
Sackler Faculty of Exact Sciences,

Blavatnik School of Computer Science

On reducing complexity of deep

sequencing data analysis

THESIS SUBMITTED FOR THE DEGREE OF

“DOCTOR OF PHILOSOPHY”

by

Roye Rozov

The work on this thesis has been carried out

under the joint supervision of

Prof. Ron Shamir

and

Prof. Eran Halperin

Submitted to the Senate of Tel-Aviv University

November 2017



Acknowledgments

This thesis summarizes my work over the last five years. During this period, I

learned a new field, began a new career, and grew as a person. Naturally, these

changes did not always proceed smoothly - such is life. In retrospect, it is clear

to me it would not have been possible for me to complete the work in this thesis

without a great deal of help from many generous people: I am indebted to them all.

I am extremely grateful to have had the opportunity to learn from and work with

my wonderful advisers - Ron Shamir and Eran Halperin. Their endless patience

proved crucial when I was ’learning the ropes’ in the first stage of my PhD. Later,

I learned to appreciate the breadth and depth of their guidance regarding research

and life. They set a high bar to teach me how to leap.

My collaborators and lab mates enriched my knowledge and made the experience

of doing research fun. I had the good fortune of being introduced into the world of

plasmids and de novo assembly thanks to Itzik Mizrahi and his group. They showed

me how challenging and rewarding it can be to produce a tool that is actually

useful to biologists. I also had the great pleasure of working side by side with Gil

Goldshlager. Our Summer spent working together was the most fun period I’ve had

exchanging ideas at a white-board. My many lab mates in Ron and Eran’s groups

made hours spent working in the labs feel like time spent at home. I would also like

to thank Gilit Zohar-Oren for always going out of her way to help all of us in any

way possible.

I would like to thank the Edmond J. Safra Foundation for support throughout

most of my PhD. I would also like to thank the Cloud Storage group at IBM Re-

search, Tel Aviv, headed by Dalit Naor and Ronen Kat for hosting me and helping

me win a PhD Fellowship to support part of my studies. I greatly enjoyed working

with Ety Khaitzin and Danny Harnik during the period I was there.

ii



iii

At times, the conviction that there is nothing I would rather be doing and no

other place I would rather be doing it was essential. This conviction stemmed from

conversations in my youth with my brother Yadin, who instilled in me a deep love

for science and Israel. Along with my brother, I am ever grateful for the constant

love and support of my family.

My wife and love Shira was solely responsible for my spiritual wellbeing ever

since we met. She always put my needs and those of others ahead of her own and

showed me love unlike any I had ever known. She also brought our daughter Sol, a

new level of joy, to this world. I owe her everything there is to give.



Preface

This thesis is based on the following three articles that were published throughout

the PhD period in scientific journals:

1. R. Rozov, R.Shamir, E. Halperin; Fast lossless compression via cascading

Bloom filters. BMC Bioinformatics 2014, 15 (Suppl 9):S7.

2. R. Rozov, A.B. Kav, D. Bogumil, N. Shterzer, E. Halperin, I. Mizrahi, R.

Shamir; Recycler: an algorithm for detecting plasmids from de novo assembly

graphs. Bioinformatics 2017; 33 (4): 475-482.

3. R. Rozov, G. Goldshlager, R.Shamir, E. Halperin; Faucet: streaming de novo

assembly graph construction. To appear, Bioinformatics, 2017

iv



Abstract

The volume of deep sequencing data generated over the last decade has grown ex-

ponentially, as machines that output many millions of short sequences in parallel

replaced slower Sanger-sequencing machines that read individual DNA molecules.

As a result of this change, throughput has exploded and the price per base has

plummeted by five orders or magnitude. This data growth means that the time re-

quired to perform many standard processing tasks, such as alignment and assembly,

also grows exponentially if algorithms that were designed for much smaller numbers

(or lower volumes) of sequences are applied. In this thesis, we introduce new tech-

niques designed to address these challenges. We use advanced data structures to

compress and index sequence data, aiming to allow efficient querying with reduced

storage space. In the context of sequence compression, we demonstrate a faster

approach than extant methods to compress read sequences relative to a reference

by representing sequences using Bloom filters. In the context of de novo assembly,

we first develop a new approach to assembling circular sequences using assembly

graphs as an index. Then, we demonstrate a streaming approach to assembly graph

construction to reduce construction time, memory, and disk use. We also show

this construction enables most salient information present in the read data to be

maintained, leading to highly contiguous assemblies.

v



Contents

1 Introduction 1

1.1 Deep sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Third generation sequencing . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Single molecule technologies . . . . . . . . . . . . . . . . . . . 6

1.2.2 Synthetic long reads . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Growth of sequencing data generated . . . . . . . . . . . . . . . . . . 7

1.4 Traditional text indexing approaches . . . . . . . . . . . . . . . . . . 9

1.5 Indexing modern sequence data . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Data structures and techniques for indexing, grouping, and

summarizing reads . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Applications demanding indexing . . . . . . . . . . . . . . . . 15

1.6 Summary of articles included in this thesis . . . . . . . . . . . . . . . 19

2 Fast lossless compression via cascading Bloom filters 22

3 Recycler: an algorithm for detecting plasmids from de novo assem-

bly graphs 31

4 Faucet: streaming de novo assembly graph construction 40

5 Discussion 49

5.1 Compressing read sequences . . . . . . . . . . . . . . . . . . . . . . . 49

vi



CONTENTS vii

5.2 Assembling plasmids . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Streaming assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Future research and developments . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Storage of read data . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.2 Optimizing construction and refinement of assembly graphs . . 53

5.4.3 New means of assembly graph simplification, repeat resolution 54



viii CONTENTS



Chapter 1

Introduction

Mankind’s ability to read DNA improved dramatically in the first decade of the

twenty-first century. The huge costs required to complete sequencing and assembly

of the first Human genome via Sanger sequencing spurred development of differ-

ent technologies to speed up sequencing, make it cheaper, and increase throughput.

Several companies introduced competing technologies to address these needs. Collec-

tively, these technologies are commonly referred to as ”Deep,” or previously, ”Next

Generation” Sequencing technologies. One of those companies now controls 70% of

the sequencing market - Ilumina [1] - by virtue of their Sequencing by Synthesis

(SBS) technology. This technology was obtained via acquisition of a smaller com-

pany called Solexa in 2007 [2] that had marketed the first sequencer employing SBS

a year earlier.

Development of deep sequencing over the past decade led to an over five order

of magnitude drop in price, and seven order of magnitude increase in throughput

relative to Sanger sequencing [3] [Figure 1.1]. It now costs about $1000 to sequence

a human genome, whereas in 2001 it cost over $200 M. This price drop has had

profound effects on biological research. For example, It is now possible to perform

studies of hundreds of thousands of individuals to finely characterize variation in

humans [4]. Also, nearly a hundred new assays have emerged that are based on

sequencing [5]. In some cases, as in mRNA sequencing used to measure transcription

(called RNA-Seq), sequencing has largely supplanted existing technology (in this

case, microarray chips) due to the much higher resolution enabled; in others, such

as Chromosome Conformation Capture (3C) [6] for the purpose of assaying 3D

1



2 CHAPTER 1. INTRODUCTION

genome structure, sequencing based assays are the first high-throughput means of

investigation available.

Along with development of new applications of deep sequencing, new technologies

have emerged that aim to address its shortcomings. Third generation technologies

generate reads that are tens to thousands of times longer than SBS reads [7], and

are sequenced individually, and thus not prone to biases introduced by PCR am-

plification. Currently, such reads have a much higher error rate than SBS reads

and are much more expensive per base, but they have already been shown to pro-

vide tremendous benefits for de novo assembly [8], and in differentiating between

closely related transcripts in RNA-Seq [9, 10], or closely related strains of viruses in

metagenome sequencing [11, 12].

This rapidly shifting technology landscape has created tremendous new bioin-

formatic challenges. The large number of sequences per sample, coupled with the

ever-increasing number of studies and size per study enabled by cheap sequenc-

ing, have led to a deluge of data. To scale analysis tasks, algorithms have evolved

along with sequencing technologies. Fields thought to be mature such as sequence

alignment, where optimal algorithms are known for aligning individual sequences

[13, 14], and good heuristic algorithms exist for aligning individual sequences to

large databases [15], have required a steady stream of innovations to cope with new

challenges such as aligning millions of very short sequences to large mammalian

genomes [16, 17], searching for relevant datasets among the thousands that are pub-

licly available [18, 19, 20] (where each is composed of millions of sequences), and

efficiently approximating all-versus-all pairwise comparisons of millions of reads in

order to perform de novo assembly [21, 8, 22]. Cheap sequencing also enabled an

endeavor to assemble more genomes, larger genomes, and collections of species via

metagenome sequencing or transcripts via RNA-Seq. The challenges in this area de-

manded ever larger space to represent large collections of sequences simultaneously.

In both cases, new techniques to index or reorder sequences proved to be essential.

Such techniques are the focus of this thesis. We begin with a detailed description

of sequencing technologies and the magnitude of their data production. Then, we

characterize the challenge these data impose on traditional algorithms on strings.

Finally, we discuss modern string indexing approaches before describing our own

contributions that are based on them. We conclude by providing some perspective

regarding future developments of sequencing technologies and the tools that will be



1.1. DEEP SEQUENCING 3

needed to analyze their output.

Figure 1.1: Development of sequencing technologies. Read length is plotted against

throughput in Gigabases per run for various contemporary and extinct sequencing

technologies. Source: [3]

1.1 Deep sequencing

Deep sequencing involves sequencing large numbers of short DNA molecules in par-

allel. The most popular approach is Illumina’s Sequencing By Synthesis (SBS),

involving fragmenting DNA to a desired size distribution, ligating adapters to frag-

ment ends, fixing DNA ends to a glass slide, and recording fluorescence emitted as

new fluorescently tagged nucleotides in solution are added to bound molecules [Fig-

ure 1.2]. Modified nucleotides called reversible terminators are introduced to the

solution along with DNA polymerase, and the action of DNA polymerase is used

to add nucleotides to fixed single-stranded templates. Reversible terminators are



4 CHAPTER 1. INTRODUCTION

nucleotides that are modified to stop extension when incorporated, and stop their

termination activity along with emitting a nucleotide-specific color when struck with

light; this allows for signaling a particular base’s incorporation and recovering this

information via imaging. This process is repeated for up to 300 cycles, a limit

imposed by image signal degradation limiting resolution at greater lengths.

The input DNA is referred to as the sequenced sample. Stacking of images gener-

ated during the course of sequencing and tracking bases incorporated sequentially at

fixed locations allows reconstruction of millions of sequences in parallel. Sequencing

errors are primarily substitutions, on the order of one out of every thousand bases,

and insertions or deletions occur on the order of one out of every million bases

[24]. Individual sequences are referred to as reads. One approach to circumvent the

length limitation is to generate paired-end reads, where instead of sequencing up to

the maximal length in one direction, opposite ends of a fragment are sequenced.

These pairs yield information about reads that originate from the same molecule at

an approximately known distance; such knowledge is often informative in aligning

reads to unique positions on a reference genome or for resolving repeats in assem-

bly. The sequence between these pairs remains unknown, but the distribution of

distances between them can be estimated by mapping to a reference or to assem-

bled contigs. For each such pair, the insert size refers to the size of the source

molecule, i.e. the inferred distance between individual mates of the pair (gap size)

plus the lengths of the read sequences themselves. Another important parameter

for sequencing applications is coverage, which can mean either the proportion of the

source material (genome, or collection of genomes in the case of microbiomes) that

has been successfully sequenced, or the average number of reads covering a base in

the source material. In this thesis, coverage refers to the latter unless otherwise

specified.

1.2 Third generation sequencing

Recently, new technologies have emerged to overcome some of the limitations of

SBS [25]. These methods provide either longer-range information or aim to remove

systematic bias of SBS due to GC content [26]. Collectively, these are referred to as

Third Generation sequencing technologies.



1.2. THIRD GENERATION SEQUENCING 5

Figure 1.2: An illustration of sequencing by synthesis (SBS). a) input DNA molecules

are fragmented to a desired size distribution. b) adapters are ligated to fragment

ends. These fragments are then placed on a glass slide coated with a lawn of adapters

complementary to those placed on input fragments, causing them to adhere to the

surface. These adhered molecules are then amplified and processed to leave only

bound single ends. c) reversible terminators are introduced to the solution. These

are harnessed by polymerase to extend complementary strands of bound fragments

but lead synthesis to stop after each base extension. Illumination leads their ter-

minator function to cease and a fluorescent colored signal corresponding to the

incorporated base’s identity is emitted. d) recording successive emissions at each

position of the imaged slide allows construction of the sequence present there. The

sequence from each position is referred to as a ’read’ Source: [23]



6 CHAPTER 1. INTRODUCTION

1.2.1 Single molecule technologies

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) both man-

ufacture sequencers that can generate reads tens of thousands of base-pairs long.

PacBio’s Single Molecule Real Time (SMRT) technology is based on imaging of

individual bound polymerase proteins controling the advance of large single DNA

molecules inside very small wells called Zero Mode Waveguides (ZMWs). These

wells are designed to be small enough to prevent wavelengths of light from effi-

ciently passing, thus causing attenuation and increasing imaging resolution at the

base of the well. This allows reading of minute flouresence signals emitted as a

result of base incorporations by the action of individual polymerase molecules [27].

Thousands of wells are sequenced in parallel. SMRT sequencing avoids the need

for amplification used to boost signal strength in SBS and thus reduces bias due to

sequence content, but PacBio sequencing is prone to a much higher rate of indels

than SBS, and shows a raw error rate of 10%. High consensus accuracy can be

achieved with high coverage [28, 29].

ONT’s nanopore sequencers measure current changes resulting from the elec-

trophoresis induced movement of DNA nucleotides through a transmembrane pro-

tein. Nanopore sequencing requires no optical measurement or chemical labeling of

DNA, allowing for a very small instrument size. ONT’s MinIon is about the size

of an office stapler. Competing methods require instruments with sizes comparable

to small printers up to large refrigerators. This size, combined with the ability to

sequence in real time have made MinIons popular for field sequencing applications,

allowing for on site monitoring [12], and tracking of virus spread and evolution [11].

Although both PacBio and ONT instruments sequence single molecules at roughly

the same error rate, sequence characteristics of ONT reads differ from PacBio’s in

several ways. There have been recent reports that reads can span hundreds of kbp

using careful DNA library preparation [7], [30]. A systematic assessment of ONT

reads showed some GC bias effects [31], and consensus accuracy shown in a recent

ONT human de novo assembly project [30] looks to be effected as a result. The

MinIon is also capable of reading DNA modifications, as shown in a recent report

highlighting methylation sequencing [32].

Both technologies are currently much more expensive on a per-nucleotide basis

than SBS reads, leading their use to be limited to sequencing small genomes or to



1.3. GROWTH OF SEQUENCING DATA GENERATED 7

supplementing higher coverage SBS reads. Current throughput available from these

companies’ sequencers is lower than that which can be obtained by Illumina’s HiSeq

intstruments, but ONT claims their PromethIon instrument will produce multiple

Tb per day, matching or exceeding HiSeq outputs, and PacBio is also expected to

introduce throughput upgrades in the near future [33].

1.2.2 Synthetic long reads

An alternative approach to obtaining long range information without expensive sin-

gle molecule sequencing technologies is modifying SBS library prep to retain long

range information present in the source DNA. One approach to obtaining long range

information is by generating large (up to tens of kb) fragment libraries, splitting in-

dividual fragments into many pools, and appending pool-specific bar-codes before

applying SBS [25]. Reads generated from this process are termed ’synthetic long

reads’ and convey long range information in that individual bar-codes correspond to

common source molecules. Such reads are marketed by Illumina and 10X Genomics.

As both rely on SBS, they retain the high per-base accuracy of Illumina reads, but

also inherit their GC bias. Thus, assemblies generated with 10X reads achieve highly

contiguous scaffolds, but retain many more gaps than contigs obtained with single

molecule technologies.

1.3 Growth of sequencing data generated

A recent study assessed the state of sequencing data production in depth [34]. We

summarize and quote the following facts from that study, but as this assessment was

made two years ago, they serve as lower bounds. Over the past decade, sequence

data generated has doubled roughly every seven months. The estimated current

worldwide sequencing capacity exceeds 35 petabases per year, while more than 100

petabytes of storage are currently used by only 20 of the largest institutions perform-

ing sequencing. If the growth continues at the current rate, it is expected that one

exabase of sequence will be generated per year in the next five years and approach

one zettabase of sequence per year by 2025 [Figure 1.3]. More conservative estimates

of doubling every 12 - 18 months (equivalent to Moores law), imply exabase-scale

aggregate data will be reached within the next decade. This makes genomics one



8 CHAPTER 1. INTRODUCTION

Figure 1.3: Past and projected DNA sequence data generation. Rapid growth in

throughput and declines in price-per base sequenced led to the emergence of large

scale proejcts and greatly increased aggregate sequence output. The three colored

dashed curves portray future aggregated output at several possible growth rates.

Source: [34]

of the fields generating the most data worldwide, comparable with much-discussed

websites such as Youtube and Twitter, and traditional data-intensive fields such as

Astrophysics [34].

As throughput grew, the cost of sequencing each base dropped precipitously.

Whereas the first human genome was sequenced over 13 years at a cost of $300 mil-

lion - $2.7 Billion (depending on what costs are included) [35], the highest through-

put Illumina machine, called the X10, allows for generation of about 1 Tb per day,

or roughly 10 human genomes at 30-fold coverage at a cost of about $1000 per

genome. This drop in cost has opened the door to myriad experimental assays that

were previously inaccessible: population-level sequencing of hundreds of thousands

of genomes from different countries [4], sequencing of thousands of individual cells

from all tissues of the human body to create a Human Cell Atlas [?] etc.

Such exponential growth in aggregate data, and in datasets emerging from such

large scale studies, presents new challenges. Sequencing centers must contend with



1.4. TRADITIONAL TEXT INDEXING APPROACHES 9

very high current outputs, and with rapid increases in output rates. This makes

anticipation of storage costs difficult for budgeting. In addition, whereas in other

fields, raw data is often discarded as it is produced, the gradual maturation of

analysis methods leading to higher accuracy and sensitivity in results has led to

reluctance of genomics researchers to discard raw read data once downstream results

have been produced. Keeping raw data allows for the opportunity to revisit and

reanalyze raw data as needed. The introduction of cloud storage and computational

resources to genomics makes scaling storage capacity simpler; however, high costs

for storage persist.

Making data manageable and analysis on such data feasible have repeatedly

necessitated development of entirely new approaches. As noted by Loh et al [36],

”Any computational analysis, such as sequence search, that runs on the full genomic

library - or even a constant fraction thereof - scales at least linearly in time with

respect to the size of the library and therefore effectively grows exponentially slower

every year.” While sequencing centers mainly contend with storage and management,

individual labs must address the need to analyze much larger datasets than were

available or possible before. Contemporary researchers often wish to analyze many

samples together to find rare variants or strains, or to achieve sufficient statistical

power to be able to differentiate between groups. Also, sequencing has become

cheap enough that it is now possible to probe DNA samples derived from large

polyploid plant genomes sequenced to high coverage, or metagenomes from diverse

environments. In either case, it becomes necessary to store, search within, and

summarize over extremely large data volumes.

1.4 Traditional text indexing approaches

Index structures have been applied to text processing for decades [37]. Full text

indexes like suffix tries and arrays allow finding arbitrary length exact matches of

patterns in a text. Hash-based indexes allow matching of fixed length patterns

and therefore introduce a trade-off: sensitivity decreases while specificity increases

as the pattern length grows. Although construction time and space complexity

are linear, there are usually large constant costs associated in terms of the space

required to build or store these structures in memory. While index construction is

computationally expensive, usually the one-time cost of construction is offset by the



10 CHAPTER 1. INTRODUCTION

time efficiency granted by allowing repeated efficient querying of the text without

scanning its entirety.

Full-text indexes effectively compress the text being indexed, in that when index-

ing a collection of strings, each substring will appear only once. However, as their

main purpose is exact matching of patterns and not space efficient encoding, data-

compression specific indexes provide more efficient reductions in data volume. For

example, Huffman coding involves counting appearances of characters to minimize

the number of bits used per character encoding of a given text [Huffman1952]. The

Burrows-Wheeler transform reorders text in a manner that increases the tendency

of identical characters to be adjacent, leading to better compression via run length

encoding of characters [38]. Lempel-Ziv encoding builds a dictionary of previously

seen substrings that are later referred back to to append gradually longer strings

that may recur [39]. Also, in specialized scenarios such as when the order inputs

appear can be discarded or the types of queries that will be made on the data can

be anticipated, even more efficient, specialized data structures can be used. For

example, Bloom filters [40] compactly represent a set and provide a simple mecha-

nism for querying set membership. They trade space efficiency for the possibility of

false positive results, and have proven very effective as caches meant to avoid costly

lookups in storage [41].

Alignment of sequences also greatly benefits from indexing. When a pattern

is searched for in a database of sequences, generating a hash of k-mer substrings

present in the database mapping to sequences containing those k-mers is much more

efficient than searching in every sequence in the database independently. Such seed

based alignment greatly benefits efficiency, but may somewhat reduce sensitivity,

e.g. in cases where the query shares no k-mers with the index but shares some when

one mismatch is allowed. This type of indexing and tracking of k-mer positions in

the database to allow hit extensions in dynamic programming is the idea behind the

most popular bioinformatics tool to date, BLAST (Basic Local Alignment Search

Tool) [15]. Such indexing is also used in alignment of genomes against each other

in BLAT (BLAST-like alignment tool) [42] and MUMmer [43].

When de novo assembly of genomes is performed, an intermediate representa-

tion of input sequences called an overlap graph is first constructed [44]. Nodes in

such graphs represent input sequences, and edges represent overlaps among them.

Overlaps may be constant or of a range of lengths, and they may be exact matches



1.5. INDEXING MODERN SEQUENCE DATA 11

or alignments exceeding some significance threshold. As the input data to an as-

sembler is a set of sequenced fragments that may contain errors, the purpose of

summarizing these sequences in a graph is to summarize the set of all possible adja-

cencies between input sequences. As with full text indexes, these graphs also have

the advantage of greatly reducing data representation size by encoding substrings

repeated in the reads only once. The graph is later used to generate a walk cor-

responding to the source genome. Generating candidate walks and choosing one

that is in best agreement with various characteristics of the input data are the main

challenges of assembly. The two types of graphs in broad use are de Bruijn graphs

(DBGs) and string graphs. Recently, more applications of these graphs have begun

to emerge, such as graph-based variant calling, and concise queryable representation

of variation at the population level [45, 46].

1.5 Indexing modern sequence data

Suffix tries, suffix arrays, and hash tables often require tens of GB of RAM to rep-

resent large (e.g. mammalian) genomes and hundreds of GB to represent large read

collections, and thus become impractical as data sizes grow. Needleman-Wunsch

[14] and Smith-Waterman [13] dynamic programming based alignment yield opti-

mal results for global and local alignment, respectively, but are expensive in terms

of time and memory for each sequence aligned. In the context of aligning SBS reads

that are near exact matches to the reference genome, Smith-Waterman alignment

is also wasteful in that very few base modifications need to be considered on aver-

age, making approaches that rely on an indexed reference and light modifications of

exact-matching algorithms more appealing. Also, SBS usually involves sequencing to

high coverage, introducing a large amount of redundancy among the reads. Generic

compression approaches such as gzip converge to optimal compression rates as data

volumes approach infinity, however they hold no such guarantees for finite data, and

thus often benefit from sorting data or compression relative to a reference genome.

Taken together, these failings of traditional, general-purposes approaches observed

upon their application to SBS data motivate the need for tailor-made solutions that

scale better.



12 CHAPTER 1. INTRODUCTION

1.5.1 Data structures and techniques for indexing, group-

ing, and summarizing reads

BWT, FM index of genomes and reads

The Burrows Wheeler Transform (BWT) [38] is a permutation of a text T allowing

reconstruction of T . Its naive construction involves collecting all cyclic permutations

of T into a matrix M , sorting these permutations lexicographically, and extracting

the last column of the matrix formed by the sorted cyclic permutations. More

efficient construction algorithms exist that avoid explicit storage of all the cyclic

permutations [47]. It is a full text index, allowing matching of any substring in

T via a backwards search mechanism. Its space use is nearly optimal, in that it

requires no pointers for its representation - only an array of length nearly equal to

the original text.

The FM (either abbreviating Full-text in Minute space, or its inventor’s last

names, Ferragina and Manzini) index [48] is a set of auxiliary data structures pro-

viding additional capabilities to the BWT. These data structures correspond to a

the first column of the M described above, and a sampling (i.e. every k-th row for

some constant k) of the suffix array of T . Taken together, patterns can be matched

and their positions in T can be extracted in O(P ) where P is the pattern searched

for.

Bloom filters

A Bloom filter [40] is a bit array B of size m initially set to all 0 values, paired with

h hash functions f1, . . . , fh such that the range of each is [1,m]. To insert an element

x to B means to apply each hash function in turn and set the position returned by

each to 1 in B (bits previously set to 1 are left as 1). To query if an element x is

in B similarly involves evaluating whether fi(x) = 1 for all i ∈ [1, h]. If at least one

function returns 0, then by definition x has not been inserted to B. However, if all

hash functions return 0 it is probable but not certain that x was inserted to B, as

some of the functions may return 1 due to hash collisions. The rate F such false

positives are returned may be set by varying m and h relative to n, the number of

elements to be inserted. Using optimal parameter choices [41], the space per element

required is 1.44 log2(
1
F

).



1.5. INDEXING MODERN SEQUENCE DATA 13

Bloom filters provide approximate set representations. They are probabilistic in

that queries made to them may yield false positive answers, but not false negatives.

The advantages they provide are constant space cost per element inserted (regardless

of length) and querying time that is linear in the length of sequence inserted.

