
Sackler Faculty of Exact Sciences, School of Computer Science

Graph Modification Problems

and their Applications to

Genomic Research

THESIS SUBMITTED FOR THE DEGREE OF

“DOCTOR OF PHILOSOPHY”

by

Roded Sharan

The work on this thesis has been carried out

under the supervision of Prof. Ron Shamir

Submitted to the Senate of Tel-Aviv University

August 2002

2

Acknowledgments

This thesis summarizes a significant period of my life dedicated to study and re-

search. I would not have succeeded without the unconditional love and support of

my wife Michal, who shared the good and bad moments with me; nor without the

encouragement of my parents who have given me their strength and wisdom. The

thesis is also dedicated to my brothers, Arbel and Eytam, and my grandparents who

motivated and encouraged me in every step.

I deeply thank my advisor Ron Shamir who has been my guide and mentor for

these past six years, and taught me all my research skills. Ron, you have been a

source of inspiration both academically and personally.

I am in great debt to all my research mates in the lab whose company made

this period so much fun: Itsik Pe’er who shared with me these wonderful years right

from the beginning, and whom I admire for his friendship and bright ideas; Rani

Elkon who gave me so much of his knowledge in biology; Amos Tanay with whom I

worked closely in the last year, a skilled programmer and a great partner for coffee;

Tzvika Hartman who has a wonderful approach to science; Chaim Linhart; Dekel

Tsur; and Irit Gat-Viks who was always full of knowledge and ideas. I also thank

Naama Arbili, Adi Maron-Katz, Erez Hartuv and Deepak Ajwani who helped me

in different stages of developing CLICK and EXPANDER and were great to work

with.

I am thankful to all my collaborators: Pavol Hell who inspired me in many

ways and drove me to new horizons in graph theory; Yossi Shiloh who led me

in the fascinating research on Ataxia-Telangiectasia; Dan Graur; Doron Lancet;

Mike Fellows; Valerie King who introduced me the magical world of dynamic graph

algorithms; Amir Ben-Dor; Zohar Yakhini who taught me a lot on how to ask

the right questions; Tal Pupko who shared with me his knowledge on molecular

3

4

evolution; Hans Lehrach; Michael Gurevitz; Dalia Gordon; and Haim Kaplan. I

thank Ralf Herwig, Golan Yona, Antje Krause, Pablo Tamayo and Michael Eisen

who helped me with their advice and data.

Finally, I would like to thank the foundations that funded my work. I deeply

thank the Ministry of Science, Israel for granting me an Eshkol fellowship throughout

my studies. I thank the Gutwirth foundation for supporting me at the beginning of

my Ph.D.; the School of Computer Science and the Maus family for awarding me

prizes on my research; and the Deutsch foundation for travel support.

Abstract

Edge modification problems call for making small changes to the edge set of an

input graph in order to obtain a graph with a desired property. These problems

play an important role in computer science and have applications in several fields,

including molecular biology. In many application areas a graph is used to model

experimental data, and then edge modifications correspond to correcting errors in

the data: Adding an edge corrects a false negative error, and deleting an edge

corrects a false positive error.

This thesis deals with theoretical and practical modification problems. We first

study the complexity and approximability of edge modification problems on some

structured classes of graphs. We show that most of the studied problems are compu-

tationally hard, but some have efficient solutions when restricting the degrees in the

input graph. We then give a polynomial approximation algorithm for the classical

minimum fill-in problem which has applications in numerical algebra. We provide

fast algorithms for recognizing certain properties on dynamically changing graphs,

with applications to physical mapping of DNA. We study a graph sandwich problem

arising in phylogeny reconstruction and devise an efficient algorithm for it. Finally,

we develop a new clustering algorithm which combines probabilistic and graph the-

oretic reasoning. The algorithm was implemented and we report on its successful

application in a variety of gene expression experiments as well as other biological

problems.

5

6

Contents

1 Introduction 13

1.1 Motivation and Background . 13

1.2 Summary of Results . 18

1.3 Preliminaries . 22

1.3.1 Definitions . 22

1.3.2 Graph Classes . 23

2 Complexity Analysis 25

2.1 Introduction . 25

2.2 Basic Results . 27

2.3 NP-Hard Modification Problems . 29

2.3.1 Chain Graphs . 29

2.3.2 Chordal Graphs . 30

2.3.3 AT-Free Graphs . 31

2.3.4 Cluster Graphs . 33

2.3.5 A General NP-Hardness Result 36

2.4 Polynomial Algorithms . 38

2.4.1 2-Cluster Deletion . 38

2.4.2 Bounded Degree Graphs . 39

2.5 Approximating 2-Cluster Editing . 40

7

8 CONTENTS

2.6 Inapproximability Results . 41

3 Approximating the Minimum Fill-In 45

3.1 Introduction . 45

3.2 Preliminaries . 48

3.3 Improvements to the Partition Algorithm 51

3.4 The Approximation Algorithm . 53

3.5 Bounded Degree Graphs . 55

3.6 Reducing the Kernel Size . 56

3.7 An Approximation Algorithm for Chain Completion 61

4 Dynamic Recognition Algorithms 63

4.1 Background . 64

4.2 Proper Interval Graph Recognition 65

4.2.1 Introduction . 65

4.2.2 Preliminaries . 67

4.2.3 The Data Structure . 69

4.2.4 A Vertex-Incremental Algorithm 71

4.2.5 An Edge-Incremental Algorithm 77

4.2.6 A Fully Dynamic Algorithm 80

4.2.7 Maintaining the Connected Components 84

4.2.8 The Lower Bounds . 85

4.3 Cograph Recognition . 88

4.3.1 Introduction . 88

4.3.2 Preliminaries . 89

4.3.3 A Reduction . 90

4.3.4 Cographs . 90

4.3.5 Threshold Graphs . 96

CONTENTS 9

4.3.6 Trivially Perfect Graphs . 97

5 Incomplete Directed Perfect Phylogeny 101

5.1 Introduction . 102

5.2 Preliminaries . 106

5.3 Characterizations of Explainable Binary Matrices 108

5.3.1 Forbidden Subgraph Characterization 108

5.3.2 Forbidden Submatrix Characterizations 110

5.4 Algorithms for Solving IDP . 112

5.4.1 Algorithm A . 113

5.4.2 Algorithm B . 117

5.4.3 Greedy Approach Fails . 119

5.5 Determining the Generality of the Solution 119

5.6 An Application to Biological Data . 127

6 Clustering Gene Expression Data 129

6.1 Introduction . 130

6.2 Biological Background . 131

6.2.1 cDNA Microarrays . 132

6.2.2 Oligonucleotide Microarrays 132

6.2.3 Oligonucleotide Fingerprinting 133

6.3 Mathematical Formulations and Background 134

6.3.1 Assessment of Solutions . 136

6.4 Approaches to Clustering . 138

6.4.1 Hierarchical Clustering . 139

6.4.2 K-Means . 140

6.4.3 HCS . 141

6.4.4 CAST . 143

10 CONTENTS

6.4.5 Self Organizing Maps . 143

6.5 The CLICK Clustering Algorithm . 145

6.5.1 The Probabilistic Framework 146

6.5.2 The Basic CLICK Algorithm 148

6.5.3 Computing a Minimum Cut 151

6.5.4 The Full Algorithm . 152

6.5.5 Handling Large and Partial Datasets 155

6.5.6 Fingerprint Data Enhancements 157

6.5.7 Implementation and Simulation Results 158

6.5.8 Limitations of CLICK . 159

6.6 Applications to Biological Data . 163

6.6.1 Gene Expression . 163

6.6.2 cDNA oligo-fingerprints . 165

6.6.3 Protein Classes . 167

6.6.4 A Blind Test . 169

6.7 Application to Ataxia-Telangiectasia 170

6.7.1 The Ataxia-Telangiectasia Disease 170

6.7.2 Experimental Design and Data Preprocessing 172

6.7.3 Tissue Clustering . 172

6.7.4 Gene Clustering . 173

6.7.5 Discussion . 176

6.8 Identifying Regulatory Motifs . 177

6.9 Tissue classification . 179

6.10 The EXPANDER Clustering and Visualization Tool 184

6.10.1 Clustering Methods . 184

6.10.2 Matrix Visualizations . 184

6.10.3 Clustering Visualizations . 186

CONTENTS 11

6.10.4 Functional Enrichment . 187

12 CONTENTS

Chapter 1

Introduction

In this chapter we introduce graph modification problems, and provide background

on previous studies on such problems. We summarize the results of the thesis, and

close with preliminaries and basic definitions on graph theoretic notions.

1.1 Motivation and Background

Edge modification problems on graphs play an important role in computer science

and have applications in several fields, including molecular biology. This thesis

consists of two main parts: The first, theoretical part studies the complexity and

approximability of edge modification problems. The second, applied part highlights

the applications of such problems to genomic research.

Problem definition: Edge modification problems call for making small changes

to the edge set of an input graph in order to obtain a graph with a desired property.

They include completion, deletion and editing problems. Let Π be a graph property.

In the Π-Editing problem the input is a graph G = (V, E), and the goal is to find a

minimum set F ⊂ V ×V such that G′ = (V, E�F) satisfies Π, where E�F denotes

the symmetric difference between E and F , i.e., E�F ≡ (E \ F) ∪ (F \ E). In the

Π-Deletion problem only edge deletions are permitted, i.e., F ⊆ E. The problem

is equivalent to finding a maximum subgraph of G with property Π. In the Π-

Completion problem one is only allowed to add edges, i.e., F ∩E = ∅. Equivalently,

we seek a minimum supergraph of G with property Π.

13

14 CHAPTER 1. INTRODUCTION

Motivation: Graph modification problems are fundamental in graph theory.

Already in 1979, Garey and Johnson mentioned 18 different types of vertex and

edge modification problems [69, Section A1.2]. Edge modification problems have

applications in several fields, including molecular biology and numerical algebra.

In many application areas a graph is used to model experimental data, and then

edge modifications correspond to correcting errors in the data: Adding an edge

corrects a false negative error, and deleting an edge corrects a false positive error.

We summarize below some of these applications. Definitions of the graph classes

are given in Section 1.3.

Interval modification problems have important applications in physical mapping

of DNA (see [22, 33, 80, 84]). Since direct sequencing of large DNA molecules is

currently infeasible, they are first cut into smaller fragments. In this process the

order of the fragments is lost, and a major problem is to reconstruct it. One way

to reconstruct the order is to test for any two fragments whether they overlap, and

use this information for deducing the fragments’ order. One can model the resulting

problem as follows: Construct a graph G whose vertices correspond to fragments and

there is an edge between two vertices if and only if their corresponding fragments

overlap. Ideally, G would be an interval graph and the reconstruction problem

would translate into that of finding a realization for G. However, experimental data

is error-prone and, hence, G is only close to being an interval graph. Depending on

the technology used and the kind of experimental errors, completion, deletion and

editing problem arise, both for interval graphs and for unit interval graphs.

The chordal completion problem, also called the minimum fill-in problem, arises

when numerically performing a Gaussian elimination on a sparse symmetric positive-

definite matrix [164]. Since the time of the computation and its storage needs depend

on the sparseness of the matrix, it is desirable to find an elimination order such that a

minimum number of new non-zero elements is introduced into the matrix. Rose [164]

showed that this problem is equivalent to the minimum fill-in problem.

The chordal deletion problem was proposed in trying to solve the CLIQUE prob-

lem. Some heuristics for finding a large clique (see, e.g., [193]) aim to find a max-

imum chordal subgraph of the input graph. On such subgraph a maximum clique

can be found in polynomial time.

Cluster graph editing problems arise in cluster analysis (cf. [17]). When using

a graph theoretic approach to clustering, one builds from the raw data a similarity

1.1. MOTIVATION AND BACKGROUND 15

graph whose vertices correspond to elements and there is an edge between two

vertices if and only if the similarity of their elements exceeds a predefined threshold

(see, e.g., [96, 92]). Ideally, the resulting graph would be a union of vertex-disjoint

cliques. In practice, it is only close to being such, due to data errors. The task of

clustering then translates to finding an optimal editing set for this graph.

Previous results: Strong negative results are known for vertex deletion prob-

lems: Lewis and Yannakakis [130] showed that for any property which is non-trivial

and hereditary, the maximum induced subgraph problem is NP-complete. Further-

more, Lund and Yannakakis [134] proved that for any such property, and for every

ε > 0, the maximum induced subgraph problem cannot be approximated with ratio

2log1/2−ε n in quasi-polynomial time, unless P̃ = ÑP (we denote throughout by n and

m the number of vertices and edges in a graph, respectively).

For edge modification problems no such general results are known, although some

attempts have been made to go beyond specific graph properties [10, 11, 58]. In 1979

Garey and Johnson [69] posed the complexity of Chordal Completion as a major open

problem. Yannakakis subsequently proved that Chain Completion is NP-complete

and reduced the latter problem to Chordal Completion, thereby proving its NP-

completeness [194]. As noted in [80], the NP-completeness of Interval Completion

and Unit Interval Completion also follows from [194]. The complexity of a variety

of other edge modification problems was studied by many authors. Most problems

were found to be NP-hard. Figure 1.1 summarizes the complexity results for some

graph classes. A detailed description of those results appears in Chapter 2.

Variants of the completion problem, in which the input graph is pre-colored

and the objective is to find a supergraph satisfying a specified property, such that

it is properly colored by the input coloring, were also shown to be NP-complete.

Goldberg et al. [80] proved that the colored unit interval completion problem is

NP-complete. Golumbic et al. [84] and Fellows et al. [62, 23] proved independently

that the colored interval completion problem is NP-complete. Bodlaender and de

Fluiter [22] strengthened this result by showing that the latter problem is NP-

complete even if the number of colors is at most 4. They also gave a quadratic

algorithm (in the number of vertices) for solving the colored completion problem on

3-colored graphs. The colored chordal completion problem was proved by Bodlaen-

der et al. [23] to be NP-complete. McMorris et al. [141] showed that this problem

is polynomial when the number of colors is fixed.

16 CHAPTER 1. INTRODUCTION

*

*

*

*

*

*

*

*

*

*

+

+

+

*

*

*

*

+

+

proper
circ-arc

*

+

chordal

interval
unit

arc
circular

perfect

+

+

split

+

AT-free

compa-
rability rability

+

+

+

+
interval

+

+

P

*

*

+

co-compa-

bipartite

co-interval

co-chordal

circ-arc
unit

+

+

trivially

threshold

+

P

P

cluster

2-cluster
P

-

+

+

*

*

+

cograph

perfect

chain

++

Figure 1.1: The complexity status of edge modification problems for some graph

classes. A→B indicates that class A contains class B. The box to the left of each

class contains the status of the completion (top), editing (middle) and deletion

(bottom) problems. +: NP-hard, previously known; ∗: NP-hard, new result; P:

polynomial; −: not meaningful.

1.1. MOTIVATION AND BACKGROUND 17

A generalization of colored graph completion problems is to find a supergraph

satisfying a given property, which does not include any of a predefined set of for-

bidden edges. Problems of this type are called sandwich problems. Golumbic and

Shamir [86] proved that the interval sandwich problem is NP-complete. Their proof

can be modified to show that the unit interval sandwich problem is also NP-complete.

Golumbic et al. [85] showed that sandwich problems for chordal graphs, compara-

bility graphs, permutation graphs, circular-arc graphs, and several other families of

graphs, are NP-complete. They also proved that the sandwich problem is polyno-

mial for split graphs, threshold graphs (this was first shown by Hammer et al. [90])

and other families of graphs.

Since most edge modification problems discussed above are NP-complete, it is

natural to investigate their parametric complexity. In the parametric variant of the

problems, the input contains an additional parameter k and one has to determine

if an input instance can be solved using at most k edge modifications. Clearly this

can be done in nO(k) time by enumeration. For fixed k and growing n, an algorithm

with complexity 2O(k)nO(1) is superior. Parameterized complexity theory, initiated

by Downey and Fellows [49], studies the complexity of such problems. It defines a

hierarchy of parameterized decision problem classes, with appropriate reducibility

and completeness notions (see [49] for definitions and details). Parameterized prob-

lems that have algorithms of complexity O(f(k)nα) (with α a constant) are called

fixed parameter tractable. Thus, for example, vertex cover and pathwidth are fixed

parameter tractable [21, 48, 122] but independent set [3] and bandwidth [20] are hard

for certain levels in the hierarchy.

Kaplan and Shamir [117] have given a polynomial algorithm for the interval

sandwich decision problem restricted to bounded degree input graphs, whenever the

solution has bounded clique size or bounded degree. The results in [22] however,

imply that the problem of finding an interval sandwich graph with a small clique

is hard in the parametric sense, if the parameter is the size of the clique. In [118]

Kaplan et al. proved that Chordal Completion and Unit-interval Completion are

fixed parameter tractable, where the parameter is the number of added edges. The

problem of altering a graph to one having a specified property, by deleting at most i

vertices, deleting at most j edges, and adding at most k edges, where i, j, k are fixed

integers, was proved by Cai [28] to be fixed parameter tractable for any hereditary

property that has a finite forbidden set characterization.

18 CHAPTER 1. INTRODUCTION

Approximation algorithms exist for several edge modification problems. Agrawal

et al. [5] have given an O(m1/4 log3.5 n) approximation algorithm for the minimum

chordal supergraph problem (where one wishes to minimize the total number of edges

in the resulting graph). For the minimum interval supergraph problem the best

extant approximation algorithm by Rao and Richa [160] achieves an approximation

ratio of O(log n). A general, constant factor approximation algorithm was given by

Natanzon for editing and deletion problems on bounded degree graphs with respect

to properties characterized by a finite set of forbidden induced subgraphs [150]. On

the negative side, it was shown in [33] that the minimum number of edge editions

needed in order to convert a graph into a caterpillar cannot be approximated in

polynomial time to within an additive term of O(n1−ε), for 0 < ε < 1, unless P=NP.

Another inapproximability result, given by Natanzon [150], proves that it is NP-hard

to approximate any of the three comparability modification problems to within a

factor of 18/17.

1.2 Summary of Results

In this thesis we study theoretical aspects of edge modification problems as well as

specific variants of these problems arising in applications to genomic research. On

the theoretical side, we give results on the complexity, parametric complexity and

approximability of these problems. We also study the complexity of recognizing

some graph properties on dynamically changing graphs. On the practical side we

develop a clustering algorithm and apply it successfully to a variety of biological

datasets. We also study a graph sandwich problem with applications in phylogeny

reconstruction. The main concrete results are summarized below.

Complexity: In Chapter 2 we study the complexity of edge modification problems

on some structured classes of graphs. We provide several results on the complexity

and approximability of these problems. On the negative side, we show, among other

results, that deletion problems are NP-hard for chain, chordal and asteroidal triple

free graphs; and that Cluster Editing is NP-hard. These results are summarized

in Figure 1.1. We also prove that deletion problems are NP-hard with respect

to any graph class that can be characterized by a set of connected triangle-free

forbidden subgraphs, the smallest of which has a tail. Examples for such graph

1.2. SUMMARY OF RESULTS 19

classes are cographs, cluster graphs, trivially perfect graphs and threshold graphs.

Furthermore, we prove that it is NP-hard to approximate Cluster Deletion to within

some constant factor.

On the positive side, we provide a polynomial algorithm for 2-Cluster Dele-

tion and give polynomial results for bounded degree input graphs. Specifically, we

show that Chain Deletion and Editing, Split Deletion, and Threshold Deletion and

Editing are polynomial when the input degrees are bounded. We also give a 0.878-

approximation algorithm for a weighted variant of 2-Cluster Editing. Most of these

results were published in [150] and [172].

Minimum Fill-In Approximation: Chapter 3 deals with the minimum fill-in

problem, which calls for finding a minimum triangulation of a given graph. The

problem has important applications in numerical algebra and has been studied in-

tensively since the 1970s. We give the first polynomial approximation algorithm for

the problem. Our algorithm constructs a triangulation whose size is at most eight

times the optimum size squared. The algorithm builds on the recent parameterized

algorithm of Kaplan, Shamir and Tarjan for the same problem. For bounded degree

graphs we give a polynomial approximation algorithm with a polylogarithmic ap-

proximation ratio. Furthermore, we improve the parameterized algorithm. We also

derive an approximation algorithm for Chain Completion. This study was published

in [149].

Dynamic Algorithms: Chapter 4 presents dynamic algorithms for recognizing

certain graph properties on dynamically changing graphs. The dynamic algorithm

is required to maintain a representation of a graph throughout a series of on-line

modifications (insertions or deletions of a vertex or an edge), as long as the graph

satisfies some property, and to detect when it ceases to satisfy the property. In

the first part of the chapter we give a fully dynamic algorithm for proper interval

graph recognition and representation. The algorithm handles a modification involv-

ing d edges in time O(d + log n). (In case of an edge modification d = 1, and in

case of a vertex modification d equals its degree.) We prove a close lower bound

of Ω(log n/(log log n + log b)) for an edge operation in the cell probe model of com-

putation with word-size b. In addition, we give algorithms requiring O(d) time per

operation for variants of the problem where either only addition operations are al-

20 CHAPTER 1. INTRODUCTION

lowed, or only deletion operations are allowed. The latter algorithms are optimal

with respect to all operations, with the possible exception of vertex deletion. This

study was published in [99].

The second part provides a fully dynamic algorithm for cograph recognition,

which works in O(d) time per operation involving d edges. The algorithm maintains

a modular decomposition tree of the dynamic graph and uses it for the recognition.

We derive from this result fully dynamic algorithms for threshold recognition and

for trivially perfect graph recognition. These algorithms are optimal with respect

to all operations, with the possible exception of vertex deletion.

Phylogeny Reconstruction: In chapter 5 we study the problem of reconstruct-

ing evolutionary history based on incomplete data. In the perfect phylogeny model

for studying evolution every species has an associated vector of characters, each hav-

ing one of several states. The goal is to reconstruct a tree in which the species are at

the leaves and each internal node is associated with a character vector representing

an ancestral species, such that the set of all species having the same state in any

character induces a connected subtree.

We study the following variant of perfect phylogeny: The input is a species-

characters matrix. The characters are binary and directed, i.e., a species can only

gain characters. The difference from standard perfect phylogeny is that for some

species the state of some characters is unknown. The question is whether one can

complete the missing states in a way admitting a perfect phylogeny. The problem

arises in classical phylogenetic studies, when some states are missing or undeter-

mined. Quite recently, studies that infer phylogenies using inserted repeat elements

in DNA gave rise to the same problem. Extant solutions for it take time O(n2m)

for n species and m characters. We provide a formulation of the problem as a graph

sandwich problem, and give a near-optimal Õ(nm)-time algorithm for it. We also

study the problem of finding a single, general solution tree, from which any other

solution can be obtained by node-splitting. We provide an algorithm to construct

such a tree, or determine that none exists. These results were published in [155] and

[156].

Clustering Gene Expression Data: Chapter 6 presents a novel clustering al-

gorithm, called CLICK (CLuster Identification via Connectivity Kernels), which is

1.2. SUMMARY OF RESULTS 21

applicable to gene expression analysis as well as to other biological problems. The

algorithm utilizes graph-theoretic and statistical techniques to identify tight groups

(kernels) of highly similar elements, which are likely to belong to the same true

cluster. Several heuristic procedures are then used to expand the kernels into the

full clusters. CLICK has been implemented and we report on its successful ap-

plication to a variety of biological datasets, ranging from gene expression, cDNA

oligo-fingerprinting to protein sequence similarity. In all those applications it out-

performed extant algorithms according to several common figures of merit. CLICK

is also very fast, allowing clustering of thousands of elements in minutes, and over

100,000 elements in a couple of hours on a standard workstation. These results were

published in [175] and [171].

One application of CLICK on which we report in detail is a study of expression

data related to the Ataxia-Telangiectasia degenerative disease, done in collabora-

tion with Prof. Y. Shiloh (Tel-Aviv University) and QBI Enterprises [161]. A-T is

a complex multisystem disease resulting from deficiency of the ATM protein kinase.

Most notably, A-T cells exhibit profound defects in their responses to ionizing ra-

diation. A-T patients show progressive degeneration of the cerebellum and thymus.

In this study, gene expression profiles were constructed for the cerebellum, thymus,

and cerebrum of ATM- knockout mice and of wild-type animals, with and without

prior X-irradiation. The resulting gene expression patterns were clustered using

CLICK. Marked differences were observed in the post- irradiation response between

the three tissues and the two genotypes. Unexpectedly, ATM-deficient thymus and

cerebellum from unirradiated animals displayed constitutive activation or repres-

sion of numerous genes that the corresponding wild-type tissues showed only after

irradiation. This constitutive response to sustained internal genotoxic stress, which

correlates with tissue degeneration in human A-T patients, points to an important

new characteristic of A-T.

We also show the utility of CLICK in extracting other biological information from

gene expression data: We apply CLICK successfully for the identification of common

regulatory motifs in the upstream regions of co-regulated genes. Furthermore, we

demonstrate how CLICK can be used to accurately classify tissue samples into

disease types, based on their expression profiles, achieving success ratios of over

90% on two real datasets. These results were published in [173].

Finally, we present a new java-based graphical tool, called EXPANDER (EXPres-

22 CHAPTER 1. INTRODUCTION

sion ANalyzer and DisplayER), for gene expression analysis and visualization [174].

This software provides graphical user interface to several clustering methods includ-

ing CLICK, K-Means, hierarchical clustering and self organizing map. It enables

visualizing the raw expression data and the clustered data in several ways. The

EXPANDER tool is used in several dozens of laboratories world-wide.

Another application of CLICK in a large scale project of sequencing a super-

family of genes is reported in [67].

1.3 Preliminaries

In this thesis we focus on graph modification problem with respect to subclasses of

perfect graphs and other structured classes. Below we provide basic terminology and

definitions that will be used throughout the thesis. Section 1.3.1 gives basic graph

theoretic definitions and Section 1.3.2 defines these graph classes. For additional

definitions of graph properties and much more on the graph classes discussed here

see, e.g., [25, 82].

1.3.1 Definitions

All graphs in this thesis are simple and contain no self-loops. Let G = (V, E) be

a graph. We denote its set of vertices also by V (G), and its set of edges also by

E(G). Throughout we use n and m to denote the number of vertices and edges,

respectively, in a graph. A weighted graph G = (V, E, w) is a graph whose edges

are assigned real weights according to a function w : E →R.

For a new vertex z �∈ V and a set of edges Ez between z and vertices of V , we

denote by G∪z the graph (V ∪{z}, E∪Ez) obtained by adding z to G. For a vertex

z ∈ V we denote by G \ z the graph (V \ {z}, E \ ({z} × V)) obtained by removing

z from G.

For a set S we use S ⊗ S to denote {(s1, s2) : s1, s2 ∈ S, s1 �= s2}. We say that

(S1, . . . , Sl) is a partition of S if the subsets S1, . . . Sl are pairwise disjoint, and their

union is S. We denote by G the complement graph of G, i.e., G = (V, E), where

E = (V ⊗V)\E. If G = (U, V, E) is a bipartite graph, then its bipartite complement

is the bipartite graph G = (U, V, E), where E = (U × V) \ E. For a subset A ⊆ V

1.3. PRELIMINARIES 23

we denote by GA the subgraph induced by the vertices of A. For a vertex v ∈ V

we denote by N(v) the set of vertices adjacent to v in G. N(v) is called the open

neighborhood of v. We let N [v] = N(v) ∪ {v} denote the closed neighborhood of v.

For a set S ⊆ V we define N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S. We denote by

G∪H the union of two disjoint graphs G and H (with no edges connecting a vertex

of G with a vertex of H). We denote by G + H the graph obtained by forming the

union of two disjoint graphs G and H and connecting every vertex of G to every

vertex of H .

A cut C in G is a subset of its edges, whose removal disconnects G. The weight

of C is the sum of weights of its edges. A minimum weight cut is a cut of minimum

weight in G. In case of positive edge weights, a minimum weight cut C partitions

the vertices of G into two disjoint non-empty subsets A, B ⊂ V , A ∪ B = V , such

that E ∩ {(u, v) : u ∈ A, v ∈ B} = C.

A path with l edges is called an l-path and its length is l. A single vertex is

considered a 0-path. We denote an (l − 1)-path by Pl. The distance between two

vertices a, b ∈ V is the length of the shortest path connecting a and b in G. The

diameter of G is the maximum distance between a pair of vertices in G. We call

a cycle with l edges an l-cycle, and denote it by Cl. A chord in a cycle is an edge

between non-consecutive vertices on it. A chordless cycle is a cycle of length greater

than three that contains no chord. A triangle is a cycle of length 3. We call a graph

triangle-free if it contains no triangles. We say that a graph has a tail if it contains

a pair of adjacent vertices, one of degree two and the other of degree one.

Let Π be a graph property. The notation G ∈ Π indicates that G satisfies Π. If

F is a set of non-edges such that G′ = (V, E ∪F) ∈ Π and |F | ≤ k, then F is called

a k-completion set with respect to Π, or a Π k-completion set. Π k-deletion set and

Π k-editing set are similarly defined.

1.3.2 Graph Classes

A graph G is called perfect if for every induced subgraph H of G, χ(H) = ω(H),

where χ(H) denotes the chromatic number of H , and ω(H) denotes the clique

number of H .

A graph is called chordal, or triangulated, if it contains no chordless cycle.

24 CHAPTER 1. INTRODUCTION

A comparability graph is a graph whose edges can be transitively oriented, that

is, there exists an orientation F of its edges for which (a, b), (b, c) ∈ F implies

(a, c) ∈ F .

A graph G is called an interval graph if its vertices can be assigned to intervals

on the real line so that two vertices are adjacent in G if and only if their assigned

intervals intersect. The set of intervals assigned to the vertices of G is called a

realization of G. If the set of intervals can be chosen to be inclusion-free, then G is

called a proper interval graph, or a unit interval graph.

A graph is called a circular-arc graph if its vertices can be assigned to arcs on

a circle so that two vertices are adjacent if and only if their corresponding arcs

intersect.

A graph G is called a cluster graph if every connected component of G is a

complete graph. G is called a 2-cluster graph if it is a cluster graph with two

connected components or, equivalently, if it is a vertex-disjoint union of two cliques.

A split graph is a graph whose vertices can be partitioned into two subsets, such

that one subset induces a clique, and the other induces an independent set.

A bipartite graph G = (P, Q, E) is called a chain graph if there exists an or-

dering π of P , π : P → {1, . . . , |P |}, such that N(π−1(1)) ⊆ N(π−1(2)) ⊆ . . . ⊆
N(π−1(|P |)).

A graph G = (V, E) is called a threshold graph, if there is a partition (K, I) of V

such that K induces a clique, I induces an independent set, and the bipartite graph

(K, I, E ∩ (K× I)) is a chain graph (see [136] for other equivalent definitions of this

class).

An asteroidal triple is a set of three independent (i.e., pairwise non-adjacent)

vertices such that there is a path between every two of them which avoids the closed

neighborhood of the third vertex. A graph is called asteroidal triple free, or AT-free,

if it contains no asteroidal triple.

A graph is called a cograph (complement reducible graph) if it contains no induced

P4. A graph is called trivially perfect if is a cograph and contains no induced C4.

A claw is an induced K1,3 (a 3-degree vertex connected to three 1-degree vertices).

A graph is called claw-free if it contains no induced claw.

Chapter 2

Complexity Analysis

In this chapter we study the complexity of edge modification problems on some

structured classes of graphs. We provide several results on the complexity and

approximability of these problems. On the negative side, we show, among other

results, that deletion problems are NP-hard for chain, chordal and asteroidal triple

free graphs; and that Cluster Editing is NP-hard. We also prove that deletion

problems are NP-hard with respect to any graph class that can be characterized by

a set of connected triangle-free forbidden induced subgraphs, the smallest of which

has a tail. Examples for such graph classes are cographs, cluster graphs, trivially

perfect graphs and threshold graphs. Furthermore, we show that it is NP-hard to

approximate Cluster Deletion to within some constant factor.

On the positive side, we provide a polynomial algorithm for 2-Cluster Dele-

tion and give polynomial results for bounded degree input graphs. Specifically, we

show that Chain Deletion and Editing, Split Deletion, and Threshold Deletion and

Editing are polynomial when the input degrees are bounded. We also give a 0.878-

approximation algorithm for a weighted variant of 2-Cluster Editing.

Most of the results in this chapter were published in [150] and [172].

2.1 Introduction

Edge modification problems call for making small changes to the edge set of an

input graph in order to obtain a graph with a desired property. They include

25

26 CHAPTER 2. COMPLEXITY ANALYSIS

completion, deletion and editing problems. These problems play an important role in

computer science and have applications in several fields, including molecular biology.

In many application areas a graph is used to model experimental data, and then edge

modifications correspond to correcting errors in the data: Adding an edge corrects

a false negative error, and deleting an edge corrects a false positive error. Specific

applications that are discussed in this thesis include numerical algebra (Chapter 3),

physical mapping of DNA (Chapter 4), phylogeny reconstruction (Chapter 5) and

clustering (Chapter 6).

Since the classical result of Yannakakis, that the minimum fill-in problem is

NP-complete [194], many other complexity results were obtained for edge modifi-

cation problems. Some of these results are summarized in Table 2.1 (compare also

Figure 1.1).

Graph class Completion Editing Deletion

Perfect NP-hard [150] NP-hard [150] NP-hard [150]

Chordal NPC [194] NPC [14] NPC new

Interval NPC [194, 69, 119] - NPC [80]

Unit Interval NPC [194] - NPC [80]

Circular-Arc NPC new - NPC new

Chain NPC [194] - NPC new

Comparability NPC [89] NPC [150] NPC [195]

AT-Free - - NPC new

Cograph NPC [58] - NPC [58]

Threshold NPC [138] - NPC [138]

Bipartite NPC [70] NPC [70] Not meaningful

Split NPC [150] P [91] NPC [150]

Cluster P NPC new NPC [58]

2-Cluster P [172] NPC [172] P new

Caterpillar - NPC [33] -

Trivially Perfect NPC [194] - NPC new

Table 2.1: Summary of complexity results for some edge modification problems.

’new’ indicates results obtained here. ’-’ indicates an open problem.

Approximation algorithms exist for several problems. Agrawal et al. [5] have

2.2. BASIC RESULTS 27

given an O(m1/4 log3.5 n) approximation algorithm for the minimum chordal super-

graph problem (where one wishes to minimize the total number of edges in the

resulting graph). Rao and Richa [160] have given an O(logn) approximation al-

gorithm for the minimum interval supergraph problem. A general, constant factor

approximation algorithm was given by Natanzon for editing and deletion problems

on bounded degree graphs with respect to properties characterized by a finite set

of forbidden induced subgraphs [150]. On the negative side, it was shown in [33]

that the minimum number of edge editions needed in order to convert a graph into a

caterpillar cannot be approximated in polynomial time to within an additive term of

O(n1−ε), for 0 < ε < 1, unless P=NP. Also, Natanzon has proven that it is NP-hard

to approximate any of the three comparability modification problems to within a

factor of 18/17 [150].

Here we give several results on the complexity and approximability of edge mod-

ification problems. Most of our polynomial and NP-completeness results for specific

graph classes are summarized in Table 2.1. We also prove that deletion problems

are NP-hard with respect to any graph class that can be characterized by a set of

connected triangle-free forbidden subgraphs, the smallest of which has a tail. This

applies to complement reducible, cluster, trivially perfect and threshold graphs.

Furthermore, we show that it is NP-hard to approximate Cluster Deletion to within

some constant factor. We also show that Chain Deletion and Editing, Split Dele-

tion, and Threshold Deletion and Editing are polynomial when the input degrees are

bounded. Finally, we give a 0.878-approximation algorithm for a weighted variant

of 2-Cluster Editing.

The chapter is organized as follows: Section 2.2 contains simple basic results

that show connections between the complexity of related modification problems.

Section 2.3 contains the main hardness results. Section 2.4 gives the polynomial

results. Finally, Sections 2.5 and 2.6 describe the approximation algorithm and the

inapproximability results.

2.2 Basic Results

In this section we summarize some easy observations on edge modification problems,

which will help us deduce complexity results from results on related graph families,

and concentrate on those modification problems that are meaningful.

28 CHAPTER 2. COMPLEXITY ANALYSIS

A graph property Π is called hereditary if when a graph G satisfies Π every

induced subgraph of G satisfies Π. Π is called hereditary on subgraphs if when G

satisfies Π, every subgraph of G satisfies Π. Π is called ancestral if when G satisfies

Π, every supergraph of G satisfies Π.

Proposition 2.2.1 If property Π is hereditary on subgraphs then Π-Deletion and

Π-Editing are polynomially equivalent, and Π-Completion is not meaningful.

A problem is not meaningful if it is trivial on every instance. For example,

since the planarity property is hereditary on subgraphs, Planarity Completion is

meaningless: For every graph either it is planar or it cannot be made planar by

adding edges.

Proposition 2.2.2 If Π is an ancestral graph property then Π-Completion and Π-

Editing are polynomially equivalent, and Π-Deletion is not meaningful.

Proposition 2.2.3 If Π and Π′ are graph properties such that for every graph G and

a disjoint independent set S, G satisfies Π if and only if G∪ S satisfies Π′, then Π-

Deletion is polynomially reducible to Π′-Deletion. If in addition Π is hereditary, then

Π-Completion (Π-Editing) is polynomially reducible to Π′-Completion (Π′-Editing).

Proof: The first part of the proposition is obvious. To prove the second part

we show a reduction from Π-Completion to Π′-Completion. The reduction from

Π-Editing to Π′-Editing is identical. Let < G = (V, E), k > be an instance of Π-

Completion. We build an instance < G′ = (V ′, E), k > of Π′-Completion by adding

2k + 1 isolated vertices to G.

We now prove validity of the reduction. If F is a Π k-completion set for G then

it is also a Π′ k-completion set for G′, since the modified graph (V ′, E∪F) is a union

of a graph which satisfies Π and an independent set. On the other hand, suppose

that F is a Π′ k-completion set for G′. Then (V ′, E∪F) contains an isolated vertex,

and removing that vertex results in a graph satisfying Π. Since Π is hereditary,

F ∩ (V ⊗ V) is a Π k-completion set for G.

Corollary 2.2.4 The following problems are NP-complete: (1) Circular-Arc Com-

pletion and Deletion; (2) Proper Circular-Arc Completion and Deletion; (3) Unit

Circular-Arc Completion and Deletion.

2.3. NP-HARD MODIFICATION PROBLEMS 29

Proof: Obviously, for a graph G and an isolated vertex z �∈ V (G), G is an interval

(unit interval) graph if and only if G∪z is a circular-arc (proper circular-arc and unit

circular-arc) graph. The corollary now follows by reduction from the corresponding

interval or unit interval modification problem.

Proposition 2.2.5 If Π and Π′ are graph properties such that for every graph G

and a clique K, G satisfies Π if and only if G + K satisfies Π′, then Π-Completion

is polynomially reducible to Π′-Completion. If in addition Π is hereditary, then

Π-Deletion (Π-Editing) is polynomially reducible to Π′-Deletion (Π′-Editing).

Corollary 2.2.6 Permutation modification problems are polynomially reducible to

the corresponding circle modification problems.

For a graph property Π, we define the complementary property Π as follows: For

every graph G, G satisfies Π if and only if G satisfies Π. Some well known examples

are co-chordality and co-comparability.

Proposition 2.2.7 For every graph property Π, Π-Deletion and Π-Completion are

polynomially equivalent.

Proposition 2.2.8 For every graph property Π, Π-Editing and Π-Editing are poly-

nomially equivalent.

Corollary 2.2.9 The following problems are NP-complete: (1) Co-Chordal Dele-

tion and Editing; (2) Co-Comparability modification problems; (3) Co-Interval Com-

pletion and Deletion.

2.3 NP-Hard Modification Problems

2.3.1 Chain Graphs

In this section we prove that Chain Deletion is NP-complete. This result will be the

starting point to several of our subsequent reductions. Note, that in Chain Deletion

(as in Chain Completion [194]) the bipartition of the input graph is given as part of

the input.

30 CHAPTER 2. COMPLEXITY ANALYSIS

Lemma 2.3.1 The bipartite complement of a chain graph is a chain graph.

Proof: The claim follows from the observation that the chain containment order is

reversed for the bipartite complement of a chain graph. Formally, let G = (P, Q, E)

be a chain graph, and let π be an ordering of the vertices in P such that N(π(1)) ⊆
N(π(2)) ⊆ . . . ⊆ N(π(|P |)). Then for G we have N(π(|P |)) ⊆ N(π(|P | − 1)) ⊆
. . . ⊆ N(π(1)).

Corollary 2.3.2 Chain Deletion is NP-complete.

Proof: Follows from the bipartite analog of Proposition 2.2.7.

2.3.2 Chordal Graphs

In this section we prove that Chordal Deletion is NP-complete by reduction from

Chain Deletion. We use the following characterization of chain graphs, due to Yan-

nakakis [194]: A bipartite graph G = (P, Q, E) is a chain graph if and only if it

contains no pair of independent edges, i.e., a pair (p1, q1), (p2, q2) ∈ E such that

(p1, q2), (p2, q1) �∈ E.

Theorem 2.3.3 Chordal Deletion is NP-complete.

Proof: The problem is in NP since chordal graphs can be recognized in linear

time [182]. We prove NP-hardness by reduction from Chain Deletion. Let < G =

(P, Q, E), k > be an instance of Chain Deletion. Build the following instance <

C(G) = (V ′, E ′), k > of Chordal Deletion: Let VP and VQ be two sets of new

vertices of size k each. Define

V ′ = P ∪Q ∪ VP ∪ VQ,

E ′ = E ∪ (P ⊗ P) ∪ (Q⊗Q) ∪ (P × VP) ∪ (Q× VQ).

We show that the Chordal Deletion instance has a solution if and only if the Chain

Deletion instance has a solution.

2.3. NP-HARD MODIFICATION PROBLEMS 31

⇒ Suppose that F is a chain k-deletion set. We claim that F is also a chordal

k-deletion set. Let H = (V ′, E ′ \ F). Suppose to the contrary that H is not

chordal, and let C be an induced cycle of length greater than 3 in H . If C

contains any vertex v ∈ VP then the two neighbors of v on C are vertices from

P , a contradiction. The same holds for VQ. Hence, V (C)∩VP = V (C)∩VQ = ∅.
Since P and Q induce cliques in H , C must be of the form (p1, p2, q1, q2), where

p1, p2 ∈ P and q1, q2 ∈ Q. But then (p1, q2) and (p2, q1) are independent edges

in the chain graph (P, Q, E \ F), a contradiction.

⇐ Suppose that F is a chordal k-deletion set. We shall prove that F ∩ E is a

chain k-deletion set. Let G′ = (P, Q, E \ F). If G′ is not a chain graph then

it contains a pair of independent edges (p1, q1), (p2, q2), where p1, p2 ∈ P and

q1, q2 ∈ Q. In C(G), p1, p2 and also q1, q2 were connected by an edge and k

edge-disjoint paths of length 2. Hence, each pair is still connected by a path of

length at most 2 in H = (V ′, E ′ \F). Thus, p1, q1, q2 and p2 are on an induced

cycle of length at least 4 in H , a contradiction.

Corollary 2.3.4 Co-Chordal Completion is NP-complete.

We note, that similar constructions provide simple proofs for the NP-completeness

of Interval Deletion and Unit-Interval Deletion.

2.3.3 AT-Free Graphs

Theorem 2.3.5 AT-free Deletion is NP-complete.

Proof: The problem is clearly in NP. The hardness proof is by reduction from

Chain Deletion. Let < G = (P, Q, E), k > be an instance of Chain Deletion. Build

the following instance < A(G) = (V ′, E ′), k > of AT-free Deletion: Let Vq, Vw, Vz be

sets of new vertices of sizes k, k + 1, k + 1, respectively. Define

V ′ = P ∪Q ∪ Vq ∪ Vw ∪ Vz ,

E ′ = E ∪ (P ⊗ P) ∪ (P × Vq) ∪ (P × Vw) ∪ ((Vw ∪ Vz)⊗ (Vw ∪ Vz)) .

We now prove validity of the reduction.

32 CHAPTER 2. COMPLEXITY ANALYSIS

⇒ Let F be a chain k-deletion set. We claim that F is also an AT-free k-deletion

set. Let G′ = (P, Q, E \ F) and let A(G)′ = (V ′, E ′ \ F). Suppose to the

contrary that S = {x, y, z} is an asteroidal triple in A(G)′. We observe the

following:

– P and Vw ∪ Vz induce cliques in A(G)′. Therefore, S contains at most

one vertex from P and at most one vertex from Vw ∪ Vz.

– For any two vertices x, y ∈ Vq, N(x) = N(y). Therefore, S contains at

most one vertex from Vq.

– Since G′ is a chain graph (and the chain containment property holds for

both sides of the bipartition [194]), for every x, y ∈ Q, N(x) ⊆ N(y) or

N(y) ⊆ N(x). Therefore, S contains at most one vertex from Q.

– If S contains a vertex from Q then S∩(P ∪Vq∪Vw) = ∅, since every path

from a vertex in Q to a vertex in V ′\Q intersects the closed neighborhood

of every vertex in (P ∪ Vq ∪ Vw).

– If S contains a vertex u ∈ Vw then S cannot contain a vertex v ∈ Vq since

N(v) ⊆ N(u).

– If S contains a vertex v ∈ Vq ∪ Vw then N(v) ⊇ P , so S ∩ P = ∅.

These observations imply that S ∩P = ∅, since otherwise S could not contain

any vertex from Q or from Vq ∪ Vw, and would have therefore at most two

vertices (one from P and one from Vz), a contradiction. Similarly, we conclude

that S ∩ Q = ∅. It follows that |S| ≤ 2 since S may only contain one vertex

from Vq and one vertex from Vw ∪ Vz, a contradiction.

⇐ Let F be an AT-free k-deletion set. We show that F ∩E is a chain k-deletion

set. Let G′ = (P, Q, E \ F) and let A(G)′ = (V ′, E ′ \ F). Suppose to the

contrary that G′ is not a chain graph. Thus, G′ contains two independent

edges (p1, q1), (p2, q2) where p1, p2 ∈ P and q1, q2 ∈ Q. We shall identify a

vertex z ∈ Vz such that {q1, q2, z} is an asteroidal triple in A(G)′.

Every vertex of P was adjacent in A(G)′ to all k+1 vertices of Vw. Hence, there

exist w1, w2 ∈ Vw, w1 �= w2, such that (p1, w1) ∈ E ′ \ F and (p2, w2) ∈ E ′ \ F .

Similarly, there exists a vertex z ∈ Vz such that (w1, z), (w2, z) ∈ E ′ \ F .

{q1, q2, z} is an asteroidal triple since:

1. (z, w1, p1, q1) is a path from z to q1 avoiding the neighborhood of q2.

2.3. NP-HARD MODIFICATION PROBLEMS 33

2. (z, w2, p2, q2) is a path from z to q2 avoiding the neighborhood of q1.

3. If (p1, p2) ∈ E ′ \ F then (q1, p1, p2, q2) is a path from q1 to q2 avoiding

the neighborhood of z. Otherwise, there exists a vertex q ∈ Vq such that

(p1, q), (p2, q) ∈ E ′ \ F . Thus, (q1, p1, q, p2, q2) is a path from q1 to q2

avoiding the neighborhood of z.

Hence, we arrive at a contradiction, implying that G′ is a chain graph.

2.3.4 Cluster Graphs

Let G = (V, E) be a graph, and let F be a cluster editing set for G. Let G′ =

(V, E�F). We denote by P (F) the partition of V into disjoint subsets of vertices ac-

cording to the connected components (cliques) of G′. For a partition P = (V1, . . . , Vl)

of V we denote by NP the size of the cluster editing set implied by P :

NP ≡ |
l⋃

i=1

{(u, v) �∈ E : u, v ∈ Vi}|+ |{(u, v) ∈ E : u ∈ Vi, v ∈ Vj , i �= j}| .

For two subsets of vertices A, B ⊆ V we denote by EA,B the set of edges in E with

one endpoint in A and the other in B.

