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Abstract

The volume of deep sequencing data generated over the last decade has grown ex-
ponentially, as machines that output many millions of short sequences in parallel
replaced slower Sanger-sequencing machines that read individual DNA molecules.
As a result of this change, throughput has exploded and the price per base has
plummeted by five orders or magnitude. This data growth means that the time re-
quired to perform many standard processing tasks, such as alignment and assembly,
also grows exponentially if algorithms that were designed for much smaller numbers
(or lower volumes) of sequences are applied. In this thesis, we introduce new tech-
niques designed to address these challenges. We use advanced data structures to
compress and index sequence data, aiming to allow efficient querying with reduced
storage space. In the context of sequence compression, we demonstrate a faster
approach than extant methods to compress read sequences relative to a reference
by representing sequences using Bloom filters. In the context of de novo assembly,
we first develop a new approach to assembling circular sequences using assembly
graphs as an index. Then, we demonstrate a streaming approach to assembly graph
construction to reduce construction time, memory, and disk use. We also show
this construction enables most salient information present in the read data to be

maintained, leading to highly contiguous assemblies.
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Chapter 1

Introduction

Mankind’s ability to read DNA improved dramatically in the first decade of the
twenty-first century. The huge costs required to complete sequencing and assembly
of the first Human genome via Sanger sequencing spurred development of differ-
ent technologies to speed up sequencing, make it cheaper, and increase throughput.
Several companies introduced competing technologies to address these needs. Collec-

)

tively, these technologies are commonly referred to as ”Deep,” or previously, ” Next
Generation” Sequencing technologies. One of those companies now controls 70% of
the sequencing market - Ilumina [1] - by virtue of their Sequencing by Synthesis
(SBS) technology. This technology was obtained via acquisition of a smaller com-
pany called Solexa in 2007 [2] that had marketed the first sequencer employing SBS

a year earlier.

Development of deep sequencing over the past decade led to an over five order
of magnitude drop in price, and seven order of magnitude increase in throughput
relative to Sanger sequencing [3] [Figure 1.1]. It now costs about $1000 to sequence
a human genome, whereas in 2001 it cost over $200 M. This price drop has had
profound effects on biological research. For example, It is now possible to perform
studies of hundreds of thousands of individuals to finely characterize variation in
humans [4]. Also, nearly a hundred new assays have emerged that are based on
sequencing [5]. In some cases, as in mRNA sequencing used to measure transcription
(called RNA-Seq), sequencing has largely supplanted existing technology (in this
case, microarray chips) due to the much higher resolution enabled; in others, such

as Chromosome Conformation Capture (3C) [6] for the purpose of assaying 3D
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genome structure, sequencing based assays are the first high-throughput means of

investigation available.

Along with development of new applications of deep sequencing, new technologies
have emerged that aim to address its shortcomings. Third generation technologies
generate reads that are tens to thousands of times longer than SBS reads [7], and
are sequenced individually, and thus not prone to biases introduced by PCR am-
plification. Currently, such reads have a much higher error rate than SBS reads
and are much more expensive per base, but they have already been shown to pro-
vide tremendous benefits for de novo assembly [8], and in differentiating between
closely related transcripts in RNA-Seq [9, 10], or closely related strains of viruses in

metagenome sequencing [11, 12].

This rapidly shifting technology landscape has created tremendous new bioin-
formatic challenges. The large number of sequences per sample, coupled with the
ever-increasing number of studies and size per study enabled by cheap sequenc-
ing, have led to a deluge of data. To scale analysis tasks, algorithms have evolved
along with sequencing technologies. Fields thought to be mature such as sequence
alignment, where optimal algorithms are known for aligning individual sequences
[13, 14], and good heuristic algorithms exist for aligning individual sequences to
large databases [15], have required a steady stream of innovations to cope with new
challenges such as aligning millions of very short sequences to large mammalian
genomes [16, 17], searching for relevant datasets among the thousands that are pub-
licly available [18, 19, 20] (where each is composed of millions of sequences), and
efficiently approximating all-versus-all pairwise comparisons of millions of reads in
order to perform de novo assembly [21, 8, 22]. Cheap sequencing also enabled an
endeavor to assemble more genomes, larger genomes, and collections of species via
metagenome sequencing or transcripts via RNA-Seq. The challenges in this area de-
manded ever larger space to represent large collections of sequences simultaneously.

In both cases, new techniques to index or reorder sequences proved to be essential.

Such techniques are the focus of this thesis. We begin with a detailed description
of sequencing technologies and the magnitude of their data production. Then, we
characterize the challenge these data impose on traditional algorithms on strings.
Finally, we discuss modern string indexing approaches before describing our own
contributions that are based on them. We conclude by providing some perspective

regarding future developments of sequencing technologies and the tools that will be
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needed to analyze their output.

J: Hiseq )_( _____ Hiseq 4000
Hiseq -
1000} 2000/2500 J:
o Hiseq2500 RR
| gi— NextSeq 500
100} .
— /:
= ﬂ
N 10} Pro;on AN b= Miseq a™
© 8~ e Y
& y 3
g SoLD S5/S5XL
o MiniSeq
=~ 1t P ®
c [ =
2 °
5 e
2 | Ha =
4 L i Pem ¢ i PacBio RS
o GAll ./n u acBio
Q .
© @ GS Junior
2 b =
© 0.01} ° ——,
GS FLX
0.001}
]
0.0001f .
hd ‘Sanger’
Lex Nederbragt (2012-2016)
(32 http://dx.doi.org/10.6084/m9.figshare.100940
0.00001 :

10 100 1000 10000
Read length (log scale)

Figure 1.1: Development of sequencing technologies. Read length is plotted against
throughput in Gigabases per run for various contemporary and extinct sequencing

technologies. Source: [3]

1.1 Deep sequencing

Deep sequencing involves sequencing large numbers of short DNA molecules in par-
allel. The most popular approach is Illumina’s Sequencing By Synthesis (SBS),
involving fragmenting DNA to a desired size distribution, ligating adapters to frag-
ment ends, fixing DNA ends to a glass slide, and recording fluorescence emitted as
new fluorescently tagged nucleotides in solution are added to bound molecules [Fig-
ure 1.2]. Modified nucleotides called reversible terminators are introduced to the
solution along with DNA polymerase, and the action of DNA polymerase is used

to add nucleotides to fixed single-stranded templates. Reversible terminators are
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nucleotides that are modified to stop extension when incorporated, and stop their
termination activity along with emitting a nucleotide-specific color when struck with
light; this allows for signaling a particular base’s incorporation and recovering this
information via imaging. This process is repeated for up to 300 cycles, a limit

imposed by image signal degradation limiting resolution at greater lengths.

The input DNA is referred to as the sequenced sample. Stacking of images gener-
ated during the course of sequencing and tracking bases incorporated sequentially at
fixed locations allows reconstruction of millions of sequences in parallel. Sequencing
errors are primarily substitutions, on the order of one out of every thousand bases,
and insertions or deletions occur on the order of one out of every million bases
[24]. Individual sequences are referred to as reads. One approach to circumvent the
length limitation is to generate paired-end reads, where instead of sequencing up to
the maximal length in one direction, opposite ends of a fragment are sequenced.
These pairs yield information about reads that originate from the same molecule at
an approximately known distance; such knowledge is often informative in aligning
reads to unique positions on a reference genome or for resolving repeats in assem-
bly. The sequence between these pairs remains unknown, but the distribution of
distances between them can be estimated by mapping to a reference or to assem-
bled contigs. For each such pair, the insert size refers to the size of the source
molecule, i.e. the inferred distance between individual mates of the pair (gap size)
plus the lengths of the read sequences themselves. Another important parameter
for sequencing applications is coverage, which can mean either the proportion of the
source material (genome, or collection of genomes in the case of microbiomes) that
has been successfully sequenced, or the average number of reads covering a base in
the source material. In this thesis, coverage refers to the latter unless otherwise

specified.

1.2 Third generation sequencing

Recently, new technologies have emerged to overcome some of the limitations of
SBS [25]. These methods provide either longer-range information or aim to remove
systematic bias of SBS due to GC content [26]. Collectively, these are referred to as

Third Generation sequencing technologies.
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Figure 1.2: An illustration of sequencing by synthesis (SBS). a) input DNA molecules
are fragmented to a desired size distribution. b) adapters are ligated to fragment
ends. These fragments are then placed on a glass slide coated with a lawn of adapters
complementary to those placed on input fragments, causing them to adhere to the
surface. These adhered molecules are then amplified and processed to leave only
bound single ends. c¢) reversible terminators are introduced to the solution. These
are harnessed by polymerase to extend complementary strands of bound fragments
but lead synthesis to stop after each base extension. Illumination leads their ter-
minator function to cease and a fluorescent colored signal corresponding to the
incorporated base’s identity is emitted. d) recording successive emissions at each
position of the imaged slide allows construction of the sequence present there. The

sequence from each position is referred to as a read’ Source: [23]
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1.2.1 Single molecule technologies

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) both man-
ufacture sequencers that can generate reads tens of thousands of base-pairs long.
PacBio’s Single Molecule Real Time (SMRT) technology is based on imaging of
individual bound polymerase proteins controling the advance of large single DNA
molecules inside very small wells called Zero Mode Waveguides (ZMWs). These
wells are designed to be small enough to prevent wavelengths of light from effi-
ciently passing, thus causing attenuation and increasing imaging resolution at the
base of the well. This allows reading of minute flouresence signals emitted as a
result of base incorporations by the action of individual polymerase molecules [27].
Thousands of wells are sequenced in parallel. SMRT sequencing avoids the need
for amplification used to boost signal strength in SBS and thus reduces bias due to
sequence content, but PacBio sequencing is prone to a much higher rate of indels
than SBS, and shows a raw error rate of 10%. High consensus accuracy can be

achieved with high coverage [28, 29].

ONT’s nanopore sequencers measure current changes resulting from the elec-
trophoresis induced movement of DNA nucleotides through a transmembrane pro-
tein. Nanopore sequencing requires no optical measurement or chemical labeling of
DNA, allowing for a very small instrument size. ONT’s Minlon is about the size
of an office stapler. Competing methods require instruments with sizes comparable
to small printers up to large refrigerators. This size, combined with the ability to
sequence in real time have made Minlons popular for field sequencing applications,

allowing for on site monitoring [12], and tracking of virus spread and evolution [11].

Although both PacBio and ONT instruments sequence single molecules at roughly
the same error rate, sequence characteristics of ONT reads differ from PacBio’s in
several ways. There have been recent reports that reads can span hundreds of kbp
using careful DNA library preparation [7], [30]. A systematic assessment of ONT
reads showed some GC bias effects [31], and consensus accuracy shown in a recent
ONT human de novo assembly project [30] looks to be effected as a result. The
Minlon is also capable of reading DNA modifications, as shown in a recent report

highlighting methylation sequencing [32].

Both technologies are currently much more expensive on a per-nucleotide basis

than SBS reads, leading their use to be limited to sequencing small genomes or to
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supplementing higher coverage SBS reads. Current throughput available from these
companies’ sequencers is lower than that which can be obtained by Illumina’s HiSeq
intstruments, but ONT claims their Promethlon instrument will produce multiple
Thb per day, matching or exceeding HiSeq outputs, and PacBio is also expected to

introduce throughput upgrades in the near future [33].

1.2.2 Synthetic long reads

An alternative approach to obtaining long range information without expensive sin-
gle molecule sequencing technologies is modifying SBS library prep to retain long
range information present in the source DNA. One approach to obtaining long range
information is by generating large (up to tens of kb) fragment libraries, splitting in-
dividual fragments into many pools, and appending pool-specific bar-codes before
applying SBS [25]. Reads generated from this process are termed ’synthetic long
reads’ and convey long range information in that individual bar-codes correspond to
common source molecules. Such reads are marketed by Illumina and 10X Genomics.
As both rely on SBS, they retain the high per-base accuracy of Illumina reads, but
also inherit their GC bias. Thus, assemblies generated with 10X reads achieve highly
contiguous scaffolds, but retain many more gaps than contigs obtained with single

molecule technologies.

1.3 Growth of sequencing data generated

A recent study assessed the state of sequencing data production in depth [34]. We
summarize and quote the following facts from that study, but as this assessment was
made two years ago, they serve as lower bounds. Over the past decade, sequence
data generated has doubled roughly every seven months. The estimated current
worldwide sequencing capacity exceeds 35 petabases per year, while more than 100
petabytes of storage are currently used by only 20 of the largest institutions perform-
ing sequencing. If the growth continues at the current rate, it is expected that one
exabase of sequence will be generated per year in the next five years and approach
one zettabase of sequence per year by 2025 [Figure 1.3]. More conservative estimates
of doubling every 12 - 18 months (equivalent to Moores law), imply exabase-scale

aggregate data will be reached within the next decade. This makes genomics one
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Figure 1.3: Past and projected DNA sequence data generation. Rapid growth in
throughput and declines in price-per base sequenced led to the emergence of large
scale proejcts and greatly increased aggregate sequence output. The three colored
dashed curves portray future aggregated output at several possible growth rates.
Source: [34]

of the fields generating the most data worldwide, comparable with much-discussed
websites such as Youtube and Twitter, and traditional data-intensive fields such as
Astrophysics [34].

As throughput grew, the cost of sequencing each base dropped precipitously.
Whereas the first human genome was sequenced over 13 years at a cost of $300 mil-
lion - $2.7 Billion (depending on what costs are included) [35], the highest through-
put [llumina machine, called the X10, allows for generation of about 1 Tb per day,
or roughly 10 human genomes at 30-fold coverage at a cost of about $1000 per
genome. This drop in cost has opened the door to myriad experimental assays that
were previously inaccessible: population-level sequencing of hundreds of thousands
of genomes from different countries [4], sequencing of thousands of individual cells

from all tissues of the human body to create a Human Cell Atlas [?] etc.

Such exponential growth in aggregate data, and in datasets emerging from such

large scale studies, presents new challenges. Sequencing centers must contend with
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very high current outputs, and with rapid increases in output rates. This makes
anticipation of storage costs difficult for budgeting. In addition, whereas in other
fields, raw data is often discarded as it is produced, the gradual maturation of
analysis methods leading to higher accuracy and sensitivity in results has led to
reluctance of genomics researchers to discard raw read data once downstream results
have been produced. Keeping raw data allows for the opportunity to revisit and
reanalyze raw data as needed. The introduction of cloud storage and computational
resources to genomics makes scaling storage capacity simpler; however, high costs

for storage persist.

Making data manageable and analysis on such data feasible have repeatedly
necessitated development of entirely new approaches. As noted by Loh et al [36],
” Any computational analysis, such as sequence search, that runs on the full genomic
library - or even a constant fraction thereof - scales at least linearly in time with
respect to the size of the library and therefore effectively grows exponentially slower
every year.” While sequencing centers mainly contend with storage and management,
individual labs must address the need to analyze much larger datasets than were
available or possible before. Contemporary researchers often wish to analyze many
samples together to find rare variants or strains, or to achieve sufficient statistical
power to be able to differentiate between groups. Also, sequencing has become
cheap enough that it is now possible to probe DNA samples derived from large
polyploid plant genomes sequenced to high coverage, or metagenomes from diverse
environments. In either case, it becomes necessary to store, search within, and

summarize over extremely large data volumes.

1.4 Traditional text indexing approaches

Index structures have been applied to text processing for decades [37]. Full text
indexes like suffix tries and arrays allow finding arbitrary length exact matches of
patterns in a text. Hash-based indexes allow matching of fixed length patterns
and therefore introduce a trade-off: sensitivity decreases while specificity increases
as the pattern length grows. Although construction time and space complexity
are linear, there are usually large constant costs associated in terms of the space
required to build or store these structures in memory. While index construction is

computationally expensive, usually the one-time cost of construction is offset by the
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time efficiency granted by allowing repeated efficient querying of the text without

scanning its entirety:.

Full-text indexes effectively compress the text being indexed, in that when index-
ing a collection of strings, each substring will appear only once. However, as their
main purpose is exact matching of patterns and not space efficient encoding, data-
compression specific indexes provide more efficient reductions in data volume. For
example, Huffman coding involves counting appearances of characters to minimize
the number of bits used per character encoding of a given text [Huffman1952]. The
Burrows-Wheeler transform reorders text in a manner that increases the tendency
of identical characters to be adjacent, leading to better compression via run length
encoding of characters [38]. Lempel-Ziv encoding builds a dictionary of previously
seen substrings that are later referred back to to append gradually longer strings
that may recur [39]. Also, in specialized scenarios such as when the order inputs
appear can be discarded or the types of queries that will be made on the data can
be anticipated, even more efficient, specialized data structures can be used. For
example, Bloom filters [40] compactly represent a set and provide a simple mecha-
nism for querying set membership. They trade space efficiency for the possibility of
false positive results, and have proven very effective as caches meant to avoid costly

lookups in storage [41].

Alignment of sequences also greatly benefits from indexing. When a pattern
is searched for in a database of sequences, generating a hash of k-mer substrings
present in the database mapping to sequences containing those k-mers is much more
efficient than searching in every sequence in the database independently. Such seed
based alignment greatly benefits efficiency, but may somewhat reduce sensitivity,
e.g. in cases where the query shares no k-mers with the index but shares some when
one mismatch is allowed. This type of indexing and tracking of k-mer positions in
the database to allow hit extensions in dynamic programming is the idea behind the
most popular bioinformatics tool to date, BLAST (Basic Local Alignment Search
Tool) [15]. Such indexing is also used in alignment of genomes against each other
in BLAT (BLAST-like alignment tool) [42] and MUMmer [43].