Read de Bruijn graphs

A de Bruijn graph (DBG), G = (V,E), is a directed graph defined over an alphabet

Σ as the set of nodes v, such that v ∈ V ⇐⇒ v ∈ Σk and arcs (u, v) ∈ E ⇐⇒
u[2 : k] = v[1 : k − 1], where x[i : j] denotes the substring of string x from position

i to j, inclusive of the ends. In other words, a DBG is a directed graph having k-

mer strings derived from Σ as nodes, and arcs representing k− 1 character overlaps

between k-mers. In the context of indexing reads, usually a DBG will refer to the

subgraph of the formally defined graph over Σ = {A,C,G, T} induced by the set of

k-mers observed in the reads, for some chosen value of k.

DBGs are simple to construct and reason about, leading them to lay at the heart

of many index-based algorithms. To save memory, the arcs of a DBG need not be

stored explicitly - given a node v in the G, one may query for the presence of v[2 : k]

concatenated as a prefix of each member of Σ to extract all neighbors in G. Thus,

DBGs are naively represented as fixed length (4k) array of k-mer counts when k is

small (i.e., k ≤ 15) enough to allow such an array to be held in memory, and as

hash tables when k is larger. In the former, array positions correspond to the binary

encoding of k-mers, and in the latter k-mers are keys and values are their counts.

The essential common aspect of all DBG representations is the ability to query for

the presence of extensions of a given k-mer known to be in the graph.

The transformation from read sequences to the set of k-mers in the reads is lossy,

in that it is not possible to recover counts of consecutive repetitions of k-mers in the

reads, leading to collapse of some sequences. Similarly, representing a DBG with

only the set of k-mers and discarding arcs may lead to false arcs (u, v) when both

u and v are in V but (u, v) is not observed on any read; to avoid such errors, arcs

can be stored instead of nodes. Fortunately, any read sequence can be represented

as a walk on G. Once a read’s sequence has been mapped to the graph, it allows for

enumeration of all possible extensions at the read’s ends, and for comparisons with

or mapping to previously seen sequences. The former enables DBGs to be used for

de novo assembly, whereas the latter allows for DBGs to be used to find variants or



14 CHAPTER 1. INTRODUCTION

to represent collections of related samples, also referred to as pangenomes.

Binning reads by minimizers and MinHash

An important improvement over storage of all k-mers in a database as originally done

for BLAST [15] is identification and storage of minimizers only. This concept was

introduced independently in plagiarism detection [49] and in computational biology

[50]. An (l, k) minimizer is the lexicographically minimal l −mer inside a window

of length k ≥ l. Minimizers are useful in that a minimizer is shared by any pair of

sequences having a k base overlap. Minimizers were originally intended to reduce

the size of hash tables used for seed-and-extend based alignment: since length l

minimizers essentially ’cover’ k base windows and are sparse in number relative to

them, they allow for efficient seeding while reducing storage requirements. Also,

since sequences sharing minimizers tend to overlap, binning based on minimizers

can be used to increase efficiency of all-pairs overlap needed to compare groups of

sequences against each other or to align the entirety of a sequence database against

itself. Any l-mer order can be used instead of lexicographic order to determine

minimality.

Recently, an improvement over naive generation of minimizers was introduced

called universal hitting sets [51]. A universal hitting set is a set S of k-mers guar-

anteed to have a member of S included in every sequence of length L, where L > k.

This work showed that universal hitting sets can reduce the number of minimizers

needed to bin groups of sequences and increase the average distance between them.

An extension of this work highlighted the advantages of not using lexicographical

ordering in determining minima [52].

A related approach, called min-wise locality sensitive hashing, or MinHash [53],

also allows binning of sequences that are likely to be similar together. MinHash

differs from minimizers in its use of multiple applications of random hashing in order

to increase the probability of overlaps inside each generated bin. MinHash utilizes

grouping based on an estimate of the Jaccard similarity measure J(A,B) = |A∩B|
|A∪B| ,

the ratio of the size of intersection to the size of union of two sets A and B.

For each set S = {s1 . . . sn} of interest, MinHash forms a fingerprint of j elements

that is used for comparsion between sets. j hash functions h1 . . . hj that permute

elements are applied to every element of S and the fingerprint F is the set of min-



1.5. INDEXING MODERN SEQUENCE DATA 15

ima under each hash function fi = min{hi(s1) . . . hi(sn)}, i ∈ [1, j]. In [53], it is

shown that the number of hash collisions (i.e., matching minima within fingerprints)

between sets A and B divided by j is an unbiased estimator for J(A,B). Multiple

permutations are needed in order to reduce the variance of this estimator.

Streaming read data

Streaming algorithms were formally characterized in 1996 in the seminal work of

Alon et al. [54]. The streaming model describes operations performed on continu-

ously arriving data where a fixed amount of operations can be performed per data

element with fixed memory. The stream can only be traversed a small number of

times, or only once. This is meant to convey either data that is continuously being

produced, or is too large for storage.

The benefits of the streaming approach are a consequence of the constraints it

imposes. Streaming algorithms by definition use low memory and few operations

per data element. Streaming algorithms may also serve to reduce storage space as it

is possible to store only the results they generate instead of the data or index used

to analyze it.

1.5.2 Applications demanding indexing

Error correction, k-mer counting and filtration

Counting k-mers is a basic preprocessing step employed as part of many sequence

analysis tasks. Its most popular application is removal of rare error k-mers for

the sake of de novo assembly [55]. This is motivated by the intuition that every

mismatch in a read caused by a sequencing error will create up to k erroneous k-

mers, and each of these will be much less frequent than real k-mers if error positions

are uniformly sampled.

Since large sequencing experiments can lead to many billions of k-mers being

generated, naive counting via hash tables requires very high memory. As a result,

various approaches have been used to allow fast and low memory counting, includ-

ing representation of k-mers by Bloom filters [56], partitioning to files on disk via

minimizers [57, 58], and most recently, lossy counting and streaming filtration of

reads and k-mers [59, 60, 61].



16 CHAPTER 1. INTRODUCTION

Mapping to a reference genome or collection

With the introduction of the short read alignment tools Bowtie and BWA in 2009

[17, 16], it was shown that the full-text searching capability of suffix arrays could be

achieved using little space by indexing reference genomes using the BWT and ex-

tracting reference positions using the complementary FM-index. These tools greatly

improved the state of the art in mapping, reducing run-times by several orders of

magnitude versus earlier hash-based methods. More recent methods have shown

how compression of reference databases or read sets against themselves so as to

reduce redundancy within each can greatly improve speed of alignment with little

loss in sensitivity. These methods have demonstrated such compressive approaches

benefit both nucleotide or protein level dynamic programming based alignment as

done by BLAST [36], and in near-exact match based mapping of short reads as done

in Bowtie or BWA [62].

In the context of mapping for the sake of quantification, it has been shown that

probabilistic assignment to reference sequences (typically transcripts or microbes in

a metagenome) does not require full alignment, and can be made much faster by

replacing alignment with simple assignment to groups of sequences that are compat-

ible with the fragment that is to be assigned. These groups are called equivalence

classes - a concept introduced in [63]. Recently, DBG based indexes of reference se-

quences have been used for fast assignment to equivalence classes. This mechanism

forms the heart of the fastest transcript abundance estimation algorithms available,

Kallisto [64] and Salmon [65]. This mechanism has also been used for quantification

of species in metagenomes [66].

Compression of short reads

Compression draws on efficient indexing to allow matching among repeated sub-

strings, and encoding meant to minimize the space consumed per character. Short

read compression tools either compress reads relative to some reference or use

reference-free approaches that typically involve reorganizing (e.g. sorting or bin-

ning) reads to increase the tendency of similar substrings to be near each other.

Generally, reference based methods achieve lower compression ratios (defined as the

ratio of output to input file sizes) while reference-free methods are faster [67].

The reason for this dichotomy is that the computational cost of mapping to a ref-



1.5. INDEXING MODERN SEQUENCE DATA 17

erence provides a clear benefit: if the reference closely matches the read’s sequence,

the read’s sequence need not be stored: the position on the reference having that

sequence can be stored instead. The time to align accounts for most of the time

difference. If differences exist they are then written out along with the reference

position, and then they can be encoded efficiently according to their distribution

(e.g. by Huffman coding). This is the basis for several reference based compression

tools (e.g. SlimGene [68], DeeZ [69]).

To reorganize reads, various approaches have been employed. The SCALCE

algorithm [70] sorts reads according to presence of common substrings, with the

intent of optimizing compression by a fixed size buffer, as done by gzip [39]. More

recent methods have performed similar reorganization based on binning according to

the presence of minimizers [71, 72]. In Chapter 2 of this thesis, we present a hybrid

approach that avoids mapping to a reference, instead performing exact matching

via Bloom filter hashing and compression of non-matching reads via SCALCE.

Some reference free methods also compress reads as paths on the DBG of the

reads. In that case the graph must be stored and compressed along with the reads

in order to allow for decompression. To this end, Bloom filter and other succint

data structure graph representations have been employed [73, 74]. The more recent

QUARK [75] uses a DBG for quasimapping and encoding, but does not require the

reference set of transcripts for the sake of decompression.

De novo assembly of short reads

When performing de novo assembly, DBGs with large values of k are often used, and

for large samples, tens to hundreds of billions of k-mers may need to be represented.

In these situations, using hash tables to represent DBGs may require hundreds of GB

of RAM due to the large number of keys and hash table implementation overhead.

To reduce the need for such hardware requirements, Bloom filters have been used

as an alternative means of representing DBGs [76, 77, 78].

Beyond the use of Bloom filters, more recent innovations include the use of

minimizers to reduce memory in graph compaction and better parallelized processing

[79, 80]. The efficiency of k-mer Bloom filters, often having dependency between

consecutive queries, was improved in [81] and later this method was used for efficient

weighted (where nodes are labeled with coverage) DBG construction [82]. Finally,



18 CHAPTER 1. INTRODUCTION

in Chapter 4 of this thesis, and earlier in the TwoPaCo algorithm for efficient DBG

compaction [83], a representation combining identification of the set of junctions in

the DBG along with a BF storing nodes of the DBG (to allow for traversal between

junctions) was used.

De novo assembly of long reads

Currently, the most popular means of assembling long reads is based on the Overlap-

Layout-Consensus (OLC) approach. This approach begins with finding all pairwise

overlaps between reads. As such, initial assemblies of large genomes took thousands

of hours of CPU time [8] [22]. A major advance past this computational hurdle was

the change from performing all-pairs overlap assessment to first applying MinHash

on all reads to bin them, and then confining alignments among pairs to be performed

only among reads that are sufficiently similar to be in the same bin [8]. More recent

approaches have similarly used minimizers and sorting to achieve even greater speed

[84, 85], even without the requirement of initial polishing (error removal) of the

error-prone reads before assembly.

Searching for relevant experiments

A new application enabled by the explosive growth of sequencing is search for rel-

evant datasets among all publicly available samples. The goal of such search is to

find samples likely to contain sequences that are similar to some query (or query

set) of interest. The first work to propose this application by Solomon et al. [18]

employed a binary tree of Bloom filter nodes, where each parent node was the bit-

wise union of its children’s bit arrays, and leaf nodes corresponded to Bloom filters

of sequencing experiment k-mers. This work offered a dramatically more scalable

solution than aligning queries of interest against every read data set individually by

limiting explicit alignments to much smaller subtrees. Recent follow-up works have

since improved memory efficiency and run times specifically when queries are sets

[86, 87].

An alternative approach using minHash was also recently introduced. In this

case, fingerprints are generated for each dataset, and a distance measure based

on Jaccard similarity is used to select datasets matching a query set very quickly.

This scheme enabled fast clustering by sequence similarity of all RefSeq genomes



1.6. SUMMARY OF ARTICLES INCLUDED IN THIS THESIS 19

in minutes [20] and fast identification of relevant samples out of all of the SRA

database [19].

1.6 Summary of articles included in this thesis

Fast lossless compression via cascading Bloom filters R. Rozov, R.Shamir,

E. Halperin; BMC Bioinformatics 2014, 15 (Suppl 9):S7.

Background: Data from large Next Generation Sequencing (NGS) experiments

present challenges both in terms of costs associated with storage and in time re-

quired for file transfer. It is sometimes possible to store only a summary relevant to

particular applications, but generally it is desirable to keep all information needed

to revisit experimental results in the future. Thus, the need for efficient lossless

compression methods for NGS reads arises. It has been shown that NGS-specific

compression schemes can improve results over generic compression methods, such

as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding.

When a reference genome is available, effective compression can be ac hieved by

first aligning the reads to the reference genome, and then encoding each read using

the alignment position combined with the differences in the read relative to the ref-

erence. These reference-based methods have been shown to compress better than

reference-free schemes, but the alignment step they require demands several hours of

CPU time on a typical dataset, whereas reference-free methods can usually compress

in minutes.

Results: We present a new approach that achieves highly efficient compression

by using a reference genome, but completely circumvents the need for alignment,

affording a great reduction in the time needed to compress. In contrast to reference-

based methods that first align reads to the genome, we hash all reads into Bloom

filters to encode, and decode by querying the same Bloom filters using read-length

subsequences of the reference genome. Further compression is achieved by using a

cascade of such filters.

Conclusions: Our method, called BARCODE, runs an order of magnitude

faster than reference-based methods, while compressing an order of magnitude bet-

ter than reference-free methods, over a broad range of sequencing coverage. In high

coverage (50-100 fold), compared to the best tested compressors, BARCODE saves

80-90% of the running time while only increasing space slightly.



20 CHAPTER 1. INTRODUCTION

Recycler: an algorithm for detecting plasmids from de novo assembly

graphs R. Rozov, A.B. Kav, D. Bogumil, N. Shterzer, E. Halperin, I.

Mizrahi, R. Shamir; Bioinformatics 2017; 33 (4): 475-482.

Motivation: Plasmids and other mobile elements are central contributors to mi-

crobial evolution and genome innovation. Recently, they have been found to have

important roles in antibiotic resistance and in affecting production of metabolites

used in industrial and agricultural applications. However, their characterization

through deep sequencing remains challenging, in spite of rapid drops in cost and

throughput increases for sequencing. Here, we attempt to ameliorate this situa-

tion by introducing a new circular element assembly algorithm, leveraging assembly

graphs provided by a conventionalde novoassembler and alignments of paired-end

reads to assemble cyclic sequences likely to be plasmids, phages and other circular

elements.

Results: We introduce Recycler, the first tool that can extract complete cir-

cular contigs from sequence data of isolate microbial genomes, plasmidome and

metagenome sequence data. We show that Recycler greatly increases the number

of true plasmids recovered relative to other approaches while remaining highly ac-

curate. We demonstrate this trend via simulations of plasmidomes, comparisons of

predictions with reference data for isolate samples, and assessments of annotation

accuracy on metagenome data. In addition, we provide validation by DNA ampli-

fication of 77 plasmids predicted by Recycler from the different sequenced samples

in which Recycler showed mean accuracy of 89% across all data types - isolate, mi-

crobiome and plasmidome.

Faucet: streaming de novo assembly graph construction R. Rozov, G.

Goldshlager, R.Shamir, E. Halperin; Bioinformatics, btx471, 2017

Motivation: We present Faucet, a 2-pass streaming algorithm for assembly graph

construction. Faucet builds an assembly graph incrementally as each read is pro-

cessed. Thus, reads need not be stored locally, as they can be processed while

downloading data and then discarded. We demonstrate this functionality by per-

forming streaming graph assembly of publicly available data, and observe that the

ratio of disk use to raw data size decreases as coverage is increased.

Results: Faucet pairs the de Bruijn graph obtained from the reads with ad-

ditional meta-data derived from them. We show these metadata - coverage counts



1.6. SUMMARY OF ARTICLES INCLUDED IN THIS THESIS 21

collected at junction k-mers and connections bridging between junction pairs - con-

tain most salient information needed for assembly, and demonstrate they enable

cleaning of metagenome assembly graphs, greatly improving contiguity while main-

taining accuracy. We compared Faucet’s resource use and assembly quality to state

of the art metagenome assemblers, as well as leading resource-efficient genome as-

semblers. Faucet used orders of magnitude less time and disk space than the spe-

cialized metagenome assemblers MetaSPAdes and Megahit, while also improving on

their memory use; this broadly matched performance of other assemblers optimizing

resource efficiency - namely, Minia and LightAssembler. However, on metagenomes

tested, Faucets outputs had 14-110% higher mean NGA50 lengths compared to

Minia, and 2-11-fold higher mean NGA50 lengths compared to LightAssembler, the

only other streaming assembler available.



Chapter 2

Fast lossless compression via

cascading Bloom filters

22



PROCEEDINGS Open Access

Fast lossless compression via cascading Bloom
filters
Roye Rozov1, Ron Shamir1*, Eran Halperin1,2,3

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 1 April 2014

Abstract

Background: Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of
costs associated with storage and in time required for file transfer. It is sometimes possible to store only a
summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit
experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises.
It has been shown that NGS-specific compression schemes can improve results over generic compression methods,
such as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding. When a reference genome is
available, effective compression can be achieved by first aligning the reads to the reference genome, and then
encoding each read using the alignment position combined with the differences in the read relative to the
reference. These reference-based methods have been shown to compress better than reference-free schemes, but
the alignment step they require demands several hours of CPU time on a typical dataset, whereas reference-free
methods can usually compress in minutes.

Results: We present a new approach that achieves highly efficient compression by using a reference genome, but
completely circumvents the need for alignment, affording a great reduction in the time needed to compress. In
contrast to reference-based methods that first align reads to the genome, we hash all reads into Bloom filters to
encode, and decode by querying the same Bloom filters using read-length subsequences of the reference
genome. Further compression is achieved by using a cascade of such filters.

Conclusions: Our method, called BARCODE, runs an order of magnitude faster than reference-based methods,
while compressing an order of magnitude better than reference-free methods, over a broad range of sequencing
coverage. In high coverage (50-100 fold), compared to the best tested compressors, BARCODE saves 80-90% of the
running time while only increasing space slightly.

Background
Deep sequencing has become almost ubiquitous in biol-
ogy over the last decade. In the past five years, sequen-
cing costs were halved every 5 months, while storage
costs were halved every 14 months [1]. The long term
effect of this trend is a growing gap between our capacity
to store and analyze sequencing data, and our capacity to
generate such data. For sharing results of large-scale
experiments, the effects have already become readily
apparent: physical hard disk transfer has become a

common practice, and cloud analysis platforms have
been embraced in order to avoid the prohibitive time
requirements needed to download or store huge volumes.
As a result, much effort has been placed on representing

sequencing data more compactly. Specialized compression
tools tailored to this context have emerged, improving
upon general purpose compressors, such as gzip. These
tools fall into two categories - reference-based [2,3], and
reference-free [4-6]. The former methods utilize knowl-
edge of the genome from which reads were extracted
(with mutations and errors), while the latter use no prior
information. A recent article described the Pistoa
Sequence Squeeze competition, wherein the relative merits

* Correspondence: rshamir@tau.ac.il
1Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
Full list of author information is available at the end of the article

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

© 2014 Rozov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



of many of these methods were compared. This article also
introduced new high performance methods that were
among the competition leaders [1].
Compression algorithms are evaluated by two main cri-

teria: their compression ratio, namely, the ratios of com-
pressed file sizes to original file sizes, and by their speed.
In the context of compressing reads, compression ratios
are often expressed in terms of the average number of bits
per base for a fixed read length. Currently, reference-based
methods generally compress most effectively, but require
long run times. In order to compress reads, reference-
based methods first call on a short-read aligner to find a
best alignment position for each read. Such an alignment
typically has only a few (or no) mismatches relative to the
reference. Reads can then be represented as integers mark-
ing reference positions instead of as sequences, along with
the set of differences relative to the reference. Further
refinements can then be applied, such as sorting the reads
by reference position and then encoding differences
between consecutive positions to use fewer bits, and
employing Huffman coding to encode more common
mutations with less bits than rare ones [3,2]. Reference-
free methods employ a variety of techniques, including
boosting schemes for general purpose compressors [4,6],
rough assembly for the sake of emulating reference-based
compression [5], and arithmetic coding/context modeling
approaches, which trade increases in run time for better
compression ratios [1].
There is therefore an inherent tradeoff between run-

time and compression ratio. Specifically, even though
compression ratios are impressive for reference-based
methods, their running times are often prohibitively high.
In this work we propose a new method, Bloom filter
Alignment-free Reference-based COmpression and
DEcompression (BARCODE, abbreviated to BRC below),
which achieves high compression ratios with a dramatic
decrease of runtime. BARCODE does so by leveraging
the space efficiency of Bloom filters, probabilistic data
structures allowing queries of set membership. Their use
has recently grown in popularity in bioinformatics
[7,8,5,9], mainly to avoid the memory overhead needed
to store large collections of k-length substrings of
sequenced reads (k-mers) used to represent nodes of de
Bruijn graphs in de novo assembly. To the best of our
knowledge, this is the first use of Bloom filters for NGS
compression.
Here, we adopt a similar scheme to that used for

assembly in two recent works [8,10]. We hash whole
reads into BFs as a means of compression. In tests per-
formed, BARCODE’s run times are closest to those refer-
ence-free methods while its compression ratios near
those of reference-based methods. In as little as a ninth
of the running time, we are able to compress to within
less than 20% of the compression ratios observed for

reference-based methods. We demonstrate that with
higher coverage levels, BARCODE’s efficiency improves,
whereas reference-based methods show no improvement,
while the gap in run time grows more severe. By compar-
ing our method with several existing tools, we show its
superior balance of speed and compression efficiency.

Methods
Technical background
A Bloom filter (BF) is an array A of size m having all
positions initially marked 0. Elements are inserted into
A by applying a collection of h hash functions: the out-
put of each specifies a position to be marked with a 1
in A. Querying whether or not an element has been
inserted involves applying the same h hash functions
and checking the values at the positions they return. If
at least one hash function returns 0, the element defi-
nitely was not inserted; if all 1s return, either it has
been inserted, or it is a false positive. For a BF of size
m, n entries can be inserted by h hash functions to
achieve a false positive rate F ≈ (1 − e(−hn/m))h. In [11],
it is shown that for fixed m and n, F is minimized with
h = ln(2)r, where r = m/n. Plugging this value back in
for F leads to F = cr, where c = 0.6185.

Encoding and decoding using a Bloom filter
Our method involves two basic processes: BF loading
and querying. We initially assume all reads are unique
and later relax this assumption. We load all reads into a
BF B, and then use the reference genome to query it.
We query B with read length subsequences (and their
reverse complements) from all possible start positions
on the genome. This allows us to identify all of the
potential reads that correspond to genome positions, a
set that covers most of the hashed reads. Some of the
accepted reads will be false positives. In order to avoid
them in the decoding process, we identify a set FP cor-
responding to all reads accepted by B that are not in the
original read set. Additionally, since the reads are taken
from a specimen whose genome contains mutations
compared to the reference (and since sequencing is
error-prone), some reads will not be recovered by
querying the genome. We call this set of reads FN. FN
and FP are stored separately from B, and compressed
using an off-the-shelf compression tool. For a set of
unique reads, this suffices to allow a complete recon-
struction of the reads.
Decoding proceeds by decompressing B, FN, and FP,

and then repeating the querying procedure. We initialize
the read set to FN. Then, we query B with each position
from the genome as done to identify elements of FP.
Whenever B accepts we check if the accepted read is
not also in FP, and add it to the read set if it isn’t. To
remove the unique read restriction, we first move all

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 2 of 8



repeated reads to FN before loading B. We treat reads
containing ‘N’ characters similarly. These two additions
allow us to circumvent an inherent limitation of Bloom
filters - the loss of multiplicity information - and
reduces the entropy in the (now multi-) set FN, making
it more compressible. The encoding process with one
BF is detailed in steps 1-4 of Figure 1 and Algorithm 1.
The relative contributions of error reads and repeated
reads to FN are discussed in the appendix.
Algorithm 1 Encode one Input: R, G; Output: B, FN,

FP Conventions: Let g be the length of the reference
genome G, qi be the ith genome query, ℓread be the
sequenced read length, and P be the set of genome
queries accepted by B. For brevity, we exhibit queries
from only the forward strand, whereas our implementa-
tion queries (and accepts from) both strands.
FN := {r : r ∈ R and (r is repeated in R or r contains

an ‘N’)}
R’ := R \ FN
for all r ∈ R’ do

insert(r, B)

end for
for all i ∈ [1, g − ℓread + 1] do

;if qi ∈ B then
P := P ∪ qi

end if

end for
FN := FN ∪ {R’ \ P}
FP := P \ R’
return (B, FN, FP )

Encoding and decoding using a BF cascade
Although appealingly simple, we found the above
method did not offer competitive compression, as the
costs imposed encoding FP and FN outweighed the ben-
efit of storing the unique reads in B. Thus, to reduce
the number of false positives that need to be com-
pressed separately, we use a cascade of BFs as in [10].
To this end, we rename B and FP above as B1 and FP1,
respectively. We consider B1 to be the first BF in a cas-
cade, and each element of FP1 is then hashed into a
subsequent BF B2. We note that since B2 is meant to
store false positive reads it should reject true reads:
thus, any element of R’ (the set of unique reads)
accepted by B2 is a false positive relative to B2. Thus, to
identify FP2, we add each element accepted by querying
R’ against B2. This process can be continued for any

Figure 1 The encoding process. Step 1 separates the unique reads set R’ from the repeated reads set FN. In step 2 unique reads (R’) are hashed into a BF
B1 and the rest assigned to a set FN. In steps 3-4 all read-length sequences of the reference genome G are queried and reads accepted by B1 that are not
in R’ are added to FP1. Steps 5-10 show subsequent encoding via a BF cascade. False positives relative to each BF are input to the next BF. Each BF is then
queried by using the set loaded into the last BF in the cascade. In step 11 additional compression is perfomed on the resulting BFs and sets. Orange
arrows indicate assignments. Purple arrows marked with Q(.) indicate BF queries with sets denoted in parenthesis. Blue arrows indicate BF loading.

