∈E

delAdjkt,v

As for amplifications, we add flow constraints to guarantee that the
deletion path is connected.

2.3.3 Objective function
Our goal is to minimize the number of amplifications, deletions and DCJs:

min
∑

1≤k≤d

(∑
t1≤t2∈T

ampAnchk
t1,t2

+
∑

u≤v∈E∗
ampAnchk

u,v+

∑
u≤v∈E

delAnchk
u,v +

1

4

∑
u,v∈E

[cutku,v + joink
u,v]

)

DCJs have two cuts and two joins and therefore contribute one to the
objective function. The objective function can be modified to give different
weights to different operations, and even to specific events, e.g., amplifying
regions with oncogenes.

2.3.4 Complexity
Overall, the ILP formulation has O(dn2) variables and O(dn2)

constraints. We can relax the integrality constraints for all non-binary
variables since each of them is constrained to be a sum of binary variables.

Since we do not know the optimal value d∗ of d, we can perform either
a binary or sequential search on d. If there is no feasible solution for some
d, we increase d. If d ≥ d∗, the ILP will find a solution with d∗ operations
since it can always add stages with no operations in them.

Each DCJ introduces two new adjacencies, while segmental deletions
and tandem duplications introduce one new adjacency. A trivial
lower bound on d is the number of breakpoints divided by two.
A trivial upper bound is d ≤

∑
u≤v∈E |s_adju,v − t_adju,v | +∑

i∈G |s_cni − t_cni|. That is, changing the CN of each gene and each
adjacency separately.

The ILP problem is NP-hard (Karp, 1972) and the runtime of
ILP algorithms is not polynomially bounded. However, modern ILP
solvers incorporate powerful heuristics and can handle many large-scale
problems. ILP has been a powerful tool in formulating and solving other
rearrangement models (Rahmann and Klau, 2006; Shao et al., 2015; Shao
and Moret, 2015).

3 Results

3.1 Simulations

To assess performance, we simulated tumor karyotypes and applied the
algorithm to them. Here is an overview of the simulation: We start with
a diploid karyotype S′ with two identical chromosomes 1, . . . ,m, and
perform d operations to derive a tumor karyotype T ′. We then compress

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

6 Ron Zeira and Ron Shamir

Table 1. The optimal number of events computed by the algorithm
vs. the simulated number of events

simulated events 1 2 3 4 5 6 7 8

max 1 2 3 4 5 6 7 8
median 1 2 3 4 5 6 7 7
min 1 1 1 2 1 2 3 6

maximal identical segments in S′ and T ′ into singletons. The resulting
shorter source and target karyotypes are used as input to the algorithm.

Initially, each chromosome is represented by a sequence of m = 100

atomic segments. We perform a series of operations on the karyotype by
applying duplications (tandem or chromosomal), deletions (segmental or
chromosomal) and DCJs (reversals or translocations). Whole chromosome
events are given low probability (5% each), while all other types are chosen
uniformly at random. The span of segmental deletions, duplications and
inversions was chosen at random and was limited to 30 units in order to
avoid rapid loss of the middle segments.

In order to decrease the size of the karyotypes, we compress maximal
identical sequences in S′ and T ′. That is, a simple path that appears in S′

andT ′ is compressed if all interval and adjacency edges along the path have
the same copy number, and nodes along the path have no other branching
edges beside the path edges. The result is new karyotypes S and T with
n ≤ m segments. This way, every segment in the compressed karyotypes
must be involved in at least one breakpoint. Since all operations act on
contiguous paths in the graph and all segments inside a compressed path are
symmetric, we conjecture this procedure preserves the optimal distance.
This compressed karyotype structure conforms with information provided
by most assembly tools in which contiguous segments are determined by
detecting breakpoints.

We simulated karyotypes with 3 to 8 operations. Eitan and Shamir
(2017) observed based on the analysis of tumor samples from Malhotra
et al. (2013) that the average number of operations observed in real
deep sequencing cancer data was 5-8 per connected component. For
each distance, 20 instances were simulated and the optimal distance was
computed by the algorithm. In Table 1 we see that the computed distance
is bounded by the simulated distance but can sometimes be shorter when
d increases.

To test if the scenarios inferred are close to the simulated ones, we
performed two additional comparisons, in terms of the types of operations
and in terms of the actual operations. The results (Figures S1 and S2) show
that the scenarios are quite similar. We also observed that the distance from
the karyotype back to the diploid genome is usually lower than the distance
from the diploid to the karyotype (Figure S3). This is because one can use a
few deletions to get rid of a mutated chromosomes, and then create another
copy of a normal chromosome in one operation.