We prove in this section that Cluster Editing is NP-complete by reduction from

a restriction of exact cover by 3-sets which we define next:

Problem 1 (3-Exact 3-Cover (3X3C))

Instance: A collection C of triplets of elements from a set U = {u1, . . . , u3n}, such

that each element of U is a member of at most 3 triplets.

Question: Is there a sub-collection I ⊆ C of size n which covers U?

The 3X3C problem is known to be NP-complete [69, Problem SP2].

Theorem 2.3.6 Cluster Editing is NP-complete.

Proof: Membership in NP is trivial. We prove NP-hardness by reduction from

3X3C. Let m ≡ 30n. Given an instance < C, U > of 3X3C we build a graph

34 CHAPTER 2. COMPLEXITY ANALYSIS

G = (V, E) as follows:

V =
⋃

S∈C

{v1(S), . . . , vm(S)} ∪ U ,

E = E1 ∪ E2 ∪E3 ,

E1 = {(vi(S), u) : S ∈ C, 1 ≤ i ≤ m, u ∈ S} ,

E2 = {(vi(S), vj(S)) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} .

In words, we build a clique of size m + 3 around each triplet S by fully con-

necting S and m additional vertices. For each triplet S ∈ C we denote VS =

{v1(S), . . . , vm(S)}. The elements of VS are called S-vertices. Let q = 3|C|. Define

N ≡ m(q − 3n) and M ≡ |E3| − 3n. We prove that there is an exact cover of U if

and only if there is a cluster editing set for G of size at most N + M :

⇒ Suppose that I ⊆ C is an exact cover of U . Let F1 = {(vi(S), u) : S �∈ I, 1 ≤
i ≤ m, u ∈ S} and let F2 = {(u, u′) ∈ E3 :� ∃S ∈ I s.t. u, u′ ∈ S}. It is

easy to verify that F = F1 ∪ F2 is a cluster editing set for G, whose size is

|F | = |F1|+ |F2| = N + M .

⇐ Let F ′ be a cluster editing set for G with |F ′| ≤ N + M . Let F be an

optimum cluster editing set for G. Then |F | ≤ |F ′| ≤ N + M . We shall prove

that |F | = N +M and one can derive from F an exact cover of U . This implies

that |F ′| = |F | and, hence, F ′ is an optimum cluster editing set from which

an exact cover of U can be obtained.

Since each element of U occurs in at most 3 triplets, q ≤ 9n. Thus, |E3| ≤
q ≤ 9n and |F | ≤ N + M ≤ 6mn + 6n = 180n2 + 6n < m

2
(m

2
− 2). Let

G′ = (V, E�F) be the cluster graph obtained by editing G according to F .

We shall prove that for every subset S ∈ C there exists a unique clique in G′

which contains VS. To this end, we first show that there exists a clique KS in G′

such that |KS∩VS| ≥ m/2+3: Suppose that the vertices of VS are partitioned

among k cliques X1, . . . , Xk in G′. Let s(Xi) = |VS∩Xi|, i = 1, . . . , k. Suppose

to the contrary that s(Xi) ≤ m/2 + 2 for all i. Therefore,

|F | ≥ 1

2

k∑
i=1

s(Xi)(m− s(Xi)) ≥
1

2

k∑
i=1

s(Xi)(
m

2
− 2) =

m

2
(
m

2
− 2) .

A contradiction follows.

2.3. NP-HARD MODIFICATION PROBLEMS 35

Let KS be the clique Xi for which s(Xi) is maximum (|KS ∩ VS| ≥ m/2 + 3).

We next prove that VS ⊆ KS ⊆ VS ∪ S. Let x = |KS \ (VS ∪ S)|. Consider

a new partition P ′ of V , which is obtained from P (F) by splitting KS into

KS∩(VS∪S) and KS\(VS∪S). Clearly, NP (F)−NP ′ ≥ (m/2+3)x−3x = xm/2.

But F is an optimum cluster editing set. Therefore, x = 0 and KS ⊆ VS ∪ S.

To see that KS ⊇ VS, suppose to the contrary that there exists some index

1 ≤ i ≤ m such that vi(S) �∈ KS. Let K ′ be the clique in G′ which contains

vi(S). Let P ′′ be a new partition of V , which is obtained from P (F) by moving

vi(S) from K ′ to KS. Then NP (F) − NP ′′ ≥ m/2 + 3− (m/2− 4 + 3) = 4, a

contradiction. We conclude that for every S ∈ C there is a unique clique KS

in G′ which contains VS and is contained in VS ∪ S.

Examine an element u ∈ U which is a member of (at least) two subsets S1, S2 ∈
C. By the previous claim, VS1 and VS2 are subsets of distinct cliques in G′.

Hence, either EVS1
,{u} ⊆ F or EVS2

,{u} ⊆ F (or both). Let F1 = F ∩ E1.

Then |F1| ≥ N , with equality if and only if each vertex u ∈ U is adjacent

in G′ to the S-vertices of exactly one subset S and u ∈ S. Moreover, since

|F | ≤ N + M and M ≤ 6n < m, each vertex u ∈ U must be adjacent in G′ to

all the S-vertices of exactly one subset S, where u ∈ S. This follows since u

must be adjacent to at least one S-vertex, and all the S-vertices are members

of the same clique KS in G′. Call this set the S-set of u.

Let F2 = F \ F1. For every two vertices u, u′ ∈ U such that (u, u′) ∈ E, and

the S-sets of u and u′ differ, we must have (u, u′) ∈ F2. Since each subset in

C contains 3 elements, G′
U is a union of cliques of size at most 3. It is easy

to verify that the maximum number of edges in such a 3n-vertex graph is 3n,

and that number is obtained if and only if G′
U is a union of triangles only.

Therefore, |F2| = |E3| − |E(G′
U)| ≥ M with equality if and only if there is a

partition of U into triplets of elements, such that the elements of each triplet

have the same S-set. Since |F | ≤ N +M , we must have |F | = N +M and the

implied partition into triplets induces an exact cover of U .

We note, that the same construction can be used to show that Cluster Deletion is

NP-complete. Cluster Completion is trivially polynomial, as the optimum solution

is formed by transforming each connected component of the input graph into a

complete graph.

36 CHAPTER 2. COMPLEXITY ANALYSIS

2.3.5 A General NP-Hardness Result

We say that a graph has a tail if it contains a pair of adjacent vertices, one of degree

two and the other of degree one. In this section we prove that deletion problems

are NP-hard with respect to any property that can be characterized by any set of

connected triangle-free forbidden induced subgraphs, one of the smallest of which

(in terms of the number of vertices) has a tail. We call the set of such properties

Q. Examples for graphs with property q ∈ Q include cluster graphs, cographs,

threshold graphs and trivially perfect graphs.

Theorem 2.3.7 The Π-Deletion problem is NP-hard with respect to any property

in Q.

Proof: By reduction from 3X3C, similar to that in Theorem 2.3.6. We use the

same notation and constants as in the proof of Theorem 2.3.6. Let Π be a graph

property in Q and let H be a copy of a smallest forbidden subgraph for Π which

has a tail. Let V (H) = {a1, . . . , ah}, where a1, a2 form a tail of H , the degree of a1

is one, and a3 is the other neighbor of a2. Given an instance < C, U > of 3X3C we

build a graph G = (V, E) as follows:

V =
⋃

S∈C

{v1(S), . . . , vm(S)} ∪ U ∪ V4 ,

E = E1 ∪ E2 ∪E3 ∪ E4 ,

E1 = {(vi(S), u) : S ∈ C, 1 ≤ i ≤ m, u ∈ S} ,

E2 = {(vi(S), vj(S)) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} .

The vertex set V4 comprises h− 4 subsets A4(S), . . . , Ah(S) of m2 vertices, for each

set S ∈ C. We let A3(S) ≡ VS = {v1(S), . . . , vm(S)}. The edge set E4 comprises

the following edges: (1) For every a, b ∈ Ai(S), a �= b we have (a, b) ∈ E4 for

4 ≤ i ≤ h,S ∈ C; and (2) for every a ∈ Ai(S), b ∈ Aj(S) we have (a, b) ∈ E4 if

(ai, aj) ∈ E(H), i, j ≥ 3,S ∈ C. In words, for every triple S we form a clique around

S, add a clique A3(S) of size m and h − 4 additional cliques of size m2, and fully

connect every pair of cliques whose corresponding vertices in H are connected. We

also fully connect S and A3(S). We prove that there is an exact cover of U if and

only if there is a Π deletion set for G of size at most N + M :

2.3. NP-HARD MODIFICATION PROBLEMS 37

⇒ Suppose that I ⊆ C is an exact cover of U . Let F1 = {(vi(S), u) : S �∈
I, 1 ≤ i ≤ m, u ∈ S} and let F2 = {(u, u′) ∈ E3 :� ∃S ∈ I s.t. u, u′ ∈ S}. Let

G′ = (V, E \F), where F = F1∪F2. It is easy to verify that |F | = |F1|+ |F2| =
N +M . Moreover, any triangle-free connected induced subgraph J of G′ must

have all its vertices in some S ∪A3(S)∪ . . .∪Ah(S) for the same S due to the

connectivity requirement. Hence, either |J | = 2 or J can have at most one

member in each of S, A3(S), . . . , Ah(S) and at most h−1 members in total. It

follows that no triangle-free connected induced subgraph of G′ is isomorphic

to a forbidden subgraph of Π, so F is a Π deletion set for G as required.

⇐ Let F be a Π deletion set of size at most N + M . Let G′ = (V, E \ F). As

shown in the proof of Theorem 2.3.6, N + M < m2. We first claim that for

every S ∈ C and for every a ∈ A3(S) there exist vertices ai(S) ∈ Ai(S),

i = 4 . . . h such that the subgraph Ha(S) of G′ induced by these vertices and

a is isomorphic to H \ {a1, a2}. For proof, consider first the original graph

G. The subgraph induced on A4(S) ∪ . . . ∪Ah(S) contains m2 vertex-disjoint

copies of H \ {a1, a2, a3} (with each ai ∈ H matching some vertex in Ai(S)).

Hence, the subgraph induced on {a} ∪ A4(S) ∪ . . . ∪ Ah(S) contains at least

m2 edge-disjoint copies of H \ {a1, a2}. Since |F | < m2, at least one of these

copies remains intact in G′. This completes the proof of the claim.

Suppose now that u ∈ U is connected in G′ to the S-vertices of two subsets.

Specifically, suppose u is connected to some a ∈ VS1 and b ∈ VS2 for S1 �= S2.

Then Ha(S1),u and b constitute a subgraph isomorphic to H , with b and u

forming the tail, a contradiction. We conclude that every u ∈ U is connected

in G′ to the S-vertices of at most one subset S. This implies that at least

N = m(q − 3n) edges must have been deleted between U and S-vertices.

Furthermore, since |F | ≤ N + M ≤ N + 6n, we conclude that each u ∈ U is

adjacent to some S-vertices of exactly one subset S.

Similarly, if u ∈ U is adjacent to vertices of S and u′ ∈ U is adjacent to vertices

of S ′ �= S in G′, then (u, u′) �∈ E(G′). Using the same arguments as in the

proof of Theorem 2.3.6 we conclude that |F | ≥ N + M with equality if and

only if there is an exact cover of U .

Corollary 2.3.8 Trivially Perfect Deletion is NP-complete.

38 CHAPTER 2. COMPLEXITY ANALYSIS

We note that the NP-completeness of Trivially Perfect Completion follows from

the reduction of Yannakakis from Chain Completion to Chordal Completion [194].

2.4 Polynomial Algorithms

2.4.1 2-Cluster Deletion

We give in this section a linear-time algorithm for 2-Cluster Deletion. Let G = (V, E)

be an input graph. Without loss of generality, G is connected as, otherwise, either

G is already a 2-cluster graph or we output False. The algorithm is summarized in

Figure 2.1.

Let G be the complement graph of G having t connected components.

For every component Ci of G do:

If Ci is not bipartite then output False and halt.

Else find a bipartition (Ai, Bi) of Ci such that |Ai| ≥ |Bi|.
Output the deletion set that corresponds to (A1 ∪ . . . ∪At, B1 ∪ . . . ∪Bt).

Figure 2.1: An algorithm for 2-Cluster Deletion.

Theorem 2.4.1 The algorithm solves 2-Cluster Deletion in O(n + |E(G)|) time.

Proof: Correctness: Since the complement of a 2-cluster graph is a complete

bipartite graph, a solution exists if and only if G is bipartite. Hence, the algorithm

outputs False if and only if no solution exists. Moreover, the partition produced

by the algorithm has the property that if two vertices are assigned to the same set

then they are adjacent. Therefore, the set of edges F returned by the algorithm is

a 2-Cluster deletion set of G. It suffices to prove that F is optimum.

Denote S1 = A1 ∪ . . . ∪ At and S2 = B1 ∪ . . . ∪ Bt. By the algorithm, F is the

set of edges in G with one endpoint in S1 and the other in S2. Therefore,

|F | = |ES1,S2| = |S1||S2| −E(G) = |S1|(n− |S1|)− E(G).

Let F ∗ be an optimum 2-deletion set of G, and let P (F ∗) = (S∗
1 , S

∗
2), where |S∗

1 | ≤
|S∗

2 |. Then |F ∗| = |S∗
1 |(n−|S∗

1 |)−E(G). For every i ≤ t, either Ai ⊆ S∗
1 or Bi ⊆ S∗

1

2.4. POLYNOMIAL ALGORITHMS 39

and, therefore, |S1| ≤ |S∗
1 | ≤ n/2. It follows that |F | ≤ |F ∗|, so F is an optimum

2-deletion set of G.

Complexity: The bottleneck in the complexity of the algorithm is computing

the connected components of G and finding a bipartition for each of them. Both

these operations can be performed in O(n + |E(G)|) time.

2.4.2 Bounded Degree Graphs

In this section we give polynomial algorithms for Chain Deletion and Editing, Split

Deletion, and Threshold Deletion and Editing, when restricted to bounded degree

graphs. These results are derived by observing that for these properties the search

space becomes bounded when the problem is restricted to bounded degree graphs.

For the results concerning editing problems we need the following lemma:

Lemma 2.4.2 ([148]) Let Π be a hereditary graph property such that if G = (V, E)

satisfies Π then G′ = (V, E \ E{v},N(v)) satisfies Π for every v ∈ V (i.e., the prop-

erty remains satisfied if we remove all the edges incident on a vertex v). Then an

optimum solution of Π-Editing on a d-degree bounded graph produces a graph with

degree bounded by 2d.

Proof: The lemma follows by noting that it is never beneficial to add more than d

edges incident on the same vertex, since one could instead make that vertex isolated

by modifying fewer edges.

Proposition 2.4.3 Chain Deletion and Chain Editing can be solved in polynomial

time on bounded degree graphs.

Proof: Let G be an input d-degree bounded graph. Observe that a chain graph

with degree bounded by d has at most 2d vertices with degree at least one. Hence, a

maximum chain subgraph of G has at most 2d vertices with degree at least one. This

set of vertices can be found by complete enumeration in polynomial time. Similarly,

by Lemma 2.4.2 an optimum solution to the editing problem produces a 2d-degree

bounded graph, which has at most 4d vertices with degree at least one. Hence, we

40 CHAPTER 2. COMPLEXITY ANALYSIS

can find this set of vertices (and derive the optimum editing set) in polynomial time.

Theorem 2.4.4 Split Deletion can be solved in polynomial time on bounded degree

graphs.

Proof: Observe that a d-degree bounded split graph has a maximum clique of size

at most d + 1. Hence, one can enumerate all possible partitions of the vertex set of

the graph into a clique and an independent set in polynomial time.

Theorem 2.4.5 Threshold Deletion and Threshold Editing can be solved in polyno-

mial time on bounded degree graphs.

Proof: Let G = (V, E) be an input d-degree bounded graph. An optimum thresh-

old deletion set produces a graph with degree bounded by d. By Lemma 2.4.2,

an optimum threshold editing set produces a graph with degree bounded by 2d.

Hence, one can enumerate all partitions of V into a clique of size at most d + 1 (or

2d + 1) and an independent set in polynomial time, and for each bipartition solve

a chain modification problem on the corresponding bipartite graph using the result

of Proposition 2.4.3.

Note the differences between the definition of chain modification problems, in

which the bipartition is part of the input, vs. threshold and split modification

problems, in which the partition is unknown. We followed here the footsteps of

Yannakakis, who defined Chain Completion in the bipartite setting [194]. If the

bipartition is known, then split modification problems become trivial or meaningless:

The clique side should be made full, and the independent set side should be made

edge-less. Similarly, in threshold modification problems, the two sides must be

transformed into a clique and an independent set, and the remaining problem is

precisely chain modification.

2.5 Approximating 2-Cluster Editing

In this section we study the problem of transforming a graph into a 2-cluster graph

such that the total weight of unedited vertex pairs is maximized. We call this

2.6. INAPPROXIMABILITY RESULTS 41

problem Weighted 2-Cluster Editing. Its NP-completeness follows from the NP-

completeness of 2-Cluster Editing. We give a 0.878-approximation algorithm for

this problem.

Let G = (V, E, w) be an input weighted graph. We define the following semi-

definite relaxation of Weighted 2-Cluster Editing:

max
1

2
[

∑
(i,j)∈E

(wij(1 + vi · vj)) +
∑

(i,j)�∈E

(wij(1− vi · vj))]

s.t. vi ∈ Sn ∀i

We claim that this is indeed a relaxation of Weighted 2-Cluster Editing, that is,

for every 2-partition P = (A, B) of G there exist vectors v1, . . . , vn ∈ Sn such that

the total weight of unedited vertex pairs as implied by P is 1
2
[
∑

(i,j)∈E(wij(1 + vi ·
vj)) +

∑
(i,j)�∈E(wij(1− vi · vj))]. Indeed, let (A, B) be a 2-partition of G. Let v0 be

any unit vector in Sn. For every i ∈ A set vi = v0, and for every i ∈ B set vi = −v0.

The claim follows.

Our approximation algorithm solves this semi-definite relaxation and then rounds

the solution obtained by choosing a random hyperplane with normal z, and assigning

vertex i to A if and only if vi · z > 0.

Theorem 2.5.1 The algorithm approximates Weighted 2-Cluster Editing with an

expected approximation ratio of 0.878.

Proof: Follows directly from [79, Theorem 6.1].

2.6 Inapproximability Results

In this section we prove that it is NP-hard to approximate Cluster Deletion to within

some constant factor. The proof is via a gap preserving reduction from a restricted

version of SET-COVER which is defined next:

Problem 2 (Minimum Restricted Exact Cover (REC))

Instance: A set of elements U = {u1, . . . , ut}, and a collection C of subsets of U

which satisfies the following conditions:

42 CHAPTER 2. COMPLEXITY ANALYSIS

• ⋃
S∈C S = U .

• There exists a constant k1 > 0 such that for each S ∈ C, |S| ≤ k1.

• There exists a constant k2 > 0 such that for all u ∈ U , |{S ∈ C : u ∈ S}| ≤ k2.

• If S ∈ C and S ′ ⊂ S then S ′ ∈ C.

Goal: Find a sub-collection I ⊆ C of minimum cardinality, such that
⋃

S∈I S = U ,

and the sets in I are pairwise-disjoint.

Note that the first and last conditions guarantee that a solution to REC always

exists.

Lemma 2.6.1 REC is MAX-SNP complete.

Proof: By a simple L-reduction from a restriction of SET-COVER in which the

size of every set is bounded and each element occurs in a bounded number of sets.

This latter problem is known to be MAX-SNP complete [154].

Corollary 2.6.2 There exists some constant δREC > 0 such that it is NP-hard to

approximate REC to within a factor of 1 + δREC .

A gap preserving reduction is defined as follows (cf. [105]): Let Π and Π′ be two

minimization problems. A gap preserving reduction from Π to Π′ with parameters

(c, ρ), (c′, ρ′) is a polynomial time algorithm f . For each instance I of Π, algorithm

f produces an instance I ′ = f(I) of Π′. The optima of I and I ′, denoted by opt(I)

and opt(I ′) respectively, satisfy the following properties:

opt(I) ≤ c ⇒ opt(I ′) ≤ c′ (2.1)

opt(I) > ρc ⇒ opt(I ′) > ρ′c′ (2.2)

Here c, ρ are functions of |I|, c′, ρ′ are functions of |I ′|, and ρ, ρ′ ≥ 1.

A gap preserving reduction can be used to prove inapproximability results as

follows (cf. [105]): Suppose that it is NP-hard to approximate Π to within a factor

of ρ. Then the reduction shows that it is NP-hard to approximate Π′ to within a

factor of ρ′.

2.6. INAPPROXIMABILITY RESULTS 43

Theorem 2.6.3 There exists some constant ε > 0 such that it is NP-hard to ap-

proximate Cluster Deletion to within a factor of 1 + ε.

Proof: By a gap preserving reduction from REC with the parameters (c, 1 +

δREC),(c′, 1 + ε): Let IREC =< U, C > be an instance of REC, and let |U | = t.

Suppose that each set in C has size at most k1, and each element occurs in at most

k2 sets. Let m =
k2
1k2

δREC
and let q =

∑
S∈C |S|. We build an instance ICD =< G =

(V, E) > of Cluster Deletion as follows:

V =
⋃

S∈C

{v1(S), . . . , vm(S), w(S)} ∪ U ,

E = E1 ∪ E2 ∪E3 ∪ E4 ,

E1 = {(vi(S), u) : S ∈ C, 1 ≤ i ≤ m, u ∈ S} ,

E2 = {(vi(S), vj(S)) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} ,

E4 = {(vi(S), w(S)) : S ∈ C, 1 ≤ i ≤ m} .

In words, for each S ∈ C we form a clique on S and a set of m new vertices

VS = {v1(S), . . . , vm(S)}, and also connect all the new vertices to a single extra

vertex w(S). Note that |E3| ≤ (k1 − 1)k2t/2 < k1k2t/2 and q ≤ k2t. Clearly,

t/k1 ≤ opt(IREC) ≤ t. Let c be any constant such that t/k1 ≤ c ≤ t. Define

c′ ≡ (q − t + c)m + |E3| and ε ≡ δREC

2k1k2+δREC
. We prove that this reduction is gap

preserving:

1. Suppose that opt(IREC) ≤ c. Let I ⊆ C be an exact cover of U , |I| ≤ c. Let

Ī = C \ I. For u ∈ U denote by Iu the set in I which contains u.

To obtain a cluster subgraph G′ of G we delete the following edges:

(a) For all S ∈ Ī , u ∈ S delete all the edges in EVS ,{u}.

(b) For all S ∈ I delete all the edges in EVS ,{w(S)}.

(c) For all u ∈ U, u′ ∈ U \ Iu delete the edge (u, u′) if it exists.

Clearly, G′ is a cluster graph and, therefore, opt(ICD) ≤ (q−t+c)m+|E3| = c′.

2. Suppose that opt(IREC) > (1+δREC)c. We can make the following observations

with respect to opt(ICD):

44 CHAPTER 2. COMPLEXITY ANALYSIS

(a) In any cluster subgraph of G, every u ∈ U is adjacent to vertices in VS

for at most one set S ∈ C. Therefore, opt(ICD) ≥ (q − t)m.

(b) There exists an optimum solution F of ICD for which: If a vertex u ∈ U is

adjacent to a vertex of VS in (V, E \F), for some S ∈ C, then F contains

all the edges in EVS ,{w(S)}. Indeed, if F ′ is a cluster deletion set such that

u1, . . . , ur (1 ≤ r ≤ k1) are adjacent to a vertex of VS in (V, E \F ′), then

F ′′ = (F ′∪EVS ,{w(S)}) \ (
⋃r

i=1 EVS ,{ui}∪{vi(S), vj(S) : i �= j}) is also such

a cluster deletion set, and |F ′′| ≤ |F ′|. Examine now F . For each u ∈ U ,

either EV \U,{u} ⊆ F or there exists a single set S ∈ C such that EVS ,{u} �⊆
F and EVS ,{w(S)} ⊆ F . Let k be the number of vertices u ∈ U for which

the latter case applies, and let T be the collection of all sets S such that

(vi(S), u) ∈ E \F for some u ∈ U, i. It follows that |F | ≥ (q−k + |T |)m.

The sets in T cover k elements of U , so |T | ≥ opt(IREC)− (t− k). Thus,

we have opt(ICD) ≥ (q − t + opt(IREC))m > (q − t + (1 + δREC)c)m.

We conclude that

opt(ICD) > (q − t + (1 + δREC)c)m = c′ + (δRECcm− |E3|)

> c′(1 +
δRECcm− |E3|

qm + |E3|
) > c′(1 +

δREC(t/k1)m− k1k2t/2

k2tm + k1k2t/2
)

= c′(1 +
2δRECm/k1 − k1k2

2k2m + k1k2

) = c′(1 +
δREC

2k1k2 + δREC

)

= c′(1 + ε) .

Chapter 3

Approximating the Minimum

Fill-In

In this chapter we study the minimum fill-in problem, which calls for finding a min-

imum triangulation of a given graph. The problem has important applications in

numerical algebra and has been studied intensively since the 1970s. We give the first

polynomial approximation algorithm for the problem. Our algorithm constructs a

triangulation whose size is at most eight times the optimum size squared. The algo-

rithm builds on the recent parameterized algorithm of Kaplan, Shamir and Tarjan

for the same problem. For bounded degree graphs we give a polynomial approx-

imation algorithm with a polylogarithmic approximation ratio. Furthermore, we

improve the parameterized algorithm. We also derive an approximation algorithm

for Chain Completion.

This study was published in [149].

3.1 Introduction

For a non-chordal graph G, a chordal completion set F is called a fill-in or a tri-

angulation of G. If |F | ≤ k then F is called a k-triangulation of G. We denote by

Φ(G) the size of the smallest fill-in of G.

In the minimum fill-in problem one has to find a minimum triangulation of a

given graph. The importance of the problem stems from its applications to numerical

45

46 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

algebra. In many fields, including VLSI simulation, solution of linear programs,

signal processing and others (cf. [55]), one has to perform a Gaussian elimination

on a sparse symmetric positive-definite matrix. During the elimination process zero

entries may become non-zeroes. Different elimination orders may introduce different

sets of new non-zero elements into the matrix. The time of the computation and

its storage needs depend on the sparseness of the matrix. It is therefore desirable

to find an elimination order such that a minimum number of zero entries is filled-in

with non-zeroes (even temporarily). Rose [164] proved that the problem of finding

an elimination order for a symmetric positive-definite matrix M , such that fewest

new non-zero elements are introduced, is equivalent to the minimum fill-in problem

on a graph whose vertices correspond to the rows of M and in which (i, j) is an edge

if and only if Mi,j �= 0.

Due to its importance the problem has been studied intensively [27, 73, 74, 169],

and many heuristics have been developed for it [43, 75, 153, 164]. None of those

gives a performance guarantee with respect to the size of the fill-in introduced. Note

that in contrast, the minimal fill-in problem (finding a a triangulation of G which

is minimal with respect to inclusion) is polynomial [152].

Approximation attempts succeeded only for the related minimum triangulated

supergraph problem (MTS). In MTS the goal is to add edges to the input graph

in order to obtain a chordal graph with minimum total number of edges. While

as optimization problems MTS and minimum fill-in are equivalent, they may differ

drastically as approximation problems. For example, if the input graph has Ω(n2)

edges and fill-in of size o(n2) then one can trivially achieve a constant approxima-

tion ratio for MTS by making the graph an n-clique (a complete graph), while no

such approximation guarantee exists for the minimum fill-in problem. The approx-

imation results regarding MTS use the nested dissection heuristic, which was first

proposed by George [72] (see [74] for details). Gilbert [78] showed that for a graph

with maximum degree d there exists a balanced separator decomposition such that

a nested dissection ordering based on that decomposition yields a chordal super-

graph, in which the number of edges is within a factor of O(d logn) of optimal. The

result was not constructive as one has yet to find such a decomposition. Leighton

and Rao [127] gave a polynomial approximation algorithm for finding a balanced

separator in a graph of size within a factor of O(log n) of optimal. Agrawal, Klein

and Ravi [5], using Gilbert’s ideas and the result of [127], obtained a polynomial

approximation algorithm with ratio O(
√

d log4 n) for MTS on graphs with maximum

3.1. INTRODUCTION 47

degree d. They also gave a polynomial approximation algorithm for MTS on gen-

eral graphs, which generates for an input graph G a chordal supergraph with total

number of edges O((m + Φ(G))3/4
√

m log3.5 n).

In the parametric fill-in problem the input is a graph G and a parameter k. The

goal is to find a k-triangulation of G, or to determine that none exists. Kaplan,

Shamir and Tarjan [118] and later independently Cai [28] proved that the minimum

fill-in problem is fixed parameter tractable, by giving an algorithm of complexity

2O(k)m for the problem. Both used the same algorithm, with the time bound in [28]

being slightly tighter. Kaplan, Shamir and Tarjan also gave a more efficient 2O(k) +

O(k2nm)-time algorithm (henceforth, KST algorithm) for the problem.

Here we give the first polynomial approximation algorithm for the minimum fill-

in problem. Our algorithm builds on ideas from [118]. For an input graph G with

minimum fill-in of size k, our algorithm produces a triangulation of size at most 8k2

– within a factor of 8k of optimal. The approximation is achieved by identifying in

G a kernel set of vertices A of size at most 4k, such that one can triangulate G by

adding edges only between vertices of A. Our algorithm produces the triangulation

without prior knowledge of k. Let M(n) denote the number of operations needed

to multiply two integer matrices of order n× n (the current upper bound on M(n)

is O(n2.376) [36]). The algorithm works in time O(knm + min{n2M(k)/k, nM(n)}),
which makes it potentially suitable for practical use.

Our algorithm is particularly attractive for small fill-in values. Note that if

k = Ω(n) then our algorithm guarantees only the trivial bound of fill-in size – O(n2),

but if for example the fill-in size is constant then the approximation guarantee is a

constant.

We also obtain better approximation results for bounded degree graphs. For

graphs with maximum degree d we give a polynomial algorithm which achieves an

approximation ratio of O(d2.5 log4(kd)). Since k = O(n2) this approximation ratio

is polylogarithmic in the input size.

In order to compare our results to the approximation results regarding MTS,

we translate the latter to approximation ratios in terms of the fill-in obtained. We

assume throughout that m > n. For general graphs the algorithm in [5] guar-

antees that the number of edges in the chordal supergraph obtained is O((m +

k)3/4
√

m log3.5 n). In terms of the fill-in size, the approximation ratio achieved is

O(m1.25 log3.5 n/k+
√

m log3.5 n/k1/4). We obtain a better approximation ratio when-

48 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

ever k = O(m5/8 log1.75 n). For graphs with maximum degree d, the algorithm in [5]

achieves an approximation ratio of O(((nd + k)
√

d log4 n)/k). We provide a better

ratio when k = O(n/d). When any of these upper bounds on k is satisfied, our

algorithm also achieves a better approximation ratio than [5] for the MTS problem.

Kaplan, Shamir and Tarjan posed in [118] an open problem of obtaining an

algorithm for the parametric fill-in problem with time 2O(k) + O(km). The moti-

vation is to match the performance of the 2O(k)m algorithm for all k. We make

some progress towards solving that problem by providing a faster 2O(k) + O(knm +

min{n2M(k)/k, nM(n)})-time implementation of their algorithm. We also give a

variant of the algorithm which produces a smaller kernel. Finally, we apply our

approximation algorithm to Chain Completion and obtain an approximation ratio

of 8k, where k denotes the size of an optimum solution.

The chapter is organized as follows: Section 3.2 contains a description of KST

algorithm and some background. Section 3.3 improves the complexity of KST algo-

rithm and reduces the size of the kernel produced. Section 3.4 describes our approx-

imation algorithm for the minimum fill-in problem on general graphs. Section 3.5

gives an approximation algorithm for graphs with bounded degree. Section 3.6 gives

further reduction of the kernel size, and Section 3.7 gives an approximation algo-

rithm for Chain Completion.

3.2 Preliminaries

Our polynomial approximation algorithm for the minimum fill-in problem builds on

KST algorithm [118]. In the following we describe this algorithm. Our presentation

generalizes that in [118], in order to allow succinct description of the approximation

algorithm in Section 3.4.

Fact 3.2.1 A minimal triangulation of a chordless l-cycle consists of l−3 edges.

Lemma 3.2.2 [118, Lemma 2.5] Let C be a chordless cycle and let p be an l-path

on C, 1 ≤ l ≤ |C|−2. If l = |C|−2 then in every minimal triangulation of C there

are at least l−1 chords incident to vertices of p. If l < |C|−2 then in every minimal

triangulation of C there are at least l chords incident to vertices of p.

3.2. PRELIMINARIES 49

Let < G = (V, E), k > be an input for the parametric fill-in problem. The

algorithm has two main stages. In the first stage, which is polynomial in n, m and

k, the algorithm produces a partition (A, B) of V and a set F of non-edges in GA,

such that |A| = O(k3) and no chordless cycle in G′ = (V, E ∪ F) intersects B. We

shall call this stage the partition algorithm.

In the second stage, which is exponential in k, an exhaustive search is applied

to find a minimum triangulation F ′ of G′
A. F ∪ F ′ is then proved to be a minimum

triangulation of G. The search procedure can be viewed as traversing part of a search

tree T , which is defined as follows: Each tree node v corresponds to a supergraph

G(v) of G. For the root r, G(r) = G. Each leaf of T corresponds to a chordal

supergraph of G. At an internal node v, a chordless cycle C in G(v) is identified.

For each minimal triangulation FC of C, a node u is added as a child of v, and its

corresponding graph G(u) is obtained by adding FC to G(v). The algorithm visits

only nodes v of T for which |E(G(v)) \ E| ≤ k. If such a node is a leaf, then the

search terminates successfully. Otherwise, no k-triangulation exists for G.

The partition algorithm applies sequentially the following three procedures. All

three maintain a partition (A, B) of V and a lower bound cc on the minimum number

of edges needed to triangulate G. Initially A=∅, B=V and cc=0.

• Procedure P1(k): Extracting independent chordless cycles. Search repeatedly

for chordless cycles in GB and move their vertices from B to A. For each

chordless l-cycle found, increment cc by l− 3. If at any time cc > k, stop and

declare that the graph admits no k-triangulation.

• Procedure P2(k): Extracting related chordless cycles with independent paths.

Search repeatedly for chordless cycles in G containing at least two consecutive

vertices from B. Let C be such a cycle, |C| = l. If l > k + 3 stop with a

negative answer. Otherwise, suppose that C contains j ≥ 1 disjoint maximal

sub-paths in GB, each of length at least 1. Move the vertices of those sub-

paths from B to A. Denote their lengths in non-increasing order by l1, . . . , lj .

If j = 1 we increase cc either by l1−1 if l1 = l−2, or by l1 if l1 <l−2. Otherwise,

cc is increased by max{1
2

∑j
i=1 li, l1}. If at any time cc > k, stop and declare

that the graph admits no k-triangulation.

Definition 3.2.3 For every x, y ∈ A such that (x, y) �∈ E, denote by Ax,y the set of

all vertices b ∈ B such that x, b, y occur consecutively on some chordless cycle in G.

50 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

If |Ax,y| > 2k then (x, y) is called a k-essential edge.

• Procedure P3(k): Adding k-essential edges in GA. For every x, y ∈ A such

that (x, y) �∈ E compute the set Ax,y. If (x, y) is k-essential, then add it to G.

Otherwise, move all vertices in Ax,y from B to A.

Denote by Ai, Bi the partition obtained after procedure Pi is completed, for

i = 1, 2, 3. We shall omit the index i when it is clear from the context. Denote by

cci the value of cc after procedure Pi is completed, for i = 1, 2. The size of A2 is at

most 4k since k ≥ cc2 = cc1 + (cc2 − cc1) ≥ 1
4
|A1| + 1

2
|A2 \ A1| ≥ 1

4
|A2|. The size

of A3 is O(k3) since there are O(k2) non-edges in GA2 and the number of vertices

moved to A due to any such non-edge is at most 2k.

Execute procedure P1(k).

Execute procedure P2(k).

Execute procedure P3(k).

Figure 3.1: KST partition algorithm.

The partition algorithm is summarized in Figure 3.1. Let G′ denote the graph

obtained after the execution of procedure P3. Kaplan, Shamir and Tarjan prove that

every k-essential edge must appear in any k-triangulation of G [118, Lemma 2.7],

and that in G′ no chordless cycle intersects B [118, Theorem 2.10]. The following

theorem shows that it suffices to search for a minimum triangulation of G′
A.

Theorem 3.2.4 [118, Theorem 2.13] Let A, B be a partition of the vertex set of a

graph G, such that the vertices of every chordless cycle in G are contained in A.

A set of edges F is a minimal triangulation of G if and only if F is a minimal

triangulation of GA.

The complexity of the partition algorithm is O(k2nm) [118]. The complexity of

finding a minimum triangulation of a given graph is O(4k

(k+1)3/2 m) [28]. Since G′
A

contains O(k6) edges, a minimum triangulation of G′
A can be found in O(k4.54k)

time. Hence, the complexity of KST algorithm is O(k2nm + k4.54k).

3.3. IMPROVEMENTS TO THE PARTITION ALGORITHM 51

3.3 Improvements to the Partition Algorithm

In this section we show some improvements to KST partition algorithm. We assume

throughout that the input is < G = (V, E), k >. We first show how to implement

procedure P3 in O(nm+min{n2M(k)/k, nM(n)})-time. We then prove that the size

of A3 is only O(k2). These results imply that KST algorithm can be implemented

in O(knm + min{n2M(k)/k, nM(n)} + k2.54k)-time.

Lemma 3.3.1 Procedure P3 can be implemented in O(nm+min{n2M(k)/k, nM(n)})
time.

Proof: Let S = {(x, y) �∈ E : x, y ∈ A2}. The bottleneck in the complexity of P3

is computing the sets Ax,y for every (x, y) ∈ S. To this end, we find for every b ∈ B

all pairs (x, y) ∈ S such that b ∈ Ax,y. We then construct the sets Ax,y. This is done

as follows:

Fix b ∈ B. Compute the connected components of Gb = G \ N [b]. This takes

O(m) time. Denote the connected components of Gb by Cb
1, . . . , C

b
l . For each x ∈

A2 ∩N(b) compute a binary vector 	vx = (vx
1 , . . . , vx

l) such that vx
j = 1 if and only if

Cb
j contains a neighbor of x, 1 ≤ j ≤ l. Each vector can be computed in O(n) time.

Let k′ = |A2∩N(b)|. Number the vertices in A2∩N(b) arbitrarily according to some

1-1 mapping σ : {1, . . . , k′} → A2 ∩N(b). Define a k′ × l boolean matrix M whose

i-th row is the vector 	vσ(i), 1 ≤ i ≤ k′. Note that k′ = O(min{k, n}) and l ≤ n.

Let M∗ = MMT . It can be seen that for every pair (i, j) such that 1 ≤ i < j ≤ k′

and (σ(i), σ(j)) ∈ S, M∗
i,j ≥ 1 if and only if b ∈ Aσ(i),σ(j). Since k′, l ≤ n we can

compute M∗ in O(M(n)) time. If k = o(n) then we can compute M∗ in O(nM(k)/k)

time by partitioning M and MT into �n/k′� submatrices of order at most k′ × k′,

multiplying corresponding pairs of sub-matrices, and summing the results. Hence,

the computation of M∗ takes O(min{nM(k)/k, M(n)}) time.

After the above calculations are performed for every b ∈ B, it remains to compute

the sets Ax,y. We can do that in O(min{k2n, n3}) time. The total time is therefore

O(nm + min{n2M(k)/k, nM(n)}).

Observation 3.3.2 Let x, y ∈ A2, (x, y) �∈ E. If Ax,y �= ∅ then for any triangulation

F of G, either (x, y) ∈ F or for every b ∈ Ax,y, F contains an edge incident to b.

52 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

Lemma 3.3.3 Assume that G admits a k-triangulation. If in procedure P3 all sets

Ax,y that are moved into A have size at most d, then |A3 \ A2| ≤ Mk, where M =

max{d, 2}.

Proof: Let the non-edges in GA2 be (x1, y1), . . . , (xl, yl). We process the sets

Ax1,y1, . . . , Axl,yl
in this order. Let A(0) = A2. Let A(i) be the set A right after Axi,yi

was processed, and let Δi = Axi,yi
\ A(i−1), for 1 ≤ i ≤ l.

Let t be a lower bound on the minimum number of edges needed to triangulate G.

Initially P3 starts with t = 0. Let ti be the value of t right after Axi,yi
was processed

(t0 = 0). If Δi �= ∅ then by Observation 3.3.2 t should increase by min{1, |Δi|/2}.
We must maintain t ≤ k. If ti−ti−1 =0 then |Δi| = 0. If ti−ti−1 =1/2 then |Δi| = 1.

If ti−ti−1≥1 then |Δi| ≤ d. Therefore for all 1 ≤ i ≤ l, |Δi| ≤M(ti − ti−1). Now,

|A3 \ A2| = |A(l) \ A(0)| =
l∑

i=1

|A(i) \ A(i−1)| =
l∑

i=1

|Δi| ≤M
l∑

i=1

(ti − ti−1)

= M(t− t0) ≤Mk .

Corollary 3.3.4 If G admits a k-triangulation, then the partition algorithm termi-

nates with |A| ≤ 2k(k + 2).

Proof: Let us assume that all k-essential edges were added to G, and denote the

new set of edges of G by E ′. For all x, y ∈ A2, (x, y) �∈ E ′ we have |Ax,y| ≤ 2k. By

Lemma 3.3.3, |A3 \ A2| ≤ 2k2. Since |A2| ≤ 4k the corollary follows.

Theorem 3.3.5 KST algorithm takes O(knm + min{n2M(k)/k, nM(n)} + k2.54k)

time.

Proof: By the analysis in [118] P1 takes O(km) time and P2 takes O(knm) time.

By Lemma 3.3.1 the complexity of P3 is O(nm + min{n2M(k)/k, nM(n)}). By

Corollary 3.3.4, if G admits a k-triangulation then the size of A3 is O(k2). Hence, a

minimum triangulation of G′
A can be found in O(k2.54k) time [28]. The complexity

follows.

3.4. THE APPROXIMATION ALGORITHM 53

3.4 The Approximation Algorithm

Let G = (V, E) be the input graph. Let kopt = Φ(G). The key idea in our approx-

imation algorithm is to find a set of vertices A ⊆ V , such that |A| = O(kopt) and

one can triangulate G by adding edges only between vertices of A. Since there are

O(k2
opt) non-edges in GA, we achieve an approximation ratio of O(kopt).

In order to find such a set A we use ideas from the partition algorithm. If we knew

kopt we could execute the partition algorithm and obtain a set A, with |A| = O(k2
opt)

(by Corollary 3.3.4), such that G can be triangulated by adding edges only between

vertices of A. This would already give an O(k3
opt) approximation ratio.

Before describing our algorithm we analyze the role of the parameter k given

to the partition algorithm. If k < kopt then the algorithm might stop during P1

or P2 and declare that no k-triangulation exists. Moreover, k-essential edges are

not necessarily kopt-essential. If k > kopt then the size of A may be ω(k2
opt). The

approximation algorithm is shown in Figure 3.2.

Algorithm APPROX

Procedure P ′
1: Execute P1(∞).

Procedure P ′
2: Execute P2(∞).

Procedure P ′
3: Execute P3(0).

Let G′ be the resulting graph.

Procedure P ′
4: Find a minimal triangulation of G′

A.

Figure 3.2: The approximation algorithm.

Procedures P ′
1 and P ′

2 execute P1 and P2 respectively, without bounding the size

of the triangulation implied. Procedure P ′
3 takes advantage of the fact that we no

longer seek a minimum triangulation, but rather a minimal one. In order to obtain

our approximation result we want to keep A as small as possible. Hence, instead

of moving new vertices to A we add new 0-essential edges accommodating for those

vertices. By the same arguments as in [118] and Section 3.2, the size of A after

the execution of P ′
2 is at most 4kopt. Since P ′

3 does not add new vertices to A, its

size remains at most 4kopt throughout. The size of the triangulation found by the

algorithm is therefore at most 8k2
opt− 2kopt. The correctness of algorithm APPROX

is established in the sequel. We need the following lemma which is implied by the

54 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

proof of [118, Lemma 2.9]. The subsequent theorem is a generalization of [118,

Theorem 2.10].

Lemma 3.4.1 Let G = (V, E) be a graph and let v ∈ V . Let F be a set of non-

edges in G \ {v}, such that each e = (x, y) ∈ F is a chord in a chordless cycle

Ce = (x, ze, y, . . . , x) in G, where ze is not an endpoint of any edge in F . Let

G′ = (V, E ∪ F). If there exists a chordless cycle C in G′ with v1, v, v2 occurring

consecutively on C, for some v1, v2 ∈ N(v), then either there exists a chordless cycle

in G on which v1, v, v2 occur consecutively, or there exists a chordless cycle in G on

which v and ze occur consecutively, for some e ∈ F .

Theorem 3.4.2 Let G = (V, E) be a graph. Let A, B be a partition of V such

that no chordless cycle in G contains two consecutive vertices from B. Let S =

{(x, y) �∈ E : x, y ∈ A, Ax,y �= ∅}. Then for any choice of F ⊆ S no chordless cycle

in G′ = (V, E ∪ F) intersects B′ = B \ (
⋃

(x,y)∈S\F Ax,y).

Proof: Suppose to the contrary that C is a chordless cycle in G′ intersecting B′.

Let v ∈ C ∩ B′. Let v1 and v2 be the neighbors of v on C. Since v ∈ B′, it is not

an endpoint of any edge in F . Every edge e = (x, y) ∈ F is a chord in a chordless

cycle Ce = (x, ze, y, . . . , x) of G, where ze ∈ B. Applying Lemma 3.4.1 we find that

two cases are possible:

1. There exists a chordless cycle in G on which v1, v, v2 occur consecutively. If

v1 ∈ B or v2 ∈ B we arrive at a contradiction. Hence, v1, v2 ∈ A and v ∈ Av1,v2 .

We conclude that either (v1, v2) ∈ F or v �∈ B′, a contradiction.

2. There exists a chordless cycle in G on which v and ze occur consecutively (for

some e ∈ F), a contradiction.

Theorem 3.4.3 Let G be a graph and let kopt = Φ(G). The algorithm finds a

triangulation of G of size at most 8k2
opt − 2kopt, and can be implemented to run in

time O(koptnm + min{n2M(kopt)/kopt, nM(n)}).

Proof: Correctness: By Theorems 3.4.2 and 3.2.4 a minimal triangulation of

G′
A is a minimal triangulation of G′. Therefore, at the end of the algorithm G is

3.5. BOUNDED DEGREE GRAPHS 55

triangulated. Throughout the algorithm the only edges added to G are between

vertices of A. Since |A| ≤ 4kopt the size of the triangulation is at most 8k2
opt− 2kopt.

Complexity: The complexity analysis of procedures P1 and P2 in [118] im-

plies that P ′
1 and P ′

2 can be performed in O(koptnm) time. By Lemma 3.3.1 the

complexity of P ′
3 is O(nm + min{n2M(kopt)/kopt, nM(n)}). Procedure P ′

4 requires

finding a minimal triangulation of G′
A. Since |A| = O(min{kopt, n}) and |E(G′

A)| =
O(min{k2

opt, n
2}), this requires O(min{k3

opt, n
3}) time [152]. Hence, the total running

time is O(koptnm + min{n2M(kopt)/kopt, nM(n)}).

Note that although our analysis uses an upper bound of
(

t
2

)
for the triangulation

size of a t-vertex graph, replacing G′
A by the complete graph is not guaranteed to

produce a triangulation of G.

