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Chapter 1

Introduction

In this chapter we first describe basic notions in biology that are used in this thesis.

Then we describe probabilistic approaches to modeling sequences. The last section

summarizes the thesis results.

1.1 A Primer on Molecular Sequences

This work involves application of algorithmic techniques to the domain of molec-

ular biology. While the computational methods developed constitute novel algo-

rithms, their target material are biological problems, and full appreciation of their

contribution requires understanding this target domain. This introduction is meant

to make this work accessible to a general computer science audience. We will thus

try to explain the essentials of molecular genetics in brief. Inevitably, there are

many omissions and oversimplifications in this presentation. The interested reader

is referred to basic literature in this field, c.f. Lewin [1997].

Organisms and cells carry molecular information from generation to genera-

tion. The molecule responsible for storing this information is called DNA. Gener-

ally speaking, DNA serves as a program for the cell to construct and operate molec-

ular machinery. The DNA macro-molecule is a polymer, that is, a long linear chain

of small molecular building blocks. These units of DNA are called nucleotides.

9



10 CHAPTER 1. INTRODUCTION

There are of four kinds of such DNA units, which are usually denoted A,C ,G, and

T . The DNA strand can therefore be represented as a sequence of these letters. In

computer science we model this sequence as a string over this four-letter alphabet

which contains the genetic information.

In its usual state the DNA is double stranded. That is, it comprises of two

DNA strands that run anti-parallel to each other. Each nucleotide in one strand

is chemically bounded, or hybridized, to a corresponding nucleotide on the other

strand. These bonds follow a strict pairing rule: A pairs with T while G pairs

with C . The second strand is thus a complementary template of the first one.

Nature exploits this structure to copy the information embedded in the DNA, both

in order to replicate it for future cellular generations, and to read its instructions

for constructing cellular machinery. Furthermore, hybridization pairing of DNA

molecules is an essential principle used in many molecular experiments in biology.

The DNA sequence of all organisms of a certain species is roughly the same.

The master DNA sequence of a species is termed its genome. Determination of the

genome sequence, termed sequencing, is one of the major tasks and accomplish-

ments in contemporary molecular biology. The crown jewel is the recent com-

pletion of the 3 × 109 base-pair long human genome, one of the greatest feats of

science [Lander et al., 2001, Venter et al., 2001].

Current sequencing machinery can only read short DNA molecules, of few

hundred base-pairs. To read the sequence of genomic target segments that are much

longer, the DNA is shreaded into short pieces. Each piece is read separately, and the

short sequences are then assembled together computationally. This fragmentation

and assembly process is greatly aided by the ability to locate molecular landmarks

along the target DNA, i.e., having a map of the genomic target. Therefore, mapping

is often a primary stage in sequencing a long genomic target.

Most of the DNA of higher organisms has no known function. It is some-

times called non-coding, or “junk” DNA. In contrast, coding sequence segments

are known to encode instructions that directly control cellular machinery. Specifi-

cally, they encode proteins, which are polymers responsible for virtually all organic

activity. These polymers are composed of building blocks called amino acids.

The encoding of proteins by DNA is known as the genetic code. This code is a
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simple mapping, that assigns one of the 20 existing amino-acids to each of the

43 = 64 possible triplets of nucleotides. Translation of a gene entails reading

non-overlapping triplets, called codons, and mapping each to an amino-acid. The

resulting linear chain of amino-acids is the protein. In simple life forms genes are

continuous stretches of DNA, while in higher organisms a typical gene is composed

of several continuous segments, called exons, interleaved by introns, sequences

which do not code for protein.

DNA is replicated and inherited when cells divide. This replication, however,

is not perfect. The errors in replication are called mutations. Such mutations are

usually local, i.e., involve a change in sequence only in a specific position along the

genome. The change may be replacement of a specific nucleotide by another, dele-

tion, or insertion of nucleotides. Mutations which are not local include deletion,

insertion, inversion, or duplication of long genomic fragments.

All these differences in sequence are the molecular source of hereditary varia-

tion between different individuals of the same species. In fact, mutations are also

responsible for practically all genetic diversity in nature: The origin of all species

is thought to be unique, and thus all contemporary genomes have a common an-

cestor sequence. Furthermore, even within the same genome one finds duplicated

segments that gradually varied by mutation-prone replication.

1.2 Probabilistic Approach to Mutations

Due to the importance of mutations in shaping genomic landscape, their analysis

has attracted extensive research. Mutations occur randomly. Detailed characteri-

zation of the stochastic process of their occurance has broad applications in com-

parison of diverged sequences and identification of their origin.

Basic models of sequence change consider only the most common kind of mu-

tations: substitution of a single nucleotide. The simplest such model assumes that

at each point in time, each nucleotide along the sequence has a fixed probability of

being replaced by any other nucleotide [Jukes and Cantor, 1969]. A more elaborate

model of DNA evolution [Kimura, 1980a] distinguishes between replacements of a
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nucleotide by a nucleotide of roughly the same shape (A by G, or C by T , and vice

versa), versus replacements by nucleotides of a different shape. The biochemical

procedure through which mutations occur dictates that the former replacements

will take place more frequently. A general framework for describing the stochas-

tic process of nucleotide replacement [Felsenstein, 1981] uses a 4× 4 matrix, that

contains the probabilities of change of each nucleotide into each nucleotide.

When a mutation occurs in an individual member of some population, we say

that the mutated position is now polymorphic. Specifically, the mutations discussed

thus far are Single Nucleotide Polymorphisms. After many generations, the muta-

tions may either become extinct from the population, or become inherited by all

living members. In the latter case, we say that the mutation is fixed.

When a mutation is incorporated into a gene, it may change the protein encoded

by that gene, replacing one amino-acid by another, and in some cases truncating

the protein. This is the major effect of mutations on cellular processes. A mutation

that dramatically changes the protein is usually harmful to the organism, and thus

its chances of fixation are very small. These chances therefore depend on the differ-

ence between the replaced amino-acids, and suggest models for evolution of cod-

ing sequences that consider replacements of amino-acids rather than nucleotides.

The simplest models of this kind assign probabilities to the replacements of each

amino-acid by another, and register them in a 20× 20 matrix [Dayhoff et al., 1978,

Jones et al., 1992, Adachi and Hasegawa, 1996]. Different sequence positions are

assumed to change independently according to the matrix probabilities. A natural

refinement considers sequences over an alphabet of codons, and models them using

a 64× 64 matrix of probabilities [Goldman and Yang, 1994].

All mutation models mentioned thus far discuss pairwise substitution of char-

acters in some alphabet. However, in addition to substitutions, insertions or dele-

tions also occur in biological sequences. When a deletion takes place, a charac-

ter, or a sequence of characters, in the original sequence is replaced by a gap in

the mutated one. The converse is true for insertions. A naive approach to muta-

tions would simply extend the substitution matrix to the “gap” character. However,

in this case the assumption of independence among sequence positions miserably

fails: the gap characters tend to occur consecutively. In other words, the proba-
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bility of a gap being extended is much larger than its probability of being opened.

The log-probability of observing a gap is thus an affine function of the gap length.

Differentiating these two probabilities has become standard in biological sequence

comparison [Smith and Waterman, 1981].

The affine gap model can be discussed in a probabilistic framework for gen-

eration of related sequences. Suppose that such sequences are generated by a

randomized state-automaton. For every sequence position, this automaton ran-

domly outputs a character (possibly the gap character) for each of the generated

sequences. The randomized output, or emission function, depends solely on the

current automaton state. Subsequent to emitting output, the automaton changes its

state, or performs a state transition. The transition function is also randomized

and state-dependent. The strings composed by the automaton throughout its oper-

ation constitute the related sequences. Such state-machine models are collectively

called Hidden Markov Models (HMMs). An example of a simple such HMM can

model sequence similarity without any gaps. This similarity is modeled by sin-

gle “match/mismatch” state, that emits pairs of related characters. The similarity

of characters in these pairs is described by a fixed substitution matrix. To model

affine gaps between two compared sequences, Durbin et al. [1998a] present a 3-

state HMM, which is more expressive than the single state example. In addition

to the match/mismatch state previously described, this model has two symmetric

insertion/deletion states, each modeling a gap in one of the compared sequences.

Such states emit a pair of characters one of which is the gap character. The log-

probability of observing two sequences as output of this automaton is the affine-gap

measure for comparing these sequences.

A collection of proteins that have similar function and similar phylogenetic

origin is called a protein family. Sequences of proteins from the same family are

related. When trying to characterize such sets of sequences, there is a need for

using state-machine models, which are more elaborate than discussed thus far.

Recent such models try to capture dependencies between several sequence char-

acters at nearby positions [Bejerano and Yona, 1999]. Another important class is

profile HMMs. These introduce a match/mismatch state, a deletion state, and an

insertion state for each position along the representative sequence of the protein
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family [Krogh et al., 1994]. This kind of models have become standard in protein

classification.

1.3 Summary of the Thesis Results

This thesis studies various algorithmic problems in genomics. They arise when

trying to reconstruct biological sequences, maps, or gene orders. Each chapter

deals with a different sub-field of genomics, and thus can be read independently

of the others. We now outline the organization of the chapters and summarize the

main results in each chapter. In this section we cite only publications of thesis

results. Complementary references are cited in the chapters themselves.

Chapter 2 concerns evolution of related biological sequences from their com-

mon ancestor. During evolution, ancestral sequences diverge into separate lineages

in a tree-like fashion. Branches of this tree represent periods of time during which

sequences underwent mutations. Nodes stand for points in history where lineages

were split. The ancestral sequences that were present at such points have special

importance in understanding biological function and sequence evolution. Unfortu-

nately, such sequences are usually not directly available to us. Rather, they need

to be inferred, or reconstructed from the set of their contemporary descendant se-

quences. We study this task, called ancestral reconstruction.

Our input data consists of a set of contemporary sequences, the tree of evolu-

tion, and, loosely speaking, a model for the evolutionary process. Our goal is to

find the most likely set of ancestral sequences. The reconstruction of these ances-

tral sequences naturally depends on the assumptions made regarding the process

of evolution. Simpler models of evolution assume a fixed rate of mutations in all

sequence positions. For such models we devise and implement a polynomial al-

gorithm for ancestral reconstruction. These results have been published in [Pupko

et al., 2000]. We also develop a branch and bound algorithm for ancestral recon-

struction when the rate of evolution varies. The implementation of our algorithms

and their application to real data have been performed in collaboration with Tal

Pupko, then at the Department of Zoology in Tel Aviv. We present experimental

data for both algorithms.
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In Chapter 3 we study algorithmic aspects of sequencing. We improve an ex-

isting method, called Sequencing By Hybridization (SBH), which we now outline.

SBH is based on interrogating a target DNA molecule for all of its k-long sub-

sequences, called k-mers. This is made possible by recent technologies, that im-

mobilize many thousands of short single-stranded molecules of DNA, or oligonu-

cleotides, on a small surface, called a microarray. Each oligonucleotide probes

the target sequence for presence of its complementary counterpart. SBH calls for

employing all possible k-long oligonucleotides, thereby obtaining the k-mer con-

tents of the sequence. Subsequently, the target sequence is computationally recon-

structed.

Unfortunately, SBH has very limited practicality. In Chapter 3, we introduce

ways to enhance SBH by computationally using additional information.

One kind of information we use is additional data regarding the position of k-

mers along the target molecule. These data can be obtained by novel microarray

reactions. The input to our computational problem is a set of possible occurrence

positions for each k-mer. The output is a target sequence all of whose k-mers sat-

isfy the positional constraints. We provide a polynomial algorithm for this problem

when no k-mer has more than two possible positions. We prove NP-hardness of

the problem, even when no k-mers has more than three possible positions. This

work has been published in [Ben-Dor et al., 1999]. We further study a biologically

motivated restriction of this problem, where all sets of possible positions are inter-

vals. We provide a parameterized algorithm to solve this restricted problem, which

imeroves over a prior algorithm. This part has been published in [Ben-Dor et al.,

2001a], with a complete version in [Ben-Dor et al., 2001b].

We study another method to enhance SBH. This method uses additional data

which is usually available, and it can therefore be widely applied. Most contempo-

rary tasks of sequence determination involve resequencing rather than sequencing.

Hence, one has prior information regarding the target sequence. One knows in ad-

vance, that the sequencing target highly resembles an already sequenced molecule.

In fact, there are only a few small differences between these two sequences. It

is these small differences that are of interest. We formalize this challange as a

computational problem, and provide a polynomial algorithm for it.
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Our framework is probabilistic. We describe the resemblance to a known se-

quence as a profile HMM. We further describe results of the SBH reaction in proba-

bilistic terms, and incorporate them into a graph whose edges correspond to probes

and vertices to probe prefixes/suffixes of length k − 1. The probabilistic formu-

lation allows maximum likelihood analysis. It gives rise to an interesting opti-

mization problem: finding the most likely sequence, which corresponds to a pair

of paths: one path in the HMM transition graph, and another in the SBH graph.

We can therefore solve an analogous optimization problem, finding a pair of paths

with maximum weight. We provide several dynamic programming algorithms to

solve this problem and some of its interesting restrictions. We provide a practical

solution, although it is only guaranteed to be an approximate maximum-likelihood

sequence. Simulations results are also provided. This work has been published

in [Pe’er and Shamir, 2000b].

Chapter 4 concerns Optical Mapping: a revolutionary method for obtaining

maps of enzymatic cleavage sites along large DNA molecules. The method is

based on immobilization of many copies of the target molecule in elongated form.

Enzymes that perform site-specific cleavage (restriction) are then applied, and each

cleaved, fluorescent molecule is then photographed, to detect cleavage sites. Unfor-

tunately, the orientation of each photographed molecule is unknown. Furthermore,

the reported list of cleavage sites suffers from inaccurate locations, false positives

and false negatives. The computational problem is to reconstruct the true map of

cleavage sites from this noisy data. We define a maximum-likelihood formalization

of this problem, and devise an appropriate algorithm. We implement our methods

and demonstrate performance on a blind test using real life data. This study has

been published in [Karp et al., 1999, 2000].

In Chapter 5 we discuss changes in gene order between genomes during evo-

lution. These changes can be measured by the breakpoint distance between gene

orders: the number of gene pairs adjacent in one but not the other. For three con-

temporary gene orders, the ancestral gene order in their evolutionary divergence

point is called their median. A fundamental task is to find this median given the

contemporary gene orders, so that its sum of (breakpoint) distances to the leaves

is minimum. We prove this problem to be NP-hard [Pe’er and Shamir, 1998]. We
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further provide polynomial time approximation algorithms that guarantee a 7
6 ap-

proximation. This study has been published in [Pe’er and Shamir, 2000a].
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Chapter 2

Reconstruction of Evolutionary

Ancestral Sequences

This chapter concerns evolution of related biological sequences from their com-

mon ancestor. During evolution, ancestral sequences diverge into separate lineages

in a tree-like fashion. Branches of this tree represent periods of time during which

sequences underwent mutations. Nodes stand for points in history where lineages

were split. The goal is to infer, or reconstruct, the ancestral sequences from their

contemporary descendant sequences. We study this task, called ancestral recon-

struction.

Our input data consists of a set of contemporary sequences, the tree of evolu-

tion, and, loosely speaking, a model for the evolutionary process. Our goal is to

find the most likely set of ancestral sequences. The reconstruction of these ances-

tral sequences naturally depends on the assumptions made regarding the process

of evolution. Simpler models of evolution assume a fixed rate of mutations in all

sequence positions. We devise and implement a polynomial algorithm for ances-

tral reconstruction under this model. These results have been published in [Pupko

et al., 2000]. We also describe a branch and bound algorithm for ancestral recon-

struction when the rate of evolution varies. The implementation of our algorithms

and their application to real data have been performed in collaboration with Tal

Pupko, then at the Department of Zoology in Tel Aviv. We present experimental

19
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data for both algorithms.

2.1 Introduction

The understanding that many biological sequences share a single common origin is

fundamental to biology. Such a set of contemporary sequences diverged from their

ancestor sequence in a tree-like fashion. In this work, we assume the topology of

this phylogenetic tree is known in advance. Branches, or edges, of this tree rep-

resent periods in which a sequence accumulated mutations, while tree leaves cor-

respond to contemporary sequences. Internal nodes represent events of sequence

divergence. At these points, a single ancestral sequence separated into two inde-

pendent lineages. It is these ancestral sequences that we wish to study.

Ancestral sequences attract attention because of their position in evolution-

ary crossroads: Divergent sequences often have differentiated functions, and thus

the identity and function of the ancestral sequences are interesting. Several au-

thors used such sequences to provide insights regarding evolutionary processes.

For example, Zhang et al. [1998] inferred ancestral sequences of mammalian ri-

bonuclease proteins, in order to detect evidence for positive Darwinian selection

in the primate lineage. In [Pupko, 2000], sequences of ancestral vertebrates were

analyzed in order to study parallel evolution in lysozymes.

The ancestral sequences are usually not explicitly known. Rather, they need

to be inferred from contemporary sequences. The methods for evaluating these

sequences vary in complexity, and depend on one’s assumptions regarding the pro-

cess of evolution. The simplest such method is parsimony. It seeks the set of

ancestral sequences, that imply a minimum number of mutations over the entire

tree. Sankoff [1975] and Fitch and Farris [1974] provided a polynomial algorithm

for finding this most parsimonious set of sequences.

Parsimony handles all mutations equally. Taking a statistical viewpoint, this

would have been appropriate only if mutations along each branch of the tree were

equiprobable. However, some branches and lineages exhibit more mutations than

others, and thus a more educated model of evolution takes into account a length of
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each branch, which corresponds to the rate of mutations along it [Jukes and Cantor,

1969].

Even along the same branch, different mutations may occur with different fre-

quencies. The probability of an amino acid x being replaced by an amino acid y

greatly depends on x and y. For a unit-long branch, these probabilities are arranged

in a 20×20 matrix [Dayhoff et al., 1978, Jones et al., 1992, Adachi and Hasegawa,

1996]. For other branch lengths, the appropriate probabilities can be calculated

by exponentiation of the matrix [Felsenstein, 1981]. When DNA sequences are

considered, similar arguments motivate 4 × 4 matrices that register the nucleotide

substitution frequencies [Kimura, 1980b].

The description of evolution in terms of a stochastic process gives rise to

maximum-likelihood methods [Felsenstein, 1981]. In relation to ancestral recon-

struction, two problems arise [Yang et al., 1995]:

1. Marginal Reconstruction: Given a specific tree node, what is the most

likely sequence at this node?

2. Joint Reconstruction: What is the set of most likely ancestral sequences, in

all ancestral nodes?

Marginal Reconstruction concerns one distinct ancestral node. It is motivated by

study of protein function at a particular divergence event. A polynomial-time algo-

rithm for this problem is was given by Yang et al. [1995].

We study the problem of Joint Reconstruction. This problem is motivated by

the need to research the collection of all ancestral sequences to understand phenom-

ena across the whole phylogenetic tree. Studies of positive Darwinian selection,

and research of parallel evolution are examples for such whole-tree effects.

In Section 2.3 we provide an efficient dynamic programming algorithm for

Joint Reconstruction of maximum-likelihood ancestral sequences. The memory

requirement of our algorithm scales linearly with the number of sequences, while

its running time is proportional to the sum of their lengths.

For certain purposes, the evolutionary models discussed so far are still not ac-

curate enough. They assume that the rate of mutation is the same for all positions
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along the sequence. This simplifying assumption is invalid. It is statistically supe-

rior to assume that the mutation rate varies among sites, that is, for each position

along the sequence this rate is randomly chosen according to a prescribed prior

distribution. The Γ-distribution is used as a standard for such prior [Yang, 1993a].

Intuitively, ancestral reconstruction seems harder in the Γ-rate model. In this

case, the likelihood of a single sequence position can no longer be presented as

product of independent terms, one per branch. The substitution rate is common

to all branches at the same position, and thus their corresponding terms are not

independent. This prevents decomposition of the reconstruction task to separate,

local tasks that involve a distinct part of the tree. Since a simple decompositional

approach seems impossible, we need to directly solve the complete problem, which

makes the task much harder.

Fortunately, even in the Γ-rate model, the Marginal Reconstruction problem

can be formulated as maximizing a sum of terms, each of which is a fixed-rate

likelihood. Thus, a polynomial-time algorithm for this problem is available [Yang,

1999]. In contrast, the Joint Reconstruction problem which we study, has no

polynomial-time exact solution. Exhaustive (exponential-time) solution is imple-

mented in [Yang, 1994], for trees of up to 5 sequences. Pupko [2000] applied a

hill-climbing heuristic to this problem, analyzing phylogenetic trees for more than

30 species. A polynomial-time heuristic for Joint Γ-rate Reconstruction is to use

Marginal Reconstruction for each internal node. Yang [1999] argued that typically,

the resulting solution does not differ by much from the true optimum.

In section 2.4 we provide an exact Branch-and-Bound algorithm for recon-

structing ancestral sequences, assuming a Γ-distributed rate of evolution. The al-

gorithm was empirically tested and shown to be capable of handling data-sets of

more than 70 sequences in reasonable time. The obtained reconstruction is guar-

anteed to have maximum likelihood. We apply our algorithm to real biological

data. This allows, for the first time, comparing the exact Joint Reconstruction to

the heuristic of using the Marginal Reconstruction instead. Our analysis of the re-

sults proves that indeed, in these cases, the Marginal Reconstruction heuristic made

only a few errors, although the exact solution is statistically superior.

The chapter is organized as follows. In Section 2.2 we review the homogeneous
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rate and variable rate probabilistic models of sequence evolution, and introduce

terminology. In Sections 2.3 and 2.4 we present our algorithms for reconstructing

ancestral sequences, assuming homogeneous and variable rate, respectively. In

Section 2.5 we apply our methods to simulated data and to real biological data-

sets. We conclude with discussion in Section 2.6.

2.2 Preliminaries

2.2.1 Notation

Let T = (V,E) by a binary, unrooted phylogenetic tree over the set of nodes

V = 1, 2, . . . , 2n−2, with 1, . . . , n being the leaves. The nodes n+1, . . . , 2n−2
are called ancestral. T is assumed to be undirected. A rooting of T at an ancestral

node r, denoted Tr = (V,Er), is a directed version of T , with all edges oriented

away from the root r. We reserve the term edges for unoriented trees and branches

for oriented trees. For a branch vu ∈ Er, we say that v is the parent of u, and that

u is the child of v. We denote v = p(u). Note, that the rooted tree Tr is almost

binary: except the root, that has three children, all other internal nodes have two

children each. Let u, v be two nodes in Tr. We say that u is a descendant of v if

u is reachable from v by a directed path in Tr. For a node u �= r, we denote the

subtree of T r induced by u and its descendants by Tr,u.

In order to describe different lengths of evolutionary time associated with dis-

tinct edges, we assign to each edge e a known duration τe, and denote τ = {τe}e∈E .

We also associate a possibly different rate of evolution, ρi, with every sequence po-

sition 1 ≤ i ≤ l.

We associate l-long sequences S1, . . . , S2n−2 over an alphabet Σ with the tree

nodes 1, . . . , 2n − 2. For the rest of this chapter, we refer to the characters in

Σ as amino-acids, unless explicitly mentioned otherwise, but all results apply to

a general alphabet. We denote the characters in sequence Sk by sk1, . . . , s
k
l . We

denote by S = {S1, . . . , Sn} the set of sequences associated with leaves, while
ˆS = {Sn+1, . . . , S2n−2} denotes the set of sequences associated with ancestral

nodes.
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We denote by π the |Σ|-long vector such that π[x] is the probability of a-priori

observing an amino acid x. We denote the probability of an amino acid x mutating

into an amino acid y during one time unit, with a unit rate of evolution, by m[x, y],
and arrange these values in a matrix M of order |Σ| × |Σ|, setting Mxy = m[x, y].