When de novo assembly of genomes is performed, an intermediate representa-
tion of input sequences called an overlap graph is first constructed [44]. Nodes in
such graphs represent input sequences, and edges represent overlaps among them.

Overlaps may be constant or of a range of lengths, and they may be exact matches
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or alignments exceeding some significance threshold. As the input data to an as-
sembler is a set of sequenced fragments that may contain errors, the purpose of
summarizing these sequences in a graph is to summarize the set of all possible adja-
cencies between input sequences. As with full text indexes, these graphs also have
the advantage of greatly reducing data representation size by encoding substrings
repeated in the reads only once. The graph is later used to generate a walk cor-
responding to the source genome. Generating candidate walks and choosing one
that is in best agreement with various characteristics of the input data are the main
challenges of assembly. The two types of graphs in broad use are de Bruijn graphs
(DBGs) and string graphs. Recently, more applications of these graphs have begun
to emerge, such as graph-based variant calling, and concise queryable representation
of variation at the population level [45, 46].

1.5 Indexing modern sequence data

Suffix tries, suffix arrays, and hash tables often require tens of GB of RAM to rep-
resent large (e.g. mammalian) genomes and hundreds of GB to represent large read
collections, and thus become impractical as data sizes grow. Needleman-Wunsch
[14] and Smith-Waterman [13] dynamic programming based alignment yield opti-
mal results for global and local alignment, respectively, but are expensive in terms
of time and memory for each sequence aligned. In the context of aligning SBS reads
that are near exact matches to the reference genome, Smith-Waterman alignment
is also wasteful in that very few base modifications need to be considered on aver-
age, making approaches that rely on an indexed reference and light modifications of
exact-matching algorithms more appealing. Also, SBS usually involves sequencing to
high coverage, introducing a large amount of redundancy among the reads. Generic
compression approaches such as gzip converge to optimal compression rates as data
volumes approach infinity, however they hold no such guarantees for finite data, and
thus often benefit from sorting data or compression relative to a reference genome.
Taken together, these failings of traditional, general-purposes approaches observed
upon their application to SBS data motivate the need for tailor-made solutions that

scale better.
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1.5.1 Data structures and techniques for indexing, group-

ing, and summarizing reads
BWT, FM index of genomes and reads

The Burrows Wheeler Transform (BWT) [38] is a permutation of a text 7" allowing
reconstruction of T'. Its naive construction involves collecting all cyclic permutations
of T into a matrix M, sorting these permutations lexicographically, and extracting
the last column of the matrix formed by the sorted cyclic permutations. More
efficient construction algorithms exist that avoid explicit storage of all the cyclic
permutations [47]. It is a full text index, allowing matching of any substring in
T via a backwards search mechanism. Its space use is nearly optimal, in that it
requires no pointers for its representation - only an array of length nearly equal to

the original text.

The FM (either abbreviating Full-text in Minute space, or its inventor’s last
names, Ferragina and Manzini) index [48] is a set of auxiliary data structures pro-
viding additional capabilities to the BWT. These data structures correspond to a
the first column of the M described above, and a sampling (i.e. every k-th row for
some constant k) of the suffix array of T'. Taken together, patterns can be matched
and their positions in 7" can be extracted in O(P) where P is the pattern searched

for.

Bloom filters

A Bloom filter [40] is a bit array B of size m initially set to all 0 values, paired with
h hash functions fi, ..., f, such that the range of each is [1, m]. To insert an element
x to B means to apply each hash function in turn and set the position returned by
each to 1 in B (bits previously set to 1 are left as 1). To query if an element x is
in B similarly involves evaluating whether f;(z) =1 for all ¢ € [1, h]. If at least one
function returns 0, then by definition x has not been inserted to B. However, if all
hash functions return 0 it is probable but not certain that x was inserted to B, as
some of the functions may return 1 due to hash collisions. The rate F' such false
positives are returned may be set by varying m and h relative to n, the number of
elements to be inserted. Using optimal parameter choices [41], the space per element

required is 1.441og,(+).
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Bloom filters provide approximate set representations. They are probabilistic in
that queries made to them may yield false positive answers, but not false negatives.
The advantages they provide are constant space cost per element inserted (regardless

of length) and querying time that is linear in the length of sequence inserted.

Read de Bruijn graphs

A de Bruijn graph (DBG), G = (V, E), is a directed graph defined over an alphabet
¥ as the set of nodes v, such that v € V. <= v € ¥ and arcs (u,v) € £ <=
u[2: k] = o[l : k — 1], where z[i : j| denotes the substring of string x from position
¢ to j, inclusive of the ends. In other words, a DBG is a directed graph having k-
mer strings derived from ¥ as nodes, and arcs representing £ — 1 character overlaps
between k-mers. In the context of indexing reads, usually a DBG will refer to the
subgraph of the formally defined graph over ¥ = {A, C, G, T} induced by the set of

k-mers observed in the reads, for some chosen value of k.

DBGs are simple to construct and reason about, leading them to lay at the heart
of many index-based algorithms. To save memory, the arcs of a DBG need not be
stored explicitly - given a node v in the G, one may query for the presence of v[2 : k|
concatenated as a prefix of each member of ¥ to extract all neighbors in G. Thus,
DBGs are naively represented as fixed length (4%) array of k-mer counts when k is
small (i.e., k& < 15) enough to allow such an array to be held in memory, and as
hash tables when k is larger. In the former, array positions correspond to the binary
encoding of k-mers, and in the latter k-mers are keys and values are their counts.
The essential common aspect of all DBG representations is the ability to query for

the presence of extensions of a given k-mer known to be in the graph.

The transformation from read sequences to the set of k-mers in the reads is lossy,
in that it is not possible to recover counts of consecutive repetitions of k-mers in the
reads, leading to collapse of some sequences. Similarly, representing a DBG with
only the set of k-mers and discarding arcs may lead to false arcs (u,v) when both
w and v are in V' but (u,v) is not observed on any read; to avoid such errors, arcs
can be stored instead of nodes. Fortunately, any read sequence can be represented
as a walk on G. Once a read’s sequence has been mapped to the graph, it allows for
enumeration of all possible extensions at the read’s ends, and for comparisons with
or mapping to previously seen sequences. The former enables DBGs to be used for

de novo assembly, whereas the latter allows for DBGs to be used to find variants or
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to represent collections of related samples, also referred to as pangenomes.

Binning reads by minimizers and MinHash

An important improvement over storage of all k-mers in a database as originally done
for BLAST [15] is identification and storage of minimizers only. This concept was
introduced independently in plagiarism detection [49] and in computational biology
[50]. An (I, k) minimizer is the lexicographically minimal [ — mer inside a window
of length k > [. Minimizers are useful in that a minimizer is shared by any pair of
sequences having a k base overlap. Minimizers were originally intended to reduce
the size of hash tables used for seed-and-extend based alignment: since length [
minimizers essentially 'cover’ k base windows and are sparse in number relative to
them, they allow for efficient seeding while reducing storage requirements. Also,
since sequences sharing minimizers tend to overlap, binning based on minimizers
can be used to increase efficiency of all-pairs overlap needed to compare groups of
sequences against each other or to align the entirety of a sequence database against
itself. Any l-mer order can be used instead of lexicographic order to determine

minimality.

Recently, an improvement over naive generation of minimizers was introduced
called universal hitting sets [51]. A universal hitting set is a set S of k-mers guar-
anteed to have a member of S included in every sequence of length L, where L > k.
This work showed that universal hitting sets can reduce the number of minimizers
needed to bin groups of sequences and increase the average distance between them.
An extension of this work highlighted the advantages of not using lexicographical

ordering in determining minima [52].

A related approach, called min-wise locality sensitive hashing, or MinHash [53],
also allows binning of sequences that are likely to be similar together. MinHash
differs from minimizers in its use of multiple applications of random hashing in order

to increase the probability of overlaps inside each generated bin. MinHash utilizes
_ |AnB|
~ JAuB|»
the ratio of the size of intersection to the size of union of two sets A and B.

grouping based on an estimate of the Jaccard similarity measure J(A, B)

For each set S = {s1...s,} of interest, MinHash forms a fingerprint of j elements
that is used for comparsion between sets. j hash functions h, ... h; that permute

elements are applied to every element of S and the fingerprint F' is the set of min-
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ima under each hash function f; = min{h;(sy)...hi(s,)}, @ € [1,7]. In [53], it is
shown that the number of hash collisions (i.e., matching minima within fingerprints)
between sets A and B divided by j is an unbiased estimator for J(A, B). Multiple

permutations are needed in order to reduce the variance of this estimator.

Streaming read data

Streaming algorithms were formally characterized in 1996 in the seminal work of
Alon et al. [54]. The streaming model describes operations performed on continu-
ously arriving data where a fixed amount of operations can be performed per data
element with fixed memory. The stream can only be traversed a small number of
times, or only once. This is meant to convey either data that is continuously being

produced, or is too large for storage.

The benefits of the streaming approach are a consequence of the constraints it
imposes. Streaming algorithms by definition use low memory and few operations
per data element. Streaming algorithms may also serve to reduce storage space as it
is possible to store only the results they generate instead of the data or index used

to analyze it.

1.5.2 Applications demanding indexing
Error correction, k-mer counting and filtration

Counting k-mers is a basic preprocessing step employed as part of many sequence
analysis tasks. Its most popular application is removal of rare error k-mers for
the sake of de novo assembly [55]. This is motivated by the intuition that every
mismatch in a read caused by a sequencing error will create up to k erroneous k-
mers, and each of these will be much less frequent than real k-mers if error positions

are uniformly sampled.

Since large sequencing experiments can lead to many billions of k-mers being
generated, naive counting via hash tables requires very high memory. As a result,
various approaches have been used to allow fast and low memory counting, includ-
ing representation of k-mers by Bloom filters [56], partitioning to files on disk via
minimizers [57, 58], and most recently, lossy counting and streaming filtration of
reads and k-mers [59, 60, 61].
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Mapping to a reference genome or collection

With the introduction of the short read alignment tools Bowtie and BWA in 2009
[17, 16], it was shown that the full-text searching capability of suffix arrays could be
achieved using little space by indexing reference genomes using the BWT and ex-
tracting reference positions using the complementary FM-index. These tools greatly
improved the state of the art in mapping, reducing run-times by several orders of
magnitude versus earlier hash-based methods. More recent methods have shown
how compression of reference databases or read sets against themselves so as to
reduce redundancy within each can greatly improve speed of alignment with little
loss in sensitivity. These methods have demonstrated such compressive approaches
benefit both nucleotide or protein level dynamic programming based alignment as
done by BLAST [36], and in near-exact match based mapping of short reads as done
in Bowtie or BWA [62].

In the context of mapping for the sake of quantification, it has been shown that
probabilistic assignment to reference sequences (typically transcripts or microbes in
a metagenome) does not require full alignment, and can be made much faster by
replacing alignment with simple assignment to groups of sequences that are compat-
ible with the fragment that is to be assigned. These groups are called equivalence
classes - a concept introduced in [63]. Recently, DBG based indexes of reference se-
quences have been used for fast assignment to equivalence classes. This mechanism
forms the heart of the fastest transcript abundance estimation algorithms available,
Kallisto [64] and Salmon [65]. This mechanism has also been used for quantification

of species in metagenomes [66.

Compression of short reads

Compression draws on efficient indexing to allow matching among repeated sub-
strings, and encoding meant to minimize the space consumed per character. Short
read compression tools either compress reads relative to some reference or use
reference-free approaches that typically involve reorganizing (e.g. sorting or bin-
ning) reads to increase the tendency of similar substrings to be near each other.
Generally, reference based methods achieve lower compression ratios (defined as the

ratio of output to input file sizes) while reference-free methods are faster [67].

The reason for this dichotomy is that the computational cost of mapping to a ref-
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erence provides a clear benefit: if the reference closely matches the read’s sequence,
the read’s sequence need not be stored: the position on the reference having that
sequence can be stored instead. The time to align accounts for most of the time
difference. If differences exist they are then written out along with the reference
position, and then they can be encoded efficiently according to their distribution
(e.g. by Huffman coding). This is the basis for several reference based compression
tools (e.g. SlimGene [68], DeeZ [69]).

To reorganize reads, various approaches have been employed. The SCALCE
algorithm [70] sorts reads according to presence of common substrings, with the
intent of optimizing compression by a fixed size buffer, as done by gzip [39]. More
recent methods have performed similar reorganization based on binning according to
the presence of minimizers [71, 72]. In Chapter 2 of this thesis, we present a hybrid
approach that avoids mapping to a reference, instead performing exact matching

via Bloom filter hashing and compression of non-matching reads via SCALCE.

Some reference free methods also compress reads as paths on the DBG of the
reads. In that case the graph must be stored and compressed along with the reads
in order to allow for decompression. To this end, Bloom filter and other succint
data structure graph representations have been employed [73, 74]. The more recent
QUARK [75] uses a DBG for quasimapping and encoding, but does not require the
reference set of transcripts for the sake of decompression.

De novo assembly of short reads

When performing de novo assembly, DBGs with large values of k£ are often used, and
for large samples, tens to hundreds of billions of k-mers may need to be represented.
In these situations, using hash tables to represent DBGs may require hundreds of GB
of RAM due to the large number of keys and hash table implementation overhead.
To reduce the need for such hardware requirements, Bloom filters have been used

as an alternative means of representing DBGs [76, 77, 78].

Beyond the use of Bloom filters, more recent innovations include the use of
minimizers to reduce memory in graph compaction and better parallelized processing
[79, 80]. The efficiency of k-mer Bloom filters, often having dependency between
consecutive queries, was improved in [81] and later this method was used for efficient

weighted (where nodes are labeled with coverage) DBG construction [82]. Finally,
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in Chapter 4 of this thesis, and earlier in the TwoPaCo algorithm for efficient DBG
compaction [83], a representation combining identification of the set of junctions in
the DBG along with a BF storing nodes of the DBG (to allow for traversal between

junctions) was used.

De novo assembly of long reads

Currently, the most popular means of assembling long reads is based on the Overlap-
Layout-Consensus (OLC) approach. This approach begins with finding all pairwise
overlaps between reads. As such, initial assemblies of large genomes took thousands
of hours of CPU time [8] [22]. A major advance past this computational hurdle was
the change from performing all-pairs overlap assessment to first applying MinHash
on all reads to bin them, and then confining alignments among pairs to be performed
only among reads that are sufficiently similar to be in the same bin [8]. More recent
approaches have similarly used minimizers and sorting to achieve even greater speed
[84, 85], even without the requirement of initial polishing (error removal) of the

error-prone reads before assembly.

Searching for relevant experiments

A new application enabled by the explosive growth of sequencing is search for rel-
evant datasets among all publicly available samples. The goal of such search is to
find samples likely to contain sequences that are similar to some query (or query
set) of interest. The first work to propose this application by Solomon et al. [18]
employed a binary tree of Bloom filter nodes, where each parent node was the bit-
wise union of its children’s bit arrays, and leaf nodes corresponded to Bloom filters
of sequencing experiment k-mers. This work offered a dramatically more scalable
solution than aligning queries of interest against every read data set individually by
limiting explicit alignments to much smaller subtrees. Recent follow-up works have
since improved memory efficiency and run times specifically when queries are sets

86, 87].

An alternative approach using minHash was also recently introduced. In this
case, fingerprints are generated for each dataset, and a distance measure based
on Jaccard similarity is used to select datasets matching a query set very quickly.

This scheme enabled fast clustering by sequence similarity of all RefSeq genomes
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in minutes [20] and fast identification of relevant samples out of all of the SRA
database [19].

1.6 Summary of articles included in this thesis

Fast lossless compression via cascading Bloom filters R. Rozov, R.Shamir,
E. Halperin; BMC Bioinformatics 2014, 15 (Suppl 9):S7.

Background: Data from large Next Generation Sequencing (NGS) experiments
present challenges both in terms of costs associated with storage and in time re-
quired for file transfer. It is sometimes possible to store only a summary relevant to
particular applications, but generally it is desirable to keep all information needed
to revisit experimental results in the future. Thus, the need for efficient lossless
compression methods for NGS reads arises. It has been shown that NGS-specific
compression schemes can improve results over generic compression methods, such
as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding.
When a reference genome is available, effective compression can be ac hieved by
first aligning the reads to the reference genome, and then encoding each read using
the alignment position combined with the differences in the read relative to the ref-
erence. These reference-based methods have been shown to compress better than
reference-free schemes, but the alignment step they require demands several hours of
CPU time on a typical dataset, whereas reference-free methods can usually compress

In minutes.

Results: We present a new approach that achieves highly efficient compression
by using a reference genome, but completely circumvents the need for alignment,
affording a great reduction in the time needed to compress. In contrast to reference-
based methods that first align reads to the genome, we hash all reads into Bloom
filters to encode, and decode by querying the same Bloom filters using read-length
subsequences of the reference genome. Further compression is achieved by using a

cascade of such filters.

Conclusions: Our method, called BARCODE, runs an order of magnitude
faster than reference-based methods, while compressing an order of magnitude bet-
ter than reference-free methods, over a broad range of sequencing coverage. In high
coverage (50-100 fold), compared to the best tested compressors, BARCODE saves
80-90% of the running time while only increasing space slightly.
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Recycler: an algorithm for detecting plasmids from de novo assembly
graphs R. Rozov, A.B. Kav, D. Bogumil, N. Shterzer, E. Halperin, I.
Mizrahi, R. Shamir; Bioinformatics 2017; 33 (4): 475-482.