Figure 2 shows the running time of the ILP algorithm as a function
of the optimal distance it calculated. The time grows exponentially with
the distance. The ILP was solved using Gurobi Optimizer 7.5 (Gurobi
optimizer reference manual, Gurobi Optimization, 2018) on a shared Unix
server with 72 2.3GHz cores and 800Gb of RAM.

3.2 Cancer karyotypes

We analyzed karyotypes from five ovarian cancer genomes that were
sequenced as part of TCGA (Bell et al., 2011) and were used in the analysis
of PREGO (Oesper et al., 2012). PREGO outputs CN per segment as well
as for adjacencies based on the read coverage.

For each autosome in the genome, two telomeres were connected to
the tail of the first segment and the head of the last segment with their copy
numbers matching these segments (see Figure S7). In each sample, we

1 2 3 4 5 6 7 8

1e
−

02
1e

+
00

1e
+

02
1e

+
04

ILP running time

Optimal distance

T
im

e
[s

ec
]

Fig. 2. ILP running time as a function of the optimal distance on simulated instances.

3

3

10

3

5

3

3

1

1

1

3

2

2

7

Del.

Chrom
amp.

2
Tandem
dup.

7
Tandem
dup.

3

3

3

3

5

3

3

1

1

1

3

2

2

3

3

3

3

3

3

3

1

1

1

3

2

2

2

2

2

2

2

2

1

1

1

2

1

2

2

2

2

2

2

2

2

2

2

2

Fig. 3. Example of ovarian cancer sample OV4 chromosome 8 transformation from diploid
(left) to tumor (right). Square nodes represent segment extremities and trapezoid nodes
represent telomeres. Dotted edges correspond to adjacency edges, full straight edges
correspond to interval edges and rounded edges correspond to novel adjacencies caused
by the tumor process. The number next to each edge is its CN.

analyzed each connected component in the karyotype graph separately.
For each such connected component, we calculated the distance from
a matching diploid genome with the same subset of chromosomes. An
example of the sequence of operations transforming OV4 chromosome 8
is shown in Figure 3.

To speed up the algorithm on real data we used several preprocessing
steps. First, simple tandem duplications were removed from the karyotype
and added to the distance. That is, for each g ∈ G, we remove adjgt,gh

edges of the form (gt, gh) from the graph as they can only be a result of
tandem duplications. We again compress the karyotypes after this step.

In addition, some chromosome components exhibit large repetitions of
complex chromosomal structures that are not simple tandem duplications.
In such cases, we search for the longest path from one telomere to another
that repeats itself k ≥ 2 times. Such a path corresponds to an amplified
chromosomal structure and thus we remove k − 1 repetitions from the
karyotype. We use the algorithm to calculate the edit distance of this path
separately and add it k−1 times to the total distance of the reduced graph.

We observed several examples of balanced (Figure S5) and unbalanced
(Figure S4) translocations and also provide possible scenarios causing
these phenomena. We also observed a breakage/fusion/bridge (BFB) cycle
in chromosome 18 of OV2 (Figure S6). BFB cycles are a known source of
genome instability (Greenman et al., 2012). This aberrant chromosome is
further amplified 7 times, and is part of a complex connected component
with chromosomes 12 and 16 (Figure S7). Similar observations were also
shown by Oesper et al. (2012) without addressing the operation sequence.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

Sorting cancer karyotypes 7

Table 2. Results of the algorithm on TCGA ovarian samples. The chromosomes involved in each component are shown within brackets. OV1: TCGA-13-0890; OV2:
TCGA-13-0723; OV3: TCGA-24-0980; OV4: TCGA-24-1103; OV5: TCGA-13-1411.

Sample Components Distance Sample Components Distance Sample Components Distance

OV1 (16),(13) 1 OV1 (12,15) 3 OV1 (11,20) 5
OV1 (1,2,3,4,5,6,8,9,10,14,17,19) NA OV2 (8,20) 5 OV2 (3,4),(9) 6
OV2 (14,21) 10 OV2 (12,16,18) 26 OV2 (1,2,5,7,10,11,15,19,22) NA
OV3 (13),(17),(21) 1 OV3 (9),(18) 2 OV3 (2) 6
OV3 (4,8) 7 OV4 (1),(13),(20),(21) 1 OV4 (18) 2
OV4 (3),(15) 6 OV4 (22) 4 OV4 (11) 10
OV4 (8),(9,12) 11 OV4 (5,10,16,19) 20 OV4 (2,4,6,7,14,17) NA
OV5 (7),(16) 1 OV5 (1,3),(2,17),(9,10) 3 OV5 (12,21),(18) 4

Table 2 shows the distance calculated by the algorithm for each
nontrivial connected component of the ovarian samples. The running
time on the real karyotypes per connected component ranged from a few
seconds for a simple component of distance at most 4, to a few hours
for more complex components. In three cases, the algorithm did not find
any feasible solution within 24 hours. These cases have very high CN or
complex structural variations. All cases involve six or more interconnected
chromosomes and contain interval CNs as high as 30.