3.5 Bounded Degree Graphs

In order to improve the approximation ratio for bounded degree graphs, we improve

P ′
4. Instead of simply finding a minimal triangulation of G′

A, we use the triangulation

algorithm of Agrawal, Klein and Ravi [5]. This alone does not suffice to prove a

better approximation ratio, since adding 0-essential edges (in P ′
3) might not be

optimal. In other words, if we denote by F the set of 0-essential edges added to G

by P ′
3, then it might be that |F |+Φ(G′) > Φ(G). To overcome this difficulty we use

KST partition algorithm with k = ∞ as its input parameter, which implies that no

new edge will be added to GA by P3. The approximation algorithm is as follows:

1. Execute KST partition algorithm with parameter k =∞.

2. Find a minimal triangulation of GA using the algorithm in [5].

Assume that the input graph G has maximum degree d, and let k = Φ(G). We will

show that the algorithm achieves an approximation ratio of O(d2.5 log4(kd)). Since

k = O(n2), this is in fact a polylogarithmic approximation ratio. It improves over the

O(k) approximation ratio obtained in the previous section, when k/ log4 k = Ω(d2.5).

Theorem 3.5.1 The algorithm finds a triangulation of G whose size is within a

factor of O(d2.5 log4(kd)) of optimal.

56 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

Proof: Correctness: By the correctness of KST partition algorithm, we obtain

a partition (A, B) of V (G) for which no chordless cycle in G intersects B. By Theo-

rem 3.2.4 a minimal triangulation of GA is a minimal triangulation of G. Therefore,

the algorithm correctly computes a minimal triangulation of G.

Approximation Ratio: When executing P3 the size of each set Ax,y is at most

d. By Lemma 3.3.3 |A3 \ A2| = O(kd). Since |A2|= O(k), the size of A when the

partition algorithm terminates is O(kd). Setting the parameter value to ∞ in P3

guarantees that no new edge is added to GA and, therefore its maximum degree is at

most d and |E(GA)| = O(kd2). Using the algorithm in [5] we can produce a chordal

supergraph of GA with O((kd2 + k)
√

d log4(kd)) edges. Hence, the size of the fill-in

obtained is within a factor of O(d2.5 log4(kd)) of optimal.

3.6 Reducing the Kernel Size

We now return to the parametric fill-in problem. Let < G = (V, E), k > be the input

instance. By modifying procedure P3 in KST partition algorithm we shall obtain

a partition (A, B) of V and a set of non-edges F , such that no chordless cycle in

G′ = (V, E ∪ F) intersects B and |A| = O(k). In fact we shall obtain at most 2k

such pairs (A, F), and prove that if G has a k-triangulation, then for at least one

of those pairs G′
A admits a (k − |F |)-triangulation. Reducing the size of A results

in improving the complexity of finding a minimum triangulation of G′
A to O(

√
k4k),

although the total time of the algorithm increases, since we have to handle up to

2k pairs. We include this result, since it gives further insight on the problem and

presents ideas that may help resolve the open problem posed in [118].

As in the original algorithm we start by executing procedures P1(k) and P2(k).

We also compute the sets Ax,y for all x, y ∈ A2, (x, y) �∈ E. If (x, y) is k-essential,

we add it to G. Otherwise, we do nothing. Let Ê be the set of k-essential edges,

and let e = |Ê|. Define P ≡ {(x, y) �∈ E ∪ Ê : x, y ∈ A2, Ax,y �= ∅}, and let p = |P |.

The algorithm now enumerates subsets F ⊆ P . For a given set F , every (x, y) ∈
F is added as an edge in the triangulation, and for every (x, y) ∈ P \F the vertices

in Ax,y are moved from B to A (which was initialized to A2). Instead of directly

enumerating each set F we branch and bound: We construct these sets incrementally,

and stop when a lower bound for the size of the triangulation implied by F exceeds

3.6. REDUCING THE KERNEL SIZE 57

k.

Specifically, pairs in P are considered in an arbitrary order (x0, y0),. . .,(xp−1, yp−1).

For the current pair (xi, yi) the algorithm distinguishes between three cases as fol-

lows. Let t = |Axi,yi
\ A| with respect to the current A. Let cc denote a lower

bound for the size of the triangulation implied by the set F constructed so far (cc is

initialized to e). If t = 0 then the algorithm does nothing. If t = 1, it updates A to

A∪Axi,yi
and increases cc by 1/2. Finally, if t ≥ 2 then the algorithm branches into

two cases. In the first case, (xi, yi) is added to the triangulation and cc is increased

by 1. In the second case, the vertices of Axi,yi
are moved from B to A, and cc is

increased by t/2. The algorithm is implemented by the recursive procedure shown

in Figure 3.3, and is invoked by calling BRANCH(e, ∅, 0, A2).

Procedure BRANCH(cc, F, r, A)

If cc > k then return.

If r = p then save the pair (A, F ∪ Ê) and return.

Let t = |Axr,yr \ A|.
If t = 0 then

Call BRANCH(cc, F, r + 1, A).

Else if t = 1 then

Call BRANCH(cc + 1/2, F, r + 1, A ∪Axr ,yr).

Else /* t ≥ 2 */

Call BRANCH(cc + 1, F ∪ {(xr, yr)}, r + 1, A).

Call BRANCH(cc + t/2, F, r + 1, A ∪ Axr,yr).

Figure 3.3: Algorithm BRANCH.

Lemma 3.6.1 The algorithm terminates after at most p2k+1 + 1 calls to procedure

BRANCH.

Proof: Denote by T (i, j) the number of recursive calls invoked by BRANCH

when called with parameters cc = i, r = j (including this first call). Since always

i ≥ 0 and 0 ≤ j ≤ p in the following we consider these ranges only. Clearly,

T (i, j) ≤ 1 + max{T (i, j + 1), T (i + 1/2, j + 1), 2T (i + 1, j + 1)}, for all j < p, i.

58 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

Also, T (i, j) = 1 for all i > k, j; and T (i, p) = 1 for all i. Since T (0, 0) ≥ T (i, j) for

all i, j, it suffices to compute an upper bound for T (0, 0).

We prove that T (i, j) ≤ (p− j)2k+1−i +1 by induction on i, j. For i > k or j = p

the claim is true. Suppose the claim holds for all i, j where i′ ≤ i ≤ k, j′ < j ≤ p.

Then for i = i′ and j = j′ we have

T (i, j) ≤ 1 + max{T (i, j + 1), T (i + 1/2, j + 1), 2T (i + 1, j + 1)}
≤ 2 + max{(p− j − 1)2k+1−i, (p− j − 1)2k+ 1

2
−i, (p− j − 1)2k+1−i + 1}

≤ 3 + (p− j − 1)2k+1−i ≤ (p− j)2k+1−i + 1 .

It follows that T (0, 0) ≤ p2k+1 + 1.

Lemma 3.6.2 The number of pairs saved by the algorithm is at most 2k.

Proof: The proof is analogous to that of Lemma 3.6.1: Denote by N(i, j) the

number of pairs saved by procedure BRANCH, when invoked with parameters cc =

i, r = j. Since always i ≥ 0 and 0 ≤ j ≤ p, in the following we consider these ranges

only. Clearly, N(i, j) ≤ max{N(i, j + 1), N(i + 1/2, j + 1), 2N(i + 1, j + 1)}, for all

j < p, i. Also, N(i, j) = 0 for all i > k, j; N(k, j) ≤ 1 for all j; and N(i, p) ≤ 1 for

all i. Since N(0, 0) ≥ N(i, j) for all i, j, it suffices to compute an upper bound for

N(0, 0).

We prove that N(i, j) ≤ 2k−i by induction on i, j. If i ≥ k or j = p then the

claim is true. Suppose the claim holds for all i, j where i′ ≤ i < k and j′ < j ≤ p.

Then for i = i′ and j = j′ we have

N(i, j) ≤ max{N(i, j + 1), N(i + 1/2, j + 1), 2N(i + 1, j + 1)}
≤ max{2k−i, 2k− 1

2
−i, 2k−i}

= 2k−i .

It follows that N(0, 0) ≤ 2k.

As usual, for a set A ⊆ V saved by the algorithm, B denotes V \A. The following

two claims establish the correctness of our partition algorithm.

Lemma 3.6.3 For every pair (A, F) saved by the algorithm, |A| ≤ 6k, and no

chordless cycle in G′ = (V, E ∪ F) intersects B.

3.6. REDUCING THE KERNEL SIZE 59

Proof: Whenever a partition is saved cc ≤ k. By definition of BRANCH, 1
2
|A \

A2| ≤ cc. Hence, at most 2k new vertices are added to A2 in any partition obtained.

Since |A2| ≤ 4k we conclude that |A| ≤ 6k. By Theorem 3.4.2 no chordless cycle in

G′ intersects B.

Definition 3.6.4 A pair (A, F) saved by BRANCH is called good if Φ(G) = Φ(G′)+

|F |, where G′ = (V, E ∪ F).

Proposition 3.6.5 If Φ(G) ≤ k then at least one good pair is saved by the algo-

rithm.

Proof: Let T be the tree of recursive calls of BRANCH. The nodes of T corre-

sponds to invocations of BRANCH. The root of T corresponds to the first invocation

of BRANCH. The leaves of T correspond to invocations of BRANCH in which either

a pair was saved, or cc was found to exceed k. In nodes at level i of T , 0 ≤ i < p,

the pair (xi, yi) ∈ P is processed. Let ccv, Fv, rv and Av denote the parameters of

the invocation of BRANCH which corresponds to node v of T .

Let F ∗ denote a minimum triangulation of G. The proof will identify a root-leaf

path in T which corresponds to F ∗, and trace the changes to cc, A and F along that

path. We use the following notation:

Pv ≡ {(x0, y0), . . . , (xrv−1, yrv−1)} ,

F ∗
v ≡ Pv ∩ F ∗ ,

A∗
v ≡ A2 ∪

⋃
(x,y)∈Pv\F ∗

v

Ax,y ,

cc∗v ≡ e + |F ∗
v |+

1

2
|A∗

v \ A2| .

Lemma 3.6.6 For every node v of T , cc∗v ≤ k.

Proof: Let v be any node of T . Let cc∗ = e + |P ∩ F ∗| + 1
2
|⋃(x,y)∈P\F ∗ Ax,y|.

Since Pv ⊆ P , it follows that cc∗v ≤ cc∗. By Observation 3.3.2, for every pair

(x, y) ∈ P , either (x, y) ∈ F ∗, or F ∗ contains edges incident to every b ∈ Ax,y.

Hence, cc∗ ≤ |F ∗| ≤ k where the last inequality follows from the fact that F ∗ is a

k-triangulation.

60 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

We now return to the proof of Proposition 3.6.5. We shall prove that T has a

leaf in which a good pair is saved. To this end, we show that for every 0 ≤ i ≤ p, T

contains some vertex v at level i, for which Fv ⊆ F ∗
v and ccv ≤ cc∗v. In particular,

this claim implies that T has a leaf z at level p, for which Fz ⊆ F ∗
z and ccz ≤ cc∗z. By

Lemma 3.6.6, ccz ≤ cc∗z ≤ k. Hence, a pair (Az, Fz∪Ê) is saved at z. By [118, Lemma

2.7], Ê ⊆ F ∗. In addition, Fz ⊆ F ∗
z ⊆ F ∗. Therefore (Az, Fz ∪ Ê) is a good pair,

since Fz ∪ Ê ⊆ F ∗ and by definition F ∗ \ (Fz ∪ Ê) triangulates G′ = (V, E ∪Fz ∪ Ê).

We prove the claim by induction on i. The base of the induction is obvious, as

for the root r at level 0, Fr = ∅ and ccr = e. We assume that the claim is true for

level i− 1 (i > 0) and prove its correctness for level i. By the induction hypothesis

T contains a node v at level i − 1 < p, for which Fv ⊆ F ∗
v and ccv ≤ cc∗v. By

Lemma 3.6.6 ccv ≤ cc∗v ≤ k and, therefore, v is not a leaf. Thus, v has either one or

two children in T . There are two cases to examine:

1. Suppose that (xi−1, yi−1) ∈ F ∗. Then for any child w of v, cc∗w = cc∗v+1 ≥ ccv+

1. If v has a single child w then Fw = Fv ⊆ F ∗
v ⊂ F ∗

w and ccw ≤ ccv+1/2 < cc∗w.

Otherwise, let w be the child of v for which (xi−1, yi−1) ∈ Fw. Then clearly

Fw ⊆ F ∗
w and ccw = ccv + 1 ≤ cc∗w.

2. Suppose that (xi−1, yi−1) �∈ F ∗. Since Fv ⊆ F ∗
v , it follows that A∗

v ⊆ Av. Let

w be the child of v for which (xi−1, yi−1) �∈ Fw. Then Fw = Fv ⊆ F ∗
v = F ∗

w and

ccw = ccv +
1

2
|Axi−1,yi−1

\Av| ≤ cc∗v +
1

2
|Axi−1,yi−1

\A∗
v| = cc∗w .

Theorem 3.6.7 If Φ(G) ≤ k then the new partition algorithm produces at least one

pair (A, F) for which |A| ≤ 6k and Φ(G) = Φ(G′
A) + |F |, where G′ = (V, E ∪ F).

The complexity of the algorithm is O(knm + min{n2M(k)/k, nM(n)} + k32k).

Proof: Correctness: By Lemma 3.6.3, for each pair (A, F) saved by the algo-

rithm |A| ≤ 6k and no chordless cycle in G′ intersects B. Therefore, by Theo-

rem 3.2.4 for each such pair Φ(G′) = Φ(G′
A). Since Φ(G) ≤ k, by Proposition 3.6.5

the algorithm saves some pair (A, F) for which Φ(G) = Φ(G′) + |F |. Correctness

follows.

3.7. AN APPROXIMATION ALGORITHM FOR CHAIN COMPLETION 61

Complexity: By the complexity analysis in [118] P1 and P2 take O(knm) time.

By Lemma 3.3.1 the complexity of computing the sets Ax,y for all x, y ∈ A2, (x, y) �∈
E is O(nm + min{n2M(k)/k, nM(n)}). By Lemma 3.6.1 and the fact that |P | =

O(k2), the number of calls to BRANCH is O(k22k). By Lemma 3.6.3 and since

Φ(G) ≤ k, the parameters A and F to each invocation of BRANCH satisfy |A| =

O(k) and |F | ≤ k. Also, for all (x, y) ∈ P , |Ax,y| ≤ 2k. Thus, each call can be

carried out in O(k) time. The total work done by BRANCH is therefore O(k32k).

3.7 An Approximation Algorithm for Chain Com-

pletion

In this section we show a direct application of the Chordal Completion approxima-

tion result to approximate Chain Completion.

Theorem 3.7.1 There exists a polynomial approximation algorithm for Chain Com-

pletion with an approximation ratio of 8k, where k denotes the size of a minimum

chain completion set. The complexity of the algorithm is O(kn3).

Proof: Let G = (U, V, E) be an input bipartite graph, and let k be the size of a

minimum chain completion set for G. We apply the following reduction given by

Yannakakis [194] from Chain Completion to Chordal Completion: Build a graph

G′ = (U ∪ V, E ′), where E ′ = E ∪ (U ⊗ U) ∪ (V ⊗ V). Observe that G is a chain

graph if and only if G′ is chordal. Hence, a set of edges F triangulates G′ if and

only if (U, V, E ∪ F) is a chain graph.

Approximation Ratio: By the above argument k equals Φ(G′). Using our ap-

proximation algorithm for the minimum fill-in problem, we can find a triangulation

of G′ of size at most 8k2. Adding these edges to G produces a chain graph. The

number of new edges is within a factor of 8k of optimal.

Complexity: G′ can be computed in O(n2) time. Due to the reduction |E(G′)| =
Θ(n2). Therefore the complexity of the approximation algorithm is O(kn3).

62 CHAPTER 3. APPROXIMATING THE MINIMUM FILL-IN

Chapter 4

Dynamic Recognition Algorithms

In this chapter we study dynamic recognition problems on certain graph classes.

These problems call for maintaining a representation of a graph throughout a series

of on-line modifications (insertions or deletions of a vertex or an edge), as long

as the graph satisfies some property, and detecting when it ceases to satisfy the

property. This chapter contains two parts. In the first part we present a fully

dynamic algorithm for proper interval graph recognition and representation. The

algorithm handles an operation involving d edges in time O(d + log n). (In case

of an edge modification d = 1, and in case of a vertex modification d equals its

degree.) We also prove a close lower bound of Ω(log n/(log log n+log b)) for an edge

operation in the cell probe model of computation with word-size b. In addition, we

give algorithms requiring O(d) time per operation for variants of the problem where

either only addition operations are allowed, or only deletion operations are allowed.

The latter algorithms are optimal with respect to all operations, with the possible

exception of vertex deletion. This study was published in [99].

In the second part we provide a fully dynamic algorithm for cograph recognition,

which works in O(d) time per operation involving d edges. The algorithm maintains

utilizes a modular decomposition tree of the dynamic graph. We derive from this

result fully dynamic algorithms for threshold recognition and for trivially perfect

graph recognition. These algorithms are optimal with respect to all operations,

with the possible exception of vertex deletion.

63

64 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

4.1 Background

In a dynamic graph problem one has to maintain a graph throughout a series of on-

line modifications (insertion or deletion of a vertex or an edge) and answer queries

regarding certain properties of the dynamic graph. For example, in dynamic con-

nectivity one has to maintain the connected components of a graph during a series

of modifications and answer queries of the form “are vertices u and v connected?”.

Dynamic algorithms for such a problem may be of several types depending on the

modification operations they support. A vertex-incremental (vertex-decremental)

algorithm supports only vertex insertions (deletions). An edge-incremental (edge-

decremental) algorithm supports only edge additions (deletions). An incremental

(decremental) algorithm support both edge and vertex additions (deletions). An

edges-only fully dynamic algorithm supports both edge additions and edge deletions

but no vertex modifications. A fully dynamic algorithm supports all kinds of modi-

fications, namely, insertions and deletions of vertices and edges.

Here we investigate dynamic recognition problems in which the queries are of the

form: “Does the graph belong to a certain class Π?”. An algorithm for the problem

is required to maintain a representation of the dynamic graph as long as it belongs

to Π, and to detect when it ceases to belong to Π.

A fully dynamic algorithm for Π-recognition maintains a data structure of the

current graph G = (V, E) and supports the following operations:

• Edge Insertion: Given a non-edge (u, v) �∈ E, update the data structure if

G ∪ {(u, v)} ∈ Π, or output False and halt otherwise.

• Edge Deletion: Given an edge (u, v) ∈ E, update the data structure if

G \ {(u, v)} ∈ Π, or output False and halt otherwise.

• Vertex Insertion: Given a new vertex v �∈ V and a set of edges between v

and vertices of G, update the data structure if G∪ v ∈ Π, or output False and

halt otherwise.

• Vertex Deletion: Given a vertex v ∈ V , update the data structure if G\ v ∈
Π, or output False and halt otherwise.

Whenever the current graph ceases to satisfy Π, the algorithm should recognize this

and halt.

4.2. PROPER INTERVAL GRAPH RECOGNITION 65

Traditionally, fully dynamic algorithms handle only edge modifications, since

vertex modifications can be performed by a series of edge modifications. (For ex-

ample, in dynamic graph connectivity adding a vertex of degree d is equivalent to

adding an isolated vertex, and then adding its edges one by one.) However, in our

context we have to be more careful, since we may not be able to add or delete one

edge at a time without ceasing to satisfy property Π (and even if there is a way

to do that, it might be non-trivial to find it). In other words, adding or deleting a

vertex can preserve the property, but adding or removing one edge at a time might

fail to do so. Hence, vertex operations must be handled separately by the dynamic

algorithm.

Several authors have studied the problem of dynamically recognizing and repre-

senting various graph families. Corneil, Perl and Stewart [41] have given a linear-

time vertex-incremental algorithm for recognizing cographs. Hsu [108] has given an

O(m + n log n)-time vertex-incremental algorithm for recognizing interval graphs.

Deng, Hell and Huang [46] have given a linear-time vertex-incremental algorithm

for recognizing and representing connected proper interval graphs. The latter al-

gorithm requires that the graph remains connected throughout the modifications.

Ibarra [110] has given an edges-only fully dynamic algorithm for recognizing chordal

graphs, which handles each edge operation in O(n) time, and an edges-only fully

dynamic algorithm for split graph recognition, which handles each operation in con-

stant time. Recently, Ibarra devised an edges-only fully dynamic algorithm for in-

terval graph recognition, which handles each edge operation in O(n log n) time [111].

4.2 Proper Interval Graph Recognition

4.2.1 Introduction

This section deals with the problem of recognizing and representing dynamically

changing proper interval graphs. Proper interval graphs have been studied exten-

sively in the literature (cf. [82, 163]), and several linear time algorithms are known

for their recognition and realization [39, 46].

The motivation for the problem of dynamically recognizing proper interval graphs

comes from its application to physical mapping of DNA [30]. Physical mapping is

the process of reconstructing the relative position of DNA fragments, called clones,

66 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

along the target DNA molecule, prior to their sequencing, based on information

about their pairwise overlaps. In some biological frameworks the set of clones is

virtually inclusion-free – for example when all clones have similar lengths (this is

the case for instance for cosmid clones). In this case, the physical mapping problem

can be modeled using proper interval graphs as follows. A graph G is built according

to the biological data. Each clone is represented by a vertex and two vertices are

adjacent if and only if their corresponding clones overlap. The physical mapping

problem then translates to the problem of finding a realization of G, or determining

that none exists.

Had the overlap information been accurate, the two problems would have been

equivalent. However, some biological techniques may occasionally lead to an incor-

rect conclusion about whether two clones intersect, and additional experiments may

change the status of an intersection between two clones. The resulting changes to

the corresponding graph are the deletion of an edge, or the addition of an edge. The

set of clones is also subject to changes, such as adding new clones or deleting ’bad’

clones (such as chimerics [189]). These translate into addition or deletion of vertices

in the corresponding graph. Thus, we would like to be able to dynamically change

our graph, so as to reflect the changes in the biological data, as long as they allow

us to construct a map, i.e., as long as the graph remains a proper interval graph.

Our results are as follows: For the general problem of recognizing and represent-

ing proper interval graphs we give a fully dynamic algorithm which handles each

operation in time O(d + log n), where d denotes the number of edges involved in

the operation. Thus, in case a vertex is added or deleted, d equals its degree, and

in case an edge is added or deleted, d = 1. Our algorithm builds on the repre-

sentation of proper interval graphs given in [46]. We prove a close lower bound of

Ω(log n/(log log n+log b)) amortized time per edge operation in the cell probe model

of computation with word-size b [196]. It follows that our algorithm is nearly optimal

(up to a factor of O(log log n)). We also give a fast O(n) time algorithm for com-

puting a realization of a proper interval graph given its representation, improving

the O(m + n) bound of [46].

For the incremental version of the problem we give an optimal algorithm (up to

a constant factor) which handles each operation in time O(d). This generalizes the

result of [46] to arbitrary instances. The same bound is achieved for the decremental

problem.

4.2. PROPER INTERVAL GRAPH RECOGNITION 67

As part of our general algorithm we give a fully dynamic procedure for main-

taining connectivity in proper interval graphs. The procedure receives as input

a sequence of operations each of which is a vertex addition or deletion, an edge

addition or deletion, or a query whether two vertices are in the same connected

component. It is assumed that the graph remains proper interval throughout the

modifications, since otherwise our recognition algorithm detects that the graph is no

longer a proper interval graph and halts. We show how to implement this procedure

in O(d + log n) worst-case time per operation involving d edges. In comparison,

the best known algorithms for fully dynamic connectivity in general graphs require

O(log n(log log n)3) expected amortized time per edge operation [185], or O(log2 n)

amortized time per edge operation [107], or O(
√

n) worst-case time per edge op-

eration [60]. Furthermore, we show that the lower bound of Fredman and Hen-

zinger [100] of Ω(log n/(log log n + log b)) amortized time per edge operation (in the

cell probe model with word-size b) for fully dynamic connectivity in general graphs,

applies also to the problem of maintaining connectivity in proper interval graphs.

This part is organized as follows: In Section 4.2.2 we give the basic background

and describe our representation of proper interval graphs and the realization it

defines. In Section 4.2.3 we describe the data structure used by the algorithm. In

Sections 4.2.4 and 4.2.5 we present the incremental algorithm. In Section 4.2.6 we

extend the incremental algorithm to a fully dynamic algorithm for proper interval

graph recognition and representation. We also derive the decremental algorithm.

In Section 4.2.7 we give a fully dynamic algorithm for maintaining connectivity

in proper interval graphs. Finally, in Section 4.2.8 we prove lower bounds on the

amortized time per edge operation of fully dynamic algorithms for recognizing proper

interval graphs, and for maintaining connectivity in proper interval graphs.

4.2.2 Preliminaries

Let G = (V, E) be a graph. Let R be an equivalence relation on V defined by uRv

if and only if N [u] = N [v]. Each equivalence class of R is called a block of G. Note

that every block of G is a complete subgraph of G. The size of a block is the number

of vertices in it. Two blocks A and B are adjacent, or neighbors, in G, if some (and

hence all) vertices a ∈ A, b ∈ B, are adjacent in G. A straight enumeration of G is

a linear ordering Φ of the blocks in G, such that for every block, the block and its

neighboring blocks are consecutive in Φ.

68 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

A contig of a connected proper interval graph G is a straight enumeration of

G. The first and last blocks of a contig are called end-blocks, and their vertices are

called end-vertices. The rest of the blocks are called inner-blocks.

Let Φ = B1 < . . . < Bl be a linear ordering of the blocks of G. For any

1 ≤ i < j ≤ l, we say that Bi is ordered to the left of Bj , and that Bj is ordered

to the right of Bi in Φ. The out-degree of a block B with respect to Φ, denoted by

o(B), is the number of neighbors of B which are ordered to its right in Φ.

We now quote some well-known properties of proper interval graphs that will be

used in the sequel.

Theorem 4.2.1 ([128]) An interval graph (and in particular a proper interval graph)

contains no chordless cycle.

Theorem 4.2.2 ([190]) A graph is a proper interval graph if and only if it is an

interval graph and is claw-free.

Theorem 4.2.3 ([46]) A graph is a proper interval graph if and only if it has a

straight enumeration.

Lemma 4.2.4 (“The umbrella property”) ([133]) Let Φ be a straight enumer-

ation of a connected proper interval graph G. If A, B and C are blocks of G such

that A < B < C in Φ and A is adjacent to C, then B is adjacent to A and to C

(see Figure 4.1).

B CA

Figure 4.1: The umbrella property.

It is shown in [46] that a connected proper interval graph has a unique straight

enumeration up to full reversal. This motivates our representation of proper interval

graphs: For each connected component of the dynamic graph we maintain a straight

4.2. PROPER INTERVAL GRAPH RECOGNITION 69

enumeration (in fact, for technical reasons we shall maintain both the enumeration

and its reversal). The details of the data structure containing this information will

be described in Section 4.2.3.

This information implicitly defines a realization of the dynamic graph (cf. [46])

as follows: Assign to each vertex in block Bi the interval [i, i + o(Bi) + 1− 1
i
]. We

show in Section 4.2.3 how to compute a realization of the dynamic graph from our

data structure in time O(n).

4.2.3 The Data Structure

As mentioned above, each connected component of the dynamic graph has exactly

two contigs (which are reversals of each other) and both are maintained by the

algorithm. Each operation involves updating the representation. In the sequel we

concentrate on describing only one of the two contigs for each component. The

second contig is updated in a similar way.

We now describe the details of how we keep our representation. The following

data is kept and updated by the algorithm:

1. For each vertex v we keep pointers to the two blocks containing it (one in each

of the two contigs that contain v).

2. For each block we keep the following:

(a) The size of the block.

(b) Left and right near pointers, pointing to nearest neighbor blocks on the

left and on the right respectively.

(c) Left and right far pointers, pointing to farthest neighbor blocks on the

left and on the right respectively.

(d) Left and right self pointers, pointing to the block itself.

(e) An end pointer which is null if the block is not an end-block of its contig

and, otherwise, points to the other end-block of that contig.

(f) A counter initialized to 0.

70 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

In the following we shall omit details about the obvious updates to the pointers

to the blocks containing each of the vertices (item 1), and to the block sizes (item

2a).

We introduce self pointers due to the possible need in the course of the algorithm

to update many far pointers pointing to a certain block, so that they point to another

block. In order to be able to do that in O(1) time we use the technique of nested

pointers: We make the far pointers point to a location whose content is the address

of the block to which the far pointers should point. The role of this special location

will be served by our self-pointers. The value of the left and right self-pointers of

a block B is always the address of B. When we say that a certain left (right) far

pointer points to B we mean that it points to a left (right) self-pointer of B. Let

A and B be blocks. In order to change all left (right) far pointers pointing to A so

that they point to B, we require that no left (right) far pointer points to B. If this

is the case, we simply exchange the left (right) self-pointer of A with the left (right)

self-pointer of B. This means that: (1) The previous left (right) self-pointer of A is

made to point to B, and the algorithm records it as the new left (right) self-pointer

of B; and (2) the previous left (right) self-pointer of B is made to point to A, and

the algorithm records it as the new left (right) self-pointer of A.

We shall use the following notation: For a block B we denote its address in the

memory by &B. &∅ denotes the null pointer. When we set a far pointer to point to

a left or to a right self-pointer of B we shall abbreviate and set it to &B. We denote

the left and right near pointers of B by Nl(B) and Nr(B) respectively. We denote

the left and right far pointers of B by Fl(B) and Fr(B) respectively. We denote

its end pointer by E(B). In the sequel we often refer to blocks by their addresses.

For example, if A and B are blocks and Nr(A) = &B, we sometimes refer to B by

Nr(A). We define Nr(∅) = Nl(∅) = Fr(∅) = Fl(∅) = &∅. When it is clear from the

context, we also use a name of a block to denote any vertex in that block. Given

a contig Φ we denote its reversal by ΦR. In general when performing an operation,

we denote the graph before the operation is carried out by G, and the graph after

the operation is carried out by G′.

Given this data structure we can compute a realization of a contig C of G as

follows: We first rank the blocks of C, starting with the leftmost block. This is done

by choosing an arbitrary block of C, and marching up the enumeration of blocks of

C using left near pointers, until we reach an end-block. We then set the rank of this

4.2. PROPER INTERVAL GRAPH RECOGNITION 71

block to 1, and march down the enumeration of blocks using right near pointers,

until we reach the other end-block. We rank all the blocks of C along the way.

Let us denote by r(B) the rank of a block B. Then the out-degree of B is simply

o(B) = r(Fr(B)) − r(B), and the interval that we assign to the vertices of B is

[r(B), r(Fr(B)) + 1− 1/r(B)]. We conclude:

Theorem 4.2.5 A realization of a proper interval graph which is represented using

the data structure described above, can be computed in time O(n).

In the following two sections we describe an optimal incremental algorithm for

recognizing and representing proper interval graphs. The algorithm receives as input

a series of addition operations to be performed on a graph. Upon each operation

the algorithm updates its representation of the graph and halts if the current graph

is no longer a proper interval graph. The algorithm handles each operation in time

O(d), where d denotes the number of edges involved in the operation. (Thus, d = 1

in case of an edge addition, and d is the degree in case of a vertex addition.) It is

assumed that initially the graph is empty or, alternatively, that the representation of

the initial graph is known. We also show how to compute in O(n) time a realization

of a graph given its representation.

4.2.4 A Vertex-Incremental Algorithm

In this section we describe the updates to the representation of the graph in case G′

is formed from G by the addition of a new vertex v of degree d. We also give some

necessary and some sufficient conditions for deciding whether G′ is a proper interval

graph.

Let B be a block of G. We say that v is adjacent to B if v is adjacent to some

vertex in B. We say that v is fully adjacent to B if v is adjacent to every vertex

in B. We say that v is partially adjacent to B if v is adjacent to B but not fully

adjacent to B.

The following lemmas characterize the adjacencies of the new vertex, assuming

that G′ is a proper interval graph.

Lemma 4.2.6 If G′ is a proper interval graph then v can have neighbors in at most

two connected components of G.

72 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

Proof: Suppose to the contrary that x, y and z are neighbors of v in three distinct

components of G. Then v, x, y and z induce a claw in G′, a contradiction.

Lemma 4.2.7 [46] Let C be a connected component of G containing neighbors of

v. Let B1 < . . . < Bk be a contig of C. Suppose that G′ is a proper interval graph

and let 1 ≤ a < b < c ≤ k. Then the following properties are satisfied:

1. If v is adjacent to Ba and to Bc, then v is fully adjacent to Bb.

2. If v is adjacent to Bb and not fully adjacent to Ba and to Bc, then Ba is not

adjacent to Bc.

3. If b = a + 1, c = b + 1 and v is adjacent to Bb, then v is fully adjacent to Ba

or to Bc.

One can view a contig Φ of a connected proper interval graph C as a weak linear

order <Φ on the vertices of C, where x <Φ y if and only if the block containing x is

ordered in Φ to the left of the block containing y. We say that Φ′ is a refinement of

Φ if either for every x, y ∈ V (C), x <Φ y implies x <Φ′ y; or for every x, y ∈ V (C),

x >Φ y implies x <Φ′ y.

Lemma 4.2.8 If H is a connected induced subgraph of a proper interval graph H ′,

Φ is a contig of H, and Φ′ is a straight enumeration of H ′, then Φ′ is a refinement

of Φ.

Proof: By induction on the number of additional vertices in H ′: If H ′ = H

then the claim is obvious. Let k = |V (H ′) \ V (H)|. By the induction hypothesis,

for a proper interval graph H ′′ which contains H (as an induced subgraph) and is

contained in H ′, and for which |V (H ′′) \ V (H)| = k− 1, every straight enumeration

is a refinement of Φ. Let C be the connected component of H ′′ which contains the

vertices of H , and let Φ′′
C be a contig of C. Let C ′ be the connected component of

H ′ which contains V (H) (and, therefore, V (C ′) ⊇ V (C)), and let Φ′
C be a contig of

C ′. In [46] it is constructively shown how Φ′
C is obtained as a refinement of Φ′′

C (see

also Section 4.2.4). Since Φ′′
C is a refinement of Φ, the claim follows.

Note that whenever v is partially adjacent to a block B in G, then the addition

of v will cause B to split into two blocks of G′, namely B \ N(v) and B ∩ N(v).

4.2. PROPER INTERVAL GRAPH RECOGNITION 73

Otherwise, if B is a block of G to which v is either fully adjacent or not adjacent,

then one of B or B ∪ {v} is a block of G′.

Corollary 4.2.9 If B is a block of G to which v is partially adjacent, then B \N(v)

and B ∩N(v) occur consecutively in a straight enumeration of G′.

Lemma 4.2.10 Let C be a connected component of G, which contains neighbors of

v. Let {B1, . . . , Bk} denote the set of blocks in C which are adjacent to v, such that

in a contig of C, B1 < . . . < Bk. If G′ is a proper interval graph then the following

properties are satisfied:

1. B1, . . . , Bk are consecutive in a contig of C.

2. If k ≥ 3 then v is fully adjacent to B2, . . . , Bk−1.

3. If v is adjacent to a single block B1 in C, then B1 is an end-block.

4. If v is adjacent to more than one block in C and has neighbors in another

component, then B1 is adjacent to Bk, and one of B1 or Bk is an end-block to

which v is fully adjacent, while the other is an inner-block.

Proof: Claims 1 and 2 follow directly from part 1 of Lemma 4.2.7. Claim 3 follows

from part 3 of Lemma 4.2.7. To prove the last part of the lemma let us denote the

other component containing neighbors of v by D. Examine the induced connected

subgraph H of G′ whose set of vertices is V (H) = {v}∪V (C)∪V (D). H is a proper

interval graph as an induced subgraph of G′. It is composed of three types of blocks:

Blocks whose vertices are from V (C), which we will henceforth call C-blocks; blocks

whose vertices are from V (D), which we will henceforth call D-blocks; and {v},
which is a block of H , since H \ {v} is not connected. All blocks of C remain intact

in H , except B1 and Bk, each of which may split into Bj \ N(v) and Bj ∩ N(v),

j = 1, k.

Surely, in a contig of H all C-blocks must be ordered completely before or com-

pletely after all D-blocks. Let Φ denote a contig of H , in which C-blocks are ordered

before D-blocks. Let X denote the rightmost C-block in Φ. By the umbrella prop-

erty, X < {v} and, moreover, X is adjacent to v. By Lemma 4.2.8, Φ is a refinement

of a contig of C. Hence, X ⊆ B1 or X ⊆ Bk (more precisely, X = B1 ∩ N(v) or

X = Bk ∩N(v)). Therefore, one of B1 or Bk is an end-block.

74 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

Without loss of generality, X ⊆ Bk. Suppose to the contrary that v is not fully

adjacent to Bk. Then by Lemma 4.2.8 we have Bk−1 ∩N(v) < Bk \N(v) < {v} in

Φ (note that these blocks are not consecutive), contradicting the umbrella property.

We conclude that v is fully adjacent to Bk. Furthermore, B1 must be adjacent to

Bk, or else G′ contains a claw consisting of v and one vertex from each of B1, Bk,

and V (D) ∩ N(v). It remains to show that B1 is an inner-block in C. Suppose

it is an end block. Since B1 and Bk are adjacent, C consists of a single block, a

contradiction. Thus, claim 4 is proved.

The DHH Algorithm

In our algorithm we rely on the vertex-incremental algorithm of Deng, Hell and

Huang [46]. This algorithm handles the insertion of a new vertex into a connected

proper interval graph in O(d) time, changing its straight enumeration appropriately,

or determining that the new graph is not a proper interval graph. We describe it

briefly below. For simplicity, we assume throughout that the modified graph is a

proper interval graph.

Let H be a connected proper interval graph, and let v be a vertex to be added,

which is adjacent to d vertices in H . Let Φ = B1 < . . . < Bp denote a contig of H .

By Lemma 4.2.10, the blocks to which v is fully adjacent occur consecutively along

Φ. Assume that v is fully adjacent to Bl, . . . , Br, and for clarity we shall consider

only the case where 1 < l < r < p. Let a = l− 1 and c = r + 1. By Lemma 4.2.7(2)

Ba and Bc are non-adjacent. Let b > a be the largest index such that Bb is adjacent

to Ba, and let d < c be the smallest integer such that Bd is adjacent to Bc. It is

shown in [46] that a < b < d < c.

In order to construct a straight enumeration of the new graph we have to distin-

guish between two cases:

1. If v is adjacent either to Ba or to Bc, then a straight enumeration of the new

graph can be obtained as follows: If v is adjacent to Ba, we split Ba into

Ba \N(v), Ba∩N(v), list them in this order, and add {v} as a block just after

Bb. If v is adjacent to Bc, we split Bc into Bc ∩N(v), Bc \N(v) in this order,

and add {v} as a block just before Bd. In case v is adjacent to both Ba and

Bc these two instructions coincide, as shown in [46].

4.2. PROPER INTERVAL GRAPH RECOGNITION 75

2. If v is adjacent neither to Ba nor to Bc then there are two options: If there

exists a block Bj, b < j < d, such that Bj is adjacent to both Bl and Br,

then a straight enumeration is obtained by adding v to Bj . Otherwise, let

u > b be the smallest integer such that Bu is adjacent to Br. Then a straight

enumeration is obtained by inserting a new block {v} just before Bu.

Below we show how to find the sequence of blocks Bl, . . . , Br from our data

structure in O(d) time. Using near and far pointers we can identify in O(1) time the

blocks Ba = Nl(Bl), Bc = Nr(Br), Bb = Fr(Ba), and Bd = Fl(Bc). If v is adjacent

to Ba or to Bc then updating the straight enumeration can be done in O(1) time.

Otherwise, finding Bj (if such exists) can be done in O(d) time and, alternatively,

finding Bu = Fl(Br) can be done in O(1) time. Again in this case we can update the

straight enumeration in O(1) time. Hence, our data structure supports the insertion

of a vertex of degree d in O(d) time, when all its neighbors are in the same connected

component.

Our Algorithm

We perform the following upon a request for adding a new vertex v: We iterate

over the neighbors of v. For each neighbor u of v we increment the counter of the

block containing u. We call a block full if its counter equals its size, empty if its

counter equals zero, and partial otherwise. In order to find a set of consecutive

blocks that contain neighbors of v, we pick arbitrarily a neighbor of v and march

up the enumeration of blocks to the left using the left near pointers. We continue

till we hit an empty block or till we reach the end of the contig. We do the same to

the right and this way we discover a maximal sequence of nonempty blocks in that

component that contain neighbors of v. We call this maximal sequence a segment.

Only the two extreme blocks of the segment are allowed to be partial, or else we fail

(by Lemma 4.2.10(2)).

If the segment we found contains all the neighbors of v then we use the DHH al-

gorithm in order to insert v into G, updating our internal data structure accordingly.

Otherwise, by Lemmas 4.2.6 and 4.2.10(1) there could be only one more segment

(in another contig) which contains neighbors of v. In that case, exactly one extreme

block in each segment is an end-block to which v is fully adjacent (if the segment

contains more than one block), and the two extreme blocks in each segment are

76 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

adjacent, or else we fail (by Lemma 4.2.10(3,4)).

We proceed as above to find a second segment containing neighbors of v. We

can make sure that the two segments are from two different contigs by checking that

their end-blocks do not point to each other. We also check that conditions 3 and 4

in Lemma 4.2.10 are satisfied for both segments. If the two segments do not cover

all neighbors of v, we fail.

If v is adjacent to vertices in two distinct components C and D, then we should

merge their contigs. Let Φ = B1 < . . . < Bk and ΦR be the two contigs of C. Let

Ψ = B′
1 < . . . < B′

l and ΨR be the two contigs of D. The way in which the segments

are merged depends on the identity of the end-blocks to which v is adjacent in each

segment. If v is adjacent to Bk and B′
1 then by the umbrella property the two new

contigs (up to refinements described below) are Φ < {v} < Ψ and ΨR < {v} < ΦR.

In the following we describe the updates to our internal data structure in case these

are the new contigs. The other three cases (e.g., v is adjacent to B1 and B′
1, etc.)

are handled similarly.

• Block enumeration: We merge the two enumerations of blocks and put a new

block {v} in-between the two contigs. Let the leftmost block which is adjacent

to v in the new ordering Φ < {v} < Ψ be Bi, and let the rightmost block

adjacent to v be B′
j . If Bi is partial we split it into two blocks B̂i = Bi \N(v)

and Bi = Bi ∩N(v) and list them in this order. If B′
j is partial we split it into

two blocks B′
j = B′

j ∩N(v) and B̂′
j = B′

j \N(v) in this order.

• End pointers: We set E(B1) = E(B′
1) and E(B′

l) = E(Bk). We then nullify

the end pointers of Bk and B′
1.

• Near pointers: We update Nl({v}) = &Bk, Nr({v}) = &B′
1, Nr(Bk) = &{v}

and Nl(B
′
1) = &{v}. Let B0 = ∅. If Bi was split we set Nr(B̂i) = &Bi, Nl(Bi) =

&B̂i, Nl(B̂i) = &Bi−1 and Nr(Bi−1) = &B̂i. Analogous updates are made to

the near pointers of B′
j, B̂

′
j and B′

j+1, in case B′
j was split.

• Far pointers: If Bi was split we set Fl(B̂i) = Fl(Bi), Fr(B̂i) = &Bk, and

exchange the left self-pointer of Bi with the left self-pointer of B̂i. If B′
j was

split we set Fr(B̂
′
j) = Fr(B

′
j), Fl(B̂

′
j) = &B′

1 and exchange the right self-pointer

of B′
j with the right self-pointer of B̂′

j . In addition, we set all right far pointers

of Bi, . . . , Bk and all left far pointers of B′
1, . . . , B

′
j to &{v} (in O(d) time).

Finally, we set Fl({v}) = &Bi and Fr({v}) = &B′
j.

4.2. PROPER INTERVAL GRAPH RECOGNITION 77

The algorithm is summarized in Figure 4.2. When the addition procedure ter-

minates we reset the counters of all blocks adjacent to v to 0.

Input: A representation of the current graph G and a list of neighbors in G of a

new vertex v.

Output: A representation of G ∪ v or a False value indicating that G ∪ v is not

a proper interval graph.

Find all segments of blocks which are adjacent to v, and let their number be s.

If s ≥ 3 then return False.

Else if s = 1 then apply the DHH algorithm.

Else /* s = 2 */

Check that exactly one extreme block in each segment is an end-block

to which v is fully adjacent, and the two extreme blocks in each segment

are adjacent. Otherwise, return False.

Check if the two segments are in distinct contigs. Otherwise, return False.

Update the representation of the graph as described above.

Figure 4.2: A vertex-incremental algorithm for proper interval graph representation.

4.2.5 An Edge-Incremental Algorithm

In this section we show how to handle the addition of a new edge (u, v) in constant

time. We characterize the cases for which G′ = G∪{(u, v)} is a proper interval graph

and show how to efficiently detect them, and how to update our representation of

the graph.

Lemma 4.2.11 If u and v are in distinct connected components in G, then G′ is a

proper interval graph if and only if u and v are end-vertices in a straight enumeration

of G.

Proof: To prove the ’only if’ part let us examine the graph H = G′\{u} = G\{u}.
H is a proper interval graph as it is an induced subgraph of G. If G′ is also a proper

interval graph, then by Lemma 4.2.10(3) v must be an end-vertex in a straight

enumeration of G, since u is not adjacent to any other vertex in the component

containing v. The same argument applies to u.

78 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

To prove the ’if’ part we give a straight enumeration of the new connected

component containing u and v in G′. Denote by C and D the components containing

u and v, respectively. Let B1 < . . . < Bk be a contig of C, such that u ∈ Bk. Let

B′
1 < . . . < B′

l be a contig of D, such that v ∈ B′
1. Then B1 < . . . < Bk−1 <

Bk \ {u} < {u} < {v} < B′
1 \ {v} < B′

2 < . . . < B′
l is the required straight

enumeration.

By the previous lemma if u and v are in distinct components in G, and G′ is a

proper interval graph, then they must reside in end-blocks of distinct contigs. We

can check that in O(1) time. In case u and v are end-vertices of two distinct contigs,

we update our internal data structure as follows:

• Block enumeration: Given in the proof of Lemma 4.2.11.

• End pointers: We set E(B1) = E(B′
1) and E(B′

l) = E(Bk). We then nullify

the end-pointers of Bk and B′
1.

• Notation: Let B0 = ∅ and B′
l+1 = ∅. Let Bk = Bk \ {u} and B′

1 = B′
1 \ {v}.

If Bk �= ∅ let x = k, and otherwise, let x = k − 1. If B′
1 �= ∅ let y = 1, and

otherwise, let y = 2.

• Near pointers: We set Nr({u}) = &{v}, Nl({u}) = &Bx, Nl({v}) = &{u},
and Nr({v}) = &B′

y. We also update Nr(Bx) = &{u} and Nl(B
′
y) = &{v}.

• Far pointers: We set Fl({u}) = Fl(Bk) and Fr({v}) = Fr(B
′
1). We exchange

the right self-pointer of Bk with the right self-pointer of {u}, and the left self-

pointer of B′
1 with the left self-pointer of {v}. Finally, we set Fr({u}) = &{v}

and Fl({v}) = &{u}.

It remains to handle the case where u and v are in the same connected component

C in G. If N(u) = N(v) then by the umbrella property C contains only three blocks

which are merged into a single block in G′. In this case G′ is a proper interval

graph and updates to the internal data structure are trivial. The remaining case is

analyzed in the following lemma.

Lemma 4.2.12 Let B1 < . . . < Bk be a contig of C, such that u ∈ Bi and v ∈ Bj

for some 1 ≤ i < j ≤ k. Assume that N(u) �= N(v). Then G′ is a proper interval

graph if and only if Fr(Bi) = Bj−1 and Fl(Bj) = Bi+1 in G.

4.2. PROPER INTERVAL GRAPH RECOGNITION 79

Proof: Let G′ be a proper interval graph. Since Bi and Bj are non-adjacent,

Fr(Bi) ≤ Bj−1 and Fl(Bj) ≥ Bi+1. Suppose to the contrary that Fr(Bi) < Bj−1.