We denote by ae,ρi [x, y] the probability of an amino acid x mutating into an

amino acid y along the edge e with evolutionary rate ρi. We arrange the values

ae,ρi [x, y] for all x, y in a matrix Ae,ρi of order |Σ| × |Σ|.

We denote the Gamma-distribution density function with shape parameter α

and scale parameter β by:

Pr(y < r) = Γ[α, β](r) =
βα

Γ(α)
e−βrrα−1 (2.1)

where Γ(α) is the Gamma function:

Γ(α) =
∫ ∞

0
xα−1e−xdx (2.2)

2.2.2 Probabilistic Model

We assume that the sequences in S ∪ ˆS evolved according a stochastic pro-

cess [Felsenstein, 1981, Yang, 1993a], which we now detail.

• For each position i = 1, . . . , l:

1. [For the variable rate model:] Randomly choose ρi, according to the

Γ[α, β] distribution.

2. [For the homogeneous rate model:] Set ρi = 1.

3. Pick an arbitrary ancestral node v of T and set it to be the root. Ran-

domly assign a value to svi : For each amino-acid x, the probability of

sv
i to be x is π[x].

4. Traverse T v top-down. Upon visiting a node w, whose parent is u,

randomly assign a value to swi , depending on the value x already as-

signed to sui : For each amino-acid y, the probability of swi to be y is

Auw,ρi [x, y].
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This model is justified by the following assumptions regarding evolution:

1. The stochastic process is independent and identically distributed at different

positions along the tree, and at different sites.

2. The process is time-reversible, i.e., when considering evolution of a single

sequence position along a lineage between two nodes, the chances of observ-

ing two amino acids at these nodes is invariant to the direction of the lineage

between them:

π[x]ae,ρi [x, y] = π[y]ae,ρi [y, x] (2.3)

This reversibility assumption implies that the tree can be rooted arbitrarily

for our purposes [Felsenstein, 1981].

3. ρi represents rate of evolution and τe stands for duration of evolutionary

time. Formally, this implies that the matrix Ae,ρi is M exponentiated to the

power of ρi × τe.

4. The rate of evolution is constant in the homogeneous-rate model. This is

the simplest possible assumption. However, some sites along a protein may

be highly conserved, while others may be mutation hot-spots that are hyper-

variable. We do not know in advance which positions are which. This is

reflected in the variable-rate model, which assumes that the rate for each

position is randomly chosen. The rate distribution is assumed to be of the

Gamma family, which was found to be conveniently flexible.

The parameters for this model are assumed to be known in advance:

• The phylogenetic tree T = (V,E), along with the set τ of branch lengths.

These may be known from previous studies of other proteins in the same

group of species. Otherwise they can be computed from the given dataset of

contemporary sequences S using standard phylogenetic techniques, e.g.,

the neighbor-joining algorithm [Saitou and Nei, 1987].

• The matrix M governing the evolutionary process, along with the vector

π of a-priori amino-acid frequencies, are usually assumed to be fixed for
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essentially all proteins. They have been empirically computed by several au-

thors [Dayhoff et al., 1978, Jones et al., 1992, Adachi and Hasegawa, 1996].

The vector π is sometimes computed from the given data instead.

• [In the variable rate model:] The Γ-distribution parameters, α and β. Ob-

serve, that the scale parameter β is just a multiplicative factor that scales

the branch lengths. Without loss of generality, we set β ≡ 1. The α shape

parameter is usually computed to best fit the given dataset.

2.2.3 Problem Statement

The stochastic process detailed in Section 2.2.2 defines a probability space over

the collection of all possible outputs S∪ ˆS. Given S, this induces a likelihood

function over all candidate sets of ancestral sequences. Our goal is to infer a set
ˆS maximizing this likelihood.

We can now state this likelihood function explicitly. For each position i, we

say that the vector (s1i , . . . , s
n
i ) of contemporary amino acids at this position is the

i-th contemporary vector and denote it by Si. Similarly, we say that the vector

{sn+1
i , . . . , s2n−2

i } of ancestral amino acids at this position is the i-th ancestral

vector and denote it by Ŝi. Assuming a rate ρi, we consider the likelihood f of Ŝi:

f(Ŝi|M,π, ρi, Si, T
v, τ) = π[sv

i ]
∏

uw∈Ev

Auw,ρi [s
u
i , s

v
i ] (2.4)

where T v is a rooting of T at an arbitrary ancestral node v. The time-reversibility

assumption on M and π implies that this expression is indeed independent of the

choice of v [Felsenstein, 1981, Yang et al., 1995]. The likelihood ofŜi is therefore:

1. In the homogeneous rate case:

L(Ŝi|M,π, Si, T, τ) = f(Ŝi|M,π, 1, Si, T
v, τ) (2.5)

2. In the variable rate case:

L(Ŝi|M,π, Si, α, β, T, τ) =
∫ ∞

ρi=0
f(Ŝi|M,π, ρi, Si, T

v, τ)Γ[α, β](ρi)dρi

(2.6)
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In practice, following Yang [1993a], we discretize the Γ distribution. We

partition the range (0,∞) of possible rates into a constant number k of

equiprobable intervals. Let ρj be the average rate along the j-th such in-

terval. Instead of the accurate, continuous distribution Γ[α, β], we use an

approximate, discrete distribution, where each rate ρj has probability 1
k . The

likelihood of Ŝi is rewritten as follows:

L(Ŝi|M,π, Si, α, β, T, τ) =
k∑

j=1

1
k
f(Ŝi|M,π, ρj , Si, T

v, τ) (2.7)

Finally, the likelihood of
ˆS is:

L(
ˆS|M,π,S, α, β, T, τ) =

l∏
i=1

L(Ŝi|M,π, Si, α, β, T, τ) (2.8)

In the sequel, we omit the parameters M,π, Si, α, β, T, τ, ρi,S, T v from the

functions f , L and L whenever they are clear from context.

We are now ready to formally define the problem of ancestral reconstruction:

Input:

• The set S of sequences.

• Model parameters:

– The phylogenetic tree T = (V,E), with the set τ of branch lengths.

– The matrix M governing the evolutionary process, with the vector π of

amino-acid frequencies.

– [In the variable rate model:] The Γ-distribution parameters, α and β.

Output: The set
ˆS of ancestral sequences maximizing L(

ˆS).
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2.3 Joint Reconstruction with Homogeneous Rate

Our algorithm for the homogeneous model is based on decomposability of the

likelihood score. In this model, given the reconstructed character at some internal

node, one can consider the subtrees obtained by deletion of that node, and recon-

struct each of them independently of the others. Observe, that if the reconstructed

node is adjacent to one or more leaves, then some of these subtrees are trivially

reconstructed. This calls for a dynamic programming approach, working our way

from the leaves inward. We root the tree arbitrarily at the node r. At each node

u traversed, we consider each of the characters x ∈ Σ, for the reconstruction of

the node. For each such character, we compute and record the most likely recon-

structions of each of the subtrees rooted at the sons of u. Once the root is reached,

we trace our steps back towards the leaves to recover the entries of the most likely

ancestral vector.

We now formally present this algorithm. We focus on a single position i as

the reconstruction of each ancestral vector (sn+1
i , . . . , s2n−2

i ) is independent for

each i. We omit the subscript i for convenience. Let e = uv be a branch of Tr,

and let x be a character. Let V r,v(u, x) be the most likely ancestral vector for the

subtree T r,v given that the character at u is x. Note, that the entries of this vector

only concern a subset of the ancestral nodes in T , those in Tr,v. Let Le(x) be the

likelihood of this vector, and letCe(x) be the character it assigns to v. Furthermore,

let Φv(x) be the likelihood of V r,v(v, x). Obviously, for each node v and character

x, Φv(x) is a product of likelihoods associated with immediate subtrees of Tr,v:

Φv(x) =
∏

e=vw Le(x), The dynamic program is defined as follows:

1. Initialize: For each leaf v, and character x, set:

Φv(x) =

{
1 if x is the contemporary character at v

0 otherwise
(2.9)

2. Recurse:

• For each non-root node v, let e = uv be the branch leading to v. Once

Φv(y) values have been computed for each character y, we recursively
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compute

Le(x) ← maxyAuv,1[x, y]× Φv(y)

Ce(x) ← argmaxyAuv,1[x, y]× Φv(y)

• For each node u, once Le(x) values have been computed for all branches

e = uw, we recursively compute

Φu(x) ←
∏

e=uw

Le(x)

3. Conclude: Once all Le(x) and Ce(x) entries have been computed, the an-

cestral root character can be reconstructed according to the formula:

sr ← argmaxyπ[y]× Φr(y)

4. Trace-back: For each node v whose immediate ancestor u has been recon-

structed, set sv ← Ce(su), where e = uv.

The algorithm takes time and space O(n|Σ|). We note that in practice, instead

of multiplying the probabilities themselves, it is more convenient to sum their log-

arithms.

2.4 Joint Reconstruction with Variable Rate

2.4.1 Ancestral Vectors with Wildcards

The first observation is that each ancestral vector for a particular position i can

be reconstructed independently. We therefore consider only the optimization of

L(Ŝi), hereafter. We omit the subscript i for convenience.

We augment the alphabet with a wildcard: Σ = Σ ∪ {∗}. An ancestral vec-

tor Ŝ = (ŝn+1, . . . , ŝ2n−2) over Σ is said to be an instance of a vector Ŝ =
(ŝn+1, . . . , ŝ2n−2) over Σ if Σ and Ŝ are identical to one another in all non-

wildcard vector coordinates: ∀u : ŝu ∈ {ŝu, ∗}. We also denote in that case
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Ŝ ∈ Ŝ. The relation ′′ ∈′′ between vectors over Σ is defined in the same way. We

identify Ŝ with the set of all of its instances.

Let Ŝ = (ŝn+1, . . . , ŝ2n−2) be a vector over Σ, with ŝu = ∗, and let x ∈ Σ be

a character. We define Ŝ[u← x] as the vector obtained from Ŝ by setting the u-th

entry to x.

2.4.2 Outline of the Branch-and-Bound Algorithm

For each ancestral vector Ŝ over Σ, we define:

MAXL(Ŝ) = max
Ŝ over Σ,Ŝ∈Ŝ

{L(Ŝ)} (2.10)

The output sought is therefore MAXL(Ŝ
init

), where Ŝ
init

is an all-* vector. One

can compute this value of MAXL recursively, by the following recursion rule:

MAXL(Ŝ) =

{
L(Ŝ) if Ŝ does not contain any *.

maxx∈ΣMAXL (ŝu[u← x]) if ŝu = ∗ for some u

(2.11)

Naively, this recursion leads to an exhaustive search, in O(|Σ|n) time. However,

we can use the Branch-and-Bound paradigm to greatly reduce the search time in

practice, as we now explain. In exhaustive search, each call to the MAXL evalu-

ation procedure recursively branches to |Σ| nested calls. Instead, we can eliminate

an unfruitful recursive call using an upper bound on the value of possible solu-

tions explored during this call: If we already have a different candidate solution,

whose likelihood exceeds this upper bound, there is no need to explore this recur-

sive branching of the search tree. To avoid confusion, we distinguish between a

branch of the phylogenetic tree, and recursive branching of the tree of recursive

calls. More formally, Figure 2.4.2 contains the pseudo-code for our algorithm.

2.4.3 Bounding the Likelihood

To complete the description of the algorithm outlined in Section 2.4.2, it remains

to present an upper bound on MAXL(Ŝ), which can be computed rapidly. We

now describe two bounds. The minimum of them will be our upper bound.
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Vector ComputeMAXL( Vector current wildcard vec,

float best likelihood so far )

{
if ( UpperBound(current wildcard vec)> best likelihood so far) then {

if (no * characters in current wildcard vec) then {
return current wildcard vec

}
else {
u← some position along current wildcard vec with *

most likely vec so far← UNDEFINED V ECTOR

best likelihood so far← 0
foreach x ∈ Σ do {
sub vec← current wildcard vec[u← x]
best vec in branch← ComputeMAXL(sub vec, best likelihood so far)

if (L(best vec in branch) > best likelihood so far) then {
most likely vec so far← best vec in branch

best likelihood so far← L(best vec in branch)
}

}
return most likely vec so far;

}
}
else { /* UpperBound(current wildcard vec)≤ best likelihood so far */

return UNDEFINED VECTOR

}
}

Figure 2.1: Pseudo-code for our Branch-and-Bound algorithm for ances-

tral sequence reconstruction. This ComputeMAXL function is initially

called with a current wildcard vec parameter which is all-wildcard, and a

best likelihood so far parameter which is zero. It returns the most likely an-

cestral vector.
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Bound Max-Likelihood by Sum-of-Likelihoods

The first bound is based on the following observation:

SUML(Ŝ) ≡
∑
Ŝ∈Ŝ

L(Ŝ) ≥MAXL(Ŝ) (2.12)

SUML can be computed efficiently. In fact, for a vector Ŝ with exactly one

non-* character entry ŝu = x, the quantity SUML(Ŝ) is exactly the marginal

likelihood of that character: the probability of the observed sequences assuming

the ancestral character at node u is x. The marginal likelihood can be computed

using the algorithm of Koshi and Goldstein [1996]. For an arbitrary vector Ŝ =
(ŝn+1, . . . , ŝ2n−2), we compute SUML using dynamic programming, as we now

describe.

For each tree node u ∈ {1, . . . , 2n − 2}, for each character x ∈ Σ, and for

each rate j = 1, . . . , k, we define a dynamic programming cell, D[j, u, x]. This

cell will record the probability of observing the leaves of Tr,u assuming the rate of

evolution is ρj , and the ancestral character at node u is x. The order of computing

entries in D is as follows: We root the tree arbitrarily at some ancestral node r. For

each rate ρj , we traverse the tree from the leaves to the root. Upon visiting a node

u, we compute, for all characters x, the values of D[j, u, x].

For each leaf u, with the input contemporary vector having value of y at u, we

set D[j, u, x] ← 1 if x = y, and D[j, u, x] ← 0 otherwise. For an ancestral node

u, if ŝu �∈ {x, ∗}, we set D[j, u, x] ← 0. Otherwise, we assume D[j, w, y] entries

have already been computed for each character y and child w of u, and set:

D[j, u, x] ←
∏

uw∈E

⎛⎝∑
y∈Σ

Auw,ρj [x, y]D[j, w, y]

⎞⎠ (2.13)

Finally, once entries of the D-table are known, we return:

SUML(Ŝ) =
k∑

j=1

1
k

∑
x∈Σ

π[x]D[j, x, r] (2.14)
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The algorithm requires O(nlk|Σ|2) = O(nl) time. To analyze space complexity,

observe that only the D entries at r are needed for computing the final result. Also,

the computation of entries for each specific ρj does not depend on those of ρi,

i �= j. Hence, one can separately compute all D entries for a specific ρj . This

implies a space complexity of O(n|Σ|) = O(n).

Bound Maximum-of-Sums by Sum-of-Maxima

Recall that

MAXL(Ŝ) = max
Ŝ

⎧⎨⎩
k∑

j=1

1
k
f(Ŝ|ρj)

⎫⎬⎭ (2.15)

Therefore:

MAXL(Ŝ) ≤
k∑

j=1

1
k

max
Ŝ

{
f(Ŝ|ρj)

}
(2.16)

Observe, that f is the maximum likelihood of an ancestral reconstruction with a

constant rate of evolution, ρj . As discussed in Section 2.3, f can be computed

efficiently in O(nl) time, and so is the bound on MAXL.

2.4.4 Enhancements

The Branch-and-Bound optimization paradigm is guaranteed to produce the opti-

mal solution, but the search may be exhaustive in the worst case. To achieve man-

ageable running times, one must enhance the basic method by heuristic means. One

important enhancement concerns the order of enumeration. In Branch-and-Bound,

it is desirable to obtain a good lower bound in an early stage of the search, so that

as much of the recursive branchings as possible will be pruned from that point on-

ward. To this end, one seeks a very good candidate solution in the first stages of the

search. We would therefore like to search the most promising recursive branchings

first.
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In our problem, we use the upper bound to estimate how promising each recur-

sive branching is. At each point during our search, we have |Σ| options for recur-

sively branching, one per character. We choose the option whose upper bound is

highest.

In fact, we do more than that. Consider a recursive call to our ComputeMAXL

function, and denote the current wildcard vec parameter by Ŝ. At each such call

the search can recursively branch to Ŝ[u ← x]. Therefore, not only do we have to

rank the options for each character x, but we also have to decide what is the node

u to be assigned a character. Again, we use the upper bound to choose the most

promising option. We first recursively compute MAXL(Ŝ[u← x]) for the vector

Ŝ[u ← x] whose upper bound is maximum (over all possible values for u and x.

Only then do we compute MAXL(Ŝ[u← x′]) for all other characters x′.

2.5 Results

We have implemented our algorithms in a C++ application called FastML. The

software is publicly available as http://evolu3.ism.ac.jp/∼tal/fastml.htm
We report benchmarks on datasets of mammalian protein sequences.

2.5.1 Results with Homogeneous Rate Reconstruction

Aligned cytochrome b amino-acid sequences from a sample of mammals were

taken from a data-set by Takezaki and Gojobori [1999]. A phylogenetic tree with

21 amino acid sequences of length 382 (see Figure 2.2) was prepared by the neighbor-

joining algorithm [Saitou and Nei, 1987]. The matrix of Adachi [1995], suitable

for mitocondrial proteins was used to calculate replacement probabilities. We ap-

plied our algorithm to this data set, and reconstructed the joint ancestral sequences.

Reconstruction was completed within less than a minute on a Pentium 450MHz

machine. Note, that existing algorithms for Joint Reconstruction Zhang and Nei

[1997], Yang [1999] are of exponential complexity, and cannot be applied to a

data-set of similar size.
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Figure 2.2: Tree for 21 cytbtree b sequences used for reconstruction using the ho-

mogeneous rate model. Sequences were taken from Takezaki and Gojobori [1999].

Branch lengths are not according to scale.
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node position reconstruction

Joint Marginal

23 209 T S

24 209 T S

25 263 S N

26 263 S N

27 263 S N

28 263 S N

29 263 S N

32 238 I V

33 241 M L

35 23 A T

36 23 A T

37 23 A T

38 23 A T

Table 2.1: Difference between Joint ML Reconstruction and Marginal ML Re-

construction. The numbers in the first column refer to the internal-node labels in

Figure 2.2. Amino acids are shown as one-letter abbreviations. In all other nodes

and positions, the two methods yield the same ancestral amino-acid reconstruction.

We compared our reconstruction versus the marginal reconstruction on this

data-set. Differences are summarized in Table 2.1.

2.5.2 Results with Variable Rate Reconstruction

We analyzed the ancestral sequence reconstruction of the lysozyme c gene family.

This family is of particular interest to variable-rate analysis, because of complex

evolutionary processes operating on different sequence loci [Wen and Irwin, 1999].

71 vertebrate representative 148-long sequences were chosen. Ancestral sequences

were constructed based on the neighbor-joining tree [Saitou and Nei, 1987], pre-

sented in Figure 2.3. We used the matrix of amino-acid substitution probabilities

by [Jones et al., 1992].
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dog milk
horse mi
donkey
mus p
mus m
rat1
rat2
patas
talapoin
alswamnk
rhesus
sooty
guereza
probosci
h langur
d langur
gibbon
orangutan
human
gorilla
sqr,nkey
marmoset
tamarin
rabbit k
rabbit 1
rabbit 2
sheep ki
cow kidn
cow gran
camel
cow trac
sheep s2
cow s1
cow s2
cow s3
sheep s1
goat s2
deer s1
deer s2
sheep s3
goat s1
pig3uter
pig1
pig2
trout
turbot
flounder
turtle
duck ap
duck as
k pheasa
r pheasa
rn pheas
g pheasa
chicken
guineafo
bobwhite
c quail
peafowl
c pheasa
turkey
tragopan
la pheas
co pheas
chachala
crax
hoatzin
pigeon
echidna

1

2

5

6

47
48

52
51

50

13

14

29

45

Figure 2.3: Tree for 71 lysozyme sequences used for reconstruction using the vari-

able rate model. Sequences were taken from Wen and Irwin [1999]. Nodes listed

in Table 2.2 are identified in the sketch. Branch lengths are not according to scale.
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The likelihood of the tree is significantly improved by the assumption of rate

variation among sites (log-likelihood of -3668.58 versus -3808.72), further moti-

vating our analysis. The alpha parameter of the gamma distribution was computed

to best fit the data, i.e., to maximize the likelihood of the observed sequences.

The maximum-likelihood alpha was found to be 0.9335. To infer the ancestral se-

quences the discrete gamma distribution with k = 4 categories was used [Yang,

1994]. The log-likelihood of the reconstruction (rather than the tree itself), which

is the function optimized by the ancestral reconstruction, is -3760.64. This is com-

pared to the maximum likelihood of -3880.87 for reconstruction assuming homo-

geneous rate. The differences between these two reconstructions are summarized

in Table 2.2.

2.6 Discussion

2.6.1 Biological Analysis of Results

We have chosen to study the lysozyme sequences because of an intriguing evo-

lutionary phenomenon they display, as we now discuss. Parallel evolution is the

process of a character arising along two or more independent evolutionary lineages.

Foregut fermentation is an example for such parallel evolution. It has arisen at least

twice in the evolution of placental mammals (in ruminants and colobine monkeys)

and at least once in birds (in the hoatzin). Lysozyme is known to be recruited by

the digestive system in foregut fermenters. This protein is therefore a natural tar-

get for searching molecular evidence related to the parallel evolution of foregut

fermentation.

At the sequence level, parallel mutations that change the amino-acids at the

same site to the same amino-acid are called homoplasious. In any molecular phy-

logenetic tree, a certain number of homoplasious changes is expected to be ob-

served purely by chance. However, if the number of homoplasious events exceeds

its chance expectation, then it is unlikely that these events have occurred by ran-

dom genetic drift. The excess in homoplacy is then attributed to positive Darwinian

selection.
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position node rate model

fixed Gamma

4 1 S E

4 2 S E

11 1 N T

11 2 N T

11 5 A T

11 6 A T

11 47 A T

14 29 K R

33 48 Q K

37 13 N D

37 14 N D

37 29 N D

37 47 S N

37 48 S N

43 1 F T

43 2 F T

94 51 R K

94 52 R K

113 13 R K

113 14 R K

113 45 R K

123 50 R K

Table 2.2: Differences between ancestral amino-acid reconstructions inferred with

and without the assumption of rate variation among sites. The numbers in the

second column refer to the internal-node labels in Figure 2.3.
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Based on the above rationale, Zhang and Kumar [1997] suggested eight amino

acid sites in lysozyme that have evolved by positive selection in foregut fermenters.

Unfortunately, previous such studies of homoplasious replacements were based on

a small number of sequences. Our methods are the first to allow analysis of large

data-sets. Such analysis indeed requires Joint Reconstruction of the ancestral se-

quences. Furthermore, the lysozyme phylogenetic tree is significantly more likely

under the assumption of variable rate of evolution. This motivates analysis of an-

cestral sequences in the same model. We thus revisit the proposition of positive

selection in the lysozyme, using a large data-set.

The ability to reconstruct ancestral sequences for a large number of extant se-

quences has led to better mapping of the homoplasious replacements than in pre-

vious studies. Our analysis suggests that some of the homoplasious replacements

that were previously mapped strictly to the lineages leading to foregut fermentation

taxa are now mapped to lineages either inside the foregut fermenting clades, or to

lineages preceding them. For example, the R to K homoplacy in position 14 was

previously mapped to the lineage leading to cow, and with the addition of the camel

sequence, this homoplacy is now mapped to the lineage before the divergence of

the camel.