Motivation: Plasmids and other mobile elements are central contributors to mi-
crobial evolution and genome innovation. Recently, they have been found to have
important roles in antibiotic resistance and in affecting production of metabolites
used in industrial and agricultural applications. However, their characterization
through deep sequencing remains challenging, in spite of rapid drops in cost and
throughput increases for sequencing. Here, we attempt to ameliorate this situa-
tion by introducing a new circular element assembly algorithm, leveraging assembly
graphs provided by a conventionalde novoassembler and alignments of paired-end
reads to assemble cyclic sequences likely to be plasmids, phages and other circular

elements.

Results: We introduce Recycler, the first tool that can extract complete cir-
cular contigs from sequence data of isolate microbial genomes, plasmidome and
metagenome sequence data. We show that Recycler greatly increases the number
of true plasmids recovered relative to other approaches while remaining highly ac-
curate. We demonstrate this trend via simulations of plasmidomes, comparisons of
predictions with reference data for isolate samples, and assessments of annotation
accuracy on metagenome data. In addition, we provide validation by DNA ampli-
fication of 77 plasmids predicted by Recycler from the different sequenced samples
in which Recycler showed mean accuracy of 89% across all data types - isolate, mi-

crobiome and plasmidome.

Faucet: streaming de novo assembly graph construction R. Rozov, G.
Goldshlager, R.Shamir, E. Halperin; Bioinformatics, btx471, 2017

Motivation: We present Faucet, a 2-pass streaming algorithm for assembly graph
construction. Faucet builds an assembly graph incrementally as each read is pro-
cessed. Thus, reads need not be stored locally, as they can be processed while
downloading data and then discarded. We demonstrate this functionality by per-
forming streaming graph assembly of publicly available data, and observe that the

ratio of disk use to raw data size decreases as coverage is increased.

Results: Faucet pairs the de Bruijn graph obtained from the reads with ad-

ditional meta-data derived from them. We show these metadata - coverage counts
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collected at junction k-mers and connections bridging between junction pairs - con-
tain most salient information needed for assembly, and demonstrate they enable
cleaning of metagenome assembly graphs, greatly improving contiguity while main-
taining accuracy. We compared Faucet’s resource use and assembly quality to state
of the art metagenome assemblers, as well as leading resource-efficient genome as-
semblers. Faucet used orders of magnitude less time and disk space than the spe-
cialized metagenome assemblers MetaSPAdes and Megahit, while also improving on
their memory use; this broadly matched performance of other assemblers optimizing
resource efficiency - namely, Minia and Light Assembler. However, on metagenomes
tested, Faucets outputs had 14-110% higher mean NGA50 lengths compared to
Minia, and 2-11-fold higher mean NGA50 lengths compared to Light Assembler, the
only other streaming assembler available.
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Abstract

methods can usually compress in minutes.

running time while only increasing space slightly.

Background: Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of
costs associated with storage and in time required for file transfer. It is sometimes possible to store only a
summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit
experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises.

It has been shown that NGS-specific compression schemes can improve results over generic compression methods,
such as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding. When a reference genome is
available, effective compression can be achieved by first aligning the reads to the reference genome, and then
encoding each read using the alignment position combined with the differences in the read relative to the
reference. These reference-based methods have been shown to compress better than reference-free schemes, but
the alignment step they require demands several hours of CPU time on a typical dataset, whereas reference-free

Results: We present a new approach that achieves highly efficient compression by using a reference genome, but
completely circumvents the need for alignment, affording a great reduction in the time needed to compress. In
contrast to reference-based methods that first align reads to the genome, we hash all reads into Bloom filters to
encode, and decode by querying the same Bloom filters using read-length subsequences of the reference
genome. Further compression is achieved by using a cascade of such filters.

Conclusions: Our method, called BARCODE, runs an order of magnitude faster than reference-based methods,
while compressing an order of magnitude better than reference-free methods, over a broad range of sequencing
coverage. In high coverage (50-100 fold), compared to the best tested compressors, BARCODE saves 80-90% of the

Background

Deep sequencing has become almost ubiquitous in biol-
ogy over the last decade. In the past five years, sequen-
cing costs were halved every 5 months, while storage
costs were halved every 14 months [1]. The long term
effect of this trend is a growing gap between our capacity
to store and analyze sequencing data, and our capacity to
generate such data. For sharing results of large-scale
experiments, the effects have already become readily
apparent: physical hard disk transfer has become a
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'Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
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( ) BiolMed Central

common practice, and cloud analysis platforms have
been embraced in order to avoid the prohibitive time
requirements needed to download or store huge volumes.

As a result, much effort has been placed on representing
sequencing data more compactly. Specialized compression
tools tailored to this context have emerged, improving
upon general purpose compressors, such as gzip. These
tools fall into two categories - reference-based [2,3], and
reference-free [4-6]. The former methods utilize knowl-
edge of the genome from which reads were extracted
(with mutations and errors), while the latter use no prior
information. A recent article described the Pistoa
Sequence Squeeze competition, wherein the relative merits

© 2014 Rozov et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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of many of these methods were compared. This article also
introduced new high performance methods that were
among the competition leaders [1].

Compression algorithms are evaluated by two main cri-
teria: their compression ratio, namely, the ratios of com-
pressed file sizes to original file sizes, and by their speed.
In the context of compressing reads, compression ratios
are often expressed in terms of the average number of bits
per base for a fixed read length. Currently, reference-based
methods generally compress most effectively, but require
long run times. In order to compress reads, reference-
based methods first call on a short-read aligner to find a
best alignment position for each read. Such an alignment
typically has only a few (or no) mismatches relative to the
reference. Reads can then be represented as integers mark-
ing reference positions instead of as sequences, along with
the set of differences relative to the reference. Further
refinements can then be applied, such as sorting the reads
by reference position and then encoding differences
between consecutive positions to use fewer bits, and
employing Huffman coding to encode more common
mutations with less bits than rare ones [3,2]. Reference-
free methods employ a variety of techniques, including
boosting schemes for general purpose compressors [4,6],
rough assembly for the sake of emulating reference-based
compression [5], and arithmetic coding/context modeling
approaches, which trade increases in run time for better
compression ratios [1].

There is therefore an inherent tradeoff between run-
time and compression ratio. Specifically, even though
compression ratios are impressive for reference-based
methods, their running times are often prohibitively high.
In this work we propose a new method, Bloom filter
Alignment-free Reference-based COmpression and
DEcompression (BARCODE, abbreviated to BRC below),
which achieves high compression ratios with a dramatic
decrease of runtime. BARCODE does so by leveraging
the space efficiency of Bloom filters, probabilistic data
structures allowing queries of set membership. Their use
has recently grown in popularity in bioinformatics
[7,8,5,9], mainly to avoid the memory overhead needed
to store large collections of k-length substrings of
sequenced reads (k-mers) used to represent nodes of de
Bruijn graphs in de novo assembly. To the best of our
knowledge, this is the first use of Bloom filters for NGS
compression.

Here, we adopt a similar scheme to that used for
assembly in two recent works [8,10]. We hash whole
reads into BFs as a means of compression. In tests per-
formed, BARCODE’s run times are closest to those refer-
ence-free methods while its compression ratios near
those of reference-based methods. In as little as a ninth
of the running time, we are able to compress to within
less than 20% of the compression ratios observed for
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reference-based methods. We demonstrate that with
higher coverage levels, BARCODE's efficiency improves,
whereas reference-based methods show no improvement,
while the gap in run time grows more severe. By compar-
ing our method with several existing tools, we show its
superior balance of speed and compression efficiency.

Methods

Technical background

A Bloom filter (BF) is an array A of size m having all
positions initially marked 0. Elements are inserted into
A by applying a collection of /2 hash functions: the out-
put of each specifies a position to be marked with a 1
in A. Querying whether or not an element has been
inserted involves applying the same % hash functions
and checking the values at the positions they return. If
at least one hash function returns 0, the element defi-
nitely was not inserted; if all 1s return, either it has
been inserted, or it is a false positive. For a BF of size
m, n entries can be inserted by % hash functions to
achieve a false positive rate F ~ (1 — e""™)" 1n [11],
it is shown that for fixed m and n, F is minimized with
h = In(2)p, where p = m/n. Plugging this value back in
for F leads to F = ¢, where ¢ = 0.6185.

Encoding and decoding using a Bloom filter

Our method involves two basic processes: BF loading
and querying. We initially assume all reads are unique
and later relax this assumption. We load all reads into a
BF B, and then use the reference genome to query it.
We query B with read length subsequences (and their
reverse complements) from all possible start positions
on the genome. This allows us to identify all of the
potential reads that correspond to genome positions, a
set that covers most of the hashed reads. Some of the
accepted reads will be false positives. In order to avoid
them in the decoding process, we identify a set FP cor-
responding to all reads accepted by B that are not in the
original read set. Additionally, since the reads are taken
from a specimen whose genome contains mutations
compared to the reference (and since sequencing is
error-prone), some reads will not be recovered by
querying the genome. We call this set of reads FN. FN
and FP are stored separately from B, and compressed
using an off-the-shelf compression tool. For a set of
unique reads, this suffices to allow a complete recon-
struction of the reads.

Decoding proceeds by decompressing B, EN, and FP,
and then repeating the querying procedure. We initialize
the read set to FN. Then, we query B with each position
from the genome as done to identify elements of FP.
Whenever B accepts we check if the accepted read is
not also in FP, and add it to the read set if it isn’t. To
remove the unique read restriction, we first move all



Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/59/S7

repeated reads to FN before loading B. We treat reads
containing ‘N’ characters similarly. These two additions
allow us to circumvent an inherent limitation of Bloom
filters - the loss of multiplicity information - and
reduces the entropy in the (now multi-) set FN, making
it more compressible. The encoding process with one
BF is detailed in steps 1-4 of Figure 1 and Algorithm 1.
The relative contributions of error reads and repeated
reads to FN are discussed in the appendix.

Algorithm 1 Encode one Input: R, G; Output: B, FN,
FP Conventions: Let g be the length of the reference
genome G, ¢q; be the it genome query, €,.,4 be the
sequenced read length, and P be the set of genome
queries accepted by B. For brevity, we exhibit queries
from only the forward strand, whereas our implementa-
tion queries (and accepts from) both strands.

EN := {r: r € R and (r is repeated in R or r contains
an ‘N’)}
R :=R\EN

for all » € R’ do
insert(r, B)

end for
forallie [1,g - €y + 1] do
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;if gi € B then

P = P U qi
end if
end for
FN:=FN U {R’'\ P}
FP:=P\R

return (B, FN, FP )

Encoding and decoding using a BF cascade

Although appealingly simple, we found the above
method did not offer competitive compression, as the
costs imposed encoding FP and FN outweighed the ben-
efit of storing the unique reads in B. Thus, to reduce
the number of false positives that need to be com-
pressed separately, we use a cascade of BFs as in [10].
To this end, we rename B and FP above as B; and FP;,
respectively. We consider B; to be the first BF in a cas-
cade, and each element of FP; is then hashed into a
subsequent BF B,. We note that since B, is meant to
store false positive reads it should reject true reads:
thus, any element of R’ (the set of unique reads)
accepted by B, is a false positive relative to B,. Thus, to
identify FP,, we add each element accepted by querying
R’ against B,. This process can be continued for any
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Figure 1 The encoding process. Step 1 separates the unique reads set R’ from the repeated reads set FN. In step 2 unique reads (R) are hashed into a BF
B1 and the rest assigned to a set FN. In steps 3-4 all read-length sequences of the reference genome G are queried and reads accepted by B, that are not
in R"are added to FP;. Steps 5-10 show subsequent encoding via a BF cascade. False positives relative to each BF are input to the next BF. Each BF is then
queried by using the set loaded into the last BF in the cascade. In step 11 additional compression is perfomed on the resulting BFs and sets. Orange
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desired number of BFs. Once BFs are loaded in this way,
to identify real reads, we query each BF in the cascade
and accept reads only if the index of the first BF to
reject them is even.

Since elements inserted to BF; are necessarily a subset
of those inserted to BF;_,, we see an exponential drop-
off in BF size (since F is fixed). Since sizes for successive
BFs alternately depend on # and (2¢g - n)pF ~ 2gpF (the
number of false positives expected for 2g queries from
G multiplied by the cost per element, assuming g >> n),
we expect the total file size to be approximately (np +
2gpF + npF + 2gpF> + ...) bits. Using F = ¢” from above,
we observe that for an infinite cascade, the average
number of bits per read is then

(2 ) ey (1025) (1) 0

Here the left hand side represents the sum of costs due
to the expected number of elements in each BF for an
infinite cascade. In practice, we use four BFs and a
numerical solver in scipy [12] employing the L-BFGS-B
[13] algorithm to find the value of p minimizing the
above expression. The small list FP, is encoded separately
along with FN. The process is described in Figure 1 steps
5-11 and Algorithm 2. Decoding proceeds using queries
from G as before, but in this case each accepted read is
used to query subsequent BFs until rejection. This is
depicted in Figure 2and Algorithm 3.

Algorithm 2 Encoding Let B; be the j*" BF loaded
(j € [2, 4]) with FP;4, S n B; is short-hand notation for
the subset of S accepted by B;.

(By, EN, FP,) := Encode one(R, G) # we initialize by
calling Algorithm 1
FD,:= R nB2
forj=3toj=4do
for all r € FP;_; do
insert(r, B))
end for
FP; := FP,_, n B,
end for
return (By, By, B3, By, FN, FP,)

Algorithm 3 Decoding Input: (By, By, B3, By, EN, FP,,
G); Output: (R,.) For brevity, reconstruction of only one
strand is shown.

R, := FN
forallie€[1,g - €repq + 1] do
forj=1toj=4do
if g; £B; then
if j is even then
ch = ch Uq;
end if
continue {increment i}
end if
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end for

if j = 4 and ¢; € FP, then
R =R U qi

end if

end for

return R,

Additional compression

BF parameters are automatically set to make each BF
more compressible. This involves incrementing the
number of hash functions for each BF from 1 to the
minimal number that allows it to both have an uncom-
pressed file size lower than a preset threshold (we used
500 MB) and obtain the value of F from equation 1.
Typically, this results in h being in the range of 1 to 3.
We do this in order to reduce each BF’s compressed
size (at the expense of increasing its RAM occupation);
this practice is introduced in [11].

Once BFs are loaded and the sets FP4 and FN are
identified, we use 7zip [14] to compress the Bl, ..., B4
and SCALCE [4] to compress the output lists FP, and
FN. In principle, any general compression tool can be
used for the BFs, and it is preferable to use a tool that
takes advantage of existing sequence overlaps among
the leftover reads to compress them efficiently.

Results and discussion

Comparison on simulated reads

We simulated reads from Human (hgl9) chromosome
20 using dwgsim [15]. This tool introduces mutations
into the reference genome and then samples reads from
both genome strands using a user-defined per base error
rate. We sampled 100 bp single end reads at various
coverage levels with a 0.001 mutation rate and a per
base error rate increasing from 0 to 0.005 from the 5’ to
the 3’ end of reads (in line with current estimates of
Illumina error rates [16]). We also demonstrated the
effect of varying the error rate In Figure 4. All reported
results were run on a 16 core AMD Opteron 6140
(2.6 GHz) 128 GB RAM server, running the Ubuntu
12.04 Linux operating system.

We found that BARCODE compresses more effec-
tively at higher coverage. Although the proportion of
reads in FN increases as the proportion of unique reads
decreases (Table 1), BARCODE benefits from SCALCE’s
increasing efficiency due to greater redundancy among
FNs. BARCODE’s decode times were similar to its
encode times, as would be expected since both rely on
the same genome querying procedure.

To demonstrate that our use of BFs improves upon
SCALCE’s compression results, we compared our results
with SCALCE run on all reads. We also tested quip [5]
and fastqz [1], state-of-the-art tools in terms of both
compression efficiency and speed [1]. All three tools
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Figure 2 Decoding the reads. Following decompression of BFs, FP,, and FN, BF querying commences. Each read accepted by a BF is used to
query subsequent BFs until rejection. Reads rejected by even BFs or accepted by B, and in FP, are added to the reconstructed reads, R,.. Purple
arrows are consistent with Figure 1. Orange arrows indicate additions to R, the reconstructed reads.

either output compression results or ratios separately for
sequences, read names, and quality scores. We note that
the best performers in the Sequence Squeeze competi-
tion in terms of base compression ratio, Sam-comp and
CRAM, did not provide such outputs and thus did not
allow direct comparison. Quip and fastqz also include

Table 1 BRC performance with varying coverage.

both reference-based and reference-free modes. We per-
formed alignment via bowtie2 [17] for quip runs while
fastqz performed its own alignment. To ensure a fair
comparison, all tools were run as a single thread when
possible, including calls to 7zip and SCALCE from BAR-
CODE. Fastqz used three threads during its run, as this

coverage time (sec) [R| (M) |FP4| (K) |FN | (M) BF size (MB) FP, size (MB) FN size (MB) compression bits/base
10 410 6.3 3.7 20 85 0.38 36.8 0.58
20 590 12.6 6.8 44 142 0.68 66.8 0.52
30 800 189 93 7.1 19.0 0.94 93.8 048
40 1006 252 20 10.2 228 201 119.0 0.46
50 1220 315 16 135 264 1.66 143.0 043

Reads were simulated from hg19 chromosome 20 with 100 bp single end reads. A mutation rate of 0.001 was used along with 0-0.005 per base error rate along
the length of each read. Run times include additional compression steps performed by SCALCE and 7zip in single thread mode. R - the read set. FP, - the final

false positive set. FN - the set of reads not encoded by the BFs.
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was not a user-selectable parameter, but each thread
was assigned to one of sequences, qualities, and names.
Figure 3 compares BARCODE with other tools in terms
of run time and compression efficiency. A full listing of
program parameters used is provided in Table 2.