Let z be a vertex of Bj−1. If in addition Fl(Bj) = Bi+1, then by the umbrella

property N [v] ⊃ N [z] (this is a strict containment). As v and z are in distinct blocks,

there exists a vertex b ∈ N [v] \ N [z]. But then, {v, b, z, u} induce a claw in G′, a

contradiction. Hence, Fl(Bj) > Bi+1 and ,therefore, Fr(Bi+1) < Bj. Let x ∈ Bi+1

and let y ∈ Fr(Bi+1). As u and x are in distinct blocks, either (u, y) �∈ E(G), or

there exists a vertex a ∈ N [u] \N [x] (or both). In the first case, v, u, x, y, and the

vertices on a shortest path from y to v, induce a chordless cycle in G′. In the second

case {u, a, x, v} induce a claw in G′. Thus, in both cases we arrive at a contradiction.

By a symmetric argument we conclude that Fl(Bj) = Bi+1.

To prove the ’if’ part we provide a straight enumeration of C ∪ {(u, v)}. If

Bi = {u}, Fr(Bj−1) = Fr(Bj) and Fl(Bj−1) = Bi (i.e., N [v] = N [Bj−1] in G′), we

move v from Bj to Bj−1. Similarly, if Bj contained only v, Fl(Bi+1) = Fl(Bi) and

Fr(Bi+1) = Bj (i.e., N [u] = N [Bi+1] in G′), we move u from Bi to Bi+1. If u was not

moved and Bi contained vertices other than u, we split Bi into Bi = Bi \ {u}, {u}
in this order. If v was not moved and Bj contained vertices other than v, we split

Bj into {v}, Bj = Bj \ {v} in this order. It is easy to see that the result is a straight

enumeration of C ∪ {(u, v)}.

If u and v are neither end-vertices of distinct contigs, nor end-vertices of a three-

block contig, then assuming that G′ is a proper interval graph, the condition of

Lemma 4.2.12 must hold. We can verify that in constant time, and if this is the

case, change our data structure so as to reflect the new straight enumeration of

blocks given in the proof of Lemma 4.2.12. We describe below the updates to our

data structure.

• Block enumeration: Given in the proof of Lemma 4.2.12.

• Near pointers: If u was moved into Bi+1 then no change is necessary with

respect to u. Otherwise, if |Bi| > 1 then u forms a new block and we set

Nl({u}) = &Bi, Nr(Bi) = &{u}, Nr({u}) = &Bi+1, and Nl(Bi+1) = &{u}.
Analogous updates are made with respect to v.

• Far pointers: If u was moved into Bi+1, then no change is necessary with re-

spect to u. Otherwise, if |Bi| > 1 we exchange the right self-pointer of Bi with

80 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

the right self-pointer of (the new block) {u}. Let B denote the block contain-

ing v in G′. We also set Fl({u}) = Fl(Bi) and Fr({u}) = &B. Analogous

updates are made with respect to v.

The following theorem summarizes the results of Sections 4.2.4 and 4.2.5.

Theorem 4.2.13 There is an optimal incremental algorithm for proper interval

graph representation which handles an addition operation involving d edges in O(d)

time.

4.2.6 A Fully Dynamic Algorithm

In this section we give a fully dynamic algorithm for recognizing and representing

proper interval graphs. The algorithm performs a modification involving d edges

in O(d + log n) time. It supports all types of operations: Adding a vertex, adding

an edge, deleting a vertex, and deleting an edge. It is based on the incremental

algorithm. The main difficulty in extending the incremental algorithm to handle

all types of operations, is updating the end pointers of blocks when both insertions

and deletions are allowed. To bypass this problem we (implicitly) keep the identity

of each block as an end/inner block, but do not keep end pointers at all. Instead,

we maintain the connected components of G, and use this information in our algo-

rithm. In the next section we provide a fully dynamic algorithm for maintaining

the connected components of a proper interval graph. This algorithm handles a

modification request involving d edges in O(d + log n) time, and determines for any

two blocks whether they are in the same connected component in O(log n) time. We

now describe how each operation is handled by the fully dynamic proper interval

graph representation algorithm.

The Addition of a Vertex

This operation is handled in essentially the same way as above. However, in order

to check if the end-blocks of two distinct segments are in distinct components, we

query our data structure of connected components (in O(log n) time), rather than

checking if the end pointers of these blocks do not point to each other.

4.2. PROPER INTERVAL GRAPH RECOGNITION 81

The Addition of an Edge

Again, handling this operation is similar to its handling by the incremental algo-

rithm, with the exception that in order to check if the endpoints of an edge are

in distinct components, we query our data structure of connected components (in

O(log n) time).

The Deletion of a Vertex

We next show how to update the contigs of G after deleting a vertex v of degree d.

Note, that in this case G′ is an induced subgraph of G and, thus, a proper interval

graph.

Denote by X the block containing v. If X contains vertices other than v then

the data structure is simply updated by deleting v. Hence, we concentrate on the

case that X = {v}. In time O(d) we can find the segment of blocks which includes

X and all its neighbors. Let the contig containing X be B1 < . . . < Bk, and let the

blocks of the segment be Bi < . . . < Bj, where X = Bl for some 1 ≤ i ≤ l ≤ j ≤ k.

The following updates should be performed:

• Block enumeration: If 1 < i < l, we check whether Bi can be merged with

Bi−1. If Fl(Bi) = Fl(Bi−1), Fr(Bi) = Bl, and Fr(Bi−1) = Bl−1, we merge these

blocks by moving all vertices from Bi to Bi−1 (in O(d) time) and deleting Bi.

If l < j < k we deal similarly with Bj and Bj+1.

Finally, we delete Bl. If 1 < l < k and Bl−1, Bl+1 are non-adjacent, then by

the umbrella property they are no longer in the same connected component,

and the contig should be split into two contigs, one ending at Bl−1 and the

other beginning at Bl+1.

• Near pointers: Let B0 = ∅, Bk+1 = ∅. If Bi and Bi−1 were merged, we update

Nr(Bi−1) = &Bi+1 and Nl(Bi+1) = &Bi−1. Similar updates are made with

respect to Bj−1 and Bj+1 in case Bj and Bj+1 were merged. If the contig is split,

we nullify Nr(Bl−1) and Nl(Bl+1). Otherwise, we update Nr(Bl−1) = &Bl+1

and Nl(Bl+1) = &Bl−1.

• Far pointers: If Bi and Bi−1 were merged, we exchange the right self-pointer of

(the previous) Bi with the right self-pointer of Bi−1. Similar changes should be

82 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

made with respect to Bj and Bj+1. We also set all right far pointers, previously

pointing to Bl, to &Bl−1; and all left far pointers, previously pointing to Bl,

to &Bl+1 (in O(d) time).

Note, that these updates take O(d) time and require no knowledge about the

connected components of G. Since we are dealing with an hereditary property, the

trivial lower bound for handling a vertex deletion is O(1) time, so it is not clear

whether the above algorithm is optimal.

The Deletion of an Edge

Let (u, v) be an edge of G to be deleted. Let C be the connected component of G

containing u and v. Let Bi and Bj be the blocks containing u and v, respectively, in

a contig B1 < . . . < Bk of C. If i = j = k = 1 then B1 is split into {u}, B1 \ {u, v}
and {v}, in this order, resulting in a straight enumeration of G′. Updates are trivial

in this case. Henceforth we assume that k > 1. We first observe that i �= j, i.e.,

N [u] �= N [v]:

Lemma 4.2.14 If N [u] = N [v] then G′ is a proper interval graph if and only if C

is a clique.

Proof: To prove the ’only if’ part, we first show that every vertex x ∈ C \ {u, v}
is adjacent to both u and v. Suppose to the contrary that there exists a vertex

x ∈ C \ {u, v} which is not adjacent to u. Let x = x1, . . . , xk = u be a shortest path

in C from x to u, where k > 2. By definition, xk−1 is the first vertex on the path

which is adjacent to u (and, therefore, also to v). Hence, {xk−2, xk−1, u, v} induce

a claw in G′, a contradiction. Finally, if a and b are two non-adjacent vertices in

C \ {u, v} then {a, u, b, v} induce a chordless cycle in G′, a contradiction.

To prove the ’if’ part, notice that since C is a clique, it is a block in G. Therefore,

{u}, C \ {u, v}, {v} is a straight enumeration of C \ {(u, v)}.

Since by our assumptions k > 1, we conclude that N [u] �= N [v] and, therefore,

N(u) �= N(v). Without loss of generality, i < j. The updates to the straight

enumeration of C \ {(u, v)} are derived from the following lemma.

4.2. PROPER INTERVAL GRAPH RECOGNITION 83

Lemma 4.2.15 Let B1 < . . . < Bk be a contig of C, such that u ∈ Bi and v ∈ Bj for

some 1 ≤ i < j ≤ k. Then G′ is a proper interval graph if and only if Fr(Bi) = Bj

and Fl(Bj) = Bi in G.

Proof: Suppose that G′ is a proper interval graph. We prove that Fr(Bi) = Bj .

A symmetric argument shows that Fl(Bj) = Bi. Since Bi and Bj are adjacent in

G, Fr(Bi) ≥ Bj. Suppose to the contrary that Fr(Bi) > Bj . Let x ∈ Fr(Bi). By

the umbrella property (x, v) ∈ E(G). Since x and v are in distinct blocks in G,

either there exists a vertex a ∈ N [v] \N [x] or there exists a vertex b ∈ N [x] \N [v]

(or both). In the first case, by the umbrella property (a, u) ∈ E(G). Therefore,

{u, x, v, a} induce a chordless cycle in G′. In the second case, {x, b, u, v} induce a

claw in G′. Hence in both cases we arrive at a contradiction.

To prove the converse implication we give a straight enumeration of C \{(u, v)}.
If Bi = {u}, Bj = {v} and j = i + 1, we have to split the contig into two contigs,

one ending at Bi and the other beginning at Bj. If Bj = {v}, Fl(Bi−1) = Fl(Bi) and

Fr(Bi−1) = Bj−1 (i.e., N [u] = N [Bi−1] in G′), we move u into Bi−1. If Bi contained

only u, Fr(Bj+1) = Fr(Bj) and Fl(Bj+1) = Bi+1 (i.e., N [v] = N [Bj+1] in G′), we

move v into Bj+1. If u was not moved and Bi contains vertices other than u, then

Bi is split into {u}, Bi = Bi \ {u} in this order. If v was not moved and Bj contains

vertices other than v, then Bj is split into Bj = Bj \ {v}, {v} in this order. The

result is a straight enumeration of C \ {(u, v)}.

If the conditions of Lemma 4.2.15 are fulfilled, then the following updates should

be made:

• Block enumeration: Given in the proof of Lemma 4.2.15.

• Near pointers: Let B0 = ∅, Bk+1 = ∅. If Bi = {u}, Bj = {v} and j = i + 1,

we nullify Nr(u). If Bi was split, we set Nr({u}) = &Bi, Nl(Bi) = &{u},
Nl({u}) = &Bi−1, and Nr(Bi−1) = &{u}. If Bi contained only u, and u

was moved into Bi−1, we update Nr(Bi−1) = &Bi+1 and Nl(Bi+1) = &Bi−1.

Analogous updates are made with respect to v.

• Far pointers: If Bi = {u}, Bj = {v} and j = i + 1, we nullify Fr(u). If Bi was

split, we exchange the left self-pointer of Bi with the left self-pointer of {u}.
We also set Fl({u}) = Fl(Bi) and Fr({u}) = &By, where y = j in case v is no

84 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

longer in Bj (that is, v was moved into Bj+1, or Bj was split) and, otherwise,

y = j − 1. If Bi contained only u, and u was moved into Bi−1, we exchange

the right self-pointer of Bi with the right self-pointers of Bi−1, and delete Bi.

Analogous updates are made with respect to v.

Note that these updates take O(1) time and require no knowledge about the

connected components of G. The following theorem summarizes our results.

Theorem 4.2.16 There is a decremental algorithm for proper interval graph rep-

resentation which handles a deletion operation involving d edges in O(d) time.

4.2.7 Maintaining the Connected Components

In this section we describe a fully dynamic algorithm for maintaining the connected

components of a proper interval graph G in O(d+logn) time per operation involving

d edges. In Section 4.2.8 we shall establish a lower bound of Ω(log n/(log log n +

log b)) amortized time per edge operation (in the cell probe model of computation

with word-size b) for this problem.

The algorithm receives as input a series of operations to be performed on a graph,

which can be any of the following: Adding a vertex, adding an edge, deleting a vertex,

deleting an edge, or querying if two vertices are in the same connected component.

It operates on the blocks of the graph rather than on its vertices. The algorithm

depends on a data structure which includes the blocks and the contigs of the graph.

Hence, it interacts with the proper interval graph representation algorithm. In

response to an update request, changes are made to the representation of the graph

based on the structure of its connected components prior to the update. Only then

are the connected components of the graph updated. We provide a data structure

of connected components which performs each operation in O(log n) time.

Let us denote by B(G) the block graph of G, that is, a graph in which each

vertex corresponds to a block of G and two vertices are adjacent if and only if their

corresponding blocks are adjacent in G. The algorithm maintains a spanning forest

F of B(G). When a modification in the graph occurs, the spanning forest is updated

accordingly. In order to decide if two blocks are in the same connected component,

the algorithm checks if they belong to the same tree in F .

4.2. PROPER INTERVAL GRAPH RECOGNITION 85

The key idea is to design F so that it can be efficiently updated upon a modifi-

cation in G. We define the edges of F as follows: For every two vertices u and v in

B(G), (u, v) ∈ E(F) if and only if their corresponding blocks are consecutive in a

contig of G (or equivalently, if the near pointers of these blocks point to each other

in our representation). Consequently, each tree in F is a path representing a contig.

The crucial observation about F is that an addition or a deletion of a vertex or an

edge in G induces a constant number of modifications to the vertices and edges of F .

This can be seen by noting that each modification of G induces a constant number

of updates to near pointers in our representation of G.

It remains to describe a data structure for storing F that allows to query for

each vertex to which path it belongs, and that enables adding a vertex, deleting a

vertex, splitting a path upon a deletion of an edge in F , and joining two paths upon

an addition of an edge to F . If we store the vertices of each path of F in a balanced

tree, then each of these operations can be supported in O(log n) time (cf. [38]).

We are now ready to state our main result:

Theorem 4.2.17 The fully dynamic proper interval graph representation problem

is solvable in O(d + log n) worst-case time per modification involving d edges.

We note that the performance of our representation algorithm depends on the

performance of a data structure of connected components for a graph, which is a

union of disjoint paths, that supports the following operations: Joining two paths,

splitting a path, and querying if two vertices belong to the same path. Given such

a data structure which supports each operation in O(f(n)) time, for some function

f , our representation algorithm can be implemented to run in O(d+ f(n)) time per

modification involving d edges.

4.2.8 The Lower Bounds

In this section we prove a lower bound of Ω(log n/(log log n+ log b)) amortized time

per edge operation for fully dynamic proper interval graph recognition in the cell

probe model of computation with word-size b (see [196] for details about the model).

Furthermore, we prove the same lower bound also for the problem of fully dynamic

connectivity maintenance of a proper interval graph.

86 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

Fredman and Saks [66] have shown a lower bound of Ω(log n/(log log n + log b))

amortized time per operation for the following parity prefix sum (PPS) problem:

Given an array of integers A[1], . . . , A[n] with initial value zero, execute an arbitrary

sequence of Add(t) and Sum(t) operations, where an Add(t) increases A[t] by 1, and

Sum(t) returns (
∑t

i=1 A[i]) mod 2. Fredman and Henzinger [100] and independently

Miltersen et al. [145] have proven that the same lower bound applies to the problem

of maintaining connectivity in general graphs, by reduction from PPS. We use similar

constructions in our lower bound proofs.

Theorem 4.2.18 There is a fully dynamic algorithm for proper interval graph recog-

nition which takes Ω(log n/(log log n + log b)) amortized time per edge operation in

the cell probe model of computation with word-size b.

Proof: Given an instance of the PPS problem (i.e., a sequence of Add and Sum

operations) we construct an instance of the dynamic proper interval graph recogni-

tion problem, such that each Add operation corresponds to O(1) edge modifications

in the dynamic proper interval graph instance, and each Sum query corresponds to

a constant number of temporary edge modifications to the dynamic graph: The an-

swer to the query is determined by checking if the modified graph is proper interval

and the modifications are reversed. Thus, a sequence of m operations for the PPS

problem translates to O(m) edge modifications, and the lower bound for the PPS

problem implies that there exists a sequence of m operations for the dynamic proper

interval recognition problem that takes Ω(m log n/(log log n+log b)) time in the cell

probe model of computation with word-size b.

Given an instance of the PPS problem, define St = (
∑t

i=1 A[i]) mod 2 for 1 ≤
t ≤ n. The reduction is as follows: We construct a graph G = (V, E) with 2(n + 1)

vertices labeled 0, 0, 1, 1, . . . , n, n. For every 1 ≤ t ≤ n we add two edges depending

on St. If St = 0, we add the edges {(t − 1, t), (t− 1, t)}. Otherwise, we add the

edges {(t−1, t), (t− 1, t)}. We define a partial order on the vertices of G as follows:

0, 0 < 1, 1 < . . . < n, n.

To answer a Sum(t) query (1 ≤ t ≤ n) we act according to one of the following

cases:

1. t = 1: If (0, 1) ∈ E we output 1, otherwise we output 0.

2. t = 2: If (0, t′), (t′, 2) ∈ E for t′ ∈ {1, 1} we output 1, otherwise we output 0.

4.2. PROPER INTERVAL GRAPH RECOGNITION 87

3. t ≥ 3: If t < n let t′ > t be a vertex adjacent to t and define H ≡ G \
{(t, t′)} ∪ {(0, t)}. If t = n, define H ≡ G ∪ {(0, t)}. If Sum(t)= 1 then this

modification forms a chordless cycle (in H). Otherwise, the new graph is a

union of two disjoint paths. Hence, H is a proper interval graph if and only

if Sum(t)= 0. Correspondingly, if H is a proper interval graph we output 0,

otherwise we output 1. After producing the reply, the modification is undone

and G is restored.

To perform an Add(t) operation we do the following:

1. Let a, a′ ∈ {t− 1, t− 1} be the vertices adjacent to t, t, respectively.

2. Delete from G the edges (a, t) and (a′, t).

3. Add to G the edges (a, t) and (a′, t).

This completes the reduction.

Note that since the key to the reduction above is the ability to detect cycles,

similar arguments can be used to show that the same lower bound applies also to

recognizing other graph classes, e.g., interval graphs and chordal graphs.

Theorem 4.2.19 There is a lower bound of Ω(log n/(log log n + log b)) amortized

time per edge operation in the cell probe model of computation with word-size b for

fully dynamic connectivity maintenance in a proper interval graph.

Proof: We use the same reduction as in the proof of Theorem 4.2.18, with the

exception that in order to answer a Sum(t) query we check whether vertices 0 and

t are connected. If the answer is positive we output 1, otherwise we output 0. The

reduction is valid since the graph G, which is constructed in the reduction, is a union

of two disjoint paths and, therefore, is a proper interval graph.

Note that both theorems above apply even if the only modifications allowed in

the graph are edge insertions and edge deletions.

88 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

4.3 Cograph Recognition

4.3.1 Introduction

A very useful representation of a graph is its modular decomposition tree (defined

below). The problem of generating the modular decomposition tree of a graph

was studied by many authors and several linear-time algorithms were developed for

it [140, 42, 44]. For the problem of dynamically maintaining the modular decompo-

sition tree of a graph only two partial results are known. Muller and Spinrad [147]

have given a vertex-incremental algorithm for modular decomposition, which han-

dles each vertex insertion in O(n) time. Corneil, Perl and Stewart [41] have given

an optimal vertex-incremental algorithm for the recognition and modular decom-

position of cographs, which handles the insertion of a vertex of degree d in O(d)

time.

Here we give the first fully dynamic algorithm for maintaining the modular de-

composition tree of a cograph. Our algorithm builds on ideas and observations

made in the pioneering work on cographs by Corneil, Perl and Stewart [41]. For

handling edge operations the algorithm exploits the restricted structure of a co-

graph that remains such after an edge modification. Vertex operations are handled

using ideas from [41]. Our algorithm works in O(d) time per operation involving d

edges. Based on this algorithm we develop fully dynamic algorithms for the recogni-

tion of cographs, threshold graphs and trivially perfect graphs. All these algorithms

handle a modification involving d edges in O(d) time. This is optimal with respect

to all operations, with the possible exception of vertex deletion.

This part is organized as follows: Section 4.3.2 contains definitions and termi-

nology. Section 4.3.3 describes some observations on modular decompositions of

graphs and their complements. Section 4.3.4 presents the fully dynamic algorithm

for recognizing cographs and maintaining their modular decomposition tree. Sec-

tions 4.3.5 and 4.3.6 describe the recognition algorithms for threshold graphs and

trivially perfect graphs.

4.3. COGRAPH RECOGNITION 89

4.3.2 Preliminaries

Let G be a graph. The complement-connected components of G are the connected

components of its complement graph G. A module M in G is a set of vertices

M ⊆ V such that every vertex in V \M is either adjacent to every vertex in M , or

non-adjacent to every vertex in M . A module M is called trivial if M = V or M

contains a single vertex. M is called connected if GM is a connected subgraph. M

is called complement-connected if GM is a connected graph. We shall often refer to

a module as though it was the subgraph induced by its vertices. (For example, we

shall talk about the connected components of a module.) A disconnected module is

called parallel. A complement-disconnected module is called series. A module which

is both connected and complement-connected is called a neighborhood module. Note

that every module is exactly one of the three types: Series, parallel or neighborhood.

A module M is strong if for any module N with N ∩M �= ∅, we have N ⊆ M

or M ⊆ N . A strong module M is a maximal submodule of a module N ⊃ M ,

if no strong submodule of N properly contains M and is properly contained in

N . It has been shown (cf. [178]) that every vertex of a non-trivial module M

belongs to a unique maximal submodule of M . Clearly, the maximal submodules

of a parallel module are its connected components, and the maximal submodules of

a series module are its complement-connected components. Hence, the structure of

the modules of a graph G can be captured by the following modular decomposition

tree TG: The nodes of TG correspond to strong modules of G. The root node is

V , and the set of leaves of TG consists of all the vertices of G. The children of

every internal node M of TG are the maximal submodules of M . Each internal node

in TG is labeled ’series’, ’parallel’, or ’neighborhood’, depending on the type of its

corresponding module. Note that the modular decomposition tree of a given graph

is unique.

In the sequel we denote the modular decomposition tree of a graph G by TG. We

refer to a node M of TG by the set of vertices it represents, that is, the set of vertices

in the leaves of the subtree rooted at M . For two vertices u, v ∈ V , we denote by

Muv the least common ancestor of {u} and {v} in TG.

Let Π be some graph class. Π is called complement-invariant if G ∈ Π implies

G ∈ Π. Examples for complement-invariant classes include perfect graphs, cographs,

split graphs, threshold graphs and permutation graphs.

90 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

4.3.3 A Reduction

We say that a dynamic algorithm Alg for recognizing some graph property is based

on modular decomposition if: (1) Alg maintains the modular decomposition tree of

the dynamic graph; and (2) the only operations that Alg makes are updates to the

tree, or queries regarding the tree.

Observation 4.3.1 The modular decomposition trees of a graph and its complement

are identical up to exchanging the labels ’series’ and ’parallel’.

Note that this observation relates to the modular decomposition tree structure

only. If the tree contains only parallel and series nodes, this structure suffices to

reconstruct the graph. However, if there are also neighborhood modules then addi-

tional information on the relations between the maximal submodules of each neigh-

borhood module is needed.

Theorem 4.3.2 Let Π be a complement-invariant graph property. Let Alg be a

dynamic algorithm for Π recognition, which supports either edge insertions only

or edge deletions only, and is based on modular decomposition. Then Alg can be

extended to support both operations with the same time complexity.

Proof: Suppose that Alg is an edge-incremental algorithm. The proof for the case

that Alg is an edge-decremental algorithm is analogous. Let G = (V, E) be the

current graph. In order to delete an edge (u, v) ∈ E we perform an insert operation

on G, by treating each parallel node in TG as a series node and vice-versa. By

Observation 4.3.1, the modular decomposition tree of G is identical to TG up to

exchanging the labels ’series’ and ’parallel’. Since G ∪ {(u, v)} = G \ {(u, v)}, the

algorithm performs the update successfully if and only if G \ {(u, v)} ∈ Π.

4.3.4 Cographs

In this section we give a fully dynamic algorithm for recognizing cographs and main-

taining their modular decomposition tree. The algorithm works in O(d) time per

operation involving d edges. It is based on the following fundamental characteriza-

tion of cographs:

4.3. COGRAPH RECOGNITION 91

Theorem 4.3.3 ([40]) A graph is a cograph if and only if its modular decomposi-

tion tree contains only parallel and series nodes.

Another viewpoint on the modular decomposition tree of a cograph is as a

method to build the graph: Going recursively up the tree, the subgraph of a parallel

node is formed by taking the union of its children’s subgraphs. For a series node,

all edges between vertices in distinct child modules are added to that graph.

Theorem 4.3.3 implies that a cograph is connected or complement-connected,

but not both. It also implies that in a modular decomposition tree of a cograph

parallel and series nodes alternate along any path starting from the root. We use

these facts often in the sequel. We also rely on the following observation:

Observation 4.3.4 Let G be a cograph. If u and v are adjacent vertices in G then

Muv is a series module in TG. If u and v are non-adjacent then Muv is a parallel

module.

The Data Structure

Let G = (V, E) be the input graph. We maintain the modular decomposition tree

TG of G as follows: For each vertex of G we keep a pointer to its corresponding

leaf-node in TG. For each node M of TG we keep its type, which can be ’series’ or

’parallel’, and its number of children. We also keep pointers from M to its parent

and to its children. The parent pointer of the root node points to itself. In detail,

each node M has an associated doubly linked list L. Each element of L corresponds

to a child N of M , and consists of two pointers, one pointing to N and the other

to M . The parent pointer of N points to its corresponding element in L. This data

structure allows detaching a child from its parent in constant time. Note that a

node in TG has no explicit record of the vertices it contains as a module.

Initially TG is calculated in linear time, e.g., using the algorithm of [41]. If G is

discovered to contain an induced P4 then our algorithm outputs False and halts. In

the description below we assume that G is a cograph.

Adding an Edge

Let (u, v) be the edge to be added, and let G′ = G∪ {(u, v)}. By Observation 4.3.4

Muv is a parallel module. Let Cu and Cv denote the maximal submodules (equiva-

92 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

lently, connected components) of Muv which contain u and v, respectively. Without

loss of generality, |Cu| ≤ |Cv|. Our edge-incremental algorithm is based on the

following lemma:

Lemma 4.3.5 G′ is a cograph if and only if |Cu| = 1 and v is adjacent to every

other vertex in Cv.

Proof:

⇒ Suppose that |Cu| > 1. Then Cu contains some vertex a which is adjacent to

u, and Cv contains some vertex b which is adjacent to v. Hence, {a, u, v, b}
induce a P4 in G′, so G′ is not a cograph.

Suppose that w ∈ Cv \ {v} is not adjacent to v. Let v, x1, . . . , xk = w be a

shortest path from v to w in Cv, k ≥ 2. Then {u, v, x1, x2} induce a P4 in G′,

so G′ is not a cograph.

⇐ Suppose that G′ contains an induced P4. Since G is a cograph, an induced P4

in G′ must contain the edge (u, v). Suppose that {u, v, x, y} induce a P4 in G′

(not necessarily in this order). One of x and y is therefore adjacent to exactly

one of u and v. Without loss of generality, let x be adjacent to exactly one

of u and v. Since every vertex in V \Muv is either adjacent to both u and v,

or non-adjacent to both of them, we have x ∈ Muv and, therefore, x ∈ Cu or

x ∈ Cv. If x ∈ Cu, |Cu| > 1 and we are done. If x ∈ Cv, then x is adjacent to

v and not to u. As {u, v, x, y} induce a P4, y is adjacent either to u only (out

of u, v and x), or to x only. In the first case we have y ∈ Cu, implying that

|Cu| > 1. In the latter case, we conclude that y ∈ Cv. But (v, y) �∈ E(G′).

Note that the lemma implies that {v} is a child of Cv in TG, since otherwise

the path from Cv to {v} in TG would contain a parallel node, and v would not be

adjacent to all the vertices of Cv.

Let us assume for now that G′ is a cograph and that we have already identified

Muv, Cu, and Cv. We show below how to update TG in this case. Later, we shall

show how to check the conditions of Lemma 4.3.5 and how to find each of Muv, Cu

and Cv.

4.3. COGRAPH RECOGNITION 93

Let r be the number of children of Muv in TG. If both Cu and Cv contain a

single vertex, we update TG as follows: If r = 2, then the updates depend on the

position of Muv in TG. If Muv lies at the root of TG, we change its label to ’series’.

Otherwise, we connect {u} and {v} as children of the parent P of Muv (which is a

series module), and delete Muv. If r > 2, we make {u} and {v} the children of a

new series node {u, v}, and connect this node as a child of Muv.

Suppose now that |Cv| > 1. By Lemma 4.3.5 (since G′ is a cograph) |Cu| = 1 and

v is adjacent to every vertex in Cv \ {v}. We update TG by first detaching {u}, {v}
and Cv from their parents and forming a new parallel node K = {u} ∪ (Cv \ {v}).
We continue according to one of the following cases:

1. r > 2: We add a new series node {u} ∪ Cv as a child of Muv. We then make

{v} and K the children of {u} ∪ Cv. This case is illustrated in Figure 4.3.

2. r = 2: We connect {v} and K to the parent node of Muv (which might be Muv

itself if it is the root). We then delete Muv, unless it lies at the root of TG, in

which case we change its label to ’series’.

It remains to describe the subtree of TG′ rooted at the new parallel node K.

Let K1, . . . , Kl, {v} be the complement-connected components of Cv. There are two

cases to consider:

1. l > 1: In this case Cv \ {v} is necessarily connected. Hence, we need to make

{u} and Cv \ {v} the children of K, and connect K1, . . . , Kl to Cv \ {v} as its

children (see Figure 4.3). In order to carry out these changes efficiently, we do

not introduce a new node Cv \ {v}. Instead, we make Cv a child of K. Since

a node has no record of its corresponding vertex set, this alternative update

is equivalent to the requested one. Correspondingly, we shall now refer to the

former node Cv as Cv \ {v}.

2. l = 1: If K1 = Cv \ {v} contains a single vertex w, we make {u} and {w} the

children of K. Otherwise, K1 is complement-connected and, therefore, it is

disconnected. Let J1, . . . , Jp be the connected components of K1, p ≥ 2. Then

we need to make {u} and J1, . . . , Jp the children of K. Instead of introducing

the new node K, we make (the former node) K1 a child of {u}∪Cv (in addition

to {v}), and attach {u} as an additional child of K1. Finally, we delete Cv.

94 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

Muv

u

v K1

Cv

v

Muv

K1

u

{u} ∪ Cv

Cv \ {v}

{u}∪(Cv\{v})
Kl

Kl

Figure 4.3: The updates to the modular decomposition tree in case Muv and Cv

have more than two children each, and |Cu| = 1. Series nodes are drawn shaded.

Obviously, all the above updates to TG can be carried out in constant time.

Updating the number of children at each node can be also supported in constant

time. It remains to show how to find Muv, Cu and Cv efficiently, and how to verify

the conditions of Lemma 4.3.5. In other words, we have to check if one of {u} and

{v} is a child of Muv, and the other is connected to every vertex in its connected

component in G(Muv). It is straightforward to see that this is the case if and

only if Muv is parallel and is either the parent of {u} and the grandparent of {v},
or vice versa (assuming that |Cu| > 1 or |Cv| > 1). One can determine if such

a configuration exists in constant time, by checking if the parent of {u} ({v}) is

parallel, and coincides with the grandparent of {v} ({u}). If such a configuration

exists, then it immediately identifies Muv, Cu and Cv, and we update TG accordingly.

Otherwise, the algorithm outputs False and halts.

The following theorem and corollary summarize our results:

Theorem 4.3.6 There is an optimal edge-incremental algorithm for recognizing

cographs and maintaining their modular decomposition tree, which handles each edge

4.3. COGRAPH RECOGNITION 95

insertion in constant time.

Corollary 4.3.7 There is an optimal edges-only fully dynamic algorithm for rec-

ognizing cographs and maintaining their modular decomposition tree, which handles

each operation in constant time.

Vertex Modifications

We shall generalize our algorithm to handle vertex insertions and deletions as well.

Supporting vertex insertions is based on the vertex-incremental algorithm for co-

graph recognition of Corneil et al. [41]. This algorithm handles the insertion of a

vertex of degree d in O(d) time, updating the modular decomposition tree accord-

ingly, and can be supported by our data structure with some trivial extensions.

It remains to show how to handle the deletion of a vertex u of degree d from G.

Let G′ = G\u. G′ is a cograph as an induced subgraph of G. Hence, we concentrate

on updating TG. Let P be the parent node of {u} in TG. There are four cases to

consider:

1. If TG contains {u} only, then TG′ is empty.

2. If P has at least three children then TG′ is obtained from TG by deleting {u}.

3. If P has only two children that are both leaves, {u} and {v}, then TG′ is

obtained from TG by deleting {u} and replacing P with {v}.

4. If P has only two children {u} and M , where M is an internal node of TG,

then two cases are possible:

(a) If P lies at the root of TG, then TG′ is the subtree of TG which is rooted

at M .

(b) Otherwise, let F be the parent of P . Then TG′ is formed from TG by

connecting the children of M to F , and deleting {u}, P and M .

Proposition 4.3.8 The deletion of a vertex u of degree d can be handled in O(d)

time.

96 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

Proof: All cases except 4b can be handled in constant time. Consider this last

case. If P is a series module, then u is adjacent to all the vertices of M , and TG′ can

be constructed in O(d) time. If P is a parallel module, then instead of deleting M

we replace F with M , attaching the former children of F (except P) as children of

M . Since u is adjacent to all the vertices of these children modules, this takes O(d)

time.

We are now ready to state our main result:

Theorem 4.3.9 There is a fully dynamic algorithm for recognizing cographs and

maintaining their modular decomposition tree, which handles insertions and dele-

tions of vertices and edges, and works in O(d) time per modification involving d

edges.

4.3.5 Threshold Graphs

In this section we show a simple extension of our cograph recognition algorithm to

dynamically recognize threshold graphs. We use the following characterization of

threshold graphs:

Theorem 4.3.10 (cf. [25]) A graph is a threshold graph if and only if it is both a

cograph and a split graph.

We also use the split recognition algorithm of Ibarra [110], which handles in-

sertions and deletions of edges in constant time. Ibarra’s algorithm builds on a

characterization of split graphs by their degree sequence [91]. Upon each modifica-

tion it updates the degree sequence of the dynamic graph. A query is handled by

checking if the degree sequence of the graph satisfies the split graph characterization.

Notably, this algorithm does not require the graph to be a split graph throughout

its modifications. Hence, it can be used to also support vertex modifications in O(d)

time per d-degree vertex, by modifying (adding or deleting) the edges incident to

the vertex one by one.

Theorem 4.3.11 There is a fully dynamic algorithm for threshold recognition, which

works in O(d) time per operation involving d edges.

4.3. COGRAPH RECOGNITION 97

Proof: By Theorem 4.3.9 there exists a fully dynamic algorithm A1 for cograph

recognition, which works in O(d) time per modification involving d edges. Ibarra’s

work [110] implies a fully dynamic algorithm A2 for split recognition, achieving the

same time bounds. Our algorithm for threshold recognition executes A1 and A2 in

parallel, and upon a modification outputs False and halts if and only if any of these

algorithms outputs False.

4.3.6 Trivially Perfect Graphs

In this section we present a fully dynamic algorithm for trivially perfect graph recog-

nition. Note that this class of graphs is not complement-invariant (C4 is a counter

example). Our algorithm is an extension of the cograph recognition algorithm, which

after each operation checks whether the current graph contains an induced C4. It

works in O(d) time per modification involving d edges. Note that trivially perfect

graphs are exactly the class of chordal cographs (cf. [25]). Hence, one could use

our cograph recognition algorithm in conjunction with Ibarra’s chordal recognition

algorithm [110] to recognize this class. However, such an algorithm would require

O(n) time per edge modification and would not support vertex modifications.

Suppose that G = (V, E) is trivially perfect. If we delete a vertex from G then

the resulting graph is clearly trivially perfect. If we add an edge to G and the

new graph is a cograph, then it is also a trivially perfect graph. This follows by

noting that if an induced C4 is created, then G must have contained an induced

P4. Hence, it suffices to show how to check for the existence of an induced C4 after

edge deletions and vertex insertions. We assume in the following that the current

graph G is trivially perfect, and the modified graph G′ is a cograph as, otherwise,

the cograph recognition algorithm outputs False and we are done.

Adding a Vertex

Let z be a new vertex of degree d to be added, and let G′ = G ∪ z. Clearly, if G′

contains an induced C4, it is of the form {a, b, c, z} for some vertices a, b, c ∈ V . If z

connects two or more connected components of G then it must be adjacent to every

vertex in these components, or else G′ would contain an induced P4. Therefore, in

this case G′ is trivially perfect. If z is adjacent to all vertices of a single component

98 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

then again G′ is trivially perfect. One of these cases applies if and only if {z} is

either a child of a series root module (if G′ contains a single connected component),

or a grandchild of a parallel root module (if G′ contains more than one component).

We can check for such configurations in constant time. The remaining case is when

z is adjacent to some but not all vertices of a single connected component C of G.

We handle this case below.

Lemma 4.3.12 A cograph contains an induced C4 if and only if its modular decom-

position tree has a series node with at least two non-trivial children.

Proof: If H is a cograph and {a, b, c, d} induce a C4 in H , then the least common

ancestor of {a},{b},{c}, and {d} in TH is a series module with at least two non-trivial

maximal submodules (one containing a, c and the other containing b, d).

Conversely, if the modular decomposition tree of a cograph H contains a series

node with two non-trivial children M1 and M2, then any two vertices from M1

together with any two vertices from M2 induce a C4 in H .

Lemma 4.3.12 implies that in order to check whether a C4 is formed in G′ it

suffices to check if the updates to the modular decomposition tree produce any

series node with more than one non-leaf child. In order to verify that efficiently,

we introduce at each internal node N of TG a counter, which stores the number of

children of N which are not leaves. These counters can be easily maintained and

checked by our dynamic modular decomposition algorithm with no increase to its

time complexity. Hence, a d-degree vertex insertion can be supported in O(d) time.

Deleting an Edge

Let (a, c) ∈ E be an edge to be deleted, and let G′ = G \ {(a, c)}. Clearly, any

induced C4 in G′ is of the form {a, b, c, d} for some vertices b, d ∈ V . By the

previous discussion, in order to check whether G′ contains an induced C4, it suffices

to check whether the updates to the modular decomposition tree produce any series

node with a counter greater than one. By examining the updates to the tree it can

be seen that the only series node whose counter might exceed one is Mac, the least

common ancestor of {a} and {c} in TG. (Using the notation of Section 4.3.4 this

happens when |Ca| = |Cc| = 1 and r > 2.) We provide below a direct proof for that.

4.3. COGRAPH RECOGNITION 99

Lemma 4.3.13 If {a, b, c, d} induce a C4 in G′ then N [a] = N [c] in G.

Proof: By our assumption (a, c) ∈ E. Suppose to the contrary that v ∈ V is

adjacent to only one of a and c. Without loss of generality, suppose v is adjacent

to a. Hence, v must be adjacent to both b and d or, else,G′ contains an induced P4.

But then {d, v, b, c} induce a C4 in G, a contradiction.

Lemma 4.3.14 If {a, b, c, d} induce a C4 in G′, and v ∈ V is adjacent to b or d,

then v is adjacent to both a and c in G.

Proof: By Lemma 4.3.13, N [a] = N [c] in G. Hence, it suffices to prove that v is

adjacent to a. Suppose to the contrary that (v, a) �∈ E. Then {d, a, b, v} induce a

forbidden subgraph in G (either a P4 or a C4), a contradiction.

Let M ′
ac be the least common ancestor of {a} and {c} in TG′ . By Observa-

tion 4.3.4 M ′
ac is parallel. If M ′

ac lies at the root of TG′ then G′ is a trivially perfect

graph, since a and c are in different connected components (and, therefore, cannot

be part of the same induced C4). We assume in the sequel that this is not the case.

Theorem 4.3.15 Let P be the parent of M ′
ac in TG′. Then G′ is a trivially perfect

graph if and only if M ′
ac is the only non-trivial maximal submodule of P .

Proof: Suppose to the contrary that G′ is not a trivially perfect graph. Then there

exist two vertices b, d ∈ V such that {a, b, c, d} induce a C4 in G′. By Lemma 4.3.13,

N(a) = N(c) in G′. Hence, M ′
ac is the parent of both {a} and {c}. We claim that

M ′
ac = {a, c}. Suppose to the contrary that v ∈M ′

ac \ {a, c}, then v is non-adjacent

to a and c (since M ′
ac is parallel). By Lemma 4.3.14, v is non-adjacent to b and

d. However, both a and c are adjacent to b and d. Hence, b must be a vertex of

M ′
ac, implying that a and c are in the same connected component in G′(M ′

ac), a

contradiction.

Let M ′
abcd be the least common ancestor of M ′

ac, {b} and {d} in TG′ . We now

prove that M ′
abcd = P . Let S1 be a maximal submodule of M ′

abcd that contains M ′
ac.

Since a is adjacent to both b and d, M ′
abcd must be a series module. Hence, any

vertex v ∈ S1 \ {a, c} is adjacent to b or d. By Lemma 4.3.14, v is also adjacent to

a and c. Since this holds for all v ∈ S1 \ {a, c}, and since M ′
abcd is a series module,

100 CHAPTER 4. DYNAMIC RECOGNITION ALGORITHMS

S1 = {a, c} = M ′
ac, implying that M ′

abcd = P . Finally, since P is a series module,

its maximal submodule that contains both b and d is non-trivial and different from

M ′
ac, a contradiction.

Conversely, suppose that P contains a non-trivial maximal submodule L �= M ′
ac.

Since M ′
ac is a parallel module, P is a series module. Let b and d be two non-adjacent

vertices of L. Then {a, b, c, d} induce a C4 in G′, a contradiction.

Consider the updates to TG after deleting the edge (a, c). If G′ is not trivially

perfect then Lemma 4.3.13 implies that Mac was the parent of both {a} and {c} in

TG. Due to the update a new node M ′
ac = {a, c} is created and attached as a child

of Mac. Hence, P = Mac is the parent of M ′
ac in TG′ , and in order to determine if

G′ is trivially perfect, it suffices to check the counter of Mac after the update. We

conclude:

Theorem 4.3.16 There is a fully dynamic algorithm for trivially perfect graph

recognition which works in O(d) time per modification involving d edges.

Chapter 5

Incomplete Directed Perfect

Phylogeny

In this chapter we study the problem of reconstructing evolutionary history based

on incomplete data. In the perfect phylogeny model for studying evolution every

species has an associated vector of characters, each having one of several states. The

goal is to reconstruct a tree in which the species are at the leaves and each internal

node is associated with a character vector representing an ancestral species, such

that the set of all species having the same state in any character induces a connected

subtree.

We study the following variant of perfect phylogeny: The input is a species-

characters matrix. The characters are binary and directed, i.e., a species can only

gain characters. The difference from standard perfect phylogeny is that for some

species the state of some characters is unknown. The question is whether one can

complete the missing states in a way admitting a perfect phylogeny. The problem

arises in classical phylogenetic studies, when some states are missing or undeter-

mined. Quite recently, studies that infer phylogenies using inserted repeat elements

in DNA gave rise to the same problem. Extant solutions for it take time O(n2m) for

n species and m characters. We provide a graph theoretic formulation of the prob-

lem as a graph sandwich problem, and give near-optimal Õ(nm)-time algorithms for

the problem. We also study the problem of finding a single, general solution tree,

from which any other solution can be obtained by node-splitting. We provide an

algorithm to construct such a tree, or determine that none exists.

101

102 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Most of the results in this chapter were published in [155] and [156].

5.1 Introduction

When studying evolution, the divergence patterns leading from a single ancestor

species to its contemporary descendants are usually modeled by a tree structure,

called phylogenetic tree, or phylogeny. Extant species correspond to the tree leaves,

while their common progenitor corresponds to the root. Internal nodes correspond

to hypothetical ancestral species, which putatively split up and evolved into distinct

species. Tree branches model changes through time of the hypothetical ancestor

species. The common case is that one has information regarding the leaves, from

which the phylogenetic tree is to be inferred. This task, called phylogenetic recon-

struction (cf. [63]), was one of the first algorithmic challenges posed by biology, and

the computational community has been dealing with problems of this flavor for over

three decades (see, e.g., [88]).

The character-based approach to tree reconstruction describes contemporary

species by their attributes or characters. Each character takes on one of several

possible states. The input is represented by a matrix A where aij is the state of

character j in species i, and the i-th row is the character vector of species i. The

output sought is a hypothesis regarding evolution, i.e., a phylogenetic tree along

with the suggested character vectors of the internal nodes. This output must satisfy

properties specified by the problem variant.

One important class of phylogenetic reconstruction problems concerns finding

a perfect phylogeny. The property required from such a phylogeny is that for each

possible character state, the set of all nodes that have that state induces a connected

subtree. The general perfect phylogeny problem is NP-hard [23, 179]. When con-

sidering the number of possible states per character as a parameter, the problem is

fixed parameter tractable [4, 116]. For binary characters, having only two possible

states, perfect phylogeny is linear-time solvable [87].

When no perfect phylogeny is possible, one option is to seek a largest subset

of characters which admits a perfect phylogeny. Characters in such a subset are

said to be compatible. Compatibility problems have been studied extensively (see,

e.g., [142]).

5.1. INTRODUCTION 103

Another common optimization approach to phylogenetic reconstruction is the

parsimony criterion. It calls for a solution with fewest state changes altogether,

counting a change whenever the state of a character changes between a species and

its ancestor species. This problem is known to be NP-hard [65]. A variant introduced

by Camin and Sokal [29] assumes that characters are binary and directed, namely,

only 0 → 1 changes may occur on any path from the root to a leaf. Denoting by

1 and 0 the presence and absence, respectively, of the character, this means that

characters can only be gained throughout evolution. Another related binary variant

is Dollo parsimony [47, 158], which assumes that a 0→ 1 change may happen only

once, i.e., a character can be gained once, but it can be lost several times. Both of

these variants are polynomially solvable (cf. [63]).

In this chapter, we discuss a variant of binary perfect phylogeny which combines

the assumptions of both Camin-Sokal parsimony and Dollo parsimony. The setup

is as follows: The characters are binary, directed, and can be gained only once. As

in perfect phylogeny, the input is a matrix of character vectors, with the difference

that some character states are missing. The question is whether one can complete

the missing states in a way admitting a perfect phylogeny. We call this problem

Incomplete Directed Perfect phylogeny (IDP).

The problem of handling incomplete phylogenetic data arises whenever some

of the data are missing. It is also encountered in the context of morphological

characters, where for some species it may be impossible to reliably assign a state

to a character. The problem of determining whether a set of incomplete undirected

characters is compatible was shown to be NP-complete, even in the case of binary

characters [179]. Indeed, the popular PAUP software package [180] provides an

exponential solution to the problem by exhaustively searching the space of missing

states.

Quite recently, a novel kind of genomic data has given rise to the same problem:

Nikaido et al. [151] use inserted repetitive genomic elements, particularly SINEs

(Short Interspersed Nuclear Elements), as a source of evolutionary information.