2.6.2 Computational Directions for Subsequent Research

We presented algorithms for ancestral reconstruction, both with and without the

simplifying assumption that the rate of sequence evolution is homogeneous among

sites. This work has consequences beyond the task of ancestral reconstruction. The

framework we present can help infer not only the ancestral vector, but also proba-

bilities of observing a particular pair of characters at any pair of nodes. This can be

applied, for example, to carefully infer positive selection in the tree. Moreover, our

framework can greatly aid in inferring the phylogenetic tree itself, in cases it is not

known in advance. In a subsequent work, we used this probabilistic reconstruction

of ancestral sequences as a building block in a novel algorithm for learning phylo-

genetic trees [Friedman et al., 2001]. This Structural-EM algorithm is both faster

and more accurate than previous Maximum-Likelihood methods for phylogenetic
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inference. Incorporating variable rate into this new algorithm is still to be done.

Another important generalization concerns sequence gaps. In molecular phy-

logenetics, usually the available sequences are aligned with some gaps in certain

positions for some of the sequences. Alignment columns containing gap characters

are discarded in current studies (as was done also in the results reported here), as

they behave differently from the model. Efficient reconstruction of the ancestral

sequences in gapped positions is an open problem.
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Chapter 3

Reconstructing Nucleotide

Sequences from Hybridization

Experiments

In this chapter we study algorithmic aspects of sequencing. We improve an existing

method, called Sequencing By Hybridization (SBH), which we now outline. SBH

is based on interrogating a target DNA molecule for all of its k-long sub-sequences,

called k-mers. This is made possible by recent technologies, that immobilize many

thousands of short single-stranded molecules of DNA, or oligonucleotides, on a

small surface, called a microarray. Each oligonucleotide probes the target se-

quence for presence of its complementary counterpart. SBH calls for employ-

ing all possible k-long oligonucleotides, thereby obtaining the k-mer contents of

the sequence. Subsequently, the target sequence is computationally reconstructed.

Section 3.1 we introduce SBH.

Unfortunately, SBH has very limited practicality. In this chapter we introduce

ways to enhance SBH by computationally using additional information.

One kind of information we use is additional data regarding the position of k-

mers along the target molecule. These data can be obtained by novel microarray

reactions. We study the arising computational problem in Section 3.2. The input to

43
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this problem is a set of possible occurrence positions for each k-mer. The output is

a target sequence all of whose k-mers satisfy the positional constraints. We provide

a polynomial algorithm for this problem when no k-mer has more than two possible

positions. We prove NP-hardness of the problem, even when no k-mers has more

than three possible positions. This work has been published in [Ben-Dor et al.,

1999]. We further study a biologically motivated restriction of this problem, to all

sets of possible positions being intervals. We provide a parameterized algorithm

to solve this restricted problem. This part has been published in [Ben-Dor et al.,

2001a], with a complete version in [Ben-Dor et al., 2001b].

In Section 3.3 we study another method to enhance SBH. This method uses

additional data which is usually available, and it can therefore be widely applied.

Most contemporary tasks of sequence determination involve resequencing rather

than sequencing, as one has prior information regarding the target sequence. One

knows in advance, that the sequencing target highly resembles an already sequenced

molecule. In fact, there are only a few small differences between these two se-

quences. It is these small differences that are of interest. We formalize this chal-

lenge as a computational problem, and provide a polynomial algorithm for it.

Our framework is probabilistic. We describe the resemblance to a known se-

quence as a profile HMM. We further describe results of the SBH reaction in proba-

bilistic terms, and incorporate them into a graph whose edges correspond to probes

and vertices to probe prefixes/suffixes of length k − 1. The probabilistic formu-

lation allows maximum likelihood analysis. It gives rise to an interesting opti-

mization problem: finding the most likely sequence, which corresponds to a pair

of paths: one path in the HMM transition graph, and another in the SBH graph.

We can therefore solve an analogous optimization problem, finding a pair of paths

with maximum weight. We provide several dynamic programming algorithms to

solve this problem and some of its interesting restrictions. We provide a practical

solution, although it is only guaranteed to be an approximate maximum-likelihood

sequence. Simulations results are also provided. This work has been published

in [Pe’er and Shamir, 2000b].
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3.1 Introduction to Sequencing by Hybridization

In sequencing by hybridization (SBH), one has to reconstruct a sequence from its

l-long substrings. SBH was proposed as an alternative to gel-based DNA sequenc-

ing approaches, but in its original form the method is not competitive. Positional

SBH (PSBH) is a recently proposed enhancement of SBH in which one has addi-

tional information about the possible positions of each substring along the target

sequence. We give a linear time algorithm for solving PSBH when each substring

has at most two possible positions. On the other hand, we prove that the problem is

NP-complete if each substring has at most three possible positions. We also show

that PSBH is NP-complete if the set of allowed positions for each substring is an

interval of length k, and provide a fast algorithm for the latter problem when k is

bounded.

Sequencing by hybridization (SBH) was proposed in the late eighties as an

alternative approach to gel-based DNA sequencing [Bains and Smith, 1988, Lysov

et al., 1988, Southern, 1988, Drmanac and Crkvenjakov, 1987, Macevics, 1989].

Using DNA chips, cf. [Southern, 1996], one can in principle determine exactly

which l-mers (l-tuples) appear as substrings in a target that needs sequencing, and

try to infer its sequence. Practical values of l are 8 to 10.

The fundamental computational problem in SBH is the reconstruction of a se-

quence from its spectrum - the list of all l-mers that are included in the sequence

along with their multiplicities. In Pevzner [1989] it was shown that the reconstruc-

tion problem can be solved efficiently by a reduction to finding an Eulerian path in

the following graph: Vertices correspond to (l−1)-tuples, and for each l-tuple in

the spectrum, an edge connects the vertices corresponding to its (l−1)-long prefix

and suffix.

The main handicap of SBH is ambiguity of the solution. Alternative solutions

are manifested as branches in the graph (i.e., two or more edges leaving the same

vertex), and unless the number of branches is very small, there is no good way

to determine the correct sequence. Theoretical analysis and simulations [Southern

et al., 1992, Pevzner and Lipshutz, 1994, Arratia et al., 1997, Dyer et al., 1994]

have shown that the average length of a uniquely reconstructible sequence using
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an 8-mer chip is only about two hundred, way below a single read length on a

commercial gel-lane machine.

Due to the centrality of the sequencing problem in biotechnology and in the

Human Genome Project, and due to its mathematical elegance, SBH continues to

draw a lot of attention. Many authors have suggested ways to improve the basic

method. Alternative chip designs [Bains and Smith, 1988, Khrapko et al., 1989,

Pevzner et al., 1991, Preparata et al., 1999] as well as interactive protocols [Skiena

and Sundaram, 1995] were suggested. An effective and competitive sequencing

solution using SBH has yet to be demonstrated.

3.2 On the Complexity of Positional

Sequencing by Hybridization

Recently, several authors have suggested enhancements of SBH based on adding

location information to the spectrum [Adleman, 1998, Broude et al., 1994, Hannen-

halli et al., 1996, Gusfield et al., 1998]. In positional sequencing by hybridization

(PSBH), additional information is gathered concerning the position of the l-mers

in the target sequence. More precisely, for each l-mer in the spectrum its allowed

positions along the target are registered. The reduction to the Eulerian path prob-

lem still applies, but for each edge in Pevzner’s graph we now have constraints

restricting its position in the Eulerian path. Mathematically, this gives rise to the

positional Eulerian path problem (PEP): Given a directed graph with a list of al-

lowed positions on each edge, decide if there exists an Eulerian path in which each

edge appears in one of its allowed positions. In Hannenhalli et al. [1996] it was

shown that PEP is NP-complete, even if all the lists of allowed positions are in-

tervals of equal length. Note that this leaves open the complexity of PSBH in this

case. They also gave a polynomial algorithm for the problem when the length of

the intervals is bounded.

In this chapter we address the positional sequencing by hybridization problem

in the case that the number of allowed positions per l-mer is bounded, and the po-

sitions need not be consecutive. We give a linear time algorithm for solving the
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positional Eulerian path problem, and hence, the PSBH problem, in the case that

each edge is allowed at most two positions. On the negative side, we show that

the PSBH problem is NP-complete, even if each l-mer has at most three allowed

positions and multiplicity one. We use in our hardness proof a reduction from the

PEP problem restricted to the case where each edge is allowed at most three posi-

tions. The latter problem is shown to be NP-complete as well. We also study the

complexity of PSBH in the case that the set of allowed positions for each substring

is an interval of bounded length. We strengthen the results of Hannenhalli et al.

[1996] with respect to this problem in two ways. First, we show that PSBH is

NP-complete, even if all sets of allowed positions are k-long intervals. Second, we

give a faster parameterized algorithm for the problem, where the parameter k is an

upper bound on the size of the intervals. Our algorithm requires O(mk1.54k) time,

compared to the O(mk3 log k4k) bound of Hannenhalli et al. [1996].

The chapter is organized as follows: In Section 3.2.1 we define the PSBH and

the PEP problems. In Section 3.2.2 we describe a linear time algorithm for the PEP

problem when each edge has at most two allowed positions. In Section 3.2.3 we

prove that the PEP problem is NP-complete if each edge has at most three allowed

positions. In Section 3.2.4 we show that the PSBH problem is NP-complete when

each l-mer is allowed at most three positions. Furthermore, in Section 3.2.5 we

prove that the PSBH problem is NP-complete when all sets of allowed positions

are intervals of equal length. Finally, in Section 3.2.6 we give a parameterized

algorithm for the latter problem.

3.2.1 Preliminaries

All graphs in this chapter are finite and directed. Let D = (V,E) be a graph. We

denote m = |E| throughout. For a vertex v ∈ V , we define its in-neighbors to be

the set of all vertices from which there is an edge directed into v. We denote this

set by Nin(v) = {u : (u, v) ∈ E}. We define the in-degree of v to be |Nin(v)|.
The out-neighbors Nout(v) and out-degree are similarly defined.

Let E = {e1, . . . , em} and let P be a function mapping each edge of D to a

non-empty set of integer labels from {1, . . . ,m}. The set P (e) is called the set of
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allowed positions of edge e. The pair (D,P ) is called a positional graph. If for all

e, |P (e)| ≤ k, then (D,P ) is called a k-positional graph. Let π = π(1), . . . , π(m)
be a permutation of the edges in E. If π defines a (directed) path, i.e., for each

1 ≤ i < m, π(i) = (u, v) and π(i + 1) = (v,w), for some u, v,w ∈ V , then we

say that π is an Eulerian path in D.

An Eulerian path π in D is said to be compliant with the positional graph

(D,P ), if π−1(e) ∈ P (e) for every e ∈ E, that is, each edge in π occupies an

allowed position. The k-positional Eulerian path problem is defined as follows:

Problem 1 (k-PEP)

Instance: A k-positional graph (D,P ).
Question: Is there an Eulerian path compliant with (D,P )?

Let Σ = {A,C,G, T}. The p-spectrum of a string X ∈ Σ∗ is the multi-set of

all p-long substrings of X. The problem of sequencing by hybridization is defined

as follows:

Problem 2 (SBH)

Instance: A multi-set S of p-long strings.

Question: Is S the p-spectrum of some string X?

For simplicity, we shall call the input multi-set a spectrum, even if it does not

correspond to a sequence. The SBH problem is solvable in polynomial time by

a reduction to finding an Eulerian path in Pevzner’s graph [Pevzner and Lipshutz,

1994]. More specifically, construct a graph D whose vertices correspond to (p−1)-

long substrings of strings in S, and in which edges are directed from σ1 · · · σp−1 to

σ2 · · · σp for each σ1 · · · σp ∈ S. Then every solution σ1 · · · σm+p−1 to the SBH in-

stance naturally corresponds to an Eulerian path σ1 · · · σp−1, . . . , σm+1 · · · σm+p−1

in D.

The positional SBH problem is defined as follows:

Problem 3 (PSBH)

Instance: A multi-set S of p-long strings. For each s ∈ S, a set P (s) ⊆ {0, . . . , |S|−
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1}.
Question: Is S the p-spectrum of some string X, such that for each s ∈ S its

position along X is in P (s)?

If the set of allowed positions for each string is of size at most k, then the

corresponding problem is called k-positional SBH, or k-PSBH. k-PSBH is linearly

reducible to k-PEP in an obvious manner.

The Interval PEP and Interval PSBH problems are defined as follows:

Problem 4 (Interval PEP)

Instance: A positional graph (D,P ), such that for each edge e, the set P (e) is a

sub-interval of [1,m] (i.e., an interval in the linear order 1, . . . ,m).

Question: Is there an Eulerian path compliant with (D,P )?

Problem 5 (Interval PSBH)

Instance: A multi-set S of p-long strings. For each s ∈ S, a set P (s) which is a

sub-interval of [0, |S| − 1].
Question: Is S the p-spectrum of some string X, such that for each s ∈ S its

position along X is in P (s)?

3.2.2 A Linear Algorithm for 2-Positional Eulerian Path

In this section we provide a linear time algorithm for solving the 2-positional Eule-

rian path problem. A key element in our algorithm is a reduction to 2-SAT. Before

the reduction can be applied, the input must be preprocessed, discarding unrealiz-

able edge labels (positions).

Let (D = (V,E), P ) be the input 2-positional graph. For every 1 ≤ t ≤ m

define Δ(t) to be the set of edges allowed at position t, i.e., Δ(t) ≡ {e ∈ E : t ∈
P (e)}. Let us call a position t for which Δ(t) = {e} and |P (e)| > 1, a resolvable

position.

The first phase of the algorithm applies the following preprocessing step:



50 CHAPTER 3. SEQUENCING BY HYBRIDIZATION

While there exists a resolvable position t, do:

Suppose Δ(t) = {e} and P (e) = {t, t′}.
Δ(t′)← Δ(t′) \ {e}.
P (e) ← {t}.

If at any stage we discover that some set Δ(t) is empty, then we output False

and halt, since no edge can be labeled t.

Lemma 3.2.1 The preprocessing step does not change the set of Eulerian paths

compliant with (D,P ).

Proof: Let S be the set of Eulerian paths compliant with (D,P ) before the

preprocessing step. It is obvious that the preprocessing step can only reduce S. It

thus suffices to prove that if π is compliant with (D,P ) then π remains compliant

with the new (D,P ) obtained by a single iteration of the while loop.

Suppose there exists a resolvable position 1 ≤ t ≤ m such that Δ(t) = {e}
and P (e) = {t, t′}. Then by definition of Δ(t), any Eulerian path π ∈ S satisfies

π(t) = e. Hence, π(t′) �= e and upon updating P (e) ← {t}, π remains compliant

with the new (D,P ).

Lemma 3.2.2 The preprocessing step can be implemented in linear time.

Proof: We maintain current P (e) for each e, and Δ(t) for each t. Initializa-

tion of Δ(t) for all t can be done in linear time. We further maintain a set Z of

resolvable positions, which can be initialized in linear time. The while loop can

be implemented by repeatedly handling the positions in Z . Let t be an arbitrary

position in Z , where Δ(t) = {e} and P (e) = {t, t′}. Upon handling t, we delete

it from Z , updating P (e) and Δ(t′) in constant time. If t′ becomes resolvable, we

add it to Z .

In the following, (D,P ) and Δ refer to the positional graph obtained after the

preprocessing phase.

Lemma 3.2.3 In (D,P ) each position is allowed for at most two edges.
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Proof: The preprocessing ensures that if for some position t, |Δ(t)| = 1, then

e ∈ Δ(t) satisfies |P (e)| = 1. Let R be the set of positions t with |Δ(t)| = 1, and

let r = |R|. Then there are m − r positions t for which |Δ(t)| ≥ 2, and r′ ≥ r

edges e with |P (e)| = 1. Thus,

2(m− r) ≤
∑
t�∈R

|Δ(t)| =
∑

t

|Δ(t)| − r =
∑

e

|P (e)| − r = 2m− r′ − r ≤ 2(m− r) .

Hence, r = r′ and each label t �∈ R occurs exactly twice, implying that |Δ(t)| ∈
{1, 2} for all t.

For every vertex v ∈ V define In(v, t) as the set of t-labeled edges entering v,

i.e.,

In(v, t) ≡ {(u, v) : (u, v) ∈ Δ(t)} .

Similarly define

Out(v, t) ≡ {(v, u) : (v, u) ∈ Δ(t)} .

We say that a vertex v is fixed to position t in (D,P ) if In(v, t) = Δ(t) or

Out(v, t + 1) = Δ(t + 1). In other words, any Eulerian path compliant with

(D,P ) must have v as the (t + 1)-st vertex in the path. Define Boolean variables

Xt
e for every e, t such that t ∈ P (e) (2m − r variables in total). Examine the

following sets of Boolean clauses:

Xt
e for every e, t such that P (e) = {t} . (3.1)

Xt
e1
⊕Xt

e2
for every e1, e2, t such that Δ(t) = {e1, e2} . (3.2)

Xt1
e ⊕Xt2

e for every e, t1, t2 such that P (e) = {t1, t2} . (3.3)

Xt
(a,b) ⇔ Xt+1

(b,c) for every t ∈ P ((a, b)), t + 1 ∈ P ((b, c)) (3.4)

such that b is not fixed to position t .

X
t
(u,v) for every t ∈ P ((u, v)), t < m (3.5)

such that Out(v, t+ 1) = ∅ .
X

t
(u,v) for every t ∈ P ((u, v)), t > 1 (3.6)

such that In(u, t− 1) = ∅ .
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Lemma 3.2.4 There is a positional Eulerian path compliant with (D,P ) if and

only if the set of clauses (3.1)-(3.6) is satisfiable.

Proof:

⇐ Suppose that a satisfying truth assignment Φ exists. Let us assign an edge e

to position t if and only if Φ(Xt
e) =True. Clauses (3.1) and (3.2) guarantee

that exactly one edge is assigned to each position. Clauses (3.1) and (3.3)

guarantee that each edge is assigned to exactly one position, and that this

position is allowed for it.

It remains to show that the above assignment of edges to positions yields

a path in D. Suppose to the contrary that both Xt
(a,b) and Xt+1

(b′,c′) are as-

signed True, with b �= b′. Then clauses (3.5) guarantee the existence of an

edge (b, c) ∈ Δ(t + 1), while clauses (3.6) guarantee the existence of an

edge (a′, b′) ∈ Δ(t). Therefore, b is not fixed to t, and a contradiction fol-

lows from clauses (3.4). Hence, Φ defines an Eulerian path compliant with

(D,P ).

⇒ Suppose that π is an Eulerian path compliant with (D,P ). A truth assign-

ment Φ satisfying clauses (3.1)-(3.6) can be defined as follows: Assign

Φ(Xt
e) =True if and only if π(t) = e. As π is a permutation, Φ sat-

isfies clauses (3.1)-(3.3). Since π is a path, Φ satisfies clauses (3.5) and

(3.6). It remains to prove that Φ satisfies clauses (3.4). Consider the clause

Xt
(a,b) ⇔ Xt+1

(b,c) in (3.4). Since b is not fixed to t, Δ(t) = {(a, b), (a′, b′)}
and Δ(t + 1) = {(b, c), (b′′, c′′)} where b′, b′′ �= b. There are two possible

cases. Either π(t) = (a, b) and then π(t + 1) = (b, c), or π(t) �= (a, b) and

then π(t+ 1) �= (b, c). In both cases the clause is satisfied.

Lemma 3.2.5 Clauses (3.1)-(3.6) can be generated in linear time.

Proof: By definition and Lemma 3.2.3, each of the sets P (e) and Δ(t) is of

size at most 2. Clauses (3.1)-(3.3) can be trivially generated by scanning the sets
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P (e) for all e and Δ(t) for all t. This computation takes O(m) time. To construct

clauses (3.5) we examine each edge e = (u, v) and each t ∈ P (e) (there are at most

2m such pairs (e, t)). If Δ(t+ 1) contains no edge of the form (v,w), we include

the clause X̄t
(u,v). Construction of these clauses takes O(m) time. Clauses (3.6) are

constructed in a similar manner. Finally, clauses (3.4) can be constructed in linear

time by examining Δ(t) and Δ(t + 1) for all t < m. If we find a pair of edges

(a, b) ∈ Δ(t) and (b, c) ∈ Δ(t + 1), such that there exist edges (u, v) ∈ Δ(t),
v �= b and (w, z) ∈ Δ(t+ 1), w �= b, we include the appropriate clause.

Theorem 3.2.6 2-PEP is solvable in linear time.

Proof: The preprocessing phase is linear by Lemma 3.2.2. By Lemma 3.2.5, the

number of clauses (3.1)-(3.6) isO(m). Each exclusive OR clause in (3.2)-(3.3) and

each equivalence clause in (3.4) can be written as two OR clauses, and therefore, by

Lemma 3.2.5 one can generate all clauses in linear time. By Lemma 3.2.4, the prob-

lem is reduced to an instance of 2-SAT which is solvable in linear time [Apsvall

et al., 1979].

Corollary 3.2.7 2-PSBH is solvable in linear time.

All clauses (3.1)-(3.6) can take the form of A⇔ B, with A,B being constants

or literals. Hence, the 2-SAT instance can in fact be solved by a linear-time algo-

rithm simpler than Apsvall et al. [1979] as follows: Let S be the set of all clauses,

written as equivalence clauses. Construct an undirected graph G = (U,F ) such

that U = {Xt
e, X̄

t
e : e ∈ E, t ∈ P (e)} ∪ {0, 1}. Include (A,B) and (Ā, B̄) in

F whenever A ⇔ B is a clause in S. It is easily seen that the 2-SAT instance

is satisfiable if and only if no connected component of G contains two vertices

corresponding to a variable (or a constant) and its negation.

3.2.3 3-Positional Eulerian Path is NP-Complete

In this section we prove that the 3-PEP problem is NP-complete by reduction from

3-SAT.



54 CHAPTER 3. SEQUENCING BY HYBRIDIZATION

Theorem 3.2.8 The 3-PEP problem is NP-complete.

Proof: Membership in NP is trivial. We prove NP-hardness by reduction from

3-SAT. We first provide a sketch of the construction. For each occurrence of a literal

in the formula, a special vertex is introduced. Special vertices corresponding to the

same literal are connected serially to form a literal path. Two literal paths of a

variable and its negation are connected in parallel to form a variable subgraph.

For each clause in the formula, the corresponding special vertices are connected by

three edges to form a clause triangle. Finally, for each special vertex we introduce

a triangle incident on it, called its bypass triangle (see Figure 3.1).

occurrences
Negated

Positive
occurrences

#3 #1#2

Figure 3.1: A schematic sketch of the main elements in our construction. The

figure includes three variable subgraphs. The first variable, whose subgraph is the

rightmost (#1), has three positive occurrences (top) and two negated occurrences

(bottom), etc. One of the clause triangles is also drawn, using dashed line.

The sets of allowed positions are chosen so that they force every compliant

Eulerian path to visit the literal paths one by one. A compliant Eulerian path corre-

sponds to a satisfying truth assignment. When a special vertex is visited, either its

clause triangle, or its bypass triangle are traversed. Traversing the clause triangle

while passing through a certain literal’s path, corresponds to this literal satisfying

the clause. Eventually, we enable visiting all unvisited bypass triangles.