Overall, we found the compression ratio improved
with greater coverage for all reference-free methods, and
remained essentially constant for reference-based meth-
ods. Figure 3 shows that reference-based compressors
are better in compression ratios but reference-free com-
pressors are faster (An exception to this trend was
fastqz, whose reference-based version is faster than its
reference-free version, likely due to the use of context
model-based arithmetic coding). Quip performed poorly
in compressing sequences without a reference, showing
it has apparently been optimized for speed and perhaps
compression of qualities and read names. SCALCE
shows strong dependence of compression ratio on cov-
erage, as would be expected by its leverage of the recur-
rence of long subsequences. BARCODE takes advantage
of this trend to also improve with higher coverage, even
as the proportion of reads hashed to BFs decreases (See
Table 1). BARCODE’s times are closest to SCALCE and
reference-free quip, and its compression ratios approach
those of reference based methods, especially at higher
coverage values. For most coverage values, it maintains
an order of magnitude time advantage vs. reference-
based methods (~2-3x vs. fastqz, ~5-7x vs. quip), as well
as an order of magnitude compression advantage of the
tested reference-free methods.

Space vs. Time Trade-off

25 -
<44 quip
s> quip -T

20 _"«a ==a BARCODE ||
_ +®s scalce
% x=xx fastqz
= asa fastqgz -r
215
8
e 10
5§ | \“‘
@ 50
210 t
8
H
8 30

05l 1'5-‘-1 50 ]

10 50
1 * s
0.0 L L
0 2000 4000 6000 8000 10000

Time (seconds)

Figure 3 A comparison of sequence compressors. The figure
shows elapsed real run time vs. compression ratios of read sequences
in bits per base for read length 100 bp. The measurements of each
method for different coverage levels are connected by a line. Points
correspond to coverage levels from 10 to 50 in multiples of 10 from

left to right. Methods denoted with an “-r" were run with the
reference-based option. Run times were measured with /usr/bin/time
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Figure 4 The effect of varying error rate. BARCODE runs are
shown with error rates varying from 5’ to 3’ ends as indicated in
the figure legend. Compression ratios increase with greater error,
but higher coverage compensates somewhat. Overall, as coverage
increases, run time is effected by increasing error more than
compression ratios, as can be seen by the decreasing slopes
between fixed coverage points between the green and red curve

using a single thread on the same Linux server.

and between the red and purple curves.

Higher coverage, longer reads

We tested scenarios of higher coverage and longer read
lengths: (1) coverage 100 and read length 100 bp, (2) cover-
age 100 and read length 200 bp, and (3) coverage 200 and
read length 400 bp. Table 3 shows a continuation of the
trends expressed at lower coverage levels. Higher coverage
aided reference-free methods, but not reference-based meth-
ods. Longer reads improved compression ratios in each case
with the exception of fastqz -r. We observed larger impacts
on run time as a result of doubling read length than
coverage.

Conclusions
We have presented a new approach to compressing
sequencing reads, bridging the gap between the speed of

Table 2 Program parameters used in compression tool
comparison (Figure 3)

Program Parameters
dwgsim -C coverage level -H -e 0.0-0.005 -R 0.0 -1 read length
20-y 00
bowtie2 -x chr20 -U input fastq -S
SCALCE input fastq -T 1 -A -n library -o output prefix
quip (default) -0=quip -i=sam input sam
quip -o=quip -r ref fa -i=sam input sam
(reference)
fastgz (default) ¢ input fastq output prefix
fastqz ¢ input fastg output prefix r packed ref file
(reference)
BRC rec load bf -err rate 0 -e 0 -i 4 reads file packed ref file
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Table 3 Performance comparison on high coverage values and read lengths longer than 100.
Time (sec) coverage quip scalce fastqz BRC quip -r fastqz -r
50 759 533 5426 1220 9544 4063
100 1599 1016 10417 2211 20216 7479
100, len 200 1280 1165 8760 1400 21705 7400
200, len 400 2284 2518 15706 2209 51628 17769
Compression (bits/base) 50 20 0.62 097 043 0.34 032
100 20 0.53 058 040 0.34 032
100, len 200 1.8 043 061 0.37 0.19 045
200, len 400 1.7 0.32 041 0.31 0.12 041

Reads were generated as described in the main text. Quip -r times include bt2 alignment.

alignment-free, reference-free methods and the compres-
sion efficiency of reference-based methods. We have tested
the dependence of extant sequence compressors on cover-
age levels and shown that while reference-based methods
compress most efficiently, they place a heavy burden on
CPU times due to alignment and cannot leverage added
redundancy to benefit compression ratios. Reference-free
methods do benefit from higher coverage, but maintain a
considerable distance from reference-based methods in
terms of compression ratios even at the highest levels
tested. Although we have shown that our new method,
BARCODE, obtains a better trade-off than either of these
extremes, we maintain that there remains much room for
improvement, even when considering the inherent con-
straints imposed by the Kolmogorov complexity of the
data. We note that further comparison to other methods
like CRAM [3] and sam_comp [1] is needed.

BARCODE is currently a proof-of-principle implemen-
tation, and thus we expect that further optimization will
improve run time and compression efficiency. Compres-
sion ratios may be improved by taking advantage of better
general compression tools available such as the ZPAQ
library [18], as fastqz and sam_comp do. Thus far, we have
not utilized arithmetic coding techniques because they
employ multiple threads and thus introduce significant
additional resource requirements. Our approach can also
be extended to allow for fast access to variants in the origi-
nal data by using conventional BFs that are not com-
pressed, and by compressing FN/FP reads using encoding
that allows fast random access (at some expense of com-
pression ratio). We aim to investigate these paths in the
future.

Appendix

Real data test

We examined BARCODE's performance on the C. Elegans
data set tested in the Sequence Squeeze competition,
SRR065390_1. This data set consists of 33415360 100 bp
reads, amounting to 33-fold coverage of the genome. BAR-
CODE’s compression ratio on this data was 0.46 bits per
base, and run time was 1203 seconds, in line with

experiments described in the main text and comparable
with reference-based methods tested in the Sequence
Squeeze competition [1].

Contributions of repeated reads vs. errors to FN

EN is comprised of repeated reads filtered out to preserve
their multiplicities, and reads differing from the reference
because of errors or variations. Here, we describe the rela-
tive contributions of each part. The expected number
of repeated reads can be described probabilistically.
Assuming reads are sampled independently from G, given

a read r, the probability of drawing r again is 1 — % For R
reads, the probability of observing no repetitions is

then (1 — %)R_l. Thus, the expected number of repeated

reads is R (1 — (1 — %)RA) . Since we hash reverse com-

plement reads from reference strands separately, we revise
the length considered to 2G. Since we wish to count
the total multiplicity of each repeated read, the contribu-
tion of repeated reads to FN is thus approximated by

2R (1 -(1- %C)Rfl) . Clearly, this contribution depends

on coverage, as shown in Table 4.

We model the contribution of error to FN using
Binom(100, p) with p = 0.0025, the mean error over the
read length used in our simulated reads (where error
varies from 0 to 0.005 from the 5’ to 3’ ends). Most of

Table 4 Counts of repeats vs. errors with increasing
coverage. The proportion of reads due to errorsremains
roughly constant, while the proportion due to repeats
increases as coverage increases.

Coverage IRl (M) repeats (M) |FN] (M)
10 6.3 0.3 2.0

20 126 1.3 44

30 189 28 7.1

40 252 49 10.2

50 315 74 135

errors with increasing coverage. The proportion of reads due to errors remains
roughly constant, while the proportion due to repeats increases as coverage
increases.
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the mass is carried by the one and two error terms,
leading to a relative error proportion estimate of

100 9, (100 00
( ) )(1—p) p +< ) )(1—17) p. Table 4 shows

this proportion is independent of coverage level.

Availability
BARCODE can be downloaded at http://www.cs.tau.ac.
il/~heran/cozygene/software.shtml.
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Abstract

Motivation: Plasmids and other mobile elements are central contributors to microbial evolution
and genome innovation. Recently, they have been found to have important roles in antibiotic resist-
ance and in affecting production of metabolites used in industrial and agricultural applications.
However, their characterization through deep sequencing remains challenging, in spite of rapid
drops in cost and throughput increases for sequencing. Here, we attempt to ameliorate this situ-
ation by introducing a new circular element assembly algorithm, leveraging assembly graphs pro-
vided by a conventional de novo assembler and alignments of paired-end reads to assemble cyclic
sequences likely to be plasmids, phages and other circular elements.

Results: We introduce Recycler, the first tool that can extract complete circular contigs from se-
quence data of isolate microbial genomes, plasmidome and metagenome sequence data. We
show that Recycler greatly increases the number of true plasmids recovered relative to other
approaches while remaining highly accurate. We demonstrate this trend via simulations of plasmi-
domes, comparisons of predictions with reference data for isolate samples, and assessments of an-
notation accuracy on metagenome data. In addition, we provide validation by DNA amplification of
77 plasmids predicted by Recycler from the different sequenced samples in which Recycler showed
mean accuracy of 89% across all data types—isolate, microbiome and plasmidome.

Availability and Implementation: Recycler is available at http://github.com/Shamir-Lab/Recycler
Contact: imizrahi@bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plasmids are extra-chromosomal DNA segments carried by bacterial
hosts. They are usually shorter than host chromosomes, circular and
encode nonessential genes. These genes are responsible for either
plasmid-specific roles such as self-replication and transfer, or
context-specific roles that can be beneficial or harmful to the host
depending on its environment. Along with viruses and transposable
elements, plasmids are members of the group termed mobile genetic
elements (Doring and Starlinger, 1984) as they transmit genes and

©The Author 2016. Published by Oxford University Press.

their selectable functions between microbial genomes. Plasmids play
a central role in horizontal gene transfer (Halary et al., 2009), and
thus genome innovation and plasticity—fundamental forces in mi-
crobial evolution. Much interest has recently arisen for plasmid ex-
traction and characterization, in particular because of their known
roles in antibiotic resistance and in increasing metabolic outputs of
agricultural or industrial byproducts. For instance, antibacterial re-
sistance genes encoded on plasmids have long been known as a
major issue for human health in clinical practice (Neu, 1992), but
are also one of today’s standard tools in microbiology and genetics
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when used to select for specific cells (Bevan ez al., 1983). In order to
derive plasmid sequences (which may be known or novel), one may
choose from the following approaches: sequence already isolated
microbes with their residing plasmids, sequence the overall micro-
bial community of genomes (termed metagenome) from some envir-
onment or, as was recently described, sequence only the overall
plasmid fraction from a given environment [termed plasmidome
(Brown Kav et al., 2012, 2013)]. The first technique obtains a mix-
ture of chromosomal and plasmid DNA occurring together in a sin-
gle strain. Since sequenced reads are devoted to only a few different
sequenced DNA elements (the genome in question or any of its mo-
bile elements), each is expected to be highly covered, and thus for
species having low repeat content a good assembly can be achieved.

For natural environments containing many elements, often
including those that are difficult to culture (Gilbert and Dupont,
2011) in a lab, metagenome assembly is attempted. This technique
allows a much broader view of all taxa present and their plasmids,
but is limited in that the characterization of each individual element
depends on its coverage in the mixed DNA sample and the fre-
quency of co-occurring repeats shared among different elements of
the sample. Resulting assembled genomes of elements that are rare
in the environment are thus often fragmented, and very high cover-
age (Howe et al., 2014) is needed for accurately assembling them.
However, assembly of metagenomes remains a highly active area of
research: current assembly outputs are lacking and do not represent
the true genetic capacity and synteny of genomes present in complex
microbial communities. Since most of the DNA in these environ-
ments is due to host genomes, this approach currently provides only
limited resolution of plasmids.

Most recently, a third technique has emerged that allows recovery
of far greater numbers of plasmids. Plasmidome sequencing (Brown
Kav et al., 2012, 2013; Jorgensen et al., 2014) allows nearly all
sequencing resources to be devoted to circular DNA. Using a proto-
col described in (Brown Kav et al., 2012), chromosomal DNA is fil-
tered out and circular DNA segments are selectively amplified. Based
on this protocol, hundreds of new plasmids were identified in the
cow rumen (Brown Kav ef al., 2013) and rat cecum (Jorgensen et al.,
2014). Jorgensen et al., (2014) applied the protocol introduced in
Brown Kav et al. (2012) combined with bioinformatic validation of
circularity. This post-assembly analysis resulted in a 95% PCR valid-
ation rate out of 40 randomly selected assembled contigs. This suc-
cess raises the prospect of iz silico refinement of plasmids beyond the
initial assembly. Although Jorgensen et al.’s method was shown to
have a high validation rate, its output is limited by the contiguity of
the underlying assembler’s contigs [in their case IDBA-UD (Peng
et al., 2012)], because it provides no means of combining multiple
overlapping contigs to form cycles. It is a filtering process meant to
identify probable circular sequences among sequences already output
by the assembler. To date, no tools for plasmid assembly from short
reads have been introduced to address these limitations.

In all of the above approaches plasmid assembly is hindered by
several inherent characteristics derived from their mobile nature.
These characteristics include their tendency to carry repetitive elem-
ents such as insertion sequences and to share genes with other plas-
mids and microbial genomes. In the context of de novo assembly,
repeats cause collapse of linear sequences sharing them as subse-
quences. This creates ambiguity in the sense that it becomes unclear
which extensions entering the repeat should be paired with those
exiting it, where sequences begin and end, and whether there are
unique terminal points at all as opposed to the sequence being circu-
lar. De novo assembly for the sake of identifying plasmids can be
augmented by long-read sequencing (Conlan et al., 2014; Hunt

et al., 2015) because such reads may be sufficiently long to bridge re-
peats short reads cannot. However, this approach is primarily lim-
ited to isolates or low complexity environments. This is evident in
that long reads often depend on single molecule sequencing without
amplification, thus only capturing relatively abundant DNA frag-
ments. Besides repeats, chimeric sequences also present significant
challenges to assembly, in that they create false connections between
sequences and thus may lead to mis-assemblies.

To overcome some of these challenges, Antipov et al., (2016),
introduced plasmidSPAdes, an extension of the SPAdes assembler
(Bankevich et al. (2012) that identifies likely ‘plasmid components’
in isolate whole genome sequencing experiments. This method looks
for long contigs in the assembly graph that are sufficiently different
coverage from those of the host genome. Here, we take a different
approach to improve discovery of sequenced plasmids. We similarly
analyze assembly graphs, but consider all nodes instead of paring
the graph around long contigs. In addition to coverage, we also in-
corporate paired-end read mappings and topology, only reporting
cycles when there is sufficient evidence that they are physically sep-
arate entities. We also accept as input any assembly graph, making
our method applicable to isolate as well as metagenome and plasmi-
dome samples.

Our inputs are an assembly graph G =(V,E), and the mapping
of paired-end reads responsible for the assembly to its nodes. The set
of nodes V are sequences having associated lengths and coverage lev-
els, and the set of arcs E is composed of directed connections among
the nodes. Arcs are the result of branch points in the underlying de
Bruijn graph: a branch node has outgoing arcs to two (or more) dif-
ferent nodes based on overlaps, and in many cases, the assembler
does not have a definite way of choosing which extension is true in
order to simplify the branch into a linear path. We aim to generate a
set of putative cycles that are likely to be plasmids, and assign a
coverage level for each one.

After defining this problem formally below, we present an algo-
rithm (and its implementation) designed to address it, called
Recycler. Recycler leverages assembly graphs output by SPAdes to
specifically enable de novo assembly of plasmids and other cyclic se-
quences likely to be physically separated from the rest of the se-
quences present. We show it greatly improves recovery of plasmids
over naive assembly and alternative methods, namely Jorgensen’s
and SPAdes’ built-in repeat resolution, introduced in (Prjibelski
et al., 2014) and performs similarly to plasmidSPAdes on isolate
sample inputs. We demonstrate Recycler’s performance by applying
it on both simulated and real data. We find that Recycler greatly in-
creases recall while maintaining high precision. This is established
via comparisons performed on simulated plasmidomes of various
sizes. We also show that Recycler can be applied for plasmid assem-
bly on real data from a bovine rumen plasmidome and metagenome,
and from two different Escherichia coli isolate strains. In the isolate
cases, Recycler recovered most known plasmids, and predicted add-
itional sequences that matched known mobile elements from differ-
ent hosts—all of which were identical or nearly identical to known
reference sequences. In all cases on real data, Recycler either
matched or exceeded the proportion of outputs matching plasmid
annotation, as described in Brown Kav ez al. (2013).

1.1 Related work

We note plasmid assembly is a multi-assembly problem, as described
in the context of RNA-Seq transcriptome assembly (Pertea et al.,
2015). Formulations of such problems often aim to generate a min-
imal set of paths that maximize agreement with observed data
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(Pertea et al., 2015; Tomescu et al., 2013; Trapnell et al., 2010).
These methods usually employ network flow formulations, which
admit polynomial-time algorithms for minimizing flow cost on the
network; this flow corresponds to a convex function of the sum of
coverage differences between observed and estimated coverage lev-
els. However, these methods resort to heuristics in selecting a min-
imal set of paths to cover the entire graph, as splitting a flow into a
minimal number of path and cycle components is an NP-hard prob-
lem (Hartman et al., 2012).

Recycler does not aim to generate a set of paths explaining all
coverage levels, and thus does not depend on a global objective func-
tion encompassing all nodes or edges. This approach is avoided be-
cause of the presence of linear paths due to either plasmids not fully
covered during sequencing or bacterial host genomes housing plas-
mids, which may introduce noise into coverage levels observed and
will not be part of the solution. Avoiding a global objective impos-
ing parsimony on paths also allows Recycler to benefit from a poly-
nomial time algorithm for generating ‘good’ cycles. Thus, Recycler’s
approach is similar to StringTie (Pertea ez al., 2015), in that both re-
peatedly seek locally best paths or cycles and use coverage levels esti-
mated on those to update coverage levels on the original graph, until
some stopping criterion is met. We note the set of cycles desired is
explicitly not minimal, as in cycle cover formulations (Gross et al.,
2013). For example, given a figure 8 component (Supplementary
Figure S1, panel I), Recycler may represent it as two cycles separated
by distinct coverage levels, where a minimal cover would use only
one cycle. Instead, we wish to cover as much of the graph as possible
with ‘good’ cycles.