SINEs are short DNA sequences that were copied and randomly reinserted into

various genomic loci during evolution. The distinct insertion loci are identifiable by

the flanking sequences on both sides of the insertion site (see Figure 5.1). These

insertions are assumed to be unique events in evolution, because the odds of having

separate insertion events at the very same locus are negligible. Furthermore, a SINE

104 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

insertion is assumed to be irreversible, i.e., once a SINE sequence has been inserted

somewhere along the genome, it is practically impossible for the exact, complete

SINE to leave that specific locus. However, the inserted segment along with its

flanking sequences may be lost when a large genomic region, which includes them,

is deleted. In that case we do not know whether a SINE insertion had occurred in

the missing site prior to its deletion. One can model such data by assigning to each

locus a character, whose state is ’1’ if the SINE occurred in that locus, ’0’ if the

locus is present but does not contain the SINE, and ’?’ if the locus is missing. The

resulting reconstruction problem is precisely Incomplete Directed Perfect phylogeny.

Genome 1

Genome 2

Genome 3

SINE

Legend:

Locus C

Locus B

Locus A

Figure 5.1: SINEs (black boxes) repeat in different loci (different shades of grey)

across distinct genomes. A SINE insertion transformed Genome 1 into Genome 2. A

deletion of a locus transformed Genome 2 into Genome 3. Given Genomes 1 and 3,

we can identify that the SINE on locus C is not present in Genome 1, by its flanking

sequence. However, locus B is missing in Genome 3.

The IDP problem becomes polynomial when the characters are directed: Ben-

ham et al. [18] studied the compatibility problem on generalized characters. Their

work implies an O(n2m)-time algorithm for IDP, where n and m denote the number

of species and characters, respectively. Another problem related to IDP is the con-

sensus tree problem [6, 101]. This problem calls for constructing a consensus tree

from binary subtrees, and is solvable in polynomial time. One can reduce IDP to

the latter problem, but the reduction itself takes Ω(n2m) time.

Our approach to the IDP problem is graph theoretic. We first provide several

graph and matrix characterizations for solvable instances of binary directed perfect

phylogeny. We then reformulate IDP as a graph sandwich problem: The input data

is recast as two nested graphs, and solving IDP is shown to be equivalent to finding

a graph of a particular type ”sandwiched” between them. This formulation allows

5.1. INTRODUCTION 105

us to devise efficient algorithms for IDP.

We provide two algorithms for IDP, which we call Algorithms A and B. Al-

gorithm A has two possible implementations: Deterministic and randomized. Its

deterministic complexity is O(nm + k log2(n + m)), for an instance with k 1-entries

in the species-characters matrix. The randomized version of Algorithm A takes

O(nm+k log(l2/k)+ l(log l)3 log log l) expected time, where l = n+m. Algorithm B

is deterministic and takes O(l2 log l) time. For both algorithms, the improved com-

plexity is obtained by using dynamic data structures for maintaining the connected

components of a graph [101, 107, 184]. Since an Ω(nm) lower bound was shown by

Gusfield for directed binary perfect phylogeny [87], our algorithms have near opti-

mal time complexity. We implemented Algorithm A and used it to reanalyze the

mammalian evolution data of Nikaido et al. [151].

We also study the issue of multiple solutions for IDP. Often there is more than

one phylogeny that is consistent with the data. When the input matrix is complete

and has a solution, there is always a tree T ∗ that is general, i.e., it is a solution,

and every other tree consistent with the data can be obtained from T ∗ by node

splitting. In other words, T ∗ describes all the definite information in the data,

and ambiguities (nodes with three or more children) can be resolved by additional

information. This is not always the case if the data matrix is incomplete: There

may or may not be a general solution tree. In that case, using a particular solution

and additional information, one can conclude that the data is inconsistent, even

though the additional information may be consistent with another solution. It is

thus desirable to know if a general solution exists and to generate such a solution if

the answer is positive.

We provide answers to both questions. We prove that Algorithm A provides the

general solution of a problem instance, if such exists. We also give an algorithm

which determines if the solution T produced by Algorithm A is indeed general. The

complexity of the latter algorithm is O(nm + kd), where d denotes the maximum

out-degree of T .

The chapter is organized as follows: In Section 5.2 we provide some preliminaries,

and formalize the IDP problem. In Section 5.3 we characterize binary matrices

admitting a directed perfect phylogeny, and provide the graph sandwich formulation

for IDP. In Section 5.4 we present algorithms for IDP. In Section 5.5 we analyze

the generality of the solution produced by Algorithm A. Finally, in Section 5.6 we

106 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

describe an implementation of our algorithm for IDP, and a study of mammalian

evolution using this implementation.

5.2 Preliminaries

We first specify some terminology and notation. We reserve the terms nodes and

branches for trees, and use the terms vertices and edges for other graphs. Matri-

ces are denoted by an upper-case letter, while their elements are denoted by the

corresponding lower-case letter.

Let T be a rooted tree with leaf set S, where branches are directed from the root

towards the leaves. The out-degree of a node x in T is its number of children, and is

denoted by d(x). For a node x in T we denote the leaf set of the subtree rooted at

x by L(x). L(x) is called a clade of T . For consistency, we consider ∅ to be a clade

of T as well, and call it the empty clade. S, ∅ and all singletons are called trivial

clades. We denote by triv(S) the collection of all trivial clades. Two sets are said

to be compatible if they are either disjoint, or one of them contains the other.

Observation 5.2.1 (cf. [142]) A collection S of subsets of a set S is the set of

clades of some tree over S if and only if S contains triv(S) and its subsets are

pairwise compatible.

A tree T is uniquely characterized by its set of clades. The transformation

between a branch-node representation of a tree and a list of its clades is straight-

forward. Thus, we hereafter identify a tree with the set of its clades. If Ŝ is a

subset of the leaves of T , then the subtree of T induced on Ŝ is the collection

{Ŝ ∩ S ′ : S ′ ∈ T } ∪ {Ŝ} (which defines a tree).

Throughout the chapter we denote by S = {s1, . . . , sn} the set of all species and

by C = {c1, . . . , cm} the set of all (binary) characters. For a graph K, we define

C(K) ≡ C ∩ V (K) and S(K) ≡ S ∩ V (K). Let Bn×m be a binary matrix whose

rows correspond to species, each row being the character vector of its corresponding

species. That is, bij = 1 if and only if the species si has the character cj . A

phylogenetic tree for B is a rooted tree T with n leaves corresponding to the n

species of S, such that each character is associated with a clade S ′ of T , and the

following properties are satisfied:

5.2. PRELIMINARIES 107

(1) If cj is associated with S ′ then si ∈ S ′ if and only if bij = 1.

(2) Every non-trivial clade of T is associated with at least one character.

For a character c, the node x of T whose clade L(x) is associated with c, is called

the origin of c with respect to T . Characters associated with ∅ have no origin.

A {0, 1, ?} matrix is called incomplete. For convenience, we consider binary

matrices as incomplete. Let An×m be an incomplete matrix in which aij = 1 if si

has cj, aij = 0 if si lacks cj , and aij =? if it is not known whether si has cj . For

a character cj and a state x ∈ {0, 1, ?}, the x-set of cj in A is the set of species

{si ∈ S : aij = x}. cj is called a null character if its 1-set is empty. For subsets

Ŝ ⊆ S and Ĉ ⊆ C, define A|Ŝ,Ĉ to be the submatrix of A induced on Ŝ ∪ Ĉ.

A binary matrix B is called a completion of A if aij ∈ {bij , ?} for all i, j. Thus,

a completion replaces all the ?-s in A by zeroes and ones. If B has a phylogenetic

tree T , we say that T is a phylogenetic tree for A as well. We also say that T
explains A via B, and that A is explainable. An example of these definitions is given

in Figure 5.2.

1 1

??

? ? ?

?

0

0

0

1

0

1 0

Characters

Species

1 1

0

0

0

1

0

1 01

1

1

0

0 1

s2

c1 c2 c3 c4 c5
c1

c3

c5

c2, c4

s2

s1 s3

s3

s1

Figure 5.2: Left to right: An incomplete matrix A, a completion B of A, and a

phylogenetic tree that explains A via B. Each character is written to the right of

its origin node.

The following lemma, closely related to Observation 5.2.1, has been proven in-

dependently by several authors:

Lemma 5.2.2 (cf. [142]) A binary matrix B has a phylogenetic tree if and only if

the 1-sets of every two characters are compatible.

An analogous lemma holds for undirected characters (cf. [87]). In contrast, for

incomplete matrices, even if every pair of columns has a phylogenetic tree, the full

matrix might not have one. An example of such a matrix was provided in [63] for

108 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

incomplete undirected characters. We provide a simpler example for incomplete

directed characters in Figure 5.3.

Characters

1 0 0

1 1 0

Species ? 1 1

0 ? 1

Figure 5.3: An incomplete matrix which has no phylogenetic tree although every

pair of its columns has one.

We are now ready to state the IDP problem:

Problem 3 (Incomplete Directed Perfect Phylogeny (IDP))

Instance: An incomplete matrix A.

Goal: Find a phylogenetic tree for A, or determine that no such tree exists.

5.3 Characterizations of Explainable Binary Ma-

trices

5.3.1 Forbidden Subgraph Characterization

Let B be a species-characters binary matrix of order n×m. Construct the bipartite

graph G(B) = (S, C, E) with E = {(si, cj) : bij = 1}. An induced path of length

four in G(B) is called a Σ subgraph if it starts (and therefore ends) at a vertex

corresponding to a species (see Figure 5.4). A bipartite graph with no induced Σ

subgraph is called Σ-free.

c

c’

s

s’

s”

Characters Species

Figure 5.4: The Σ subgraph.

The following theorem restates Lemma 5.2.2 in terms of graph theory.

5.3. CHARACTERIZATIONS OF EXPLAINABLE BINARY MATRICES 109

Theorem 5.3.1 B has a phylogenetic tree if and only if G(B) is Σ-free.

Corollary 5.3.2 Let Ŝ ⊆ S and Ĉ ⊆ C be subsets of the species and characters,

respectively. If A is explainable then so is A|Ŝ,Ĉ.

Observation 5.3.3 Let A be a matrix explained by a tree T and let Ŝ = L(x) be a

clade in T , where x is a node of T . Then the submatrix A|Ŝ,C is explained by the

subtree of T rooted at x.

For a subset S ′ ⊆ S of species, we say that a character c is S ′-universal in B, if

its 1-set (in B) contains S ′.

Proposition 5.3.4 If G(B) is connected and Σ-free, then there exists a character

which is S-universal in B.

Proof: Suppose to the contrary that B has no S-universal character. Consider the

collection of all 1-sets of characters in B. Let c be a character whose 1-set is maximal

with respect to inclusion in this collection. Let s′′ be a species which lacks c. Since

G(B) is connected, there exists a path from s′′ to c in G(B). Consider a shortest

such path P . Since G(B) is bipartite, the length of P is odd. However, P cannot be

of length 1, by the choice of s′′. Furthermore, if P is of length greater than 3, then

its first 5 vertices induce a Σ subgraph, a contradiction. Thus P = (s′′, c′, s′, c) must

be of length 3. By maximality of the 1-set of c, it is not contained in the 1-set of c′.

Hence, there exists a species s which has the character c but lacks c′. Together with

s, the vertices of P induce a Σ subgraph, as depicted in Figure 5.4, a contradiction.

Let Ψ be a graph property. In the Ψ sandwich problem one is given a vertex set

V and a partition of V ⊗ V into three disjoint subsets: E0 - forbidden edges, E1

- mandatory edges, and E? - optional edges. The objective is to find a supergraph

of (V, E1) which satisfies Ψ and contains no forbidden edges. Hence, the required

graph (V, F) must be “sandwiched” between (V, E1) and (V, E1 ∪ E?). The reader

is referred to articles [83, 85] for a discussion of various sandwich problems.

For the property “containing no induced Σ subgraph” (a property of bipartite

graphs) the sandwich problem is defined as follows:

110 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Problem 4 (Σ-free sandwich)

Instance: A vertex set S∪C with S∩C = ∅, and a partition (E0, E?, E1) of S×C.

Goal: Find a set of edges F such that F ⊇ E1, F ∩E0 = ∅, and the graph (S, C, F)

is Σ-free, or determine that no such set exists.

Theorem 5.3.1 motivates considering the IDP problem on input A as an instance

((S, C), EA
0 , EA

? , EA
1) of the Σ-free sandwich problem. Here, EA

x = {(si, cj) : aij =

x}, for x = 0, ?, 1. In the sequel, we omit the superscript A when it is clear from

the context.

Proposition 5.3.5 The Σ-free sandwich problem is equivalent to IDP.

Note that there is an obvious 1-1 correspondence between completions of A
and possible solutions of the corresponding sandwich instance ((S, C), E0, E?, E1).

Hence, in the sequel we refer to matrices and their corresponding sandwich instances

interchangeably.

5.3.2 Forbidden Submatrix Characterizations

A binary matrix B is called good if it can be decomposed as follows:

(1) Its left k1 ≥ 0 columns are all ones.

(2) There exist good matrices B1, . . . ,Bl, such that the rest (0 or more) of the

columns of B form the block-structure illustrated in Figure 5.5.

A matrix A is canonical if A = [B, C] where B is a zero submatrix and C is good.

We say that a matrix B avoids a matrix X , if no submatrix of B is identical to X .

Theorem 5.3.6 Let B be a binary matrix. The following are equivalent:

1. B has a phylogenetic tree.

2. G(B) is Σ-free.

3. Every matrix obtained by permuting the rows and columns of B avoids the

following matrix:

Z =

⎡⎢⎢⎣
1 1

1 0

0 1

⎤⎥⎥⎦

5.3. CHARACTERIZATIONS OF EXPLAINABLE BINARY MATRICES 111

4. There exists an ordering of the rows and columns of B which yields a canonical

matrix.

5. There exists an ordering of the rows and columns of B so that the resulting

matrix avoids the following matrices:

X1 =

⎡⎣ 0 1

1 0

⎤⎦ ,X2 =

⎡⎣ 0 1

1 1

⎤⎦ ,X3 =

⎡⎣ 1 1

0 1

⎤⎦ ,X4 =

⎡⎢⎢⎣
1

0

1

⎤⎥⎥⎦

Proof:

1⇔2 Theorem 5.3.1.

2⇔3 Trivial.

1⇒4 Suppose T is a tree that explains B. Assign to each node of T an index which

equals its position in a preorder visit of T . Sort the characters according to

the indices of their origin nodes, letting null characters come first. Sort the

species according to the indices of their corresponding leaves in T . The result

is a canonical matrix.

4⇒5 It is easy to verify that canonical matrices avoid X1, . . . ,X4.

5⇒3 Suppose to the contrary that B has an ordering of its rows and columns, so

that rows i1, i2, i3 and columns j1, j2 of the resulting matrix form the subma-

trix Z. Consider the permutations θrow, θcol of the rows and columns of B,

respectively, which yield a matrix avoiding X1, . . . ,X4. In this ordering, row

θrow(i1) necessarily lies between rows θrow(i2) and θrow(i3) or, else, the subma-

trix X4 occurs. Suppose that θrow(i2) < θrow(i3) and θcol(j1) < θcol(j2), then

X3 occurs, a contradiction. The remaining cases are similar.

Note that a matrix which avoids X4 has the consecutive ones property in columns.

Gusfield [87, Theorem 3] has proven that a matrix which has an undirected perfect

phylogeny can be reordered so as to satisfy this property [87, Theorem 3]. In fact,

for explainable binary matrices, the reordering used by Gusfield’s proof essentially

generates a canonical matrix. Note also that Σ-free graphs are bipartite convex as

they avoid X1, X2 and X3 (see, e.g., [2]).

112 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

...0

0B2

Bl

B1

B31

Figure 5.5: Construction of a good matrix. Each Bi is a good matrix. A canonical

matrix is formed from it by appending columns of zeros on the left.

The reader is referred to the article [121] for other problems of permuting matrices

to avoid forbidden submatrices.

5.4 Algorithms for Solving IDP

Let A be the input matrix, and define G(A) = (S, C, EA
1). For a nonempty subset

S ′ ⊆ S, we say that a character is S ′-semi-universal inA if its 0-set does not intersect

S ′. The following lemmas motivate a divide and conquer approach to IDP, which is

the basis of our algorithms for solving it.

Lemma 5.4.1 Let A be an incomplete matrix with a Σ-free completion B. Let c be

S-semi-universal in A. Let B′ be the matrix obtained from B by setting all entries

in the column of c to 1. Then B′ is also a Σ-free completion of A.

Proof: Suppose to the contrary that {s1, c1, s2, c2, s3} induce a Σ subgraph in

G(B′). Since G(B) is Σ-free, if follows that at least one of the Σ edges was added

to B′. But then one of c1 and c2 is c, a contradiction.

Lemma 5.4.2 Let A be an incomplete matrix with a Σ-free completion B. Let

(K1, . . . , Kr) be a partition of S ∪ C such that each Ki is a union of one or more

connected components of G(A). Let B′ be the matrix obtained from B by setting all

entries between vertices of Ki and Kj to 0, for all i �= j. Then B′ is also a Σ-free

completion of A.

5.4. ALGORITHMS FOR SOLVING IDP 113

Proof: Suppose to the contrary that {s1, c1, s2, c2, s3} induce a Σ subgraph in

G(B′). Then one of the non-edges (s1, c2) or (c1, s3) contains one vertex from Ki

and the other from Kj, for i �= j. It follows that there is a path in G(B′) between a

vertex of Ki and a vertex of Kj, a contradiction.

We now describe two efficient Õ(nm)-time algorithms for solving IDP.

5.4.1 Algorithm A

Algorithm A is described in Figure 5.6. The algorithm outputs the set of non-empty

clades of a tree explaining A, or outputs False if no such tree exists. The algorithm

is recursive and is initially called with Alg A(A) .

Alg A(A = ((S, C), E0, E?, E1)):

1. If |S| > 1 then do:

(a) Remove all S-semi-universal characters and all null characters from

G(A).

(b) If the resulting graph G′ is connected then output False and halt.

(c) Otherwise, let K1, . . . , Kr be the connected components of G′, and let

A1, . . . ,Ar be the corresponding submatrices of A.

(d) For i = 1, . . . , r do: Alg A(Ai) .

2. Output S.

Figure 5.6: Algorithm A for solving IDP.

Theorem 5.4.3 Algorithm A correctly solves IDP.

Proof: Suppose that the algorithm outputs False. Then there exists a recursive

call Alg A(A′) in which the graph G′ = (S ′, C ′, E ′) obtained in Step 1b was found

to be connected. Suppose to the contrary that A has a phylogenetic tree. Then

by Corollary 5.3.2 there exists some edge set F ∗, which solves A′. The graph G∗ =

(S ′, C ′, F ∗) is connected and by Theorem 5.3.1, it is also Σ-free. Therefore, by

114 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Proposition 5.3.4 there exists an S ′-universal character in G∗. That character must

be S ′-semi-universal in A′. By Algorithm A this vertex should have been removed

at step 1a, a contradiction.

To prove the other direction, we will show that if the algorithm outputs a col-

lection T ′ = {S1, . . . , Sl} of sets, then T = T ′ ∪ {∅} is a tree which explains A. We

first prove that the collection T of sets is pairwise compatible, implying by Obser-

vation 5.2.1 that T is a tree. Associate with each Si the recursive call Alg A(Ai) at

which it was output. Observe that each such call makes recursive calls associated

with disjoint subsets of Si. By induction, it follows that Si ⊆ Sj if and only if

the recursive call associated with Si is nested within the one associated with Sj .

Otherwise, Si ∩ Sj = ∅. Hence, S1, . . . , Sl are pairwise compatible and, thus, T is a

tree.

It remains to show that T is a phylogenetic tree for A. Associate each null

character with the empty clade. Each other character ĉ is removed at Step 1a only

once in the course of the algorithm, during some recursive call Alg A(Â). Associate

ĉ with the clade Ŝ which was output at that recursive call. Observe that each non-

trivial clade Ŝ ∈ T is associated with at least one character. Finally, define a binary

matrix Bn×m with bsc = 1 if and only if s belongs to the clade Sc associated with c.

Since asc �= 1 for all s �∈ Sc and asc �= 0 for all s ∈ Sc, B is a completion of A. The

claim follows.

Let h ≤ min{m, n} be the height of the reconstructed tree. Each recursive call

increases the height of the output tree by at most one. The work at each level

of the tree requires: (1) Finding semi-universal vertices; and (2) finding connected

components in disjoint graphs whose total number of edges is at most mn. Hence,

the total work is O(mn) per level, and a naive implementation requires O(hmn)

time. We give a faster implementation below.

Theorem 5.4.4 Algorithm A has an O(nm + |E1| log2(n + m))-time deterministic

implementation, and a randomized implementation taking O(nm+|E1| log(l2/|E1|)+
l(log l)3 log log l) expected time, where l = n + m.

Proof: For the complexity proof we give an alternative, non-recursive implementa-

tion of Algorithm A, shown in Figure 5.7. This iterative version mimics the recursive

one, but traverses the tree of recursive calls in a breadth first manner, rather than

5.4. ALGORITHMS FOR SOLVING IDP 115

a depth first manner. Consequently, the implementation deals with a single graph,

rather than a different graph per each recursive call. The reduction in complexity

is primarily due to the use of an efficient dynamic data structure for graph connec-

tivity. The data structure maintains the connected components of the graph while

edge deletions occur.

We now analyze the running time of this implementation. Step 1 takes O(nm)

time. Each iteration of the ’while’ loop (Step 2) splits the (potential) clades added

in the previous one. Thus, Algorithm A performs one iteration of this type per each

level of the tree returned, and at most h iterations.

Step 2b requires explicitly computing the connected components of G. Both

data structures that we use for storing the connected components of G (see below)

maintain a spanning tree for each connected component of G, and allow computing

the connected components in O(n+m) time per iteration, or O(h(m+n)) = O(nm)

time in total.

The loop of Step 2c is performed at most min{2n− 1, m} times altogether, as in

each (successful) iteration at least one character is removed from G (Step 2(c)vii),

and at least one clade is added to T . Thus, Step 2(c)i takes O(min{n, m}) time

altogether, and Step 2(c)ii takes O(nm) time in total. Step 2(c)iii takes O(nm)

time in total, as it considers each species-character pair only once throughout the

execution of the algorithm.

In order to analyze the complexity of Step 2(c)iv, observe that the following

invariants hold in this step for each character c ∈ C(Ki):

• d?
c = |{(s, c) ∈ E? : s ∈ S(Ki)}|, as guaranteed by Step 2(c)iii.

• d1
c = |{(s, c) ∈ E1 : s ∈ S(Ki)}| = |{(s, c) ∈ E1 : s ∈ S}|, as initialized in

Step 1b, since species are never removed, and each species adjacent to c must

be in its connected component until c is removed.

Given d1
c , d

?
c and |S(Ki)|, one can check in O(1) time whether c is S(Ki)-semi-

universal, and thus Step 2(c)iv takes O(|C(Ki)|) time, or O(hm) time in total.

Since each set added to T in Step 2(c)vi corresponds to at least one character,

and each character is associated with exactly one such set, updating T requires

O(nm) time in total. This also implies an O(nm) bound on the size of the output

produced in Step 3.

116 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Alg A fast(A = ((S, C), E0, E?, E1)) :

1. Initialize:

(a) Set t ← 0, K0 ← {S ∪ C}, G← G(A), T ← triv(S).

(b) For each character c, and i ∈ {1, ?} do:

Set di
c ← |{s ∈ S : (s, c) ∈ Ei}|.

(c) Remove all S-semi-universal and all null characters from G.

(d) Initialize a data structure for maintaining the connected components

of G.

2. While E(G) �= ∅ do:

(a) Increment t.

(b) Explicitly compute the set Kt of connected components K1, . . . , Kr of

G.

(c) For each connected component Ki ∈ Kt such that |E(Ki)| ≥ 1 do:

i. Pick any character c′ ∈ C(Ki).

ii. Compute S ′ = S(K ′) \ S(Ki), where K ′ is the component in Kt−1

which contains c′.

iii. For each species-character pair (s, c) ∈ S ′ × C(Ki) do:

If (s, c) ∈ E? then decrement d?
c.

iv. Compute the set U of all characters in Ki that are S(Ki)-semi-

universal in A.

v. If U = ∅ then output False and halt.

vi. Set T ← T ∪ {S(Ki)}.
vii. Remove U from G and update the data structure of connected

components accordingly.

3. Output T .

Figure 5.7: An iterative presentation of Algorithm A.

5.4. ALGORITHMS FOR SOLVING IDP 117

It remains to discuss the cost of the dynamic data structure, which is charged for

Step 2(c)vii. Using the dynamic algorithm of [107], the connected components of G

can be maintained during |E1| edge deletions at a total cost of O(|E1| log2(n + m))

time spent in Step 2(c)vii. Alternatively, using the Las-Vegas type randomized

algorithm of [184] for decremental dynamic connectivity, the edge deletions can be

supported in O(|E1| log(l2/|E1|) + l(log l)3 log log l) expected time. The complexity

follows.

5.4.2 Algorithm B

We now describe another deterministic algorithm for IDP, which is faster than Algo-

rithm A whenever |E1| = ω((n + m)2/ log(n + m)). Algorithm B uses the dynamic-

connectivity data structure of [101], which supports deletion of batches of edges from

a graph, while detecting after each batch one of the new connected components in

the resulting graph (if new components were formed).

Algorithm B is described in Figure 5.8. For an instance A it outputs the non-

empty clades of a tree explaining A (except possibly the root clade if it has no match-

ing character), or False if no such tree exists. It is initially called with Alg B(A).

Theorem 5.4.5 Algorithm B correctly solves IDP in O((n + m)2 log(n + m)) de-

terministic time.

Proof: Correctness: We prove correctness by induction on the problem size.

If G′ is connected (at Step 2c), then by Proposition 5.3.4 A has no phylogenetic

tree, and indeed the algorithm outputs False. Otherwise, let A1 and A2 be the sub-

instances induced on K and K ′ = V (G′) \K, respectively, as detected in Step 2b.

If A has a phylogenetic tree then by Corollary 5.3.2 so do A1 and A2. On the

other hand, let T1, T2 be phylogenetic trees for A1,A2, respectively. Note that by

definition, T2 must contain the trivial clade S(K ′), which is not necessarily a clade

in a phylogenetic tree for A (if K ′ has no semi-universal character). To remedy that

define T ′
2 = T2 if the algorithm outputs S(K ′), and T ′

2 = T2 \ {S(K ′)} otherwise.

Then T1 ∪ T ′
2 ∪ {S} is a phylogenetic tree for A.

Complexity: The data structure of [101] dynamically maintains a graph H =

(V, E) through batches of edge deletions, with each batch followed by a query for

118 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Alg B(A = ((S, C), E0, E?, E1)):

1. If |S| = 1 or G(A) has an S-semi-universal vertex then output S.

2. If |S| > 1 then do:

(a) Remove all S-semi-universal characters and all null characters from

G(A).

(b) If the resulting graph G′ contains a new connected component K then

do:

i. Let A1,A2 be the submatrices of A induced on V (K) and V (G′)\
V (K), respectively.

ii. For i = 1, 2 do: Alg B(Ai).

(c) Else output False and halt.

Figure 5.8: Algorithm B for solving IDP.

a newly created connected component in the resulting graph. If we denote by b0

the number of batches which do not result in a new component, then as shown

in [101], the total cost of answering the queries and performing the batch deletions,

if eventually all edges are deleted, is O(|V |2 log |V |+ b0 min{|V |2, |E| log |V |}).

We use this data structure to maintain G(A) during all the recursive calls. As

b0 = 1 (since in case no new component is formed the algorithm outputs False and

halts) and |V | = n+m, the total cost is O((m+n)2 log(n+m)) time. This expression

dominates the complexity, as finding the semi-universal vertices at each recursive

call costs in total only O(nm) time (see proof of Theorem 5.4.4).

We remark, that an Ω(nm)-time lower bound for (undirected) binary perfect

phylogeny was proven by Gusfield [87]. A closer look at Gusfield’s proof reveals

that it applies, as is, also to the directed case. As IDP generalizes directed binary

perfect phylogeny, any algorithm for this problem would require Ω(nm) time.

5.5. DETERMINING THE GENERALITY OF THE SOLUTION 119

5.4.3 Greedy Approach Fails

We end the section by showing that a simple greedy approach to IDP fails. Let A
be an incomplete matrix. We say that asc =? is forced if there exists an assignment

x ∈ {0, 1} such that completing asc to x results in an induced Σ in the graph

(S, C, EA′
1 ∪EA′

?) corresponding to the completed matrix A′. A is called forced if it

has some forced ?-entry.

A naive greedy algorithm for IDP is as follows: At each step complete one ?-

entry in the matrix. If there are no forced entries, choose any ?-entry and complete

it arbitrarily. Otherwise, try to complete a forced entry. If such completion is not

possible (an induced Σ is formed) report False.

Figure 5.9A shows an explainable instance with no forced entries. Setting the

bottom-left ?-entry to 0 results in an instance which cannot be explained. A solution

matrix is shown in Figure 5.9B.

Characters

1 ? 0 0

1 1 ? ?

Species ? 1 1 ?

? ? 1 1

? 0 ? 1

Characters

1 0 0 0

1 1 1 1

Species 1 1 1 1

1 1 1 1

1 0 1 1

A B

Figure 5.9: A counter-example to the greedy approach. A: The input matrix. B: A

solution.

5.5 Determining the Generality of the Solution

A ’yes’ instance of IDP may have several distinct phylogenetic trees as solutions.

These trees may be related in the following way: We say that a tree T generalizes a

tree T ′, and write T ⊆ T ′, if every clade of T is a clade of T ′, i.e., the evolutionary

scenario expressed by T ′ includes all the details of the scenario expressed by T , and

possibly more. Therefore, T ′ represents a more specific scenario, and T represents

a more general one. We say that a tree T is the general solution of an instance

A, if T explains A and generalizes every other tree which explains A. Figure 5.10

120 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

demonstrates the definitions and also gives an example of an instance that has no

general solution.

c1

c2

c1

c2

s2

s3

s1

s4

s5

T T1 T2

s1 s2 s3 s4 s5s1 s2 s3 s4 s5

c2c1c1 c2

SpeciesCharacters

s1

s2

s3
s2 s3

c2

s1 s2 s3s1 s2 s3 s1

c1

c1 c2

c1

c2

Figure 5.10: Top left: An IDP instance which has a general solution. Dashed lines

denote E?-edges, while solid lines denote E1-edges. Top-right: T , T1 and T2 are the

possible solutions. T generalizes T1 and T2 (which are obtained by splitting the root

node of T), and is the general solution. Bottom left: An IDP instance which has

no general solution. Bottom middle and bottom right: Two possible solutions. The

only tree which generalizes both solutions is the tree composed of the trivial clades

only, which is not a solution.

We give in this section a characterization of IDP instances that admit a general

solution. We prove that whenever a general solution exists, Algorithm A finds it.

We also provide an algorithm to determine whether the solution tree T returned

by Algorithm A is general. The complexity of the latter algorithm is shown to be

O(mn + |E1|d), where d is the maximum out-degree in T .

The following notation is used in the sequel: Let A be an incomplete matrix and

let Ŝ ⊆ S. We denote by WA(Ŝ) the set of Ŝ-semi-universal characters in A. Note

that if A is binary, then WA(Ŝ) is its set of Ŝ-universal characters. We now define

the operator ˜ on incomplete matrices: We denote by Ã the submatrix A|S,C\WA(S)

of A. In particular, G(Ã) is the graph produced from G(A) by removing its set of

S-semi-universal characters. A species set ∅ �= S ′ ⊆ S is said to be connected in a

graph G, if S ′ is contained in some connected component of G.

Lemma 5.5.1 Let T be the general solution for an instance A of IDP. Let S ′ =

5.5. DETERMINING THE GENERALITY OF THE SOLUTION 121

L(x) be a clade of T , corresponding to some node x. Let T ′ be the subtree of T
rooted at x, and let A′ be the instance induced on S ′ ∪ C. Then T ′ is the general

solution for A′.

Proof: By Observation 5.3.3, T ′ explains A′. Suppose that T ′′ also explains A′

and T ′ �⊆ T ′′. Then T̂ = (T \ T ′) ∪ T ′′ explains A, and T �⊆ T̂ , a contradiction.

A non-empty clade of a tree is called maximal if the only clade that properly

contains it is S.

Lemma 5.5.2 Let T be a phylogenetic tree for a binary matrix B. A non-empty

clade S ′ of T is maximal if and only if S ′ is the species set of some connected

component of G(B̃).

Proof: Suppose that S ′ is a maximal clade of T . We first claim that S ′ is contained

in some connected component K of G(B̃). If |S ′| = 1 this trivially holds. If |S ′| > 1,

let c be a character associated with S ′. c is adjacent to all the vertices in S ′ and to no

other vertex. Hence, c is not S-universal, implying that all the edges {(c, s) : s ∈ S ′}
are present in G(B̃). This proves the claim. It remains to show that S(K) = S ′.

Suppose S(K) ⊃ S ′. In particular, |S(K)| > 1. By Proposition 5.3.4, there exists a

character c′ in G(B̃) whose 1-set is S(K). Hence, S(K) must be a clade of T which

is associated with c′, contradicting the maximality of S ′.

To prove the converse, let S ′ be the species set of some connected component

K of G(B̃). We first claim that S ′ is a clade. If |S ′| = 1, S ′ is a trivial clade.

Otherwise, by Proposition 5.3.4 there exists an S ′-universal character c′ in G(B̃).

Since K is a connected component, c′ has no neighbors in S \S ′. Hence, S ′ must be

a clade in T . Suppose to the contrary that S ′ is not maximal, then it is properly

contained in a maximal clade S ′′, which by the previous direction is the species set

of K, a contradiction.

Theorem 5.5.3 Algorithm A produces the general solution for every IDP instance

that has one.

Proof: Let A be an instance of IDP for which there exists a general solution T ∗.

Let Talg be the solution tree produced by Algorithm A. By definition T ∗ ⊆ Talg.

122 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Suppose to the contrary that T ∗ �= Talg. Let S ′ be the largest clade reported by

Algorithm A, which is not a clade of T ∗ (S ′ must be non-trivial), and let S ′′ be the

smallest clade in Talg which properly contains S ′. Let A′ be the instance induced

on S ′′∪C. By Observation 5.3.3, A′ is explained by the corresponding subtrees T ′
alg

of Talg and T ′∗ of T ∗. By Lemma 5.5.1, T ′∗ is the general solution of A′. Due to

the recursive nature of Algorithm A, it produces T ′
alg when invoked with input A′.

Thus, without loss of generality, one can assume that S ′′ = S and S ′ is a maximal

clade of Talg.

Suppose that T ∗ explains A via a completion B∗, and let G∗ = G(B∗). Since

S ′ is a maximal clade, it is reported during a second level call of Alg A(·) (the call

at the first level reports the trivial clade S). Hence, it must be the species set of

some connected component K in G(Ã). Since every S-universal character in G∗ is

S-semi-universal in A, S ′ is contained in some connected component K∗ of G(B̃∗).

Denote S∗ ≡ S(K∗). By Lemma 5.5.2, S∗ is a maximal clade of T ∗. Since S ′ �∈ T ∗,

we have S ′ �= S∗, and therefore, S∗ ⊃ S ′. But T ∗ ⊆ Talg, implying that S∗ is also a

non-trivial clade of Talg, in contradiction to the maximality of S ′.

We now characterize IDP instances for which a general solution exists. Let

A be a ’yes’ instance of IDP. Consider a recursive call Alg A(A′) nested within

Alg A(A), where A′ = A|C′,S′. Let K1, . . . , Kr be the connected components of

G(Ã′), computed in Step 1c. Observe that S(K1), . . . , S(Kr) are clades to be re-

ported by recursive calls launched during Alg A(A′). A set U of characters is said

to be (Ki, Kj)-critical if:

• Characters in U are both S(Ki)-semi-universal and S(Kj)-semi-universal in

A′.

• Removing U from G(Ã′) disconnects S(Ki).

Note that by definition of U , U ⊆ WA′(S(Ki)), and a′
sc =? for all c ∈ U, s ∈ S(Kj).

A clade S(Ki) is called optional (with respect to A′), if r ≥ 3 and there exists

a (Ki, Kj)-critical set for some index j �= i. If S(Ki) is not optional we say it is

mandatory. In the example of Figure 5.10 (bottom), let K1 = {s1, s2, c1}, K2 = {s3},
and K3 = {s4, s5, c2}. The set U = {c1} is (K1, K2)-critical, so S(K1) = {s1, s2} is

optional. In contrast, in Figure 5.10 (top) no clade is optional.

5.5. DETERMINING THE GENERALITY OF THE SOLUTION 123

Theorem 5.5.4 The tree produced by Algorithm A is the general solution if and

only if all its clades are mandatory.

Proof: ⇒ Suppose that Talg is the general solution of an instance A. Suppose to

the contrary that it contains an optional clade. Without loss of generality, assume it

is maximal, i.e., during the recursive call Alg A(A), G′ = G(Ã) has r ≥ 3 connected

components, K1, . . . , Kr, and there exists a (Ki, Kj)-critical set U (for some 1 ≤ i �=
j ≤ r). Let Ai,Aj, and Aij be the sub-instances induced on Ki, Kj, and Ki ∪Kj ,

respectively. Consider the tree T ′ which is produced by a small modification to the

execution of Alg A(A): Instead of recursively invoking Alg A(Ai) and Alg A(Aj),

call Alg A(Aij). Then T ′ is a phylogenetic tree which explains A and includes the

clade S(Ki ∪ Kj). Since removing U from G(Ã) disconnects S(Ki), |S(Ki)| ≥ 2

so S(Ki) is non-trivial. Moreover, S(Ki) is not a clade of T ′ for the same reason.

Hence, T ′ does not contain all clades of Talg, in contradiction to the generality of

Talg.

⇐ Suppose that Talg is not general the general solution of an instance A, i.e.,

there exists a solution T ∗ of A such that Talg �⊆ T ∗. We shall prove the existence of

an optional clade in Talg. (The reader is referred to the example in Figure 5.13 for

notation and intuition. The example follows the steps of the proof, leading to the

identification of an optional clade.) Let B∗ be a completion of A which is explained

by T ∗, and denote G∗ = G(B∗). Let S ′ ∈ Talg \ T ∗ be the largest clade reported

by Algorithm A which is not a clade of T ∗. Without loss of generality (as argued

in the proof of Theorem 5.5.3), S ′ is a maximal clade of Talg, and let S ′ = S(K1),

where K1, . . . , Kr are the connected components of G(Ã).

Observe that a binary matrix has at most one phylogenetic tree. Thus, an

application of Algorithm A to B∗ necessarily outputs T ∗. Consider such an appli-

cation, and let {S∗
i }t

i=1 be the nested set of reported clades in T ∗ which contain S ′:

S = S∗
1 ⊃ · · · ⊃ S∗

t ⊃ S ′ (see Figure 5.11). For each i = 1, . . . , t, let B∗
i be the

instance invoked in the recursive call which reports S∗
i , and let H∗

i be the graph

G(B̃∗
i), computed in Step 1a of that recursive call. Let C∗

i be the set of characters

in H∗
i . Equivalently, C∗

i is the set of characters in B∗
i whose 1-set is non-empty and

is properly contained in S∗
i . Furthermore, define Hi to be the subgraph of G(A)

induced on S∗
i ∪ C∗

i . Observe that H∗
i is the subgraph of G∗ induced on the same

vertex set. Since G∗ is a supergraph of G(A), each H∗
i is a supergraph of Hi.

124 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Claim 5.5.5 S ′ is disconnected in H∗
t , and therefore also in Ht.

Proof: Suppose to the contrary that S ′ is contained in some connected component

K∗ of H∗
t . K∗ is thus computed during the t-th recursive call (with argument

B∗
t), and S(K∗) is reported as a clade in T ∗ by a nested recursive call. Therefore,

S∗
t ⊃ S(K∗) ⊃ S ′, where the first proper containment follows from the fact that H∗

t

is disconnected, and the second from the assumption that S ′ is not a clade of T ∗.

Hence, we arrive at a contradiction to the minimality of S∗
t .

We now return to the proof of Theorem 5.5.4. Recall that S ′ is connected in

H1 = G(Ã). Thus, the previous claim implies that t > 1. Let Kp be a connected

component of G(Ã) such that S(Kp) ⊆ S\S∗
2 (see Figure 5.11). Let l be the minimal

index such that there exists some connected component Ki of G(Ã) for which S(Ki)

is disconnected in Hl. l is properly defined as S(K1) = S ′ is disconnected in Ht.

l > 1, since otherwise some Ki is disconnected in H1 and, therefore, also in its

subgraph G(Ã), in contradiction to the definition of K1, . . . , Kr.

S∗
l

S(Kp)
S ′ S∗

t

S∗
2

S = S∗
1

Figure 5.11: The clades S = S∗
1 ⊃ S∗

2 ⊃ · · · ⊃ S∗
t ⊃ S ′.

By minimality of l, S∗
l ⊇ S(Ki). Also, S∗

l ⊇ S∗
t ⊃ S ′ = S(K1), so S∗

l �= S(Ki).

We now claim that there exists some connected component Kj of G(Ã), j �= i,

such that S(Kj) ⊆ S∗
l . Indeed, if i �= 1 then j = 1. If i = 1 then l = t (by an

argument similar to that in the proof of Claim 5.5.5), and since S∗
l \S ′ is non-empty,

it intersects S(Kj) for some j �= i. By minimality of l, S(Kj) is properly contained

in S∗
l \ S ′.

Define U ≡ WG∗(S∗
l). We now prove that U is a (Ki, Kj)-critical set. By

definition all characters in U are S∗
l -universal in G∗, and are thus both Ki-semi-

universal and Kj-semi-universal in A. S(Ki) is disconnected in Hl = G(A|C∗
l
,S∗

l
).

5.5. DETERMINING THE GENERALITY OF THE SOLUTION 125

Since Ki is a connected component of G(Ã), S(Ki) is disconnected in G(A|C∗
l
,S),

implying that U is a (Ki, Kj)-critical set. Also, Ki, Kj and Kp are distinct, implying

that r ≥ 3 (see Figure 5.12). In conclusion, U demonstrates that S(Ki) is optional.

S(Kp)S(Ki) S(Kj)

S∗
l

S

U

Figure 5.12: The identification of an optional clade. Note that removing U discon-

nects S(Ki).

The characterization of Theorem 5.5.4 leads to an efficient algorithm for deter-

mining whether a solution Talg produced by Algorithm A is general.

Theorem 5.5.6 There is an O(nm+ |E1|d)-time algorithm to determine if a given

solution Talg is general, where d is the maximum out-degree in Talg.

Proof: The algorithm simply traverses Talg bottom-up, searching for optional

clades. For each internal node x visited, whose children are y1, . . . , yd(x), the algo-

rithm checks whether any of the clades L(y1), . . . , L(yd(x)) is optional. If an optional

clade is found the algorithm outputs False. Correctness follows from Theorem 5.5.4.

We show how to efficiently check whether a clade L(yi) is optional. If d(x) = 2,

or yi is a leaf, then certainly L(yi) is mandatory. Otherwise, let Ui be the set of

characters whose origin (in Talg) is yi. Let U i
j denote the set of characters in Ui

126 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

Species

s1

s2

s3

s4

s5

s6

s7

s8

Characters

c4

c1

c3

c2

U

c4c1 c2 c3

Kp Kj Ki

S′

s4 s5 s6 s7 s8s1 s2 s3

Talg

SpeciesCharacters

s3

s4

s5

s6

s7

s8

c3

c2

S = S∗
1 S∗

2 S∗
3

s4 s5 s6 s7s1 s3

c3

c4

s8s2

c1

c2

T ∗

Figure 5.13: An example demonstrating the proof of the ’if’ part of Theorem 5.5.4,

using the notation in the proof. Left: A graphical representation of an input instance

A. Dashed lines denote E?-edges, while solid lines denote E1-edges. Top right: The

tree Talg produced by Algorithm A. Bottom middle: A tree T ∗ corresponding to a

completion B∗ that uses all the edges in E?. Bottom right: The graphs H2 (solid

edges) and H∗
2 (solid and dashed edges). Talg �⊆ T ∗, and S ′ = {s5, s6}. There are

t = 3 clades of T ∗ which contain S ′: S∗
1 = {s1, . . . , s8}, S∗

2 = {s3, . . . , s8}, and

S∗
3 = {s5, s6, s7}. The component Kp = {c1, s1, s2} has its species in S \ S∗

2 . Since

WA(S) = WB∗(S) = ∅, H1 = G(A). Since WB∗(S∗
2) = {c4}, the species set of the

connected component Ki = {s7, s8, c4} is disconnected in H2, implying that l = 2.

For a choice of Kj = {s3, s4, c2}, the set U = {c4} is (Ki, Kj)-critical, demonstrating

that S ′ is optional.

5.6. AN APPLICATION TO BIOLOGICAL DATA 127

which are L(yj)-semi-universal, for j �= i. The computation of U i
j for all i and j

takes O(nm) time in total, since for each character c and species s we check at most

once whether (s, c) ∈ EA
? , for an input instance A.

It remains to show how to efficiently check whether for some j, U i
j disconnects

L(yi) in the appropriate subgraph encountered during the execution of Algorithm A.

To this end, we define an auxiliary bipartite graph H i whose set of vertices is Wi∪Ui,

where Wi = {w1, . . . , wd(yi)} is the set of children of yi in Talg. We include the edge

(wr, cp) in H i, for wr ∈ Wi, cp ∈ Ui, if (cp, s) ∈ EA
1 for some species s ∈ L(wr). We

construct for each j �= i a subgraph H i
j of H i induced on Wi∪ (Ui \U i

j). All we need

to report is whether H i
j is connected.

For each i we construct H i by considering all EA
1 edges connecting characters in

Ui to species in L(yi). This takes O(|EA
1 |) time in total. There are d(yi) subgraphs

H i
j for every yi. Hence, computing H i

j for all j, and determining whether each H i
j

is connected, takes O (|E(H i)|d(yi)) time. Since
∑

i |E(H i)| ≤ |EA
1 |, the total time

complexity is O (mn +
∑

i |E(H i)|d(yi)) = O(mn + |EA
1 | ·maxv∈Talg

d(v)).

5.6 An Application to Biological Data

We have implemented Algorithm A in C++. The input to the program is an in-

complete matrix, and the output is a phylogenetic tree T in Newick format. We

demonstrate our algorithm by reanalyzing the data of Nikaido et al. [151]. This

dataset consists of 11 cetartiodactyls species and 20 SINE insertion loci. The input

matrix is shown in Table 5.1.

Beaked whale 1 1 1 1 1 1 1 0 ? 1 0 1 1 0 0 0 ? 1 0 0

Camel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0

Chevrotain ? 0 ? ? ? ? ? ? ? 1 0 ? ? ? 1 1 0 ? 0 0

Cow 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

Deer 0 0 0 0 0 0 0 1 ? 1 1 1 1 1 1 ? 1 1 0 0

Giraffe ? 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

Hippopotamus 0 ? 0 1 1 1 1 0 1 1 0 1 1 0 0 0 ? 1 0 0

Humpback whale 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 ? ? 0 0

Peccary ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1

Pig 0 0 0 ? 0 0 0 0 ? 0 0 0 ? ? 0 0 ? 1 1 1

Sheep 0 0 0 0 0 ? 0 1 1 1 1 1 1 1 1 1 1 1 0 0

Table 5.1: The input matrix of [151].

128 CHAPTER 5. INCOMPLETE DIRECTED PERFECT PHYLOGENY

The final tree, shown in Figure 5.14, is the same tree obtained by Nikaido et

al. [151]. It is in fact a general solution for the input instance. The tree supports

the following conclusions, reported in [151]:

• Cetaceans are deeply nested within Artiodactyla.

• Cetaceans and hippopotamuses form a monophyletic group.

• Pigs and peccaries form a monophyletic group to the exclusion of hippopota-

muses.

• Chevrotains diverged first among ruminants.

• Camels diverged first among cetartiodactyls.

Camel

Pig

Peccary

Hippipotamus

Beaked whale

Humpback whale

Chevrotaim

Deer

Cow

Sheep

Giraffe

Figure 5.14: The phylogenetic tree obtained on the dataset of [151].

Chapter 6

Clustering Gene Expression Data

This chapter presents a novel clustering algorithm, called CLICK (CLuster Identi-

fication via Connectivity Kernels), and its applications to gene expression analysis.