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 3 of 8



desired number of BFs. Once BFs are loaded in this way,
to identify real reads, we query each BF in the cascade
and accept reads only if the index of the first BF to
reject them is even.
Since elements inserted to BFj are necessarily a subset

of those inserted to BFj−2, we see an exponential drop-
off in BF size (since F is fixed). Since sizes for successive
BFs alternately depend on n and (2g − n)rF ≈ 2grF (the
number of false positives expected for 2g queries from
G multiplied by the cost per element, assuming g >> n),
we expect the total file size to be approximately (nr +
2grF + nrF + 2grF2 + ...) bits. Using F = cr from above,
we observe that for an infinite cascade, the average
number of bits per read is then

(
ρ

2gρcρ

n

)
(1 + cρ + c2ρ + ...) =

(
1 +

2gcρ

n

)(
ρ

1 − cρ

)
. (1)

Here the left hand side represents the sum of costs due
to the expected number of elements in each BF for an
infinite cascade. In practice, we use four BFs and a
numerical solver in scipy [12] employing the L-BFGS-B
[13] algorithm to find the value of r minimizing the
above expression. The small list FP4 is encoded separately
along with FN. The process is described in Figure 1 steps
5-11 and Algorithm 2. Decoding proceeds using queries
from G as before, but in this case each accepted read is
used to query subsequent BFs until rejection. This is
depicted in Figure 2and Algorithm 3.
Algorithm 2 Encoding Let Bj be the jth BF loaded

( j ∈ [2, 4]) with FPj-1, S ∩ Bj is short-hand notation for
the subset of S accepted by Bj.

(B1, FN, FP1) := Encode one(R, G) # we initialize by
calling Algorithm 1

F P2 := R’ ∩ B2
for j = 3 to j = 4 do
for all r ∈ FPj−1 do
insert(r, Bj)

end for
FPj := FPj−2 ∩ Bj

end for
return (B1, B2, B3, B4, FN, FP4)

Algorithm 3 Decoding Input: (B1, B2, B3, B4, FN, FP4,
G); Output: (Rrc) For brevity, reconstruction of only one
strand is shown.

Rrc := FN
for all i ∈ [1, g − ℓread + 1] do
for j = 1 to j = 4 do
if qi � εBj then
if j is even then
Rrc := Rrc ∪ qi

end if
continue {increment i}

end if

end for
if j = 4 and qi ∈ FP4 then
Rrc := Rrc ∪ qi
end if
end for
return Rrc

Additional compression
BF parameters are automatically set to make each BF
more compressible. This involves incrementing the
number of hash functions for each BF from 1 to the
minimal number that allows it to both have an uncom-
pressed file size lower than a preset threshold (we used
500 MB) and obtain the value of F from equation 1.
Typically, this results in h being in the range of 1 to 3.
We do this in order to reduce each BF’s compressed
size (at the expense of increasing its RAM occupation);
this practice is introduced in [11].
Once BFs are loaded and the sets FP4 and FN are

identified, we use 7zip [14] to compress the B1, ..., B4
and SCALCE [4] to compress the output lists FP4 and
FN. In principle, any general compression tool can be
used for the BFs, and it is preferable to use a tool that
takes advantage of existing sequence overlaps among
the leftover reads to compress them efficiently.

Results and discussion
Comparison on simulated reads
We simulated reads from Human (hg19) chromosome
20 using dwgsim [15]. This tool introduces mutations
into the reference genome and then samples reads from
both genome strands using a user-defined per base error
rate. We sampled 100 bp single end reads at various
coverage levels with a 0.001 mutation rate and a per
base error rate increasing from 0 to 0.005 from the 5’ to
the 3’ end of reads (in line with current estimates of
Illumina error rates [16]). We also demonstrated the
effect of varying the error rate In Figure 4. All reported
results were run on a 16 core AMD Opteron 6140
(2.6 GHz) 128 GB RAM server, running the Ubuntu
12.04 Linux operating system.
We found that BARCODE compresses more effec-

tively at higher coverage. Although the proportion of
reads in FN increases as the proportion of unique reads
decreases (Table 1), BARCODE benefits from SCALCE’s
increasing efficiency due to greater redundancy among
FNs. BARCODE’s decode times were similar to its
encode times, as would be expected since both rely on
the same genome querying procedure.
To demonstrate that our use of BFs improves upon

SCALCE’s compression results, we compared our results
with SCALCE run on all reads. We also tested quip [5]
and fastqz [1], state-of-the-art tools in terms of both
compression efficiency and speed [1]. All three tools

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 4 of 8



either output compression results or ratios separately for
sequences, read names, and quality scores. We note that
the best performers in the Sequence Squeeze competi-
tion in terms of base compression ratio, Sam-comp and
CRAM, did not provide such outputs and thus did not
allow direct comparison. Quip and fastqz also include

both reference-based and reference-free modes. We per-
formed alignment via bowtie2 [17] for quip runs while
fastqz performed its own alignment. To ensure a fair
comparison, all tools were run as a single thread when
possible, including calls to 7zip and SCALCE from BAR-
CODE. Fastqz used three threads during its run, as this

Figure 2 Decoding the reads. Following decompression of BFs, FP4, and FN, BF querying commences. Each read accepted by a BF is used to
query subsequent BFs until rejection. Reads rejected by even BFs or accepted by B4 and in FP4 are added to the reconstructed reads, Rrc. Purple
arrows are consistent with Figure 1. Orange arrows indicate additions to Rrc, the reconstructed reads.

Table 1 BRC performance with varying coverage.

coverage time (sec) |R| (M) |FP4| (K) |FN | (M) BF size (MB) FP4 size (MB) FN size (MB) compression bits/base

10 410 6.3 3.7 2.0 8.5 0.38 36.8 0.58

20 590 12.6 6.8 4.4 14.2 0.68 66.8 0.52

30 800 18.9 9.3 7.1 19.0 0.94 93.8 0.48

40 1006 25.2 20 10.2 22.8 2.01 119.0 0.46

50 1220 31.5 16 13.5 26.4 1.66 143.0 0.43

Reads were simulated from hg19 chromosome 20 with 100 bp single end reads. A mutation rate of 0.001 was used along with 0-0.005 per base error rate along
the length of each read. Run times include additional compression steps performed by SCALCE and 7zip in single thread mode. R - the read set. FP4 - the final
false positive set. FN - the set of reads not encoded by the BFs.

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 5 of 8



was not a user-selectable parameter, but each thread
was assigned to one of sequences, qualities, and names.
Figure 3 compares BARCODE with other tools in terms
of run time and compression efficiency. A full listing of
program parameters used is provided in Table 2.
Overall, we found the compression ratio improved

with greater coverage for all reference-free methods, and
remained essentially constant for reference-based meth-
ods. Figure 3 shows that reference-based compressors
are better in compression ratios but reference-free com-
pressors are faster (An exception to this trend was
fastqz, whose reference-based version is faster than its
reference-free version, likely due to the use of context
model-based arithmetic coding). Quip performed poorly
in compressing sequences without a reference, showing
it has apparently been optimized for speed and perhaps
compression of qualities and read names. SCALCE
shows strong dependence of compression ratio on cov-
erage, as would be expected by its leverage of the recur-
rence of long subsequences. BARCODE takes advantage
of this trend to also improve with higher coverage, even
as the proportion of reads hashed to BFs decreases (See
Table 1). BARCODE’s times are closest to SCALCE and
reference-free quip, and its compression ratios approach
those of reference based methods, especially at higher
coverage values. For most coverage values, it maintains
an order of magnitude time advantage vs. reference-
based methods (~2-3x vs. fastqz, ~5-7x vs. quip), as well
as an order of magnitude compression advantage of the
tested reference-free methods.

Higher coverage, longer reads
We tested scenarios of higher coverage and longer read
lengths: (1) coverage 100 and read length 100 bp, (2) cover-
age 100 and read length 200 bp, and (3) coverage 200 and
read length 400 bp. Table 3 shows a continuation of the
trends expressed at lower coverage levels. Higher coverage
aided reference-free methods, but not reference-based meth-
ods. Longer reads improved compression ratios in each case
with the exception of fastqz -r. We observed larger impacts
on run time as a result of doubling read length than
coverage.

Conclusions
We have presented a new approach to compressing
sequencing reads, bridging the gap between the speed of

Figure 3 A comparison of sequence compressors. The figure
shows elapsed real run time vs. compression ratios of read sequences
in bits per base for read length 100 bp. The measurements of each
method for different coverage levels are connected by a line. Points
correspond to coverage levels from 10 to 50 in multiples of 10 from
left to right. Methods denoted with an “-r” were run with the
reference-based option. Run times were measured with /usr/bin/time
using a single thread on the same Linux server.

Figure 4 The effect of varying error rate. BARCODE runs are
shown with error rates varying from 5’ to 3’ ends as indicated in
the figure legend. Compression ratios increase with greater error,
but higher coverage compensates somewhat. Overall, as coverage
increases, run time is effected by increasing error more than
compression ratios, as can be seen by the decreasing slopes
between fixed coverage points between the green and red curve
and between the red and purple curves.

Table 2 Program parameters used in compression tool
comparison (Figure 3)

Program Parameters

dwgsim -C coverage level -H -e 0.0-0.005 -R 0.0 -1 read length
-2 0 -y 0.0

bowtie2 -x chr20 -U input fastq -S

SCALCE input fastq -T 1 -A -n library -o output prefix

quip (default) -o=quip -i=sam input sam

quip
(reference)

-o=quip -r ref fa -i=sam input sam

fastqz (default) c input fastq output prefix

fastqz
(reference)

c input fastq output prefix r packed ref file

BRC rec load bf -err rate 0 -e 0 -i 4 reads file packed ref file

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 6 of 8



alignment-free, reference-free methods and the compres-
sion efficiency of reference-based methods. We have tested
the dependence of extant sequence compressors on cover-
age levels and shown that while reference-based methods
compress most efficiently, they place a heavy burden on
CPU times due to alignment and cannot leverage added
redundancy to benefit compression ratios. Reference-free
methods do benefit from higher coverage, but maintain a
considerable distance from reference-based methods in
terms of compression ratios even at the highest levels
tested. Although we have shown that our new method,
BARCODE, obtains a better trade-off than either of these
extremes, we maintain that there remains much room for
improvement, even when considering the inherent con-
straints imposed by the Kolmogorov complexity of the
data. We note that further comparison to other methods
like CRAM [3] and sam_comp [1] is needed.
BARCODE is currently a proof-of-principle implemen-

tation, and thus we expect that further optimization will
improve run time and compression efficiency. Compres-
sion ratios may be improved by taking advantage of better
general compression tools available such as the ZPAQ
library [18], as fastqz and sam_comp do. Thus far, we have
not utilized arithmetic coding techniques because they
employ multiple threads and thus introduce significant
additional resource requirements. Our approach can also
be extended to allow for fast access to variants in the origi-
nal data by using conventional BFs that are not com-
pressed, and by compressing FN/FP reads using encoding
that allows fast random access (at some expense of com-
pression ratio). We aim to investigate these paths in the
future.

Appendix
Real data test
We examined BARCODE’s performance on the C. Elegans
data set tested in the Sequence Squeeze competition,
SRR065390_1. This data set consists of 33415360 100 bp
reads, amounting to 33-fold coverage of the genome. BAR-
CODE’s compression ratio on this data was 0.46 bits per
base, and run time was 1203 seconds, in line with

experiments described in the main text and comparable
with reference-based methods tested in the Sequence
Squeeze competition [1].

Contributions of repeated reads vs. errors to FN
FN is comprised of repeated reads filtered out to preserve
their multiplicities, and reads differing from the reference
because of errors or variations. Here, we describe the rela-
tive contributions of each part. The expected number
of repeated reads can be described probabilistically.
Assuming reads are sampled independently from G, given

a read r, the probability of drawing r again is 1 − 1
G . For R

reads, the probability of observing no repetitions is

then
(
1 − 1

G

)R−1. Thus, the expected number of repeated

reads is R
(

1 − (
1 − 1

G

)R−1
)
. Since we hash reverse com-

plement reads from reference strands separately, we revise
the length considered to 2G. Since we wish to count
the total multiplicity of each repeated read, the contribu-
tion of repeated reads to FN is thus approximated by

2R
(

1 − (
1 − 1

2G

)R−1
)
. Clearly, this contribution depends

on coverage, as shown in Table 4.
We model the contribution of error to FN using

Binom(100, p) with p = 0.0025, the mean error over the
read length used in our simulated reads (where error
varies from 0 to 0.005 from the 5’ to 3’ ends). Most of

Table 3 Performance comparison on high coverage values and read lengths longer than 100.

Time (sec) coverage quip scalce fastqz BRC quip -r fastqz -r

50 759 533 5426 1220 9544 4063

100 1599 1016 10417 2211 20216 7479

100, len 200 1280 1165 8760 1400 21705 7400

200, len 400 2284 2518 15706 2209 51628 17769

Compression (bits/base) 50 2.0 0.62 0.97 0.43 0.34 0.32

100 2.0 0.53 0.58 0.40 0.34 0.32

100, len 200 1.8 0.43 0.61 0.37 0.19 0.45

200, len 400 1.7 0.32 0.41 0.31 0.12 0.41

Reads were generated as described in the main text. Quip -r times include bt2 alignment.

Table 4 Counts of repeats vs. errors with increasing
coverage. The proportion of reads due to errorsremains
roughly constant, while the proportion due to repeats
increases as coverage increases.

Coverage |R| (M) repeats (M) |FN| (M)

10 6.3 0.3 2.0

20 12.6 1.3 4.4

30 18.9 2.8 7.1

40 25.2 4.9 10.2

50 31.5 7.4 13.5

errors with increasing coverage. The proportion of reads due to errors remains
roughly constant, while the proportion due to repeats increases as coverage
increases.

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 7 of 8



the mass is carried by the one and two error terms,
leading to a relative error proportion estimate of(

100
2

) (
1 − p

)98
p2 +

(
100
2

)
(1 − p)99p . Table 4 shows

this proportion is independent of coverage level.

Availability
BARCODE can be downloaded at http://www.cs.tau.ac.
il/~heran/cozygene/software.shtml.

List of abbreviations
BF- Bloom filter; BRC - BARCODE; bpb - bits per base; bp - base pairs

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RR developed the method. RS and EH designed the experiments. RR
implemented the method and performed experiments. All authors analyzed
results, co-wrote the manuscript, and read and approved the final
manuscript.

Acknowledgements
RR would like to thank Oron Navon and Roy Ronen for helpful comments in
preparation of the manuscript.

Declarations
RS was supported in part by the Israel Science Foundation (grant 317/13)
and by the Raymond and Beverly Sackler chair in bioinformatics. RR was
supported in part by a fellowship from the Edmond J. Safra Center for
Bioinformatics at Tel-Aviv university, and by the Center for Absorption in
Science, the Ministry of Immigrant Absorption in Israel. EH is a faculty fellow
of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. EH
was partially supported by the Israeli Science Foundation (grant 1425/13),
and by National Science Foundation grant III-1217615.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Authors’ details
1Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel.
2Molecular Microbiology and Biotechnology Department, Tel-Aviv University,
Tel Aviv, Israel. 3International Computer Science Institute, Berkeley, CA, USA.

Published: 10 September 2014

References
1. Bonfield JK, Mahoney MV: Compression of FASTQ and SAM format

sequencing data. PloS One 2013, 8(3):59190.
2. Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G: Compressing

genomic sequence fragments using SlimGene. Journal of Computational
Biology 2011, 18:401-413.

3. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E: Efficient storage of
high throughput DNA sequencing data using reference-based
compression. Genome Research 2011, 21:734-740.

4. Hach F, Numanagic I, Alkan C, Sahinalp SC: SCALCE: boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics
2012, 28(23):3051-7.

5. Jones DC, Ruzzo WL, Peng X, Katze MG: Compression of next-generation
sequencing reads aided by highly efficient de novo assembly. Nucleic
Acids Research 2012, 40(22):171.

6. Cox AJ, Bauer MJ, Jakobi T, Rosone G: Large-scale compression of
genomic sequence databases with the Burrows-Wheeler transform.
Bioinformatics 2012, 28(11):1-6.

7. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT: Scaling
metagenome sequence assembly with probabilistic de Bruijn graphs.
Proceedings of the National Academy of Sciences 2012, I(1):1-11.

8. Chikhi R, Rizk G: Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithms in Bioinformatics 2012, 236-248.

9. Melsted P, Pritchard J: Efficient counting of k -mers in DNA sequences
using a bloom filter. BMC Bioinformatics 2011, 12:333.

10. Salikhov K, Sacomoto G, Kucherov G.: Using cascading bloom filters to
improve the memory usage for de Brujin graphs. In Algorithms in
Bioinformatics Lecture Notes in Computer Science Darling, A., Stoye, J 2013,
8126:364-376.

11. Mitzenmacher M: Compressed Bloom filters. IEEE/ACM Transactions on
Networking 2002, 10.

12. Oliphant TE: SciPy: Open source scientific tools for Python. Computing in
Science and Engineering 2007, 9:10-20.

13. Zhu C, Nocedal J, Byrd RH, Lu P: Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. 1997.

14. Pavlov I: 7zip compression software. [http://www.7-zip.org].
15. Homer N: Dwgsim read simulations software. [https://github.com/nh13/

dwgsim].
16. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J,

Pallen MJ: Performance Comparison of Benchtop High-Throughout
Sequencing Platforms. Nature Biotechnology 2012, 30:434-9.

17. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nature Methods 2012, 9:357-359.

18. Mahoney M: ZPAQ compression software [http://mattmahoney.net/dc/zpaq.
html].

doi:10.1186/1471-2105-15-S9-S7
Cite this article as: Rozov et al.: Fast lossless compression via cascading
Bloom filters. BMC Bioinformatics 2014 15(Suppl 9):S7.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 8 of 8



Chapter 3

Recycler: an algorithm for

detecting plasmids from de novo

assembly graphs

31



Genome analysis

Recycler: an algorithm for detecting plasmids

from de novo assembly graphs

Roye Rozov1, Aya Brown Kav2, David Bogumil2, Naama Shterzer2,

Eran Halperin1,3,4, Itzhak Mizrahi2,* and Ron Shamir1

1Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel, 2The Department of Life Sciences &

the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel,
3Molecular Microbiology and Biotechnology Department, Tel-Aviv University, Tel Aviv, Israel and 4International

Computer Science Institute, Berkeley, CA, USA

*To whom correspondence should be addressed.

Associate Editor: Prof. Alfonso Valencia

Received on June 25, 2016; revised on September 22, 2016; accepted on October 9, 2016

Abstract

Motivation: Plasmids and other mobile elements are central contributors to microbial evolution

and genome innovation. Recently, they have been found to have important roles in antibiotic resist-

ance and in affecting production of metabolites used in industrial and agricultural applications.

However, their characterization through deep sequencing remains challenging, in spite of rapid

drops in cost and throughput increases for sequencing. Here, we attempt to ameliorate this situ-

ation by introducing a new circular element assembly algorithm, leveraging assembly graphs pro-

vided by a conventional de novo assembler and alignments of paired-end reads to assemble cyclic

sequences likely to be plasmids, phages and other circular elements.

Results: We introduce Recycler, the first tool that can extract complete circular contigs from se-

quence data of isolate microbial genomes, plasmidome and metagenome sequence data. We

show that Recycler greatly increases the number of true plasmids recovered relative to other

approaches while remaining highly accurate. We demonstrate this trend via simulations of plasmi-

domes, comparisons of predictions with reference data for isolate samples, and assessments of an-

notation accuracy on metagenome data. In addition, we provide validation by DNA amplification of

77 plasmids predicted by Recycler from the different sequenced samples in which Recycler showed

mean accuracy of 89% across all data types—isolate, microbiome and plasmidome.

Availability and Implementation: Recycler is available at http://github.com/Shamir-Lab/Recycler

Contact: imizrahi@bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plasmids are extra-chromosomal DNA segments carried by bacterial

hosts. They are usually shorter than host chromosomes, circular and

encode nonessential genes. These genes are responsible for either

plasmid-specific roles such as self-replication and transfer, or

context-specific roles that can be beneficial or harmful to the host

depending on its environment. Along with viruses and transposable

elements, plasmids are members of the group termed mobile genetic

elements (Doring and Starlinger, 1984) as they transmit genes and

their selectable functions between microbial genomes. Plasmids play

a central role in horizontal gene transfer (Halary et al., 2009), and

thus genome innovation and plasticity—fundamental forces in mi-

crobial evolution. Much interest has recently arisen for plasmid ex-

traction and characterization, in particular because of their known

roles in antibiotic resistance and in increasing metabolic outputs of

agricultural or industrial byproducts. For instance, antibacterial re-

sistance genes encoded on plasmids have long been known as a

major issue for human health in clinical practice (Neu, 1992), but

are also one of today’s standard tools in microbiology and genetics

VC The Author 2016. Published by Oxford University Press. 475

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(4), 2017, 475–482

doi: 10.1093/bioinformatics/btw651

Advance Access Publication Date: 24 November 2016

Original Paper



when used to select for specific cells (Bevan et al., 1983). In order to

derive plasmid sequences (which may be known or novel), one may

choose from the following approaches: sequence already isolated

microbes with their residing plasmids, sequence the overall micro-

bial community of genomes (termed metagenome) from some envir-

onment or, as was recently described, sequence only the overall

plasmid fraction from a given environment [termed plasmidome

(Brown Kav et al., 2012, 2013)]. The first technique obtains a mix-

ture of chromosomal and plasmid DNA occurring together in a sin-

gle strain. Since sequenced reads are devoted to only a few different

sequenced DNA elements (the genome in question or any of its mo-

bile elements), each is expected to be highly covered, and thus for

species having low repeat content a good assembly can be achieved.

For natural environments containing many elements, often

including those that are difficult to culture (Gilbert and Dupont,

2011) in a lab, metagenome assembly is attempted. This technique

allows a much broader view of all taxa present and their plasmids,

but is limited in that the characterization of each individual element

depends on its coverage in the mixed DNA sample and the fre-

quency of co-occurring repeats shared among different elements of

the sample. Resulting assembled genomes of elements that are rare

in the environment are thus often fragmented, and very high cover-

age (Howe et al., 2014) is needed for accurately assembling them.

However, assembly of metagenomes remains a highly active area of

research: current assembly outputs are lacking and do not represent

the true genetic capacity and synteny of genomes present in complex

microbial communities. Since most of the DNA in these environ-

ments is due to host genomes, this approach currently provides only

limited resolution of plasmids.

Most recently, a third technique has emerged that allows recovery

of far greater numbers of plasmids. Plasmidome sequencing (Brown

Kav et al., 2012, 2013; Jørgensen et al., 2014) allows nearly all

sequencing resources to be devoted to circular DNA. Using a proto-

col described in (Brown Kav et al., 2012), chromosomal DNA is fil-

tered out and circular DNA segments are selectively amplified. Based

on this protocol, hundreds of new plasmids were identified in the

cow rumen (Brown Kav et al., 2013) and rat cecum (Jørgensen et al.,

2014). Jørgensen et al., (2014) applied the protocol introduced in

Brown Kav et al. (2012) combined with bioinformatic validation of

circularity. This post-assembly analysis resulted in a 95% PCR valid-

ation rate out of 40 randomly selected assembled contigs. This suc-

cess raises the prospect of in silico refinement of plasmids beyond the

initial assembly. Although Jørgensen et al.’s method was shown to

have a high validation rate, its output is limited by the contiguity of

the underlying assembler’s contigs [in their case IDBA-UD (Peng

et al., 2012)], because it provides no means of combining multiple

overlapping contigs to form cycles. It is a filtering process meant to

identify probable circular sequences among sequences already output

by the assembler. To date, no tools for plasmid assembly from short

reads have been introduced to address these limitations.

In all of the above approaches plasmid assembly is hindered by

several inherent characteristics derived from their mobile nature.

These characteristics include their tendency to carry repetitive elem-

ents such as insertion sequences and to share genes with other plas-

mids and microbial genomes. In the context of de novo assembly,

repeats cause collapse of linear sequences sharing them as subse-

quences. This creates ambiguity in the sense that it becomes unclear

which extensions entering the repeat should be paired with those

exiting it, where sequences begin and end, and whether there are

unique terminal points at all as opposed to the sequence being circu-

lar. De novo assembly for the sake of identifying plasmids can be

augmented by long-read sequencing (Conlan et al., 2014; Hunt

et al., 2015) because such reads may be sufficiently long to bridge re-

peats short reads cannot. However, this approach is primarily lim-

ited to isolates or low complexity environments. This is evident in

that long reads often depend on single molecule sequencing without

amplification, thus only capturing relatively abundant DNA frag-

ments. Besides repeats, chimeric sequences also present significant

challenges to assembly, in that they create false connections between

sequences and thus may lead to mis-assemblies.

To overcome some of these challenges, Antipov et al., (2016),

introduced plasmidSPAdes, an extension of the SPAdes assembler

(Bankevich et al. (2012) that identifies likely ‘plasmid components’

in isolate whole genome sequencing experiments. This method looks

for long contigs in the assembly graph that are sufficiently different

coverage from those of the host genome. Here, we take a different

approach to improve discovery of sequenced plasmids. We similarly

analyze assembly graphs, but consider all nodes instead of paring

the graph around long contigs. In addition to coverage, we also in-

corporate paired-end read mappings and topology, only reporting

cycles when there is sufficient evidence that they are physically sep-

arate entities. We also accept as input any assembly graph, making

our method applicable to isolate as well as metagenome and plasmi-

dome samples.

Our inputs are an assembly graph G¼ (V,E), and the mapping

of paired-end reads responsible for the assembly to its nodes. The set

of nodes V are sequences having associated lengths and coverage lev-

els, and the set of arcs E is composed of directed connections among

the nodes. Arcs are the result of branch points in the underlying de

Bruijn graph: a branch node has outgoing arcs to two (or more) dif-

ferent nodes based on overlaps, and in many cases, the assembler

does not have a definite way of choosing which extension is true in

order to simplify the branch into a linear path. We aim to generate a

set of putative cycles that are likely to be plasmids, and assign a

coverage level for each one.