2 Methods

2.1 Overview of recycler

The inputs to Recycler are a FASTG file representing a directed
graph with vertices corresponding to non-branching sequence con-
tigs and edges corresponding to connecting overlapping k-mers, and
a BAM file of paired-end read mappings to the graph’s nodes. The
graph can be viewed as a compacted de Bruijn graph starting from
order k of the sequence data by contracting edges (#, v) whenever u
has outdegree 1 and v has indegree 1, and the sequence contig of the
new node replacing # and v is the concatenation of their sequences.
Each node has a coverage value reflecting its abundance in the input
sequences. We search for cycles in the graph that will correspond to
plasmids. Cycle sequence length, number of vertices and coverage
uniformity are factored in the selection process. We also use paired-
end read mappings including mates on different nodes as a proxy for
which of the nodes may have emerged from the same physical DNA
fragment. This provides a means of inferring whether a candidate
cycle is a plasmid or a genomic segment including repeats that lead
to ambiguous cycles in the graph. Once a best cycle is selected, its la-
tent coverage level is determined and subtracted from those of all
participating nodes. Nodes whose resulting coverage values become
non-positive are then removed from the graph, allowing only those
with some remaining coverage the opportunity to take part in add-
itional cycles. Hence, the whole process can be viewed as greedily
‘peeling off’ cycles from the graph. Ideally, one would like the pro-
cess to end in an empty graph, in which case the input graph would
be exactly the union of the cycles found. In reality, the process is
stopped when quality criteria for new cycles in the remaining graph

are unmet.

2.2 Notations and definitions

Our input is a directed graph G = (V,E), where V is a set of linear
sequences having either a branch-point or terminal k-mer at each
end and no internal branch-points. E is the set of overlaps between
nodes, where E ={(u,v): the (k — 1)-mer suffix of u=the (k — 1)-
mer prefix of v}. We call a node simple if its indegree and outdegree
are 1. A node v corresponding to sequence s of length /(s) is assigned
two positive values, len(v) and cov(v). len(v) = I(s) — k + 1 is called
the length of the node (the subtraction is in order avoid double-
counting bases common to overlapping segments at their ends).
cov(v), its coverage, reflects the average number of times each k-mer
in s appears in the input read data. The input can be produced by a
short read assembly tool. We further assign a weight w(v)

= len(v)17(v} for each node v, resulting in low weight for high cover-

age and long nodes. Longer contigs tend to be less prone to random
fluctuations in coverage, and are thus more reliable coverage indica-
tors. For each cycle ¢ in the graph, we assign each node a value rep-

len(v)
S ey The value f{c,

,_ len
Vec

resenting its length fraction in ¢: f(c,v) =

v) is used to define the mean and standard deviation of weighted
1(e) = ¥y fle.v)cov(v)  and
STD(c) = \/Zua f(e,v)(cov(v) — u(c))z, respectively, and conse-
quently the coefficient of variation of ¢, CV(c) = S?()C()C). CV(c) is
used to allow direct comparison of variation levels between cycles,

coverage of cycle ¢ as

independently of the magnitude of coverage of each. CV(c) is indica-
tive of coverage uniformity along ¢, and plasmids are expected to
have uniform coverage levels that in many cases are different from
other plasmids and their hosts. Thus, cycles with low CV values are
more likely to correspond to plasmids than cycles with high CV
values.

2.3 Our approach

Intuitively, plasmids should form cycles that are distinctive from the
rest of the graph and have near uniform coverage. We also expect
plasmid cycles to include few nodes, as each additional node intro-
duced for a fixed sequence length increases fragmentation and the
tendency of nodes to be common to more than one path. With this
in mind, we search for ‘good cycles’ in the graph that potentially
correspond to plasmids. Formally, we define a good cycle as a sim-
ple cycle in the graph satisfying the following constraints:

1. Minimum path weight for some edge: 3(u,v) € ¢ such that ¢\ (u,
v) (the path obtained by removing (u, v) from ¢) is a minimum
weight path (by sum of weights w(v)) from v to u.

2. Low coverage variation: CV(c) < o where 7 is a defined
threshold and || is the number of nodes in.

3. Concordant read mapping: For pair 7, 7, of paired-end mates, if
71 maps to a simple node in ¢ then r, must also map to some
node in c.

4. Sufficient sequence length: Y
threshold.

len(v) > L, where L is a defined

vee

The first constraint is critical in order to avoid merging of two or
more plasmids that are connected through a repeated region
(Supplementary Figure S1, panel I). In addition, lower weight cycles
correspond to longer sequence length and higher coverage nodes,
and tend to have fewer nodes. Furthermore, for each edge this con-
straint uniquely determines at most one cycle that passes through
the edge, thus avoiding consideration or enumeration of an expo-
nential number of possible cycles. We note there are special cases
allowing for cycles that visit a single node more than once; such a



478

R.Rozov et al.

case is shown in Supplementary Figure S1, panel II. The second con-
straint ensures that the coverage variation is low, thus again increas-
ing our confidence that the cycle corresponds to exactly one
plasmid. Moreover, this constraint implicitly ensures high coverage
cycles, since low coverage cycles tend to have higher CV value. The
third constraint exploits paired-end reads. Suppose we have a read
pair 7y, 7, and 7; maps to a certain node in the candidate cycle c. We
expect 7, to map to the same cycle, unless 7, falls on a node that is
common to ¢ and some other path p overlapping with it. In that case
7, may map p to as well. Simple nodes are less likely to overlap with
several cycles and paths, and the third constraint leverages this ob-
servation. We waive this constraint in case the coverage of ¢ is suffi-
ciently high, as in such cases the cycle ‘stands out’ from the
background coverage. See Supplementary Material for details.

The above definition of a good cycle provides a mechanism for
the identification of putative plasmids. Recycler processes each
strongly connected component separately. It repeatedly finds a good
cycle with minimum CV value, assigns it latent coverage equal to
the mean cycle coverage and subtracts that coverage from the graph,
creating a new residual coverage (Fig. 1). The weights of the vertices
in the cycle are updated based on their new coverage values, and ver-
tices whose resulting coverage values become non-positive are

~. 90

~

removed from the graph, allowing only those with positive residual
coverage the opportunity to take part in additional cycles. After
each such change, cycles are recalculated the same way using the
updated coverage levels. This process continues as long as new good
cycles are found. To avoid examining a potentially exponential
number of cycles, we consider one minimum weight cycle through
each edge in the graph. The algorithm selects the cycle with the low-
est CV among these minimum weight cycles and ‘peels it off’ the
graph. Algorithm 1 sketches the procedure for a single component.
See the Supplementary Material for additional details.

2.4 Complexity

Algorithm 1 presented above terminates in polynomial time. In each
iteration, if any good cycles exist, one is chosen and its mean cover-
age is calculated. There is at least one node in the cycle with cover-
age smaller than the mean coverage of the cycle, which is
subsequently removed from the graph. Therefore, in each iteration
at least one node is removed, and the number of iterations is
bounded by the number of nodes. Using Johnson’s algorithm
(Johnson,  1977), the runtime of each iteration is
O(|V|*log (|V]) + |V||E|). Running times are further reduced by

N
140 - \\22.5 i

o0

n(p) = 117.5

Fig. 1. Recycler work-flow. An example is shown of generating candidate cycles and peeling off cycles iteratively. For simplicity, all lengths are assumed to be
equal and not shown. Here, we consider only candidate cycles that pass through vertex x, but ordinarily such candidates would be generated for each vertex in
the component, and the cycle with lowest CV will be chosen and peeled off. (A) The assembly graph. (B) A single component is selected from the assembly graph
(framed in A) and represented with vertices for contigs and edges for connecting k-mers. (C) The reduced component after tip removal. The numbers next to verti-
ces are their observed contig coverage. Since vertex x has two incoming edges from vertices b and ¢, two candidate cycles are generated that pass through edges
(b, x) and (c, x), respectively. This is done by computing shortest paths from x to b (x,e,d.g.h,i.j,b,CV =0.20, showninD) and from x to ¢
(x,e,d,g, h c,CV =0.41, notshown ). Two successive steps of peeling cycles are shown with their respective latent coverage assignments. First, the cycle in D is
peeled off because the CV calculated from initially observed coverage is lowest for this cycle. Uncolored vertices correspond to contigs with zero coverage that

are removed
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Algorithm 1: Finding good cycles and peeling them off each
component

Data: G = (V,E,len, cov,w),t, L
Result: X, the set of cycles
Compute shortest cycles passing through each edge;
for each edge (u, v) do
Compute a minimum weight path p from v to u, if one
exists;
Compute the CV of the cycle (p, (u,v));
end
Return the set of cycles S,
while X changes do
Compute a set S of shortest cycles passing through each
edge
Consider each cycle ¢ in S in increasing order of CV values
if ¢ is good and not in X then
Add cto 2
Compute the latent coverage level of ¢
Update the residual coverage of all cycle nodes, removing
nodes with non-positive residual coverage
else
end
end

computing the strongly connected components of and working sep-
arately on each one.

2.5 Generating simulated plasmidomes

We simulated error-free paired-end reads from plasmids using
BEAR (Johnson et al., 2014), a read simulator designed to generate
artificial metagenome data. To avoid introducing coverage drops at
sequence ends typical of linear sequences, we modified BEAR
(https://github.com/rozovr/BEAR) to allow sampling of reads bridg-
ing reference sequence ends, as is observed for circular sequences.
Plasmid reference sequences were selected from the NCBI plasmids
database and from plasmid sequences reported in (Brown Kav ez al.,
2013), filtered to include 2760 sequences with a length range of 1-
20 kbp with a mean of 6337 bp. Five datasets were created, com-
posed of 100 bp mates (read pair ends), with insert sizes, varying
from 1.25 M pairs sampled on 100 reference sequences doubling
successively up to 20 M pairs sampled on 1600 sequences.
Abundance levels were assigned using BEAR’s low complexity op-
tion, which concentrates high abundance to few species using a
power function with parameters derived from (Pignatelli and Moya,
2011): the function takes the form ci?, where ¢=31.4 and
d = —1.28, and i is iteratively assigned values from 1 to the number
of species simulated. These values are then normalized by their sum
to yield a probability distribution.

2.6 Evaluating performance

To test recovery of the ground truth sequences by each plasmid de-
tection program, we used the Nucmer alignment tool (Kurtz et al.,
2004), which is designed for efficiently comparing long nucleotide
sequences such as those of whole plasmids or chromosomes. In
order to simplify this process, we modified reference sequences to re-
move non-ACGT characters before read simulation and alignments.
To avoid fragmented alignments caused by differences in start

positions, we concatenated each reference sequence to itself before
mapping; this allowed identification of complete matches at the cen-
ter of the concatenated contigs when they were present. Output
cycles of each tested program were defined as true positives (TP) if
they had 100% identity hits covering at least 80% of one of the ref-
erence sequences. False positives (FP) were any output cycles not
meeting these criteria, and false negatives (FN) were reference se-
quences not aligned to in the output set using these criteria. Based
on these conventions, precision = 0 and recall = 7plb—. We used
the F1 score (Powers, 2011) to combine these measures in a manner
that weighs precision and recall equally.

2.7 Primer design and PCR validation of plasmid contigs
The plasmidome dataset was divided into two separate subsets,
including simple (single node) cycles (N=370) and complex (multi-
node) paths within the graph (N=350). Each of these was divided
into coverage bins, and selected representatives from each bin (High
coverage: 60-1000x, mid-high coverage: 15-60x, mid-low cover-
age: 5-15x, low coverage: 1-5x) were validated by PCR. Overall, 24
simple cycles and 39 complex cycles were chosen for PCR valid-
ation. From the metagenome dataset (N =40), all assembled plas-
mids were of the same coverage bin (1-5X) and 10 of them were
randomly selected for validation. This was also the case for the E.
coli 2022 isolate (N =4) for which all plasmids were validated by
PCR, aside from a recovered Phi X control sequence. Primers were
designed to produce an amplification product only if their template
is circular; this was achieved by directing the opposing primers to-
wards the edge of the linear plasmid contig. PCR reactions were car-
ried out using Advantage GC Genomic LA PCR Polymerase
(Clontech) according to the manufacturer’s instructions. The PCR
reactions were as follows: 1.5 ul Advantage buffer (10x), 0.6 ul of
each primer (5 mM), 0.15 ul Ex Advantage GC Genomic LA DNA
Polymerase, 100 ng of template DNA, 1.5 ul of dNTPs (10 mM) and
DDW was added to a final volume of 25 ul. All PCR reactions were
carried out in a Sensoquest thermocycler (Gottingen, Germany).

3 Results

We first simulated plasmidomes using known references. We used
these data sets to assess Recycler’s precision and recall (along with
those of alternative methods) by comparing predictions against the
ground truth known by the simulation design. We also tested
Recycler on real data from two E. coli isolates, and both a cow
rumen metagenome and plasmidome (Brown Kav et al., 2013). For
the bacterial isolates that have been sequenced, predicted plasmids
were compared against the reference sequences directly. Since no
references are available for metagenome and plasmidome data, we
evaluated the accuracy by PCR validation (Jergensen et al., 2014)
and by measuring the proportion of predicted plasmids having
proper annotation as done in (Brown Kav ez al., 2013). Recycler’s
inputs were assembly graphs generated by SPAdes version 3.6.2
(Bankevich et al., 2012), and alignments generated by BWA version
0.7.5 (Li and Durbin, 2009).

3.1 Simulated plasmidomes

We simulated paired-end reads from known plasmids, and created
five datasets of 100, 200, 400, 8000 and 1600 plasmids. Plasmid
abundance was distributed so that few plasmids have high abun-
dance. Dataset sizes were 1.25, 2.5, 5, 10 and 20 M pairs, respect-
ively (see Methods for details). Each such dataset was assembled
with SPAdes and subsequently its output contigs and assembly
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Fig. 2 Methods performance on simulated data. Results are shown for
SPAdes without repeat resolution (RR), SPAdes with repeat resolution, the
method of Jgrgensen et al., and Recycler. The contigs of SPAdes before RR
were used as input for the three other methods. Recycler also relied on the
graph produced at this stage. F1 score calculation is described in the main
text. The x axis shows the number of simulated reference sequences in each
case

graphs were used as inputs to the tested methods. Recycler was com-
pared with SPAdes with and without repeat resolution (RR), and
with a simplified version of Jorgensen’s method (described in the
Appendix). We used SPAdes’ outputs before the repeat resolution
stage as inputs to Recycler and to Jergensen’s method, as we found
that contigs have greater precision before RR when compared to ref-
erence sequences (as shown in Supplementary Table S1). The map-
ping results are presented in Supplementary Table S1 and Figure 2.

As expected, recall generally decreased as the number of simu-
lated plasmids increased. This was common to all tested methods. In
general, we found that Recycler generated more predictions than
other methods, leading it to have higher recall than alternative
approaches while maintaining high (~90%) precision. The net per-
formance effect is shown in Figure 2 and Supplementary Table S1 in
the supplement: Recycler maintains the lead in all cases with 5-14%
advantage in both F1 and fraction of true positives. We also found
that the number of additional Recycler true positives over those pro-
vided by SPAdes generally increased with higher complexity; this
culminated in Recycler adding 62 (13%) true positives to SPAdes’
output on the 1600 plasmid set (523 versus 461).

To further characterize Recycler’s performance, we categorized
its predictions in terms of mean total cycle length, number of seg-
ments in the cycle (steps), cycle coverage and CV value calculated at
the stage the cycle was removed. For each category, values were sub-
divided into five ranges. In Supplementary Figure S2, we show the
precision values and the relative proportions of counts in the speci-
fied ranges. Based on this stratification, it can be seen that Recycler
shows little dependence on mean coverage or length, but does often
preclude candidate cycles that have high CV values or number of
steps. This is reflected in the sharp drop-off in the plots as the num-
ber of steps or the CV grows.

3.2 Real data

All of Recycler’s results on real data were subjected to quantification
of annotation results as described in (Brown Kav et al., 2013) and
compared against cycles present in the output produced by SPAdes.
These results are detailed below and a summary of them can be
found in Supplementary Table S2 in the Appendix.

3.2.1 Circular integrity of assembled plasmids

A total of 77 sequences were selected for PCR validation by sam-
pling from the different data types as described in the Section 2.7
above. Overall, 89% of the 77 chosen plasmids were validated by
PCR as circular DNA molecules. The predicted plasmids from the
different samples did not differ in the success rate of circular valid-
ation. As coverage has a key role in de novo assembly and Recycler’s
performance, we wished to measure whether the integrity of
assembled plasmids would be affected by varying mean k-mer cover-
age. To this end, we validated circularity of plasmids of different
coverage levels ranging from 1x to 1000x divided into bins. As can
be seen in Figure 3, there was a slightly lower success rate for the
lower coverage plasmids. However, coverage and validation rate
were not found to be significantly correlated. Additionally, the high
number of predicted plasmids in the plasmidome data set allowed us
to measure the effect of the complexity of the path in the graph on
the integrity of the plasmids. When more edges are involved in a
cycle, it is more complex, and the chance of noise in coverage levels
and errors in sequence increases. Thus, we divided this dataset into
two bins according to path length on the graph: simple: single node
(self-edge) paths, complex: two nodes or more. These two bins did
not show difference in their validation rate, further stressing
Recycler’s strength in extracting plasmids from complex paths.