We now give the construction in detail. Let F be a 3-CNF formula with N

variables x1, . . . , xN , and M clauses C1, . . . , CM . We assume, w.l.o.g., that each

clause contains three distinct variables, and that all 2N literals occur in F . Denote

Xi = {xi}∪{xi}. For a literal L ∈ Xi, let aL denote the number of its occurrences

in F . For 1 ≤ j ≤ aL define L(j) ≡ (L, j). Thus, L(1), . . . , L(aL) is an

enumeration of L’s occurrences in F . For a clause C = L∨L′∨L′′ introducing the

j-th (j′, j′′) occurrence of L (L′, L′′, respectively), we write C = L(j) ∨ L′(j′) ∨
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L′′(j′′). We shall construct a directed graph D = (V,E) and a map P from E to

integer sets of size at most 3, such that F is satisfiable if and only if (D,P ) has a

compliant Eulerian path.

We introduce the following vertices:

• ui, ûi for each variable xi, 1 ≤ i ≤ N .

• vL(j), v̂L(j) for each occurrence L(j) of the literal L. vL(j) is called special.

For L ∈ Xi, we shall denote ui also by vL(0), and ûi also by vL(aL+1).

• r(Cc) for each clause Cc, 1 ≤ c ≤ M , identifying ûN as r(C0) and u1 as

r(CM+1).

We introduce the following edges:

• For each clause C = L(j) ∨ L′(j′) ∨ L′′(j′′), a clause triangle consisting of

the edges {(vL(j), vL′(j′)), (vL′(j′),vL′′(j′′)), (vL′′(j′′), vL(j))}.

• For each occurrence L(j) of a literal L in a clause C , a bypass triangle with

the edges {(vL(j),v̂L(j)), (v̂L(j), r(C)), (r(C), vL(j))}.

• A literal path {(ui, vL(1)), (vL(1), vL(2)), (vL(2),vL(3)),. . . , (vL(aL), ûi)}, de-

noted lpath(L) for each literal L ∈ Xi.

• For i = 1, . . . , N , back edges (ûi, ui). For i = 1, . . . , N−1, forward edges

(ûi, ui+1).

• The path {(ûN , r(C1)), (r(C1), r(C2)), (r(C2), r(C3)), . . . , (r(CM ), u1)},
which is called the finishing path

Figure 3.2 shows an example of the constructed graph. The motivation for this

construction is the following: Using the position sets, we intend to force the literal

paths of the different variables to be traversed in the natural order, where the only

degree of freedom is switching the order between lpath(xi) and lpath(xi). This

switch will correspond to a truth assignment for the variable xi, by assigning True

to the literal in Xi whose lpath was visited first. After visiting a special vertex
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along this first path, we either visit its clause triangle, or its bypass triangle. Along

the other path (the one of the literal assigned False) only a bypass triangle can be

visited.

Eventually, the finishing path is traversed. Its vertices are visited in the natural

order. Upon visiting a vertex r(C), we visit only one bypass triangle - the yet

unvisited triangle among those corresponding to the literals of clause C . The truth

assignment will satisfy that literal.

We now describe the sets P (e). We use the following notation:

bi = axi + axi for i = 1, . . . , N .

Bi =
i∑

j=1

bj for i = 0, . . . , N (B0 = 0) .

BaseL = BaseL = Basei = 4Bi−1 + 4(i − 1) for L ∈ Xi .

AlternateL = Basei + 4aL + 2 for L ∈ Xi .

ClauseBasec = BaseN+1 + 4c 0 ≤ c ≤M .

• For each forward edge e = (ûi−1, ui), 2 ≤ i ≤ N , we set P (e) = {Basei}.
This is intended to ensure that the literal paths are traversed in a constrained

order: lpath(xi) and lpath(xi) are allocated a time interval [Basei+1, Basei+1−
1] of length 4bi + 3, during which they must be traversed.

• For each back edge e = (ûi, ui) we set P (e) = {Alternatexi , Alternatexi}.
This enables either visiting lpath(xi) first, then e and lpath(xi); or visiting

lpath(xi) first, followed by e and lpath(xi).

• For each literal path edge e = (vL(j), vL(j+1)), with L ∈ Xi, 0 ≤ j ≤ aL,

we set P (e) = {Basei + 4j+ 1, AlternateL + 4j+ 1}. Consecutive edges

in a literal path are thus positioned 4 time units apart (allowing a triangle

in-between).

• For each clause C = L1(j1) ∨ L2(j2) ∨ L3(j3) with the clause triangle

{e1 = (vL1(j1), vL2(j2)), e2 = (vL2(j2), vL3(j3)), e3 = (vL3(j3), vL1(j1))}
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Bypass triangle

Finishing path

Clause triangle

Back edges

Forward edges

Literal path

vx1(1)

û1u2

r(C1)

r(C2)

u3

vx2(1)

vx2(1)

u1

Legend:

r(C1)

v̂x1(1)

vx1(2)

û2û3

Figure 3.2: An example of the construction for the formula (x1 ∨ x2 ∨ x3)∧ (x1 ∨
x2∨x3). All large grey (black) vertices are actually the same vertex r(C1) (r(C2)).
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such that Lk ∈ Xik , define tk ≡ Baseik + 4jk − 2 and set

P (e1) = {t1, t3 + 1, t2 + 2} ,
P (e2) = {t2, t1 + 1, t3 + 2} ,
P (e3) = {t3, t2 + 1, t1 + 2} .

(See Figure 3.3.) This means that the edges of a clause triangle must be

visited consecutively during the traversal of lpath(Lk), for some k. Further-

more, note that this may happen only if lpath(Lk) is traversed immediately

after time BaseLk
, that is, only if it precedes lpath(Lk).

3

21

e3{t3, t2 + 1, t1 + 2} e2{t2, t1 + 1, t3 + 2}

e1
{t1, t3 + 1, t2 + 2}

Figure 3.3: A clause triangle, with vertex vLk(jk) denoted by k. The allowed posi-

tions for each edge appear in braces.

• For each finishing edge e = (r(Cc), r(Cc+1)), 0 ≤ c ≤ M , we set P (e) =
{ClauseBasec}. This determines the order in which the vertices of the

finishing path are traversed. Furthermore, this allows a time slot of length 3,

the interval [ClauseBasec +1, ClauseBasec+1−1] for the bypass triangle

visited while traversing r(Cc).

• For a bypass triangle with the edges {e = (vL(j), v̂L(j)), e′ = (v̂L(j), r(Cc)),
e′′ = (r(Cc), vL(j))}, we set:

P (e) = {BaseL + 4j − 2, AlternateL + 4j − 2, ClauseBasec − 2} ,
P (e′) = {BaseL + 4j − 1, AlternateL + 4j − 1, ClauseBasec − 1} ,
P (e′′) = {BaseL + 4j,AlternateL + 4j, ClauseBasec − 3} .

This means that the bypass triangle edges must be visited consecutively, and

there are three possible time slots for that:
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– While traversing lpath(L), before traversing lpath(L).

– While traversing lpath(L), after traversing lpath(L).

– While traversing r(Cc) along the finishing path.

The reduction is obviously polynomial. We now prove validity of the construc-

tion.

⇐ Suppose that F is satisfiable. We will show that (D,P ) is a ”yes” instance

of the 3-positional Eulerian path problem. Let φ be a truth assignment sat-

isfying F . For each clause Cc, let Lc(jc) be a specific literal occurrence

satisfying Cc.

We describe an Eulerian path π inD. For c = 0, . . . ,M , set π(ClauseBasec) =
(r(Cc), r(Cc+1)). Set π(Basei) = (ûi−1, ui), for i = 2, . . . , N . For all i, if

φ(xi) =True, set π(Alternatexi) = (ûi, ui). Otherwise, set π(Alternatexi) =
(ûi, ui).

For each literal L ∈ Xi:

– If φ(L) =True: For each 0 ≤ j ≤ aL, set π(Basei + 4j + 1) =
(vL(j), vL(j+1)) (see Figure 3.4, top).

True: BaseL + 4j + 1 BaseL + 4j − 3

False: AlternateL + 4j + 1
vL(j)

AlternateL + 4j − 3

Figure 3.4: Either a clause triangle or a bypass triangle must be traversed upon

visiting a special vertex vL(j), due to time constraints. Edge positions in case L is

assigned True (False) are shown at the top (bottom).

We further distinguish between two cases:

∗ If L(j) = Lc(jc) for the clause Cc = L(j) ∨ L′(j′) ∨ L′′(j′′)
in which L(j) occurs, then set π to visit the edges of the clause
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triangle of Cc as follows:

π(BaseL + 4j − 2) = (vL(j), vL′(j′)) ,

π(BaseL + 4j − 1) = (vL′(j′), vL′′(j′′)) ,

π(BaseL + 4j) = (vL′′(j′′), vL(j)) .

Furthermore, in this case we set π to visit the edges of the bypass

triangle of L(j) as follows:

π(ClauseBasec − 3) = (r(Cc), vL(j)) ,

π(ClauseBasec − 2) = (vL(j), v̂L(j)) ,

π(ClauseBasec − 1) = (v̂L(j), r(Cc)) .

∗ Otherwise, L(j) �= Lc(jc) for the clause Cc in which L(j) occurs.

In this case we set π to visit the edges of the bypass triangle of

L(j) as follows:

π(BaseL + 4j − 2) = (vL(j), v̂L(j)) ,

π(BaseL + 4j − 1) = (v̂L(j), r(Cc)) ,

π(BaseL + 4j) = (r(Cc), vL(j)) .

– If φ(L) =False: For each 0 ≤ j ≤ aL, set π(AlternateL + 4j + 1) =
(vL(j), vL(j+1)). Furthermore, in this case we set π to visit the edges

of the bypass triangle of L(j) as follows (see Figure 3.4, bottom):

π(AlternateL + 4j − 2) = (vL(j), v̂L(j)) ,

π(AlternateL + 4j − 1) = (v̂L(j), r(Cc)) ,

π(AlternateL + 4j) = (r(Cc), vL(j)) .

It is easy to see that π is a permutation of the edges, and if π(k) = (u, v),π(k+
1) = (u′, v′) then v = u′. Hence, π is an Eulerian path. Furthermore, by

our construction π is compliant with (D,P ), proving that (D,P ) is a ”yes”

instance.

⇒ Let π be an Eulerian path compliant with (D,P ). We shall construct an

assignment φ satisfying F . In order to determine φ(xi) we consider the edge
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π(Basei + 1). By construction, π(Basei + 1) = (ui, vL(1)) for L ∈ Xi.

We therefore set φ(L) =True (and of course φ(L) =False). We observe

that for any other edge e′ = (vL(j), vL(j+1)) along lpath(L), we must have

π(Basei + 4j + 1) = e′ if and only if φ(L) =True.

We now prove that φ satisfies each clause Cc = L1(j1) ∨ L2(j2) ∨ L3(j3)
of F . Consider the clause triangle of Cc: {e1 = (vL1(j1), vL2(j2)), e2 =
(vL2(j2), vL3(j3)), e3 = (vL3(j3), vL1(j1))}. Denote tk = BaseLk

+ 4jk − 2.

By the positional constraints, there exists some 1 ≤ k ≤ 3 for which π(tk) =
ek. The edge e preceding ek in π must have tk − 1 = BaseLk

+ 4(jk −
1) + 1 ∈ P (e). The only such edge entering vLk(jk) is the literal path edge

(vLk(jk−1), vLk(jk)). Therefore, φ(Lk) =True, satisfying Cc.

This proves that F is satisfiable if and only if (D,P ) is a ”yes” instance, com-

pleting the proof of Theorem 3.2.8.

Observe that the graph constructed in the proof of Theorem 3.2.8 has in-degree

and out-degree bounded by 4, giving rise to the following result:

Corollary 3.2.9 3-PEP is NP-complete, even when restricted to graphs with in-

degree and out-degree bounded by 4 .

Henceforth, we call this restricted problem (3,4)-PEP. We comment that a

slight modification of the construction results in a graph whose in-degree and out-

degree are bounded by 2.

3.2.4 3-Positional SBH is NP-Complete

We show in this section that the problem of sequencing by hybridization with at

most 3 positions per spectrum element is NP-complete, even if each element in the

spectrum is unique. The proof is by reduction from (3,4)-PEP.

Theorem 3.2.10 The 3-PSBH problem is NP-complete, even if all spectrum ele-

ments are of multiplicity one.
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Proof: It is easy to see that the problem is in NP. We reduce (3,4)-PEP to 3-

PSBH. Let (D = (V,E), P ) be an instance of (3,4)-PEP. Let k = �log4 |V |� +
2, p = 3k + 1 and c = p + 1. In order to construct an instance of 3-PSBH

we first encode the edges and vertices of D. In the following, we denote string

concatenation by |. We let σ1 =’A’, σ2 =’C’, σ3 =’G’ and σ4 =’T’.

To each v ∈ V we assign a distinct string in Σk−2. We add a leading ’T’ symbol

and a trailing ’T’ symbol to this string, and call the resulting k-long string the name

of v. We also assign the string ’A . . . A’ of length k to encode a space. Each vertex

is encoded by a 3k-long string containing two copies of its name separated by a

space. We denote the encoding of v by en(v). Each edge (u, v) ∈ E is encoded

by two symbols chosen as follows: Let Nout(u) = {v1, . . . , vl}, where v = vi for

some i, and l ≤ 4. Let Nin(v) = {u1, . . . , ur}, where u = uj for some j, and

r ≤ 4. Then (u, v) is encoded by σi|σj , and we denote its encoding by en(u, v).
We call EN(u, v) ≡ en(u)|en(u, v)|en(v) the representative string of (u, v) (see

Figure 3.5).

A A ATT

The name of v

TT

The name of v

unique sequence

space

unique sequence

σi σjen(v) en(u)

Figure 3.5: The encoding of vertices and edges into representative strings.

We now construct a 3-PSBH instance, i.e., a spectrum S with position con-

straints T , as follows: For every edge (u, v) ∈ E the set S contains all p-long

substrings of the 2p-long string EN(u, v) (c substrings in total). Let si(u,v) denote

the i-th such substring, i = 0, . . . , p. Let P ((u, v)) = {t1, . . . , tl}, 1 ≤ l ≤ 3,

be the set of allowed positions for (u, v). Then we set T (si(u,v)) = {c(t1 − 1) +
i, . . . , c(tl − 1) + i} for all i (note that substring positions are numbered starting

at zero).
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Lemma 3.2.11 Each of the p-long substrings in S is unique.

Proof: Suppose that si(u,v) = sj
(w,z). By construction, either si(u,v) contains a

complete space, or begins with a (possibly empty) suffix of a space. The position

of the space in the first case, or the length of the suffix in the second case, uniquely

determines i, which implies that i = j. Furthermore, si(u,v) contains a name of

a vertex plus a unique symbol identifying an edge entering or leaving that vertex,

implying that (u, v) = (w, z).

We now show validity of the reduction.

⇐ Suppose that π = (v0, v1), (v1, v2), . . . , (vm−1, vm) is a solution of the

(3,4)-PEP instance. We claim that the 3-PSBH instance is also solved by

X = en(v0)|en(v0, v1)|en(v1)|en(v1, v2)| . . . |en(vm−1, vm)|en(vm). By

Lemma 3.2.11, each p-long substring of X occurs exactly once in X. As π

visits all edges in D, we have that S is the p-spectrum of X. The fact that

position constraints are satisfied follows directly from the construction.

⇒ Let X be a solution of the 3-PSBH instance. Consider the m substrings of

length p, whose starting positions in X are integer multiples of c. By the

position constraints, the r-th such substring is an encoding of some vertex

vr, followed by a symbol σir . Denote by wr the ir-th out-neighbor of vr.

We prove that π = (v1, w1), . . . ,(vm, wm) is an Eulerian path compliant

with (D,P ).

Since each string in the p-spectrum of X is unique, π is a permutation of the

edges in D. To prove that π is a path in D we have to show that wr = vr+1

for r = 1, . . . ,m−1. Let x be the p-long substring of X starting at position

(r − 1)c + 2k. We observe that x must begin with the last k symbols of

en(vr), which compose name(vr), followed by σir , some symbol, and the

first 2k − 1 symbols of en(vr+1), which contain name(vr+1). The unique-

ness of name(vr), name(vr+1) and the index ir among the out-neighbors

of vr, implies that wr = vr+1. The claim now follows, since position con-

straints are trivially satisfied by π.
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3.2.5 Interval PSBH is NP-Complete

In this section we study the complexity of Interval PSBH. In Hannenhalli et al.

[1996] it was proved that the related Interval PEP problem is NP-complete, but the

complexity of Interval PSBH was left open. We show below that this problem is

NP-complete.

Theorem 3.2.12 The Interval PSBH problem is NP-complete, even if all sets of

allowed positions are intervals of equal length.

Proof: The Interval PEP problem is NP-complete, even if each vertex has in-

degree and out-degree at most two, and the sets of allowed positions are intervals of

equal length [Hannenhalli et al., 1996]. We reduce this restriction of Interval PEP to

Interval PSBH, analogously to the reduction used in the proof of Theorem 3.2.10.

In the following, we use the same notation as in the proof of Theorem 3.2.10.

Let (D = (V,E), P ) be an instance of Interval PEP, with each vertex having

in-degree and out-degree at most two. Recall, that EN(u, v) denotes a 2p-long

representative string of an edge (u, v) ∈ E (see Figure 3.5). We now construct an

Interval PSBH instance (S,P ′). The spectrum S is the same as in Theorem 3.2.10,

containing the p-long substrings si(u,v) of EN(u, v), for each (u, v) ∈ E. Note,

that this construction of S requires that the in-degree and out-degree of each vertex

in D will be at most four, a condition which is satisfied by the above restriction of

Interval PEP. The set of allowed positions for each substring is defined as follows.

Let (u, v) be an edge ofE, and suppose that P ((u, v)) = [tlow, thigh]. Then, for all

i, we set the interval of allowed positions P′(si
(u,v)) to [c(tlow − 1) + i, c(thigh −

1) + i].

It is enough to show that if X solves the Interval PSBH instance (S,P′), then

there is an Eulerian path compliant with (D,P ). The proof of the other direction

follows immediately from that of Theorem 3.2.10.

We first claim that for any (u, v) ∈ E the string EN(u, v) occurs exactly once

along X. Let r be a (p −1)-long substring of EN(u, v), which is neither a prefix,

nor a suffix of EN(u, v). By construction of EN(u, v), either r contains the name
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of u and an identification of the outgoing edge to v, or r contains the name of

v and an identification of the incoming edge from u. Therefore, similarly to the

proof of Lemma 3.2.11, we have that r occurs only once in EN(u, v), and does

not occur in any other representative string. As s0(u,v), . . . , s
p
(u,v) are the p-long

substrings of EN(u, v), there exists a unique index i ∈ {0, . . . , p − 1} such

that r is a suffix of si(u,v) and a prefix of si+1
(u,v). Since X is a valid solution to the

Interval PSBH instance, it contains exactly one copy Xl . . . Xl+p−1 of si(u,v). Since

i < p, the positional constraints P′ assure that X is not terminated at Xl+p−1.

Hence, Xl+1 . . . Xl+p is a spectrum element whose prefix is r, and therefore, must

be a copy of si+1
(u,v). We conclude, that for each 0 ≤ i ≤ p − 1, the occurrence of

si
(u,v) is immediately followed by the occurrence of si+1

(u,v). The claim follows.

Let EN(u1, v1), . . . , EN(um, vm) be the order of occurrence of representa-

tive strings along X. For every 1 ≤ j < m, EN(uj , vj) and EN(uj+1, vj+1) do

not share any p-long substring (see Lemma 3.2.11). Consequently, their overlap

along X is of length at most p − 1. But |X| = m(p + 1) + p − 1, implying that

for all 1 ≤ j < m, EN(uj , vj) and EN(uj+1, vj+1) have a (p −1)-long overlap.

Hence, en(vj) = en(uj+1) and vj = uj+1. Therefore, denoting v0 = u1, the

string X has the form

X = en(v0)|en(v0, v1)|en(v1)| . . . |en(vm−1)|en(vm−1, vm)|en(vm)

It is easy to see, that π = (v0, v1), . . . , (vm−1, vm) is an Eulerian path compliant

with (D,P ).

3.2.6 A Parameterized Algorithm for Interval PSBH

Hannenhalli et al. have given a linear-time algorithm to solve the parametric ver-

sion of the Interval PEP (and hence, the Interval PSBH) problem, where the pa-

rameter k is an upper bound on the sizes of the intervals of allowed positions for

each edge [Hannenhalli et al., 1996]. We provide a faster algorithm for the prob-

lem, which uses the same basic idea as in Hannenhalli et al. [1996], and runs in

O(mk1.54k) time, improving upon theO(mk3 log k4k) time bound of Hannenhalli

et al. [1996].
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For simplicity, we shall describe our algorithm when all allowed intervals have

length exactly k. Let (D = (V,E), P ) be the input positional graph, where P (e) =
[le, le +k−1] for every e ∈ E. For every 1 ≤ i ≤ m define i ≡ max{i−k+1, 1}
and i ≡ min{i + k − 1,m}. For every 1 ≤ i ≤ m define δi ≡ {e ∈ E : le = i}
and Δi ≡ {e ∈ E : i ∈ P (e)}. That is, Δi is the set of edges for which position i

is allowed.

The naive approach to the problem would be to try all possible Eulerian paths

inD, and test for each one whether it is compliant with P . However, the number of

Eulerian paths in D might be exponential (in m). Instead, we iteratively construct

for every i = 1, . . . ,m+ 1, a list Φi of pairs (v, S), such that v is the last vertex

of some path of length i − 1, and S is the list of edges that may extend the path

from v. The size of each list Φi can be at most exponential in k, and this leads to

the improved bound. The algorithm is summarized in Figure 3.6.

Compute δi for all i.

If for some i, |δi| > k then return False.

Initialize Φ1 ← {(v, δ1) : ∃w, (v,w) ∈ δ1}, Φm+1 ← ∅.
Initialize Δ1 ← δ1, i← 1.

While Φi �= ∅ and i ≤ m do:

i← i+ 1.

Δi ← Δi−1 ∪ δi \ δi−1.

If |Δi| ≥ 2k then return False.

Φi ←
{

(w,S ∪ δi \ {(v,w)}) :
(v, S) ∈ Φi−1, (v,w) ∈ S,
S ∩ δi−1 ⊆ {(v,w)}

}
.

If Φm+1 �= ∅ then return True.

Else return False.

Figure 3.6: An algorithm for Interval PEP.

The following lemma, which is mentioned in Hannenhalli et al. [1996], is cru-

cial for the analysis of the algorithm. The subsequent theorem proves the correct-

ness of the algorithm.
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Lemma 3.2.13 If (D,P ) has a compliant Eulerian path, then |Δi| ≤ 2k − 1 for

all i.

Proof: Let π be an Eulerian path compliant with (D,P ). Then for all i: Δi ⊆
{π(i), . . . , π(i)} .

Theorem 3.2.14 The algorithm returns True if and only if there is an Eulerian

path compliant with (D,P ).

Proof: Let us call a pair (w,S) i-valid if there exists a path {w1, . . . , wi = w}
in D such that:

1. j ∈ P ((wj , wj+1)) for all 1 ≤ j < i.

2. S = Δi \ {(w1, w2), . . . , (wi−1, wi)}.

3.
⋃i−1

j=1 δj ⊆ {(w1, w2), . . . , (wi−1, wi)}.

Intuitively, (1) ensures that all edges in the path occupy allowed positions, (2)

ensures that the next (i-th) edge is both allowed for position i, and was not used

already, and finally, (3) ensures that any edge that had to be used before position

i, was indeed used. We first prove by induction on i, that Φi is the set of all

i-valid pairs. The case i = 1 is obvious. Suppose the claim holds for i − 1. By

the induction hypothesis, Φi−1 is the set of all (i−1)-valid pairs. By definition,

Φi = {(w,S ∪ δi \ {(v,w)}) : (v, S) ∈ Φi−1, (v,w) ∈ S, S ∩ δi−1 ⊆ {(v,w)}}.
The claim follows.