After defining this problem formally below, we present an algo-

rithm (and its implementation) designed to address it, called

Recycler. Recycler leverages assembly graphs output by SPAdes to

specifically enable de novo assembly of plasmids and other cyclic se-

quences likely to be physically separated from the rest of the se-

quences present. We show it greatly improves recovery of plasmids

over naive assembly and alternative methods, namely Jørgensen’s

and SPAdes’ built-in repeat resolution, introduced in (Prjibelski

et al., 2014) and performs similarly to plasmidSPAdes on isolate

sample inputs. We demonstrate Recycler’s performance by applying

it on both simulated and real data. We find that Recycler greatly in-

creases recall while maintaining high precision. This is established

via comparisons performed on simulated plasmidomes of various

sizes. We also show that Recycler can be applied for plasmid assem-

bly on real data from a bovine rumen plasmidome and metagenome,

and from two different Escherichia coli isolate strains. In the isolate

cases, Recycler recovered most known plasmids, and predicted add-

itional sequences that matched known mobile elements from differ-

ent hosts—all of which were identical or nearly identical to known

reference sequences. In all cases on real data, Recycler either

matched or exceeded the proportion of outputs matching plasmid

annotation, as described in Brown Kav et al. (2013).

1.1 Related work
We note plasmid assembly is a multi-assembly problem, as described

in the context of RNA-Seq transcriptome assembly (Pertea et al.,

2015). Formulations of such problems often aim to generate a min-

imal set of paths that maximize agreement with observed data

476 R.Rozov et al.



(Pertea et al., 2015; Tomescu et al., 2013; Trapnell et al., 2010).

These methods usually employ network flow formulations, which

admit polynomial-time algorithms for minimizing flow cost on the

network; this flow corresponds to a convex function of the sum of

coverage differences between observed and estimated coverage lev-

els. However, these methods resort to heuristics in selecting a min-

imal set of paths to cover the entire graph, as splitting a flow into a

minimal number of path and cycle components is an NP-hard prob-

lem (Hartman et al., 2012).

Recycler does not aim to generate a set of paths explaining all

coverage levels, and thus does not depend on a global objective func-

tion encompassing all nodes or edges. This approach is avoided be-

cause of the presence of linear paths due to either plasmids not fully

covered during sequencing or bacterial host genomes housing plas-

mids, which may introduce noise into coverage levels observed and

will not be part of the solution. Avoiding a global objective impos-

ing parsimony on paths also allows Recycler to benefit from a poly-

nomial time algorithm for generating ‘good’ cycles. Thus, Recycler’s

approach is similar to StringTie (Pertea et al., 2015), in that both re-

peatedly seek locally best paths or cycles and use coverage levels esti-

mated on those to update coverage levels on the original graph, until

some stopping criterion is met. We note the set of cycles desired is

explicitly not minimal, as in cycle cover formulations (Gross et al.,

2013). For example, given a figure 8 component (Supplementary

Figure S1, panel I), Recycler may represent it as two cycles separated

by distinct coverage levels, where a minimal cover would use only

one cycle. Instead, we wish to cover as much of the graph as possible

with ‘good’ cycles.

2 Methods

2.1 Overview of recycler
The inputs to Recycler are a FASTG file representing a directed

graph with vertices corresponding to non-branching sequence con-

tigs and edges corresponding to connecting overlapping k-mers, and

a BAM file of paired-end read mappings to the graph’s nodes. The

graph can be viewed as a compacted de Bruijn graph starting from

order k of the sequence data by contracting edges (u, v) whenever u

has outdegree 1 and v has indegree 1, and the sequence contig of the

new node replacing u and v is the concatenation of their sequences.

Each node has a coverage value reflecting its abundance in the input

sequences. We search for cycles in the graph that will correspond to

plasmids. Cycle sequence length, number of vertices and coverage

uniformity are factored in the selection process. We also use paired-

end read mappings including mates on different nodes as a proxy for

which of the nodes may have emerged from the same physical DNA

fragment. This provides a means of inferring whether a candidate

cycle is a plasmid or a genomic segment including repeats that lead

to ambiguous cycles in the graph. Once a best cycle is selected, its la-

tent coverage level is determined and subtracted from those of all

participating nodes. Nodes whose resulting coverage values become

non-positive are then removed from the graph, allowing only those

with some remaining coverage the opportunity to take part in add-

itional cycles. Hence, the whole process can be viewed as greedily

‘peeling off’ cycles from the graph. Ideally, one would like the pro-

cess to end in an empty graph, in which case the input graph would

be exactly the union of the cycles found. In reality, the process is

stopped when quality criteria for new cycles in the remaining graph

are unmet.

2.2 Notations and definitions
Our input is a directed graph G ¼ ðV;EÞ, where V is a set of linear

sequences having either a branch-point or terminal k-mer at each

end and no internal branch-points. E is the set of overlaps between

nodes, where E¼ {(u,v): the (k � 1)-mer suffix of u¼ the (k � 1)-

mer prefix of v}. We call a node simple if its indegree and outdegree

are 1. A node v corresponding to sequence s of length l(s) is assigned

two positive values, len(v) and cov(v). lenðvÞ ¼ lðsÞ � kþ 1 is called

the length of the node (the subtraction is in order avoid double-

counting bases common to overlapping segments at their ends).

cov(v), its coverage, reflects the average number of times each k-mer

in s appears in the input read data. The input can be produced by a

short read assembly tool. We further assign a weight wðvÞ
¼ 1

lenðvÞcovðvÞ for each node v, resulting in low weight for high cover-

age and long nodes. Longer contigs tend to be less prone to random

fluctuations in coverage, and are thus more reliable coverage indica-

tors. For each cycle c in the graph, we assign each node a value rep-

resenting its length fraction in c: f ðc; vÞ ¼ lenðvÞP
v02c

lenðv0 Þ. The value f(c,

v) is used to define the mean and standard deviation of weighted

coverage of cycle c as lðcÞ ¼
P

v2c f ðc; vÞcovðvÞ and

STDðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v2c f ðc; vÞðcovðvÞ � lðcÞÞ2
q

, respectively, and conse-

quently the coefficient of variation of c, CVðcÞ ¼ STDðcÞ
lðcÞ . CV(c) is

used to allow direct comparison of variation levels between cycles,

independently of the magnitude of coverage of each. CV(c) is indica-

tive of coverage uniformity along c, and plasmids are expected to

have uniform coverage levels that in many cases are different from

other plasmids and their hosts. Thus, cycles with low CV values are

more likely to correspond to plasmids than cycles with high CV

values.

2.3 Our approach
Intuitively, plasmids should form cycles that are distinctive from the

rest of the graph and have near uniform coverage. We also expect

plasmid cycles to include few nodes, as each additional node intro-

duced for a fixed sequence length increases fragmentation and the

tendency of nodes to be common to more than one path. With this

in mind, we search for ‘good cycles’ in the graph that potentially

correspond to plasmids. Formally, we define a good cycle as a sim-

ple cycle in the graph satisfying the following constraints:

1. Minimum path weight for some edge: 9ðu; vÞ 2 c such that cnðu;
vÞ (the path obtained by removing (u, v) from c) is a minimum

weight path (by sum of weights w(v)) from v to u.

2. Low coverage variation: CVðcÞ � s
jcj, where s is a defined

threshold and jcj is the number of nodes in.

3. Concordant read mapping: For pair r1, r2 of paired-end mates, if

r1 maps to a simple node in c then r2 must also map to some

node in c.

4. Sufficient sequence length:
P

v2c lenðvÞ � L, where L is a defined

threshold.

The first constraint is critical in order to avoid merging of two or

more plasmids that are connected through a repeated region

(Supplementary Figure S1, panel I). In addition, lower weight cycles

correspond to longer sequence length and higher coverage nodes,

and tend to have fewer nodes. Furthermore, for each edge this con-

straint uniquely determines at most one cycle that passes through

the edge, thus avoiding consideration or enumeration of an expo-

nential number of possible cycles. We note there are special cases

allowing for cycles that visit a single node more than once; such a

Recycler: an algorithm for detecting plasmids from de novo assembly graphs 477



case is shown in Supplementary Figure S1, panel II. The second con-

straint ensures that the coverage variation is low, thus again increas-

ing our confidence that the cycle corresponds to exactly one

plasmid. Moreover, this constraint implicitly ensures high coverage

cycles, since low coverage cycles tend to have higher CV value. The

third constraint exploits paired-end reads. Suppose we have a read

pair r1, r2 and r1 maps to a certain node in the candidate cycle c. We

expect r2 to map to the same cycle, unless r1 falls on a node that is

common to c and some other path p overlapping with it. In that case

r2 may map p to as well. Simple nodes are less likely to overlap with

several cycles and paths, and the third constraint leverages this ob-

servation. We waive this constraint in case the coverage of c is suffi-

ciently high, as in such cases the cycle ‘stands out’ from the

background coverage. See Supplementary Material for details.

The above definition of a good cycle provides a mechanism for

the identification of putative plasmids. Recycler processes each

strongly connected component separately. It repeatedly finds a good

cycle with minimum CV value, assigns it latent coverage equal to

the mean cycle coverage and subtracts that coverage from the graph,

creating a new residual coverage (Fig. 1). The weights of the vertices

in the cycle are updated based on their new coverage values, and ver-

tices whose resulting coverage values become non-positive are

removed from the graph, allowing only those with positive residual

coverage the opportunity to take part in additional cycles. After

each such change, cycles are recalculated the same way using the

updated coverage levels. This process continues as long as new good

cycles are found. To avoid examining a potentially exponential

number of cycles, we consider one minimum weight cycle through

each edge in the graph. The algorithm selects the cycle with the low-

est CV among these minimum weight cycles and ‘peels it off’ the

graph. Algorithm 1 sketches the procedure for a single component.

See the Supplementary Material for additional details.

2.4 Complexity
Algorithm 1 presented above terminates in polynomial time. In each

iteration, if any good cycles exist, one is chosen and its mean cover-

age is calculated. There is at least one node in the cycle with cover-

age smaller than the mean coverage of the cycle, which is

subsequently removed from the graph. Therefore, in each iteration

at least one node is removed, and the number of iterations is

bounded by the number of nodes. Using Johnson’s algorithm

(Johnson, 1977), the runtime of each iteration is

OðjVj2 log ðjVjÞ þ jVjjEjÞ. Running times are further reduced by

Fig. 1. Recycler work-flow. An example is shown of generating candidate cycles and peeling off cycles iteratively. For simplicity, all lengths are assumed to be

equal and not shown. Here, we consider only candidate cycles that pass through vertex x, but ordinarily such candidates would be generated for each vertex in

the component, and the cycle with lowest CV will be chosen and peeled off. (A) The assembly graph. (B) A single component is selected from the assembly graph

(framed in A) and represented with vertices for contigs and edges for connecting k-mers. (C) The reduced component after tip removal. The numbers next to verti-

ces are their observed contig coverage. Since vertex x has two incoming edges from vertices b and c, two candidate cycles are generated that pass through edges

(b, x) and (c, x), respectively. This is done by computing shortest paths from x to b ðx ; e;d;g;h; i; j ;b;CV ¼ 0:20; shown in DÞ and from x to c

ðx ; e;d ;g;h; c;CV ¼ 0:41; not shown Þ. Two successive steps of peeling cycles are shown with their respective latent coverage assignments. First, the cycle in D is

peeled off because the CV calculated from initially observed coverage is lowest for this cycle. Uncolored vertices correspond to contigs with zero coverage that

are removed

478 R.Rozov et al.



computing the strongly connected components of and working sep-

arately on each one.

2.5 Generating simulated plasmidomes
We simulated error-free paired-end reads from plasmids using

BEAR (Johnson et al., 2014), a read simulator designed to generate

artificial metagenome data. To avoid introducing coverage drops at

sequence ends typical of linear sequences, we modified BEAR

(https://github.com/rozovr/BEAR) to allow sampling of reads bridg-

ing reference sequence ends, as is observed for circular sequences.

Plasmid reference sequences were selected from the NCBI plasmids

database and from plasmid sequences reported in (Brown Kav et al.,

2013), filtered to include 2760 sequences with a length range of 1–

20 kbp with a mean of 6337 bp. Five datasets were created, com-

posed of 100 bp mates (read pair ends), with insert sizes, varying

from 1.25 M pairs sampled on 100 reference sequences doubling

successively up to 20 M pairs sampled on 1600 sequences.

Abundance levels were assigned using BEAR’s low complexity op-

tion, which concentrates high abundance to few species using a

power function with parameters derived from (Pignatelli and Moya,

2011): the function takes the form cid, where c¼31.4 and

d ¼ �1:28, and i is iteratively assigned values from 1 to the number

of species simulated. These values are then normalized by their sum

to yield a probability distribution.

2.6 Evaluating performance
To test recovery of the ground truth sequences by each plasmid de-

tection program, we used the Nucmer alignment tool (Kurtz et al.,

2004), which is designed for efficiently comparing long nucleotide

sequences such as those of whole plasmids or chromosomes. In

order to simplify this process, we modified reference sequences to re-

move non-ACGT characters before read simulation and alignments.

To avoid fragmented alignments caused by differences in start

positions, we concatenated each reference sequence to itself before

mapping; this allowed identification of complete matches at the cen-

ter of the concatenated contigs when they were present. Output

cycles of each tested program were defined as true positives (TP) if

they had 100% identity hits covering at least 80% of one of the ref-

erence sequences. False positives (FP) were any output cycles not

meeting these criteria, and false negatives (FN) were reference se-

quences not aligned to in the output set using these criteria. Based

on these conventions, precision ¼ TP
TPþFP and recall ¼ TP

TPþFN. We used

the F1 score (Powers, 2011) to combine these measures in a manner

that weighs precision and recall equally.

2.7 Primer design and PCR validation of plasmid contigs
The plasmidome dataset was divided into two separate subsets,

including simple (single node) cycles (N¼370) and complex (multi-

node) paths within the graph (N¼50). Each of these was divided

into coverage bins, and selected representatives from each bin (High

coverage: 60–1000x, mid–high coverage: 15–60x, mid-low cover-

age: 5–15x, low coverage: 1–5x) were validated by PCR. Overall, 24

simple cycles and 39 complex cycles were chosen for PCR valid-

ation. From the metagenome dataset (N¼40), all assembled plas-

mids were of the same coverage bin (1–5X) and 10 of them were

randomly selected for validation. This was also the case for the E.

coli E2022 isolate (N¼4) for which all plasmids were validated by

PCR, aside from a recovered Phi X control sequence. Primers were

designed to produce an amplification product only if their template

is circular; this was achieved by directing the opposing primers to-

wards the edge of the linear plasmid contig. PCR reactions were car-

ried out using Advantage GC Genomic LA PCR Polymerase

(Clontech) according to the manufacturer’s instructions. The PCR

reactions were as follows: 1.5 ll Advantage buffer (10�), 0.6 ll of

each primer (5 mM), 0.15 ll Ex Advantage GC Genomic LA DNA

Polymerase, 100 ng of template DNA, 1.5 ll of dNTPs (10 mM) and

DDW was added to a final volume of 25 ll. All PCR reactions were

carried out in a Sensoquest thermocycler (Gottingen, Germany).

3 Results

We first simulated plasmidomes using known references. We used

these data sets to assess Recycler’s precision and recall (along with

those of alternative methods) by comparing predictions against the

ground truth known by the simulation design. We also tested

Recycler on real data from two E. coli isolates, and both a cow

rumen metagenome and plasmidome (Brown Kav et al., 2013). For

the bacterial isolates that have been sequenced, predicted plasmids

were compared against the reference sequences directly. Since no

references are available for metagenome and plasmidome data, we

evaluated the accuracy by PCR validation (Jørgensen et al., 2014)

and by measuring the proportion of predicted plasmids having

proper annotation as done in (Brown Kav et al., 2013). Recycler’s

inputs were assembly graphs generated by SPAdes version 3.6.2

(Bankevich et al., 2012), and alignments generated by BWA version

0.7.5 (Li and Durbin, 2009).

3.1 Simulated plasmidomes
We simulated paired-end reads from known plasmids, and created

five datasets of 100, 200, 400, 8000 and 1600 plasmids. Plasmid

abundance was distributed so that few plasmids have high abun-

dance. Dataset sizes were 1.25, 2.5, 5, 10 and 20 M pairs, respect-

ively (see Methods for details). Each such dataset was assembled

with SPAdes and subsequently its output contigs and assembly

Algorithm 1: Finding good cycles and peeling them off each

component

Data: G ¼ ðV;E; len; cov;wÞ; s;L
Result: R, the set of cycles

Compute shortest cycles passing through each edge;

for each edge (u, v) do

Compute a minimum weight path p from v to u, if one

exists;

Compute the CV of the cycle ðp; ðu; vÞÞ;
end

Return the set of cycles S;

while R changes do

Compute a set S of shortest cycles passing through each

edge

Consider each cycle c in S in increasing order of CV values

if c is good and not in R then

Add c to R
Compute the latent coverage level of c

Update the residual coverage of all cycle nodes, removing

nodes with non-positive residual coverage

else

end

end

Recycler: an algorithm for detecting plasmids from de novo assembly graphs 479



graphs were used as inputs to the tested methods. Recycler was com-

pared with SPAdes with and without repeat resolution (RR), and

with a simplified version of Jørgensen’s method (described in the

Appendix). We used SPAdes’ outputs before the repeat resolution

stage as inputs to Recycler and to Jørgensen’s method, as we found

that contigs have greater precision before RR when compared to ref-

erence sequences (as shown in Supplementary Table S1). The map-

ping results are presented in Supplementary Table S1 and Figure 2.

As expected, recall generally decreased as the number of simu-

lated plasmids increased. This was common to all tested methods. In

general, we found that Recycler generated more predictions than

other methods, leading it to have higher recall than alternative

approaches while maintaining high (�90%) precision. The net per-

formance effect is shown in Figure 2 and Supplementary Table S1 in

the supplement: Recycler maintains the lead in all cases with 5–14%

advantage in both F1 and fraction of true positives. We also found

that the number of additional Recycler true positives over those pro-

vided by SPAdes generally increased with higher complexity; this

culminated in Recycler adding 62 (13%) true positives to SPAdes’

output on the 1600 plasmid set (523 versus 461).

To further characterize Recycler’s performance, we categorized

its predictions in terms of mean total cycle length, number of seg-

ments in the cycle (steps), cycle coverage and CV value calculated at

the stage the cycle was removed. For each category, values were sub-

divided into five ranges. In Supplementary Figure S2, we show the

precision values and the relative proportions of counts in the speci-

fied ranges. Based on this stratification, it can be seen that Recycler

shows little dependence on mean coverage or length, but does often

preclude candidate cycles that have high CV values or number of

steps. This is reflected in the sharp drop-off in the plots as the num-

ber of steps or the CV grows.

3.2 Real data
All of Recycler’s results on real data were subjected to quantification

of annotation results as described in (Brown Kav et al., 2013) and

compared against cycles present in the output produced by SPAdes.

These results are detailed below and a summary of them can be

found in Supplementary Table S2 in the Appendix.

3.2.1 Circular integrity of assembled plasmids

A total of 77 sequences were selected for PCR validation by sam-

pling from the different data types as described in the Section 2.7

above. Overall, 89% of the 77 chosen plasmids were validated by

PCR as circular DNA molecules. The predicted plasmids from the

different samples did not differ in the success rate of circular valid-

ation. As coverage has a key role in de novo assembly and Recycler’s

performance, we wished to measure whether the integrity of

assembled plasmids would be affected by varying mean k-mer cover-

age. To this end, we validated circularity of plasmids of different

coverage levels ranging from 1x to 1000x divided into bins. As can

be seen in Figure 3, there was a slightly lower success rate for the

lower coverage plasmids. However, coverage and validation rate

were not found to be significantly correlated. Additionally, the high

number of predicted plasmids in the plasmidome data set allowed us

to measure the effect of the complexity of the path in the graph on

the integrity of the plasmids. When more edges are involved in a

cycle, it is more complex, and the chance of noise in coverage levels

and errors in sequence increases. Thus, we divided this dataset into

two bins according to path length on the graph: simple: single node

(self-edge) paths, complex: two nodes or more. These two bins did

not show difference in their validation rate, further stressing

Recycler’s strength in extracting plasmids from complex paths.

3.2.2 E. coli isolate data

We ran Recycler on two E. Coli strains: JJ1886, downloaded from

http://www.ebi.ac.uk/ena/data/view/SRX321704, and E2022,

sequenced locally. Annotation for plasmids found in both strains

was provided in (Lanza et al., 2014); comparisons against Recycler

outputs with this annotation are reported in Supplementary Tables

S3 and S4. Of the five plasmids known for JJ1886, Recycler output

four complete matches (100% identity over 100% length) having

lengths 55.9, 5.6, 5.2 and 1.6 kbp. It also output three additional se-

quences which completely matched previously reported plasmids:

two are known to be present in S. Aureus, and one in S.

Chromogenes. Further tests will be needed in order to validate

whether these additional hits are truly present in the sequenced sam-

ple, and furthermore, whether they are stable residents of the tested

hosts or were present as a result of contamination. When tested on

E2022, Recycler performed similarly, recalling most of its known

plasmids and outputting a few additional cycles that were complete

or near complete matches to known plasmids and one phage. These

results are also presented in Supplementary Table S2. In summary,

all reported isolate hits represent highly accurate matches to known

mobile elements, and most known plasmids for these strains were re-

covered. In both cases, Recycler missed the longest known reference

plasmids; it remains to be seen whether this is due to Recycler’s use

of a shortest path formulation, lack of significant coverage differ-

ence between these plasmids and the host genome, or other factors.

3.2.3 Plasmidome data

A bovine rumen plasmidome sample was prepared as described in

(Brown Kav et al., 2013). This data consisted of 5.1 M paired-end

101 bp reads (trimmed to varied sizes for the sake of adapter re-

moval) with an expected insert size of 500 bp [data available upon

request]. Recycler output 420 cycles when provided this data.

According to ORF prediction performed as in (Brown Kav et al.,

2013), 314 of the 420 had significant annotation hits. 96% of those

matching annotations either matched plasmid annotations or

aligned with plasmids reported in (Jørgensen et al., 2014). Thus, a

majority are likely to be plasmids.

Fig. 2 Methods performance on simulated data. Results are shown for

SPAdes without repeat resolution (RR), SPAdes with repeat resolution, the

method of Jørgensen et al., and Recycler. The contigs of SPAdes before RR

were used as input for the three other methods. Recycler also relied on the

graph produced at this stage. F1 score calculation is described in the main

text. The x axis shows the number of simulated reference sequences in each

case

480 R.Rozov et al.



3.2.4 Metagenome data

Metagenome data was derived from the rumen of a different cow

residing in the same stable as the cow used to derive the plasmidome

data. This data consisted of 7.5 M paired end 150 bp reads with ex-

pected insert size of 500 bp [data available upon request]. Recycler

produced 40 cycles when run on this data. According to ORF pre-

diction, 37 of the 40 had significant annotation hits. About 35% of

those matching annotations either matched plasmid annotations or

aligned with plasmids reported in Jørgensen et al., (2014). The pro-

portion of reported cycles matching known plasmid annotations

was slightly higher than for simple cycles output by SPAdes (33%).

Overall, this test reflects the trend seen elsewhere (Howe et al.,

2014) of weak annotation results emerging from metagenome as-

sembly of highly diverse environmental samples.

3.2.5 Comparison with PlasmidSPAdes

Recently, a version of SPAdes tailored for seeking plasmids in iso-

lates, called PlasmidSPAdes, was introduced (Antipov et al., 2016).

Unlike Recycler, it does not explicitly seek cycles but removes long

edges in the de Bruijn graphs and looks for contigs with coverage

significantly different from the mean coverage of the read data. The

rationale is that for isolates the coverage distribution is dominated

by the host bacterium reads, and the reads of plasmids can be de-

tected as outliers in that distribution. This assumption does not fit

plasmidome or metagenome data. PlasmidSPAdes’ output is a set of

components, each containing a set of contigs with similar mean

coverage that putatively originate from the same plasmid. We ran

PlasmidSPAdes (packaged with SPAdes 3.80) on the two E. coli

datasets described above, and compared the results with Recycler’s

(Supplementary Tables S5 and S6). For E2022, four out of the seven

components reported by PlasmidSPAdes matched Recycler’s out-

puts; the shortest of these was among the PCR validated sequences

not present in the reference set. Of the three not matching, two seem

to have chromosomal origin based on a BLAST search performed on

the longest contigs in these components, and the fact that these com-

ponents had largely tree-like structure: less than half of the compo-

nent’s total length was included in a cycle. Recycler reported one

cycle of length 2.1 kb missed by PlasmidSPAdes that was in the ref-

erence set. Neither tool succeeded in recovering the longest two plas-

mids in the reference set.

For JJ1886, three out of the nine components reported matched

Recycler’s. Of the other six, five likely have chromosomal origin as

assessed by the same criteria used for E2022, and one matched a

likely plasmid. However, four of these five aligned best with the gen-

ome of S. Aureus. Recycler reported three additional short sequences

between 1.6 and 2.4 kb, each of which had high scoring BLAST hits

to plasmids in S. Aureus or S. Chromogenes. As some of the plas-

mids reported by both tools also matched S. Aureus origin, it is pos-

sible that the JJ1886 sample contained a mixture of both cell types.

We note that such a mixture could mislead PlasmidSPAdes’ esti-

mates of coverage variation, thus allowing large chromosomal frag-

ments to survive filtration.

Overall, aside from the S. Aureus sequences observed, the two

tools performed similarly on isolate data. This is consistent with the

comparison presented in (Antipov et al., 2016). In addition,

Recycler can process metagenome and plasmidome graphs, while

PlasmidSPAdes can find non-circular plasmids. The two methods

primarily differ (when processing isolate data) in what they report

for difficult cases involving repeats that are either long or shared by

many paths. When Recycler cannot derive a unique circular se-

quence from a graph component, the component is not included in

the output. For PlasmidSPAdes, such components are reported as

groups of contigs. In either case, more information (such as long

reads) would be needed in order to properly resolve these cases.