4 Conclusions
In this study, we present a model for sorting a karyotype using deletions,
amplifications, translocations and reversals. This model supports both
structural and numerical alternations observed in cancer genomes. It
focuses on finding a sequence of operations between two karyotypes and
allows breakpoint reuse. We show the sorting problem is NP-hard and
devise an ILP formulation that can find a shortest sequence of events
that transform a normal into a tumor genome. We apply the algorithm on
simulated karyotypes as well as real data of ovarian cancer. The algorithm
is able to solve most components of the real tumor genomes.

The algorithm has limited applicability on highly complex karyotypes.
As shown on simulated data (Figure 2), running time grows exponentially
with the number of operations. Additional work on the ILP formulation
may make the approach more practical. On the real karyotype data,
the algorithm could not resolve a few extremely rearranged connected
components of chromosomes. Nevertheless, typical cancer samples exhibit
modest complexity, making this algorithm useful in the majority of real
cases (Eitan and Shamir, 2017). Moreover, a highly rearranged karyotype
could be a result of noisy read data, tumor heterogeneity or unmodeled
global events. Better methods are needed to address these cases.

While the model addresses a relatively wide array of operations, it
still has some limitations. For instance, our duplication and deletion
operations are restricted to simple paths with a single copy of each segment.
However, in some scenarios we may benefit from performing operations
on non-simple paths. For example, for a single segment with m tandem
repetitions, our model would require m tandem duplications, but only
logm operations will suffice if we allow non-simple path duplications.
Other events like non-tandem segmental duplications and BFB (Zakov
et al., 2013) are not included (but are expressible, e.g. Figure S6) in the
model.

Our karyotypes are represented using their CNs and adjacencies, but
this representation is not unique for a specific set of chromosomes. That is,
there could be several chromosome sets that may give the same karyotype.
Since we do not model chromosomes explicitly, some operations may be
artificial and would not correspond to operations on sequences.

In order to apply our method on more cancer data, we intend to improve
the running time further. Then, a more systematic employment of the

algorithm on a larger set of karyotypes can reveal sequences of operations
common to several tumors. In addition, the algorithm can derive a sequence
of operations between two tumor genomes (for example, from different
time points) and thus help understand the evolution of tumors.

Ultimately, we would like to represent the chromosomes themselves
and perform all operations on them. The goal in this case would be to
decompose the source and target karyotypes into chromosomes such that
the number of operations between them is minimum. Nonetheless, it
was recently argued that reconstruction of the exact cancer chromosomes
remains a hard challenge (Eitan and Shamir, 2017).

Acknowledgements
We thank Layla Oesper for providing the preprocessed ovarian cancer data
and Nimrod Rappoport for helpful comments.

Funding
Study supported in part by the Bella Walter Memorial Fund of the Israel
Cancer Association and by Len Blavatnik and the Blavatnik Family
foundation. RZ was supported by a fellowship from the Edmond J. Safra
Center for Bioinformatics at Tel-Aviv University.

References
Abo, R. P. et al. (2014). BreaKmer: Detection of structural variation in

targeted massively parallel sequencing data using kmers. NAR, 43(3),
e19–e19.

Bader, M. (2010). Genome rearrangements with duplications. BMC
Bioinformatics, 11 Suppl 1, S27.

Bafna, V. and Pevzner, P. (1993). Genome rearrangements and sorting by
reversals. Proc. FOCS, pages 148–157.

Bell, D. et al. (2011). Integrated genomic analyses of ovarian carcinoma.
Nature, 474(7353), 609–15.

Bergeron, A. et al. (2006). A unifying view of genome rearrangements.
In P. Bücher and B. M. Moret, editors, Algorithms in Bioinformatics,
volume 4175 of LNCS, pages 163–173. Springer.

Bruckner, S. et al. (2010). Topology-free querying of protein interaction
networks. JCB, 17(3), 237–252.

Chowdhury, S. A. et al. (2014). Algorithms to model single gene, single
chromosome, and whole genome copy number changes jointly in tumor
phylogenetics. PLoS Comp. Bio., 10(7), e1003740.