3.2.2 E. coli isolate data

We ran Recycler on two E. Coli strains: JJ1886, downloaded from
http://www.ebi.ac.uk/ena/data/view/SRX321704, and  E2022,
sequenced locally. Annotation for plasmids found in both strains
was provided in (Lanza et al., 2014); comparisons against Recycler
outputs with this annotation are reported in Supplementary Tables
S3 and S4. Of the five plasmids known for JJ1886, Recycler output
four complete matches (100% identity over 100% length) having
lengths 55.9, 5.6, 5.2 and 1.6 kbp. It also output three additional se-
quences which completely matched previously reported plasmids:
two are known to be present in S. Aureus, and one in S.
Chromogenes. Further tests will be needed in order to validate
whether these additional hits are truly present in the sequenced sam-
ple, and furthermore, whether they are stable residents of the tested
hosts or were present as a result of contamination. When tested on
E2022, Recycler performed similarly, recalling most of its known
plasmids and outputting a few additional cycles that were complete
or near complete matches to known plasmids and one phage. These
results are also presented in Supplementary Table S2. In summary,
all reported isolate hits represent highly accurate matches to known
mobile elements, and most known plasmids for these strains were re-
covered. In both cases, Recycler missed the longest known reference
plasmids; it remains to be seen whether this is due to Recycler’s use
of a shortest path formulation, lack of significant coverage differ-
ence between these plasmids and the host genome, or other factors.

3.2.3 Plasmidome data

A bovine rumen plasmidome sample was prepared as described in
(Brown Kav et al., 2013). This data consisted of 5.1 M paired-end
101 bp reads (trimmed to varied sizes for the sake of adapter re-
moval) with an expected insert size of 500 bp [data available upon
request]. Recycler output 420 cycles when provided this data.
According to ORF prediction performed as in (Brown Kav et al.,
2013), 314 of the 420 had significant annotation hits. 96% of those
matching annotations either matched plasmid annotations or
aligned with plasmids reported in (Jorgensen et al., 2014). Thus, a
majority are likely to be plasmids.



Recycler: an algorithm for detecting plasmids from de novo assembly graphs 481

N

100%
. —T 90%
— — 80%
— —T 70%
= fail — — 60%
M success TR —t 50%
et — 40%
— — 30%
— — 20%
— — 10%
0%

Coverage Low High Low med-low med-high High Low Medium High
No. of cycles tested 10 5 24
Source Metagenome | E. coli isolate plasmidome simple cycles plasmidome - complex pathways

Fig. 3. PCR based validation of Recycler’s plasmid predictions. High coverage: 60-1000x, med-high:15-60x, med-low: 5-15x, low: 1-5x

3.2.4 Metagenome data

Metagenome data was derived from the rumen of a different cow
residing in the same stable as the cow used to derive the plasmidome
data. This data consisted of 7.5 M paired end 150 bp reads with ex-
pected insert size of 500 bp [data available upon request]. Recycler
produced 40 cycles when run on this data. According to ORF pre-
diction, 37 of the 40 had significant annotation hits. About 35% of
those matching annotations either matched plasmid annotations or
aligned with plasmids reported in Jorgensen et al., (2014). The pro-
portion of reported cycles matching known plasmid annotations
was slightly higher than for simple cycles output by SPAdes (33%).
Overall, this test reflects the trend seen elsewhere (Howe et al.,
2014) of weak annotation results emerging from metagenome as-
sembly of highly diverse environmental samples.

3.2.5 Comparison with PlasmidSPAdes
Recently, a version of SPAdes tailored for seeking plasmids in iso-
lates, called PlasmidSPAdes, was introduced (Antipov et al., 2016).
Unlike Recycler, it does not explicitly seek cycles but removes long
edges in the de Bruijn graphs and looks for contigs with coverage
significantly different from the mean coverage of the read data. The
rationale is that for isolates the coverage distribution is dominated
by the host bacterium reads, and the reads of plasmids can be de-
tected as outliers in that distribution. This assumption does not fit
plasmidome or metagenome data. PlasmidSPAdes’ output is a set of
components, each containing a set of contigs with similar mean
coverage that putatively originate from the same plasmid. We ran
PlasmidSPAdes (packaged with SPAdes 3.80) on the two E. coli
datasets described above, and compared the results with Recycler’s
(Supplementary Tables S5 and S6). For E2022, four out of the seven
components reported by PlasmidSPAdes matched Recycler’s out-
puts; the shortest of these was among the PCR validated sequences
not present in the reference set. Of the three not matching, two seem
to have chromosomal origin based on a BLAST search performed on
the longest contigs in these components, and the fact that these com-
ponents had largely tree-like structure: less than half of the compo-
nent’s total length was included in a cycle. Recycler reported one
cycle of length 2.1 kb missed by PlasmidSPAdes that was in the ref-
erence set. Neither tool succeeded in recovering the longest two plas-
mids in the reference set.

For JJ1886, three out of the nine components reported matched
Recycler’s. Of the other six, five likely have chromosomal origin as

assessed by the same criteria used for E2022, and one matched a
likely plasmid. However, four of these five aligned best with the gen-
ome of S. Aureus. Recycler reported three additional short sequences
between 1.6 and 2.4 kb, each of which had high scoring BLAST hits
to plasmids in S. Aureus or S. Chromogenes. As some of the plas-
mids reported by both tools also matched S. Aureus origin, it is pos-
sible that the JJ1886 sample contained a mixture of both cell types.
We note that such a mixture could mislead PlasmidSPAdes’ esti-
mates of coverage variation, thus allowing large chromosomal frag-
ments to survive filtration.

Overall, aside from the S. Aureus sequences observed, the two
tools performed similarly on isolate data. This is consistent with the
comparison presented in (Antipov et al, 2016). In addition,
Recycler can process metagenome and plasmidome graphs, while
PlasmidSPAdes can find non-circular plasmids. The two methods
primarily differ (when processing isolate data) in what they report
for difficult cases involving repeats that are either long or shared by
many paths. When Recycler cannot derive a unique circular se-
quence from a graph component, the component is not included in
the output. For PlasmidSPAdes, such components are reported as
groups of contigs. In either case, more information (such as long
reads) would be needed in order to properly resolve these cases.

4 Discussion

In this article, we describe Recycler, a new algorithm and the first
tool available for identification of plasmids from short read-length
deep sequencing data. We demonstrate that Recycler discovers plas-
mids that remain fragmented after de novo assembly. We have
adapted the approach of choosing among likely enumerated paths
using coverage and length properties (often applied in transcriptome
assembly (Pertea ef al., 2015; Tomescu et al., 2013; Trapnell ez al.,
2010) for extracting a specific but common inhabitant of metage-
nomes. We showed that many more real plasmids can be found by
only generating likely cycles on the assembly graph versus alterna-
tive methods. We validated this approach on both real and simu-
lated data.

Recycler displays high recall and precision on simulated plasmi-
domes, and we have developed a means of separating real plasmids
from cycles due to repeats in isolate data. As we have noted, cover-
age can be very useful for the latter, but the assumption that cover-
age will always differ significantly between plasmids and their host
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genome does not hold universally. It is worth noting that as new
plasmids are identified and their common sequence motifs are
observed, both reference-based identification and a priori trained
prediction of plasmid features can be improved and harnessed for
supplementing identification based on coverage and length features
alone. We aim to investigate how such knowledge can be leveraged
for increased precision without sacrificing recall.

Furthermore, while Recycler’s peeling of lowest CV paths at
each step has the advantage of providing a deterministic rule to de-
cide which cycles should be peeled next, this process is heuristic.
Better accounting of the uncertainty in observed coverage levels and
in the algorithm’s dependence on the order of peeling may be ob-
tained by randomizing or repeating parts of the process multiple
times. For example, instead of always peeling one best cycle, a ran-
dom subset of all good cycles may be peeled at once. Repeating this
process multiple times and reporting only cycles that persist in a ma-
jority of runs may improve both sensitivity and precision.

Further investigation will be needed to assess how plasmids can
be extracted from environmental samples, in spite of the limitations
now hampering metagenome assembly. This is currently challeng-
ing, as diverse genomes require very high coverage for rare species
to be captured, but such high coverage data demand computational
resources beyond reach of most investigators. While new techniques
have aimed to address this problem (Cleary ez al., 2015; Howe
et al., 2014), they have yet to see widespread use, and work best
when paired with multiple samples to allow for species separation
by co-abundance signatures. Along with addressing these concerns,
it remains to be seen whether a mixed approach of pre-screening en-
vironmental samples for plasmids and computationally filtering
them out may benefit metagenome graph simplification.
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Abstract

Motivation: We present Faucet, a two-pass streaming algorithm for assembly graph construction.
Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be
stored locally, as they can be processed while downloading data and then discarded. We demon-
strate this functionality by performing streaming graph assembly of publicly available data, and ob-
serve that the ratio of disk use to raw data size decreases as coverage is increased.

Results: Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data
derived from them. We show these metadata—coverage counts collected at junction k-mers and
connections bridging between junction pairs—contain most salient information needed for assem-
bly, and demonstrate they enable cleaning of metagenome assembly graphs, greatly improving
contiguity while maintaining accuracy. We compared Fauceted resource use and assembly quality
to state of the art metagenome assemblers, as well as leading resource-efficient genome assem-
blers. Faucet used orders of magnitude less time and disk space than the specialized metagenome
assemblers MetaSPAdes and Megahit, while also improving on their memory use; this broadly
matched performance of other assemblers optimizing resource efficiency—namely, Minia and
LightAssembler. However, on metagenomes tested, Faucet,0 outputs had 14-110% higher mean
NGA50 lengths compared with Minia, and 2- to 11-fold higher mean NGA50 lengths compared with
LightAssembler, the only other streaming assembler available.

Availability and implementation: Faucet is available at https://github.com/Shamir-Lab/Faucet
Contact: rshamir@tau.ac.il or eranhalperin@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Assembly graphs encode relationships among sequences from a com-
mon source: they capture sequences as well as the overlaps observed
among them. When assembly graphs are indexed, their sequence con-
tents can be queried without iterating over every sequence in the in-
put. This functionality makes graph and index construction a
prerequisite for many applications. Among these are different types of
assembly—e.g. de novo assembly of whole genomes, transcripts, plas-
mids etc. (Pertea et al., 2015; Rozov et al., 2017)—and downstream

©The Author 2017. Published by Oxford University Press.

applications—e.g. mapping reads to the graphs, variant calling, pan-
genome analysis etc. (Iqbal ez al., 2012; Novak et al., 2017).

In recent years, much effort has been expended to reduce the
amount of memory used for constructing assembly graphs and
indexing them. Major advances often relied on index structures that
saved memory by enabling subsets of possible queries: e.g. one could
query what extensions a given substring s has, but not how many
times s was seen in the input data. A great deal of success ensued in
reducing the amount of memory needed to efficiently construct the

1
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central data structures used by most de novo assembly algorithms,
namely, the de Bruijn and string graphs (Chikhi and Rizk, 2012; Pell
et al., 2012; Simpson and Durbin, 2010; Ye et al, 2012).
Furthermore, efficient conversion of de Bruijn graphs to their com-
pacted form (essentially string graphs with fixed overlap size) has
been demonstrated Chikhi ez al., 2014, 2016; Minkin et al., 2016).

In parallel to these efforts, streaming approaches were demon-
strated as alternative resource-efficient means of performing ana-
lyses that had typically relied on static indices. Although appealing
in terms of speed and low memory use, these approaches were ini-
tially demonstrated primarily for counting-centered applications
such as estimating k-mer frequencies, error-correction of reads, and
quantification of transcripts (Melsted and Halldorsson, 2014;
Mohamadi er al., 2017; Roberts and Pachter, 2012; Song et al.,
2014; Zhang et al., 2014).

Recently, a first step towards bridging the gap between stream-
ing approaches and those based on static index construction was
taken, hinting at the potential benefits of combining the two.
El-Metwally et al. (2016) demonstrated a streaming approach to as-
sembly by making two passes on a set of reads. The first pass sub-
samples k-mers in the de Bruijn graph and inserts them into a Bloom
filter, and the second uses this Bloom filter to identify ‘solid” (likely
correct) k-mers, which are then inserted into a second Bloom filter.
This streaming approach resulted in very high resource efficiency in
terms of memory and disk use. However, LightAssembler finds solid
k-mers while disregarding paired-end and coverage information,
and thus is limited in its ability to resolve repeats and to differentiate
between different possible extensions in order to improve
contiguity.

In this work, we extend this approach with the aim of providing
a more complete alternative to downloading and storing reads for
the sake of de novo assembly. We show this is achievable via online
graph and index construction. We describe the Faucet algorithm,
composed of an online phase and an offline phase. During the online
phase, two passes are made on the reads without storing them lo-
cally to first load their k-mers into a Bloom filter, and then identify
and record structural characteristics of the graph and associated
metadata essential for achieving high contiguity in assembly. The
offline phase uses all of this information together to iteratively clean
and refine the graph structure.

We show that Faucet requires less disk space than the input data,
in contrast with extant assemblers that require storing reads and
often produce intermediate files that are larger than the input. We
also show that the ratio of disk space Faucet uses to the input data
improves with higher coverage levels by streaming successively
larger subsets of a high coverage human genome sample.
Furthermore, we introduce a new cleaning step called disentangle-
ment enabled by storage of paired junction extensions in two Bloom
filters—one meant for pairings inside a read, and one meant for
junctions on separate paired end mates. We show the benefit of dis-
entanglement via extensive experiments. Finally, we compared
Faucet’s resource use and assembly quality to state of the art meta-
genome assemblers, as well as leading resource-efficient genome as-
semblers. Faucet used orders of magnitude less time and disk space
than the specialized metagenome assemblers MetaSPAdes and
Megahit, while also improving on their memory use; this broadly
matched performance of other assemblers optimizing resource effi-
ciency—namely, Minia and LightAssembler. However, on metage-
nomes tested, Faucet’s outputs had 14-110% higher mean NGAS0
lengths compared with Minia, and 2- to 11-fold higher mean
NGASO lengths compared with LightAssembler, the only other
streaming assembler available.

2 Preliminaries

For a string s, we denote by s[7] the character at position i, s[: j] the
substring of s from position 7 to j (inclusive of both ends), and |s| the
length of s. Let pref{(s, j) be the prefix comprised of the first j charac-
ters of s and suff{(s,j) be the suffix comprised of the last j characters
of s. We denote concatenation of strings s and # by s°¢, and the re-
verse complement of a string s by s'.

A k-mer is a string of length k& drawn from the DNA alphabet
¥ ={A,C,G,T}. The de Bruijn graph G(S,k) = (V,E) of a set of se-
quences S has nodes defined by consecutive k-mers in the sequences,
V = Uses U‘i;kﬂ sli:i+k—1]; E is the set of arcs defined by
(k—1)—mer overlaps between nodes in V. Namely, identifying verti-
ces with their k-mers, (#,v) € E <= suff(u,k — 1) = pref (v, k — 1).
Each node v is identified with its reverse complement ¢/, making the
graph G bidirected, in that edges may represent overlaps between ei-
ther orientation of each node (Medvedev et al., 2007). When neces-
sary, our explicit representation of nodes will use canonical node
naming, i.e. the name of node (v,¢') will be the lexicographically
lesser of v and /. Junction nodes are defined as k-mers having in-
degree or out-degree > 1. Terminal nodes are k-mers having out-
degree 1 and in-degree 0 or in-degree 1 and out-degree 0. Terminals
and junctions are collectively referred to as special nodes. The com-
pacted de Bruijn graph is obtained from a de Bruijn graph by merg-
ing all adjacent non-branching nodes (i.e. those having in-degree
and out-degree of exactly 1). The string associated with merged ad-
jacent nodes is the first k-mer, concatenated with the single charac-
ter extensions of all following non-branching k-mers. Such merged
non-branching paths are called unitigs.

Since a junction v having in-degree > 1 and out-degree 1 is iden-
tified with ¢/ having out-degree > 1 and in-degree 1, we speak of
junction directions relative to the reading direction of the junction’s
k-mer. Therefore, a forward junction has out-degree > 1, and a
back junction has in-degree > 1. We refer to outbound k-mers be-
ginning paths in the direction having out-degree > 1 as heads, and
the sole outbound k-mer in the opposite direction as the junction’s
tail. It is possible that a junction may have no tail.

A Bloom filter B is a space-efficient probabilistic hash table ena-
bling insertion and approximate membership query operations
(Bloom, 1970). The filter consists of a bit array of size m, and an
element x is inserted to B by applying / hash functions, fo,...,f, 1
such that Vicp 1) fi(x) € [0, — 1], and setting values of the filter
to 1 at the positions returned. For a Bloom filter B and string s, by s
€ B or the term ’s in B’ we refer to B[s] = 1, i.e. when the b hash
functions used to load B are applied to s, only 1 values are returned.
Similarly, s € B or ‘s not in B’ means that at least one of the / hash
functions of B returned 0 when applied to s. For any s that has been
inserted to B, B[s] = 1 by definition (i.e. there are no false nega-
tives). However, false positives are possible, with a probability that
can tuned by adjusting 72 or b appropriately.

3 Materials and methods

We developed an algorithm called Faucet for streaming de novo as-
sembly graph construction. A bird’s eye view of its entire work-flow
is provided in Figure 1. Below we detail individual steps.