4 Discussion

In this article, we describe Recycler, a new algorithm and the first

tool available for identification of plasmids from short read-length

deep sequencing data. We demonstrate that Recycler discovers plas-

mids that remain fragmented after de novo assembly. We have

adapted the approach of choosing among likely enumerated paths

using coverage and length properties (often applied in transcriptome

assembly (Pertea et al., 2015; Tomescu et al., 2013; Trapnell et al.,

2010) for extracting a specific but common inhabitant of metage-

nomes. We showed that many more real plasmids can be found by

only generating likely cycles on the assembly graph versus alterna-

tive methods. We validated this approach on both real and simu-

lated data.

Recycler displays high recall and precision on simulated plasmi-

domes, and we have developed a means of separating real plasmids

from cycles due to repeats in isolate data. As we have noted, cover-

age can be very useful for the latter, but the assumption that cover-

age will always differ significantly between plasmids and their host

Fig. 3. PCR based validation of Recycler’s plasmid predictions. High coverage: 60–1000x, med–high:15–60x, med–low: 5–15x, low: 1–5x

Recycler: an algorithm for detecting plasmids from de novo assembly graphs 481



genome does not hold universally. It is worth noting that as new

plasmids are identified and their common sequence motifs are

observed, both reference-based identification and a priori trained

prediction of plasmid features can be improved and harnessed for

supplementing identification based on coverage and length features

alone. We aim to investigate how such knowledge can be leveraged

for increased precision without sacrificing recall.

Furthermore, while Recycler’s peeling of lowest CV paths at

each step has the advantage of providing a deterministic rule to de-

cide which cycles should be peeled next, this process is heuristic.

Better accounting of the uncertainty in observed coverage levels and

in the algorithm’s dependence on the order of peeling may be ob-

tained by randomizing or repeating parts of the process multiple

times. For example, instead of always peeling one best cycle, a ran-

dom subset of all good cycles may be peeled at once. Repeating this

process multiple times and reporting only cycles that persist in a ma-

jority of runs may improve both sensitivity and precision.

Further investigation will be needed to assess how plasmids can

be extracted from environmental samples, in spite of the limitations

now hampering metagenome assembly. This is currently challeng-

ing, as diverse genomes require very high coverage for rare species

to be captured, but such high coverage data demand computational

resources beyond reach of most investigators. While new techniques

have aimed to address this problem (Cleary et al., 2015; Howe

et al., 2014), they have yet to see widespread use, and work best

when paired with multiple samples to allow for species separation

by co-abundance signatures. Along with addressing these concerns,

it remains to be seen whether a mixed approach of pre-screening en-

vironmental samples for plasmids and computationally filtering

them out may benefit metagenome graph simplification.

Acknowledgements

RR wishes to thank Kobi Perl and David Pellow for helpful comments given

in the preparation of the manuscript.

Funding

This work was supported in part by the Israel Science Foundation [grants no.

1425/13 to EH, 317/13 to RS, and 1313/13 to IM], and the Israel Science

Foundation-National Natural Science Foundation of China joint program

2015-18 to RS. Additional support was provided by the European Research

Council under the European Union’s Horizon 2020 research and innovation

program [grant agreement No 640384 to IM] and the Israeli Center of

Research Excellence (I-CORE), Gene Regulation in Complex Human

Disease, Center No [Grant 41/11 to RS]. RR was supported in part by a fel-

lowship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv

University, an IBM PhD fellowship, and by the Center for Absorption in

Science, the Israel Ministry of Immigrant Absorption. EH is a Faculty Fellow

of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University.

Conflict of Interest: none declared.

References

Antipov,D. et al. (2016). plasmidSPAdes: Assembling Plasmids from Whole

Genome Sequencing Data. Technical report.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bevan,M.W., Flavell,R.B. and Chilton, M.D. (1983) A chimaeric antibiotic re-

sistance gene as a selectable marker for plant cell transformation. Nature,

304, 184–187.

Brown Kav,A. et al. (2012) Insights into the bovine rumen plasmidome. Proc.

Natl. Acad. Sci. USA, 109, 5452–5457.

Brown Kav,A. et al. (2013) A method for purifying high quality and high yield

plasmid DNA for metagenomic and deep sequencing approaches. J.

Microbiol. Methods, 95, 272–279.

Cleary,B. et al. (2015) Detection of low-abundance bacterial strains in metage-

nomic datasets by eigengenome partitioning. Nat. Biotechnol., 33, 1053–1060.

Conlan,S. et al. (2014) Single-molecule sequencing to track plasmid diversity

of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci.

Translat. Med., 6, 254ra126.

Doring,H. and Starlinger,P. (1984) Barbara McClintock’s controlling elem-

ents: now at the DNA level. Cell, 39, 253–259.

Gilbert,J.A. and Dupont,C.L. (2011) Microbial metagenomics: beyond the

genome. Annu. Rev. Mar. Sci., 3, 347–371.

Gross,J.L. et al. (2013) Handbook of Graph Theory, 2nd edn. Chapman &

Hall/CRC, Boca Raton, FL.

Halary,S. et al. (2009) Network analyses structure genetic diversity in inde-

pendent genetic worlds. Proc. Natl. Acad. Sci. USA, 107, 127–132.

Hartman,T. et al. (2012) How to split a flow? In: 2012 Proceedings IEEE

INFOCOM, pp. 828–836..

Howe,A.C. et al. (2014) Tackling soil diversity with the assembly of large,

complex metagenomes. Proc. Natl. Acad. Sci. USA, 111, 4904–4909.

Hunt,M. et al. (2015) Circlator: automated circularization of genome assem-

blies using long sequencing reads. Technical Report.

Johnson,D.B. (1977) Efficient algorithms for shortest paths in sparse net-

works. J. ACM, 24, 1–13.

Johnson,S. et al. (2014) A better sequence-read simulator program for metage-

nomics. BMC Bioinformatics, 15 Suppl 9(Suppl 9), S14.

Jørgensen,T.S. et al. (2014) Hundreds of circular novel plasmids and DNA

elements identified in a rat cecum metamobilome. PLoS One, 9, e87924.

Kurtz,S. et al. (2004) Versatile and open software for comparing large gen-

omes. Genome Biol., 5, R12.

Lanza,V.F. et al. (2014) Plasmid flux in Escherichia Coli ST131 sublineages,

analyzed by plasmid constellation network (PLACNET), a new method for

plasmid reconstruction from whole genome sequences. PLoS Genet., 10,

e1004766.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Neu,H.C. (1992) The crisis in antibiotic resistance. Science, 257, 1064–1073.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and meta-

genomic sequencing data with highly uneven depth. Bioinformatics, 28,

1420–1428.

Pertea,M. et al. (2015) StringTie enables improved reconstruction of a tran-

scriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295.

Pignatelli,M. and Moya,A. (2011) Evaluating the fidelity of de novo short read

metagenomic assembly using simulated data. PLoS One, 6, e19984.

Powers,D.M. (2011). Evaluation: from Precision, Recall and F-measure to

ROC, Informedness, Markedness and Correlation. J. Mach. Learn.

Technol., 2, 37–63.

Prjibelski,A.D. et al. (2014) ExSPAnder: a universal repeat resolver for DNA

fragment assembly. Bioinformatics, 30, i293–i301.

Tomescu,A.I. et al. (2013) A novel min-cost flow method for estimating tran-

script expression with RNA-Seq. BMC Bioinformatics, 14 Suppl 5, S15.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–515.

482 R.Rozov et al.



Chapter 4

Faucet: streaming de novo

assembly graph construction

40



Genome analysis

Faucet: streaming de novo assembly graph

construction

Roye Rozov1, Gil Goldshlager2, Eran Halperin3,* and Ron Shamir1,*

1Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel, 2Department of Mathematics,

Massachusetts Institute of Technology, Cambridge, MA, USA and 3Departments of Computer Science,

Anesthesiology and Perioperative Medicine, University of California Los Angeles, CA, USA

*To whom correspondence should be addressed.

Associate Editor: Cenk Sahinalp

Received on April 12, 2017; revised on July 10, 2017; editorial decision on July 18, 2017; accepted on July 21, 2017

Abstract

Motivation: We present Faucet, a two-pass streaming algorithm for assembly graph construction.

Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be

stored locally, as they can be processed while downloading data and then discarded. We demon-

strate this functionality by performing streaming graph assembly of publicly available data, and ob-

serve that the ratio of disk use to raw data size decreases as coverage is increased.

Results: Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data

derived from them. We show these metadata—coverage counts collected at junction k-mers and

connections bridging between junction pairs—contain most salient information needed for assem-

bly, and demonstrate they enable cleaning of metagenome assembly graphs, greatly improving

contiguity while maintaining accuracy. We compared Fauceted resource use and assembly quality

to state of the art metagenome assemblers, as well as leading resource-efficient genome assem-

blers. Faucet used orders of magnitude less time and disk space than the specialized metagenome

assemblers MetaSPAdes and Megahit, while also improving on their memory use; this broadly

matched performance of other assemblers optimizing resource efficiency—namely, Minia and

LightAssembler. However, on metagenomes tested, Faucet,o outputs had 14–110% higher mean

NGA50 lengths compared with Minia, and 2- to 11-fold higher mean NGA50 lengths compared with

LightAssembler, the only other streaming assembler available.

Availability and implementation: Faucet is available at https://github.com/Shamir-Lab/Faucet

Contact: rshamir@tau.ac.il or eranhalperin@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Assembly graphs encode relationships among sequences from a com-

mon source: they capture sequences as well as the overlaps observed

among them. When assembly graphs are indexed, their sequence con-

tents can be queried without iterating over every sequence in the in-

put. This functionality makes graph and index construction a

prerequisite for many applications. Among these are different types of

assembly—e.g. de novo assembly of whole genomes, transcripts, plas-

mids etc. (Pertea et al., 2015; Rozov et al., 2017)—and downstream

applications—e.g. mapping reads to the graphs, variant calling, pan-

genome analysis etc. (Iqbal et al., 2012; Novak et al., 2017).

In recent years, much effort has been expended to reduce the

amount of memory used for constructing assembly graphs and

indexing them. Major advances often relied on index structures that

saved memory by enabling subsets of possible queries: e.g. one could

query what extensions a given substring s has, but not how many

times s was seen in the input data. A great deal of success ensued in

reducing the amount of memory needed to efficiently construct the

VC The Author 2017. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 2017, 1–8

doi: 10.1093/bioinformatics/btx471

Advance Access Publication Date: 24 July 2017

Original Paper



central data structures used by most de novo assembly algorithms,

namely, the de Bruijn and string graphs (Chikhi and Rizk, 2012; Pell

et al., 2012; Simpson and Durbin, 2010; Ye et al., 2012).

Furthermore, efficient conversion of de Bruijn graphs to their com-

pacted form (essentially string graphs with fixed overlap size) has

been demonstrated Chikhi et al., 2014, 2016; Minkin et al., 2016).

In parallel to these efforts, streaming approaches were demon-

strated as alternative resource-efficient means of performing ana-

lyses that had typically relied on static indices. Although appealing

in terms of speed and low memory use, these approaches were ini-

tially demonstrated primarily for counting-centered applications

such as estimating k-mer frequencies, error-correction of reads, and

quantification of transcripts (Melsted and Halldorsson, 2014;

Mohamadi et al., 2017; Roberts and Pachter, 2012; Song et al.,

2014; Zhang et al., 2014).

Recently, a first step towards bridging the gap between stream-

ing approaches and those based on static index construction was

taken, hinting at the potential benefits of combining the two.

El-Metwally et al. (2016) demonstrated a streaming approach to as-

sembly by making two passes on a set of reads. The first pass sub-

samples k-mers in the de Bruijn graph and inserts them into a Bloom

filter, and the second uses this Bloom filter to identify ‘solid’ (likely

correct) k-mers, which are then inserted into a second Bloom filter.

This streaming approach resulted in very high resource efficiency in

terms of memory and disk use. However, LightAssembler finds solid

k-mers while disregarding paired-end and coverage information,

and thus is limited in its ability to resolve repeats and to differentiate

between different possible extensions in order to improve

contiguity.

In this work, we extend this approach with the aim of providing

a more complete alternative to downloading and storing reads for

the sake of de novo assembly. We show this is achievable via online

graph and index construction. We describe the Faucet algorithm,

composed of an online phase and an offline phase. During the online

phase, two passes are made on the reads without storing them lo-

cally to first load their k-mers into a Bloom filter, and then identify

and record structural characteristics of the graph and associated

metadata essential for achieving high contiguity in assembly. The

offline phase uses all of this information together to iteratively clean

and refine the graph structure.

We show that Faucet requires less disk space than the input data,

in contrast with extant assemblers that require storing reads and

often produce intermediate files that are larger than the input. We

also show that the ratio of disk space Faucet uses to the input data

improves with higher coverage levels by streaming successively

larger subsets of a high coverage human genome sample.

Furthermore, we introduce a new cleaning step called disentangle-

ment enabled by storage of paired junction extensions in two Bloom

filters—one meant for pairings inside a read, and one meant for

junctions on separate paired end mates. We show the benefit of dis-

entanglement via extensive experiments. Finally, we compared

Faucet’s resource use and assembly quality to state of the art meta-

genome assemblers, as well as leading resource-efficient genome as-

semblers. Faucet used orders of magnitude less time and disk space

than the specialized metagenome assemblers MetaSPAdes and

Megahit, while also improving on their memory use; this broadly

matched performance of other assemblers optimizing resource effi-

ciency—namely, Minia and LightAssembler. However, on metage-

nomes tested, Faucet’s outputs had 14–110% higher mean NGA50

lengths compared with Minia, and 2- to 11-fold higher mean

NGA50 lengths compared with LightAssembler, the only other

streaming assembler available.

2 Preliminaries

For a string s, we denote by s[i] the character at position i, s[i: j] the

substring of s from position i to j (inclusive of both ends), and jsj the

length of s. Let pref(s, j) be the prefix comprised of the first j charac-

ters of s and suff(s,j) be the suffix comprised of the last j characters

of s. We denote concatenation of strings s and t by s�t, and the re-

verse complement of a string s by s0.

A k-mer is a string of length k drawn from the DNA alphabet

R ¼ fA;C;G;Tg. The de Bruijn graph G(S,k)¼ (V,E) of a set of se-

quences S has nodes defined by consecutive k-mers in the sequences,

V ¼ [s2S [jsj�kþ1
i¼0 s½i : iþ k� 1�; E is the set of arcs defined by

(k�1)�mer overlaps between nodes in V. Namely, identifying verti-

ces with their k-mers, ðu; vÞ 2 E() suff ðu;k� 1Þ ¼ pref ðv; k� 1Þ.
Each node v is identified with its reverse complement v0, making the

graph G bidirected, in that edges may represent overlaps between ei-

ther orientation of each node (Medvedev et al., 2007). When neces-

sary, our explicit representation of nodes will use canonical node

naming, i.e. the name of node ðv; v0Þ will be the lexicographically

lesser of v and v0. Junction nodes are defined as k-mers having in-

degree or out-degree > 1. Terminal nodes are k-mers having out-

degree 1 and in-degree 0 or in-degree 1 and out-degree 0. Terminals

and junctions are collectively referred to as special nodes. The com-

pacted de Bruijn graph is obtained from a de Bruijn graph by merg-

ing all adjacent non-branching nodes (i.e. those having in-degree

and out-degree of exactly 1). The string associated with merged ad-

jacent nodes is the first k-mer, concatenated with the single charac-

ter extensions of all following non-branching k-mers. Such merged

non-branching paths are called unitigs.

Since a junction v having in-degree > 1 and out-degree 1 is iden-

tified with v0 having out-degree > 1 and in-degree 1, we speak of

junction directions relative to the reading direction of the junction’s

k-mer. Therefore, a forward junction has out-degree > 1, and a

back junction has in-degree > 1. We refer to outbound k-mers be-

ginning paths in the direction having out-degree > 1 as heads, and

the sole outbound k-mer in the opposite direction as the junction’s

tail. It is possible that a junction may have no tail.

A Bloom filter B is a space-efficient probabilistic hash table ena-

bling insertion and approximate membership query operations

(Bloom, 1970). The filter consists of a bit array of size m, and an

element x is inserted to B by applying h hash functions, f0, . . . ,fh�1

such that 8i2½0;h�1� fiðxÞ 2 ½0;m� 1�, and setting values of the filter

to 1 at the positions returned. For a Bloom filter B and string s, by s

2 B or the term ’s in B’ we refer to B[s] ¼ 1, i.e. when the h hash

functions used to load B are applied to s, only 1 values are returned.

Similarly, s 62 B or ‘s not in B’ means that at least one of the h hash

functions of B returned 0 when applied to s. For any s that has been

inserted to B, B[s] ¼ 1 by definition (i.e. there are no false nega-

tives). However, false positives are possible, with a probability that

can tuned by adjusting m or h appropriately.

3 Materials and methods

We developed an algorithm called Faucet for streaming de novo as-

sembly graph construction. A bird’s eye view of its entire work-flow

is provided in Figure 1. Below we detail individual steps.

3.1 Online Bloom filter loading
Faucet begins by loading two Bloom filters, B1 and B2, as it iterates

through the reads, using the following procedure: all k-mers are in-

serted to B1, and only k-mers already in B1 (i.e. those for which all

hash queries return 1 from B1) are inserted to B2. Namely, for each

2 R.Rozov et al.



k-mer s, if B1[s] ¼ 1 then we insert s into B2, otherwise we insert

into B1. After iterating through all reads, B1 is discarded and only

B2 is used for later stages. This procedure imposes a coverage thresh-

old on the vast majority of k-mers so that primarily ‘solid k-mers’

(Pevzner et al., 2001) observed at least twice are kept. This process

is depicted in Round 1 of Figure 1A. We note that a small propor-

tion of singleton or false positive k-mers may evade this filtration.

No count information is associated with k-mers at this round.

3.2 Online graph construction
B2, loaded at the first round, enables Faucet to query possible for-

ward extensions of each k-mer. Faucet iterates through all reads a

second time to collect information necessary for avoiding false posi-

tive extensions, building the compacted de Bruijn graph, and later,

cleaning the graph. The second round consists of finding junctions

and terminal k-mers, recording their true extension counts, and re-

cording k-mer pairs (Round 2 of Fig. 1A).

Faucet’s Online stage has one main routine—Algorithm 1—that

calls upon two subroutines—Algorithms 2 and 3. First, junction k-

mers and their start positions are derived from a call to Algorithm 2.

To find junctions, Algorithm 2 makes all possible alternate exten-

sion queries (Lines 3–5) to B2 for each k-mer in the read sequence r.

A junction k-mer j may have multiple extensions in B2—either be-

cause there are multiple extensions of j in G that are all real (i.e. pre-

sent on some read), or because there is at least one real extension in

G and some others in B2 that are false positives. Accordingly, each

k-mer possessing at least one extension that differs from the next

base on the read is identified as a junction. Whenever one is found,

its sequence along with its start position are recorded (Line 4), and

the list of such tuples is returned. We note that each k-mer in the

read is also queried for junctions in the reverse complement direc-

tion, but this is not shown in Algorithm 2.

Fig. 1. Faucet work-flow. (A) The online stage involves a first round of processing all reads in order to load Bloom filters B1 and B2, and a second round in order to

build the junction map M and load additional Bloom filters B3 and B4. M stores the set of all junctions and extension counts for each junction, while B3 and B4 cap-

ture connections between junction pairs. The two online rounds capture information from and perform processing on each read, and the processing performed

always depends on the current state of data structures being loaded. (B) The offline stage uses B2 and M, constructed during the online stage, in order to build

the compacted de Bruijn graph by extending between special nodes using Bloom filter queries. ContigNodes (not shown) take the place of junctions and are

stored in M 0, allowing access (via stored pointers) to Contigs out of each junction, and coverage information. An additional vector of coverage values at fake or

past junctions is also maintained for each Contig. Then, B3, B4, and this coverage information are used together to perform simplifications on and cleaning of the

graph

Algorithm 1. scanReads(R, B2)

Input: read set R, Bloom filter B2 loaded from round 1, an

empty Bloom filter B3

Output: 1. a junction Map M comprised of (key, value) pairs.

Each key is a junction k-mer, and each value 2 N
4 is a vector

½cA; cC; cG; cT � of counts representing the number of times

each possible extension of key was observed in R; 2. B3 is

loaded with linked k-mer pairs (i.e. specific 2k-mers—see

text—are hashed in).

1: M 1
2: for r 2 R do

3: juncs findJunctionsðr;B2Þ " call to Algorithm 2

4: for ðjunc;posÞ 2 juncs do

5: if junc 62M then

6: M½junc�  ½0; 0;0;0�
7: increment counter in M for r½posþ k�

recordPairsðr; juncs;B3Þ " call to Algorithm 3

8: return M,B3

Faucet 3



Algorithm 1 then uses this set of junctions to perform accounting

(Lines 4–8). All junctions are inserted into a hash map M that maps

junction k-mers to vectors maintaining counts for each extension.

For each junction of r, a count of 0 is initialized for each possible ex-

tension. These counters are only incremented based on extensions

observed on reads—i.e. extensions due to Bloom filter outputs alone

are not counted. As every real extension out of each junction must

be observed on some read, and we scan the entire set of reads, an ex-

tension will have non-zero count only if it is real. This mechanism

allows Faucet to maintain coverage counts for all real extensions out

of junctions. In later stages, only extensions having non-zero counts

will be visited, but counts are stored for real extensions of false junc-

tions as well. These latter counts are used to sample coverage distri-

butions on unitig sequences at more points than just their ends.

Proportions of real junctions versus the totals stored after account-

ing are described in the section ‘Solid junction counts’ in the

Supplementary Appendix.

Following the accounting performed on observed junctions,

Faucet records adjacencies between pairs of junctions using add-

itional Bloom filters—B3 and B4. These adjacencies are needed for

disentanglement—a cleaning step applied in Faucet’s offline stage.

Disentanglement, depicted in Figure 2, is a means of repeat reso-

lution. Its purpose is to split paths that have been merged due to the

presence of a shared segment—the repeat—in both paths. In order

to ‘disentangle’, or resolve the tangled region into its underlying la-

tent paths, we seek to store sequences that flank opposite ends of the

repeat. Pairs of heads observed on reads provide a means of ‘reading

out’ such latent paths by indicating which heads co-occur on

sequenced DNA fragments. The application of disentanglement is

presented in the section ‘Offline graph simplification and cleaning’,

while we now focus on the mechanism of pair collection and its ra-

tionale. To capture short and long range information separately,

Bloom filter B3 holds head pairs on the same read, while B4 holds

heads chosen such that each head is on a different mate of a paired-

end read. Algorithm 3 is the process by which pairs are inserted into

B3, and insertion into B4 is described in the Supplementary

Appendix.

In Algorithm 3, we aim to pair heads that are maximally inform-

ative. Informative pairs are those that allow us to ‘read out’ pairs of

unitigs that belong to the same latent path. We specifically choose to

insert heads because during the offline stage when disentanglement

takes place, adjacencies between each unitig starting at an edge to a

head and the unitig starting at the edge from the junction to its tail

of are known and accessible via pointers to their sequences.

Therefore, extension pairs capturing information of direct adjacen-

cies provide no new information. The closest indirect adjacency that

may be informative when captured from a read is that between two

junctions that either face in the same direction, or when the first

faces back and the second faces forward, as shown in Figure 3A.

Thus, when there are only two junctions on a read, their pair of

heads is inserted as long as the two junctions are not facing each

other. When there are at least three junctions on a read, every other

junction out of every consecutive triplet is paired, as shown for a sin-

gle triplet in Figure 3B. This figure demonstrates that selecting every

other head is preferable to selecting consecutive heads out of a trip-

let. This type of insertion is executed in Lines 1–6 of Algorithm 3

and ensures all unitigs flanking some triplet are potentially inferable.

For reads having more than three junctions, applying the triplet rule

for every consecutive window of size 3 similarly allows for all uni-

tigs on the read to be included in some hashed pair.

3.3 Offline graph simplification and cleaning
Given B2, B3, B4 and M resulting from the online stage, the com-

pacted de Bruijn graph is generated by traversing each forward ex-

tension out of every special k-mer, as well as traversing backwards

in the reverse complement direction when the node has not been

reached before by a traversal starting from another node. This is

done by querying B2 for extensions and continuing until the next

special node is reached. During each such traversal from special

node u to special node v, a unitig sequence suv is constructed. suv is

Algorithm 2. findJunctions(r, B2)

Input: read r and Bloom filter B2

Output: juncTuples, a list of tuples (seq, p), where p is the

start position of junction k-mer seq in r, in order of appear-

ance on r

1: juncTuples 1
2: for i 2 ½0; jrj � k� do kmer r½i : iþ k� 1�
3: for c 2 Rnfr½iþ k�} do

4: if ðsuff ðkmer; k� 1Þ � c 2 B2Þ then

juncTuples juncTuples [ ðkmer; iÞ
5: return juncTuples

Fig. 2. Disentanglement. (A) A tangle characterized by two opposite facing

junctions j1 and j2, each with out-degree 2. (B) Junction pairs linking exten-

sions on sa with sc and sb with sd. Since no pairs link extensions on sa with sd

or sb with sc, only one orientation is supported. (C) the result of disentangle-

ment: paths [sa,s,sc] and [sb,s,sd] are each merged into individual sequences,

and junctions j1 and j2 are removed from M

Algorithm 3. recordPairs(r, juncs, B3)

Input: read r, juncs—a list of pairs (j, p), where p is the start

position of junction j in r, and Bloom filter B3. We also make

use of a subroutine getOutExt(ji,pi,r) that for a junction ji re-

turns pref ðji; k� 1Þ � r½pi � k� if ji is a back junction, and

suff ðji;k� 1Þ � r½pi þ k� otherwise.