The algorithm utilizes graph-theoretic and statistical techniques to identify tight

groups (kernels) of highly similar elements, which are likely to belong to the same

true cluster. Several heuristic procedures are then used to expand the kernels into

the full clusters. We report on the application of CLICK to a variety of biolog-

ical datasets, ranging from gene expression, cDNA oligo-fingerprinting to protein

sequence similarity. In all those applications it outperformed extant algorithms ac-

cording to several common figures of merit. CLICK is also very fast, allowing clus-

tering of thousands of elements in minutes, and over 100,000 elements in a couple

of hours on a standard workstation.

One application of CLICK on which we report in detail is a study of expression

data related to the Ataxia-Telangiectasia degenerative disease, done in collaboration

with Prof. Y. Shiloh’s group, Sackler Faculty of Medicine, Tel-Aviv University, and

QBI Enterprises. A-T is a complex multisystem disease resulting from deficiency

of the ATM protein kinase. Most notably, A-T cells exhibit profound defects in

their responses to ionizing radiation. A-T patients show progressive degeneration of

the cerebellum and thymus. Gene expression profiles were constructed for the cere-

bellum, thymus, and cerebrum of ATM- knockout mice and of wild-type animals,

with and without prior X-irradiation. Gene expression patterns were clustered using

CLICK. Marked differences were observed in the post- irradiation response between

the three tissues and the two genotypes. Unexpectedly, ATM-deficient thymus and

129

130 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

cerebellum from unirradiated animals displayed constitutive activation or repres-

sion of numerous genes that the corresponding wild-type tissues showed only after

irradiation. This constitutive response to sustained internal genotoxic stress, which

correlates with tissue degeneration in human A-T patients, points to an important

new characteristic of A-T.

We also show the utility of CLICK in extracting other biological information from

gene expression data: We apply CLICK successfully for the identification of common

regulatory motifs in the upstream regions of co-regulated genes. Furthermore, we

demonstrate how CLICK can be used to accurately classify tissue samples into

disease types, based on their expression profiles, achieving success ratios of over

90% on two real datasets.

Finally, we present a new java-based graphical tool, called EXPANDER (EX-

Pression ANalyzer and DisplayER), for gene expression analysis and visualization.

This software provides graphical user interface to several clustering methods includ-

ing CLICK, K-Means, hierarchical clustering and self organizing maps. It enables

visualizing the raw expression data and the clustered data in several ways. The

EXPANDER tool [174] is used in dozens of laboratories world-wide.

Some of the results in this chapter were published in [175], [171], [173] and [161].

Another application of CLICK in a large scale project of sequencing a super-family

of genes is reported in [67].

6.1 Introduction

Technologies for generating high-density arrays of cDNAs and oligonucleotides are

developing rapidly and changing the landscape of biological and biomedical research.

They enable, for the first time, a global, simultaneous view on the transcription

levels of many thousands of genes, when the cell undergoes specific conditions or

processes. For several organisms that had their genomes completely sequenced, the

full set of genes can already be monitored this way today. The potential of such

technologies is tremendous: The information obtained by monitoring gene expression

levels in different developmental stages, tissue types, clinical conditions and different

organisms can help in understanding gene function and gene networks, assist in the

diagnostic of disease conditions and reveal the effects of medical treatments.

6.2. BIOLOGICAL BACKGROUND 131

A key step in the analysis of gene expression data is the identification of groups

of genes that manifest similar expression patterns. This translates to the algorithmic

problem of clustering gene expression data. A clustering problem consists of elements

and (in most applications) a characteristic vector for each element. A measure of

similarity is defined between pairs of such vectors. (In gene expression, elements

are usually genes, the vector of each gene contains its expression levels under each

of the monitored conditions, and similarity can be measured, for example, by the

correlation coefficient between vectors.) The goal is to partition the elements into

subsets, which are called clusters, so that two criteria are satisfied: Homogeneity

- elements in the same cluster are highly similar to each other; and separation -

elements from different clusters have low similarity to each other. Clustering is a

fundamental problem which has numerous other applications in biology as well as

in many other disciplines. It also has a very rich literature, going back at least a

century, and according to some authors, all the way to Aristo.

This chapter is organized as follows: In Section 6.2 we describe the DNA microar-

ray technology for generating gene expression data. In Section 6.3 we formalize the

clustering problem and give some background. In Section 6.4 we review the main

algorithmic approaches for clustering expression data. In Section 6.5 we present

CLICK, a novel clustering algorithm for gene expression analysis. In Section 6.6 we

describe applications of CLICK to various biological datasets, and compare its per-

formance to that of other clustering methods. In Section 6.7 we present an analysis

of gene expression data related to the Ataxia-Telangiectasia disease. In Sections 6.8

and 6.9 we show the utility of CLICK in regulatory motif finding and in classification

problems. Finally, in Section 6.10 we present a graphical tool, called EXPANDER,

for visualization and analysis of gene expression data.

6.2 Biological Background

In this section we outline three technologies that generate large scale gene expression

data. All three are based on performing a large number of hybridization experiments

in parallel on high density arrays (a.k.a. “DNA chips”), between probes and targets.

They differ in the nature of the probes and the targets and in other technological

aspects, which raise different computational issues in analyzing the data. For more

on the technologies and their applications see, e.g., [1, 56, 132, 139, 159].

132 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

6.2.1 cDNA Microarrays

cDNA microarrays [167, 168, 139, 159] are high-density arrays which contain large

sets of cDNA sequences immobilized on a solid substrate. In an array experiment

many gene-specific cDNAs are spotted on a single matrix. The matrix is then

simultaneously probed with fluorescently tagged cDNAs corresponding to total RNA

pools from test and reference cells, allowing one to determine the relative amount of

transcript present in the pool by the type of fluorescent signal generated. Current

technology can generate arrays with over 10,000 cDNAs per square centimeter.

cDNA microarrays are produced by spotting PCR products of length approxi-

mately 0.6-2.4 KB representing specific genes onto a matrix. The spotted cDNAs are

usually chosen from appropriate databases, e.g., GenBank [19] and UniGene [170].

Additionally, cDNAs from any library of interest (whose sequences may be known or

unknown) can be used. Each array element is generated by the deposition of a few

nanoliters of purified PCR product. Printing is carried out by a robot that spots a

sample of each gene product onto a number of matrices in a serial operation.

To maximize the reliability and precision with which quantitative differences in

the abundance of each RNA species are detected, one directly compares two samples

(test and reference) by labeling them with spectrally distinct fluorescent dyes and

mixing the two probes for simultaneous hybridization to one array. The relative

representation of a gene in the two samples is assayed by measuring the ratio of the

(normalized) fluorescent intensities of the two dyes at the target element. Cy3-dUTP

and Cy5-dUTP are frequently used as the fluorescent labels. For the comparison of

multiple samples, e.g., in time-course experiments, one often uses the same reference

sample with each of the test samples.

6.2.2 Oligonucleotide Microarrays

In oligonucleotide microarrays [64, 95, 131], each spot on the array contains a short

synthetic oligonucleotide (oligo), typically 20-30 bases long. The design of oligos

is based on the knowledge of the DNA (or EST) target sequences, to ensure high

affinity and specificity of each oligo to a particular target gene. Moreover, they

should not be near-complementary to other RNAs that may be highly abundant in

the sample (e.g., rRNAs, tRNAs, alu-like sequences etc.).

6.2. BIOLOGICAL BACKGROUND 133

One of the leading approaches to construction of high-density DNA probe arrays

employs photolithography and solid-phase DNA synthesis. First, synthetic linkers,

modified with a photochemically removable protecting groups, are attached to a

glass substrate. At each phase, light is directed through a photolithographic mask

to specific areas on the surface to produce localized deprotection. Specific hydroxyl-

protected deoxynucleosides are incubated with the surface, and chemical coupling

occurs at those sites that have been illuminated. Current technology allows for over

300,000 oligos to be synthesized on a 1.28 × 1.28 cm array. Key to this approach

is the use of multiple distinct oligonucleotides designed to hybridize to different

regions of the same RNA. This use of multiple detectors greatly improves signal-to-

noise ratio and accuracy of RNA quantitation, and reduces the rate of false-positives

and miscalls.

An additional level of redundancy comes from the use of mismatch control probes

that are identical to their perfect match partners except for a single base difference

in a central position. These probes act as specificity controls: They allow the

direct subtraction of both background and cross-hybridization signals, and allow

discrimination between ’real’ signals and those due to non-specific or semi-specific

hybridizations.

6.2.3 Oligonucleotide Fingerprinting

Historically, the Oligonucleotide Fingerprinting (ONF) method preceded the other

two [129, 50, 51, 52, 53, 144]. It was initially proposed in the context of Sequencing

By Hybridization, as an alternative to DNA sequencing. While that approach to

sequencing is currently not competitive, ONF has found other applications, including

gene expression. It can be used to extract gene expression information about a

cDNA library from a specific tissue under analysis, without prior knowledge on the

genes involved. Conceptually, it takes the “reverse” approach to that of the oligo

microarrays: The target is on the array, and the oligos are “in the air”.

To describe the technique, let us assume that the targets are cDNAs. The ONF

method is based on spotting the cDNAs on high density nylon membranes (about

31,000 different cDNA can be spotted currently in duplicates on one filter [53]).

Many copies of a short synthetic oligo, typically 7-12 bases long, radioactively la-

beled, are put in touch with the membrane in proper conditions, and the oligos

134 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

hybridize to those cDNAs that contain a DNA sequence complementary to that of

the oligo. By inspecting the filter one can detect which of the cDNAs the oligo

hybridized to. Ideally, the result of such an experiment is one 1/0 bit for each of

the cDNAs.

The experiment is repeated with p different oligos, giving rise to a p-long vector

for each cDNA spot, indicating which of the (complements of) oligo sequences are

contained in each cDNA. This fingerprint vector, similar to a bar-code, identifies

the cDNA. Thus, distinct spots of cDNAs originating from the same gene should

have similar fingerprints. By clustering these fingerprints, one can identify cDNAs

originating from the same gene, and the larger that number – the higher the ex-

pression level of the corresponding gene. Gene identification can subsequently be

obtained by sample sequencing, or by comparison of average cluster fingerprints to

a sequence database [157].

Because of the short oligos used, the hybridization information is rather noisy,

but this can be compensated by using longer fingerprints. The method is somewhat

less efficient than the other two methods, which measure abundance directly in a

single spot. However, it has the advantage of applicability to species with unknown

genomes, which oligo microarrays cannot handle, and it requires relatively lower

mRNA quantities than cDNA microarrays.

6.3 Mathematical Formulations and Background

Let N = {e1, . . . , en} be a set of n elements, and let C = (C1, . . . , Cl) be a partition of

N into subsets. Each subset is called a cluster, and C is called a clustering solution,

or simply a clustering. Two elements ei and ej are called mates with respect to C
if they are members of the same cluster in C. In the gene expression context, the

elements are the genes and we often assume that there exists some correct partition

of the genes into “true” clusters. When C is the true clustering of N , elements that

belong to the same true cluster are simply called mates.

The input data for a clustering problem is typically given in one of two forms:

(1) Fingerprint data - each element is associated with a real-valued vector, called

its fingerprint, or pattern, which contains p measurements on the element, e.g.,

expression levels of an mRNA at different conditions (cf. [56]). (2) Similarity data

6.3. MATHEMATICAL FORMULATIONS AND BACKGROUND 135

- pairwise similarity values between elements. These values can be computed from

fingerprint data, e.g., by correlation between vectors. Alternatively, the data can

represent pairwise dissimilarity, e.g., by computing distances. Fingerprints contain

more information than similarity data, but the latter is completely generic and can

be used to represent the input to clustering in any application. Note that there is

also a practical consideration regarding the presentation: The fingerprint matrix is

of order n× p while the similarity matrix is of order n× n, and in gene expression

applications often n � p.

The goal in a clustering problem is to partition the set of elements N into ho-

mogeneous and well-separated clusters. That is, we require that elements from the

same cluster will be highly similar to each other, while elements from different clus-

ters will have low similarity to each other. Note that this formulation does not

define a single optimization problem: Homogeneity and separation can be defined in

various ways, leading to a variety of optimization problems (cf. [92]). Even when the

homogeneity and separation are precisely defined, those two objectives are typically

conflicting: The higher the homogeneity – the lower the separation, and vice versa.

For a set of elements K ⊆ N , we define the fingerprint or centroid of K to be

the mean vector of the fingerprints of the members of K. For two fingerprints x

and y we denote their similarity by S(x, y) and their dissimilarity by d(x, y). We

say that a symmetric similarity function S is linear if for any three vectors u, v, and

w, we have S(u, v + w) = S(u, v) + S(u, w). A similarity graph is a weighted graph

in which vertices correspond to elements and edges are weighted by the similarity

values between the corresponding elements.

An alternative formulation of the clustering problem is hierarchical: Rather than

asking for a single partition of the elements, one seeks an iterated partition: A den-

drogram is a rooted weighted tree, with leaves corresponding to elements. Each edge

defines the cluster of elements contained in the subtree below that edge. The edge’s

weight (or length) reflects the dissimilarity between that cluster and the remaining

elements. In this formulation the clustering solution is the dendrogram, and each

non-singleton cluster, corresponding to a rooted subtree, is split into subclusters.

The determination of disjoint clusters is left to the judgment of the user. Typi-

cally, one tends to consider as genuine clusters elements of a subtree just below a

connecting edge of high weight.

Irrespective of the representation of the clustering problem input, judicious pre-

136 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

processing of the raw data is key to meaningful clustering. This preprocessing is

application dependent and must be chosen in view of the expression technology used

and the biological questions asked. The goal of the preprocessing is to normalize

the data and calculate the pairwise element (dis)similarity, if applicable. Common

procedures for normalizing fingerprint data include transforming each fingerprint to

have mean zero and variance one, a fixed norm or a fixed maximum entry. Statisti-

cally based methods for data normalization have also been developed recently (see,

e.g., [120]).

6.3.1 Assessment of Solutions

A key question in the design and analysis of clustering techniques is how to evaluate

solutions. We present in this section figures of merit for measuring the quality

of a clustering solution. Different measures are applicable in different situations,

depending on whether a partial true solution is known or not, and whether the input

is fingerprint or similarity data. We describe below some of the applicable measures

in each case. For other possible figures of merit we refer the reader to [61, 92, 197].

Assessment given the True Solution

Suppose at first that the true solution is known, and we wish to compare it to a

suggested solution. Any clustering solution can be represented by a binary n × n

matrix C, in which Cij = 1 if and only if i and j belong to the same cluster in

that solution. Let T and C be the matrices for the true solution and the suggested

solution, respectively. Let nkl, k, l = 0, 1, denote the number of pairs (i, j) (i < j)

for which Tij = k and Cij = l. Thus, n11 is the number of true mates which are also

mates in the suggested solution, n00 is the number of non-mates correctly identified

as such, while n01 and n10 count the disagreements between the true solution and

the suggested one.

The Minkowski measure (cf. [176]) is defined as ‖T−C‖
‖T‖ or, equivalently:

√
n01 + n10

n11 + n10

Hence, it measures the proportion of disagreements to the total number of mates in

the true solution. A perfect solution has score zero, and the lower the score – the

6.3. MATHEMATICAL FORMULATIONS AND BACKGROUND 137

better the solution. The Jaccard coefficient (cf. [61]) is the ratio

n11

n11 + n10 + n01

It is the proportion of correctly identified mates to the sum of the correctly identified

mates plus the total number of disagreements. Hence, a perfect solution has score

one, and the higher the score – the better the solution. This measure is a lower

bound for both the sensitivity (n11

n11+n10
) and the specificity (n11

n11+n01
) of the suggested

solution.

Note that both measures do not (directly) involve the term n00, since solution

matrices tend to be sparse and this term would dominate the other three in good

and bad solutions alike. When the true solution is known only for a subset N∗ ⊂ N ,

the Minkowski and Jaccard measures can be computed on the submatrices corre-

sponding to N∗. In some cases, e.g., for cDNA oligo-fingerprint data, we have the

additional information that no element of N∗ has a mate in N \N∗. In these cases,

the Minkowski and Jaccard measures are evaluated using all the (unordered) pairs

{(i, j) : i ∈ N∗, j ∈ N ∪N∗, i �= j}.

Assessment when the True Solution is Unknown

When the true solution is unknown, we evaluate the quality of a suggested solution

by computing two figures of merit that measure its homogeneity and separation. We

define the homogeneity of a cluster as the average similarity between its members,

and the homogeneity of a clustering as the average similarity between mates (with

respect to the clustering). Precisely, if F (i) is the fingerprint of element i and the

total number of mate pairs is M then:

HAve =
1

M

∑
i,j are mates,i<j

S(F (i), F (j)) .

Similarly, we define the separation of a clustering as the average similarity between

non-mates:

SAve =
2

n(n− 1)− 2M

∑
i,j are non-mates,i<j

S(F (i), F (j)) .

Related measures that take a worst case instead of average case approach are mini-

mum cluster homogeneity:

HMin = min
C

∑
i,j∈C,i<j S(F (i), F (j))(

|C|
2

)

138 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

and maximum average similarity between two clusters:

SMax = max
C,C′

∑
i∈C,j∈C′ S(F (i), F (j))

|C||C ′| .

Hence, a solution improves if HAve or HMin increase, and if SAve or SMax decrease.

In computing all the above measures, singletons are considered as additional one-

member clusters. Note that for fingerprint data and a linear similarity function,

HAve and SAve can be computed in O(np) time (see Section 6.5.6).

For binary similarity data, we use a measure suggested by Z. Yakhini (private

communication): Suppose that the input is a similarity graph G = (V, E) with edges

representing high similarity (exceeding some threshold). Homogeneity is evaluated

by the fraction of edges inside clusters, and separation is evaluated by the percentage

of edges between different clusters. That is,

H =
|{(i, j) : i, j are mates and (i, j) ∈ E}|

M

S =
2|{(i, j) : i, j are non-mates and (i, j) ∈ E}|

n(n− 1)− 2M

In any case, the two types of measures, intra-cluster homogeneity and inter-

cluster separation, are inherently conflicting, as an improvement in one will corre-

spond to worsening of the other. There are several approaches that address this

difficulty. One approach is to fix the number of clusters and seek a solution with

maximum homogeneity. This is done for example by the classical K-means algo-

rithm. For methods to evaluate the number of clusters see, e.g., [96, 187]. Another

approach is to present a curve of homogeneity vs. separation over a range of pa-

rameters for the clustering algorithm used [15]. For another approach for comparing

solutions across a range of parameters, see [197].

6.4 Approaches to Clustering

Several algorithmic techniques were previously used in clustering gene expression

data, including hierarchical clustering [57], self organizing maps [181], and graph

theoretic approaches [97, 17, 175]. We describe these approaches in the sequel. For

other approaches to clustering expression patterns, see [144, 8, 76, 104]. Much more

information and background on clustering is available, cf. [96, 61, 146, 92].

6.4. APPROACHES TO CLUSTERING 139

6.4.1 Hierarchical Clustering

Hierarchical clustering solutions are typically represented by a dendrogram. Algo-

rithms for generating such solutions often work either in a top-down manner, by

repeatedly partitioning the set of elements, or in a bottom-up fashion. We shall

describe here the latter. Such agglomerative hierarchical clustering algorithms are

among the oldest and most popular clustering methods [37]. They proceed from

an initial partition into singleton clusters by successive merging of clusters until

all elements belong to the same cluster. Each merging step corresponds to joining

two clusters. The general scheme due to Lance and Williams [125] is presented in

Figure 6.1. It is assumed that D = (dij) is the input dissimilarity matrix.

1. Find a minimal entry di∗j∗ in D, and merge clusters i∗ and j∗.

2. Modify D by deleting rows and columns i, j and adding a new row and

column i∗ ∪ j∗, with their dissimilarities defined by:

dk,i∗∪j∗ = di∗∪j∗,k = αi∗dki∗ + αj∗dkj∗ + γ|dki∗ − dkj∗|

3. If there is more than one cluster then go to Step 1.

Figure 6.1: The agglomerative hierarchical clustering scheme.

Common variants of this scheme are the following:

• Single-linkage: dk,i∗∪j∗ = min{dki∗ , dkj∗}. Here αi∗ = αj∗ = 1/2 and γ = −1/2.

• Complete-linkage: dk,i∗∪j∗ = max{dki∗, dkj∗}. Here αi∗ = αj∗ = 1/2 and γ =

1/2.

• Average-linkage: dk,i∗∪j∗ = ni∗dki∗/(ni∗ + nj∗) + nj∗dkj∗/(ni∗ + nj∗), where ni

denotes the number of elements in cluster i. Here αi∗ = ni∗
ni∗+nj∗

, αj∗ =
nj∗

ni∗+nj∗

and γ = 0.

Eisen et al. [57] developed a clustering software package based on the average-

linkage hierarchical clustering algorithm. The software package is called Cluster, and

the accompanying visualization program is called TreeView. The gene similarity

metric used is a form of correlation coefficient. The algorithm iteratively merges

140 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

elements whose similarity value is the highest, as explained above. The output of

the algorithm is a dendrogram and an ordered fingerprint matrix. The rows in the

matrix are permuted based on the dendrogram, so that groups of genes with similar

expression patterns are adjacent. The ordered matrix is represented graphically by

coloring each cell according to its content. Cells with neutral values (log ratio 0, in

case ratio value is log transformed) are colored black, increasingly positive values

with reds of increasing intensity, and increasingly negative values with greens of

increasing intensity. This presentation has the intuitive appeal of giving a complete

view of the clustered data and the solution.

6.4.2 K-Means

K-means [135, 12] is another classical clustering algorithm. It assumes that the

number of clusters k is known, and aims to minimize the distances between elements

and the centroids of their assigned clusters. Let M be the n×m fingerprint matrix.

For a partition P of the elements in {1, . . . , n} denote by P (i) the cluster assigned to

i, and by c(j) the centroid of cluster j. Let d(v1, v2) denote the Euclidean distance

between the fingerprint vectors v1 and v2. K-means tries to find a partition P for

which the error-function EP =
∑n

i=1 d(i, c(P (i))) is minimum.

Each iteration of K-means updates the current partition by checking all possible

modifications of the solution in which one element is moved to another cluster, and

making a switch that reduces the error function the most. Figure 6.2 describes the

most basic scheme. This algorithm is very easy to implement and is used in many

applications.

1. Start with an arbitrary partition P of N into k clusters.

2. For each element i and cluster j �= P (i) let Eij
P be the cost of a solution in

which i is moved to cluster j. If Ei∗j∗
P = minijE

ij
P < EP then move i∗ to

cluster j∗ and repeat Step 2. Otherwise halt.

Figure 6.2: The K-means algorithm.

A heuristic inspired by K-means was developed by Herwig et al. [102] to cluster

cDNA oligo-fingerprints. Unlike the standard K-means algorithm, this algorithm

does not require a pre-specified number of clusters. Instead, it uses two parameters:

6.4. APPROACHES TO CLUSTERING 141

γ is the maximal admissible similarity of two distinct clusters, and ρ is the maximal

admissible similarity between an element and a cluster different from its own cluster.

(Similarity to a cluster is defined as similarity to its centroid.) Elements are handled

one at a time, added to sufficiently close clusters or, otherwise, forming a new cluster.

Whenever centroids become too close, their clusters are merged. Unlike the K-means

algorithm, an element may be tentatively assigned to more than one cluster and,

thus, influence the location of several centroids to which it is sufficiently close. The

algorithm is shown in Figure 6.3. Here S(i, C) is the similarity between element i

and cluster C.

Start with a set of sufficiently different elements as clusters.

For each remaining element i do:

For each cluster C s.t. S(i, C) ≥ ρ do:

add i to C.

While there exists a cluster C ′ s.t. S(C, C ′) > γ, merge C ′ into C.

If i was not added to any cluster then form a new cluster {i}.
Assign each element to the cluster to which it is most similar.

Figure 6.3: The K-menas variant of Herwig et al. [102].

6.4.3 HCS

The HCS (Highly Connected Subgraph) algorithm [97, 98] uses a graph theoretic

approach to clustering: The input data is represented as an unweighted similarity

graph, in which there is an edge between two vertices if and only if the similarity

between their corresponding elements exceeds a predefined threshold. The algorithm

recursively partitions the current set of elements into two subsets. Before a partition,

the algorithm considers the subgraph induced by the current subset of elements. If

the subgraph satisfies a stopping criterion then it is declared a cluster. Otherwise, a

minimum cut is computed in that subgraph, and the set is split into the two subsets

separated by that cut. This scheme is detailed in Figure 6.4.

The following notion is key to the algorithm: A highly connected subgraph is an

induced subgraph H of G, whose minimum cut value exceeds |V (H)|/2. That is,

H remains connected if any �|V (H)|/2� of its edges are removed. The algorithm

142 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

HCS(G):

If V (G) = {v} then move v to the singleton set.

Else if G is a cluster then output V (G).

Else

(H, H̄) ←MinCut(G).

HCS(H).

HCS(H̄).

Figure 6.4: The basic scheme of HCS. Procedure MinCut(G) computes a minimum

cut of G and returns a partition of G into two subgraphs H and H̄ according to this

cut.

identifies highly connected subgraphs as clusters.

The HCS algorithm possesses several good properties for clustering [98]: The

diameter of each cluster it produces is at most two, and each cluster is at least half

as dense as a clique. Both properties indicate strong cluster homogeneity. Inter-

cluster separation is not proved, but it is argued that if errors are random, any

non-trivial set split by the algorithm is unlikely to have diameter two unless the

involved sets are small.

To improve separation in practice, several heuristics are used to expand the

clusters and speed up the algorithm:

Iterated-HCS: When the minimum cut value is obtained by several distinct cuts,

the HCS algorithm chooses one arbitrarily. This process may break small clusters

into singletons. To overcome this, several (1-5) HCS iterations are carried out until

no new cluster is found.

Singletons Adoption: Singletons can be “adopted” by clusters: For each single-

ton element x we compute the number of neighbors it has in each cluster and in the

singletons set S. If the maximum number of neighbors is sufficiently large, and is

obtained by one of the clusters (rather than by S), then x is added to that cluster.

The process is repeated several times.

6.4. APPROACHES TO CLUSTERING 143

Removing Low Degree Vertices: When the similarity graph contains vertices

with low degrees, one iteration of the minimum cut algorithm may simply separate

a low degree vertex from the rest of the graph. This is computationally very ex-

pensive, not informative in terms of the clustering, and may happen many times if

the graph is large. Removing low degree vertices from G eliminates such iterations,

and significantly reduces the running time. The process is repeated with several

thresholds on the degree.

6.4.4 CAST

Ben-Dor et al. [17] developed a polynomial algorithm for finding the true clustering

with high probability, under the following stochastic model of the data: The un-

derlying correct cluster structure is represented by a cluster graph, and errors are

subsequently introduced to the graph by independently removing an existing edge

or adding a new edge between each pair of vertices with probability α. If all clusters

are of size at least cn, for some constant c > 0, the algorithm solves the clustering

problem with high probability.

The algorithm uses as input the similarity matrix S. The affinity of an element v

to a putative cluster C is defined as a(v) =
∑

i∈C S(i, v). The polynomial algorithm

motivated the use of affinity to develop a faster heuristic called CAST (Clustering

Affinity Search Technique) [17], which is implemented in the BioClust package. The

algorithm uses a single parameter t. Clusters are generated one by one. Each new

cluster is started with a single element, and elements are added or removed from

the cluster if their relative affinity is larger or lower than t, respectively, until the

process stabilizes. The algorithm is shown in Figure 6.5.

An additional heuristic is employed at the end of the algorithm: A series of

moving steps aims at a clustering in which the affinity of every element to its assigned

cluster is higher than to any other cluster.

6.4.5 Self Organizing Maps

The self organizing maps were developed by Kohonen [123] as a method for fitting

a number of ordered discrete reference vectors to the distribution of vectorial input

samples. A self organizing map (SOM) assumes that the number of clusters is known.

144 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

While there are unclustered elements do:

Pick an unclustered element to start a new cluster C.

Repeat ADD and REMOVE until no changes occur:

ADD: add an unclustered element v with maximum affinity to C

if a(v) > t|C|.
REMOVE: remove an element u from C with minimum affinity

if a(u) ≤ t|C|.
Add C to the list of final clusters.

Figure 6.5: The CAST algorithm.

Those clusters are organized as a set of nodes in a hypothetical “elastic network”,

with a simple neighborhood structure on the nodes, e.g., a two-dimensional k × l

grid, and a distance function d(x, y) on the nodes. Each of these nodes is associated

with a reference vector in Rn. In the process of running the algorithm, the input

vectors direct the movement of the reference vectors, so that an organization of

the input vectors over the network emerges. In the following we describe the SOM

algorithm in the Euclidean space.

The SOM process is iterative. Denote by fi(n) the position of the reference vector

of node n at the i-th iteration. The initial positioning f1 is random. The algorithm

iteratively selects a random data point p, identifies the nearest reference vector of

a node np, and updates the reference vectors according to a learning function τ(·),
where vectors of nodes closer to np in the neighborhood structure are updated more.

The magnitude of the updates decreases with the iteration number. The algorithm is

described in Figure 6.6. The function τ(·) represents the “stiffness” of the network.

The intuition for this learning process is that the nodes that are close enough to p

will “activate” each other to learn something from p.

The learning function τ(·) monotonically decreases with d(n, np) and with the

iteration number i. Two popular choices for the learning function are:

• Neighborhood function: For each node n denote by Ni(n) the set of nodes

within some distance from n in the neighborhood structure. Define τ(n, np, i) =

0 if n �∈ N(np) and τ(n, np, i) = α(i) otherwise. α(i) is called the learning-rate

and decreases with i.

6.5. THE CLICK CLUSTERING ALGORITHM 145

Arbitrarily set the reference vectors f1(v) ∈ Rn for each node v.

For i = 1 until no node location is changed by more than ε do:

Randomly pick a data point p.

Compute the node np with reference vector f(np) closest to p.

Update all reference vectors: fi+1(n) = fi(n) + τ(n, np, i)[p− fi(n)].

Assign each data point to the cluster with the closest reference vector.

Figure 6.6: The Self Organizing Map algorithm.

• Gaussian function: τ(n, np, i) = α(i) · exp(−d(n,np)2

2σ2(i)
), where α(i) and σ(i)

decrease with i.

For much more on self organizing maps the reader is referred to [123].

Tamayo et al. [181] devised a gene expression clustering software, GeneClus-

ter, which uses the SOM algorithm. In their implementation they incorporated a

neighborhood learning function, for which α(i) = 0.02T/(T + 100i), where T is the

maximum number of iterations; and Ni(np) contains all nodes whose distance to np

is at most ρ(i), where ρ(i) decreases linearly with i, ρ(0) = 3.

GeneCluster accepts an input file of expression levels together with a two di-

mensional grid geometry for the nodes. The number of grid points is the prescribed

number of clusters. The resulting clusters are visualized by presenting for each clus-

ter its average expression pattern with error-bars. Clusters are presented in their

grid order, as clusters of close nodes tend to be similar.

Another implementation of SOM for clustering gene expression profiles was de-

veloped in [188].

6.5 The CLICK Clustering Algorithm

In this section we present a new clustering algorithm, which we call CLICK (CLuster

Identification via Connectivity Kernels). The algorithm builds on the HCS algorithm

of Hartuv and Shamir [98]. It utilizes graph-theoretic and statistical techniques to

identify tight groups (kernels) of highly similar elements, which are likely to belong

to the same true cluster. Several heuristic procedures are then used to expand the

146 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

kernels into the full clusters. CLICK has been implemented and tested on a variety

of biological datasets, ranging from gene expression, cDNA oligo-fingerprinting to

protein sequence similarity. In all those applications it outperformed extant algo-

rithms according to several common figures of merit.

This section is organized as follows: We first describe the probabilistic frame-

work underlying CLICK. We then describe the algorithm and its extension to large

datasets. We next present results of CLICK on simulated data. Finally, we dis-

cuss the limitations of CLICK. Results on real biological data are described in later

sections.

6.5.1 The Probabilistic Framework

A key modeling assumption in developing CLICK is that pairwise similarity values

between elements are normally distributed: Similarity values between mates are

normally distributed with mean μT and variance σ2
T , and similarity values between

non-mates are normally distributed with mean μF and variance σ2
F , where μT > μF .

This situation was observed on simulated and real data and can be theoretically

justified under certain conditions by the Central Limit Theorem. We detail the

arguments in Section 6.5.8. Another modeling parameter is pmates, the probability

that two randomly chosen elements are mates.

We denote by f(x|μT , σT) the mates probability density function. We denote by

f(x|μF , σF) the non-mates probability density function.

Since CLICK requires knowledge of the parameters μT , μF , σT , σF , and pmates,

an initial step of the algorithm is estimating them. There are two possible methods

to compute these parameters: (1) In many cases the true partition for a subset

of the elements is known. This is the case, for example, if the clustering of some

of the genes in a cDNA oligo-fingerprint experiment is found experimentally (see,

e.g., [97]), or more generally, if a subset of the elements has been analyzed using prior

biological knowledge (see, e.g., [177]). Based on this partition one can compute the

sample mean and sample variance for similarity values between mates and between

non-mates, and use these as maximum likelihood estimates for the distribution pa-

rameters. The proportion of mates among all known pairs can serve as an estimate

for pmates, if the subset was randomly chosen. (2) In case no additional information

is given, these parameters can be estimated using the EM algorithm (see, e.g., [146,

6.5. THE CLICK CLUSTERING ALGORITHM 147

Section 3.2.7]). For completeness we outline the algorithm below.

Let x = (Sij) be a vector of similarity values and let y be a binary vector,

where yij represents the hidden data of whether i and j are mates. Let Θ =

{μT , μF , σT , σF , pmates} be the set of parameters of the model. Each EM iteration

tries to maximize the function

Q(Θ|Θr) =
∑
y

Pr(y|x, Θr) log Pr(x, y|Θ)

where Θr = {μr
T , μr

F , σr
T , σr

F , pr
mates} is the set of parameters determined in the pre-

vious iteration. (All logarithms in this section are natural-base logarithms.) For

iteration r, denote by f r
0 and f r

1 the probability density functions for non-mates and

mates, respectively, as implied by Θr. Define pr
1 ≡ pr

mates and pr
0 ≡ 1 − pr

1. In the

following we omit the superscript r when it is clear from the context.

In the E-step, the expectation of yij given x and Θr is calculated by

E(yij|Sij, Θ
r) =

f1(Sij)p1

f1(Sij)p1 + f0(Sij)p0
.

Define g1(Sij) ≡ E(yij|Sij, Θ
r) and g0(Sij) ≡ 1− g1(Sij). Simple manipulations give

Q(Θ|Θr) =
∑
i<j

1∑
t=0

gt(Sij) log(ft(Sij)pt)

In the M-step we find the parameters maximizing Q. By differentiating Q according

to each of the parameters we find that the optimal parameters for the next iteration

are: μt =

∑
i<j

gt(Sij)Sij∑
i<j

gt(Sij)
, σ2

t =

∑
i<j

gt(Sij)(μt−Sij)2∑
i<j

gt(Sij)
and pt =

∑
i<j

gt(Sij)∑
i<j

1
.

For efficiency, the EM algorithm is executed on a random subset of the input

similarity values. In order to initialize the model parameters we do the following:

We assume that σT = σF = σ. We enumerate pmates and the distance in standard

deviation units between μT and μF . Using the enumerated values and the mean m

and variance v of the input similarity values, we can extract μT , μF and σ. This

can be seen by observing that m = pmatesμT + (1 − pmates)μF and v = pmates(1 −
pmates)(μT − μF)2 + σ2. For each enumerated combination we compare the normal

distributions with the calculated parameters to the empirical data distribution and

choose the best combination for the initialization.

148 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

6.5.2 The Basic CLICK Algorithm

The CLICK algorithm works in two phases. In the first phase tightly homogeneous

groups of elements, called kernels, are identified. In the second phase these kernels

are expanded to the final clusters. In this section we describe the kernel identification

step.

The input to this phase is a matrix of similarity values S, where Sij is the

similarity value between elements ei and ej. When the input is fingerprint data, a

preprocessing step computes all pairwise similarity values between elements, using a

given similarity function. We assume throughout that S is completely stored in the

memory. Later we shall describe modifications to the algorithm for handling large

datasets whose similarity matrices are too large to fit in the memory.

The algorithm represents the input data as a weighted similarity graph G =

(V, E, w). In this graph vertices correspond to elements and edge weights are derived

from the similarity values. The weight wij of an edge (i, j) reflects the probability

that i and j are mates, and is set to be

wij = log
Pr(i, j are mates|Sij)

Pr(i, j are non-mates|Sij)
= log

pmatesf(Sij |μt, σT)

(1− pmates)f(Sij|μF , σF)
(6.1)

Here f(Sij|i, j are mates) = f(Sij|μT , σT) is the value of the mates probability den-

sity function at Sij :

f(Sij|i, j are mates) =
1√

2πσT

e
− (Sij−μT)2

2σ2
T

Similarly, f(Sij|i, j are non-mates) is the value of the non-mates probability density

function at Sij:

f(Sij|i, j are non-mates) =
1√

2πσF

e
− (Sij−μF)2

2σ2
F

Hence,

wij = log
pmatesσF

(1− pmates)σT
+

(Sij − μF)2

2σ2
F

− (Sij − μT)2

2σ2
T

.

Note that G is a complete graph.

The basic CLICK algorithm can be described recursively as follows: In each step

the algorithm handles some connected component of the subgraph induced by the

6.5. THE CLICK CLUSTERING ALGORITHM 149

yet-unclustered elements. If the component contains a single vertex, then this vertex

is considered a singleton and is handled separately. Otherwise, a stopping criterion

(which will be described later) is checked. If the component satisfies the criterion,

it is declared a kernel. Otherwise, the component is split according to a minimum

weight cut. The algorithm outputs a list of kernels which serves as a basis for the

eventual clusters, and a list of singletons. It is detailed in Figure 6.7. We assume

that procedure MinWeightCut(G) computes a minimum weight cut of G and returns

a partition of G into two subgraphs H and H̄ according to this cut. The scheme is

very similar to that of the HCS algorithm with minimum cut computations replaced

by minimum weight cut computations.

Basic-CLICK(G):

If V (G) = {v} then move v to the singleton set R.

Else if G is a kernel then

Output V (G).

Else

(H, H̄) ←MinWeightCut(G).

Basic-CLICK(H).

Basic-CLICK(H̄).

Figure 6.7: The basic CLICK algorithm.

The idea behind the algorithm is the following. Given a connected graph G,

we would like to decide whether V (G) is a subset of some true cluster, or V (G)

contains elements from at least two true clusters. In the former case we say that G

is pure. In order to make this decision we test for each cut C in G the following two

hypotheses:

• HC
0 : C contains only edges between non-mates.

• HC
1 : C contains only edges between mates.

We let Pr(HC
i |C) denote the posterior probability of HC

i , for i = 0, 1. If G is pure

then HC
1 is true for every cut C of G. On the other hand, if G is not pure then

there exists at least one cut C for which HC
0 holds. We therefore determine that G

is pure if and only if HC
1 is accepted for every cut C of G. In case we decide that G

150 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

is pure, we declare it to be a kernel. Otherwise, we partition V (G) into two disjoint

subsets, according to a cut C in G. Choosing a cut C which maximizes Pr(HC
0 |C)

would favor low weight, unbalanced cuts that separate few vertices from the rest

of the graph. This reason, along with efficiency considerations which will become

clear shortly, motivate us to choose a cut C for which the posterior probability ratio
Pr(HC

1 |C)

Pr(HC
0 |C)

is minimum. We call such a partition a weakest bipartition of G.

We first show how to find a weakest bipartition of G. To this end, we make

a simplifying probabilistic assumption that for a cut C in G the random variables

{Sij}(i,j)∈C are pairwise independent given that the corresponding element pairs

are all mates or all non-mates. We also assume that mate relations between pairs

(i, j) ∈ C are pairwise independent. We denote the weight of a cut C by W (C) and

its number of edges by |C|. We denote by f(C|HC
0) the likelihood that the edges

of C connect only non-mates, and by f(C|HC
1) the likelihood that the edges of C

connect only mates. We let Pr(HC
i) denote the prior probability of HC

i , i = 0, 1.

Lemma 6.5.1 Let G be a complete graph. Then for any cut C in G

W (C) = log
Pr(HC

1 |C)

Pr(HC
0 |C)

.

Proof: Using Bayes Theorem (cf. [45]) we find that

Pr(HC
1 |C)

Pr(HC
0 |C)

=
Pr(HC

1)f(C|HC
1)

Pr(HC
0)f(C|HC

0)

The joint probability density function of the weights of the edges in C, given that

they are independent and normally distributed with mean μT and variance σ2
T , is

f(C|HC
1) =

∏
(i,j)∈C

1√
2πσT

e
− (Sij−μT)2

2σ2
T

Similarly,

f(C|HC
0) =

∏
(i,j)∈C

1√
2πσF

e
− (Sij−μF)2

2σ2
F

The prior probability for HC
1 is p

|C|
mates and for HC

0 is (1− pmates)
|C|. Therefore,

log
Pr(HC

1 |C)

Pr(HC
0 |C)

= log
Pr(HC

1)f(C|HC
1)

Pr(HC
0)f(C|HC

0)

= |C|log pmatesσF

(1− pmates)σT
+

∑
(i,j)∈C

(Sij − μF)2

2σ2
F

−
∑

(i,j)∈C

(Sij − μT)2

2σ2
T

= W (C) .

6.5. THE CLICK CLUSTERING ALGORITHM 151

Lemma 6.5.1 implies that with our specific edge weight definition, a minimum

weight cut of G induces a weakest bipartition of G. However, the computation of

a minimum weight cut in a graph with negative edge weights is NP-hard [69]. We

give in the next section a heuristic procedure to compute a minimum weight cut.

It remains to show how to decide if G is pure or, equivalently, which stopping

criterion to use. For a cut C, we accept HC
1 if and only if Pr(HC

1 |C) > Pr(HC
0 |C).

That is, we accept the hypothesis with higher posterior probability.

Let C be a minimum weight cut of G. By Lemma 6.5.1, for every other cut C ′

of G

log
Pr(HC

1 |C)

Pr(HC
0 |C)

= W (C) ≤W (C ′) = log
Pr(HC′

1 |C ′)

Pr(HC′
0 |C ′)

Therefore, HC
1 is accepted for C if and only if HC′

1 is accepted for every cut C ′ in

G. Thus, we accept HC
1 and declare that G is a kernel if and only if W (C) > 0. In

practice, we also require a kernel to have at least k elements, with a default value

of k = 15.

6.5.3 Computing a Minimum Cut

The minimum weight cut problem is polynomial on graphs with non-negative edge

weights. The bottleneck in the basic algorithm is the computation of a minimum

weight cut in a graph with negative edge weights. This problem is NP-hard even

for a complete graph with all its weights 1 or -1 [172]. We overcome this problem

using a two-phase process. In the first phase we split the input graph iteratively

using a heuristic procedure for computing a minimum weight cut, which is based

on a 2-approximation for the related maximum weight cut problem. In the second

phase we filter from the resulting components all negative weight edges and then

apply the basic CLICK algorithm.

Our heuristic for computing a minimum weight cut applies two steps:

• MAX-CUT approximation: Let w∗ be the maximum weight in the input graph.

Transform all weights using the transformation f(w) = w∗−w+ε, for small ε >

0, resulting in positive edge weights. Apply a 2-approximation for MAX-CUT

152 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

(cf. [106]) on the weight-transformed graph, and let (V1, V2) be the resulting

cut.

• Greedy improvement: Starting from (V1, V2) greedily move vertices between

sides so as to decrease the weight of the implied cut (using the original edge

weights).

This heuristic is applied to the input graph recursively, and the recursion stops

whenever the output partition for a component is the trivial one (all vertices are on

one side of the partition). Since we expect a pure graph (corresponding to a cluster,

or part of a cluster) to have minimum cut of positive weight, the recursion is expected

to stop at such components. For refining those candidate kernels we execute Basic-

CLICK on each resulting component, after filtering negative weight edges from the

component. Since filtering negative weight edges leaves us with an incomplete graph,

we have to compensate for them and modify Basic-CLICK accordingly. Consider

first the decision of whether G is pure or not. It is now possible that HC
1 will be

accepted for C but rejected for some other cut of G. Nevertheless, a test based on

W (C) approximates the desired test. In order to apply our test criterion we include

the filtered edges with their negative weights in the computation of W (C). In case

we decide that G is not pure, we use C in order to partition G into two components.

This yields an approximation of a weakest bipartition of G.

In order to reduce the running time of the algorithm on large connected com-

ponents, for which computing a minimum weight cut is very costly, we screen low

weight vertices prior to the execution of Basic-CLICK. The screening is done as fol-

lows: We first compute the average vertex weight W in the component, and multiply

it by a factor which is proportional to the logarithm of the size of the component.

We denote the resulting threshold by W ∗. We then remove vertices whose weight is

below W ∗, and continue to do so updating the weight of the remaining vertices, until

the updated weight of every (remaining) vertex is greater than W ∗. The removed

vertices are marked as singletons and handled at a later stage.

6.5.4 The Full Algorithm

The basic CLICK algorithm produces kernels of clusters, which should be expanded

to yield the full clusters. The expansion is done by considering the singletons which

6.5. THE CLICK CLUSTERING ALGORITHM 153

were found during the execution of Basic-CLICK. We denote by L and R the current

lists of kernels and singletons, respectively. An adoption step repeatedly searches for

a singleton v and a kernel K whose pairwise similarity (defined below) is maximum

among all pairs of singletons and kernels. If the value of this similarity exceeds some

predefined threshold, then v is adopted to K, that is, v is added to K and removed

from R. Otherwise, the iterative process ends. For some theoretical justification of

the adoption step see [17]. For efficiency, the following iterative variant of this step

is used in practice, yielding similar results: Each singleton is adopted to its most

similar kernel if their similarity value exceeds a threshold. Iteration halts when no

adoptions occur.

After the adoption step takes place, we start a recursive clustering process on

the set R of remaining singletons. This is done by discarding all other vertices from

the initial graph. We iterate that way until no change occurs.

At the end of the algorithm a merging step merges similar clusters. The merging

is done iteratively, each time merging two kernels whose similarity is the highest,

provided that this similarity exceeds a predefined threshold. When two kernels are

merged, they are removed from L and the newly merged kernel is added to L.

Finally, a last singleton adoption step is performed.

The full algorithm is detailed in Figure 6.8. Recall that GR is the subgraph of

G induced by the vertex set R. Procedure Split(G) performs the recursive splitting

of G using the minimum weight cut heuristic described in Section 6.5.3. Proce-

dure Adoption(L, R) performs the singleton adoption step and updates the set of

remaining singletons. Procedure Merge(L) performs the merging step.

It remains to describe how to calculate the similarity value between a singleton

and a kernel, or between two kernels, and how to set the thresholds for the adop-

tion and merging processes. These processes are heuristic by nature, and we have

experimented with a variety of alternatives before reaching the scheme described

below.

Suppose we are considering the adoption of a singleton v to a kernel K. We shall

compute the posterior probability for the event that v belongs to K and compare

it to the posterior probability that v and the elements of K belong to two different

true clusters. We shall then choose the hypothesis with greater probability. This is

done by computing the logarithm of the posterior probability ratio and comparing it

to 0. Since all elements of K are believed to belong to the same true cluster C, the

154 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

R ← N .

While some change occurs do:

Split(GR).

Let S be the set of resulting components.

For each C ∈ S do:

Remove edges with negative weight from C.

Filter low-degree vertices from C.

Basic-CLICK(C).

Let L′ be the list of kernels produced.

Let R be the set of remaining singletons.

Adoption(L′, R).

L ← L ∪ L′.

Merge(L).

Adoption(L, R).