3.1 Online Bloom filter loading

Faucet begins by loading two Bloom filters, B; and B,, as it iterates
through the reads, using the following procedure: all k-mers are in-
serted to By, and only k-mers already in By (i.e. those for which all
hash queries return 1 from By) are inserted to B,. Namely, for each
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Fig. 1. Faucet work-flow. (A) The online stage involves a first round of processing all reads in order to load Bloom filters B; and B,, and a second round in order to
build the junction map M and load additional Bloom filters B; and B,. M stores the set of all junctions and extension counts for each junction, while B; and B, cap-
ture connections between junction pairs. The two online rounds capture information from and perform processing on each read, and the processing performed
always depends on the current state of data structures being loaded. (B) The offline stage uses B, and M, constructed during the online stage, in order to build
the compacted de Bruijn graph by extending between special nodes using Bloom filter queries. ContigNodes (not shown) take the place of junctions and are
stored in M’, allowing access (via stored pointers) to Contigs out of each junction, and coverage information. An additional vector of coverage values at fake or
past junctions is also maintained for each Contig. Then, Bz, B,, and this coverage information are used together to perform simplifications on and cleaning of the

graph

k-mer s, if By[s] = 1 then we insert s into B,, otherwise we insert
into By. After iterating through all reads, B, is discarded and only
B, is used for later stages. This procedure imposes a coverage thresh-
old on the vast majority of k-mers so that primarily ‘solid k-mers’
(Pevzner et al., 2001) observed at least twice are kept. This process
is depicted in Round 1 of Figure 1A. We note that a small propor-
tion of singleton or false positive k-mers may evade this filtration.
No count information is associated with k-mers at this round.

3.2 Online graph construction

B,, loaded at the first round, enables Faucet to query possible for-
ward extensions of each k-mer. Faucet iterates through all reads a
second time to collect information necessary for avoiding false posi-
tive extensions, building the compacted de Bruijn graph, and later,
cleaning the graph. The second round consists of finding junctions
and terminal k-mers, recording their true extension counts, and re-
cording k-mer pairs (Round 2 of Fig. 1A).

Faucet’s Online stage has one main routine—Algorithm 1—that
calls upon two subroutines—Algorithms 2 and 3. First, junction k-
mers and their start positions are derived from a call to Algorithm 2.
To find junctions, Algorithm 2 makes all possible alternate exten-
sion queries (Lines 3-5) to B, for each k-mer in the read sequence 7.
A junction k-mer j may have multiple extensions in B,—either be-
cause there are multiple extensions of j in G that are all real (i.e. pre-
sent on some read), or because there is at least one real extension in
G and some others in B, that are false positives. Accordingly, each
k-mer possessing at least one extension that differs from the next

base on the read is identified as a junction. Whenever one is found,
its sequence along with its start position are recorded (Line 4), and
the list of such tuples is returned. We note that each k-mer in the
read is also queried for junctions in the reverse complement direc-
tion, but this is not shown in Algorithm 2.

Algorithm 1. scanReads(R, B,)

Input: read set R, Bloom filter B, loaded from round 1, an
empty Bloom filter B

Output: 1. a junction Map M comprised of (key, value) pairs.
Each key is a junction k-mer, and each value € N* is a vector
[ca,ccicg,cr] of counts representing the number of times
each possible extension of key was observed in R; 2. Bj is
loaded with linked k-mer pairs (i.e. specific 2k-mers—see
text—are hashed in).

LM

2: for r € R do

3:  juncs « findJunctions(r, By)
4. for (junc,pos) € juncs do

N if junc ¢ M then

6: Mijunc] «— [0,0,0,0]

7 increment counter in M for r[pos + k]

> call to Algorithm 3

> call to Algorithm 2

recordPairs(r, juncs, B3)
8: return M,B;
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Algorithm 1 then uses this set of junctions to perform accounting
(Lines 4-8). All junctions are inserted into a hash map M that maps
junction k-mers to vectors maintaining counts for each extension.
For each junction of 7, a count of 0 is initialized for each possible ex-
tension. These counters are only incremented based on extensions
observed on reads—i.e. extensions due to Bloom filter outputs alone
are not counted. As every real extension out of each junction must
be observed on some read, and we scan the entire set of reads, an ex-
tension will have non-zero count only if it is real. This mechanism
allows Faucet to maintain coverage counts for all real extensions out
of junctions. In later stages, only extensions having non-zero counts
will be visited, but counts are stored for real extensions of false junc-
tions as well. These latter counts are used to sample coverage distri-
butions on unitig sequences at more points than just their ends.
Proportions of real junctions versus the totals stored after account-
ing are described in the section ‘Solid junction counts’ in the
Supplementary Appendix.

Algorithm 2. findJunctions(r, B;)

Input: read » and Bloom filter B,
Output: juncTuples, a list of tuples (seq, p), where p is the
start position of junction k-mer seq in 7, in order of appear-
ance on r
1: juncTuples — &
2: for i € [0,|r| — k] do kmer — r[i: i+ k — 1]
3: for c € Z\{r[i + k]} do
4: if (suff (kmer,k —1)- c € B,) then
juncTuples — juncTuples U (kmer, i)
5: return juncTuples

Following the accounting performed on observed junctions,
Faucet records adjacencies between pairs of junctions using add-
itional Bloom filters—B3 and By. These adjacencies are needed for
disentanglement—a cleaning step applied in Faucet’s offline stage.
Disentanglement, depicted in Figure 2, is a means of repeat reso-
lution. Its purpose is to split paths that have been merged due to the
presence of a shared segment—the repeat—in both paths. In order
to ‘disentangle’, or resolve the tangled region into its underlying la-
tent paths, we seek to store sequences that flank opposite ends of the
repeat. Pairs of heads observed on reads provide a means of ‘reading
out’ such latent paths by indicating which heads co-occur on
sequenced DNA fragments. The application of disentanglement is
presented in the section ‘Offline graph simplification and cleaning’,
while we now focus on the mechanism of pair collection and its ra-
tionale. To capture short and long range information separately,
Bloom filter B3 holds head pairs on the same read, while B4 holds
heads chosen such that each head is on a different mate of a paired-
end read. Algorithm 3 is the process by which pairs are inserted into
B3, and insertion into B4 is described in the Supplementary
Appendix.

In Algorithm 3, we aim to pair heads that are maximally inform-
ative. Informative pairs are those that allow us to ‘read out’ pairs of
unitigs that belong to the same latent path. We specifically choose to
insert heads because during the offline stage when disentanglement
takes place, adjacencies between each unitig starting at an edge to a
head and the unitig starting at the edge from the junction to its tail
of are known and accessible via pointers to their sequences.
Therefore, extension pairs capturing information of direct adjacen-
cies provide no new information. The closest indirect adjacency that
may be informative when captured from a read is that between two

H [S4 5, 5]
Ns, 54l
[

Contig

ContigNode \

Collapsed ‘
ContigNode |

| —
L
P o

Junction Pair

Fig. 2. Disentanglement. (A) A tangle characterized by two opposite facing
junctions j; and j,, each with out-degree 2. (B) Junction pairs linking exten-
sions on s, with s; and s, with s4. Since no pairs link extensions on s, with sy
or s, with s, only one orientation is supported. (C) the result of disentangle-
ment: paths [s,,s,s.] and [s,s,54] are each merged into individual sequences,
and junctions j; and j, are removed from M

junctions that either face in the same direction, or when the first
faces back and the second faces forward, as shown in Figure 3A.
Thus, when there are only two junctions on a read, their pair of
heads is inserted as long as the two junctions are not facing each
other. When there are at least three junctions on a read, every other
junction out of every consecutive triplet is paired, as shown for a sin-
gle triplet in Figure 3B. This figure demonstrates that selecting every
other head is preferable to selecting consecutive heads out of a trip-
let. This type of insertion is executed in Lines 1-6 of Algorithm 3
and ensures all unitigs flanking some triplet are potentially inferable.
For reads having more than three junctions, applying the triplet rule
for every consecutive window of size 3 similarly allows for all uni-
tigs on the read to be included in some hashed pair.

Algorithm 3. recordPairs(r, juncs, B3)

Input: read r, juncs—a list of pairs (j, p), where p is the start
position of junction j in 7, and Bloom filter B3. We also make
use of a subroutine gerOutExt(j;,p,,r) that for a junction j; re-
turns pref(ji,k — 1) r[pi — k| if j; is a back junction, and
suff (ji,k — 1)« r[p; + k] otherwise.
Output: Bloom filter B3, loaded with select linked k-mer pairs
1: if len(juncs) > 2 then
2:  for i€ [0,len(juncs) — 2] do
3: back — getOutExt(j;, p;,r)
4: front — getOutExt(ji 2, piv2,7)
S: insert(back- front,B3) > insert the concatenation into Bj
6: else if (len(juncs) = 2) A (—(jo is a forward junction A

j1 is a back junction)) then
7:  back — getOutExt(jo, po,7)
8: front — getOutExt(j1,p1,7)
9:  insert(back - front, B3)
10: return B;

3.3 Offline graph simplification and cleaning

Given B,, B3, By and M resulting from the online stage, the com-
pacted de Bruijn graph is generated by traversing each forward ex-
tension out of every special k-mer, as well as traversing backwards
in the reverse complement direction when the node has not been
reached before by a traversal starting from another node. This is
done by querying B, for extensions and continuing until the next
special node is reached. During each such traversal from special
node u to special node v, a unitig sequence s,,, is constructed. s, is
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Fig. 3. Rationale for B; insertions. Narrow blue arrows indicate unitigs observed on a read, green circles are junctions and thick arrows are junction heads.
Among red arrows, solids are those inserted to Bs. For simplicity, we provide a direction to each arrow. The opposite direction is equally valid, hence in this view
heads can also enter a junction and not only exit from it. In each case, a pair of red heads is inserted from a read. They will be inserted if they provide additional
information to infer a path on the graph. Black lines indicate a subset of possible paths; out of these the solid path is that observed on a read. (A) Two junctions
observed on a read. |, IIl: The two heads together imply the solid paths and rule out alternatives, so the pair is inserted to B3. Ill: The two heads lie on the ends of
the same unitig and thus add no information. (B) Three junctions observed on a read, comparing insertions of consecutive heads against non-consecutive heads.
Four possible arrangements are shown; there are four more that are symmetrical reflections and are not shown to save space. In each case, we compare the uni-
tigs covered (i.e. either having a head on them or being a sole extension at a junctionve heads against non-consecconsecutive (top) and non-consecutive (bottom)
junctions are chosen. Note that in Cases I-lll the right-most unitig is not covered under consecutive heads

initialized to the sequence of #, and a base is added at each extension
until v is reached.

New data structures are constructed in the course of traversals in
order to aid later queries and updates. A ContigNode structure is
used to represent a junction that points to Contigs. ContigNodes are
structures possessing a pointer to a Contig at each forward exten-
sion, as well as one backwards pointer. This backwards pointer con-
nects the junction to the sequence beginning with the reverse
complement of the junction’s k-mer. Contigs initially store unitig se-
quences, but these may later be concatenated or duplicated. They
also point to one ContigNode at each end. To efficiently query
Contigs and ContigNodes, a new hashmap M’ is constructed having
junction k-mers as keys, and ContigNodes that represent those junc-
tions as values. Isolated contigs formed by unitigs that extend be-
tween terminal nodes are stored in a separate set data structure.

Once the raw graph is obtained, cleaning steps commence, incor-
porating tip removal, chimera removal, collapsing of bulges, and
disentanglement. Coverage information and paired-junction links
are crucial to these steps. Briefly, tip removal involves deletion of
Contigs shorter than the input read length that lead to a terminal
node. Chimera and bulge removal steps involve heuristics designed
to remove low coverage Contigs when a more credible alternative
(higher coverage, or involved in more sub-paths) is identified. These
first three steps proceed as described in (Bankevich ef al., 2012),
thus we omit their full description here.

Disentanglement relies on paired junction links inserted into B3
and B4. We iterate through the set of ContigNodes to look for ‘tan-
gles’—pairs of opposite-facing junctions joined by a repeat se-
quence—as shown in Figure 2. Tangles are characterized by tuples
(71,/2,8) where j; is a back junction, j, is a forward junction (or vice-
versa), and there is a common Contig s pointed to by the back
pointers of both j; and j,. Junctions j; and j, each have at least two
outward extensions. We restrict cleaning to tangles having exactly
two extensions at each end. Let s, and s, be the Contigs starting at
heads of j;, and s, and s be the Contigs starting at heads of j,. By
disentangling, we seek to pair extensions at each side of s to form
two paths. The possible outputs are paths [s,,s,s.] together with
[S15S,S4] OF [54,5,84] together with [sp,s,s.].

Thus, each such pair straddling the tangle—e.g. having one head
on s, and the other on s—lends some support to the hypothesis that
the correct split is that which pairs the two. To decide between the
two possible split orientations, we count the number of pairs sup-
porting each by querying B; or By for all possible junction pairings
that are separated by a characteristic length associated with the pairs
inserted to each. For example, B3 stores heads out of non-consecutive
junction pairs on the same read. Therefore, for each junction on s,
we count each pairing accepted by B3 with a junction on s, that is at
most one read length away. Specifically for B3, we also know that in-
serted pairs are always one or two junctions away from the starting
junction, based on the scheme presented in Figure 3. To decide when
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a tangle should be split, we apply XOR logic to arrive at a decision:
if the count of pairs supporting both paths in one orientation is > 0,
and the count of both paths in the other orientation is 0, we disentan-
gle according to the first, as shown in Figure 2. Similar yet more
involved reasoning is used for junction links in By, using the insert
size between read pairs (see Supplementary Appendix). Once we ar-
rive at a decision, we add a new sequence to the set of Contigs that is
the concatenation of the sequences involved in the original paths. We
note one of the consequences of this simplification step is that the
graph no longer represents a de Bruijn graph, in that each k-mer is no
longer guaranteed to appear at most once in the graph. Furthermore,
the XOR case presented is the most frequently applied form of disen-
tanglement out of a few alternatives. We discuss these alternatives in
the Supplementary Appendix.

3.4 Optimizations and technical details

Here we discuss some details omitted from the above descriptions
for the sake of completeness. Based on the description of Algorithms
1 and 2, it is possible that false positive extensions out of terminal
nodes will ensue. This is possible because the mechanism described
for removing false positive junctions can differentiate between one
or multiple extensions existing in G for a given node, but cannot dif-
ferentiate between one or none. This may lead to assembly errors at
sink nodes.

To overcome such effects, we store distances between junctions
seen on the same read with the distance recorded being assigned to
the extension of each junction observed on the read. When an outer-
most junction on a read has not been previously linked to another
junction, we record its distance from the nearest read end—this sol-
ves the problem mentioned previously as long as paths to sinks are
shorter than read length. To obtain accurate measurements of dis-
tances on longer non-branching paths, we also introduce artificial
‘dummy’ junctions whenever a pre-defined length threshold is sur-
passed. In effect, this means that reads with no real junctions are as-
signed dummy junctions.

Once distances and dummy junctions are introduced, an add-
itional benefit is gained: the speed of the read-scan can be improved
by skipping between junctions that have been seen before. Once dis-
tances are known, if we see a particular extension out of a junction,
and then a sequence of length ¢ without any junctions, then, wher-
ever else we see that junction and extension, it must be followed by
the exact same ¢ next bases. Otherwise, there would be a junction
earlier. So we store ¢ when we see it, and skip subsequent
occurrences.

Finally, we note that Faucet can benefit from precise Bloom filter
sizing. When a good estimate of dataset parameters is known, the al-
gorithm can do the two-pass process above. Otherwise, to determine
the numbers of distinct k-mers and the number of singletons in the
dataset in a streaming manner, we have used the tool ntCard
(Mohamadi et al., 2017). This requires an additional pass over the
reads (for a total of three passes). The added pass does not increase
RAM or disk use. In fact, in tests on locally stored data, we found it
only adds negligible time.

4 Results

4.1 Assembling while downloading

As a demonstration of streaming assembly, we ran Faucet on pub-
licly available human data, SRR034939, used for benchmarking in
(Chikhi and Rizk, 2012). To assess resource use at different data
volumes, we ran Faucet on 10, 20 and 37 paired-end files out of 37

total. Streaming was enabled using standard Linux command line
tools: wget was used for commencing a download from a supplied
URL, and streamed reading from the compressed data was enabled
by the bzip2 utility. Downloads were initiated separately for each
run. The streaming results are shown in Table 1.

We emphasize that Faucet required less space than the size of the
input data in order to assemble it, while most assemblers generate files
during the course of their processing that are larger than the input
data. Also, the ratio of input data to disk used by Faucet decreased as
data volume increased, reflecting the tendency of sequences to be seen
repeatedly with high coverage. We also note that Faucet’s outputs ef-
fectively create a lossy compression of the read data, in that the choice
of k value inherently creates some ambiguity for read substrings larger
than k. This compression format is also queryable, in that given a
k-mer in the graph, its extensions can be found: indeed, this is the
basis of Faucet’s graph construction and cleaning.

4.2 Disentanglement assessment

To gauge the benefits of disentanglement on assembly quality, we
compared Faucet’s outputs with and without each of short- and
long-range pairing information, provided by Bloom filters B3 and
B4, on SYN 64—a synthetic metagenome produced to provide a
dataset for which the ground truth is known comprised of 64 species
(dataset sizes and additional characteristics are provided in the
Supplementary Appendix). The results of this assessment are pre-
sented in Table 2. We measured assembly contiguity by the NGA50
measure. NG50 is defined as ‘the contig length such that using equal
or longer length contigs produces x% of the length of the reference
genome, rather than x% of the assembly length’ in (Gurevich et al.,
2013). NGASO is an adjustment of the NG50 measure designed to
penalize contigs composed of misassembled parts by breaking con-
tigs into aligned blocks after alignment to the reference. We found
that disentanglement more than doubled contiguity measured by
mean NGAS50 values, with greater gains as more kinds of disentan-
glement were enabled. This was also reflected by corresponding
gains in the genome fractions, and in the number of species for
which at least 50% of the genome was aligned to, allowing NGAS50
scores to be reported. More applications of disentanglement also
increased the number of misassemblies reported and the duplication
ratio; however, two-thirds of the maximum misassembly count is al-
ready seen without any disentanglement applied.