Output: Bloom filter B3, loaded with select linked k-mer pairs

1: if len(juncs) > 2 then

2: for i 2 ½0; lenðjuncsÞ � 2� do

3: back getOutExtðji; pi; rÞ
4: front getOutExtðjiþ2;piþ2; rÞ
5: insertðback � front;B3Þ " insert the concatenation into B3

6: else if (lenðjuncsÞ ¼ 2Þ ^ ð:ðj0 is a forward junction^
j1 is a back junctionÞ) then

7: back getOutExtðj0; p0; rÞ
8: front getOutExtðj1;p1; rÞ
9: insertðback � front;B3Þ
10: return B3

4 R.Rozov et al.



initialized to the sequence of u, and a base is added at each extension

until v is reached.

New data structures are constructed in the course of traversals in

order to aid later queries and updates. A ContigNode structure is

used to represent a junction that points to Contigs. ContigNodes are

structures possessing a pointer to a Contig at each forward exten-

sion, as well as one backwards pointer. This backwards pointer con-

nects the junction to the sequence beginning with the reverse

complement of the junction’s k-mer. Contigs initially store unitig se-

quences, but these may later be concatenated or duplicated. They

also point to one ContigNode at each end. To efficiently query

Contigs and ContigNodes, a new hashmap M0 is constructed having

junction k-mers as keys, and ContigNodes that represent those junc-

tions as values. Isolated contigs formed by unitigs that extend be-

tween terminal nodes are stored in a separate set data structure.

Once the raw graph is obtained, cleaning steps commence, incor-

porating tip removal, chimera removal, collapsing of bulges, and

disentanglement. Coverage information and paired-junction links

are crucial to these steps. Briefly, tip removal involves deletion of

Contigs shorter than the input read length that lead to a terminal

node. Chimera and bulge removal steps involve heuristics designed

to remove low coverage Contigs when a more credible alternative

(higher coverage, or involved in more sub-paths) is identified. These

first three steps proceed as described in (Bankevich et al., 2012),

thus we omit their full description here.

Disentanglement relies on paired junction links inserted into B3

and B4. We iterate through the set of ContigNodes to look for ‘tan-

gles’—pairs of opposite-facing junctions joined by a repeat se-

quence—as shown in Figure 2. Tangles are characterized by tuples

(j1,j2,s) where j1 is a back junction, j2 is a forward junction (or vice-

versa), and there is a common Contig s pointed to by the back

pointers of both j1 and j2. Junctions j1 and j2 each have at least two

outward extensions. We restrict cleaning to tangles having exactly

two extensions at each end. Let sa and sb be the Contigs starting at

heads of j1, and sc and sd be the Contigs starting at heads of j2. By

disentangling, we seek to pair extensions at each side of s to form

two paths. The possible outputs are paths [sa,s,sc] together with

[sb,s,sd] or [sa,s,sd] together with [sb,s,sc].

Thus, each such pair straddling the tangle—e.g. having one head

on sa and the other on sc—lends some support to the hypothesis that

the correct split is that which pairs the two. To decide between the

two possible split orientations, we count the number of pairs sup-

porting each by querying B3 or B4 for all possible junction pairings

that are separated by a characteristic length associated with the pairs

inserted to each. For example, B3 stores heads out of non-consecutive

junction pairs on the same read. Therefore, for each junction on sa

we count each pairing accepted by B3 with a junction on sc that is at

most one read length away. Specifically for B3, we also know that in-

serted pairs are always one or two junctions away from the starting

junction, based on the scheme presented in Figure 3. To decide when

Fig. 3. Rationale for B3 insertions. Narrow blue arrows indicate unitigs observed on a read, green circles are junctions and thick arrows are junction heads.

Among red arrows, solids are those inserted to B3. For simplicity, we provide a direction to each arrow. The opposite direction is equally valid, hence in this view

heads can also enter a junction and not only exit from it. In each case, a pair of red heads is inserted from a read. They will be inserted if they provide additional

information to infer a path on the graph. Black lines indicate a subset of possible paths; out of these the solid path is that observed on a read. (A) Two junctions

observed on a read. I, II: The two heads together imply the solid paths and rule out alternatives, so the pair is inserted to B3. III: The two heads lie on the ends of

the same unitig and thus add no information. (B) Three junctions observed on a read, comparing insertions of consecutive heads against non-consecutive heads.

Four possible arrangements are shown; there are four more that are symmetrical reflections and are not shown to save space. In each case, we compare the uni-

tigs covered (i.e. either having a head on them or being a sole extension at a junctionve heads against non-consecconsecutive (top) and non-consecutive (bottom)

junctions are chosen. Note that in Cases I–III the right-most unitig is not covered under consecutive heads

Faucet 5



a tangle should be split, we apply XOR logic to arrive at a decision:

if the count of pairs supporting both paths in one orientation is > 0,

and the count of both paths in the other orientation is 0, we disentan-

gle according to the first, as shown in Figure 2. Similar yet more

involved reasoning is used for junction links in B4, using the insert

size between read pairs (see Supplementary Appendix). Once we ar-

rive at a decision, we add a new sequence to the set of Contigs that is

the concatenation of the sequences involved in the original paths. We

note one of the consequences of this simplification step is that the

graph no longer represents a de Bruijn graph, in that each k-mer is no

longer guaranteed to appear at most once in the graph. Furthermore,

the XOR case presented is the most frequently applied form of disen-

tanglement out of a few alternatives. We discuss these alternatives in

the Supplementary Appendix.

3.4 Optimizations and technical details
Here we discuss some details omitted from the above descriptions

for the sake of completeness. Based on the description of Algorithms

1 and 2, it is possible that false positive extensions out of terminal

nodes will ensue. This is possible because the mechanism described

for removing false positive junctions can differentiate between one

or multiple extensions existing in G for a given node, but cannot dif-

ferentiate between one or none. This may lead to assembly errors at

sink nodes.

To overcome such effects, we store distances between junctions

seen on the same read with the distance recorded being assigned to

the extension of each junction observed on the read. When an outer-

most junction on a read has not been previously linked to another

junction, we record its distance from the nearest read end—this sol-

ves the problem mentioned previously as long as paths to sinks are

shorter than read length. To obtain accurate measurements of dis-

tances on longer non-branching paths, we also introduce artificial

‘dummy’ junctions whenever a pre-defined length threshold is sur-

passed. In effect, this means that reads with no real junctions are as-

signed dummy junctions.

Once distances and dummy junctions are introduced, an add-

itional benefit is gained: the speed of the read-scan can be improved

by skipping between junctions that have been seen before. Once dis-

tances are known, if we see a particular extension out of a junction,

and then a sequence of length ‘ without any junctions, then, wher-

ever else we see that junction and extension, it must be followed by

the exact same ‘ next bases. Otherwise, there would be a junction

earlier. So we store ‘ when we see it, and skip subsequent

occurrences.

Finally, we note that Faucet can benefit from precise Bloom filter

sizing. When a good estimate of dataset parameters is known, the al-

gorithm can do the two-pass process above. Otherwise, to determine

the numbers of distinct k-mers and the number of singletons in the

dataset in a streaming manner, we have used the tool ntCard

(Mohamadi et al., 2017). This requires an additional pass over the

reads (for a total of three passes). The added pass does not increase

RAM or disk use. In fact, in tests on locally stored data, we found it

only adds negligible time.

4 Results

4.1 Assembling while downloading
As a demonstration of streaming assembly, we ran Faucet on pub-

licly available human data, SRR034939, used for benchmarking in

(Chikhi and Rizk, 2012). To assess resource use at different data

volumes, we ran Faucet on 10, 20 and 37 paired-end files out of 37

total. Streaming was enabled using standard Linux command line

tools: wget was used for commencing a download from a supplied

URL, and streamed reading from the compressed data was enabled

by the bzip2 utility. Downloads were initiated separately for each

run. The streaming results are shown in Table 1.

We emphasize that Faucet required less space than the size of the

input data in order to assemble it, while most assemblers generate files

during the course of their processing that are larger than the input

data. Also, the ratio of input data to disk used by Faucet decreased as

data volume increased, reflecting the tendency of sequences to be seen

repeatedly with high coverage. We also note that Faucet’s outputs ef-

fectively create a lossy compression of the read data, in that the choice

of k value inherently creates some ambiguity for read substrings larger

than k. This compression format is also queryable, in that given a

k-mer in the graph, its extensions can be found: indeed, this is the

basis of Faucet’s graph construction and cleaning.

4.2 Disentanglement assessment
To gauge the benefits of disentanglement on assembly quality, we

compared Faucet’s outputs with and without each of short- and

long-range pairing information, provided by Bloom filters B3 and

B4, on SYN 64—a synthetic metagenome produced to provide a

dataset for which the ground truth is known comprised of 64 species

(dataset sizes and additional characteristics are provided in the

Supplementary Appendix). The results of this assessment are pre-

sented in Table 2. We measured assembly contiguity by the NGA50

measure. NG50 is defined as ‘the contig length such that using equal

or longer length contigs produces x% of the length of the reference

genome, rather than x% of the assembly length’ in (Gurevich et al.,

2013). NGA50 is an adjustment of the NG50 measure designed to

penalize contigs composed of misassembled parts by breaking con-

tigs into aligned blocks after alignment to the reference. We found

that disentanglement more than doubled contiguity measured by

mean NGA50 values, with greater gains as more kinds of disentan-

glement were enabled. This was also reflected by corresponding

gains in the genome fractions, and in the number of species for

which at least 50% of the genome was aligned to, allowing NGA50

scores to be reported. More applications of disentanglement also

increased the number of misassemblies reported and the duplication

ratio; however, two-thirds of the maximum misassembly count is al-

ready seen without any disentanglement applied.

Table 1. Resource use and data compression observed as data vol-

ume increases

No. of

files

Time (h) RAM

(GB)

Disk

(GB)

Data

size (GB)

Comp.

ratio

10 26.3 48.3 19.0 29.6 0.64

20 47.7 84.3 34.3 59.2 0.58

37 98.2 144.7 50.0 108.4 0.46

Table 2. The effect of increasing levels of disentanglement on con-

tiguity and accuracy

Measure No disent. B3 only B4 only both B3, B4

Genome fraction (%) 76.4 79.9 80.3 82.3

Dup. ratio 1.00 1.01 1.02 1.02

Mean NGA50 13048 21703 26356 29066

Misassemblies 388 480 521 572

Species reported 54 56 56 56

6 R.Rozov et al.



4.3 Tools comparison
We sought to assess Faucet’s effectiveness in assembling metage-

nomes, and its resource efficiency. For the former, we compared

Faucet to MetaSPAdes (Nurk et al., 2017) and Megahit (Li et al.,

2014), state of the art metagenome assemblers in terms of contiguity

and accuracy that require substantial resources. To address resource

efficiency, we also compared Faucet to two leading resource efficient

assemblers, Minia 3 (Beta) (Chikhi and Rizk, 2012) and

LightAssembler (El-Metwally et al., 2016). We note these last two

were not designed as metagenome assemblers, but they perform oper-

ations similar to what Faucet does—both in the course of their graph

construction steps, and in their cleaning steps. They differ from

Faucet in that neither is capable of disentanglement, as they do not

utilize paired-end information, but counter this advantage with more

sophisticated traversal schemes. All tools were run on two metage-

nome datasets—SYN64 and HMP—a female tongue dorsum sample

sequenced as part of the Human Microbiome Project. Both datasets

were used for testing in (Nurk et al., 2017). To achieve a fair compari-

son, runs were performed with a single thread on the same machine,

as Faucet does not currently support multi-threaded execution. Full

details of the comparison, including versions, parameters, and data

accessions, are presented in the Supplementary Appendix.

Table 3 presents the full results for the tools comparison. There

was a strong advantage to Megahit and MetaSPAdes over the three

lightweight assemblers (Minia, LightAssembler, and Faucet) in

terms of contiguity achieved (shown by NGA50 statistics), but this

came at a large cost in terms of memory, disk space, and time, par-

ticularly in the case of MetaSPAdes. Among the lightweight assem-

blers, Minia used by far the most disk space, and differences in other

resource measures were less pronounced. Among these three, Faucet

had a large advantage in NGA50 statistics relative to the other two.

This is highlighted by the trend of Table 3, and shown by its 14–

110% advantage in the mean of NGA50 relative to Minia, and 2- to

11-fold advantage relative to LightAssembler.

5 Discussion

Streaming de novo assembly presents an opportunity to significantly

ease some of the burdens introduced by the recent deluge of second

generation sequencing data. We posit the main applications of

streaming assembly will be de novo assembly of very large individ-

ual datasets (e.g. metagenomes from highly diverse environments)

and re-assembly of pangenomes derived from many samples. In both

cases, very large volumes of data must be digested in order to ad-

dress the relevant biological questions behind these assays.

Therefore, streaming graph assembly presents an attractive alterna-

tive to data compression: instead of attempting to reduce the size of

data, the aim is to keep locally only relevant information in a man-

ner that is queryable and that allows for future re-analysis.

Here, we have demonstrated a mechanism for performing

streaming graph assembly and described some of its characteristics.

First, we showed that assembly can be achieved without ever storing

raw reads locally. By assembling the graph, an intermediate

by-product of many assemblers, we show this technique is generally

applicable. By refining the graph and showing better assembly con-

tiguity than competing resource efficient tools on metagenome as-

sembly, we showed this method can also be applied in the setting

when sensitive recovery of rare sequences is crucial.

In future work, we aim to expand the capabilities of Faucet in a

number of ways. Multi-threaded processing will reduce run times and

make the tool more applicable to large data volumes. We believe fur-

ther refinements of cleaning and contig generation can be achieved by

adopting a statistical approach to making assembly decisions. In add-

ition, beyond graph cleaning, we aim to apply Faucet’s data structures

to path generation, as done with paired end reads in (Nihalani and

Aluru, 2016; Prjibelski et al., 2014; Shi et al., 2017). Both have the

potential to greatly improve contiguity and accuracy.

Beyond this, this work raises several remaining challenges per-

taining to what one may expect of streaming assembly. For instance,

it is immediately appealing to ask if streaming assembly can be

achieved with a just a single pass on the reads, and if so, what inher-

ent limitations exist. In Song et al. (2014), a simple solution is pro-

posed wherein the first 1 M reads are processed to provide a

succinct summary for the rest, but such an approach is more suited

to high coverage or low entropy data, and thus unlikely to perform

well on diverse metagenomes or when rare events are of particular

interest. Another issue raised by the performance comparison herein

is that of capturing the added value that iterative (multi-k value)

graph generation provides. We have given a partial solution by cap-

turing subsets of junction pairs within each read, and between mates

of paired-end reads. Although it is possible to iteratively refine the

graph with more passes on the reads, each time for the collection of

k-mers at different lengths, this becomes unwieldy with large data

volumes. Identifying the contexts for which such information would

Table 3. Tool comparison on two metagenomes

SYN64 HMP

Measure Metaspades Megahit LightAssembler Minia Faucet Metaspades Megahit LightAssembler Minia Faucet

Genome fraction (%) 89.1 90.1 75.6 76.5 82.3 46.9 48.6 23.4 27.8 27.9

Duplication ratio 1.02 1.02 1.01 1.00 1.02 1.05 1.12 1.02 1.01 1.05

Mean NGA50 (kb) 167 99.0 2.60 14.6 30.7 28.3 36.8 3.18 6.25 7.12

Median NGA50 (kb) 71.1 57.6 2.30 10.5 23.7 28.3 36.8 3.18 6.25 7.12

Misassemblies 785 949 314 395 572 504 602 100 184 202

Species reported 59 61 55 52 56 12 12 5 3 6

Time (h) 41.2 10.9 1.63 0.97 2.61 30.5 13.0 3.35 0.99 2.30

Memory (GB) 26 9.1 2.7 4.8 6.0 14 8.3 3.4 3.7 7.3

Disk (GB) 43.1 14.3 1.84 28.2 1.59 53.2 11.5 1.30 23.5 1.61

Top values in each cell are for SYN 64 data, and bottom values are for HMP. Duplication ratio is the ratio between the total aligned length to the combined

length of all references aligned to. The mean and median NGA50 values are calculated on based on species sufficiently covered by all assemblers to yield an

NGA50 value (i.e. 50% of the genome is covered). Species reported are those for which an NGA50 value is reported. In the HMP data, only two species were re-

ported for all, making the mean and median NGA50 values equal. Disk and memory use are those reported by the Linux time utility, and Disk use is the total

amount written to disk during the course of a run.

Faucet 7



be useful in the graph and indexing the reads to allow for querying

of such contexts may provide more efficient means of extracting

such information.

Funding

This work was supported in part by the Israel Science Foundation as part of

the ISF-NSFC joint program to R.S. R.S. was supported in part by the

Raymond and Beverley Chair in Bioinformatics at Tel Aviv University. E.H.

was supported in part by the USA–Israel Binational Science Foundation

[Grant 2012304] and E.H. and R.R. were supported in part by the Israel

Science Foundation [Grant 1425/13]. R.R. was supported in part by a fellow-

ship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv

University, an IBM PhD fellowship, and by the Center for Absorption in

Science, the Israel Ministry of Immigrant Absorption. E.H. is a Faculty Fellow

of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. G.G.

was supported by the MISTI MIT-Israel program at MIT and Tel Aviv

University.

Conflict of Interest: none declared.

References

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13, 422–426.

Chikhi,R. and Rizk,G. (2012) Space-efficient and exact de Bruijn graph

representation based on a Bloom filter. Algorithms Bioinformatics, 8,

236–248.

Chikhi,R. et al. (2014). On the representation of de bruijn graphs. In: Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 8394 LNBI, pp 35–55.

Chikhi,R. et al. (2016) Compacting de Bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32, i201–i208.

El-Metwally,S. et al. (2016) LightAssembler: Fast and memory-efficient assem-

bly algorithm for high-throughput sequencing reads. Bioinformatics, 32,

3215–3223.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Li,D. et al. (2014) MEGAHIT: An ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph.

Bioinformatics, 31, 1674–1676.

Medvedev,P. et al. (2007). Computability of models for sequence assembly.

In: Algorithms in Bioinformatics. Springer, Berlin Heidelberg, pp. 289–301.

Melsted,P. and Halldorsson,B.V. (2014) KmerStream: streaming algorithms

for k-mer abundance estimation. Bioinformatics, 30, 3541–3547.

Minkin,I. et al. (2016) TwoPaCo: An efficient algorithm to build the com-

pacted de Bruijn graph from many complete genomes. Bioinformatics.

doi: 10.1093/bioinformatics/btw609.

Mohamadi,H. et al. (2017) ntCard: a streaming algorithm for cardinality esti-

mation in genomics data. Bioinformatics, 33, 1324–1330.

Nihalani,R. and Aluru,S. (2016). Effective Utilization of Paired Reads to

Improve Length and Accuracy of Contigs in Genome Assembly. In:

Proceedings of the 7th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, Seattle, WA,

USA — October 02 - 05, 2016, pp. 355–363.

Novak,A.M. et al. (2017) Genome graphs. bioRxiv. doi: 10.1101/101378.

Nurk,S. et al. (2017) metaSPAdes: a new versatile de novo metagenomics as-

sembler. Genome Res., 27, 824–834.

Pell,J. et al. (2012) Scaling metagenome sequence assembly with probabilistic

de Bruijn graphs. Proc. Natl. Acad. Sci. USA, 109, 13272–13277.

Pertea,M. et al. (2015) StringTie enables improved reconstruction of a tran-

scriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Prjibelski,A.D. et al. (2014) ExSPAnder: a universal repeat resolver for DNA

fragment assembly. Bioinformatics, 30,

Roberts,A. and Pachter,L. (2012) Streaming fragment assignment for

real-time analysis of sequencing experiments. Nat. Methods, 10, 71–73.

Rozov,R. et al. (2017) Recycler: an algorithm for detecting plasmids from de

novo assembly graphs. Bioinformatics, 33, 475–482.

Shi,W. et al. (2017) The combination of direct and paired link graphs can

boost repetitive genome assembly. Nucleic Acids Res., 45, e43.

Simpson,J.T. and Durbin,R. (2010) Efficient construction of an assembly

string graph using the FM-index. Bioinformatics, 26,

Song,L. et al. (2014) Lighter: fast and memory-efficient sequencing error cor-

rection without counting. Genome Biol., 15, 509.

Ye,C. et al. (2012) Exploiting sparseness in de novo genome assembly. BMC

Bioinformatics, 13(Suppl. 6), S1.

Zhang,Q. et al. (2014) These are not the K-mers you are looking for: Efficient

online K-mer counting using a probabilistic data structure. PLoS One, 9,

e101271.

8 R.Rozov et al.



Chapter 5

Discussion

In this thesis, we described our work aiming to improve efficiency and scalability of

deep sequencing data analysis. We first introduced a new compression algorithm,

BARCODE, that allows compression of read sequences relative to a reference much

faster than previous approaches. Then, we introduced a new application of de

Bruijn assembly graphs for plasmid assembly: the Recycler algorithm generates

cycles on the graph, and selects those likely to be plasmids among them. Finally, we

introduced Faucet, a new de novo assembler incorporating highly efficient streaming

graph construction. In each case, we compared our implementations with a variety

of extant methods and showed significant improvements. All algorithms described

in this thesis were implemented and made freely available.

In this chapter, we first summarize the methods described in this thesis before

characterizing possible extensions of them. Then, we provide broader perspective

on the effect likely (based on current trends) technological advances will have on

sequence analysis and methods that will be needed to enable it.

5.1 Compressing read sequences

As mentioned in the introduction, short read compression tools are divided into

reference-based and reference-free methods. BARCODE, the compression algorithm

introduced in Chapter 2, falls between these two camps in that it relies on a refer-

ence but eliminates much of the computational burden needed to compress against a

reference. Typically, reference based methods require alignment against a reference

49



5.2. ASSEMBLING PLASMIDS 50

in order for reads to be encoded as reference positions along with differences from

the reference observed on the read. BARCODE circumvents the need for this align-

ment step by hashing reads into Bloom filters. BARCODE also avoids the inherent

limitations of Bloom filters by carefully accounting for and compressing repetitions

of reads, and reads that do not exactly match the reference sequence. This is made

possible by employing a trick previously used in de novo assembly [77] - anticipat-

ing the set of queries that will be made on a Bloom filter for some static set, and

recording the set of false positives to later avoid them.

BARCODE was demonstrated to compress much faster than reference based

methods, and achieve better compression ratios than reference-free methods. This

is made possible via optimizing the use of Bloom filters to encode both reads match-

ing the reference and false positives efficiently. Further such optimization may be

possible, i.e., encoding read multiplicities or avoiding false positive reads by insert-

ing them to additional Bloom filters. However, these optimizations must be weighed

against the costs they introduce: additional insertions introduce a penalty in run

time, and filtering false positives by checking for multiple insertions may increase

the quantity of false negatives that must be encoded.

5.2 Assembling plasmids

Plasmids are responsible for horizontal gene transfer between microbes and can con-

fer advantages to microbes in specific environments [88]. They have been implicated

in conferring resistance to antibiotics [89], leading to heightened interest in their

study. Up until recently, assembly of plasmids was limited to checking for signs of

circularity among contigs output by available assemblers [90], or identifying plasmid

contigs by the presence of genes matching plasmid annotation [91]. The Recycler

algorithm described in Chapter 3 introduced a simple but much more effective ap-

proach: Recycler identifies cycles that belong to plasmids in the assembly graph

output by off-the-shelf assemblers.

We initially tested an ILP formulation aimed to assign coverage levels to candi-

date cycles with the objective being to minimize the sum of differences relative to

observed coverage levels of all contigs. Naturally, we found this approach sensitive

to choice of candidate cycle set. Also, this approach is more apt for plasmidome

samples, but less so for metagenome and isolate samples, where the majority of



5.3. STREAMING ASSEMBLY 51

contigs usually are not plasmid origin. These issues were partially involved in our

moving to a ’progressive’ peeling approach. Using minimal weight cycles provides a

simple cycle proposal mechanism and was applicable on all desired data types.

Recycler begins by generating a set of candidate cycles for each connected com-

ponent in the graph. It then selects among all candidates by ranking candidates

according to the variance in coverage of contigs in the cycle relative to the mean of

their coverage. Recycler was shown to be more sensitive and precise than competing

methods, based on assessments via simulated and real data. Furthermore, among

predicted plasmids tested via PCR, nearly 90% were validated.

5.3 Streaming assembly

Similar to BARCODE in Chapter 2, Faucet is designed to bridge a gap between two

classes of tools. In this case, Faucet is designed to be highly resource efficient while

assembling much better than extant resource-frugal approaches by using informa-

tion typically limited to more heavy-weight assemblers. The main novelty of Faucet

is its streaming approach to graph construction that allows this additional informa-

tion to be captured and efficiently encoded. We showed this streaming approach

effectively compresses input data, and that this compression becomes more efficient

as read coverage increases. The graph encoding Faucet constructs is queryable for

the sake of assembly, introducing a new means of queryable compression that may

find additional applications. In comparison with extant methods, Faucet generated

much more contiguous assemblies than the lightweight assemblers minia [77] and

LightAssembler [92], while being faster and memory efficient than the best available

metagenome assemblers, metaSPAdes [93] and MegaHit [94]. Faucet was shown to

be comparable in terms of disk use to the only other streaming assembler, Ligh-

tAssembler [92], but achieved much higher contiguity of assemblies.

While Faucet is more efficient than MegaHit and MetaSPAdes in resource use,

these assemblers generate larger contigs. As mentioned in the discussion of Chapter

4, we believe further refinements of cleaning and contig generation can be achieved by

adopting a statistical approach to making assembly decisions. In addition, beyond

graph cleaning, we aim to apply Faucet’s data structures to path generation, as done

with paired end reads in [95, 96, 97]. Both have the potential to greatly improve

contiguity and accuracy.



5.4. FUTURE RESEARCH AND DEVELOPMENTS 52

5.4 Future research and developments

The landscape of sequencing is changing rapidly, with emergence of new technologies

leading to sudden tectonic shifts. Although the time frame is difficult to predict, it

is likely that sequencers will eventually be ’chromosome readers’ - sequencing full

length DNA molecules with very high accuracy at negligible cost. This will change

the emphasis of future analysis tasks from de novo assembly to identification by

alignment, but a long road of development needs to be traversed in order to enable

this change. We describe immediate first steps motivated by the work in this thesis,

and a broader discussion of current and future developments.