Figure 6.8: The full CLICK algorithm.

prior probability that v belongs to C is pmates. Hence, the logarithm of the posterior

probability ratio is

Lv,K = log
pmates

1− pmates

+
∑
k∈K

log
f(Svk|μT , σT)

f(Svk|μF , σF)
.

We adopt v to K only if Lv,K > 0. Note, that Lv,K can be easily computed from

the sum of weights of the edges connecting v to K.

Similarly, when considering the merging of two kernels K1 and K2 we compute

the logarithm of the posterior probability ratio for this merging as follows:

LK1,K2 = log
pmates

1− pmates
+

∑
k1∈K1,k2∈K2

log
f(Sk1k2 |μT , σT)

f(Sk1k2|μF , σF)
.

We merge K1 and K2 only if LK1,K2 > 0. Again, LK1,K2 can be easily computed

from the sum of weights of the edges connecting the elements of K1 and K2.

An Alternative Adopt and Merge Scheme

We describe below an alternative scheme for adoption and merging that we have

implemented and tried. Although it is not used in the final version of the algorithm,

6.5. THE CLICK CLUSTERING ALGORITHM 155

we chose to describe it for reasons that will be explained below. In this scheme, our

goal is to use the computed kernels in order to produce the most likely clustering.

For a clustering C, we define its posterior probability score as:

L(C) =
∑

i,j are mates in C,i<j

log(pmatesf(Sij |i, j are mates))

+
∑

i,j are non-mates in C,i<j

log((1− pmates)f(Sij|i, j are non-mates))

The change in score of the current clustering when adding a singleton v to a kernel

K, amounts to ∑
k∈K

(log
pmates

1− pmates

+ log
f(Svk|μT , σT)

f(Svk|μF , σF)
) .

This is exactly the sum of weights of the edges connecting v to the elements of K.

Correspondingly, we define the similarity between v and K as this sum of weights.

Similarly, the similarity of two kernels is defined as the sum of weights of the edges

connecting these kernels. We adopt v to K if this value is positive, implying that

the adoption increases the score of the clustering. The same threshold (zero) is used

for all adoption steps, except the last one.

In the last stage of the algorithm the merging step and a last adoption step

are performed. Our experiments show that trying different thresholds for these

steps and choosing the best consumes a reasonable amount of time and improves

the quality of the clustering. Hence, the algorithm enumerates several thresholds,

computing the score of each resulting clustering. The merging and adoption steps

are performed with the threshold that yielded the highest scoring clustering.

This scheme is theoretically more appealing than the former, as it utilizes the

same weights as in the kernel identification step. However, in practice, on simu-

lated and real data, it produces somewhat inferior results as the zero threshold for

adoption is too strict.

6.5.5 Handling Large and Partial Datasets

Up until now we assumed that the number of elements in the input dataset is

small enough to allow storing all pairwise similarity values between elements in the

memory. When the number of elements exceeds several thousands, the memory

requirements become a serious bottleneck. We therefore employ a different strategy.

156 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

We start by partitioning the set of elements into super-components, each having

a limited size, which enables storing and processing all pairwise similarity values

for that component. For each super-component we evaluate the parameters of its

similarity distributions and apply the full algorithm to it (except the merge step

and the last adoption step, which are performed later for the whole graph).

In order to form the super-components, we start with the full graph and itera-

tively increase a weight threshold. When the threshold is high enough the graph is

split into connected components not larger than the required size. The algorithm is

described in Figure 6.9. Initially it is called with the input graph G, a threshold t∗

which is set according to the memory size (based on the similarity data distribution),

a limit on the size of a super-component l = 1000, and Δ = σT +σF

20
.

Partition(G,t,l):

Let Gt be the subgraph of G spanned by edges of weight≥ t.

For every connected component C of Gt do:

If |C| ≤ l then output C.

Else Partition(C,t + Δ,l).

Figure 6.9: An algorithm for computing super-components.

After the CLICK algorithm is applied to each super component, we perform a

merging step and an adoption step on all resulting kernels and singletons. To this

end we need to approximate the weight of the edges (i, j) that are missing from the

graph (since their weight is below t∗). The approximation is done as follows: Denote

by Φ(·) the cumulative standard normal distribution function. We set

w∗
ij = log

Pr(i, j are mates|Sij < t∗)

Pr(i, j are non-mates|Sij < t∗)
= log

pmatesΦ((t∗ − μT)/σT)

(1− pmates)Φ((t∗ − μF)/σF)
.

We note that the same heuristics are applied to handle similarity datasets that

are incomplete (part of the pairwise similarity values are missing). We also note that

some classical clustering algorithms are based on finding the connected components

of the similarity graph, e.g., single-linkage hierarchical clustering and the SYSTERS

algorithm [124].

6.5. THE CLICK CLUSTERING ALGORITHM 157

6.5.6 Fingerprint Data Enhancements

Several enhancements can be incorporated to CLICK when the input is fingerprint

data, which allows various computations that are infeasible with similarity data.

Specifically, for linear similarity functions it is possible to exactly compute the aver-

age similarity between a singleton and a kernel, or between two kernels, in time and

space proportional to the length of a fingerprint, even if some similarity values are

missing. To see this, observe that for two kernels K1 and K2 with centroids C(K1)

and C(K2), respectively, it holds that

∑
k1∈K1,k2∈K2

S(k1, k2)

|K1||K2|
= S(C(K1), C(K2)) .

By storing the centroid of each kernel, these computations can be done in time pro-

portional to the length of a fingerprint, and are thus feasible also on large datasets,

for which storing and processing all similarity values is not practical. Note that

these fast computations are also possible for similarity functions that are linear on

normalized vectors. For example, correlation coefficient is linear when restricted to

vectors with mean 0 and variance 1, since the correlation between any two such

vectors is simply their dot-prodcut. Direct computations using similarity data may

take Ω(n2) time.

Efficiency and quality considerations (with respect to large datasets) motivate

us to devise a variant of CLICK for clustering fingerprint data. This variant is

also designed to give the user control over the homogeneity of the resulting clus-

tering. Let h be an homogeneity parameter given by the user with a default value

of μT . We describe below a variant of CLICK that aims at producing a clustering

with homogeneity at least h. Note, that this variant is limited to linear similarity

functions.

Recall that the homogeneity of the output clustering is controlled by the kernel

identification step, the adoption steps and the merging step. To ensure the tightness

of the kernels produced by Basic-CLICK, we require a kernel to have homogeneity

at least h. For efficiency, we also filter from the graph all edges that represent

similarity values below h, just before Basic-CLICK is called. For the adoption

and merge processes we define the similarity between a singleton and a kernel, or

between two kernels, as the average similarity between their elements. We set the

adoption and merge thresholds to h. In the last adoption step we enumerate several

158 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

adoption thresholds and choose the lowest threshold that induces a clustering with

homogeneity greater or equal to h.

6.5.7 Implementation and Simulation Results

We have implemented the CLICK algorithm in C++. Our implementation uses the

Hao-Orlin algorithm [93] for minimum weight cut computations. This algorithm

was shown to outperform other minimum cut algorithms in practice (cf. [31]). Its

running time using highest label selection (cf. [31]) is O(n2
√

m). Table 6.1 describes

the running times of CLICK on simulated datasets (described below) of various sizes

containing 10 equal-size clusters. The running times were measured on Pentium III

600MHz operated with LINUX. It can be seen that the running time is approx-

imately linear in the number of elements. This is a result of the time reduction

heuristics incorporated to CLICK.

#Elements Total time (min) Net time (min)

500 0.16 0.15

1000 0.67 0.65

2000 2.4 2.2

5000 4.25 3.47

10000 9.87 7.15

Table 6.1: A summary of the time performance of CLICK on simulated datasets

of various sizes. For a given number of elements, recorded are the total time of

executing CLICK, and the execution time excluding the preprocessing step (which

computes all pairwise similarity values).

We have created an environment for simulating expression data and measuring

CLICK’s performance on the synthetic data. We use the following simulation setup:

The cluster structure, i.e., the number and size of clusters, is pre-specified. Each

cluster has an associated mean pattern, also called its centroid. Each coordinate of

this pattern is drawn uniformly at random from [0, R] for some R, independently

from the other coordinates. Each element fingerprint is drawn at random according

to a multivariate normal distribution around the corresponding mean pattern. These

normal distributions have identical diagonal covariance matrices and differ only in

6.5. THE CLICK CLUSTERING ALGORITHM 159

their expectation vector. In other words, each coordinate i is drawn independently of

the other coordinates with a pre-specified standard deviation σi. Similar distribution

models are used in other works that model gene expression data (see, e.g., [77]).

In our simulations we wished to analyze the performance of the algorithm as

a function of the cluster structure and the distance Δ in standard deviation units

between μT and μF (due to the nature of the simulations, σT ≈ σF). This distance

can be controlled by changing R. Table 6.2 presents CLICK’s results for several

simulation setups as measured by the average Jaccard coefficient over 20 runs. The

simulated fingerprints in all cases were of length 200. We used σi = σ(= 5) for all

coordinates. It can be seen that CLICK performs well (Jaccard coefficient above

0.8) on all cluster structures even for distances as low as one standard deviation.

Cluster structure Δ = 0.75 Δ = 1 Δ = 1.5 Δ = 2 Δ = 2.5

100×5 0.81 0.95 0.99 1 1

50×10 0.39 0.8 0.97 1 1

50,60,. . .,100 0.75 0.93 0.99 1 1

Table 6.2: CLICK’s accuracy in simulations. The reported results are average Jac-

card coefficients of CLICK’s solutions vs. the correct solutions. Δ is specified in

standard deviation units.

6.5.8 Limitations of CLICK

In this section we discuss the limitations of our clustering approach and possible

extensions to overcome these shortcomings.

The Normality Assumption

Our key assumption concerns the distribution of similarity values. Theoretically, the

normality assumption can be justified in certain cases as shown below. In practice,

the normality assumption often holds, as demonstrated by the results in the next

section. However, in some applications, e.g., in protein classification, the distribution

of similarity values cannot be approximated using a normal distribution. In such

cases, other data models can be constructed using prior knowledge or by analyzing

160 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

the empirical distribution using standard statistical methods (cf. [162]). Once the

mates and non-mates distributions are evaluated, CLICK can be applied to the data.

We shall argue for the validity of the normality assumption under certain condi-

tions on fingerprint data and a Euclidean based similarity function. The fingerprints

are assumed to be created as in the simulation in Section 6.5.7. We need the follow-

ing variant of the Central Limit Theorem proven by Lyapunov (cf. [45]):

Theorem 6.5.2 (Lyapunov, 1901) Let x1, . . . , xn be independent random vari-

ables with expectation E(xi) = μi and variance V (xi) = σ2
i . Let Xn =

∑n
i=1 xi. If

E(|xi − μi|3) < ∞ for all i, and

lim
n→∞

∑n
i=1 E(|xi − μi|3)
(
∑n

i=1 σ2
i)

3/2
= 0

then Xn approaches the standard normal distribution as n approaches infinity.

Let (x1, . . . , xn) and (y1, . . . , yn) be the fingerprints of two random mates be-

longing to cluster C. Let Sxy = −∑n
i=1(xi − yi)

2 be their similarity value. Sxy

is minus the squared Euclidean distance between these fingerprints. Suppose that

E(xi) = E(yi) = μi(C) and recall that V (xi) = V (yi) = σ2
i , where E(·) and V (·)

denote the expectation and variance of a random variable, respectively. Straight-

forward computations give E(Sxy) = −2
∑n

i=1 σ2
i and V (Sxy) = −8

∑n
i=1 σ4

i . The

random variables (xi − yi)
2 can be empirically shown to satisfy Lyapunov’s con-

dition and, thus, Sxy is asymptotically normally distributed. As evident from the

above calculations, this distribution does not depend on the identity of the cluster,

since its parameters depend on the σi-s only.

For any two true clusters we can argue similarly that non-mate similarity values

(between pairs of elements, one from each cluster) are approximately normally dis-

tributed. However, the parameters of these distributions depend on the identity of

the clusters: Consider two clusters C and C ′ and let x ∈ C, y ∈ C ′ be two random

elements. Then Sxy is distributed with parameters:

E(Sxy) = −
n∑

i=1

(2σ2
i + (μi(C)− μi(C

′))2) ,

V (Sxy) = −
n∑

i=1

2σ4
i + 4σ2

i (μi(C)2 + μi(C
′)2) .

6.5. THE CLICK CLUSTERING ALGORITHM 161

Hence, in general the non-mates distribution is not normal. However, if σi = σ for

all i, the cluster centers have identical norms, and the angle between every pair of

centroid vectors is fixed, then the non-mates distribution is asymptotically normal.

Normality Testing

In this section we shall test for the normality of the similarity distributions obtained

on simulated and real data. We first describe the normality test we use, and then

apply it to the data.

Suppose we are given a set of ordered random similarity values s1 < . . . < sn

and we wish to test whether these values follow a normal distribution. To this end

we use the probability plot method (cf. [162]). The test statistic is the correlation

coefficient r between the vector of ordered values (s1, . . . , sn) and the vector of

distribution quantiles (Φ−1(1
n+1

), . . . , Φ−1(n
n+1

)), where Φ is the cumulative standard

normal distribution. For n = 75 and a significance level of 0.01 the test accepts for

r ≥ 0.9752.

As a first “sanity check” we simulated fingerprint data, as detailed in Sec-

tion 6.5.7. We used correlation coefficient as a similarity measure for the simu-

lated data. Table 6.3A gives the correlation coefficient of the mates and non-mates

probability plots for two cluster structures. The results indicate the validity of the

normality assumption.

In order to test our assumptions on real data we used two datasets. The first

dataset is a monocytes cDNA oligo-fingerprinting dataset of size 2,329, for which an

approximate true solution is known [97]. The second is a yeast cell-cycle expression

dataset of 698 genes, for which an approximate true solution is available from bio-

logical knowledge [177]. Both datasets are described in detail in Section 6.6. The

similarity function used for the first dataset was vector dot-product. For the sec-

ond dataset we used the correlation coefficient as a similarity measure. Table 6.3B

presents the test results on the two datasets. The normality hypothesis is accepted

for both datasets. Figure 6.10 shows the distribution of mates and non-mates simi-

larity values for the oligo-fingerprinting data.

162 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

Cluster structure Mates Non-mates

50×10 0.997 0.996

50,60,. . .,100 0.997 0.994

Dataset Mates Non-mates

Monocytes 0.983 0.995

Yeast cell-cycle 0.995 0.997

A B

Table 6.3: A test for normality of mates and non-mates distributions on simulated

(A) and real (B) fingerprint data. The normality hypothesis is accepted in all cases.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120 140

fre
qu

en
cy

similarity value

"non-mates"
"mates"

Figure 6.10: Similarity values between mates and between non-mates in the periph-

eral blood monocytes cDNA dataset of [97].

Other Limitations

Independence Assumption: The probabilistic computations in the algorithm

are also based on independence assumptions with respect to similarity values and

mate relations. These assumptions enable us to formulate the likelihood ratio of a

cut as the sum of weights of its edges. Similar assumptions are implicit in other

clustering algorithms (see, e.g., [17]).

Edge Weights: The weight of an edge can be viewed as a sum of two terms

(see Equation 6.1): The likelihood ratio of its associated similarity value (i.e.,

log f(Sij |μT ,σT)

f(Sij |μF ,σF)
) and log pmates

1−pmates
. When the value of pmates is small and so is the

distance between μT and μF (in standard deviation units), the resulting weight may

be negative for the majority of the true mate pairs. In such cases we heuristically

adjust the weights in the graph by replacing the term log pmates

1−pmates
with −ET , where

ET is the expected likelihood ratio for an edge connecting a pair of mates. ET

is evaluated using a Monte-Carlo process by drawing at random similarity values

6.6. APPLICATIONS TO BIOLOGICAL DATA 163

according to the mate distribution and calculating their average likelihood ratio.

Based on our experiments, we chose to apply this adjustment whenever the weight

corresponding to similarity value μT + σT

2
is negative (i.e., edge weights are negative

for approximately 70% of the similarity values between mates).

6.6 Applications to Biological Data

In this section we describe CLICK’s results on several biological datasets ranging

from gene expression, cDNA oligo-fingerprinting to protein sequence similarity.

6.6.1 Gene Expression

CLICK was first tested on the yeast cell cycle dataset of Cho et al. [32]. That

study monitored the expression levels of 6,218 S. cerevisiae putative gene tran-

scripts (ORFs) measured at 10-minutes intervals over two cell cycles (160 minutes).

We compared CLICK’s results to those of GeneCluster [181]. To this end, we ap-

plied the same filtering and data normalization procedures of [181]. The filtering

removes genes that do not change significantly across samples, leaving a set of 826

genes. The data preprocessing includes the removal of the 90-minutes time-point

and normalizing the expression levels of each gene to have mean zero and variance

one within each of the two cell-cycles.

CLICK clustered the genes into 18 clusters and left no singletons. These clusters

are shown in Figure 6.11. A summary of the homogeneity and separation parameters

for the solutions produced by CLICK and GeneCluster is shown in Table 6.4. CLICK

obtained better results in all the measured parameters. A putative true solution for

a subset of the genes was obtained through manual inspection by Cho et al. [32].

Cho et al. identified 416 genes that have periodic patterns and partitioned 383 of

them into five cell-cycle phases according to their peak time. We calculated Jaccard

coefficients for the two solutions based on 250 of these genes that passed the variation

filtering. The results are shown in Table 6.4. It can be seen that CLICK’s solution

is much more aligned with the solution reported in [32]. In particular, two putative

true clusters are the sets of late G1-peaking genes and M-peaking genes, reported

in [32]. Out of the 107 late G1-peaking genes that passed the filtering, CLICK

placed 93% (100 genes) in a single cluster of size 191 (Figure 6.11, cluster 1). In

164 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

contrast, in the solution of Tamayo et al. [181] 86% of these genes were contained

in three clusters of total size 139. Out of the 40 M-peaking genes that passed the

filtering, CLICK placed 88% (35 genes) in a single cluster of size 105 (Figure 6.11,

cluster 2), while in GeneCluster’s solution 93% of these genes were spread among

three clusters of total size 99.

Program #Clusters Homogeneity Separation Jaccard

HAve HMin SAve SMax

CLICK 18 0.62 0.46 -0.05 0.33 0.54

GeneCluster 30 0.59 0.22 -0.01 0.81 0.28

Table 6.4: A comparison between CLICK and GeneCluster on a yeast cell-cycle

dataset of [32].

As another test, we analyzed the dataset of Iyer et al. [112] which studied the

response of several human fibroblasts to serum. It contains expression levels of

8,613 human genes obtained as follows: Human fibroblasts were deprived of serum

for 48 hours and then stimulated by addition of serum. Expression levels of genes

were measured at 12 time-points after the stimulation. An additional data-point

was obtained from a separate unsynchronized sample. A subset of 517 genes whose

expression levels changed substantially across samples was analyzed by the hierar-

chical clustering method of [57]. The data was normalized by dividing each entry by

the expression level at time zero, and taking a logarithm of the result. For ease of

manipulation, we also transformed each fingerprint to have norm 1. The similarity

function used was dot-product, giving values identical to those used in [57]. CLICK

clustered the genes into 6 clusters with no singletons. These clusters are shown

in Figure 6.12. Table 6.5 presents a comparison between the clustering quality of

CLICK and the hierarchical clustering of [57] on this dataset. The two clusterings

are incomparable since CLICK’s solution has better separation while the solution

of [57] has better average homogeneity. In order to directly compare the two al-

gorithms we reclustered the data using CLICK with homogeneity parameter 0.76

(instead of the default value μT = 0.65, see Section 6.5.6), since this value is the

average homogeneity of the hierarchical solution. CLICK produced 6 new clusters

and 28 singletons. The solution parameters are given in Table 6.5. Note that CLICK

performs better in all parameters.

6.6. APPLICATIONS TO BIOLOGICAL DATA 165

1 16
−2

−1

0

1

2
Cluster 1, Size=191

1 16
−2

−1

0

1

2
Cluster 2, Size=105

1 16
−2

−1

0

1

2
Cluster 3, Size=79

1 16
−2

−1

0

1

2
Cluster 4, Size=72

1 16
−2

−1

0

1

2
Cluster 5, Size=51

1 16
−2

−1

0

1

2
Cluster 6, Size=47

1 16
−2

−1

0

1

2
Cluster 7, Size=35

1 16
−2

−1

0

1

2
Cluster 8, Size=33

1 16
−2

−1

0

1

2
Cluster 9, Size=27

1 16
−2

−1

0

1

2
Cluster 10, Size=27

1 16
−2

−1

0

1

2
Cluster 11, Size=24

1 16
−2

−1

0

1

2
Cluster 12, Size=23

1 16
−2

−1

0

1

2
Cluster 13, Size=21

1 16
−2

−1

0

1

2
Cluster 14, Size=20

1 16
−2

−1

0

1

2
Cluster 15, Size=20

1 16
−2

−1

0

1

2
Cluster 16, Size=19

1 16
−2

−1

0

1

2
Cluster 17, Size=17

1 16
−2

−1

0

1

2
Cluster 18, Size=15

Figure 6.11: CLICK’s clustering of the yeast cell cycle data of [32]. x-axis: Time

points 0-80,100-160 at 10-minutes intervals. y-axis: Normalized expression levels.

The solid line in each sub-figure plots the average pattern for that cluster. Error

bars display the measured standard deviation. The cluster size is printed above each

plot.

6.6.2 cDNA oligo-fingerprints

We next studied two datasets of oligonucleotide fingerprints of cDNAs obtained from

Max Planck Institute of Molecular Genetics in Berlin. The first dataset we analyzed

contains 2,329 cDNAs fingerprinted using 139 oligos. This dataset was part of a

library of some 100,000 cDNAs prepared from purified peripheral blood monocytes

by the Novartis Forschungsinstitut in Vienna, Austria (see [97]). An approximate

true clustering of these 2,329 cDNAs is known from back hybridization experiments

performed with long, gene-specific oligonucleotides. It contains 18 gene clusters

varying in size from 709 to 1. The second dataset contains 20,275 cDNAs originating

from sea urchin egg, fingerprinted using 217 oligos (see [157]). For this dataset

an approximate true solution is known on a subset of 1,811 cDNAs. Fingerprint

166 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

Program #Clusters Homogeneity Separation

HAve HMin SAve SMax

CLICK.1 6 0.72 0.42 -0.29 0.55

CLICK.2 6 0.78 0.68 -0.19 0.54

Hierarchical 10 0.76 0.65 -0.08 0.75

Table 6.5: A Comparison between CLICK and the hierarchical clustering of [57] on

the dataset of response of human fibroblasts to serum [112]. CLICK.1 represents the

first CLICK solution with the default homogeneity parameter. CLICK.2 represents

a solution of CLICK with homogeneity parameter 0.76.

normalization was done as explained in [143].

Table 6.6 shows a comparison of CLICK’s results on the blood monocytes dataset

with those of the HCS algorithm [97]. Table 6.7 shows a comparison of CLICK’s

results on the sea urchin dataset with those of the K-means algorithm of [102].

CLICK outperforms the other algorithms in all figures of merit.

Program #Clusters #Singletons Minkowski Jaccard

CLICK 16 20 0.63 0.66

HCS 16 206 0.71 0.55

Table 6.6: A comparison between CLICK and HCS on the blood monocytes cDNA

dataset.

Program #Clusters #Singletons Minkowski Jaccard

CLICK 128 12,186 0.77 0.47

K-Means 3,486 2,473 0.79 0.4

Table 6.7: A comparison between CLICK and K-means on the sea urchin cDNA

dataset.

We note that the difference between the solutions of K-Means and CLICK in the

number of clusters and singletons on the sea urchin dataset is due to the fact that

by default CLICK identifies clusters of size at least 15. The number of clusters with

6.6. APPLICATIONS TO BIOLOGICAL DATA 167

1 13
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cluster 1, Size=254

1 13
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cluster 2, Size=147

1 13
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cluster 3, Size=47

1 13
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cluster 4, Size=25

1 13
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cluster 5, Size=23

1 13
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cluster 6, Size=21

Figure 6.12: CLICK’s clustering of the fibroblasts serum response data [112]. x-axis:

1-12: Synchronized time points. 13: Unsynchronized point. y-axis: Normalized

expression levels. The solid line in each sub-figure plots the average pattern for that

cluster. Error bars display the measured standard deviation. The cluster size is

printed above each plot.

15 or more elements in the K-Means solution is 129, and the number of elements

that are not members of such clusters is 14,924.

6.6.3 Protein Classes

CLICK was also applied to two protein sequence similarity datasets. The first

dataset contains 72,623 proteins from the ProtoMap project [198]. The second

originated from the SYSTERS project [124] and contains 117,835 proteins. Both

datasets contain for each pair of proteins an E-value of their similarity as computed

by BLAST [9].

Protein classification is inherently hierarchical, so the assumption of normal dis-

tribution of similarity values does not seem to hold. In order to apply CLICK to

the data, we made the following modifications:

1. The weight of an edge (i, j) was set to be wij = log
pmates(1−pij)

(1−pmates)pij
, where pij is

the E-value and, hence, also practically the p-value, of the similarity between

i and j. We removed edges whose corresponding E-value was above 10−20.

2. The weight of a missing (removed) edge was evaluated as log pmates

1−pmates
.

3. For the adoption step we calculated for each singleton r and each kernel K

168 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

the ratio ∑
k∈K wrk

|K| .

We then chose the pair r, K with the highest ratio and r was adopted to K if

this ratio exceeded some predefined threshold w∗.

4. For the merging step we calculated for each pair of kernels K1 and K2 the

ratio ∑
k1∈K1,k2∈K2

wk1k2

|K1||K2|
.

We then chose the pair K1, K2 with the highest ratio and merged K1 and K2

if this ratio exceeded w∗.

For the evaluation of the ProtoMap dataset we used a Pfam classification for

a subset of the data consisting of 17,244 single-domain proteins, which is assumed

to be the true solution for this subset. We compared our results to the results of

ProtoMap with a confidence level of 10−20 on this dataset. The comparison is shown

in Table 6.8. The results are very similar, with a slight advantage to CLICK.

Program #Clusters #Singletons Minkowski Jaccard

CLICK 7,747 16,612 0.88 0.39

ProtoMap 7,445 16,408 0.89 0.39

Table 6.8: A comparison between CLICK and ProtoMap on a dataset of 72,623

proteins.

For the SYSTERS dataset, no “true solution” was available, so we evaluated

the solutions of CLICK and SYSTERS using the figures of merit described in Sec-

tion 6.3.1. Table 6.9 presents the results of the comparison. The results show a

significant advantage to CLICK.

Program #Clusters #Singletons Homogeneity Separation

CLICK 9,429 17,119 0.24 0.03

SYSTERS 10,891 28,300 0.14 0.03

Table 6.9: A comparison between CLICK and SYSTERS on a dataset of 117,835

proteins.

6.6. APPLICATIONS TO BIOLOGICAL DATA 169

6.6.4 A Blind Test

In order to compare the characteristics of each of the clustering methods described

in the beginning of this chapter, we applied them in a blind test to a yeast cell-cycle

dataset of Spellman et al. [177] containing the gene expression levels of yeast ORFs

over 79 conditions.

The original dataset contains samples from yeast cultures synchronized by four

independent methods: α factor arrest (samples taken every 7 minutes for 119 min-

utes), arrest of a cdc15 temperature sensitive mutant (samples taken every 10 min-

utes for 290 minutes), arrest of a cdc28 temperature sensitive mutant (this part of

the data is from [32]; samples taken every 10 minutes for 160 minutes), and elu-

triation (samples taken every 30 minutes for 6.5 hours). It also contains separate

experiments in which G1 cyclin Cln3p or B-type cyclin Clb2p were induced.

Spellman et al. identified in this data 800 genes that are cell-cycle regulated [177].

The dataset that we used contains the expression levels of 698 out of those 800 genes,

which have up to three missing entries, over the 72 conditions that cover the α factor,

cdc28, cdc15, and elutriation experiments. (As in [181], the 90 minutes datapoint

was omitted from the cdc15 experiment.) Each row of the 698 × 72 matrix was

normalized to have mean 0 and variance 1. Note that by normalizing the variance

different gene amplitudes are deemphasized and periodicity is more prominent.

Based on the analysis conducted by Spellman et al., we expect to find in the

data five main clusters: G1-peaking genes, S-peaking genes, S/G2-peaking genes,

G2/M-peaking genes, and M/G1-peaking genes. Each of these was shown to contain

biologically meaningful sub-clusters.

The 698× 72 dataset was clustered using four of the methods described above:

K-means, SOM, CAST, and CLICK. The similarity measure used was Pearson cor-

relation coefficient. The authors of each of the programs were given the dataset and

asked to provide a clustering solution. The identity of the dataset was not described

and genes were permuted in an attempt to perform a “blind” test. (Yet, admittedly,

anyone familiar with the gene expression literature could have identified the nature

of the data.) The authors were told that the average homogeneity and average sep-

aration would be used to evaluate the quality of the solutions. However, the exact

formulas used are somewhat different from those originally planned and reported to

the authors, as we later found that the new formulas are more adequate.

170 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

The following table summarizes the solutions produced by each program and

their homogeneity and separation parameters. The so-called ’True’ clustering, re-

ported in [177], is that obtained manually by Spellman et al., by inspecting the

expression patterns and comparing to the literature. The solution of CLICK con-

tains 23 singletons.

Program #Clusters Homogeneity Separation

HAve HMin SAve SMax

K-Means 49 0.45 -0.04 0.03 0.63

CAST 5 0.37 0.24 -0.05 0.09

GeneCluster 6 0.39 0.25 -0.03 0.23

CLICK 6 0.39 0.32 -0.04 0.22

’True’ 5 0.33 0.26 -0.04 0.25

Table 6.10: A summary of the clustering solutions and their figures of merit for the

data of [177].

Figure 6.13 depicts the values of each solution on a plot of the homogeneity vs.

separation. It can be seen that CLICK’s solution outperforms the ’True’ solution and

GeneCluster’s solution. The solution of CAST also outperforms the ’True’ solution.

K-means, which generated many more clusters, achieved the highest homogeneity,

at the expense of very poor separation. The solutions of CAST and CLICK are

incomparable.

6.7 Application to Ataxia-Telangiectasia

In this section we report on the use of CLICK in investigating a human genetic

disorder, ataxia-telangiectasia (A-T) using gene expression profiling. This work was

done in collaboration with Y. Shiloh’s group, Sackler Faculty of Medicine, Tel-Aviv

University, and QBI Enterprises [161].

6.7.1 The Ataxia-Telangiectasia Disease

A-T is a rare recessive disease. It is characterized by cerebellar degeneration, im-

munodeficiency, chromosomal instability, gonadal and thymic dysgenesis, premature

6.7. APPLICATION TO ATAXIA-TELANGIECTASIA 171

-0.06

-0.04

-0.02

0

0.02

0.04

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

K-Means

CAST

GeneCluster

CLICK’True’

Figure 6.13: A comparison of homogeneity (x-axis) and separation (y-axis) values

for all solutions of the yeast cell-cycle data of [177].

aging, marked predisposition to cancer, and acute sensitivity to ionizing radiation.

A-T cells exhibit a broad defect in their response to ionizing radiation and ra-

diomimetic chemicals [126]. The responsible gene, ATM, encodes a multifunctional

protein kinase that controls an extensive array of signaling pathways, most notably

those that are activated by DNA double-strand breaks [13]. Animal models of A-T

were generated in several laboratories by inactivating the ATM gene in mice. These

animals recapitulate the organismal and cellular phenotypes of A-T, and usually die

with thymic lymphomas by the age of several months [13, 24, 59, 103, 192]. The

development of the cerebellar phenotype is slower in ATM-deficient mice than in

human A-T patients, and is subtly noticed only in certain strains with prolonged

survival [24].

172 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

6.7.2 Experimental Design and Data Preprocessing

In order to obtain a global look at the A-T phenotype, we examined gene expression

profiles in the thymus, cerebellum and cerebrum of wild type (WT) and ATM-

deficient (ATM -/-) mice without treatment, and at two time points (30 and 120

min) after whole body X-irradiation. Microarrays containing 8,085 mouse expressed

sequence tags (ESTs) were probed with cDNAs representing all 18 combinations of

genotype, tissue, treatment and time point. Each microarray was hybridized simul-

taneously with a Cy5-labeled test probe representing one of the 18 combinations,

and a Cy3-labeled reference probe representing a mixture of wild type brain, lung,

liver, spleen, heart, and thymus. Only valid elements with high signal-to-background

ratio (> 2.0), large spot hybridization cover area (> 40%), and no missing values

were included in the final analysis. Hybridization intensities were balanced (as de-

scribed in GemTools 2.3.1 user manual), and the expression level of each element

was divided by its level in the reference probe of the corresponding tissue. Valid

data over 6 conditions (three measurements for each of the two genotypes) were

obtained for 6,641 genes from the thymus samples, 7,754 genes in the cerebellum,

and 7,106 genes in the cerebrum.

In each tissue, the expression of each gene over the six conditions was normalized

by dividing by the expression level in the untreated wild type tissue and taking a

base 2 logarithm of the result. The genes were ordered according to the maximum

absolute value of their normalized levels. Genes in the top 5% of this list were

categorized as significant responders (332 genes in the thymus, 387 genes in the

cerebellum, and 355 genes in the cerebrum). They all showed at least a 1.75-fold

change compared to untreated wild type tissue in at least one of the other 5 com-

binations of genotype and treatment. The responder genes were then subjected to

cluster analysis. Clustering carried out simultaneously over the 3 tissues included a

total of 977 responder genes: 745 of them had valid values over all 18 combinations

and those genes were used for clustering.

6.7.3 Tissue Clustering

Hierarchical cluster analysis was first used to demonstrate the relative distance be-

tween overall expression patterns in the different tissues under the different condi-

tions. Euclidean distances were used as the dissimilarity measure and were obtained

6.7. APPLICATION TO ATAXIA-TELANGIECTASIA 173

over all genes that met the above mentioned validity criteria. The average linkage

hierarchical clustering method was applied using the SPSS statistical package.

Unexpectedly, expression profiles in unirradiated ATM-/- thymus and cerebellum

were much closer to those of the corresponding irradiated wild type or ATM-/-

tissues, while unirradiated wild type tissues stood out far from all other combinations

(see Figure 6.14). The cerebral samples, on the other hand, showed the pattern

initially expected: Untreated wild type and ATM-/- tissues were close to each other

and far from all the irradiated samples. This result pointed to a sustained stress

response in ATM-deficient thymus and cerebellum, the most affected organs in A-T

patients. This response was less prominent in the cerebrum, whose degeneration in

patients is considerably slower.

6.7.4 Gene Clustering

Cluster analysis was used to study this unusual constitutive response phenomenon.

Responder genes whose expression level in any sample differed significantly from

their basal expression in untreated wild type tissues were separated into individual

clusters of genes with similar expression patterns (see Figures 6.15 and 6.16). Sim-

ilarity between genes was computed as max{1 − d/2, 0}, where d is the Euclidean

distance between their normalized expression vectors.

When the clustering was carried out over the 3 tissues, CLICK divided the 745

responder genes into 28 clusters, leaving 87 genes as singletons. When the six thymus

conditions were clustered, 332 responder genes fell into 9 clusters and 28 remained

as singletons. In the cerebellum, 387 responders fell into 10 clusters, leaving 27

singletons. In the cerebrum 355 responders were divided into 8 clusters with 8 genes

left as singletons.

The analysis shows that different sets of genes responded to the treatment in each

tissue, with some exceptions (see Figure 6.15A). It is also of note that the cerebral

and cerebellar responses to irradiation had already peaked at 30 min, in contrast to

the slower thymic response. In spite of the marked differences between the general

response patterns of the 3 tissues, the constitutive stress response of ATM-/- thymus

and cerebellum could be seen in the 3-tissue clusters (see Figure 6.15A), and was

more clearly observed in single tissue clusters (see Figure 6.16A,B). Significantly,

the dominant pattern exhibited by the thymic and cerebellar clusters showed the

174 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

constitutive stress response, that is, the expression levels of untreated ATM-/- tis-

sues were similar to those of the treated rather than the untreated wild type tissues.

In contrast, the dominant pattern among the cerebral clusters showed symmetry

between the radiation responses of the two genotypes, with the constitutive stress

response being considerably less prominent than in the thymus and cerebellum (see

Figure 6.15B). Of note, small groups of genes showed constitutively altered expres-

sion in ATM-/- tissues and no response to irradiation in wild type tissues; others

showed similar basal activity in the two genotypes and responded to irradiation in

only one of the genotypes (see Figures 6.15B and 6.16A,B).

Relative distance

0 5 10 15 20 25

Atm -/-, untreated
Atm -/-, 120 min
Atm +/+, 120 min
Atm -/-, 30 min
Atm +/+, untreated
Atm +/+, 30 min

0 5 10 15 20 25

Thymus

Cerebellum
Atm +/+, 120 min
Atm -/-, 120 min
Atm -/-, untreated
Atm +/+, 30 min
Atm -/-, 30 min
Atm +/+, untreated

Atm +/+, 120 min
Atm -/-, 30 min
Atm +/+, 30 min
Atm -/-, 120 min
Atm +/+, untreated
Atm -/-, untreated

0 5 10 15 20 25

Brain

Figure 6.14: Hierarchical cluster analysis of expression profiles of unirradiated and

irradiated mouse tissues. Genotypes and post-irradiation time points are indicated.

The zero time point represents an unirradiated tissue. Note in the thymus and

cerebellum the high similarity between unirradiated ATM-/- tissues and irradiated

tissues of the two genotypes, and the great distance between the unirradiated wild

type tissues and all other combinations. The small distance between untreated

thymus and thymus at 30 min post-irradiation indicates that most of the response

occurs in this tissue at a later time. In the cerebrum, on the other hand, unirradiated

wild type and ATM-/- tissues are closer to each other and far from all irradiated

samples.

6.7. APPLICATION TO ATAXIA-TELANGIECTASIA 175

1 7 13 18
−2

−1

0

1

2
Cluster 1, Size=93

1 7 13 18
−2

−1

0

1

2
Cluster 2, Size=6

1 7 13 18
−2

−1

0

1

2
Cluster 3, Size=6

1 7 13 18
−2

−1

0

1

2
Cluster 4, Size=51

1 7 13 18
−2

−1

0

1

2
Cluster 5, Size=75

1 7 13 18
−2

−1

0

1

2
Cluster 6, Size=7

1 7 13 18
−2

−1

0

1

2
Cluster 7, Size=82

1 7 13 18
−2

−1

0

1

2
Cluster 8, Size=59

1 7 13 18
−2

−1

0

1

2
Cluster 9, Size=25

1 7 13 18
−2

−1

0

1

2
Cluster 10, Size=149

1 7 13 18
−2

−1

0

1

2
Cluster 11, Size=6

1 7 13 18
−2

−1

0

1

2
Cluster 12, Size=20

1 7 13 18
−2

−1

0

1

2
Cluster 13, Size=14

1 7 13 18
−2

−1

0

1

2
Cluster 14, Size=11

1 7 13 18
−2

−1

0

1

2
Cluster 15, Size=7

1 7 13 18
−2

−1

0

1

2
Cluster 16, Size=6

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 1, Size=130

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 2, Size=11

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 3, Size=5

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 4, Size=3

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 5, Size=124

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 6, Size=65

1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Cluster 7, Size=7

A B

Figure 6.15: Results of CLICK on the A-T expression data. Shown for each cluster

are the average and standard deviations of expression levels of the cluster’s genes.

A: Clusters containing at least 6 members that were obtained over the entire set

of 3 tissues, genotypes, treatments and time points. Points 1-6 along the x-axis

correspond to thymus. 1: WT, untreated. 2: WT, 30 min post irradiation. 3:

WT, 120 min post irradiation. 4: ATM-/-, untreated. 5: ATM-/-, 30 min post

irradiation. 6: ATM-/-, 120 min post irradiation. Points 7-12 and 13-18 represent

the cerebellum and cerebrum, respectively, with the same order of genotypes and

treatments. Clusters 1-9 represent genes whose expression was significantly modified

in only one tissue. Clusters 10-12 represent genes that show similar expression

pattern in two tissues. Clusters 13-16 include genes that show opposite patterns in

different tissues. B: Cerebrum clusters containing at least 3 members. The points

on the x-axis follow the same order of genotypes and treatments as the first six

points in panel A. Clusters 1-4 show symmetric patterns for wild type and ATM-/-

tissues, indicating a similar response of the two genotypes, while cluster 5 displays

a certain degree of constitutive stress response. Clusters 2 and 4 can be interpreted

also as showing mild constitutive response.

176 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 1, Size=185

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 2, Size=12

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 3, Size=74

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 4, Size=13

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 5, Size=12

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 1, Size=157

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 2, Size=16

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 3, Size=3

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 4, Size=110

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 5, Size=25

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 6, Size=9

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 7, Size=12

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 8, Size=14

1 2 3 4 5 6
−2

−1

0

1

2
Cluster 9, Size=12

A B

Figure 6.16: Tissue-specific clusters for the thymus (A) and cerebellum (B). The

points on the x-axis follow the same order of genotypes and treatments as in Fig-

ure 6.15B. Only clusters containing at least 3 genes are shown. The constitutive

stress response in ATM-/- tissues is represented in thymic clusters 1-3 and cerebel-

lar clusters 1-4. Thymic cluster 4 as well as cerebellar clusters 5 and 6 represent

genes with normal basal activity in unirradiated ATM-/- tissue, that respond to the

treatment only in the wild type tissue. Thymic cluster 5 and cerebellar clusters 7-9

depict genes that respond more vigorously to irradiation in ATM-/- tissues.

6.7.5 Discussion

The constitutive stress response in untreated ATM-/- thymus and cerebellum reflects

an ongoing, but probably sub-optimal, effort to respond to constant, low-level dam-

age throughout life. A considerable toll in energy and resources is most certainly

paid by the cells to keep up this effort, and may contribute to the degenerative

processes and premature aging in A-T patients.

This constitutive stress response corroborates recent findings of constitutive ac-

tivation of several damage response pathways in cultured human A-T cells, such as

the activation of the p53, p21 and Cdc2 proteins [71]. Lack of ATM may lead to

stress, which activates enzymes redundant with ATM that mediate this constant

stress response. An example of such an enzyme is ATR, a member of the family of

PI3- kinase-related protein kinases that includes ATM. Following radiation damage,

6.8. IDENTIFYING REGULATORY MOTIFS 177

ATR phosphorylates p53 on the same site as ATM, albeit at slower kinetics [186].

What could cause this tenuous stress in ATM-deficient cells? Among other activities

the ATM protein is involved in the repair of double-strand breaks [113]. Lack of

ATM should diminish the cell’s capacity to repair the DNA breaks that are con-

tinuously being created by cellular metabolites or normal DNA processing. In the

cerebellum, the high production of nitric oxide by the granule cells may be a steady

source of DNA strand breakage, while in the thymus the maturation of the immune

system genes is an important source of DNA discontinuities. Another source of con-

stant genotoxic damage in ATM-deficient cells is elevated oxidative stress expressed

as high levels of reactive oxygen species [166].

A considerable fraction of the ESTs with significant radiation or constitutive re-

sponse were annotated using bioinformatic analysis. This annotation shows that the

genes that participate in the acute response of wild type tissues and the constitu-

tive response of ATM-/- tissues are involved in many cellular processes representing

most aspects of cellular physiology, and are not limited to DNA repair and cell cycle

checkpoint activation.

6.8 Identifying Regulatory Motifs

In this section we demonstrate the utility of clustering in general, and CLICK in

particular, in identifying regulatory sequence motifs.

Global gene expression data enable the delineation of genetic regulatory networks

via direct or indirect approaches. In the direct approach, the effects of activation or

repression of a specific transcription factor (TF) on gene expression are monitored.

This way, genes located downstream from p53 [200], BRCA1 [94] and C-myc [35] in

their respective pathways, were identified. The indirect approach for the delineation

of regulatory networks relies on the hypothesis that genes exhibiting similar expres-

sion patterns across a large panel of biological conditions are likely to share common

regulatory elements in their promoter regions. In other words, co-expression is cor-

related with co-regulation [183, 199, 26]. The regulatory elements in the promoter

region represent the ”switches” that respond to signals from various cellular sig-

naling pathways. The response can be either as part of the normal developmental

program of the organism, or in response to external perturbations, stresses and al-

terations in physiological conditions. The binding of transcription factors to their

178 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

binding sites in the promoter region enhances (or represses) the transcription initi-

ation complex recruitment and assembly on the basal promoter in the proximity of

the transcription start site, thereby influencing transcription initiation.

The approach that aims to detect cis-regulatory TF’s binding sites from co-

expression comprises two steps: (I) Cluster analysis aimed at the identification

of clusters of genes sharing similar expression patterns. (II) Sequence analysis,

which searches for sequence patterns that are over-represented in upstream regions

of members of the same cluster. The derivation of regulatory networks through the

identification of common cis-regulatory elements shared by co-regulated genes was

successfully demonstrated in yeast [32, 114, 177] and Arabidopsis Thaliana [137].

In order to test the utility of CLICK for motif identification, we have analyzed the

dataset published recently by Jelinsky et al. [114]. In that experiment, expression

levels of all 6,200 ORFs of the yeast Saccharomyces Cerevisiae were measured in

order to study the cellular response to DNA damage. In total, gene expression

profiles in 26 biological conditions were measured, including treatments with various

DNA damaging agents at several time points and doses. 2,610 genes that changed

by a factor of 3 or more in at least one condition were subjected to cluster analysis.

The clustering reported in [114] consists of 18 clusters, obtained by GeneCluster. In

comparison, CLICK identified 33 clusters with more than 10 members.

Once the clusters are identified, the motif finding algorithm is applied to pro-

moter regions of the genes in each cluster. In this study, the search was performed

on the 500 bases upstream to the ORFs’ translation start sites. The analysis was

performed using the AlignACE package [165, 109] as done in [114]. (As the motif

finding software was recently modified, in addition to its application to CLICK’s

clustering, we also reapplied AlignACE to the clustering reported in [114].) Alig-

nACE employs Gibbs sampling for detecting over-represented motifs in a target set

of sequences. It utilizes the mononucleotide frequencies as genomic background.

To focus on regulatory motifs that potentially form the mechanistic basis for the

observed co-expression, as well as to reduce false-positives, only motifs that exceed

two score thresholds are reported. The first is an alignment score, which gauges

the statistical significance of the identified motif over the genomic background. The

second is a specificity score, which gauges how specific is the identified motif to

promoters of genes in the cluster, relative to promoter regions of other genes in the

genome [109]. In total, 26 significant motifs were identified in CLICK’s clusters, and

6.9. TISSUE CLASSIFICATION 179

Algorithm #Motifs found #Motifs verified

CLICK 26 17

GeneCluster 30 19

Both 17 13

Table 6.11: Statistics on motifs identified in CLICK’s clusters, GeneCluster’s clusters

and in both clusterings. First column: Total number. Second column: Number of

motifs with a match in the SCPD DB.

30 such motifs were identified in GeneCluster’s clusters.

The identified motifs were matched against the SCPD database of experimentally

verified yeast’s TF binding sites [201]. Table 6.11 summarizes the number of motifs

identified in each clustering as well as the number of motifs that had a match in the

SCPD DB. For both clustering methods, more than 60% of the motifs had a verified

TF binding site match, a fact that indicates the utility of this approach. In addition,

motifs with no match to known binding site were detected as well. Each of these

motifs forms a hypothesis that should be subjected to further biological research. Of

the 26 motifs identified in CLICK’s clusters, 17 were common with GeneCluster’s

motifs. Common motifs were identified using CompareAce (part of the AlignAce

package), which calculates a similarity coefficient for pairs of input motifs. Motifs

whose similarity exceeded a threshold of 0.7 were regarded as common. Table 6.12

lists those common motifs. It is interesting to note that the percent of verified

common motifs is particularly high (more than 75%). Hence, the four common,

unidentified motifs are more likely to be true, as they were obtained by two different

methods.