If π is an Eulerian path compliant with (D,P ), then π(i) ∈ Δi for all 1 ≤ i ≤
m, and therefore, (v, ∅) is an (m+1)-valid pair for the vertex v at which π ends.

On the other hand, if (v, ∅) is an (m+1)-valid pair, then there exists a path in D

which traverses all edges and satisfies the positional constraints.

We now analyze the complexity of the algorithm. To this end, we define the

sets Ψi ≡ {S : ∃w, (w,S) ∈ Φi} and Vi ≡ {v : ∃S, (v, S) ∈ Φi}.

Lemma 3.2.15 For each i there exists a constant si, such that all sets S ∈ Ψi

satisfy |S| = si.
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Proof: The proof is by induction on i. Correctness for i = 1 is obvious. Suppose

the claim holds for i − 1. Then by definition, for each S ∈ Ψi, there exists a set

S′ ∈ Ψi−1 such that |S| = |S′| + |δi| − 1. Hence, si = si−1 + |δi| − 1, which

proves the claim for i.

Corollary 3.2.16 For all i, |Ψi| = O( 4k
√

k
).

Proof: Every set S ∈ Ψi satisfies S ⊆ Δi. Hence, using Lemma 3.2.13

|Ψi| ≤
(|Δi|

si

)
≤
(2k−1

k

)
= O( 4k

√
k
).

Theorem 3.2.17 The algorithm can be implemented inO(mk1.54k) time andO(m+
k1.54k) space.

Proof: The initialization of δi for all i takes O(m) time and space, since∑m
i=1 |δi| = m. We sort all edges in E according to their first allowed position,

breaking ties arbitrarily, and renumber the edges e1, . . . , em in this order. This

takes O(m) time using bucket sort. We also compute in O(m) time the numbers

n(ei) ≡ i (mod 2k − 1), for each ei ∈ E. Hereafter, we assume that |Δi| < 2k
for all i, as otherwise the algorithm aborts returning a negative answer. A key prop-

erty of the numbering n(·) is that for each Δi, if e, e′ ∈ Δi then n(e) �= n(e′). This

follows since the edges in Δi must appear contiguously in the order e1, . . . , em,

and |Δi| ≤ 2k − 1.

We use the following data structure to keep Δi and Φi:

• Let v1, . . . , vn be an arbitrary ordering ≺ of the vertices in V . Δi is kept as

a linked list of edges, sorted lexicographically such that (x1, x2) < (y1, y2)
if and only if x2 ≺ y2, or x2 = y2 and x1 ≺ y1.

• For each v ∈ Vi we keep a linked list Li(v) containing all sets S ∈ Ψi such

that (v, S) ∈ Φi. We represent a subset S ⊆ Δi = {ei1, . . . , ei|Δi|} by a

(2k − 1)-bit vector ci(S), whose n(eij)-th bit is one if and only if eij ∈ S.

The initialization of Φ1 requires constructing O(k) linked lists, each containing

the (2k − 1)-bit vector c1(Δ1). This takes O(k2) time. The computation (and

sorting) of Δi+1 from Δi takes O(k log k) time.
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The construction of Φi+1 from Φi can be done as follows: We consider the

edges in Δi one at a time according to their lexicographic order. Recall, that these

edges are sorted so that edges ending at the same vertex occur consecutively. Thus,

for each w ∈ Vi+1 we can consecutively traverse all edges in Δi that enter w. Note,

that we do not know Vi+1 exactly, but only use the simple fact that Vi+1 ⊆ {w :
∃v, (v,w) ∈ Δi}.

We now construct the linked lists Li+1(w) for every w ∈ Vi+1. For each

(v,w) ∈ Δi and for each S′ ∈ Li(v) we add S = S′ ∪ δi+1 \ {(v,w)} to Li+1(w)
if and only if (v,w) ∈ S′ and S′ ∩ δi ⊆ {(v,w)}. In order to add S, we compute

the bit vector ci+1(S) in O(k) time. To prevent generating duplicate pairs (w,S)
in Li+1(w), we keep an auxiliary 22k−1-bit vector B which is initialized to zero in

the beginning of the algorithm (in O(4k) time). We add ci+1(S) to Li+1(w) if and

only if Bci+1(S) = 0, and in this case we also set Bci+1(S) = 1. When we finish

constructing Li+1(w), we traverse its elements and reset the corresponding bits in

B to zero. If no set was added to any linked list during the iteration, we declare

that the graph has no compliant Eulerian path and halt. Since |Li(v)| = O(|Ψi|)
for each v ∈ Vi, Φi+1 can be computed in O(|Δi| · |Ψi| ·k) time. By Lemma 3.2.13

and Corollary 3.2.16, this amounts to O(k1.54k) time.

We conclude that the time complexity of the algorithm is O(m + k2 + 4k +
mk log k +mk1.54k) = O(mk1.54k). To save space, we reuse the storage area of

Φi and Δi once Φi+1 and Δi+1 have been computed. Hence, the space complexity

of the algorithm is O(m+ k1.54k).

We note, that the algorithm can be modified to generate also one (or all) of the

compliant Eulerian paths, e.g., by keeping a record of the last edge(s) leading to

each i-valid pair. We also note, that our algorithm can be extended to handle the

PEP problem even when the sets of allowed positions for each edge need only be

subsets of fixed-length intervals.
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3.3 Spectrum Alignment: Efficient Resequencing by Hy-

bridization

Recent high-density microarray technologies allow, in principle, the determination

of all k-mers that appear along a DNA sequence, for k = 8 − 10 in a single ex-

periment on a standard chip. The k-mer contents, also called the spectrum of the

sequence, is not sufficient to uniquely reconstruct a sequence longer than a few

hundred bases. We have devised a polynomial algorithm that reconstructs the se-

quence, given the spectrum and a homologous sequence. This situation occurs,

for example, in the identification of single nucleotide polymorphisms (SNPs), and

whenever a homologue of the target sequence is known. The algorithm is robust,

can handle errors in the spectrum and assumes no knowledge of the k-mer mul-

tiplicities. Our simulations show that with realistic levels of SNPs, the algorithm

correctly reconstructs a target sequence of length up to 2000 nucleotides when a

polymorphic sequence is known. The technique is generalized to handle profiles

and HMMs as input instead of a single homologous sequence.

3.3.1 Introduction

In this chapter we propose a new method to reconstruct a DNA target sequence.

The method combines spectrum data (obtainable from a universal DNA chip), a

known homologous reference sequence, and novel computational techniques, simi-

lar to those used for analysis of sequence homology. Section 3.1 provided introduc-

tion to universal DNA arrays and SBH. This section presents additional necessary

background, surveying sequence homology and its computational formulation.

Similar Sequences are Ubiquitous

The understanding that many DNA sequences resemble each other is fundamental

to biology. This similarity is due to the process of evolution: numerous contempo-

rary sequences have evolved by mutations from a single ancestral molecule. Such

related (homologous) sequences exhibit similarity to their unique ancestor, and thus
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to each other. This general scenario is routinely encountered in genome analysis:

• The genomic sequences of all individual organisms of the same species are

almost identical. Current estimates of the variability rate among all hu-

mans, for instance, amount to one Single Nucleotide Polymorphism (SNP)

per 100 − 300 base pairs [National Center for Biotechnology Information,

2000]. Of course, when comparing DNA of a specific individual to the ge-

nomic reference, these two sequences would share the same allele in many

of the polymorphic sites. Hence, the fraction of their base pairs on which

they differ would be considerably smaller.

• Much of the eukaryotic genome is composed of repetitive elements - se-

quences which recur in thousands or millions of copies. Different repeats

are usually 90− 95% identical.

• Various duplications of large genomic segments occurred during the course

of evolution. In some cases, the whole genome was duplicated. This process

created many homology relationships. In particular, duplications which in-

clude coding regions gave rise to several gene copies. At a later stage, these

genes diverged and mutated, forming a gene family.

• The genomes of different, phylogenetically related species have homologous

segments. The rate of sequence identity may approach 100% identity when

comparing highly conserved genomic regions of closely related species, but

may also drop to the twilight zone of near-random expected resemblance, for

more divergent segments, and more distant taxa.

As sequence data accumulates in an accelerated rate, an increasing number of

sequencing targets have a known homologous sequence. This motivates the de-

velopment of new sequencing strategies which utilize homology information. Hy-

bridization has been successfully used for sequencing SNPs given the reference ge-

nomic sequence, using custom made microarrays [Cargill et al., 1999, Hacia et al.,

1999, Hacia, 1999]. To the best of our knowledge, this study is the first proposal to

use standard, universal chips and homology information for sequencing.
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Exploiting Homology Computationally

Sequence similarity is perhaps the most studied issue in bio-informatics (cf. Durbin

et al. [1998b]). The evolution of homologous sequences from a common ancestral

origin is mainly due to nucleotide substitution: a stochastic process which can be

described by a nucleotide substitution matrix [Jukes and Cantor, 1969, Kimura,

1980a]. This description facilitates calculating the likelihood that one sequences is

homologous to another.

Insertions and deletions of nucleotides also occur during evolution of homolo-

gous sequences, though at lower rates. This calls for aligning the two sequences,

i.e., matching pairs of their loci according to the common origin of the paired nu-

cleotides. The well known Smith-Waterman dynamic programming algorithm [Smith

and Waterman, 1981] computes the alignment score with affine gap penalties. Such

a score can be formulated as the log-likelihood of the data using Hidden Markov

Models (HMMs) [Durbin et al., 1998b, chapter 4]. The latter are often explicitly

used to generalize the homology concept, and to model alignment against a family

of sequences [Krogh et al., 1994, Eddy, 1996].

Our Contribution

We describe here a new method for reconstructing the target sequence, by combin-

ing information on a reference sequence with experimental spectrum data obtain-

able from a standard chip. We call the technique resequencing by hybridization,

or spectrum alignment since the algorithm attempts to find the best ”alignment” of

the reference sequence with the spectrum. Technically, this is done by develop-

ing a dynamic programming algorithm which runs on the de-Bruijn graph and the

reference sequence simultaneously. The algorithm is polynomial, and can handle

inexact, probabilistic information on the spectrum, which is common in hybridiza-

tion results. Unlike other algorithms proposed for SBH and its extensions, it does

not assume knowledge of the multiplicities of the k-mers in the sequence. We

also show how to extend our results to handle profiles and HMMs as homology

information, instead of a particular reference sequence,
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The section is organized as follows: Section 3.3.2 gives background on SBH

and on homology, and necessary terminology is presented. In Section 3.3.3 we

provide an algorithm for resequencing by hybridization, allowing mismatches but

no insertions or deletions in the target with respect the reference sequence. Sec-

tion 3.3.4 extends the methods to deal with the general case allowing insertions,

deletions and substitutions . Finally, in Section 3.3.5, we present preliminary re-

sults on simulated data,. and discuss future directions in Section 3.3.6.

3.3.2 Preliminaries

Scoring by the Hybridization Data

Let Σ = {A,C,G, T} be our alphabet, with M = 4 being the alphabet size. We

denote sequences by a string over Σ between angle brackets (〈〉). A k-spectrum of

a sequence T = 〈t1t2 · · · tL〉 is the set of all k-long substrings (k-mers) of T . For

each k-mer 
x = 〈x1x2 · · · xk〉 ∈ Σk, we define T (
x) to be 1 if 
x is a substring of

T , and 0 otherwise. We denote K = Mk.

A hybridization experiment measures, for each k-mer 
x ∈ Σk, the intensity of

ots hybridization signal. For our puspose, the relevant information in such a signal

is the probabilities P0(
x), P1(
x) of this observed intensity assuming T (
x) = 0,

and T (
x) = 1, respectively. We therefore define a probabilistic spectrum (PS)

to be a pair (P0, P1) of functions Pi : Σk �→ [0, 1]. PS is assumed to be the

result of the hybridization experiment, which we analyse. If the experiment were

perfect, i.e., if the probabilities were all zero or one (with P0(
x) + P1(
x) ≡ 1),

then the hybridization data would be translated into a k-spectrum. In such a case we

could perfectly determine the occurrence of a k-mer in the sequence by examining

the hybridization signal. In practice, though, both P0(
x), P1(
x) are positive, and

any deterministic binarization of the hybridization signal will contain errors. Our

algorithms will therefore use the probabilistic data. We assume knowledge of these

error parameters even prior to sequence reconstruction.

Many suggested combinatorial models for SBH assume, for theoretical con-

venience, that the multiplicities of k-mer occurrences are known [Pevzner, 1989,
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Preparata et al., 1999]. This assumption is impractical using current technology

and our algorithm does not rely on it (In fact, when all multiplicities are 1 our

performance improves.)

The de-Bruijn graph is a directed graph Gk(V,E) whose vertices are labeled

by all the (k−1)-mers V = Σk−1, and its edges are labeled by k-mers, E = Σk.

The edge labeled 〈x1x2 · · · xk〉 connects the vertex 〈x1x2 · · · xk−1〉 to the vertex

〈x2 · · · xk〉. Whenever k is clear from context we omit it, referring to the De-

Bruijn graph as G. There is a 1-1 correspondence between candidate L-long target

sequences and (L − k + 1)-long paths in G, whose edge labels comprise the

target spectrum. In case the spectrum data-set is perfect and the multiplicities are

known, omitting all zero probability edges from G one gets one gets Pevzner’s

formulation, i.e., every solution is an Eulerian path [Pevzner, 1989]. For our more

general formulation we devise a scoring scheme for paths, and search for the best

scoring path in G. Hereafter, we interchangeably refer to edges and their labels,

and also to sequences and their corresponding paths. Observe that since k-mers

may re-occur, paths do not have to be simple.

We assume that hybridization results of different oligos are mutually indepen-

dent (see discussion). Hence, the experimental likelihood Le(T̂ ) of a candidate

target sequence T̂ is

Le(T̂ ) = Prob(PS|T̂ ) =
∏

�x∈Σk

PT̂ (�x)(
x) (3.7)

Taking (base 2) logarithm, define w(
x) = log P1(�x)
P0(�x) . Throughout, when handling

probabilities, some of which are perfect, problems of division by zero might occur.

We get around those by implicitly perturbing perfect probabilities to δ and 1 − δ.

We can thus write:

logLe(T̂ ) =
∑

�x∈Σk

logP0(
x) +
∑

T̂ (�x)=1

w(
x) (3.8)

The first term is a constant, independent of T̂ , and is omitted hereafter.
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Let p = e0, . . . , eL−k be the path in G corresponding to T̂ . Then

log L̃e(T̂ ) =
L−k∑
i=0

w(ei) (3.9)

is an approximate likelihood score, deviating from the true likelihood whenever an

edge is revisited along p. L̃e(T̂ ) has the advantage of being easily computable in a

recursive manner:

log L̃e(e0, . . . , el) = log L̃e(e0, . . . , el−1) +w(el) (3.10)

Pevzner assumes perfect hybridization data [Pevzner, 1989]. In this case, every

path inGwhose likelihood score equals one is a possible solution to the SBH prob-

lem, while all other paths have probability zero. Indeed, Pevzner simply discards

improbable k-mers from G. One can handle imperfect data in an analogous man-

ner, by discarding edges with probability smaller than ε. After this procedure, iso-

lated vertices correspond to highly improbable (k−1)-mers, and can be discarded

as well. We denote the resulting graph [G]ε = ([V ]ε, [E]ε), and call its size, [K]ε,
the effective size of the data-set. Observe that |[V ]ε| = O([K]ε), [E]ε = O([K]ε).
Of course, [K]0 = K, but for ε > 0, usually [K]ε � K , so working with [G]ε
considerably reduces complexity. We omit the ε subscript in the sequel.

Scoring by the Homology Information

In this section we show how to use homology information in order to obtain a

prior distribution on the space of candidate target sequences. Assume that the

unknown target sequence T = 〈t1 · · · tl〉 has a known, homologous reference

H = 〈h1 · · · hl〉, without insertions or deletions (indels). This is the case, for

instance, when the target T is a specimen from a population whose reference wild

type H has already been sequenced, and one expects that SNPs will be the only

cause of difference between H and T (statistically, SNPs are much more prevalent

than indels [Wang et al., 1998]). We assume a set of M ×M position specific

substitution matrices M(1), . . . ,M(l) are known, where for each position j along

the sequence:

M(j)[i, i′] = Prob(tj = i|hj = i′) (3.11)
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This is a very general setting. Standard literature discussing nucleotide substi-

tution matrices [Jukes and Cantor, 1969, Kimura, 1980a] assumes all substitution

matrices to be the same, i.e., M(j) = M for all j. More recent studies sup-

port difference between sites for DNA [Yang, 1993b] and protein [Eddy, 1996]

sequences.

The setting just presented implies a distribution on the space of possible target

sequences. This prior distribution for ungapped homology, Du, is explicitly given

for each candidate target sequence T̂ by:

Du(T̂ ) = Prob(T̂ |H) =
l∏

j=1

M(j)[tj , hj ] (3.12)

One may recursively compute:

Du(〈t1 · · · tj〉) = Du(〈t1 · · · tj−1〉) ·M(j)[tj , hj ] (3.13)

We denote L(j)[x, y] ≡ logM(j)[x, y].

3.3.3 Spectrum Alignment

In this section we show how to combine our two sources of information on the

target sequence, i.e., the result, PS , of the hybridization experiment, and the refer-

ence sequence H. We formalize a Bayesian score, which is a composition of the

scores discussed in the previous sections, and present a fast dynamic programming

algorithm to compute this score.

The probability of a candidate solution sequence T̂ , given the information we

have is:

Prob(T̂ |H,PS) =
Prob(H)·Prob(T̂ |H)·Prob(PS|H, T̂ )

Prob(H,PS)
(3.14)

Given T̂ , the hybridization signal is independent ofH:

Prob(PS|H, T̂ ) = Prob(PS|T̂ )

Thus, omitting the constant Prob(H)

Prob(H,PS)
we can write:

Prob(T̂ |H,PS) ∼= Du(T̂ ) · Le(T̂ ) (3.15)
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We shall use the approximated likelihood, L̃e(T̂ ), and after taking logarithms

we obtain the following ungapped score of a candidate target:

Scoreu(T̂ ) = log L̃e(T̂ ) + logDu(T̂ ) (3.16)

We can compute the highest scoring target sequence by dynamic programming.

For each vertex 
y = 〈y1 · · · yk−1〉 ∈ Σk−1, and integer j = k − 1, k, k + 1, . . . , l,
let Su[
y, j] be the maximum score of a j-long sequence ending with 
y aligned to

〈h1 · · ·hj〉. Initialize, for each 
y:

Su[
y, k − 1] =
k−1∑
j=1

L(j)[yj , hj ] (3.17)

Loop over j = k, . . . , l, and for each vertex 
y = 〈y1 · · · yk−1〉 recursively update:

Su[
y, j] = L(j)[yk−1, hj ] + max
e=(�z,�y)∈E

{Su[
z, j − 1] + w(e)} (3.18)

Finally, return:

MAXScoreu = max
�y∈V

Su[
y, l] (3.19)

As in the Smith-Waterman algorithm [Smith and Waterman, 1981], a sequence

T ∗ attaining the optimal score can be reconstructed by standard means from the

matrix Su, saving trace-back pointers to follow the optimally scoring path. The

time complexity isO(lK), since the maximization in (3.18) is over a set of constant

size 4. Note that although the complexity is exponential in k, it is constant for a

given microarray (currently feasible values are k = 8, 9). Working with [G], with

high probability the correct solution will not be missed, but the time complexity

will drop sharply to O(l[K]).

A crucial issue for the practicality of this algorithm is its space requirement.

Computing the optimal score alone requires space which is linear in the (effective)

size of the hybridization experimental data, that isO([K]) space. However, in order

to reconstruct the optimal path, we need to record trace back pointers for the full

l × [K] matrix. By following the paradigm of Hirschberg 1975 for linear-space

pairwise alignment, we provide an algorithm which requires only linear space.
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The reduced space complexity is traded for time complexity, which increases by

an O(log l) factor.

For each position j = l, l − 1, . . . , k, k − 1, we can decompose the score of

the entire sequence. We present the total score as a sum of two expressions: the

contribution of its (j − k + 1)-prefix, which equals the score of this prefix com-

puted by Su, plus the contribution of the corresponding suffix. Formally, for each

vertex 
y = 〈y1 · · · yk−1〉 ∈ [V ] let Ru[
y, j] be the maximum contribution to the

score of a (l−j+k−1)-long sequence beginning with 
y aligned to 〈hj−k+2 · · · hl〉.
Initialize, for each 
y:

Ru[
y, l] = 0 (3.20)

Loop over j = l − 1, l − 2, . . . , k − 1, and for each vertex 
y = 〈y1 · · · yk−1〉
recursively update:

Ru[
y, j] = max
e=(�y,�z)∈E

{Ru[
z, j + 1]

+ w(e)
+ L(j+1)[zk−1, hj+1]}

(3.21)

Observe that, for all k − 1 ≤ j ≤ l

MAXScoreu = max
�y∈V

{Su[
y, j] +Ru[
y, j]} (3.22)

One can use Equation 3.22 to decompose the problem into two similar prob-

lems, of half its size. Recursively solving these sub-problems gives a a divide-and-

conquer approach for finding the optimal sequence. The linear space algorithm is

therefore as follows:
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1. If l is smaller than some constant C:

solve the problem directly, according to

the dynamic program of Equation 3.13.

Otherwise:

2. Set m = l+k−1
2 .

3. For each j = k − 1, k, . . . ,m:

Compute Su[
y, j] for all 
y, re-using space.

4. For each j = l, l − 1, . . . ,m:

Compute Ru[
y, j] for all 
y, re-using space.

5. Find 
ym = argmax
�y∈V

{Su[
y,m] +Ru[
y,m]},
thereby computing: MAXScoreu, by (3.22).

6. Recursively compute:

(a) The optimal sequence aligned to 〈h1 · · ·hm〉 ending with 
ym.

(b) The optimal sequence aligned to 〈hm · · ·hl〉 beginning with 
ym.

Observe, that for each 
y, j, the values of Su[
y, j] and Ru[
y, j] are computed a

total of log l times. Thus the algorithm takes O([K]l log l) time and O([K]) space

using the effective spectrum.

3.3.4 Handling Gaps

Deletions

In this section we assume that the unknown target sequence T = 〈t1 · · · tl′〉 is

obtained from its reference H = 〈h1 · · ·hl〉, by substitutions and deletions only,

and base insertions do not occur. Insertions in the target are, of course, equivalent

to deletions in the reference and vice versa, but since the reference is known we

consider all sequence editing operations (mutations) to have occurred in the target

sequence.

Although a model of homology without insertions is unrealistic, we include
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discussion of this case due to the simplicity and efficiency in which deletions fit

into our model. The general case, allowing insertions, will be described in the next

subsection.

We begin with a few notations. Denote the probability of initiating a gap right

before hj (aligning hj to space) is 2αj . Similarly, βj is the logarithm of the proba-

bility for gap extension at hj . Also define β̂j = log(1 − 2βj ), α̂j = log(1 − 2αj ).
To overcome boundary problems at the ends of the sequence, we extend the alpha-

bet by including left and right space characters: Σ = Σ ∪ {�, 
}. We augment the

reference sequence by the string �k on its left and 
k on the right. We extend the

substitution matrix by using probabilities that force alignment of each of �, 
 to

itself. Formally, we define:

Σk−1 = Σk−1 ∪ {
x
z|
x = �j , 
z ∈ Σk−1−j}
∪ {
z
x|
z ∈ Σj, 
x = 
k−1−j}

(3.23)

We arbitrarily set w(
y) to 0 for each 
y ∈ Σk−1 \ Σk−1. Thus, the weighted de-

Bruijn graph is naturally extended over Σk−1, and so is [G] = ([V ], [E]), its effec-

tive subgraph. Hereafter, we use the notation [G] for the extended graph.