5.4.1 Storage of read data

Given sequence growth trends, it will be essential to move from storage of read data

to maximally informative, minimally redundant representations of sequences. Ide-

ally, these would be full representations of source molecules, such as full haplotypes

of human chromosomes or full microbial genomes without gaps or errors. Variation

graphs will be needed to non-redundantly encode sequences of related entities or

those from the same population [45]. Such graphs will serve as a bridge between the

current length limitations and biases of short reads and the high error rates of long

reads to leverage the advantages of each until both are improved.

Currently, no methods that we know of have been proposed for compression of

single molecule reads. This is likely due to the fact that these reads are inher-

ently harder to compress because of their high error rate, and that one of the most

efficient lossy compressions of them is their assembly. The process of assembly re-

quires removal of likely errors and thus eliminates most features that are resistant to

compression. Also, the assembled result is much more useful for downstream anal-

ysis, as long as little information present in the reads is lost. Recent methods have

evolved to retain nearly all implied path information present in individual short

reads [98, 99], including Chapter 4 of this thesis. However, currently no scalable

solution for retaining full paired end information is known.

Along with retention of information salient for downstream applications, enabling

efficient querying of large sequence databases will prove essential. Recent studies

that focused on this have greatly increased the scale of data that may be analyzed



5.4. FUTURE RESEARCH AND DEVELOPMENTS 53

simultaneously; more progress will be essential to enable analysis of data corpora,

even when they are publicly available [18, 20, 19].

5.4.2 Optimizing construction and refinement of assembly

graphs

Assembly graph construction algorithms will need to continue to advance in order

to keep pace with data production. Until databases are complete enough to allow

identification of most sequenced fragments via alignment against them, there will

be a drive to fill in gaps in the tree of life via environmental sequencing, as has

been recently seen for viruses [100] and soil bacteria [101], and to fully characterize

variation inside populations. Once such studies become prevalent, graph construc-

tion will need to be done on streamed data, and graphs will need to be stored in a

manner that allows them to be dynamically updated.

To enhance scalability, a parallelized single pass streaming approach would be

attractive for coping with very large metagenome or population graphs. If the k-mer

loading and junction labeling steps of Faucet are combined, a single pass approach

can be obtained, but it remains to be seen what limitations this imposes on graph

construction in terms of accuracy and contiguity that can be achieved. Currently,

both parallelized and single pass processing introduce challenges in discovery of

junctions.

An alternative to streaming data is partitioning it and processing it in a dis-

tributed fashion. In this way, memory use at each node is kept manageable, and

run times are reduced. Various modes of parallelization have been tested for de

Bruijn graph assembly, such as distribution to thousands of cores on supercom-

puters [102, 103], and distribution to a cluster under the MapReduce framework,

implemented in Spark [104]. Since the latter technology is more readily available

and allows leveraging cloud infrastructure to access more nodes as needed, it has

greater potential for wide adoption. Unfortunately, the implementation described

in [104] is not publicly available.



5.4. FUTURE RESEARCH AND DEVELOPMENTS 54

5.4.3 New means of assembly graph simplification, repeat

resolution

Until perfect complete molecule sequencing is achieved, algorithms for assembly

graph simplification will be needed in order to resolve repeats and differentiate

between errors and true variants. Work has been done on defining the information-

theoretic thresholds on sequence lengths and error rates at which full genome re-

construction becomes achievable [105, 106]. Recent extensions of this work by some

of the same authors apply similar analysis to defining resolution limits when data

is not sufficient for perfect recovery [107] and when coverage information may be

essential to separate between molecules sharing a repeat, such as in metagenome or

transcript assembly [108].

Such studies inform algorithm development and experimental design. While long

reads have made complete bacterial genomes routinely achievable, this has yet to

be the case for larger-scale applications. For metagenome assembly, it is possible

that much greater coverage than has been employed thus far is needed for complete

recovery. One of the implications of this being the case would be that more than a

Tb of data would be needed in order to fully sequence highly diverse metagenomes.

For plasmid assembly, integration of long reads has proven very useful in recovery

of isolate genome plasmids. However, as both plasmidSPAdes and Recycler rely on

coverage information to identify likely plasmids, it is likely that the combination of

short reads providing a coverage signal and long reads allowing bridging of repeats

will prove most useful, particularly in recovery of plasmids out of metagenomes.

Further improvements in Recycler’s processing may be achieved by refinement of the

candidate cycle generation procedure to allow longer cycles, bootstrapping the choice

of cycles peeled to allow greater sensitivity, and implementation of dynamic updates

on shortest path calculations to improve efficiency and scalability. An interesting

application of plasmid assembly may be refinement of metagenome assemblies: each

time cycles due to plasmids are peeled off of a metagenome assembly graph, the

graph is simplified, leading to longer contigs and simplified graph structure, as long

as true plasmids are identified.



Bibliography

[1] Christina Farr. Illumina, Secret Giant Of DNA Sequencing, Is Bringing Its

Tech To The Masses. https://www.fastcompany.com/3061591/illumina-owns-

the-dna-sequencing-market-now-its-building-an-app-store-too, 2016.

[2] Illumina Inc. History of Illumina Sequencing.

https://www.illumina.com/science/technology/next-generation-

sequencing/illumina-sequencing-history.html, 2017.

[3] Lex Nederbragt. Developments in NGS. 2016.

[4] John Michael Gaziano, John Concato, Mary Brophy, Louis Fiore, Saiju Pyara-

jan, James Breeling, Stacey Whitbourne, Jennifer Deen, Colleen Shannon,

Donald Humphries, Peter Guarino, Mihaela Aslan, Daniel Anderson, Rene

LaFleur, Timothy Hammond, Kendra Schaa, Jennifer Moser, Grant Huang,

Sumitra Muralidhar, Ronald Przygodzki, and Timothy J. O’Leary. Million

Veteran Program: A mega-biobank to study genetic influences on health and

disease. Journal of Clinical Epidemiology, 70:214–223, 2016.

[5] Lior Pachter. *Seq. https://liorpachter.wordpress.com/seq/, 2013.

[6] J. Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing

Chromosome Conformation. Science, 295(5558):1306–1311, 2002.

[7] Nicholas J Loman. Thar she blows! Ultra long read method for nanopore

sequencing · Loman Labs. http://lab.loman.net/2017/03/09/ultrareads-for-

nanopore/.

[8] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M

Landolin, and Adam M Phillippy. Assembling large genomes with single-

55



BIBLIOGRAPHY 56

molecule sequencing and locality-sensitive hashing. Nature Biotechnology,

33(6):623–630, 2015.

[9] Shi-Yi Chen, Feilong Deng, Xianbo Jia, Cao Li, and Song-Jia Lai. A transcrip-

tome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.

Scientific Reports, 7(1):7648, 2017.

[10] Jun Li, Yuka Harata-Lee, Matthew D Denton, Qianjin Feng, Judith R Rath-

jen, Zhipeng Qu, and David L Adelson. Long read reference genome-free

reconstruction of a full-length transcriptome from Astragalus membranaceus

reveals transcript variants involved in bioactive compound biosynthesis. Cell

discovery, 3:17031, 2017.

[11] Joshua Quick, Nicholas J. Loman, Sophie Duraffour, Jared T. Simpson,

Ettore Severi, Lauren Cowley, Joseph Akoi Bore, Raymond Koundouno,

Gytis Dudas, Amy Mikhail, Nobila Ouédraogo, Babak Afrough, Amadou

Bah, Jonathan H. J. Baum, Beate Becker-Ziaja, Jan Peter Boettcher, Mar

Cabeza-Cabrerizo, Álvaro Camino-Sánchez, Lisa L. Carter, Juliane Doer-

rbecker, Theresa Enkirch, Isabel Garćıa Dorival, Nicole Hetzelt, Julia Hinz-

mann, Tobias Holm, Liana Eleni Kafetzopoulou, Michel Koropogui, Abi-

gael Kosgey, Eeva Kuisma, Christopher H. Logue, Antonio Mazzarelli, Sarah

Meisel, Marc Mertens, Janine Michel, Didier Ngabo, Katja Nitzsche, Elisa

Pallasch, Livia Victoria Patrono, Jasmine Portmann, Johanna Gabriella

Repits, Natasha Y. Rickett, Andreas Sachse, Katrin Singethan, Inês Vitori-

ano, Rahel L. Yemanaberhan, Elsa G. Zekeng, Trina Racine, Alexander Bello,

Amadou Alpha Sall, Ousmane Faye, Oumar Faye, N’Faly Magassouba, Ce-

celia V. Williams, Victoria Amburgey, Linda Winona, Emily Davis, Jon Ger-

lach, Frank Washington, Vanessa Monteil, Marine Jourdain, Marion Bererd,

Alimou Camara, Hermann Somlare, Abdoulaye Camara, Marianne Gerard,

Guillaume Bado, Bernard Baillet, Déborah Delaune, Koumpingnin Yacouba

Nebie, Abdoulaye Diarra, Yacouba Savane, Raymond Bernard Pallawo, Gio-

vanna Jaramillo Gutierrez, Natacha Milhano, Isabelle Roger, Christopher J.

Williams, Facinet Yattara, Kuiama Lewandowski, James Taylor, Phillip Rach-

wal, Daniel J. Turner, Georgios Pollakis, Julian A. Hiscox, David A. Matthews,

Matthew K. O’ Shea, Andrew McD. Johnston, Duncan Wilson, Emma Hutley,

Erasmus Smit, Antonino Di Caro, Roman Wölfel, Kilian Stoecker, Erna Fleis-

chmann, Martin Gabriel, Simon A. Weller, Lamine Koivogui, Boubacar Di-



BIBLIOGRAPHY 57

allo, Sakoba Këıta, Andrew Rambaut, Pierre Formenty, Stephan Günther, and

Miles W. Carroll. Real-time, portable genome sequencing for Ebola surveil-

lance. Nature, 530(7589):228–232, 2016.

[12] Alexander L. Greninger, Samia N. Naccache, Scot Federman, Guixia Yu,

Placide Mbala, Vanessa Bres, Doug Stryke, Jerome Bouquet, Sneha So-

masekar, Jeffrey M. Linnen, Roger Dodd, Prime Mulembakani, Bradley S.

Schneider, Jean-Jacques Muyembe-Tamfum, Susan L. Stramer, and Charles Y.

Chiu. Rapid metagenomic identification of viral pathogens in clinical samples

by real-time nanopore sequencing analysis. Genome Medicine, 7(1):99, 2015.

[13] T F Smith and M S Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195–7, 1981.

[14] S B Needleman and C D Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443–53, 1970.

[15] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and

David J. Lipman. Basic local alignment search tool. Journal of Molecular

Biology, 215(3):403–410, 1990.

[16] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[17] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast

and memory-efficient alignment of short DNA sequences to the human genome.

Genome Biology, 10(3):R25, 2009.

[18] Brad Solomon and Carl Kingsford. Fast search of thousands of short-read

sequencing experiments. Nature Biotechnology, 34(3):300–302, 2016.

[19] Victoria Popic, Volodymyr Kuleshov, Michael Snyder, and Serafim Batzoglou.

GATTACA: Lightweight Metagenomic Binning With Compact Indexing Of

Kmer Counts And MinHash-based Panel Selection. bioRxiv, 2017.

[20] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee,

Nicholas H. Bergman, Sergey Koren, and Adam M. Phillippy. Mash: fast

genome and metagenome distance estimation using MinHash. Genome Biol-

ogy, 17(1):132, 2016.



BIBLIOGRAPHY 58

[21] J. T. Simpson and R. Durbin. Efficient construction of an assembly string

graph using the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

[22] Gene Myers. Efficient Local Alignment Discovery amongst Noisy Long Reads.

pages 52–67. Springer, Berlin, Heidelberg, 2014.

[23] Stefan Canzar and Steven L. Salzberg. Short Read Mapping: An Algorithmic

Tour. Proceedings of the IEEE, 105(3):436–458, 2017.

[24] Melanie Schirmer, Rosalinda D’Amore, Umer Z. Ijaz, Neil Hall, and Christo-

pher Quince. Illumina error profiles: resolving fine-scale variation in metage-

nomic sequencing data. BMC Bioinformatics, 17(1):125, 2016.

[25] Sara Goodwin, John D. McPherson, and W. Richard McCombie. Coming of

age: ten years of next-generation sequencing technologies. Nature Reviews

Genetics, 17(6):333–351, 2016.

[26] Yuval Benjamini and Terence P. Speed. Summarizing and correcting the

GC content bias in high-throughput sequencing. Nucleic Acids Research,

40(10):e72–e72, 2012.

[27] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto,

Paul Peluso, David Rank, Primo Baybayan, Brad Bettman, Arkadiusz Bibillo,

Keith Bjornson, Bidhan Chaudhuri, Frederick Christians, Ronald Cicero,

Sonya Clark, Ravindra Dalal, Alex DeWinter, John Dixon, Mathieu Foquet,

Alfred Gaertner, Paul Hardenbol, Cheryl Heiner, Kevin Hester, David Holden,

Gregory Kearns, Xiangxu Kong, Ronald Kuse, Yves Lacroix, Steven Lin, Paul

Lundquist, Congcong Ma, Patrick Marks, Mark Maxham, Devon Murphy, In-

sil Park, Thang Pham, Michael Phillips, Joy Roy, Robert Sebra, Gene Shen,

Jon Sorenson, Austin Tomaney, Kevin Travers, Mark Trulson, John Vieceli,

Jeffrey Wegener, Dawn Wu, Alicia Yang, Denis Zaccarin, Peter Zhao, Frank

Zhong, Jonas Korlach, and Stephen Turner. Real-Time DNA Sequencing from

Single Polymerase Molecules. Science, 323(5910), 2009.

[28] Seung Chul Shin, Do Hwan Ahn, Su Jin Kim, Hyoungseok Lee, Tae-Jin Oh,

Jong Eun Lee, and Hyun Park. Advantages of Single-Molecule Real-Time

Sequencing in High-GC Content Genomes. PLoS ONE, 8(7):e68824, 2013.



BIBLIOGRAPHY 59

[29] Erick W Loomis, John S Eid, Paul Peluso, Jun Yin, Luke Hickey, David Rank,

Sarah McCalmon, Randi J Hagerman, Flora Tassone, and Paul J Hagerman.

Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X

gene. Genome Research, 23(1):121–8, 2013.

[30] Miten Jain, Sergey Koren, Josh Quick, Arthur C Rand, Thomas A Sasani,

John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, Sunir

Malla, Hannah Marriott, Karen H Miga, Tom Nieto, Justin O’Grady, Hugh E

Olsen, Brent S Pedersen, Arang Rhie, Hollian Richardson, Aaron Quinlan,

Terrance P Snutch, Louise Tee, Benedict Paten, Adam M. Phillippy, Jared T

Simpson, Nicholas James Loman, and Matthew Loose. Nanopore sequencing

and assembly of a human genome with ultra-long reads. bioRxiv, 2017.

[31] Camilla L.C. Ip, Matthew Loose, John R. Tyson, Mariateresa de Cesare,

Bonnie L. Brown, Miten Jain, Richard M. Leggett, David A. Eccles, Vadim

Zalunin, John M. Urban, Paolo Piazza, Rory J. Bowden, Benedict Paten,

Solomon Mwaigwisya, Elizabeth M. Batty, Jared T. Simpson, Terrance P.

Snutch, Ewan Birney, David Buck, Sara Goodwin, Hans J. Jansen, Justin

O’Grady, Hugh E. Olsen, MinION Analysis Consortium, and Reference. Min-

ION Analysis and Reference Consortium: Phase 1 data release and analysis.

F1000Research, 4, 2015.

[32] Jared T Simpson, Rachael E Workman, P C Zuzarte, Matei David, L J Dursi,

and Winston Timp. Detecting DNA cytosine methylation using nanopore

sequencing. Nature Methods, 14(4):407–410, 2017.

[33] Keith Robison. Omics! Omics!: Catching Up On Ox-

ford Nanopore News: More, Better, Meth & Huge.

http://omicsomics.blogspot.co.il/2017/03/catching-up-on-oxford-nanopore-

news.html.

[34] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxi-

ang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha,

and Gene E. Robinson. Big Data: Astronomical or Genomical? PLOS Biology,

13(7):e1002195, 2015.

[35] National Human Genome Research Institute. 2001 Release: First Anal-

ysis of Human Genome - National Human Genome Research Institute



BIBLIOGRAPHY 60

(NHGRI). https://www.genome.gov/10002192/2001-release-first-analysis-of-

human-genome/.

[36] Po-Ru Loh, Michael Baym, and Bonnie Berger. Compressive genomics. Nature

Biotechnology, 30(7):627–630, 2012.

[37] Dan. Gusfield. Algorithms on strings, trees, and sequences : computer science

and computational biology. Cambridge University Press, 1997.

[38] M. Burrows, M. Burrows, and D. J. Wheeler. A block-sorting lossless data

compression algorithm. SRC Scientific Reports, 1994.

[39] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

[40] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[41] Andrei Broder and Michael Mitzenmacher. Network Applications of Bloom

Filters: A Survey. Internet Mathematics, 1:636—-646, 2002.

[42] W James Kent. BLAT–the BLAST-like alignment tool. Genome Research,

12(4):656–64, 2002.

[43] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin

Shumway, Corina Antonescu, and Steven L Salzberg. Versatile and open soft-

ware for comparing large genomes. Genome Biology, 5(2):R12, 2004.

[44] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature

Reviews Genetics, 14(3):157–167, 2013.

[45] Adam M Novak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Connelly,

Alexander Dilthey, Jordan Eizenga, M. A. Saleh Elmohamed, Sally Guthrie,

André Kahles, Stephen Keenan, Jerome Kelleher, Deniz Kural, Heng Li,

Michael F Lin, Karen Miga, Nancy Ouyang, Goran Rakocevic, Maciek Smuga-

Otto, Alexander Wait Zaranek, Richard Durbin, Gil McVean, David Haussler,

and Benedict Paten. Genome Graphs. bioRxiv, 2017.

[46] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean.

De novo assembly and genotyping of variants using colored de Bruijn graphs.

Nature Genetics, 44(2):226–232, 2012.



BIBLIOGRAPHY 61

[47] Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight BWT

Construction for Very Large String Collections. pages 219–231. Springer,

Berlin, Heidelberg, 2011.

[48] P. Ferragina and G. Manzini. Opportunistic data structures with applications.

In Proceedings 41st Annual Symposium on Foundations of Computer Science,

pages 390–398. IEEE Comput. Soc.

[49] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algo-

rithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD

international conference on on Management of data - SIGMOD ’03, page 76,

New York, New York, USA, 2003. ACM Press.

[50] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Reduc-

ing storage requirements for biological sequence comparison. Bioinformatics,

20(18):3363–3369, 2004.

[51] Yaron Orenstein, David Pellow, Guillaume Marçais, Ron Shamir, and Carl

Kingsford. Compact Universal k-mer Hitting Sets. pages 257–268. Springer,

Cham, 2016.

[52] Guillaume Marçais, David Pellow, Daniel Bork, Yaron Orenstein, Ron Shamir,

and Carl Kingsford. Improving the performance of minimizers and winnowing

schemes. Bioinformatics, 33(14):i110–i117, 2017.

[53] Andrei Z. Broder. On the Resemblance and Containment of Documents. In

Compression and Complexity of Sequences (SEQUENCES’97, pages 21—-29,

1997.

[54] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-

imating the frequency moments. In Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing - STOC ’96, pages 20–29, New York,

New York, USA, 1996. ACM Press.

[55] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to

DNA fragment assembly. Proceedings of the National Academy of Sciences,

98(17):9748–9753, 2001.

[56] Páll Melsted and Jonathan K Pritchard. Efficient counting of k-mers in DNA

sequences using a bloom filter. BMC Bioinformatics, 12(1):333, 2011.



BIBLIOGRAPHY 62

[57] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer count-

ing with very low memory usage. Bioinformatics, 29(5):652–3, 2013.

[58] Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Szymon Grabowski.

Disk-based k-mer counting on a PC. BMC Bioinformatics, 14(1):160, 2013.

[59] Qingpeng Zhang, Jason Pell, Rosangela Canino-Koning, Adina Chuang Howe,

and C. Titus Brown. These Are Not the K-mers You Are Looking For: Efficient

Online K-mer Counting Using a Probabilistic Data Structure. PLoS ONE,

9(7):e101271, 2014.

[60] Qingpeng Zhang, Sherine Awad, and C. Titus Brown. Crossing the streams:

a framework for streaming analysis of short DNA sequencing reads. 2015.

[61] L Song, L Florea, and B Langmead. Lighter: fast and memory-efficient se-

quencing error correction without counting. Genome Biology, 2014.

[62] Deniz Yorukoglu, Yun William Yu, Jian Peng, and Bonnie Berger. Com-

pressive mapping for next-generation sequencing. Nature Biotechnology,

34(4):374–376, 2016.

[63] Ernest Turro, Shu-Yi Su, Ângela Gonçalves, Lachlan JM Coin, Sylvia Richard-

son, and Alex Lewin. Haplotype and isoform specific expression estimation

using multi-mapping RNA-seq reads. Genome Biology, 12(2):R13, 2011.

[64] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal

probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527,

2016.

[65] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kings-

ford. Salmon provides fast and bias-aware quantification of transcript expres-

sion. Nature Methods, 14(4):417–419, 2017.

[66] L. Schaeffer, H. Pimentel, N. Bray, P. Melsted, and L. Pachter. Pseudoalign-

ment for metagenomic read assignment. Bioinformatics, 33(14):2082–2088,

2017.

[67] James K Bonfield and Matthew V Mahoney. Compression of FASTQ and

SAM format sequencing data. PloS one, 8(3):e59190, 2013.



BIBLIOGRAPHY 63

[68] Christos Kozanitis, Chris Saunders, Semyon Kruglyak, Vineet Bafna, and

George Varghese. Compressing genomic sequence fragments using SlimGene.

Journal of computational biology : a journal of computational molecular cell

biology, 18(3):401–13, 2011.

[69] Faraz Hach, Ibrahim Numanagic, and S Cenk Sahinalp. DeeZ: reference-based

compression by local assembly. Nature Methods, 11(11):1082–1084, 2014.

[70] Faraz Hach, Ibrahim Numanagic, Can Alkan, and S Cenk Sahinalp. SCALCE:

boosting sequence compression algorithms using locally consistent encoding.

Bioinformatics, 28(23):3051–7, 2012.

[71] Rob Patro and Carl Kingsford. Data-dependent bucketing improves reference-

free compression of sequencing reads. Bioinformatics, 31(17):2770–2777, 2015.

[72] Szymon Grabowski, Sebastian Deorowicz, and Lukasz Roguski. Disk-based

compression of data from genome sequencing. Bioinformatics, 31(9):1389–

1395, 2015.

[73] Daniel C Jones, Walter L Ruzzo, Xinxia Peng, and Michael G Katze. Com-

pression of next-generation sequencing reads aided by highly efficient de novo

assembly. Nucleic Acids Research, 40(22):e171, 2012.

[74] Gaëtan Benoit, Claire Lemaitre, Dominique Lavenier, Erwan Drezen, Thibault

Dayris, Raluca Uricaru, and Guillaume Rizk. Reference-free compression of

high throughput sequencing data with a probabilistic de Bruijn graph. BMC

Bioinformatics, 16(1):288, 2015.

[75] H Sarkar and R Patro. Quark enables semi-reference-based compression of

RNA-seq data. bioRxiv, (July):1–7, 2016.

[76] J Pell, A Hintze, R Canino-Koning, A Howe, J M Tiedje, and C T Brown.

Scaling metagenome sequence assembly with probabilistic de Bruijn graphs.

Proceedings of the National Academy of Sciences, I(1):1–11, 2012.

[77] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de Bruijn graph

representation based on a Bloom filter. Algorithms in Bioinformatics, pages

236–248, 2012.



BIBLIOGRAPHY 64

[78] Shaun D Jackman, Sarah Yeo, Lauren Coombe, and Rene L Warren. ABySS

2 . 0 : Resource-Efficient Assembly of Large Genomes using a Bloom Filter.

Genome Research, pages 768–777, 2017.

[79] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T. Simpson, and Paul

Medvedev. On the representation of de bruijn graphs. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), volume 8394 LNBI, pages 35–55, 2014.

[80] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn

graphs from sequencing data quickly and in low memory. Bioinformatics,

32(12):i201–i208, 2016.

[81] David Pellow, Darya Filippova, and Carl Kingsford. Improving Bloom Filter

Performance on Sequence Data Using k-mer Bloom Filters. Journal of compu-

tational biology : a journal of computational molecular cell biology, 24(6):547–

557, 2017.

[82] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. DeBGR:

An efficient and near-exact representation of the weighted de Bruijn graph.

Bioinformatics, 33(14):i133–i141, 2017.

[83] Ilia Minkin, Son Pham, and Paul Medvedev. TwoPaCo: An efficient algo-

rithm to build the compacted de Bruijn graph from many complete genomes.

Bioinformatics, 2016.

[84] Heng Li. Minimap and miniasm: Fast mapping and de novo assembly for

noisy long sequences. Bioinformatics, 32(14):2103–2110, 2016.

[85] Heng Li. Minimap2: fast pairwise alignment for long nucleotide sequences.

2017.

[86] Chen Sun, Robert S. Harris, Rayan Chikhi, and Paul Medvedev. AllSome

Sequence Bloom Trees. bioRxiv, 2017.

[87] Brad Solomon and Carl Kingsford. Improved Search of Large Transcriptomic

Sequencing Databases Using Split Sequence Bloom Trees. bioRxiv, 2016.



BIBLIOGRAPHY 65

[88] S. Halary, J. W. Leigh, B. Cheaib, P. Lopez, and E. Bapteste. Network

analyses structure genetic diversity in independent genetic worlds. Proceedings

of the National Academy of Sciences, 107(1):127–132, 2009.

[89] H. C. Neu. The Crisis in Antibiotic Resistance. Science, 257(5073):1064–1073,

1992.