6.9 Tissue classification

An important application of gene expression analysis is the classification of tissue

types according to their gene expression profiles [81]. The power of gene expression

analysis is directed at two main problems in this context: Cancer type classifi-

cation and drug assessment. Several recent studies [8, 81, 7] demonstrated that

gene expression data can be used in distinguishing between similar cancer types,

whose distinction is hard otherwise, thereby allowing more accurate diagnosis and

180 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

CLICK Consensus Putative TF GeneCluster

1 2 16% (37/237) GGTGGCAAAW UASPHR 14 2 30% (61/205)

2 1 63% (119/189) RAAAAAAAAA PHO2,SWI5 4 4 38% (52/136)

2 2 44% (83/189) ATGTAYGGRTK RAP1 1 2 52% (85/165)

2 3 30% (56/189) RAAAAATTT DAL82 2 2 65% (48/74)

2 11 23% (44/189) AAAAAWTTT 4 2 61% (83/136)

9 3 87% (33/38) TGAAAAWTTTT

2 7 15% (29/189) NSYAGGCNGNR RAP1*, BUF* 1 4 17% (28/165)

1 8 11% (18/165)

1 9 15% (25/165)

2 9 12% (23/189) CYCNSCNRGNNGGA MCM1* 1 5 15% (25/165)

3 3 21% (31/149) YNCGGNSNNNSGGS RAP1* 3 8 13% (23/175)

3 4 19% (28/149) RRCCAATCAN ABF1,BAF1* 3 2 21% (36/175)

3 6 12% (18/149) GGCNGGGCRKC URS1H 3 4 8% (14/175)

3 7 8% (12/149) TSGGCGGCNNTT

3 9 19% (28/149) SGGNNNNNNNGGNNNGG BUF * 3 6 16% (28/175)

2 8 15% (28/189) SCNGCNNSCNGNNGSG —– 1 6 17% (28/165)

3 11 13% (19/149) MNNNGGGNNNRNNNRNGGGR —– 6 7 25% (28/114)

3 21 9% (13/149) NCCGNYGGNCCGR —– 3 8 13% (23/175)

26 2 90% (9/10) AGGGGCGGNG —– 9 3 15% (23/150)

Table 6.12: Motifs identified in the clusters of both CLICK and GeneCluster. Left

column: CLICK motif name. Each name is denoted by two numbers: The first is the

cluster number and the second is the motif serial number in the cluster (AlignACE

is capable of finding multiple motifs in a target set of sequences by an iterative

masking procedure). The second part of the left column contains statistics on the

prevalence of the motif in the cluster. Second column: the motif’s consensus se-

quence. Third column: An experimentally verified TF which matches the consensus

sequence. (For TFs denoted by an ’*’, there is one mismatch between the TF bind-

ing site consensus and the identified motif consensus. Otherwise, there is a perfect

match.) Forth column: The corresponding GeneCluster’s motifs (motifs with sim-

ilarity coefficient above 0.7 to CLICK’s consensus). Motifs found more than once

are grouped together.

6.9. TISSUE CLASSIFICATION 181

treatment. Drug assessment is aided by expression profiles before, during and af-

ter treatment: The profiles pinpoint drug responsive genes, and indicate treatment

outcome [34].

Here we focus on the application of gene expression analysis in general, and

cluster analysis in particular, to cancer classification. In gene expression studies

of cancer, the data consist of expression levels of thousands of genes in several

tissues. The tissues originate from two or more known classes, e.g., normal and

tumor. The analysis aims at studying the typical expression profile of each class

and predicting the classification of new unlabeled tissues. Classification methods

employ supervised learning techniques, i.e., the known classifications of the tissues

are used to guide the algorithm in building a classifier. These include support

vector machines [16, 68], boosting [16], clustering [16], discriminant analysis [191]

and weighted correlation [81]. Classification can be aided by first filtering the dataset

from genes that are irrelevant to the required distinction. Several methods have been

suggested to choose subsets of informative genes, on which improved classification

accuracy can be attained [16, 54, 68, 191].

Ben-Dor et al. [16] have demonstrated the strength of clustering in classification

problems. Key to their method is combining the labeling (known classification)

information in the clustering process. Suppose we use a clustering algorithm with

at least one free parameter. Given an unlabeled tissue, the clustering algorithm is

applied repeatedly with different parameter values on the set of all tissues (known

and unknown). Each solution is scored by its level of compatibility with the labeling

information, and the best solution is chosen. The classification of each unlabeled

tissue is then determined according to the distribution of classified tissues in the

cluster containing it, assigning it the most represented class in this cluster.

The compatibility score for a clustering solution used by Ben-Dor et al. is simply

the number of tissue pairs that are mates or non-mates in both the true labeling

and the clustering solution. Singletons are considered as 1-member clusters for

this computation. The clustering algorithm used in [16] was CAST with Pearson

correlation as the similarity function.

We have studied two classification datasets using CLICK. The first dataset of

Alon et al. [8] contains 62 samples of colon epithelial cells, collected from colon-

cancer patients. They are divided into 40 ’tumor’ samples collected from tumors,

and 22 ’normal’ samples collected from normal colon tissues of the same patients.

182 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

Dataset Method Correct Incorrect Unclassified

Colon CLICK 87.1 12.9 0.0

CAST 88.7 11.3 0.0

Leukemia CLICK 94.4 2.8 2.8

CAST 87.5 12.5 0.0

Table 6.13: A comparison of the classification quality of CLICK and CAST on

the colon data of [8] and the leukemia data of [81]. For each dataset and clustering

algorithm the percents of correct classifications (in the LOOCV iterations), incorrect

classifications and unclassified elements are specified.

Of the ∼6,000 genes represented in the experiment, 2,000 genes were selected based

on the confidence in the measured expression levels. The second dataset of Golub

et al. [81] contains 72 leukemia samples. These samples are divided into 25 samples

of acute myeloid leukemia (AML) and 47 samples of acute lymphoblastic leukemia

(ALL). Of the ∼7,000 genes represented in the experiment, 3,549 were chosen based

on their variability in the dataset.

The application of CLICK to classify these datasets enumerates several homo-

geneity parameters for CLICK, and chooses the solution which is most compatible

with the given labels. We used the same similarity function and compatibility score

as in [16]. A sample is not classified if it is either a singleton in the clustering ob-

tained, or no class has a majority in the cluster assigned to that sample. In order

to assess the performance of CLICK we employed the leave one out cross validation

(LOOCV) technique, as done in [16]. According to this technique, one trial is per-

formed for each tissue in the dataset. In the i-th trial, the algorithm tries to classify

the i-th sample based on the known classifications of the rest of the samples. The

average classification accuracy is thus computed. Table 6.13 presents a comparison

between the classification based on CLICK and that of CAST, as reported in [16].

The results are comparable, with CAST performing slightly better on the colon

dataset, and CLICK performing better on the leukemia dataset.

Next, we tested CLICK’s utility in differentiating between two very similar types

of cancer. We concentrated on part of the leukemia dataset composed of the 47 ALL

samples only. For these samples an additional sub-classification into either T-cell or

B-cell, is provided. An application of CLICK to this dataset resulted in an almost

6.9. TISSUE CLASSIFICATION 183

Dataset Size Correct Incorrect Unclassified

Colon 2000 87.1 12.9 0.0

50 90.3 9.7 0.0

Leukemia 3549 94.4 2.8 2.8

50 97.2 2.8 0.0

ALL 3549 97.9 0.0 2.1

50 97.9 2.1 0.0

Table 6.14: A summary of the classifications obtained by CLICK on the colon data

of [8], the whole leukemia dataset of [81], and part of the leukemia dataset which

contains ALL samples only. For each dataset classifications were performed with

respect to the total number of genes, and with respect to the 50 most informative

genes. The percents of correct classifications (in the LOOCV iterations), incorrect

classifications and unclassified elements are specified.

perfect classification (see Table 6.14).

Finally we examined the influence of feature selection on the classification ac-

curacy. To this end, we sorted the genes in each dataset according to the ratio of

their between-sum-of-squares and within-sum-of-squares values, as suggested in [54].

This ratio is computed by the following formula:

BSS(g)

WSS(g)
=

∑
i=1,2 ni(xg,i − xg)

2∑
i=1,2

∑
k∈i(xk

g − xg,i)2

Here i denotes the class number, ni its size, k denotes the sample number, xg,i is the

average expression level of gene g at class i, xg is the average expression level of gene

g, and xk
g is the expression level of gene g at sample k. For each LOOCV iteration we

chose the 50 genes with the highest value and performed the classification procedure

on the reduced dataset which contained the expression levels of these 50 genes only.

The results of this analysis are shown in Table 6.14. For both the colon and leukemia

datasets the performance was improved on the reduced dataset.

184 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

6.10 The EXPANDER Clustering and Visualiza-

tion Tool

We have developed a java-based graphical tool, called EXPANDER (EXPression

ANalyzer and DisplayER), for gene expression analysis and visualization. This

software provides graphical user interface to several clustering methods. It enables

visualizing the raw expression data and the clustered data in several ways. In

the following we outline the visualization options and demonstrate them on the

yeast cell-cycle dataset of [177]. This dataset contains the expression levels of 698

yeast genes over 72 conditions. The reader is referred to Section 6.6 for a detailed

description of this dataset. Figure 6.17 shows the initial screen when the tool is

invoked.

Figure 6.17: The EXPANDER initial screen.

6.10.1 Clustering Methods

EXPANDER implements several clustering algorithms including CLICK, K-means,

hierarchical clustering and SOM. The user can specify the parameters of each algo-

rithm: Homogeneity parameter for CLICK, number of clusters for K-means, type of

linkage (single, average or complete) for hierarchical clustering, and the size of grid

for SOM. In addition, the user can upload an external clustering solution.

6.10.2 Matrix Visualizations

EXPANDER includes visualizations for the expression matrix and the similarity

matrix. In these visualizations the matrices are represented graphically by coloring

each cell according to its content. Cells with neutral values are colored black, in-

creasingly positive values with reds of increasing intensity, and increasingly negative

values with greens of increasing intensity. Each matrix is shown in two ways: (1)

6.10. THE EXPANDER CLUSTERING AND VISUALIZATION TOOL 185

In its raw form; and (2) after reordering the rows of the matrix so that elements

from the same cluster appear consecutively. (The columns are also reordered in the

similarity matrix.) These visualizations are demonstrated in Figure 6.18.

A B

C D

Figure 6.18: Matrix visualizations in EXPANDER. A: The raw yeast cell-cycle data

matrix of [177]. B: The same data matrix after clustering the genes and reordering

the raws accordingly. C: The similarity matrix. D: The similarity matrix after

clustering the genes and reordering the raws and columns accordingly.

186 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

Ideally, in the reordered expression matrix we expect to see unique patterns

for each cluster, while the reordered similarity matrix should be composed of light

squares, each corresponding to a cluster, in dark background.

When using hierarchical clustering, the solution dendrogram is displayed along

with the expression matrix, in which the genes are reordered according to the den-

drogram (see Figure 6.19).

Figure 6.19: A dendrogram of the yeast cell-cycle data of [177] created by EX-

PANDER using average-linkage hierarchical clustering.

6.10.3 Clustering Visualizations

EXPANDER provides several visualizations of a clustering solution. A graphical

overview of the solution is produced by showing for each cluster its mean expression

pattern along with error bars indicating the standard deviation in each condition

(see Figure 6.20A). Alternatively, for each single cluster a superposition of all the

patterns of its members can be shown.

6.10. THE EXPANDER CLUSTERING AND VISUALIZATION TOOL 187

One other data visualization method provided in EXPANDER is principal com-

ponent analysis (cf. [115]). This is a method for reducing data dimensionality by

projecting high-dimensional data into a low-dimensional space spanned by the vec-

tors that capture maximum variance of the data. In EXPANDER we reduce the

data dimension to 2, by computing the two axes that capture maximum variance of

the data. The projected data is visualized as points in the plane. Given a clustering

solution the points are colored according to their assigned clusters, as depicted in

Figure 6.20B.

A B

Figure 6.20: Clustering visualizations in EXPANDER. A: A presentation of CLICK’s

clustering of the yeast cell cycle data of [177]. For each cluster a sub-figure shows its

mean pattern along with error-bars. B: principal component analysis of the data.

Each gene is projected to the plane according to its first two principal components.

Elements of each cluster are drawn using a separate color.

6.10.4 Functional Enrichment

As a simple aid for the interpretation of clustering results using biological knowledge,

EXPANDER can quantify the enrichment of gene functions in a clustering solution.

Given a functional annotation (an assignment of an attribute, such as functional

category) of the genes in an input dataset, the abundant functional categories in each

cluster are shown in a pie-chart. For each such category we compute its enrichment

188 CHAPTER 6. CLUSTERING GENE EXPRESSION DATA

in the cluster by computing a hypergeometric p-value. Formally, if a cluster contains

k elements, r of which belong to a certain functional category of total size f , and

there are n elements overall, then

p =
f∑

i=r

(
f
i

)
·
(

n−f
k−i

)
(

n
k

) .

In CLICK’s solution for the yeast cell-cycle dataset, the most enriched categories

were transport (cluster 3, p = 1.7 · 10−7) and developmental processes (cluster 4,

p = 1.8 · 10−6). The pie charts for these clusters are shown in Figure 6.21.

A B

Figure 6.21: Functional enrichment pie charts for CLICK’s clusters 3 (left) and 4

(right) computed on the yeast cell-cycle of [177]. Shown are functional categories

containing at least 10% of the genes in a cluster. The most enriched categories are

transport (in cluster 3, p = 1.7 · 10−7) and developmental processes (in cluster 4,

p = 1.8 · 10−6).

Bibliography

[1] The chipping forecast. Special supplement to Nature Genetics Vol. 21, 1999.

[2] N. Abbas and L.K. Stewart. Biconvex graphs: ordering and algorithms. Dis-

crete Applied Mathematics, 103:1–19, 2000.

[3] K. Abrahamson, R. Downey, and M. Fellows. Fixed-parameter intractability

II. In Proceedings of the 10th Symposium on Theoretical Aspects of Computer

Science (STACS’93), volume 665 of LNCS, pages 374–385. Springer-Verlag,

Berlin, 1993.

[4] R. Agarwala and D. Fernández-Baca. A polynomial-time algorithm for the

perfect phylogeny problem when the number of character states is fixed. SIAM

Journal on Computing, 23(6):1216–1224, 1994.

[5] A. Agrawal, P. Klein, and R. Ravi. Cutting down on fill using nested dissection:

provably good elimination orderings. In A. George, J.R. Gilbert, and J.W.H.

Liu, editors, Graph Theory and Sparse Matrix Computation, pages 31–55.

Springer, 1993.

[6] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from

lowest common ancestors with an application to the optimization of relational

expressions. SIAM Journal on Computing, 10(3):405–421, 1981.

[7] A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C.

Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore,

J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C.

Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, and L.M. Staudt.

Distinct types of diffuse large B-cell lymphoma identified by gene expression

profiling. Nature, 403(6769):503–511, 2000.

189

190 BIBLIOGRAPHY

[8] U. Alon, N. Barkai, D.A. Notterman, G. Gish, S. Ybarra, D. Mack,

and A.J. Levine. Broad patterns of gene expression revealed by clus-

tering analysis of tumor and normal colon tissues probed by oligonu-

cleotide arrays. Proc. Natl. Acad. Sci. USA, 96:6745–6750, June 1999.

http://www.sph.uth.tmc.edu/hgc.

[9] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. J. Mol. Biol., 215:403–10, 1990.

[10] T. Asano. An application of duality to edge-deletion problems. SIAM Journal

on Computing, 16(2):312–331, 1987.

[11] T. Asano and T. Hirata. Edge-deletion and edge-contraction problems. In Pro-

ceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,

pages 245–254, San Francisco, California, 5–7 May 1982.

[12] G. Ball and D. Hall. A clustering technique for summarizing multivariate data.

Behaviorial Sciences, 12(2):153–155, 1967.

[13] C. Barlow, S. Hirotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins,

Y. Shiloh, J.N. Crawley, T. Ried, D. Tagle, and A. Wynshaw-Boris. ATM-

deficient mice: a paradigm of ataxia-telangiectasia. Cell, 86:159–171, 1996.

[14] A. Ben-Dor, 1996. Private communication.

[15] A. Ben-Dor, 1999. Private communication.

[16] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and

Z. Yakhini. Tissue classification with gene expression profiles. Journal of

Computational Biology, 7(3/4):559–583, 2000.

[17] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.

Journal of Computational Biology, 6(3/4):281–297, 1999.

[18] C. Benham, S. Kannan, M. Paterson, and T.J. Warnow. Hen’s teeth and

whale’s feet: generalized characters and their compatibility. Journal of Com-

putational Biology, 2(4):515–525, 1995.

[19] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, B.F. Ouellette, B.A. Rapp,

and D.L. Wheeler. Genbank. Nucleic Acids Res., 27(1):12–17, 1999.

BIBLIOGRAPHY 191

[20] H. L. Bodlaender, M. R. Fellows, and M. T. Hallet. Beyond NP-Completeness

for problems of bounded width: Hardness for the W hierarchy. In Proceedings

of the 26th Annual ACM Symposium on the Theory of Computing, pages 449–

458. ACM Press, New York, 1994.

[21] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[22] H.L. Bodlaender and B. de Fluiter. On intervalizing k-colored graphs for DNA

physical mapping. Discrete Applied Math., 71:55–77, 1996.

[23] H.L. Bodlaender, M.R. Fellows, M.T. Hallett, H.T. Wareham, and T.J.

Warnow. The hardness of perfect phylogeny, feasible register assignment and

other problems on thin colored graphs. Theoretical Computer Science, 244(1–

2):167–188, 2000.

[24] P.R. Borghesani, F.W. Alt, A. Bottaro, L. Davidson, S. Aksoy, G.A. Rathbun,

T.M. Roberts, W. Swat, R.A. Segal, and Y. Gu. Abnormal development of

purkinje cells and lymphocytes in ATM mutant mice. Proc. Natl. Acad. Sci.

USA, 97:3336–3341, 2000.

[25] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes - a Survey. SIAM,

Philadelphia, 1999.

[26] A. Brazma and J. Vilo. Gene expression data analysis. FEBS Letters, 480:17–

24, 2000.

[27] J.R. Bunch and D.J. Rose, editors. Sparse Matrix Computations. Academic

Press, 1976.

[28] L. Cai. Fixed-parameter tractability of graph modification problems for hered-

itary properties. Information Processing Letters, 58:171–176, 1996.

[29] J.H. Camin and R.R. Sokal. A method for deducing branching sequences in

phylogeny. Evolution, 19:409–414, 1965.

[30] A.V. Carrano. Establishing the order of human chromosome-specific DNA

fragments. In A.D. Woodhead and B.J. Barnhart, editors, Biotechnology and

the Human Genome, pages 37–50. Plenum Press, New York, 1988.

192 BIBLIOGRAPHY

[31] C.S. Chekuri, A.V. Goldberg, D.R. Karger, M.S. Levine, and C. Stein. Experi-

mental study of minimum cut algorithms. In Proceedings of the Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 324–333, 1997.

[32] R.J. Cho, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway, L. Wod-

icka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman, D.J. Lockhart, and R.W.

Davis. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol.

Cell, 2:65–73, 1998.

[33] K. Cirino, S. Muthukrishnan, N.S. Narayanaswamy, and H. Ramesh. Graph

editing to bipartite interval graphs: Exact and asymptotic bounds. In Pro-

ceedings of the Seventeenth Conference on Foundations of Software Technology

and Theoretical Computer Science, volume 1346 of LNCS, pages 37–53, 1997.

[34] P.A. Clarke, M. George, D. Cunningham, I. Swift, and P. Workman. Analysis

of tumor gene expression following chemotherapeutic treatment of patients

with bowel cancer. In Proc. Nature Genetics Microarray Meeting, page 39,

1999.

[35] H. Coller, C. Gradori, P. Tamayo, T. Colbert, E. Lander, R. Eisenman, and

T.R. Golub. Expression analysis with oligonucleotide reveals that C-Myc reg-

ulates genes involved in growth, cell-cycle, signaling and adhesion. Proc. Natl.

Acad. Sci. USA, 97(7):3260–3265, 2000.

[36] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-

gressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[37] R.M. Cormack. A review of classification (with discussion). J. Royal Statistical

Society, Series A, 134:321–367, 1971.

[38] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge, Mass., 1990.

[39] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A.P. Sprague. Simple

linear time recognition of unit interval graphs. Inf. Proc. Letts., 55:99–104,

1995.

[40] D.G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible

graphs. Discrete Applied mathematics, 3:163–174, 1981.

BIBLIOGRAPHY 193

[41] D.G. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for

cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[42] A. Cournier and M. Habib. A new linear algorithm for modular decomposition.

In Proceedings of Colloquium on Trees in Algebra and Programming (CAAP),

volume 787 of LNCS, pages 68–84, 1994.

[43] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric ma-

trices. In Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.

[44] E. Dahlhaus, J. Gustedt, and R.M. McConnell. Efficient and practical modular

decomposition. In Proceedings of the Eighth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 26–35, 1997.

[45] M.H. DeGroot. Probability and Statistics. Addison-Wesley, 1989.

[46] X. Deng, P. Hell, and J. Huang. Linear time representation algorithms for

proper circular arc graphs and proper interval graphs. SIAM Journal on Com-

puting, pages 390–403, 1996.

[47] L. Dollo. Le lois de l’évolution. Bulletin de la Societé Belge de Géologie de

Paléontologie et d’Hydrologie, 7:164–167, 1893.

[48] R.G. Downey and M.R. Fellows. Parameterized computational feasibility. In

K. Ambos-Spies, S. Homer, and U. Schoning, editors, Complexity Theory:

Current Research, pages 166–191. Cambridge University Press, New York,

1993.

[49] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag,

1997.

[50] R. Drmanac, S. Drmanac, I. Labat, R. Crkvenjakov, A. Vicentic, and A. Gem-

mell. Sequencing by hybridization: towards an automated sequencing of one

milion M13 clones arrayed on membranes. Electrophoresis, 13:566–573, 1992.

[51] R. Drmanac, G. Lennon, S. Drmanac, I. Labat, R. Crkvenjakov, and

H. Lehrach. Partial sequencing by oligohybridization: Concept and appli-

cations in genome analysis. In C. Cantor and H. Lim, editors, Proceedings

of the first international conference on electrophoresis supercomputing and the

human genome, pages 60–75. World Scientific, 1991.

194 BIBLIOGRAPHY

[52] S. Drmanac and R. Drmanac. Processing of cDNA and genomic kilobase-

size clones for massive screening mapping and sequencing by hybridization.

Biotechniques, 17:328–336, 1994.

[53] S. Drmanac, N.A. Stavropoulos, I. Labat, J. Vonau, B. Hauser, M.B. Soares,

and R. Drmanac. Gene-representing cDNA clusters defined by hybridization

of 57419 clones from infant brain libraries with short oligonucleotide probes.

Genomics, 37:29–40, 1996.

[54] S. Dudoit, J. Fridlyand, and T.P. Speed. Comparison of discrimination meth-

ods for the classification of tumors using gene expression data. Technical

Report 576, Dept. of Statistics, university of California, Berkeley, 2000.

[55] I. Duff, editor. Sparse matrices and their uses. Academic Press, 1981.

[56] M.B. Eisen and P.O. Brown. DNA arrays for analysis of gene expression. In

Methods in Enzymology, volume 303, pages 179–205. 1999.

[57] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis

and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA,

95:14863–14868, 1998. http://rana.lbl.gov/.

[58] E.S. El-Mallah and C.J. Colbourn. The complexity of some edge deletion

problems. IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988.

[59] A. Elson, Y. Wang, C.J. Daugherty, C.C. Morton, F. Zhou, J. Campos-Torres,

and P. Leder. Pleiotropic defects in ataxia-telangiectasia protein-deficient

mice. Proc. Natl. Acad. Sci. USA, 93(23):13084–13089, 1996.

[60] D. Eppstein, Z. Galil, G.F. Italiano, and A. Nissenzweig. Sparsification – a

technique for speeding up dynamic graph algorithms. Journal of the ACM,

44(5):669–696, 1997.

[61] B. Everitt. Cluster analysis. Edward Arnold, London, third edition, 1993.

[62] M.R. Fellows, M.T. Hallet, and H.T. Wareham. DNA physical mapping: Three

ways difficult. In Proc. First European Symp. on Algorithms (ESA ’93), vol-

ume 726 of LNCS, pages 157–168. Springer, 1993.

[63] J. Felsenstein. Inferring Phylogenies. Sinaur Associates, Sunderland, Mas-

sachusetts, 2002. In press.

BIBLIOGRAPHY 195

[64] S.P. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, and C.L. Adams.

Multiplexed biochemical assays with biological chips. Nature, 364:555–556,

1993.

[65] L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-

complete. Advances in Applied Mathematics, 3:43–49, 1982.

[66] M.L. Fredman and M.E. Saks. The cell probe complexity of dynamic data

structures. In Proceedings of the Nineteenth Annual ACM Symposium on

Theory of Computing, pages 345–354, 1989.

[67] T. Fuchs, B. Malecova, C. Linhart, R. Sharan, M. Khen, R. Herwig, D. Shmule-

vitz, R. Elkon, M. Steinfath, J. O’Brien, U. Radelof, H. Lehrach, D. Lancet,

and R. Shamir. Defog: A practical scheme for deciphering families of genes.

Genomics. To appear.

[68] T.S. Furey, N. Cristianini, N. Duffy, D.W. Bendarski, M. Schummer, and

D. Haussler. Support vector machine classification and validation of cancer

tissue samples using microarray expression data. Bioinformatics, 16:906–914,

2000.

[69] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, 1979.

[70] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science, 1:237–267, 1976.

[71] M. Gatei, D. Shkedy, K.K. Khanna, T. Uziel, Y. Shiloh, T.K. Pandita, M.F.

Lavin, and G. Rotman. Ataxia-telangiectasia: chronic activation of damage-

responsive functions is reduced by alpha-lipoic acid. Oncogene, 20(3):289–94,

2001.

[72] A. George. Nested dissection of a regular finite element mesh. SIAM J. on

Numerical Analysis, 10:345–367, 1973.

[73] A. George, J.R. Gilbert, and J.W.H. Liu, editors. Graph Theory and Sparse

Matrix Computation. Springer, 1993.

[74] A. George and J.W. Liu. Computer solution of large sparse positive definite

systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

196 BIBLIOGRAPHY

[75] A. George and J.W. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 31:1–19, 1989.

[76] G. Getz, E. Levine, E. Domany, and M.Q. Zhang. Super-paramagnetic clus-

tering of yeast gene expression profiles. Physica, A279:457, 2000.

[77] D. Ghosh and A.M. Chinnaiyan. Mixture modelling of gene expression data

from microarray experiments. Bioinformatics, 18:275–286, 2002.

[78] J.R. Gilbert. Some nested dissection order is near optimal. Inf. Proc. Letts.,

26:325–328, 1988.

[79] M.X. Goemans and D.P. Williamson. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming.

Journal of the ACM, 42(6):1115–1145, 1995.

[80] P.W. Goldberg, M.C. Golumbic, H. Kaplan, and R. Shamir. Four strikes

against physical mapping of DNA. Journal of Computational Biology,

2(1):139–152, 1995.

[81] T.R. Golub, D. Slonim, P. Tamayo, C.M. Huard, J.M. Caasenbeek,

H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lan-

der. Molecular classification of cancer: Class discovery and class pre-

diction by gene expression monitoring. Science, 286:531–537, 1999.

http://www-genome.wi.mit.edu/cancer/.

[82] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic

Press, New York, 1980.

[83] M.C. Golumbic. Matrix sandwich problems. Linear algebra and its applica-

tions, 277:239–251, 1998.

[84] M.C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA phys-

ical mapping. Advances in Applied Mathematics, 15:251–261, 1994.

[85] M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Jour-

nal of Algorithms, 19:449–473, 1995.

[86] M.C. Golumbic and R. Shamir. Complexity and algorithms for reasoning

about time: A graph-theoretic approach. Journal of the ACM, 40:1108–1133,

1993.

BIBLIOGRAPHY 197

[87] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks,

21:19–28, 1991.

[88] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univer-

sity Press, 1997.

[89] S.L. Hakimi, E.F. Schmeichel, and N.E. Young. Orienting graphs to optimize

reachability. Information Processing Letters, 63(5):229–235, 1997.

[90] P.L. Hammer, T. Ibaraki, and U.N. Peled. Threshold numbers and threshold

completions. In P. Hansen, editor, Studies on Graphs and Discrete Program-

ming, pages 125–145. North-Holland, 1981.

[91] P.L. Hammer and B. Simeone. The splittance of a graph. Combinatorica,

1:275–284, 1981.

[92] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming.

Mathematical Programming, 79:191–215, 1997.

[93] J. Hao and J.B. Orlin. A faster algorithm for finding the minimum cut in a

directed graph. Journal of Algorithms, 17(3):424–446, 1994.

[94] D.P. Harkin, J. Bean, D. Miklos, Y. Song, V. Maheswaram, J. Oliver, and

D. Haber. Induction of GADD45 and JNK/SAPK-dependent apoptosis fol-

lowing inducible expression of BRCA1. Cell, 97:575–586, 1999.

[95] C.A. Harrington, C. Rosenow, and J. Retief. Monitoring gene expression using

DNA microarrays. Curr. Opin. Microbiol., 3(3):285–291, 2000.

[96] J.A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.

[97] E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, and R. Shamir.

An algorithm for clustering cDNA fingerprints. Genomics, 66(3):249–256,

2000.

[98] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.

Information Processing Letters, 76(200):175–181, 2000.

[99] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recog-

nizing and representing proper interval graphs. SIAM Journal on Computing,

31(1):289–305, 2002. A preliminary version appeared in the Proceedings of the

198 BIBLIOGRAPHY

Seventh Annual European Symposium on Algorithms (ESA), volume 1643 of

LNCS, pages 527–539. Springer, 1999.

[100] M. Henzinger and M. Fredman. Lower bounds for fully dynamic connectivity

problems in graphs. Algorithmica, 22:351–362, 1998.

[101] M. Henzinger, V. King, and T.J. Warnow. Constructing a tree from home-

omorphic subtrees, with applications to computational evolutionary biology.

Algorithmica, 24:1–13, 1999.

[102] R. Herwig, A.J. Poustka, C. Meuller, H. Lehrach, and J. O’Brien. Large-scale

clustering of cDNA-fingerprinting data. Genome Research, 9(11):1093–1105,

1999.

[103] K.H. Herzog, M.J. Chong, M. Kapsetaki, J.I. Morgan, and P.J. McKinnon.

Requirement for ATM in ionizing radiation-induced cell death in the develop-

ing central nervous system. Science, 280:1089, 1998.

[104] L.J. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data: identifi-

cation and analysis of coexpressed genes. Genome Research, 9(11):1106–1115,

November 1999.

[105] D. S. Hochbaum, editor. Approximation Alogrithms for NP-Hard Problems.

PWS Publishing, Boston, 1997.

[106] D.S. Hochbaum. Approximating clique and biclique problems. Journal of

Algorithms, 29(1):174–200, 1998.

[107] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,

and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.

[108] W.-L. Hsu. On-line recognition of interval graphs in O(m + n log n) time.

Lecture Notes in Computer Science, 1120:27–38, 1996.

[109] J.D. Hughes, P.E. Estep, S. Tavazoie, and G.M. Church. Computational iden-

tification of cis-regulatory elements associated with groups of functionally re-

lated genes in Saccharomyces Cerevisiae. J. Mol. Biol., 296:1205–1214, 2000.

http://atlas.med.harvard.edu/.

BIBLIOGRAPHY 199

[110] L. Ibarra. Fully dynamic algorithms for chordal graphs. In Proceedings of the

Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

923–924, 1999.

[111] L. Ibarra. A fully dynamic algorithm for recognizing interval graphs using

the clique-separator graph. Technical report, University of Victoria, Victoria,

Canada, 2001.

[112] V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore, J.C.F. Lee, J.M.

Trent, L.M. Staudt, J. Hudson Jr., M.S. Boguski, D. Lashkari, D. Shalon,

D. Botstein, and P.O. Brown. The transcriptional program in the response of

human fibroblasts to serum. Science, 283(1):83–87, 1999.

[113] P.A. Jeggo, A.M. Carr, and A.R. Lehmann. Splitting the ATM: distinct repair

and checkpoint defects in ataxia-telangiectasia. Trends Genet., 14(8):312–316,

1998.

[114] S.A. Jelinsky, P. Estep, Q.M. Church, and L.D. Samson. Regulatory net-

works revealed by transcriptional profiling of damaged Saccharomyces Cere-

visiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell Biol.,

20(21):8157–8167, 2000.

[115] R.A. Johnson and D.W. Wichern. Applied multivariate statistical analysis.

Prentice-Hall Inc., 1982.

[116] S. Kannan and T. Warnow. A fast algorithm for the computation and enumer-

ation of perfect phylogenies. SIAM Journal on Computing, 26(6):1749–1763,

1997.

[117] H. Kaplan and R. Shamir. Bounded degree interval sandwich problems. Al-

gorithmica, 24 (2):96–104, 1999.

[118] H. Kaplan, R. Shamir, and R.E. Tarjan. Tractability of parameterized comple-

tion problems on chordal, strongly chordal, and proper interval graphs. SIAM

Journal on Computing, 28(5):1906–1922, 1999.

[119] T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval graphs.

In Proc. 12th IEEE International Symposium on Circuits and Systems, pages

82–83, 1979.

200 BIBLIOGRAPHY

[120] M.A. Kerr, M. Martin, and G.A. Churchill. Analysis of variance for gene

expression microarray data. Journal of Computational Biology, 7(6):819–837,

2000.

[121] B. Klinz, R. Rudolf, and G.J. Woeginger. Permuting matrices to avoid for-

bidden submatrices. Discrete applied mathematics, 60:223–248, 1995.

[122] T. Kloks. Treewidth. PhD thesis, Dept. of Computer Science, Utrecht Univer-

sity, 1993.

[123] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.

[124] A. Krause, J. Stoye, and M. Vingron. The SYSTERS protein sequence cluster

set. Nucleic Acids Res., 28(1):270–272, 2000.

[125] G.N. Lance and W.T. Williams. A general theory of classification sorting

strategies. 1. hierarchical systems. The Computer Journal, 9:373–380, 1967.

[126] M.F. Lavin and Y. Shiloh. The genetic defect in ataxia-telangiectasia. Ann.

Rev. Immunol., 15:177–202, 1997.

[127] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their

use in designing approximation algorithms. Journal of the ACM, 46(6):787–

832, 1999.

[128] C.G. Lekkerkerker and J.Ch. Boland. Representation of a finite graph by a

set of intervals on the real line. Fundam. Math., 51:45–64, 1962.

[129] G.S. Lennon and H. Lehrach. Hybridization analysis of arrayed cDNA li-

braries. Trends Genet, 7:60–75, 1991.

[130] J.M. Lewis and M. Yannakakis. The node deletion problem for hereditary

properties is NP-complete. J. Comput. Sys. Sci., 20:219–230, 1980.

[131] R.J. Lipshutz, S.P.A. Fodor, T.R. Gingeras, and D.J. Lockhart. High density

synthetic oligonucleotide arrays. Nature Genetics Supplement, 21:20–24, 2000.

[132] D.J. Lockhart and E.A. Winzeler. Genomics, gene expression and DNA arrays.

Nature, 405(6788):827–836, 2000.

BIBLIOGRAPHY 201

[133] P.J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs.

Comput. Math. Appl., 25:15–25, 1993.

[134] C. Lund and M. Yannakakis. The approximation of maximum subgraph prob-

lems. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Proceedings of In-

ternational Conference on Automata, Languages and Programming (ICALP),

volume 700 of LNCS, pages 40–51, Berlin, Germany, 1993. Springer.

[135] J. MacQueen. Some methods for classification and analysis of multivariate

observations. In Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability, pages 281–297, 1965.

[136] N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics. El-

sevier, North-Holland, 1995. Annals of Discrete Mathematics, Vol. 56.

[137] K. Maleck, A. Levine, T. Eulgem, A. Morgan, J. Schmid, K.A. Lawton, J.L.

Dangl, and R.A. Dietrich. The transcriptome of Arabidopsis Thaliana during

systematic acquired resistance. Nature Genetics, 26:403–410, 2000.

[138] F. Margot. Some complexity results about threshold graphs. Discrete Applied

Mathematics, 49, 1994.

[139] A. Marshall and J. Hodgson. DNA chips: an array of possibilities. Nature

Biotech., 16:27–31, 1998.

[140] R.M. McConnell and J.P. Spinrad. Ordered vertex partitioning. Discrete

Mathematics and Theoretical Computer Science, 4(1):45–60, 2000.

[141] F. R. McMorris, T. J. Warnow, and T. Wimer. Triangulating vertex colored

graphs. SIAM J. Discrete Math., 7:296–306, 1994.

[142] C.A. Meecham and G.F. Estabrook. Compatibility methods in systematics.

Annual Review of Ecology and Systematics, 16:431–446, 1985.

[143] S. Meier-Ewert, J. Lange, H. Gerst, R. Herwig, A. Schmitt, J. Freund, T. Elge,

R. Mott, B. Herrmann, and H. Lehrach. Comparative gene expression profiling

by oligonucleotide fingerprinting. Nucleic Acids Research, 26(9):2216–2223,

1998.

[144] A. Milosavljevic, Z. Strezoska, M. Zeremski, D. Grujic, T. Paunesku, and

R. Crkvenjakov. Clone clustering by hybridization. Genomics, 27:83–89, 1995.

202 BIBLIOGRAPHY

[145] P.B. Miltersen, S. Subramanian, R. Tamassia, and J. Vitter. Complexity

models for incremental computation. Theoretical Computer Science, 130:203–

236, 1994.

[146] B. Mirkin. Mathematical Classification and Clustering. Kluwer, 1996.

[147] J.H. Muller and J. Spinrad. Incremental modular decomposition. Journal of

the ACM, 36(1):1–19, 1989.

[148] A. Natanzon. Complexity and approximation of some graph modification

problems. Master’s thesis, School of Computer Science, Tel Aviv University,

Tel-Aviv, 1999.

[149] A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation al-

gorithm for the minimum fill-in problem. SIAM Journal on Computing,

30(4):1067–1079, 2000. A preliminary version appeared in the Proceedings of

the 30th Annual ACM Symposium on Theory of Computing (STOC), pages

41–47. ACM Press, 1998.

[150] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some

edge modification problems. Discrete Applied Mathematics, 113:109–128, 2001.

A preliminary version appeared in the Proceedings of the 25th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume

1665 of LNCS, pages 65–77. Springer, 1999.

[151] M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among

cetartiodactyls based on insertions of short and long interspersed elements:

Hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad.

Sci. USA, 96:10261–10266, 1999.

[152] T. Ohtsuki. A fast algorithm for finding an optimal ordering for vertex elimi-

nation on a graph. SIAM J. Computing, 5:133–145, 1976.

[153] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph

and optimal pivoting order in a sparse matrix. Journal of Math. Anal. Appl.,

54:622–633, 1976.

[154] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-

plexity classes. J. of Computer and System Science, 43:425–440, 1991.

BIBLIOGRAPHY 203

[155] I. Pe’er, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny.

In Proceedings of the Eleventh Annual Symposium on Combinatorial Pattern

Matching (CPM), volume 1848 of LNCS, pages 143–153. Springer, 2000.

[156] I. Pe’er, R. Shamir, and R. Sharan. On the generality of phylogenies from

incomplete directed characters. In Proceedings of the Eighth Scandinavian

Workshop on Algorithm Theory (SWAT), volume 2368 of LNCS, pages 358–

367, 2002.

[157] A.J. Poustka, R. Herwig, A. Krause, S. Hennig, S. Meier-Ewert, and

H. Lehrach. Toward the gene catalogue of sea urchin development: The con-

struction and analysis of an unfertilized egg cDNA library highly normalized

by oligonucleotide fingerprinting. Genomics, 59:122–133, 1999.

[158] W.J. Le Quesne. The uniquely evolved character concept and its cladistic

application. Systematic Zoology, 23:513–517, 1974.

[159] G. Ramsay. DNA chips: State-of-the art. Nature Biotech., 16:40–44, 1998.

[160] S. Rao and A.W. Richa. New approximation techniques for some ordering

problems. In Proceedings of the Ninth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 211–218, 1998.

[161] S. Rashi-Elkeles, A. Regev, R. Elkon, R. Sharan, N. Zak, L. Brodsky, A. Kam-

sler, A. Leontovitch, N. Weisman, D. Leshkovitz, O. Mor, A Barzilai, E. Fe-

instein, R. Shamir, Y. Shiloh, and A. Bar-Shira. Constitutive response to

genotoxic stress in a mouse model of ataxia-telangiectasia. Technical report,

Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 2000.

[162] J.A. Rice. Mathematical Statistics and Data Analysis. Wadsworth, California,

second edition, 1995.

[163] F.S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in

Graph Theory, pages 139–146. Academic Press, New York, 1969.

[164] J.D. Rose. A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In R.C. Reed, editor, Graph Theory and

Computing, pages 183–217. Academic Press, N.Y., 1972.

204 BIBLIOGRAPHY

[165] F.P. Roth, J.D. Hughes, P.W. Estep, and G.M. Church. Finding DNA regula-

tory motifs within unaligned noncoding sequences clustered by whole-genome

mRNA quantitation. Nature Biotech., 16:939–945, 1998.

[166] G. Rotman and Y. Shiloh. Ataxia-telangiectasia: is ATM a sensor of oxidative

damage and stress? BioEssays, 19:911–917, 1997.

[167] M. Schena. Genome analysis with gene expression microarrays. Bioessays,

18:427–431, 1996.

[168] M. Schena, D. Shalon, R. Heller, A. Chai, P.O. Brown, and R.W. Davis.

Parallel human genome analysis: microarray-based expression monitoring of

1000 genes. Proc. Natl. Acad. Sci. USA, 93:10614–9, 1996.

[169] U. Schendel. Sparse matrices: numerical aspects with applications for scientists

and engineers. Ellis Horwood, 1989.

[170] G.D. Schuler. Pieces of the puzzle: expressed sequence tags and the catalog

of human genes. J. Mol. Med., 75(10):694–698, 1997.

[171] R. Shamir and R. Sharan. Algorithmic approaches to clustering gene expres-

sion data. In T. Jiang, T. Smith, Y. Xu, and M.Q. Zhang, editors, Current

Topics in Computational Biology, pages 269–299. MIT Press, 2002.

[172] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In

Proceedings of the 27th International Workshop Graph-Theoretic Concepts in

Computer Science (WG), 2002. To appear.

[173] R. Sharan, R. Elkon, and R. Shamir. Cluster analysis and its applications to

gene expression data. In H.-W. Mewes, H. Seidel, and B. Weiss, editors, Pro-

ceedings of the 38th Ernst Schering workshop on Bioinformatics and Genome

Analysis, pages 83–108. Springer Verlag, 2002.

[174] R. Sharan, A. Maron-Katz, N. Arbili, and R. Shamir. EXPANDER: EXPres-

sion ANalyzer and DisplayER, 2002. Software package, Tel-Aviv University,

http://www.cs.tau.ac.il/∼roded/click.html.

[175] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to

gene expression analysis. In Proceedings of the Eighth International Conference

BIBLIOGRAPHY 205

on Intelligent Systems for Molecular Biology (ISMB), pages 307–316. AAAI

Press, 2000.

[176] R.R. Sokal. Clustering and classification: Background and current directions.

In J. Van Ryzin, editor, Classification and Clustering, pages 1–15. Academic

Press, 1977.

[177] P.T. Spellman, G. Sherlock, M. Zhang, V.R. Iyer, K. Anders, M. Eisen,

P.O. Brown, D. Botstein, and B. Futcher. Comprehensive identifi-

cation of cell cycle regulated gene of the yeast Saccharomyces Cere-

visia by microarray hybridization. Mol. Biol. Cell, 9:3273–3297, 1998.

http://cellcycle-www.stanford.edu.

[178] J. Spinrad. Two dimensional partial orders. PhD thesis, Dept. of Computer

Science, Princeton University, 1982.

[179] M.A. Steel. The complexity of reconstructing trees form qualitative characters

and subtrees. Journal of Classification, 9:91–116, 1992.

[180] D.L. Swofford. PAUP, Phylogenetic Analysis Using Parsimony (and Other

Methods). Sinaur Associates, Sunderland, Massachusetts, 1998. Version 4.

[181] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitro-

vsky, E.S. Lander, and T.R. Golub. Interpreting patterns of gene expres-

sion with self-organizing maps: Methods and application to hematopoi-

etic differentiation. Proc. Natl. Acad. Sci. USA, 96:2907–2912, 1999.

http://www-genome.wi.mit.edu/cancer/.

[182] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-

ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic

hypergraphs. SIAM J. Computing, 13:566–579, 1984.

[183] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G.M. Church. Systematic

determination of genetic network architecture. Nature Genetics, 22:281–285,

1999.

[184] M. Thorup. Decremental dynamic connectivity. Journal of Algorithms,

33:229–243, 1999.

206 BIBLIOGRAPHY

[185] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of

the 32th Annual ACM Symposium on Theory of Computing (STOC), pages

343–350, 2000.

[186] R.S. Tibbetts, K.M. Brumbaugh, J.M. Williams, J.N. Sarkaria, W. A. Cliby,

S.Y. Shieh, Y. Taya, C. Prives, and R.T. Abraham. A role for ATR in the

DNA damage-induced phosphorylation of p53. Genes Dev., 13:152–157, 1999.

[187] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters

in a dataset via the gap statistics. Technical report, Stanford University,

Stanford, 2000.

[188] P. Toronen, M. Kolehmainen, G. Wong, and E. Castren. Analysis of gene

expression data using self-organizing maps. FEBS Letters, 451:142–146, 1999.

[189] J.D. Watson, M. Gilman, J. Witkowski, and M. Zoller. Recombinant DNA.

W.H. Freeman, New York, 2nd edition, 1992.

[190] G. Wegner. Eigenschaften der nerven homologische einfacher familien in Rn.

PhD thesis, Götingen, 1967.

[191] M. Xiong, L. Jin, W. Li, and E. Boerwinkle. Computational methods for gene

expression based tumor classification. Biotechniques, 29:1264–1270, 2000.

[192] Y. Xu, T. Ashley, E.E. Brainerd, R.T. Bronson, M.S. Meyn, and D. Balti-

more. Targeted disruption of ATM leads to growth retardation, chromosomal

fragmentation during meiosis, immune defects, and thymic lymphomas. Genes

Dev., 10:2411–2422, 1996.

[193] J. Xue. Edge-maximal triangulated subgraphs and heuristics for the maximum

clique problem. Networks, 24, 1994.

[194] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.

Disc. Meth., 2(1):77–79, 1981.

[195] M. Yannakakis. Edge deletion problems. SIAM Journal on Computing,

10(2):297–309, 1981.

[196] A. Yao. Should tables be sorted. Assoc. Comput. Mach., 28(3):615–628, 1981.

BIBLIOGRAPHY 207

[197] K.Y. Yeung, D.R. Haynor, and W.L. Ruzzo. Validating clustering for gene

expression data. Bioinformatics, 17:309–318, 2001.

[198] G. Yona, N. Linial, and M. Linial. Protomap: Automatic classification of

protein sequences, a hierarchy of protein families, and local maps of the protein

space. Proteins: Structure, Function, and Genetics, 37:360–378, 1999.

[199] M.Q. Zhang. Large scale expression data analysis: A new challenge to com-

putational biologist. Genome Research, 9:681–688, 1999.

[200] R. Zhao, K. Gish, Y. Yin, D. Notterman, W. Hoffman, E. Tom, D. Mak,

and A.J. Levine. Analysis of p53 regulated gene expression patterns using

oligonucleotide arrays. Genes and Dev., 14:981–993, 2000.

[201] J. Zhu and M.Q. Zhang. SCPD: a promoter database of the

yeast Saccharomyces Cerevisiae. Bioinformatics, 15:607–611, 1999.

http://cgsigma.cshl.org/jian/.