Ciriello, G. et al. (2013). Emerging landscape of oncogenic signatures
across human cancers. Nat. Genet., 45(10), 1127–1133.

da Silva, P. H. et al. (2012). Restricted DCJ-indel model: sorting linear
genomes with DCJ and indels. BMC Bioinformatics, 13(Suppl 19), S14.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

8 Ron Zeira and Ron Shamir

Ding, L. et al. (2014). Expanding the computational toolbox for mining
cancer genomes. Nature Reviews Genetics, 15(8), 556–570.

Eitan, R. and Shamir, R. (2017). Reconstructing cancer karyotypes from
short read data: the half empty and half full glass. BMC Bioinformatics,
18(1), 488.

Feijão, P. and Meidanis, J. (2011). SCJ: a breakpoint-like distance that
simplifies several rearrangement problems. TCBB, 8(5), 1318–29.

Fielding, A. K. (2010). Current treatment of Philadelphia chromosome-
positive acute lymphoblastic leukemia. Haematologica, 95(1), 8–12.

Greenman, C. D. et al. (2012). Estimation of rearrangement phylogeny
for cancer genomes. Genome Research, 22(2), 346–61.

Gurobi optimizer reference manual, Gurobi Optimization (2018).
Hannenhalli, S. and Pevzner, P. A. (1995a). Transforming cabbage into

turnip. In Proc. STOC, volume 46, pages 178–189, NY, NY, USA.
Hannenhalli, S. and Pevzner, P. A. (1995b). Transforming men into mice

(polynomial algorithm for genomic distance problem). In Proc. FOCS,
volume 36, pages 581–592.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages
85–103. Springer US, Boston, MA.

Korbel, J. O. et al. (2007). Paired-end mapping reveals extensive structural
variation in the human genome. Science, 318(5849), 420–6.

Malhotra, A. et al. (2013). Breakpoint profiling of 64 cancer genomes
reveals numerous complex rearrangements spawned by homology-
independent mechanisms. Genome research, 23(5), 762–76.

Ng, C. K. et al. (2012). The role of tandem duplicator phenotype in tumour
evolution in high-grade serous ovarian cancer. The Journal of Pathology,
226(5), 703–712.

Oesper, L. et al. (2012). Reconstructing cancer genomes from paired-end
sequencing data. BMC Bioinformatics, 13 Suppl 6(Suppl 6), S10.

Ozery-Flato, M. and Shamir, R. (2009). Sorting cancer karyotypes by
elementary operations. JCB, 16(10), 1445–60.

Pevzner, P. and Tesler, G. (2003). Human and mouse genomic sequences
reveal extensive breakpoint reuse in mammalian evolution. PNAS,

100(13), 7672–7.
Plesnik, J. (1979). The NP-completeness of the Hamiltonian cycle problem

in planar digraphs with degree bound two. Information Processing
Letters, 8(4), 199–201.

Rahmann, S. and Klau, G. W. (2006). Integer Linear Programs for
Discovering Approximate Gene Clusters. In Proc. WABI , volume 4175
of LNCS, pages 298–309. Springer Berlin Heidelberg.

Raphael, B. J. et al. (2003). Reconstructing tumor genome architectures.
Bioinformatics, 19(Suppl 2), ii162–ii171.

Schwarz, R. F. et al. (2014). Phylogenetic quantification of intra-tumour
heterogeneity. PLoS Comp. Bio., 10(4), e1003535.

Shao, M. and Lin, Y. (2012). Approximating the edit distance for
genomes with duplicate genes under DCJ, insertion and deletion. BMC
Bioinformatics, 13(Suppl 19), S13.

Shao, M. and Moret, B. M. E. (2015). Comparing genomes with
rearrangements and segmental duplications. Bioinformatics, 31(12),
i329–i338.

Shao, M. et al. (2015). An exact algorithm to compute the double-cut-
and-join jistance for jenomes with duplicate genes. JCB, 22(5), 425–35.

Tannier, E. et al. (2009). Multichromosomal median and halving problems
under different genomic distances. BMC Bioinformatics, 10(1), 120.

Vogelstein, B. et al. (2013). Cancer genome landscapes. Science,
339(6127), 1546–58.

Yancopoulos, S. et al. (2005). Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16),
3340–3346.

Zakov, S. et al. (2013). An algorithmic approach for breakage-fusion-
bridge detection in tumor genomes. PNAS, 110(14), 5546–51.

Zeira, R. and Shamir, R. (2017). Sorting by cuts, joins, and whole
chromosome duplications. JCB, 24(2), 127–137.

Zeira, R. et al. (2017). A linear-time algorithm for the copy number
transformation problem. JCB, 24(12), 1179–1194.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty381/4992148
by Tel Aviv University user
on 06 May 2018