[90] Tue Sparholt Jørgensen, Zhuofei Xu, Martin Asser Hansen, Søren Johannes

Sørensen, and Lars Hestbjerg Hansen. Hundreds of circular novel plasmids and

DNA elements identified in a rat cecum metamobilome. PloS one, 9(2):e87924,

2014.

[91] Aya Brown Kav, Goor Sasson, Elie Jami, Adi Doron-Faigenboim, Itai Ben-

har, and Itzhak Mizrahi. Insights into the bovine rumen plasmidome. Pro-

ceedings of the National Academy of Sciences of the United States of America,

109(14):5452–7, 2012.

[92] Sara El-Metwally, Magdi Zakaria, and Taher Hamza. LightAssembler: Fast

and memory-efficient assembly algorithm for high-throughput sequencing

reads. Bioinformatics, 32(21):3215–3223, 2016.

[93] S. Nurk, D. Meleshko, A. Korobeynikov, and P. Pevzner. metaSPAdes: a new

versatile de novo metagenomics assembler. page arXiv:1604.03071, 2016.

[94] Dinghua Li, Chi Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak Wah

Lam. MEGAHIT: An ultra-fast single-node solution for large and com-

plex metagenomics assembly via succinct de Bruijn graph. Bioinformatics,

31(10):1674–1676, 2014.

[95] Rahul Nihalani and Srinivas Aluru. Effective Utilization of Paired Reads to

Improve Length and Accuracy of Contigs in Genome Assembly. In Proceedings

of the 7th ACM International Conference on Bioinformatics, Computational

Biology, and Health Informatics, pages 355–363, 2016.

[96] Andrey D. Prjibelski, Irina Vasilinetc, Anton Bankevich, Alexey Gurevich,

Tatiana Krivosheeva, Sergey Nurk, Son Pham, Anton Korobeynikov, Alla

Lapidus, and Pavel A. Pevzner. ExSPAnder: A universal repeat resolver for

DNA fragment assembly. Bioinformatics, 30(12), 2014.



BIBLIOGRAPHY 66

[97] Wenyu Shi, Peifeng Ji, and Fangqing Zhao. The combination of direct and

paired link graphs can boost repetitive genome assembly. Nucleic acids re-

search, page gkw1191, 2016.

[98] Isaac Turner, Kiran V. Garimella, Zamin Iqbal, and Gil McVean. Integrating

long-range connectivity information into de Bruijn graphs. bioRxiv, 2017.

[99] Anthony M. Bolger, Alisandra K. Denton, Marie E. Bolger, and Bjoern Usadel.

LOGAN: A framework for LOssless Graph-based ANalysis of high throughput

sequence data. bioRxiv, 2017.

[100] David Paez-Espino, Emiley A. Eloe-Fadrosh, Georgios A. Pavlopoulos, Alex D.

Thomas, Marcel Huntemann, Natalia Mikhailova, Edward Rubin, Natalia N.

Ivanova, and Nikos C. Kyrpides. Uncovering Earth’s virome. Nature,

536(7617):425–430, 2016.

[101] Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown,

Alexander J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W.

Hernsdorf, Yuki Amano, Kotaro Ise, Yohey Suzuki, Natasha Dudek, David A.

Relman, Kari M. Finstad, Ronald Amundson, Brian C. Thomas, and Jillian F.

Banfield. A new view of the tree of life. Nature Microbiology, 1(5):16048, 2016.

[102] Evangelos Georganas, Aydn Buluç, Jarrod Chapman, Steven Hofmeyr, Chai-

tanya Aluru, Rob Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick.

HipMer : An Extreme-Scale De Novo Genome Assembler. Proceedings of the

International Conference for High Performance Computing, Networking, Stor-

age and Analysis., pages 14:1–14:11, 2015.

[103] Jintao Meng, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, and Pavan Bal-

aji. SWAP-Assembler: scalable and efficient genome assembly towards thou-

sands of cores. BMC Bioinformatics, 15(Suppl 9):S2, 2014.

[104] Anas Abu-Doleh and Umit V. Catalyurek. Spaler: Spark and GraphX based

de novo genome assembler. Proceedings - 2015 IEEE International Conference

on Big Data, IEEE Big Data 2015, (C):1013–1018, 2015.

[105] Guy Bresler, Ma’ayan Bresler, and David Tse. Optimal assembly for high

throughput shotgun sequencing. BMC bioinformatics, 14 Suppl 5(Suppl

5):S18, 2013.



BIBLIOGRAPHY 67

[106] Govinda M Kamath, Ilan Shomorony, Fei Xia, Thomas A Courtade, and

David N Tse. HINGE: long-read assembly achieves optimal repeat resolution.

Genome Research, 27(5):747–756, 2017.

[107] Ilan Shomorony, Govinda M. Kamath, Fei Xia, Thomas A. Courtade, and

David N. Tse. Partial DNA assembly: A rate-distortion perspective. In 2016

IEEE International Symposium on Information Theory (ISIT), pages 1799–

1803. IEEE, 2016.

[108] Sreeram Kannan, Joseph Hui, Kayvon Mazooji, Lior Pachter, and David Tse.

Shannon: An Information-Optimal de Novo RNA-Seq Assembler. bioRxiv,

2016.





 ,מאתגר נותר )NGS( החדש מהדור ריצוף באמצעות שלהם אפיון, זאת עם. ובחקלאות בתעשייה רבה השפעה ליישומם
 פלסמידים אפיון יכולת את לשפר מנסים אנו ,זה במחקר .צוףרי עבור בתפוקה והעלייה במחיר המהירה הצניחה למרות
 כלי ידי על המסופקים הרכבה של גרפים ניצול ,מעגליים אלמנטים של הרכבה עבור חדש אלגוריתם פיתוח ידי על

 מעגליים רצפים להרכיב במטרה ,מזווגים-קצוות קריאות של ועימוד קונבנציונאלי  assembler) novo (de להרכבה
 .אחרים מעגליים ואלמנטים ים’פאג  ,פלסמידים להיות העשויים

 ריצופים של מנתונים מעגליים )contigs( קונטיגים לחלץ שביכולתו הראשון הכלי ,Recycler את מציגים אנו: תוצאות
 מספר את מאוד מגדיל Recycler כי מראים אנו .ומטאגנומים פלסמידומים ,מבודדים מיקרוביאליים גנומים עבור

 באמצעות זו מגמה מראים אנו .גבוה דיוק על שמירה תוך אחרות לגישות יחסית זרוחושש האמיתיים הפלסמידים
 דיוק של והערכות ,מבודדים ממיקרובים דגימות עבור ייחוס נתוני עם חיזויים של השוואות ,פלסמידומים של סימולציות

  Recycler ידי על שנחזו פלסמידים 77 של א"דנ הגברת ידי על אימות מספקים אנו, בנוסף .מטאגנום של נתונים אפיון
 - הנתונים סוגי כל פני על 89% של ממוצע דיוק Recycler הראה זה בבדיקה .שונים סוגים של ריצוף מתוצאות
 .ופלסמידום ,מיקרוביום ,מבודדים

 

3. Faucet: streaming de novo assembly graph construction  

R. Rozov, R.Shamir, E. Halperin; Bioinformatics btx471, 2017 

 )algorithm streaming( נתונים זרימת בשיטת הרכבה גרף בנייתל םאלגורית ,Faucet את מציגים אנו: מוטיבציה
 כל עבור מקומי באחסון צורך אין .קריאה כל על מעבר תוך בהדרגה הרכבה גרף בונה אלגוריתםה .מעברים בשני

 ידי-על זו פונקציונליות מדגימים אנו .ומחיקתן הנתונים הורדת כדי תוך מתבצע קריאות אותן עבור עיבודוה ,הקריאות
 גולמי נתונים לגודל בדיסק השימוש בין היחס כי ומבחינים ,לציבור זמינים נתונים זרימת כדי תוך הרכבה גרף בניית
 .עולה הכיסוי שרמת ככל פוחת

 הנגזרים נוספים )metadata( תיאוריים נתונים עם הקריאה מן שהושג Bruijn de גרף בין משלב Faucet : תוצאות
 המגשרים וחיבורים ,הגרף בצמתי שנספרו הכיסוי מרמות מורכבים אשר -אלו תיאוריים שנתונים מראים אנו .מהקריאות

 של הרכבה גרפי ניקוי יכולת מדגימים אנו ,כך לשם .הרכבה לשם הנחוץ המידע רב את מכילים - צמתים זוגות בין
 במשאבים השימוש את והשווינ .םדיוק על שמירה תוך שנוצרו הרצפים בהמשכיות משמעותי שיפור עם ,מטאגנומים
 זמן את מצמצם Faucet -ב השימוש .גנומים ושל מטאגנומים של מובילים הרכבה לכלי Faucet של הרכבה ובאיכות
    -ו MetaSPAdes כגון םייעודי מטאגנומים הרכבת כלי לעומת גודל בכסדר האחסון שטח את מקטיןו ההרכבה

Megahit, של הביצועים ברמת כללית התאמה ישנה ;שלהם בזיכרון השימוש שיפור תוך Faucet אשר הרכבה לשיטות 
 התפוקות ,שנבדקו מטגנומים על ,זאת עם embler.LightAss-ו Minia, - כגון - המשאבים יעילות מיקסום תוך פועלות
 לפי גבוהות 11-2 ופי Minia לעומת ממוצע  NGA50 קריטריון לפי יותר גבוהות 14-110% -כ היו  Faucet בשיטת
 .נתונים זרימת בשיטת הזמין היחיד ההרכבה כלי ,LightAssembler לעומת קריטריון אותו

 



  בתזה הכלולים המאמרים תקציר

 : זו עבודה מבוססת עליהם המאמרים תקצירי להלן

filters. Bloom cascading via compression lossless Fast 1. 

R. Rozov, R.Shamir, E. Halperin; BMC Bioinformatics 2014, 15 (Suppl 9):S7.  

 הכרוכות העלויות מבחינת הן אתגרים יוצרים (NGS) החדש מהדור ריצוף בשיטות גדולים מניסויים נתונים: רקע
 כלל בדרך אך ,מסוימים ליישומים רלוונטי סיכום רק לאחסן ניתן לפעמים. הקובץ בהעברת הנדרש בזמן והן באחסון
 ללא דחיסהל  יעילות בשיטות הצורך ,לכן. בעתיד הניסוי תוצאות את לבחון בכדי הדרוש המידע כל את לשמור רצוי
 את לשפר יכולות- NGS ל ספציפיות דחיסה שיטות כי הוכח .עולה NGS קריאות עבור (lossless) מידע אובדן

 כאשר .אריתמטי קידוד או ,וילר-בורוס טרנספורמצית ,זיו-למפל אלגוריתם כגון ,גנריות דחיסה שיטות על התוצאות
 רצף כל קידוד מכן ולאחר ,ההשוואה לרצף הרצפים עימוד ידי על תחילה ,יעילה דחיסה לבצע ניתן ,זמין ההשוואה גנום

 השוואה לרצף ייחוס מבוססות שיטות .ההשוואה לרצף יחסית בקריאות ההבדלים עם בשילוב העימוד מיקום באמצעות
 שהן העימוד פעולת אך ,השוואה לרצף ייחוס מבוססות שלא השיטות מאשר יותר טובה דחיסה יכולת כבעלות הוכחו
 ,השוואה לרצף ייחוס ביצוע ללא ששיטות בעוד ,טיפוסי נתונים אוסף עבור חישוב של שעות כמה לוקחת דורשות
 .דקות תוך דחיסה בד׳׳כ מאפשרות

 לחלוטין עוקפת אבל ,השוואה לרצף ייחוס באמצעות מאוד יעילה דחיסה משיגה אשר חדשה גישה מציגים אנו: תוצאות
 ,השוואה לרצף ייחוס מבוססות לשיטות בניגוד .הדחיסה לביצוע הדרוש בזמן גדולה הפחתה תוך ,לעימוד הצורך את
Bloom) ( בלום מסנן לתוך הקריאות כל עבור )hash( ובגיב מבצעים אנו ,לגנום קריאות של עימוד מבצעות תחילה אשר

filter מסננים של מפל באמצעות מושגת נוספת דחיסה .פענוח לשם בלום מסנן אותו על שאילתות ומבצעים קידוד לשם 
 .אלו

 ,השוואה לרצף ייחוס על המבוססות משיטות גודל בכסדר יותר מהירה ,BARCODE הנקראת ,שלנו השיטה: מסקנות
 בכיסוי .הרצפים כיסוי רמות של רחב טווח פני על ,השוואה לרצף ייחוס ללא משיטות יותר גודל כסדר של דחיסה תוך
 הגדלת תוך ריצה זמן של 80-90% חוסך  ,BARCODE ביותר הטובות הדחיסה לשיטות בהשוואה ,)100-50 פי( גבוה
 .מועטה שטח

 

2. Recycler: an algorithm for detecting plasmids from de novo assembly graphs 

R. Rozov, A.B. Kav, D. Bogumil, N. Shterzer, E. Halperin, I. Mizrahi, R. Shamir; Bioinformatics 
2017; 33 (4): 475-482. 

 .גנומית וחדשנות חיידקית לאבולוציה מרכזית תרומה מהווים DNA של אחרים ניידים ואלמנטים פלסמידים: מוטיבציה
 אשר מטבוליטים ביצירת והן לאנטיביוטיקה עמידויות ביצירת הן חשובים תפקידים אלו לאלמנטים כי נמצא ,לאחרונה



 90% כמעט ,Recycler באמצעות ונבדקו שנובאו פלסמידים מתוך ,כך על יתר .ואמתיים מדומים נתונים באמצעות
 .מעבדה בבדיקות אומתו

 זה אלגוריתם .נתונים זרימת באמצעות גרף בניית המבצע להרכבה אלגוריתם ,Faucet את מציגים אנו ,4 בפרק ,לבסוף
 ,קלט נתוני ביעילות דוחסת זו שיטה כי הראינו .הנתונים זרימת תוך ביעילות קידוד לעבורו להיקלט חיוני למידע מאפשר
 לשם תשאול מאפשר אליו מקודד Faucet ש הגרף .עולה הקריאות כיסוי שרמת ככל ותרי יעילה הופכת זו דחיסה וכי

 הרכבות יצר Faucet ,הקיימות לשיטות בהשוואה .נוספים יישומים לו יהיוש שייתכן חדש דחיסה אמצעי מציגו ,הרכבה
 ביעילות      LightAssembler  [92]-ו minia [77]  כגון ,משאבים מבחינת חסכניות שיטות מאשר יותר רציפות
 . MegaHit [94] ו metaSPAdes [93] כגון ,מטגנומים להרכבת כיום ביותר הטובות מהשיטות הגבוהות ומהירות
 העובד הנוסף היחיד ההרכבה כלי , LightAssembler של לאלה  דומים היו FAUCET ביצועי ,בדיסק שימוש מבחינת
 .רציפות יותר הרבה תוצאות יצר Faucet זאת עם אך ,[92] נתונים זרימת בשיטת



 צורך ללא ,אלו בטכנולוגיות בנפרד ריצוף עוברים DNA-ה מקטעי ,בנוסף .]SBS( ]7( סינתזה מבוסס הריצוף בשיטת
 אלו בשיטות העיקריים החסרונות ,םלהיו נכון .רצף תלויות הטיותל פחות אחד מקור יש ולכן ,PCR בעזרת בהגברה
 אוחזות הן זאת עם אך ,בקריאות בהרבה הגבוה שגיאות שיעורו לבסיס גבוהה מחיר בעלות הינם SBS-ה לעומת

 הקשורים קרובים תעתיקים בין בהבדלה ,assembly novo de( [8]( מוקדם ידע ללא הרכבה עבור עצומים ביתרונות
 מטגנומים ריצוףב וירוסים של קרובים זנים בין בהבחנה או mRNA )Seq-RNA( ,[9,10] בריצוף הנוצרים ,לזה זה

[11,12]. 

 העלייה עם יחד לדגימה הרצפים מספר עליית .חדשים ביואינפורמטיים אתגרים יצר הטכנולוגי בנוף המהיר השינוי
 ,הניתוח משימות יכולת את לשכלל בכדי .נתונים של הצפה יצרו זולה ריצוף עלות בעקבות המחקרים וגודל במספר
 בו ,רצפים עימוד כגון בשלים נחשבו אשר לתחומים גם .חדשים ריצוף וטכנולוגיות אלגוריתמים יחדיו התפתחו

 בעימוד יעילים היוריסטיים אלגוריתמים קיימיםו ,[13,14] בודדים רצפים עימוד עבור ידועים אופטימליים אלגוריתמים
 עימוד כגון ,החדשים האתגרים עם להתמודד מנת על חידושים דרשונ ,[15]  גדולים רצפים למאגרי בודדים רצפים
 זמינים אשר האלפים בקרב רלוונטיים נתונים קבצי חיפוש  [16,17], יונקים של לגנומים מאוד קצרים רצפים מיליוני
 האפשריים גותהזו כל עימוד של יעיל וקירוב ,[18,19,20] )רצפים ממיליוני מורכב מהקבצים אחד כל כאשר( לציבור
 של יותר רב מספר עבור הרכבה ביצוע איפשר זול ריצוף ,כן כמו .[21,22] הרכבה לבצע במטרה קריאות מיליוני בין

 האתגרים .בהתאמה Seq-RNA -ו מטגנומי ריצוף דרך תעתיקים או מינים של ואוספים ,יותר ארוכים גנומים ,גנומים
 הן ,המקרים בשני .זמנית בו רצפים של גדולים אוספים של ייצוג לאפשר כדי יותר גדול אחסון שטח דרשו זה חוםבת

 .כהכרחיות הוכחו מחדש הרצפים לסידור או למפתוח חדשות טכניקות ,רצפים בעימוד והן בהרכבת

 לאחר .םשלה הנתונים יצירת וקצב ריצוף טכנולוגיות של מפורט תיאורב מתחילים אנו .זו תזה במוקד הינן אלו טכניקות
 בגישות דנים אנו ,לבסוף .מחרוזות של מסורתיים אלגוריתמים על מטילים אלה שנתונים האתגר את מאפיינים אנו ,מכן

 מציגים אנו לבסוף .עליהן מבוססות אשר תרומתנו תיאור לפני ,)indexing string( מחרוזות מפתח לבניית מודרניות
 .שלהן התפוקה ניתוח לצורך נחוצים יהיו אשר והכלים ריצוף טכנולוגיות של העתידיות ההתפתחויות לגבי פרספקטיבה

  תוצאות

 Bloom( בלום מסנן על המבוסס קצרות קריאות של מהיר דחיסה אלגוריתם ,BARCODE את מציגים אנו ,2 בפרק
filter( ידוע השוואה לרצף ביחס קריאות של קידוד המבצע. BARCODE ידי על הקריאות עימודב הצורך את עוקף 
 אחר מדוקדק מעקב בעזרת בלום בפילטר טמונות אשר המגבלות את ומונע בלום מסנן לתוך הקריאות )hashing( גיבוב
 הודגם האלגוריתם   .ההשוואה רצף את לגמרי תואמות שלא קריאות ודחיסת מעקבל בנוסף ,ודחיסתן חוזרות קריאות
 אשר שיטות מאשר יותר טובים דחיסה יחסי בעל כן וכמו ,השוואה לרצף ייחוס על מבוססותה משיטות יותר מהיר כדוחס
 .השוואה לרצף ייחוס על מבוססות אינן

 לפלסמידים השייכים מעגלים מזהה Recycler .פלסמיד רצפי להרכבת אלגוריתם ,Recycler  את מציגים אנו ,3 בפרק
 מאשר יותר רבים פלסמידים לשחזר ביכולתו ,זו פעולה בעזרת .להרכבה םזמיני כלים ידי על שנוצר ההרכבה בגרף
 תהערכו על בהתבסס ,מתחרות שיטות מאשר יותר גבוהות ודיוק רגישות יכולות ראהה  Recycler .בעבר זמינות שיטות



  תמצית

 סנגר שיטת את מחליפה אשר ,זו בשיטה .באחרון בעשור מעריכי באופן גדל העמוק הריצוף בשיטת שנוצר הנתונים נפח
 תפוקת זה משינוי כתוצאה .זמנית בו המרוצפים ,קצרים מקטעים מיליוני של מקבילה בצורה נעשה הריצוף ,האיטית
 תהליכי לבצע בכדי נחוץה הזמן .גודל סדרי בחמישה צנח )נוקלאוטיד( בסיס לריצוף שהמחיר כך כדי עד התעצמה הריצוף
 רצפים לעיבוד שנועדו אלגוריתמים ואותם במידה ,כן גם מעריכית בצורה יגדל רצפים ועימוד הגנום הרכבת כגון עיבוד
 להתמודד נועדו ראש ,חדשות שיטות מציגים אנו זו תזה בעבודת .העמוק הריצוף נתוני על יופעלו )נפח קטני או( קצרים
 נתוני של ומפתוח דחיסה לבצע כדי מתקדמים נתונים במבני משתמשים אנו .העמוק הריצוף עידן שמציב האתגרים עם

 יותר מהירה גישה מדגימים אנו ,הרצפים לדחיסת בהקשר .אחסון נפח הורדת תוך יעיל תשאול לאפשר במטרה ,הרצפים
 שימוש תוך הרצפים הצגת ידי על ),reference( ההתייחסות לרצף ביחס יםרצפ מקטעי לדחיסת כיום הקיימות מהשיטות
 להרכבת חדשה שיטה פיתחנו :הגנום להרכבת בהקשר שיפורים שני מציגים אנו ).filter Bloom( בלום מסנן בשיטת
 גרף לבניית ),streaming( זרימה אלגוריתם פיתחנו ,כן כמו .כמפתח ההרכבה של בגרפים שימוש תוך ,מעגליים רצפים
 עיקר של שמירה מאפשר זה שמבנה מראים אנו .בדיסק שימושהו הזיכרון ,הבנייה זמן את להוריד במטרה ,ההרכבה
 .תואיכותי רציפה גנום הרכבת המאפשר דבר ,הרצפים תכונות

 

  כללי רקע

 העלויות .ואחת העשרים המאה של הראשון בעשור דרמטי באופן השתפרה א"דנ לקרוא האנושי המין של יכולתו
 את זירזו ,סנגר שיטת באמצעות הראשון האנושי הגנום של הרצף והרכבת הריצוף השלמת עבור שנדרשו העצומות
 חברות מספר .התפוקה את ולהגדיל ,עלויות להוזיל ,הריצוף מהירות את להאיץ במטרה שונות טכנולוגיות של פיתוחן
 ”עמוק ריצוף“ בטכנולוגיות שימוש הוא ,אלו לחברות המשותף .אלה צרכים על לענות בכדי מתחרות טכנולוגיות הציגו
 בזכות התאפשר הדבר [1].  מהשוק %70-ב כעת שולטת ,Illumina ,הללו מהחברות אחת ”.הבא הדור ריצוף“ או

 .[2] 2006 בשנת  aSolex בשם יותר קטנה חברה שפיתחה ,(SBS) ,סינתזה ידי על ריצוף טכנולוגית

 בשבעה בתפוקה ועלייה ,גודל סדרי מחמישה ביותר במחיר לירידה הוביל האחרון העשור במהלך עמוק ריצוף של הפיתוח
 200 לעומת ,אנושי גנום לרצף דולר 1000 בערך עולה ,כיום .Figure] [1.1 [3] סנגר בשיטת לריצוף ביחס גודל סדרי
 כעת ,לדוגמה .הביולוגי המחקר על עמוקות השפעות היו במחיר זו לירידה .2001 בשנת עלה כזה שריצוף דולר מיליון
 טכניקות מאה כמעט פותחו ,כן כמו .[4] אדם בני בין שונות היטב לאפיין כדי אנשים אלפי מאות על מחקרים לבצע ניתן
 השגת עקב הקיימת הטכנולוגיה של מקומה את תפס הריצוף ,מסוימים במקרים .[5] ריצוף על המבוססות חדשות ניסוי

 את החליף אשר )Seq-RNA נקרא( שעתוק למדידת  mRNA ריצוף של במקרה כמו ,יותר הרבה גבוהה רזולוציה
 בעבר התאפשרו שלא ניסויים של סוגים אפשר עמוק ריצוף ,אחרים במקרים .)microarrays( הדנ׳׳א שבבי שיטת
 בתלת הגנום מבנה חקירת לצורך פותח אשר  ),Capture Conformation Chromosome )3C  כגון ,ההגבו בתפוקה
 .[6] מימד

 עם להתמודד במטרה צמחו אשר חדשות טכנולוגיות לצד ,עמוק ריצוף שיטת עבור חדשים יישומים פותחו ,הזמן עם
 מהקריאות יותר אלף עד עשרה פי גדול אורכן אשר קריאות יוצרות השלישי הדור של ריצוף טכנולוגיות .חסרונותיה



 

 
 סאקלר ובברלי ריימונד ע׳׳ש מדויקים למדעים הפקולטה
 בלבטניק ע׳׳ש המחשב למדעי הספר בית

 

 
 
 
 

 עמוק ריצוף נתוני ניתוח של הסיבוכיות הפחתת על
 

 
 
 
 

 לפילוסופיה״ ״דוקטור תואר קבלת לשם חיבור
 

 רוזוב רועי מאת
 
 

  שמיר רון פרופ׳ של בהנחייתו
 הלפרין ערן ופרופ׳

 
 
 

 ת׳׳א אוניברסיטת של לסנאט הוגש
 
 2017 נובמבר

 


	Introduction
	Deep sequencing
	Third generation sequencing
	Single molecule technologies
	Synthetic long reads

	Growth of sequencing data generated
	Traditional text indexing approaches
	Indexing modern sequence data
	Data structures and techniques for indexing, grouping, and summarizing reads
	Applications demanding indexing

	Summary of articles included in this thesis

	Fast lossless compression via cascading Bloom filters
	Recycler: an algorithm for detecting plasmids from de novo assembly graphs
	Faucet: streaming de novo assembly graph construction
	Discussion
	Compressing read sequences
	Assembling plasmids
	Streaming assembly
	Future research and developments
	Storage of read data
	Optimizing construction and refinement of assembly graphs
	New means of assembly graph simplification, repeat resolution