For each 
y = 〈y1 · · · yk−1〉 ∈ [V ], j = k − 1, k, k + 1, . . . , l, let Sd[
x, j] be

the maximum score of aligning a sequence ending with 
y to 〈h1 · · ·hj〉 where hj

is aligned to a gap (and yk−1 is aligned to some hi, i < j). Further let Td[
x, j] be

the maximum score of aligning a sequence ending with 〈y1 · · · yk−1〉, to 〈h1 · · ·hj〉
where hj is aligned to yk−1. Initialize, for each 
y:

Sd[
y, k − 1] = −∞; (3.24)

T d[
y, k − 1] =

{
0 
y = �k−1

−∞ otherwise
(3.25)

Loop over j = k, . . . , l, and for each 
y = 〈y1 · · · yk−1〉 ∈ [V ], recursively update:

Sd[
y, j] = max {T d[
y, j − 1] + αj, S
d[
y, j − 1] + βj} (3.26)

T d[
y, j] =L(j)[yk−1, hj ]

+ max
e=(�z,�y)∈E

{
w(e) + max

{
T d[
z, j − 1] + α̂j

Sd[
z, j − 1] + β̂j

}}
(3.27)
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Finally, return:

MAXScored = T d[
k−1, l] (3.28)

The complexity of this algorithm is still O(l[K]) and a linear space variant can

be obtained, similarly to the one presented previously.

Insertions and Deletions

In this subsection, and in the following one, we present two distinct algorithms for

sequence reconstruction assuming both insertions and deletions with respect to the

reference sequence. The algorithm we present in this section is a relatively simple

extension of the dynamic programs we have presented thus far. The only change

is that a different weighted graph is used, forcing higher complexity. In the next

section we will also present a faster algorithm.

The algorithm presented in the previous section computes a maximum-likelihood

target sequence, when the log-likelihood is a sum of edge weights along the weighted

de-Bruijn graph (G,w), and log-probabilities derived from homology. In this sec-

tion, we compute a different weighted graph, (G′, w′). Substituting (G,w) for

(G′, w′), the algorithm described in the previous section solves the problem vari-

ant with both deletions and insertions.

We introduce some more notation. Denote by Tj the target prefix whose last

nucleotide is aligned to hj in the reference sequence. Further denote by aj (re-

spectively, bj) the log-probability of initiating (extending) an insertion in the target

after Tj , and define âj = 1− aj ,b̂j = 1− bj .

Consider the weighted graph (G,w). Define the K ×K matrix W as follows:

W [
x, 
y] =

⎧⎪⎨⎪⎩ 2w(�y) The (k−1)-suffix of 
x

is the (k−1)-prefix of 
y.

0 Otherwise.

(3.29)

W i[
x, 
y] is thus the probability of moving from 
x to 
y along i edges. The

probability of an insertion of length i after Tj is ajb
i
j b̂j . Suppose that the prefix Tj
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ends with 
x. Then ajb
i−1
j b̂jW

i[
x, 
y] is the probability of Tj+1 ending with 
y and

being i nucleotides longer than Tj . We are now ready to compute the matrix W′,

that governs the stochastic progression from Tj to Tj+1:

W ′ = âjW + ajbjW
2b̂j + ajb

2
jW

3b̂j · · · (3.30)

= âjW + ajbj b̂jW
2
∑
i≥2

bi−2
j W i−2 (3.31)

= âjW + ajbj b̂jW
2(I − bjW )−1 (3.32)

We define a new weighted graph (G′, w′). The vertex set of G is also the vertex

set of G′. The edge set E′ of G′ is the set of all pairs (
x, 
y) with W ′[
x, 
y] > 0.

Each such edge e = (
x, 
y) is associated with a weight w′(e) = logW ′[
x, 
y]. One

can apply the algorithm for deletions only, but use (G′, w′) instead of (G,w). This

solves the problem for insertions and deletions.

Note that in contrast to G, degrees in G′ are not bounded by 4. Therefore,

computing each dynamic program cell has complexity O(K) in the worst case,

with the total complexity of the algorithm being O(l|E′|). Again, considering only

the effective size of the graph allows more efficient computation, taking O(l|[E′]|).
Unfortunately, this is may be Ω(l[K]2) in the worst case.

A Faster Algorithm

A general probabilistic model of homology can facilitate a more efficient algorithm

that allows both insertions and deletions. Hidden Markov Models (HMMs) were

proved useful for profiling protein families [Krogh et al., 1994]. We use a similar

formulation to describe homology between nucleotide sequences. The reference,

along with the statistical assumptions, actually creates a profile.

Below, we briefly sketch the model. The reader is referred to Durbin et al.

[1998b, chapter 5] for details. The model assumes a set Q of Markov chain states

with a predefined set of allowed transitions between them. For each level (position

along the profile) j = 1, . . . , lQ, Q includes three states: Mj (match), Ij (insert),

and Dj (delete). Mj and Dj can be reached from the three (j−1)-th level states.

Ij can be reached from the three j-th level states (including a self-loop). Transition
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probabilities are as described in previous sections, e.g., aj = Prob(Mj �→ Ij).
Additionally, each insert or match state, q, induces a vector of emission proba-

bilities Mq, where Mq[i] is the probability that the target nucleotide is i. We

denote Lq[i] ≡ 0 for q = Dj , Lq[i] ≡ logMq[i] otherwise. We write lpb(X ) ≡
logProb(X ) for short.

The dynamic programming scheme we use for ungapped homology cannot be

directly modified to handle the HMM because of the insertion loops. To wit, we

generalize this scheme by an additional dimension, which denotes the position

along the target sequence.

Define a three dimensional array S, where for each q ∈ Q, 
y = 〈y1 · · · yk−1〉 ∈
[V ], r = k, . . . , L let S[q, 
y, r] be the maximum score of an r-long sequence

ending with 〈y1 · · · yk−1〉, whose alignment to the profile ends in q. Initialize:

S[qstart, �
k−1, k − 1] = 0 (3.33)

S[q, 
y, k − 1] = −∞ for other

values of 
y, q
(3.34)

Loop over r = k, . . . l, and for each 
y = 〈y1 · · · yk−1〉 ∈ [V ], r ≤ lQ, recursively

update:

S[q, 
y, r] = Lq[yk−1]
+ max

e=(�z,�y)∈E

q′|q′ �→q

{S[q′, 
z, r − 1]

+lpb(q′ �→ q)
+w(e)}

(3.35)

Finally, return:

MAXScore = max
l
{S[qend, 


k−1, l]} (3.36)

Let L be some known bound on the size of the target sequence. Naive im-

plementation of this algorithm requires O(lQ · [K] · L) time and space. By the

means presented earlier, the complexity of this algorithm can be reduced to O(lQ ·
[K] · L logL) time and O(lQ · [K]) memory. Furthermore, one can consider the

dynamic program as filling a lQ × L matrix, with a [K]-long vector in each matrix
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cell. Since all values far from the main diagonal of this matrix should be negligi-

ble, we can settle for computing only values with distance smaller than R to the

main diagonal, reducing the complexity to O(R(lQ + L) · [K] · logL) time and

O(R(lQ + L) · [K]) space.

3.3.5 Computational Results

The algorithm was implemented and tested on simulated data. Each simulation

scenario we benchmarked specified the total sequence length, mutation probabil-

ities, hybridization error (false positive/negetive rate), and probe length, k. As a

reference, we used prefixes of real coding sequences: For each simulation scenario

we collected statistics from 100 such sequences, arbitrarily taken from GenBank’s

collection of human transcripts. Sequences with long repeats were discarded. For

testing the reconstruction of long targets we pooled (concatenated) several tran-

scripts.

Each simulation run was performed as follows:

1. Introduce mutations in the reference sequence R and obtain the target se-

quence T .

2. Form the probabilistic spectrum of T .

3. Reconstruct the target given the reference R and the spectrum.

4. Compare the reconstructed sequence to T .

For simplicity, substitutions by different nucleotides were equiprobable, and muta-

tion rates remained fixed along the sequence. In some of the simulation scenarios

we further restricted mutations to nucleotide substitutions only.

We used a single parameter p for the hybridization error, setting Pi(
x) = 1 −
p if T (
x) = i. All probabilistic parameters were constant, i.e., position/k-mer

independent.

We quantified the performance by the following figures of merit:
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1. Perfect reconstruction rate - The fraction of runs for which the target se-

quence was perfectly reconstructed.

2. Average sequencing error - The fraction of base-calling errors made by our

algorithm.

We focused our simulations around a basic scenario. This scenario assumed

hybridizaion to an all-8-mer array, with p = 0.05 false positive and false negative

rate. The differences between the target and reference sequences were assumed to

be substitutions only, with SNP rate being 1:200bp. To examine effects of different

parameters on performance, we performed several series of simulations. In each

such series, we changed one or more parameter values while keeping the rest at

their values as in the basic scenario.

Our simulations check perfect data with 6-mer probes (Figure 3.7), 8-mer data

with varying hybridization error (Figure 3.8) varying mutation rate (Figure 3.9)

varying probe length (Figures 3.10 and 3.12), varying target length (Figure 3.11)

and indel data with varying hybridization error (Figure 3.13). A discussion of the

results will be given in Section 3.3.6.

The algorithm was implemented in C++ and executed on Linux and SGI ma-

chines. Running times, on a Pentium 3, 600MHz machine, were roughly 0.12l log l
seconds for an l-long reference sequence on a full 8-mer array (ranging from

roughly 7 minutes for a 500bp-long sequence to 2.5 hours for 6Kb). Only the

main memory was used, with the application consuming at most 40Mb. As a first

implementation, we did not reduce the graph to its effective size. This would of

course reduce both space and time dramatically, at the expense of possibly missing

the truely maximal scoring sequence.

3.3.6 Discussion

We have developed a new method that combines spectrum data and homology

information in order to algorithmically reconstruct a target sequence. The method

is general enough to allow for insertions and deletions, hybridization errors, and

a profile or a HMM instead of a single reference sequence. As the spectrum data
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Figure 3.7: Impact of target length on perfect reconstruction rate (left) and average

sequencing error (right) on errorless 6-mer data. Other simulation parameters are

as in the basic scenario.

needed originates from standard chips that can easily be mass produced, the cost of

generating the hybridization data can potentially be reduced to a very small fraction

in comparison to current special-purpose chips.

The algorithm was implemented and tested, and simulation results are reported

here. With perfect hybridization data, even 6-mer arrays suffice to achieve read

length of 700bp, which is competitive to gel-based sequencing (see Figure 3.7).

Such arrays are small enough for cost-effective manufacturing, and the low spot

density helps achieving high quality hybridization.

With 8-mer arrays, assuming practical levels of hybridization error, once can

resequence 2.5-3kb with success rate of about 90% and basecall error rate less than

1:10,000 (see Figure 3.8). These results are quite robust to changes in hybridization

error rate. Observe, that high false negative rate is more problematic to handle than

high false positive rate. This is counter-intuitive: The number of probes that do

not occur along the target is larger by an order of magnitude than the number of

probes that do. Hence, each increase in false positive rate implies many more false



3.3. EFFICIENT RESEQUENCING BY HYBRIDIZATION 87

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

p
e
rf

e
ct

 r
e
co

st
ru

ct
io

n
 r

a
te

target length

Noisy 8-mer Data - Perfect Reconstruction

1%FP, 1%FN
5%FP, 5%FN
5%FP, 1%FN
9%FP, 1%FN

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 -

4
m

is
ca

lle
d
 b

a
se

s 
(x

1
0
  
  
 )

target length

Noisy 8-mer Data - Miscalled Bases

1%FP, 1%FN
5%FP, 5%FN
5%FP, 1%FN
9%FP, 1%FN

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

p
e
rf

e
ct

 r
e
co

st
ru

ct
io

n
 r

a
te

target length

Noisy 8-mer Data - Perfect Reconstruction

19%FP, 1%FN
10%FP, 10%FN
1%FP, 19%FN

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 -

4
m

is
ca

lle
d
 b

a
se

s 
(x

1
0
  
  
 )

target length

Noisy 8-mer Data - Miscalled Bases

19%FP, 1%FN
10%FP, 10%FN

1%FP, 19%FN

Figure 3.8: Impact of different false positive (FP) and false negative (FN) rates, on

perfect reconstruction rate (left charts) and average sequencing error (right charts),

for targets of different lengths.

signals than the same increase in false negative rate. On a closer look, we suggest

that most of the false positive signals concern edges of the de-Bruin graph that

are far from hi-scoring vertices, thus they do not damage performance as much as

false negatives do. This preference for the type of error is of practical value for the

implementation of this method, as signal digitization methods usually offer false

positive/negative tradeoffs.

Higher mutation rates still comfortably allow sequencing 1kb, although per-

formance for 2.5kb severely deteriorates (see Figure 3.9). This enables, e.g., se-

quencing a chimpanzee gene using our method, with the available human ho-

mologous gene as a reference sequence. Observe, that the plots show a non-
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Figure 3.9: Impact of mutation rate, for different target lengths, on perfect recon-

struction rate (left) and average sequencing error (right). Other simulation param-

eters are as in the basic scenario.

monotonous trend. This is not a stochastic error, but rather an artifact of our

simulation and probabilistic model, as we briefly explain. Consider the score eval-

uation of two sequences, one of which is identical to the reference sequence, while

the other has a single mismatch. To compare these scores one needs to exam-

ine the weight loss due to the indroduction of that mismatch, versus a possible

weight gain due to probes that overlap the mismatch position and support the mis-

matched sequence over the wild-type. However, our naive model of hybridization

error assumes constant error probabilities, and thus constant weight contribution to

every probe. Therefore, that comparison boils down to whether the discrete num-

ber of mismatch-supporting probes is greater than a certain integer threshold. This

threshold is a monotone, but piecewise constant function of the mismatch probabil-

ity. Thus, while the probability of mutation increases gradually, the algorithm will

compensate for that increase by changing the threshold only at discrete values. The

non-monotonous plots we see are due to the resulting non-continuous behavior. (In

applications to real data, with mismatch probabilities that are not constant but vary
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Figure 3.10: Impact of probe length for different target lengths on perfect recon-

struction rate (left) and average sequencing error (right). Other simulation param-

eters are as in the basic scenario.

depending on probe contents and real-valued hybridization signal, we expect this

artifact to be negligible.

When comparing arrays with probes of increasing lengths (see Figures 3.10, 3.11,

and 3.12), the expected increase in performance is evident. Observe, that while in-

crementing the probe length by one quadruples the microarray size, in practice it

only doubles the length of reconstructible target. This factor of two corresponds

to theoretical bounds on feasible target length in classical SBH [Pevzner and Lip-

shutz, 1994].

Finally, Figure 3.13 demonstrates performance in the presence of insertions

and deletions. Even in this case we are able to achieve good performance at 2kb,

which is four times the read length in a standard gel-based sequencing machine.

This study constitutes a proof of concept, and there is much room for further

work. Modifications and improvements are possible both in the theoretical analy-

sis, and in the implementation details, especially in view of some of the practical
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Figure 3.11: Impact of target length for different probe lengths on perfect recon-

struction rate (left) and average sequencing error (right). Other simulation param-

eters are as in the basic scenario.

considerations. On the algorithmic side, there are several possible promising re-

finements and future developments:

• It is clear that one can do better by using the exact likelihood score, instead

of the approximate score that we give. Refined examination of the errors

made by our application suggests that post-processing the output sequence,

locally modifying it in search for the optimum point of the exact score, may

correct many of these errors.

• For simplicity, we imposed on the problem the assumption of independence

of hybridization signals from different oligos, leading to Equation 3.7. This

obviously oversimplifies the problem. For instance, oligonucleotides cor-

responding to k-substrings which overlap along the target sequence would

have correlated hybridization results. Thus, replacing the independence as-

sumption by a more realistic one will render the results more practical.

• Another promising direction is sequence profiles, which have been exten-
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Figure 3.12: Impact of probe length on performance. The performance is measured

by the reconstructible target length given specific fidelity requirements. Solid line:

at most 1:10000 miscalled bases. Dotted line: perfect reconstruction rate of at least

0.9. Other simulation parameters are as in the basic scenario.

sively used for protein sequences [Krogh et al., 1994]. Our method can be

applied, as is, also for sequencing a target whose reference is not a single re-

lated sequence, but rather an HMM profile (for nucleotides, instead of amino

acids).

Practical aspects suggest several extensions to the basic procedure, in order to

render it applicable to real-life data:

• Though the algorithm is polynomial for fixed k, its dependence on k is ex-

ponential (4k), which makes it rather slow in practice. Using the effective

size of the graph instead, as suggested, would economize on time and space
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Figure 3.13: Impact of indels: The plots show the effect of target length, for differ-

ent false positive and false negative rates, on perfect reconstruction rate (left) and

average sequencing error (right), when indels are introduced. Deletion and inser-

tion probabilities were set to 1
3 and 1

10 , respectively, of the substitution probability.

Other simulation parameters are as in the basic scenario.

considerably. This may be necessary for incrementing k, as microarray tech-

nology progresses.

• Since the target is usually a PCR product, its primer sequences are known.

This information can and should be used when initializing and terminating

our dynamic program.

• The target is usually diploid DNA, and might be a heterozygote. The al-

gorithm should thus be extended to handle a hybridization signal from two

sequences.

• When searching for mutations in many candidate genes, or exons, one could

use pooling of hybridization targets. The algorithm can be easily modified to

re-sequence several short targets in one experiment, instead of a single long

one.
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• Despite their mathematical elegance, all-k-mer chips have practical prob-

lems. Oligonucleotides with different GC-content impose conflicting con-

straints on the experiment temperature, and some are unusable due to self

loops. Our algorithm can be modified to work with a collection of equi-

temperature oligos, instead of equal-length ones, and to compensate for de-

funct k-mers.
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Chapter 4

Reconstructing a Physical Map

from Optical Data

This chapter concerns Optical Mapping: a revolutionary method for obtaining

maps of enzymatic cleavage sites along large DNA molecules. The method is

based on immobilization of many copies of the target molecule in elongated form.

Enzymes that perform site-specific cleavage (restriction) are then applied, and each

cleaved, fluorescent molecule is then photographed, to detect cleavage sites. Unfor-

tunately, the orientation of each photographed molecule is unknown. Furthermore,

the reported list of cleavage sites suffers from inaccurate locations, false positives

and false negatives. The computational problem is to reconstruct the true map of

cleavage sites from this noisy data. We define a maximum-likelihood formalization

of this problem, and devise an appropriate algorithm. We implement our methods

and demonstrate performance on a blind test using real life data. This study has

been published in [Karp et al., 1999, 2000].

Optical mapping is a novel technique for generating the restriction map of a

DNA molecule by observing many single, partially digested copies of it, using

fluorescence microscopy. The real-life problem is complicated by numerous fac-

tors: false positive and false negative cut observations, inaccurate location mea-

surements, unknown orientations and faulty molecules. We present an algorithm

for solving the real-life problem. The algorithm combines continuous optimization

95
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and combinatorial algorithms, applied to a non-uniform discretization of the data.

We present encouraging results on real experimental data, and on simulated data.

4.1 Introduction

Even in the era of whole genome methods, the mapping of restriction sites still

plays an important role in genomic analysis and motivates further development of

mapping procedures [Cai et al., 1998, Lin et al., 1999]. Optical mapping is a novel

technique for obtaining restriction maps [Samad et al., 1995a, Cai, 1996, Schwartz

et al., 1993, Meng et al., 1995, Samad et al., 1995b, Jing et al., 1998, Cai et al.,

1998, Lin et al., 1999]. In an optical mapping experiment, many copies of the

target DNA molecule are elongated and attached to a glass surface. Restriction

endonuclease enzymes are applied to the molecules, partially digesting them. At

the cleaved cut sites the two cleaved ends of the molecule coil away from each

other due to the elasticity of DNA. The molecules are stained and photographed.

Molecules appear in the image as lines separated by gaps at cut locations. For each

molecule the locations of these cuts along the DNA are recorded. The goal is to

deduce from this data the correct locations of all restriction sites.

Optical mapping has several advantages over traditional mapping methods: It

can provide high resolution maps which determine physical landmarks in the DNA;

it is insensitive to repetitions in the sequence, and can be automated to a consid-

erable extent (see also Schwartz and Samad [1997]). Moreover, since the data

preserves the linear order of the sites, it is more informative than the data from

traditional gel-based restriction mapping methods. Currently, BAC sized clones

are routinely mapped, and it is possible to map molecules of up to several hundred

Kb. A variant of this technique in which cut sites in sub-fragments of the target are

recorded was successfully used recently to obtain a 3.2Mb map of Deinococcus

radiodurans [Lin et al., 1999].

In this chapter we address the basic optical mapping technique, where cuts

are recorded with respect to the complete target molecule. Even in that case, the

deduction of the true restriction sites is not straightforward, due to the following

factors:
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• An observed cut may not correspond to a restriction site. We call such a cut

false.

• No cut may be observed at a true restriction site, due to partial digestion.

• The orientation of each molecule is unknown, i.e., observed cut locations are

known only up to complete reversal of the molecule.

• There is a sizing error when measuring observed cut locations.

• There are molecules on which the observed cuts do not correspond to real

sites in any orientation, and instead produce “random” results. We call these

molecules faulty, and the other molecules proper.

Optical mapping uses a number of copies of the target molecule ranging be-

tween several dozen and several hundred. The digestion rate, false cut rate, and the

sizing error vary considerably, even when comparing restriction sites in the same

experiment [Cai, 1996].

Various combinatorial formulations of the optical mapping problem have been

proven NP-complete [Anantharaman et al., 1997, Parida and Mishra, 1998, Muthukr-

ishnan and Parida, 1997] and even hard to approximate [Parida, 1999]. Bayesian

approaches using global optimization have been applied in Anantharaman et al.

[1997] and Lee et al. [1998], where a probabilistic model of the experiment is

set up, and global optimization techniques are used to find the most probable pa-

rameters of this model, which comprise the desired solution. The implementation

reported in Anantharaman et al. [1997] is successfully used in practice for analy-

sis of real laboratory data. Other studies [Karp and Shamir, 2000, Danč́ik et al.,

1997, Muthukrishnan and Parida, 1997] discretize the input, and devise combina-

torial solution methods. The algorithm of Karp and Shamir [2000] has a proven

performance guarantee under a simple probabilistic model of the data.

In this chapter we describe a new strategy combining the combinatorial ap-

proach with the global optimization approach. We first determine the orientations

of the molecules and then determine the restriction sites by applying continuous

optimization in the space of certain model parameters, as done in Anantharaman

et al. [1997] and Lee et al. [1998]. In order to orient the molecules we adapt a



98 CHAPTER 4. OPTICAL MAPPING

combinatorial algorithm from Karp and Shamir [2000]. However, instead of us-

ing a fixed, uniform discretization of the data as in Karp and Shamir [2000], we

use a nonuniform discretization based on identifying certain informative intervals

derived from the data itself. The chief innovation in this chapter is the use of con-

tinuous and discrete algorithmic methods to enhance each other.

Our method was applied in a blind test to eight examples provided by the lab

of David Schwartz at New York University. The results show that we determine

the orientation of the molecules correctly, enabling us to identify almost all the

restriction sites. Occasional misestimation of the number of restriction sites can

probably be alleviated by finer tuning of the algorithm. We also present results on

simulated data, for several different choices of simulation parameters.