Table 1. Resource use and data compression observed as data vol-
ume increases

No. of Time (h) RAM Disk Data Comp.
files (GB) (GB) size (GB) ratio
10 26.3 48.3 19.0 29.6 0.64
20 47.7 84.3 34.3 59.2 0.58
37 98.2 144.7 50.0 108.4 0.46

Table 2. The effect of increasing levels of disentanglement on con-
tiguity and accuracy

Measure No disent. Bz only Bjonly both B3, B4
Genome fraction (%) 76.4 79.9 80.3 82.3
Dup. ratio 1.00 1.01 1.02 1.02
Mean NGAS0 13048 21703 26356 29066
Misassemblies 388 480 521 572
Species reported 54 56 56 56




Faucet

4.3 Tools comparison

We sought to assess Faucet’s effectiveness in assembling metage-
nomes, and its resource efficiency. For the former, we compared
Faucet to MetaSPAdes (Nurk et al., 2017) and Megahit (Li et al.,
2014), state of the art metagenome assemblers in terms of contiguity
and accuracy that require substantial resources. To address resource
efficiency, we also compared Faucet to two leading resource efficient
assemblers, Minia 3 (Beta) (Chikhi and Rizk, 2012) and
LightAssembler (El-Metwally ez al., 2016). We note these last two
were not designed as metagenome assemblers, but they perform oper-
ations similar to what Faucet does—both in the course of their graph
construction steps, and in their cleaning steps. They differ from
Faucet in that neither is capable of disentanglement, as they do not
utilize paired-end information, but counter this advantage with more
sophisticated traversal schemes. All tools were run on two metage-
nome datasets—SYN64 and HMP—a female tongue dorsum sample
sequenced as part of the Human Microbiome Project. Both datasets
were used for testing in (Nurk ez al., 2017). To achieve a fair compari-
son, runs were performed with a single thread on the same machine,
as Faucet does not currently support multi-threaded execution. Full
details of the comparison, including versions, parameters, and data
accessions, are presented in the Supplementary Appendix.

Table 3 presents the full results for the tools comparison. There
was a strong advantage to Megahit and MetaSPAdes over the three
lightweight assemblers (Minia, LightAssembler, and Faucet) in
terms of contiguity achieved (shown by NGASO statistics), but this
came at a large cost in terms of memory, disk space, and time, par-
ticularly in the case of MetaSPAdes. Among the lightweight assem-
blers, Minia used by far the most disk space, and differences in other
resource measures were less pronounced. Among these three, Faucet
had a large advantage in NGAS50 statistics relative to the other two.
This is highlighted by the trend of Table 3, and shown by its 14—
110% advantage in the mean of NGASO relative to Minia, and 2- to
11-fold advantage relative to LightAssembler.

5 Discussion

Streaming de novo assembly presents an opportunity to significantly
ease some of the burdens introduced by the recent deluge of second
generation sequencing data. We posit the main applications of
streaming assembly will be de novo assembly of very large individ-
ual datasets (e.g. metagenomes from highly diverse environments)

Table 3. Tool comparison on two metagenomes

and re-assembly of pangenomes derived from many samples. In both
cases, very large volumes of data must be digested in order to ad-
dress the relevant biological questions behind these assays.
Therefore, streaming graph assembly presents an attractive alterna-
tive to data compression: instead of attempting to reduce the size of
data, the aim is to keep locally only relevant information in a man-
ner that is queryable and that allows for future re-analysis.

Here, we have demonstrated a mechanism for performing
streaming graph assembly and described some of its characteristics.
First, we showed that assembly can be achieved without ever storing
raw reads locally. By assembling the graph, an intermediate
by-product of many assemblers, we show this technique is generally
applicable. By refining the graph and showing better assembly con-
tiguity than competing resource efficient tools on metagenome as-
sembly, we showed this method can also be applied in the setting
when sensitive recovery of rare sequences is crucial.

In future work, we aim to expand the capabilities of Faucet in a
number of ways. Multi-threaded processing will reduce run times and
make the tool more applicable to large data volumes. We believe fur-
ther refinements of cleaning and contig generation can be achieved by
adopting a statistical approach to making assembly decisions. In add-
ition, beyond graph cleaning, we aim to apply Faucet’s data structures
to path generation, as done with paired end reads in (Nihalani and
Aluru, 2016; Prjibelski et al., 2014; Shi et al., 2017). Both have the
potential to greatly improve contiguity and accuracy.

Beyond this, this work raises several remaining challenges per-
taining to what one may expect of streaming assembly. For instance,
it is immediately appealing to ask if streaming assembly can be
achieved with a just a single pass on the reads, and if so, what inher-
ent limitations exist. In Song et al. (2014), a simple solution is pro-
posed wherein the first 1 M reads are processed to provide a
succinct summary for the rest, but such an approach is more suited
to high coverage or low entropy data, and thus unlikely to perform
well on diverse metagenomes or when rare events are of particular
interest. Another issue raised by the performance comparison herein
is that of capturing the added value that iterative (multi-k value)
graph generation provides. We have given a partial solution by cap-
turing subsets of junction pairs within each read, and between mates
of paired-end reads. Although it is possible to iteratively refine the
graph with more passes on the reads, each time for the collection of
k-mers at different lengths, this becomes unwieldy with large data
volumes. Identifying the contexts for which such information would

SYN64 HMP
Measure Metaspades Megahit  LightAssembler ~Minia  Faucet Metaspades Megahit LightAssembler ~Minia  Faucet
Genome fraction (%) 89.1 90.1 75.6 76.5 82.3 46.9 48.6 23.4 27.8 27.9
Duplication ratio 1.02 1.02 1.01 1.00 1.02 1.05 1.12 1.02 1.01 1.05
Mean NGAS50 (kb) 167 99.0 2.60 14.6 30.7 28.3 36.8 3.18 6.25 7.12
Median NGASO0 (kb) 71.1 57.6 2.30 10.5 23.7 28.3 36.8 3.18 6.25 7.12
Misassemblies 785 949 314 395 572 504 602 100 184 202
Species reported 59 61 55 52 56 12 12 5 3 6
Time (h) 41.2 10.9 1.63 0.97 2.61 30.5 13.0 3.35 0.99 2.30
Memory (GB) 26 9.1 2.7 4.8 6.0 14 8.3 3.4 3.7 7.3
Disk (GB) 43.1 14.3 1.84 28.2 1.59 53.2 11.5 1.30 23.5 1.61

Top values in each cell are for SYN 64 data, and bottom values are for HMP. Duplication ratio is the ratio between the total aligned length to the combined

length of all references aligned to. The mean and median NGAS50 values are calculated on based on species sufficiently covered by all assemblers to yield an

NGASO0 value (i.e. 50% of the genome is covered). Species reported are those for which an NGASO value is reported. In the HMP data, only two species were re-

ported for all, making the mean and median NGAS50 values equal. Disk and memory use are those reported by the Linux time utility, and Disk use is the total

amount written to disk during the course of a run.
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be useful in the graph and indexing the reads to allow for querying
of such contexts may provide more efficient means of extracting
such information.
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Chapter 5
Discussion

In this thesis, we described our work aiming to improve efficiency and scalability of
deep sequencing data analysis. We first introduced a new compression algorithm,
BARCODE, that allows compression of read sequences relative to a reference much
faster than previous approaches. Then, we introduced a new application of de
Bruijn assembly graphs for plasmid assembly: the Recycler algorithm generates
cycles on the graph, and selects those likely to be plasmids among them. Finally, we
introduced Faucet, a new de novo assembler incorporating highly efficient streaming
graph construction. In each case, we compared our implementations with a variety
of extant methods and showed significant improvements. All algorithms described

in this thesis were implemented and made freely available.

In this chapter, we first summarize the methods described in this thesis before
characterizing possible extensions of them. Then, we provide broader perspective
on the effect likely (based on current trends) technological advances will have on

sequence analysis and methods that will be needed to enable it.

5.1 Compressing read sequences

As mentioned in the introduction, short read compression tools are divided into
reference-based and reference-free methods. BARCODE, the compression algorithm
introduced in Chapter 2, falls between these two camps in that it relies on a refer-
ence but eliminates much of the computational burden needed to compress against a

reference. Typically, reference based methods require alignment against a reference
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in order for reads to be encoded as reference positions along with differences from
the reference observed on the read. BARCODE circumvents the need for this align-
ment step by hashing reads into Bloom filters. BARCODE also avoids the inherent
limitations of Bloom filters by carefully accounting for and compressing repetitions
of reads, and reads that do not exactly match the reference sequence. This is made
possible by employing a trick previously used in de novo assembly [77] - anticipat-
ing the set of queries that will be made on a Bloom filter for some static set, and

recording the set of false positives to later avoid them.

BARCODE was demonstrated to compress much faster than reference based
methods, and achieve better compression ratios than reference-free methods. This
is made possible via optimizing the use of Bloom filters to encode both reads match-
ing the reference and false positives efficiently. Further such optimization may be
possible, i.e., encoding read multiplicities or avoiding false positive reads by insert-
ing them to additional Bloom filters. However, these optimizations must be weighed
against the costs they introduce: additional insertions introduce a penalty in run
time, and filtering false positives by checking for multiple insertions may increase

the quantity of false negatives that must be encoded.

5.2 Assembling plasmids

Plasmids are responsible for horizontal gene transfer between microbes and can con-
fer advantages to microbes in specific environments [88]. They have been implicated
in conferring resistance to antibiotics [89], leading to heightened interest in their
study. Up until recently, assembly of plasmids was limited to checking for signs of
circularity among contigs output by available assemblers [90], or identifying plasmid
contigs by the presence of genes matching plasmid annotation [91]. The Recycler
algorithm described in Chapter 3 introduced a simple but much more effective ap-
proach: Recycler identifies cycles that belong to plasmids in the assembly graph
output by off-the-shelf assemblers.

We initially tested an ILP formulation aimed to assign coverage levels to candi-
date cycles with the objective being to minimize the sum of differences relative to
observed coverage levels of all contigs. Naturally, we found this approach sensitive
to choice of candidate cycle set. Also, this approach is more apt for plasmidome

samples, but less so for metagenome and isolate samples, where the majority of
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contigs usually are not plasmid origin. These issues were partially involved in our
moving to a 'progressive’ peeling approach. Using minimal weight cycles provides a

simple cycle proposal mechanism and was applicable on all desired data types.

Recycler begins by generating a set of candidate cycles for each connected com-
ponent in the graph. It then selects among all candidates by ranking candidates
according to the variance in coverage of contigs in the cycle relative to the mean of
their coverage. Recycler was shown to be more sensitive and precise than competing
methods, based on assessments via simulated and real data. Furthermore, among

predicted plasmids tested via PCR, nearly 90% were validated.

5.3 Streaming assembly

Similar to BARCODE in Chapter 2, Faucet is designed to bridge a gap between two
classes of tools. In this case, Faucet is designed to be highly resource efficient while
assembling much better than extant resource-frugal approaches by using informa-
tion typically limited to more heavy-weight assemblers. The main novelty of Faucet
is its streaming approach to graph construction that allows this additional informa-
tion to be captured and efficiently encoded. We showed this streaming approach
effectively compresses input data, and that this compression becomes more efficient
as read coverage increases. The graph encoding Faucet constructs is queryable for
the sake of assembly, introducing a new means of queryable compression that may
find additional applications. In comparison with extant methods, Faucet generated
much more contiguous assemblies than the lightweight assemblers minia [77] and
Light Assembler [92], while being faster and memory efficient than the best available
metagenome assemblers, metaSPAdes [93] and MegaHit [94]. Faucet was shown to
be comparable in terms of disk use to the only other streaming assembler, Ligh-

tAssembler [92], but achieved much higher contiguity of assemblies.

While Faucet is more efficient than MegaHit and MetaSPAdes in resource use,
these assemblers generate larger contigs. As mentioned in the discussion of Chapter
4, we believe further refinements of cleaning and contig generation can be achieved by
adopting a statistical approach to making assembly decisions. In addition, beyond
graph cleaning, we aim to apply Faucet’s data structures to path generation, as done
with paired end reads in [95, 96, 97]. Both have the potential to greatly improve

contiguity and accuracy.
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5.4 Future research and developments

The landscape of sequencing is changing rapidly, with emergence of new technologies
leading to sudden tectonic shifts. Although the time frame is difficult to predict, it
is likely that sequencers will eventually be 'chromosome readers’ - sequencing full
length DNA molecules with very high accuracy at negligible cost. This will change
the emphasis of future analysis tasks from de novo assembly to identification by
alignment, but a long road of development needs to be traversed in order to enable
this change. We describe immediate first steps motivated by the work in this thesis,

and a broader discussion of current and future developments.

5.4.1 Storage of read data

Given sequence growth trends, it will be essential to move from storage of read data
to maximally informative, minimally redundant representations of sequences. Ide-
ally, these would be full representations of source molecules, such as full haplotypes
of human chromosomes or full microbial genomes without gaps or errors. Variation
graphs will be needed to non-redundantly encode sequences of related entities or
those from the same population [45]. Such graphs will serve as a bridge between the
current length limitations and biases of short reads and the high error rates of long

reads to leverage the advantages of each until both are improved.

Currently, no methods that we know of have been proposed for compression of
single molecule reads. This is likely due to the fact that these reads are inher-
ently harder to compress because of their high error rate, and that one of the most
efficient lossy compressions of them is their assembly. The process of assembly re-
quires removal of likely errors and thus eliminates most features that are resistant to
compression. Also, the assembled result is much more useful for downstream anal-
ysis, as long as little information present in the reads is lost. Recent methods have
evolved to retain nearly all implied path information present in individual short
reads [98, 99|, including Chapter 4 of this thesis. However, currently no scalable

solution for retaining full paired end information is known.

Along with retention of information salient for downstream applications, enabling
efficient querying of large sequence databases will prove essential. Recent studies

that focused on this have greatly increased the scale of data that may be analyzed



5.4. FUTURE RESEARCH AND DEVELOPMENTS 53

simultaneously; more progress will be essential to enable analysis of data corpora,

even when they are publicly available [18, 20, 19].

5.4.2 Optimizing construction and refinement of assembly

graphs

Assembly graph construction algorithms will need to continue to advance in order
to keep pace with data production. Until databases are complete enough to allow
identification of most sequenced fragments via alignment against them, there will
be a drive to fill in gaps in the tree of life via environmental sequencing, as has
been recently seen for viruses [100] and soil bacteria [101], and to fully characterize
variation inside populations. Once such studies become prevalent, graph construc-
tion will need to be done on streamed data, and graphs will need to be stored in a

manner that allows them to be dynamically updated.

To enhance scalability, a parallelized single pass streaming approach would be
attractive for coping with very large metagenome or population graphs. If the k-mer
loading and junction labeling steps of Faucet are combined, a single pass approach
can be obtained, but it remains to be seen what limitations this imposes on graph
construction in terms of accuracy and contiguity that can be achieved. Currently,
both parallelized and single pass processing introduce challenges in discovery of

junctions.

An alternative to streaming data is partitioning it and processing it in a dis-
tributed fashion. In this way, memory use at each node is kept manageable, and
run times are reduced. Various modes of parallelization have been tested for de
Bruijn graph assembly, such as distribution to thousands of cores on supercom-
puters [102, 103], and distribution to a cluster under the MapReduce framework,
implemented in Spark [104]. Since the latter technology is more readily available
and allows leveraging cloud infrastructure to access more nodes as needed, it has
greater potential for wide adoption. Unfortunately, the implementation described

in [104] is not publicly available.
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5.4.3 New means of assembly graph simplification, repeat

resolution

Until perfect complete molecule sequencing is achieved, algorithms for assembly
graph simplification will be needed in order to resolve repeats and differentiate
between errors and true variants. Work has been done on defining the information-
theoretic thresholds on sequence lengths and error rates at which full genome re-
construction becomes achievable [105, 106]. Recent extensions of this work by some
of the same authors apply similar analysis to defining resolution limits when data
is not sufficient for perfect recovery [107] and when coverage information may be
essential to separate between molecules sharing a repeat, such as in metagenome or

transcript assembly [108].

Such studies inform algorithm development and experimental design. While long
reads have made complete bacterial genomes routinely achievable, this has yet to
be the case for larger-scale applications. For metagenome assembly, it is possible
that much greater coverage than has been employed thus far is needed for complete
recovery. One of the implications of this being the case would be that more than a

Th of data would be needed in order to fully sequence highly diverse metagenomes.

For plasmid assembly, integration of long reads has proven very useful in recovery
of isolate genome plasmids. However, as both plasmidSPAdes and Recycler rely on
coverage information to identify likely plasmids, it is likely that the combination of
short reads providing a coverage signal and long reads allowing bridging of repeats
will prove most useful, particularly in recovery of plasmids out of metagenomes.
Further improvements in Recycler’s processing may be achieved by refinement of the
candidate cycle generation procedure to allow longer cycles, bootstrapping the choice
of cycles peeled to allow greater sensitivity, and implementation of dynamic updates
on shortest path calculations to improve efficiency and scalability. An interesting
application of plasmid assembly may be refinement of metagenome assemblies: each
time cycles due to plasmids are peeled off of a metagenome assembly graph, the
graph is simplified, leading to longer contigs and simplified graph structure, as long

as true plasmids are identified.
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