The chapter is organized as follows: Section 4.2 outlines the general strategy of

our algorithm. In Section 4.3 we present our probabilistic model. Sections 4.4, 4.5,

and 4.6 describe the three major stages in our algorithm. Section 4.7 gives results

on experimental and simulated data.

4.2 General Strategy

4.2.1 Disadvantages of the Discrete Approach

We sketch the signature method that was suggested in Karp and Shamir [2000] as

a method of determining the locations of restriction sites in a discretized version of

the problem. We assume that the data is scaled so that the target molecule and each

of its copies extends over the interval [0, 1]. This interval is partitioned into n equal

sections, each of which may contain a single restriction site (typically, n = 200).

Sections k ≤ n
2 and n+ 1− k are called conjugate. Thus each conjugate pair con-

tains a section from the left half of the target molecule and a symmetrically placed

section from the right half of the molecule. For each conjugate pair, the numbers

of molecules with no observed cuts, one observed cut and two observed cuts are

determined. On the basis of this information, the conjugate pairs are divided into

three types: those likely to contain no restriction sites, those likely to contain two

restriction sites, and those likely to contain one restriction site. The conjugate pairs
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of the first two types are set aside, and the remaining conjugate pairs are then di-

vided into two classes such that two pairs are in the same class if their restriction

sites appear to lie in the same half of the target molecule, and in the opposite classes

otherwise. The details will be omitted here, but the idea is that two conjugate pairs

should be placed in the same class if, for those copies of the molecule in which

each of the two conjugate pairs contains one observed cut, the observed cuts tend

to occur in the same half of the molecule. We refer to this process as resolving

the conjugate pairs. In Karp and Shamir [2000] the signature method was directly

used to determine the restriction sites. In this chapter a refinement of the signature

method is used to orient the molecules, in preparation for a later stage in which the

restriction sites are determined.

The signature method (and other algorithms of Karp and Shamir [2000]) were

applied to uniformly discretized real data and failed. The main reason is that the

sizing errors (and hence, the errors in measured cut locations) are too large to

conform with the uniform discretization. Probabilistic analysis of the error under

uniform discretization [Anantharaman and Mishra, 1998] illuminates the limita-

tions of such discretization from a theoretical perspective, and motivates finding a

better way to apply combinatorial methods. The fact that the algorithms in Karp

and Shamir [2000] disregard faulty molecules adds to the problem by assuming

errors occur independently in the data.

4.2.2 Disadvantages of the Global Optimization Approach

In the continuous approach, one formulates a probabilistic model with many pa-

rameters (e.g., molecule orientations, site locations, cut intensities, noise, etc.) and

attempts to find, by global optimization methods, the most likely parameter val-

ues given the data. This approach has been demonstrated to perform well on real

data [Anantharaman et al., 1997, Lee et al., 1998]. However, there is room for

improvement in some important respects, as detailed below.

The score (likelihood) function takes into account both orientations of each

molecule. This is done by averaging two probability functions, one for each ori-

entation, so one of them just adds noise to the computation. Clearly, if all other



100 CHAPTER 4. OPTICAL MAPPING

factors are unchanged, a score based on correctly oriented data would give better

optimization results.

Furthermore, among the parameters to be optimized, and probably the most

important ones, are the locations of the restriction sites. These locations are deter-

mined by global optimization of a joint likelihood function which associates, with

each finite set S of points along the molecule, the likelihood that S is the set of

locations of the restriction sites. Usually there are many short intervals in which

a restriction site is likely to have occurred, separated by intervals in which the oc-

currence of a restriction site is unlikely. Thus the joint likelihood function tends to

have many local optima, corresponding to selections of points from different com-

binations of these short intervals. This multi-modality makes the task of finding the

global optimum quite difficult for standard techniques. Our methods alleviate this

difficulty in two ways. First, since the molecules have been oriented before global

optimization is undertaken, the number of short intervals likely to contain a restric-

tion site is reduced, leading to a great reduction in the number of local maxima of

the joint likelihood function. Secondly, we initialize the search with a reasonably

good estimation of the locations of the restriction sites. If the initialization is good

enough, then the global optimum point will lie within a small neighborhood of the

initialization point, and within this neighborhood the likelihood function will be

unimodal, and therefore easy to maximize.

4.2.3 Our Approach

Our approach uses elements of both the continuous and the discrete approaches,

attempting to remedy the shortcomings of each: We reduce the main error source in

the discrete procedure for orienting the molecules (i.e. the uniform discretization)

by a more subtle consideration of the continuous data. The results of the refined

orientation procedure eliminate the need to optimize over orientation parameters

for individual molecules, and thus help the continuous global search heuristic avoid

local optima. We now intuitively sketch our algorithm, deferring formal description

to later sections.

We assume a continuous probabilistic model of the data, similar to the model
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used in Anantharaman et al. [1997] and Lee et al. [1998]. To orient the molecules

we use a variant of the signature algorithm that is less sensitive to sizing errors.

This variant depends on the concept of an informative interval, which we now

define. The folding operation maps each point 0 ≤ x ≤ 1 to x̂ = min{x, 1 − x}.
Two intervals along the target molecule are called conjugate if their folded images

coincide. This generalizes the definition of conjugate pairs from Karp and Shamir

[2000], Muthukrishnan and Parida [1997], since it does not specify the sizes of

these intervals or restrict their possible endpoints to a predefined discrete set. This

generalization enhances the performance of the signature algorithm, allowing it

to overcome sizing errors. Under this folding operation each conjugate pair of

intervals maps to a single folded interval. A folded interval is called an informative

interval if it has a substantial density of observed cuts and passes a statistical test

indicating that all the restriction sites within it come from one half of the target

molecule; i.e., from one member of the corresponding conjugate pair.

Using dynamic programming we identify a set S of disjoint informative inter-

vals. Using the signature algorithm we can resolve S into two classes, such that

two folded intervals in S are in the same class if their restriction sites appear to

lie in the same half of the target molecule, and in opposite classes otherwise. We

then choose a standard orientation of the target sequence in which the restriction

sites occurring in intervals from the first class are placed in the left half, and those

occurring in intervals from the second class are placed in the right half. In this way

the restriction sites from each folded interval I in S are assigned to one of the two

conjugate intervals that map onto I . This process is called resolving the informa-

tive intervals. Finally, we orient each molecule so as to maximize the number of

observed cuts in it that lie within folded intervals from S and occur in the “correct”

members of the corresponding conjugate pairs.

Once the molecules have been oriented we apply likelihood optimization to

determine the restriction sites. To improve the search for restriction sites, we ini-

tialize it with a good approximation of the site locations, which is obtained by

identification of good intervals. Informally, an interval is good if its density of

observed cuts is high, and most of the observed cuts within it can be attributed to

restriction sites within the interval itself. The process of identifying good inter-
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1. Screen out faulty molecules from the unoriented data.

2. Identify informative intervals.

3. Apply the signature algorithm to resolve the informative intervals and orient

the molecules.

4. Screen out more faulty molecules from the oriented data.

5. Identify good intervals.

6. Determine the restriction site locations.

Figure 4.1: The general scheme of our algorithm. Stages 1 and 4 are described in

Section 4.4. Stages 2 and 5 are described in Section 4.5. Stage 6 is described in

Section 4.6.

vals makes use of the fact that the molecules have been oriented. We also screen

out molecules suspected to be faulty, first in a pre-processing step, and again after

orienting the molecules. The general scheme of our algorithm is presented in Fig-

ure 4.1. Subsequent sections describe the different stages of the algorithm in detail.

4.3 Model and Terminology

We now define our probabilistic model of the problem. Similar models were used

in Anantharaman et al. [1997], Lee et al. [1998]. Each of the Nmol molecules

is faulty with (independent) probability pfaulty , in which case, it displays (false)

cuts with Poisson rate λfaulty . In each proper molecule false cuts are Poisson

distributed with rate λ. We denote λav = pfaultyλfaulty + (1− pfaulty)λ.

We assume there is some unknown number t of (true) restriction sites, with

the i-th site Ri located at position μi along the molecule. The input data D is

a set of Nmol lists, D1, . . . ,DNmol
. The list Dm of the m-th molecule contains

Ncut(m) entries (observed cuts), at positions cm,1, . . . , cm,Ncut(m). Further define

Ncuts to be
∑

mNcut(m). In each proper molecule, the cut Ri is actually ob-
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served (registers as a cut) with (independent) probability pi. Its actual observed

position is normally (and independently) distributed around μi with variance σ2
i .

Additionally, each molecule is independently oriented as straight or reverse with

equal probability. Our problem is to determine the restriction sites {μi} from the

data D. In the course of doing this we shall also determine the orientations of the

molecules and the other parameters of the probabilistic model.

4.4 Screening Out Faulty Molecules

4.4.1 Screening Oriented Data

We begin by describing how to screen out faulty molecules from oriented data, and

then, in Section 4.4.2, present the slightly more complicated analysis, for unori-

ented data. This order of description is the reverse of the chronological order of

these stages in our algorithm.

Denote by 
D = {
cm,j} the data after the molecules have been oriented. We

define f , the probability density of observing a cut at x, to be the probability of

observing a cut in a short interval centered at x, per molecule, per unit length of

the interval. Formally, f(x) : [0, 1] �→ R is:

f(x) ≡ lim
ε→0

∣∣{(m, j) : |
cm,j − x| < ε
2

}∣∣
εNmol

(4.1)

Cuts in proper molecules tend to be observed near restriction sites, while cuts

in faulty molecules occur at random locations. Thus, the observed cuts in proper

molecules should tend to occur at points of higher probability density than the

observed cuts in faulty molecules. This is the basis for our screening procedure,

which we now detail more formally.

According to our assumptions,

f(x) = λav + (1− pfaulty)
∑

i

piNormal(x, μi, σ
2
i )

where Normal(x, μ, σ2) is the probability density, at point x, of a normal random
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variable with mean μ and variance σ2, i.e.,

Normal(x, μ, σ2) =
1√
2πσ

e−
(x−μ)2

2σ2

The overall average value of f , denoted fav, is

fav = λav + (1− pfaulty)
∑

i

pi

However, depending upon whether x is near restriction sites, f(x) behaves differ-

ently. If x is not near any μi, then the probability of an observation in this interval

is:

f(x)  λav

In contrast, if x is close to some μi, and the μi-s are sufficiently separated, then

f(x)  λav + (1− pfaulty)piNormal(x, μi, σ
2
i )

We now describe how we can estimate f(x) from the data, and how we can use

this estimation. To this end, define XI(D), for an interval I , as the number of cuts

observed in D, inside I . Note that XI(D) is a random variable. Let I(x, ε) denote

the interval of length ε centered at x. Then for a small ε, we may estimate f(x) by:

φε, �D(x) =
XI(x,ε)(
D)
εNmol

We compute φε, �D(x) for every cut position x = 
cm,j . In practice, we choose

ε = εx so that XI(x,ε)(
D) will be some predetermined constant. This way we have

a large enough sample size when φε, �D(x) is small, while concentrating on a small

interval around x for better accuracy, when φε, �D(x) is large.

For each molecule m, we compute φm, the average of the estimated density in

all the molecule’s observed cut positions:

φm =

∑Ncut(m)
j=1 φε, �D(
cm,j)

Ncut(m)

The expected value of φm for a faulty molecule m is fav, which in turn, can be

estimated as

fav  
∑

mNcut(m)
Nmol
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In contrast, for a proper molecule m the expected value of φε, �D(
cm,j) is larger, and

thus, the expected value of φm is larger.

The molecules with the smallest φm are the ones most likely to be faulty, and

should therefore be discarded. We repeatedly find the molecule m with minimal

φm (the molecule most likely to be faulty), designate it as faulty, filter it out of our

data set and recompute the quantities φm on the basis of the remaining molecules.

We repeat this process Nfaulty times, where Nfaulty is an input number. We note

that a more subtle analysis might be able to estimate Nfaulty from the observed

distribution of φm.

4.4.2 Screening Unoriented Data

We now refer to the original unoriented data set D. We fold the molecule in half to

create a folded data set D̂ = {ĉm,1, . . . , ĉm,N
cut(m)}

Nmol
m=1 , using the folding oper-

ation x̂ = min{x, 1 − x} introduced in Section 4.2.3. Note, that if the orientation

of a molecule Dj is unknown, then the folded molecule D̂j data conveys all the

information obtainable from Dj on each cut separately. We can now screen out

faulty molecules from the oriented data using the same idea as in Section 4.4.1.

We present the formulae for completeness:

We define f̂ , the probability density, of observing a (folded) cut at x, to be the

probability of an observed cut being in a short interval centered at x, relative to the

length of this interval. Formally, f̂(x) : [0, 1
2 ] �→ R, is defined:

f̂(x) ≡ lim
ε→0

∣∣{(m, j) : |ĉm,j − x| < ε
2

}∣∣
εNmol

(4.2)

where our assumptions imply:

f̂(x) = 2λav +(1−pfaulty)
∑

i

pi(Normal(x, μi, σ
2
i )+Normal(x, 1−μi, σ

2
i ))

The expected value of f̂(x) is ˆfav = 2fav, which is estimated by 2
�

m Ncut(m)
Nmol

.

Again,

f̂(x)  
{

2λav + (1− pfaulty)piNormal(x, μ̂i, σ
2
i ) if x is near μ̂i

2λav otherwise
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An unbiased estimator of f̂(x) is

φε,D̂(x) =
XI(x,ε)(D̂)

ε

and we can compute the average of the estimated folded density in all the

molecule’s observed cut positions:

φ̂m =

∑Ncut(m)
j=1 φε,D̂(ĉm,j)

Ncut(m)

We observe that the expected value of this average estimated density is, for a

faulty m, φ̂m = f̂av; for a proper m, φ̂m is larger. We can therefore perform a

screening procedure similar to the one described in Section 4.4.2, this time using

φ̂m, instead of φm.

From this point on, we shall assume there are no more faulty molecules, and

Nmol will denote the number of proper molecules.

4.5 Good Intervals and Informative Intervals

4.5.1 Good Intervals

Once the molecules have been oriented we seek to determine the restriction sites

by an iterative maximum likelihood computation. Since the method we use (the

EM algorithm) is only guaranteed to converge to a local maximum, it is important

to start the iteration with a good estimate of the restriction site locations. For this

purpose we attempt to localize the restriction site positions to a set of disjoint good

intervals. Informally, an interval is good if its density of observed cuts is high

and most of the observed cuts within it can be attributed to restriction sites which

indeed reside in this interval. In this subsection we describe the process of finding

the good intervals.
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Goal and Compromise

We would like to partition the observed cuts according to their true restriction sites,

and to separately handle all the observed cuts originating from a single restriction

site. More formally, we want to find intervals I1, . . . , It contained in (0, 1), so that

Ii contains only observations originating from Ri, and all of the observations orig-

inating from Ri are contained in Ii. However, this is not always possible, because

the sizing error may be large relative to the distance between restriction sites. In

such cases, there are true restriction sites Ri and Ri+1 such that the observed cut

sites originating from Ri are interleaved with those originating from Ri+1.

We therefore settle for finding disjoint intervals I1, . . . , Ik, and a partition of

the sitesR1, . . . , Rt into k disjoint subsets, with Ii containing mostly true observed

cuts originating from the restriction sites of the i-th subset. We call such intervals

good intervals.

Initial Filtering

We restrict attention to the O(N2
cut) intervals having observed cuts as their end

points. We also reject unreasonably long intervals. More precisely, we discard

intervals in which at least one of our molecules exhibits more than k cuts (we use

k = 2). For each such interval I , we estimate the average value of the density f(x)
within I by XI( �D)

|I|Nmol
. We further eliminate those intervals for which this value is

smaller than a chosen threshold, as they are unlikely to be good. On the remaining

intervals we perform a more subtle analysis, as explained in the next section.

Finding Good Intervals

We consider the oriented data set 
D. For each interval I = (a, b) ⊂ (0, 1) we

wish to estimate the number of restriction sites within I and the probability that

I contains at least one restriction site. We base this estimation on the random

variables XI(
m), where 
m ranges over the molecules in the probability space 
D.

Assuming there are j true restriction sites in I , and that a negligible number of
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the observed cuts within I arise from restriction sites outside I , the distribution of

XI(
m) is a function of the following parameters:

1. The false cut rate λ

2. For each restriction site Ri within I , the probability p′i of a true cut originat-

ing from Ri to be observed in I . For simplicity, we further approximate all

the p′i values by a single p′I .

We define:

Poisson(h, α) =
e−ααh

h!

Bin(i, j, p) =
(
j

i

)
pi(1− p)j−i

P (k, j, λ, p′I ) = Prob{XI(
m) = k|j restriction sites in I, λ, p′I}
=

∑
h+i=k,i≤j

Poisson(h, λ|I|)Bin(i, j, p′I )

Each molecule in 
D gives rise to an independent sample XI(
m) from this

distribution. From these samples we can obtain the empirical frequency count:

Xk(
D) = |{
m ∈ 
D|XI(
m) = k}|

Hence:

Likelihood(j, λ, p′I ) = Prob(
D|j, λ, p′I)
=

∏
�m∈ �D

P (XI(
m), j, λ, p′I )

=
∏
k

P (k, j, λ, p′I )
Xk( �D)

Using standard numerical maximization techniques, for each such j, we can

get the most likely parameters, λ and p′I , given the observed values of Xk(
D).
We optimize these parameters, and denote the log of the maximum likelihood by

Lj(I). Let L(I) = maxj>0L
j(I)−L0(I) be the log-likelihood of the most likely
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such assumption, compared to the null hypothesis of no restriction sites at all. In

practice, it is enough to consider only small values of j, i.e., j ≤ 2. The higher

L(I) is, the more we consider I a good interval.

We extend this measure to any set S of non-overlapping intervals:

L(S) =
∑
I∈S

L(I)

It is possible to find the set S maximizing L(S) by dynamic programming, as

follows. We denote the ordered set of observed cut locations by x1, . . . , xNcuts ,

and set x0 = 0. Let OPT (k) be an optimal set of non-overlapping good intervals

in [0, xk] and let F (k) be the corresponding optimal value. Then F (0) ≡ 0, and

we compute for k = 1, 2, . . . , Ncuts:

F (k) = max{F (k − 1), max
j<k−1

{F (j) + L([xj+1, xk])}} (4.3)

and save OPT (k), a set of intervals attaining that optimum. OPT (Ncuts) is the

desired solution.

4.5.2 Informative Intervals

Naive Discretization of the Data

We now discuss the original, unoriented data setD. We naturally “fold the molecule

in half” to create a folded data set D̂ = {ĉm,1, . . . , ĉm,N
cut(m)}

Nmol
m=1 . The straight-

forward way to discretize the input data is to uniformly partition the (folded)

molecule m into k segments of equal length, replacing it with a binary vector

v = (v1, . . . , vk), such that vj is an indicator variable, indicating whether a cut

was observed in the j-th segment. However, real life sizing error is rather large: In

many cases, it is of the same order of magnitude as the distance between nearby re-

striction sites (1-3 percent of the molecule length). This causes naive discretization

to fail.
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Finding Informative Intervals

We now devise a discretization method that non-uniformly slices the interval [0,12 ]
corresponding to the folded molecule in a manner more favorable for our pur-

poses. This method aims at finding those intervals whose associated conjugate

pairs supply much information on the orientation of the data. In order for such

a pair, (I, Ī), to be informative, there must be strong evidence that either I con-

tains at least one restriction site and I′ does not, or vice versa. We measure the

informativeness of a folded interval by a likelihood calculation analogous to the

one given in Section 4.5.1. The added complications are that we now consider the

original, unfolded data set, D, and examine the two dimensional random variable

YI(m) = (XI(m),XĪ(m)), for a single molecule m ∈ D. Clearly, its distribution

is symmetric, i.e., Prob(YI(m) = (k, l)) = Prob(YI(m) = (l, k)). We would use

the observations we have on this variable to learn its distribution, and estimate the

probability of having true sites at I .

Assuming there are i true restriction sites in I , and j restriction sites in Ī , this

distribution can be approximated as a function of the following instance parame-

ters:

1. The noise (false cuts) rate λ.

2. For each restriction site Rx of the i + j sites, the probability p̂′x of a true

cut originating from Rx to appear in I or in Ī . As in Section 4.5.1, we

approximate all the p̂′x values by a single p̂′I .

We can define:

P̂ ((k, l), i, j, λ, p̂′I ) = Prob{YI(m) = (k, l)|i, j restriction sites, λ, p̂′I}
=

∑
g + g′ = k

h+ h′ = l

Poisson(g + h, 2λ|I|)Bin(g′, i, p̂′I)Bin(h′, j, p̂′I)

The molecules in D are Nmol independent random observations of this random

variable, from which we obtain the empirical frequency count:

Yk,l(D) = |{m ∈ D|YI(m) = (k, l) or YI(m) = (l, k)}|
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Hence:

Likelihood(i, j, λ, p̂′I ) = Prob(D|i, j, λ, p̂′I)
=

∏
m∈D

P̂ (YI(m), i, j, λ, p̂′I )

=
∏
k,l

P̂ ((k, l), i, j, λ, p̂′I )Yk,l(D)

Using standard numerical maximization techniques, we find, for each such i, j,

the most likely parameters, given the observed values of Yk,l(D). We optimize

these parameters, and denote the log of this likelihood, byL̂i,j(I). We define:

L̂(I) = max
i>0

L̂i,0(I)− max
i,j �=0 or i=j=0

L̂i,j(I)

In other words, L̂(I) is the likelihood of the most likely such informative assump-

tion, compared to the null-hypothesis of the most likely non-informative assump-

tion. The higher L̂(I) is, the more informative interval I is. In practice, it is enough

to consider only small values of i, j, i.e., i+ j ≤ 2.

After computing L̂(I) for each candidate interval, we employ a dynamic pro-

gram, analogous to the one presented in Equation 4.3, in order to find a set of non

overlapping intervals I1, . . . , Ik, with maximal
∑

i L̂(Ii). This is a set of informa-

tive intervals, and we use it to discretize the data to a k × Nmol binary matrix, on

which the signature methods of Karp and Shamir [2000] are applicable.

4.6 Determining Restriction Site Locations

4.6.1 Probabilistic Model

After stage 5 of the algorithm, we have a set of good intervals, I1, . . . , Ik in (0, 1).
For each Ii, and for each value of j, we know L(Ii, j), the likelihood of the data

within Ii (for the best values of λ and p′I) assuming there are j restriction sites

in Ii and that no observed cuts within Ii arise from restriction sites outside Ii. In

practice, j is no more than 2 (for larger values, this likelihood is negligible). For

any vector J = (j1, . . . , jk), we can estimate the likelihood of the event that, for
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each i, Ii contains exactly ji restriction sites, by
∏k

i=1 L(Ii, ji). This formula is a

good approximation to the actual likelihood, provided that for each good interval

Ii, restriction sites outside Ii do not give rise to a significant number of observed

cuts within Ii. For each vector J with significantly high likelihood, we generate

initial values for λ and the set of triplets (pr, μr, σr), where r ranges from 1 to∑k
i=1 ji, as follows: for an interval Ii containing ji restriction sites, a different site

is placed at the center of each disjoint sub-interval of size |Ii|
ji

, and for each such

site, pr is set to p′Ii
. λ is set to Ncuts

Nmol
−
∑
pr. It turns out that there are not too many

likely values for the vector J , and we perform a heuristic likelihood maximization

from the starting solution associated with each such vector. Although our starting

solutions have all their restriction sites within good intervals, this property is not

required to hold at later iterations.

4.6.2 Approximate Likelihood Score

We now describe the score which we optimize. Let ψ = (λ, {(pr , μr, σr)}kr=1) be

a set of assumed parameters. We need to compute the likelihood score s(ψ), i.e.,

the probability of the data given ψ:

s(ψ) = Prob(
D|ψ) =
∏
m

Prob( 
Dm|ψ) (4.4)

For a molecule m with the observed cuts 
cm,1, . . . ,
cm,Ncut(m), we do not know

which of these observed cuts originated from which of the true restriction sites

in ψ, and which are due to background noise. A matching between the observed

cuts 
cm,1, . . . ,
cm,Ncut(m) and the assumed restriction sites (or noise) is called an

alignment between m and ψ. We can therefore write:

s(ψ) =
∏
m

∑
a

Prob

(

Dmψ, and the alignment a

between m and ψ

∣∣∣∣∣ψ
)

(4.5)

The inner summation is done over all possible alignments between the restriction

sites assumed by ψ, and the cuts observed in 
Dm.

We call an alignment order preserving if for every two observed cuts c, c′,

which are matched to restriction sites r, r′, respectively, c < c′ iff μr < μr′ . Other
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alignments are highly unlikely. In practice, we therefore perform the summation of

Equation 4.5 only over the order preserving alignments. We calculate the logarithm

of the required probability by dynamic programming.

Typically, the score of the optimal alignment a∗ is considerably higher than

the score of any other alignment. Therefore calculating the probability of a∗ is

a reasonable approximation to the true likelihood score. We denote this score by

s∗(ψ). s∗(ψ) can be computed by a recurrence relation similar to the dynamic pro-

gram used to compute s(ψ), the only difference being that we compute maximum

instead of summation, replacing Equation 4.5 with:

s∗(ψ) ∼=
∏
m

max
a

Prob

(

Dmψ, and the alignment a

between m and ψ

∣∣∣∣∣ψ
)

(4.6)

We have found the difference between these two scores to be small.

4.6.3 EM Optimization

We use a variant of the EM (Expectation Maximization) heuristic for this opti-

mization, as detailed below. We remark that Dančı́k and Waterman [1997], Anan-

tharaman et al. [1997] and Lee et al. [1998] use EM and other heuristics (gradient

descent and Monte Carlo Markov Chain simulation) to optimize a related score.

For completeness, we include a description of this stage in our algorithm, although

it is not unique to this work. In contrast to prior art, we have the advantage of

working with oriented data using a good starting solution.

At each iteration of the optimization procedure, we assume a parameter set

ψ̃, and reassign observed cuts to the postulated restriction sites. Throughout this

procedure, we maintain, for each restriction site r, the set L(r) of locations of cuts,

observed across all the molecules in the data set, that were assigned to r by the

optimal alignments between each of the molecules and ψ̃; L(noise) is the set of

all observed cut locations that optimal alignments attribute to background noise.

Define N(r) = |L(r)|, N(noise) = |L(noise)|.

In order to find the maximum of this score function, we iterate as follows:
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1. Expectation: For each restriction site r, estimate its parameters given the set

L(r) of all observed cut locations {lj}N(r)
j=1 aligned with r. This statistical

estimation is performed as follows:

• p̃r = N(r)
Nmol

is a maximum likelihood estimator for pr.

• Similarly, λ̃ = N(noise)
Nmol

is a maximum likelihood estimator for λ.

• Assuming that the locations in L(r) are normally distributed with ex-

pectation μr, the term μ̃r =
�

lj
N(r) is a maximum likelihood estimator

for μr.

• Assuming that the locations in L(r) are normally distributed with vari-

ance σ2
r , the term σ̃2

r =
�

l2j
N(r) − μ̃r

2 is a maximum likelihood estimator

for σ2
r .

2. Maximization: Given the current set ψ̃ = (λ̃, {(p̃r, μ̃r, σ̃r)}kr=1 of estimated

parameters, for each molecule m, find the optimal alignment a∗(m) between

ψ̃ and m. Adjust the sets L(r) for each r, to contain the observed cut loca-

tions that were matched to r by the new optimal alignments {a∗(m)}m.

Note, however, that even if our probabilistic model is correct, and the locations

of the observed cuts originating from the restriction site r indeed have the distri-

bution Normal(μr, σ
2
r ), the locations in L(r) do not have the same distribution.

Rather, the distribution of these locations is a doubly truncated Gaussian. Luck-

ily, it seems from our experiments with real data that the difference between these

distributions is negligible.

In practice, we have observed that the score s∗ occasionally splits a site into

two nearby sites with lower pi-s. In order to make sure this only happens when the

evidence for such a pair is solid, we do the following: For each pair of nearby sites

r, r + 1, we count the number M(r, r + 1) of molecules m, for which both sites

are matched by a∗(m). We multiply the score, s∗, by the probability of observing

M(r, r + 1), given that there are two independent cuts r, r + 1. This modification

seems to solve the splitting problem in practice, provided there are no chains of

such nearby sites.
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4.7 Results

4.7.1 Simulations

The latter stage of our algorithm is actually a hard-decision EM algorithm, itera-

tively improving s∗. Our main contribution is being able to perform this search on

the reduced space of oriented molecules. After orientation, any existing method for

tackling this problem can, in principle, be employed, with the advantage of know-

ing the correct orientation. We therefore gathered statistics indicating our success

in orienting the molecules, presenting the percentage of mis-oriented molecules as

a figure of merit.

We have applied our algorithm to many data sets, generated randomly accord-

ing to a range of statistical scenarios: we altered the number of restriction sites,

digestion rate, magnitude of sizing error, and false cut rate. For each such set of

parameters, data sets of different size (i.e., number of molecules) were analyzed.

The results are presented in Figure 4.7.1. They show that for standard values of the

model parameters errors in orientation are quite rare, dropping further, of course,

as more molecules are examined. Furthermore, these results are stable with respect

to alterations of instance parameters.

4.7.2 Real Data

Our algorithm was implemented in a blind test on real biological data provided by

D. Schwartz’s laboratory. There were eight data sets, with cosmids (50Kb) and

BAC (130-180Kb) molecules. We encountered at most a dozen restriction sites in

each data set, with the digestion rate varying widely from ∼ 0.1 to ∼ 0.9 between

data sets. There were differences of up to 0.3 in the digestion rate between sites

in the same data set. The false cut rate varied too, sometimes exceeding one false

cut per molecule, on the average. The average sizing error was on the order of

magnitude of 1
100 to 1

20 of the molecule length. Examples of the results are given in

Figures 4.3, 4.4 and 4.5. Figures 4.3 and 4.5 describe two experiments with disjoint

data-sets for the same molecule, demonstrating application of our algorithm for

different digestion rates.
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Figure 4.2: Results on simulated data. Each graph presents results with a specific

set of simulation parameters (number of true cuts, digestion rate, standard sizing

error, and false cut rate). The x-axis is the number of molecules, while the y-

axis is the fraction of the molecules that are incorrectly oriented by the algorithm,

averaged across 50 simulated data sets with the appropriate parameters and number

of molecules. The basic scenario (top left) is for 10 restriction sites, digestion rate

of 0.5, sizing error of standard deviation 0.01, and false cuts rate of 1.0. The other

cases shown are for larger (3.0) false cut rate (top right), larger (0.03) sizing error

(middle left), fewer (5) restriction sites (middle right), and lower (0.35 and 0.2)

digestion rates (bottom left and right, respectively).
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Bud Mishra and Thomas Anantharaman of N.Y.U. kindly examined our results

and then provided us with the true restriction sites, as determined directly from

sequence data or indirectly by inference from pulsed field gel electrophoresis data

combined with the optical mapping data. In several cases where two restriction

sites were separated by less than 1000 bases, our algorithm reported only one site.

This difficulty was also encountered in Anantharaman et al. [1997] and may be

an inherent problem due to the inability of the imaging system to detect small re-

striction fragments. Apart from this, our results were correct on four of the eight

examples; these include the examples shown here. On two further examples the

results were correct except that one restriction fragment with a low digestion rate

was missed. More careful inspection showed that almost all (95%) of the molecules

were correctly oriented for these two examples, with only the last stage of the al-

gorithm, EM optimization, being inaccurate. On two additional examples where

the data was of low quality (as measured by the method reported in Anantharaman

et al. [1997]) the results were less good. In one of these examples two restriction

sites were missed, despite the fact that they were evident by inspection from the

histogram of observed cut locations in the oriented molecules. In the other ex-

ample our program failed, missing two true restriction sites and introducing three

false ones. On the positive side, we provided the correct solution for the data-set

in Figure 4.5, which was classified by Anantharaman et al. [1997] as the hardest

among the eight data-sets we have considered.

It appears that our program tends to determine the orientations of the molecules

correctly, thereby substantially reducing the parameter space for any subsequent

maximum likelihood method. The occasional misestimation of the number of re-

striction sites can be alleviated by further tuning of the algorithm for determining

the restriction site data from the oriented molecules.

The results presented here are the first blind test of a novel algorithm. The per-

formance of our algorithm does not match up, at this point, to that of Ananthara-

man et al. [1997], which has been employed for three years now with considerable

success. The results illustrate that a refined discretization procedure, combined

with the signature method, greatly help the global optimization in cases where the

likelihood landscape is unfavorable for optimizing over unoriented data. Since the
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Figure 4.3: Test example 6262-1: Instance parameters: 54 molecules, 370 observed

cuts in total. 7 molecules screened out. A: Histogram of observed cuts in equalized

sub-intervals. B: Histogram of the ’folded’ data. C: Histogram of the oriented,

cleaned data superimposed with the optimal density function. D: The suggested

solution. Pairs of sites in the same row of the ”True” column indicate close-by

sites that cannot be distinguished.
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Figure 4.4: Test example 6401: Instance parameters: 280 molecules, 494 observed

cuts in total. 7 molecules screened out. See Figure 4.3 for legend.
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Figure 4.5: Test example 6262-0: Instance parameters: 114 molecules, 396 ob-

served cuts in total. 7 molecules screened out. See Figure 4.3 for legend.
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orientation phase of our algorithm seems to be very successful, one natural sug-

gestion for future work is to combine that phase with a refined global optimization

procedure for finding the cut sites on the more favorable landscape of oriented data.
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Chapter 5

Reconstructing Gene Order of

the Median Genome

In this chapter we discuss changes in gene order between genomes during evolu-

tion. These changes can be measured by the breakpoint distance between gene

orders: the number of gene pairs adjacent in one but not the other. For three con-

temporary gene orders, the ancestral gene order in their evolutionary divergence

point is called their median. A fundamental task is to find this median given the

contemporary gene orders, so that its sum of (breakpoint) distances to the leaves is

minimum. We prove this problem to be NP-hard. This result had been published

in [Pe’er and Shamir, 1998]. We further provide polynomial time approximation al-

gorithms that guarantee a 7
6 approximation. This study has been published in [Pe’er

and Shamir, 2000a].

5.1 Introduction

The breakpoint distance between two n-permutations is the number of pairs that

appear consecutively in one but not in the other. In the median problem for break-

points one is given a set of permutations and has to construct a permutation that

minimizes the sum of breakpoint distances to all the original ones. Recently, the

123
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problem was suggested as a model for determining the evolutionary history of sev-

eral species based on their gene orders. We show that the problem is already NP-

hard for three permutations, and that this result holds both for signed and for un-

signed permutations.

The study of genome rearrangements has drawn a lot of attention in recent

years. Large amounts of genomic data on various organisms become available

rapidly, and they make possible for the first time a large scale study of evolutionary

relations among species by comparing the order of appearance of common genes

in their chromosomes. Changes in gene order are much less frequent than point

mutations, and therefore, in principle, one can elucidate the evolutionary history of

speciation more precisely and further backwards in time using gene orders. This

is done by comparing gene orders in the studied species and reconstructing the

sequences of gene rearrangement events that led from the ancestral genome species

to the current species.

When restricting the discussion to only one chromosome, and assuming genes

occur only once, genomes are modeled as permutations. When taking into account

the orientation of the genes, the objects discussed are signed permutations. The

case where all rearrangement events are reversals (inversion of a chromosome seg-

ment) has been studied intensively in recent years. For two species, this problem, of

finding the reversal distance between two permutations, is already NP-hard in case

the gene orders are given as unsigned permutations [Caprara, 1997b], but it is poly-

nomial if the permutations are signed [Hannenhalli and Pevzner, 1999, Berman and

Hannenhalli, 1996, Kaplan et al., 1999]. Finding a tree minimizing the total num-

ber of reversals for three signed permutations is already NP-hard [Caprara, 1997a].

Other models of the genome [Hannenhalli, 1996, Kececioglu and Ravi, 1995] or

of the assumed events were also studied [Hannenhalli and Pevzner, 1995, Hannen-

halli, 1996, Sankoff and Nadeau, 1996, Bafna and Pevzner, 1995, DasGupta et al.,

1996]. When studying more than two species the key problem arising is to re-

construct the phylogenetic tree achieving minimal total distance along edges (most

parsimonious), given only permutations (gene orders) at the leaves (contemporary

species). When the topology of the tree is restricted to a star, this problem is known

as the median problem [Sankoff et al., 1996a, DasGupta et al., 1996].
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Recently, Sankoff and Blanchette [1997] introduced a new model for studying

the reconstruction of evolutionary tree of more than two species. They argued

forcefully that the reversal distance and similar distance measures have certain

weaknesses that render them inappropriate for studying complex trees, and sug-

gested a simpler criterion of breakpoint distance, i.e., merely counting the number

of breakpoints between every two permutations connected by an edge of the tree.

This number can be easily computed for a single edge, for signed and unsigned

permutations. Sankoff and Blanchette studied the median problem for breakpoints,

and developed several efficient heuristics for the problem. However, the computa-

tional complexity of this problem was not determined. Here we settle that question

by showing that the problem is NP-hard already for three permutations. The hard-

ness result applies both to the signed and to the unsigned model. The same result

was obtained independently by Bryant [1998]. Then we give a constant factor

polynomial approximation algorithm for the signed model.

The chapter is organized as follows: Section 5.2 proves hardness of the me-

dian problems. Section 5.2.1 recalls the standard notation in the field, which we

follow. Section 5.2.2 defines further terminology used throughout the chapter. Sec-

tion 5.2.3 defines a problem which is equivalent to the median problem for break-

points, for 3 signed permutations, and proves these problems are NP-complete.

Section 5.2.5 extends the hardness result also to unsigned permutations.

Section 5.3 studies approximation algorithms to the median problems. Sec-

tion 5.3.1 provides necessary notation and definitions. Section 5.3.2 presents a

very straightforward 6
5 -approximation algorithm, while section 5.3.3 presents a

more subtle algorithm and tighter analysis, achieving an approximation ratio of 7
6 .

In section 5.3.4 we derive an approximation algorithm for the median problem on

four taxa.
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5.2 Hardness of the problem

5.2.1 Preliminaries

Let d be a measure of genomic distance, namely an integer distance function on the

space of (signed) permutations. The (signed) median problem is defined as follows:

Instance: Three (signed) permutations π0, π1, π2, and an integer k

Question: Does there exist a (signed) permutation π̂ s.t.
∑

i d(πi, π̂) ≤ k ?

We denote a signed permutation π on n elements by (π(1), π(2), . . . , π(n)),
with π(i) ∈ {±1, . . . ,±n}, and |π(i)| �= |π(j)| for i �= j. We rescale a signed

permutation on n elements to an unsigned permutation on 2n elements, with each

positive element π(j) = i mapped to the pair π(2j − 1) = 2i− 1, π(2j) = 2i and

each negative element π(j) = −i mapped to the pair π(2j − 1) = 2i, π(2j) =
2i − 1. We further expand an unsigned permutation by defining π(0) = 0, and

π(n + 1) = n+ 1. We call this transformation of a signed n element permutation

into an unsigned 2n+2 elements the standard augmentation (see also Hannenhalli

and Pevzner [1999]). Note that the range of the standard augmentation is a set of

permutations which is closed under composition.

For an unsigned permutation π, π(i) and π(i + 1) are said to be successive in

π. For a signed permutation π′, standardly augmented to an unsigned permutation

π, π(2i) and π(2i+ 1) are said to be successive in π′.

A pair of successive elements in π which are also successive in σ is called an

adjacency. A pair of successive elements in π which are not successive in σ is

called a breakpoint in π with respect to σ. The number of breakpoints of π with

respect to σ is denoted by bp(π, σ). Trivially, bp(π, σ) = bp(σ, π).

For example, let π′ = (1,−3,−2) be a signed permutation on three elements.

It is rescaled to the 6-permutation (1, 2, 6, 5, 4, 3), and it’s standard augmentation

is the 8-permutation π = (0, 1, 2, 6, 5, 4, 3, 7). The only breakpoints in π with

respect to the identity permutation σ are (2, 6) and (3, 7), thus bp(π, σ) = 2.
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All graphs in this chapter are finite, and unless specifically indicated otherwise,

undirected. They do not contain self loops, but may contain parallel edges: single,

double or triple edges. For a set of 2n vertices, a perfect matching is a set of n

edges, incident on every vertex. A Hamiltonian cycle is a set of 2n edges, forming

one cycle passing through all the vertices.

5.2.2 Definitions

Let V = {vi}2n−1
i=0 be a set of 2n vertices. We call the perfect matching Mb =

{(v2iv2i−1)}n−1
i=0 the base matching on V (subscripts for V are calculated modulo

2n).

Let Mb be the base matching on the set V of 2n vertices. A perfect match-

ing M on V is called a Hamiltonian matching with respect to Mb (or simply a

Hamiltonian Matching) if Mb ∪ M forms a Hamiltonian cycle. For a Hamilto-

nian matching M , let unsigned(M) be the permutation on {0, 1, . . . , 2n − 1},
denoting the order of appearance of the vertices in V along the cycle Mb ∪ M ,

starting from v0, and ending on v2n−1. Clearly, 2i − 1 and 2i are consecutive in

unsigned(M), for each 0 < i ≤ n, hence, there exists a unique signed permu-

tation denoted signed(M) on n − 1 elements, whose standard augmentation into

an unsigned permutation on 2n elements is unsigned(M). Furthermore, for every

signed permutation π on n − 1 elements, its standard augmentation into an un-

signed permutation on 2n elements is π′, we can define a Hamiltonian matching

w hmatch(π) = {v0vπ′(1), vπ′(2)vπ′(3), . . . , vπ′(2n−4)vπ′(2n−3), vπ′(2n−2)v2n−1}
with respect to the base matching on 2n vertices.

Let π, σ be two signed permutations on n − 1 elements. Each adjacency be-

tween them corresponds to an edge common to both hmatch(π) and hmatch(σ)
and, on the other hand, each such common edge corresponds to such an adjacency.

Corollary 5.2.1 Let π and σ be signed permutations on n − 1 elements. Then

bp(π, σ) = n− |hmatch(π) ∩ hmatch(σ)|
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5.2.3 The Consensus of 3 Hamiltonian Matchings problem

Problem Definition

We define the Consensus of 3 Hamiltonian Matchings(C3HM for short) problem

as follows:

Instance: Three Hamiltonian matchings M0,M1,M2 with respect to the base

matching Mb on a set V of 2n vertices, and an integer wtarget. Mb,M0,M1,M2

define a weight function w for any Hamiltonian matching M , setting w(M) ≡∑
i |M ∩Mi|.

Question: Does there exist a Hamiltonian matching M̂ with respect to Mb, s.t.

w(M̂ ) ≥ wtarget

We extend the weight function to edges, by defining w(e) = |{i|e ∈ Mi}|.
Then for a Hamiltonian matching M , w(M) =

∑
e∈M w(e).

Equivalence to the Median Problem

Proposition 5.2.2 The instance (V,Mb,M0,M1,M2, wtarget) of the C3HM prob-

lem and the instance (signed(M0), signed(M1), signed(M2), 3|Mb| − wtarget)
of the signed permutations median problem are equivalent.

Proof: Follows directly from corollary 5.2.1.

Note that the transformation in the other direction, i.e., from signed permuta-

tions median to C3HM, is also immediate.

5.2.4 NP-completeness

Theorem 5.2.3 C3HM is NP-complete.

Proof: Membership in NP is trivial.
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We prove NP-hardness by reduction from the Hamiltonian cycle problem, re-

stricted to 3-regular graphs. This problem is well known to be NP-complete [Garey

et al., 1976]. Let G(N,A) be a simple 3-regular input graph, with n = |N |. We

construct, in polynomial time, an instance I = (V,Mb,M0,M1,M2, wtarget) of

C3HM, of linear size in n, s.t. I is a “yes” instance iff G admits a Hamiltonian

path. To avoid confusion, we refer to G as a graph on the set N of nodes with the

set A of arcs, reserving the terms vertex and edge for the graph constructed as a

C3HM instance.

group
J− J+

group

Dangling
edges

Double
Path

p+
4

Arc-representing edges

p−4
p−3 p−2 p+

2 p+
3p+

1p−1

p+
0p−0

Figure 5.1: The whole node component. Each pair of tangent discs denotes a pair

of vertices uũ (matched by Mb). In such a pair ũ is the bottom disc (in the J

groups) or the disc closer to the center (along the double path) Solid, dotted and

dashed lines denote edges of M0,M1, and M2 respectively. Arrows downwards

denote dangling edges, while arrows upwards denote arc-representing edges.

We first give an overview of the reduction. We build a node component for each

node of G. There are edges between these components, some of them correspond

to the arcs of G. Our construction maps Hamiltonian cycles in G to Hamiltonian

cycles M̂ ∪Mb in the constructed graph, withM̂ being a large-weight Hamiltonian

matching. We can force specific properties of such Hamiltonian cycles in our con-

struction, and urge them to pass through certain edges, by using double edges, with

which M̂ must concur, in order to maximize its weight. In this way, we construct,
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for each node, a component all of whose vertices must be visited consecutively

by M̂ ∪Mb, and the order in which the different node components are visited by

M̂ ∪Mb corresponds to the order of the nodes along a Hamiltonian cycle in G.

We make sure that a Hamiltonian cycle M̂ ∪Mb in our construction can visit two

node components consecutively if and only if the two corresponding nodes in G

are adjacent.

We now start describing our construction in detail. For each node ν ∈ N , we

build a node-component C(ν) of 32 vertices. See figure 5.1 for the outline of a full

component. We will now describe the construction of the node-component. We

explicitly specify the vertices of such a component, and some of the edges. The

other edges in the constructed graph are either:

• Arc-representing, and will be explicitly specified in a later stage.

• Dangling edges, which will be constructed implicitly. When describing the

node component, we only specify:

– On which vertices are the dangling edges incident.

– To which of the three matchings these edges belong.

The component C(ν) is composed of two (not fully symmetrical) halves, whose

vertices and vertex-groups will be superscripted with + and −, respectively.

The 32 vertices in C(ν) are divided into four groups:

• A half-path P+(ν) of 10 vertices {p+i (ν)}4i=0 and {p̃+
i (ν)}4i=0.

• A half-path P−(ν) of 10 vertices {p−i (ν)}4i=0 and {p̃−i (ν)}4i=0.

• A junction J+(ν) of 6 vertices {j+i (ν)}2i=0 and {j̃+i (ν)}2i=0.

• A junction J−(ν) of 6 vertices {j−i (ν)}2i=0 and {j̃−i (ν)}2i=0.

Note that vertices in our construction come in pairs (u(ν), ũ(ν)), where u(ν)
and ũ(ν) are always in the same component half and in the same group. Our base
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matching Mb is simply the set of all edges u(ν)ũ(ν). Whenever the node ν or the

+/− superscript are clear from context, we omit them.

The edges in a component C include:

• Double (path) edges:

– Between the component half paths : p̃+
0 p̃

−
0 ∈M0 ∩M1.

– In each half path: p0p̃1 ∈M0 ∩M2, and for each i = 1, 2, 3: pip̃i+1 ∈
M1 ∩M2.

We call the path in Mb ∪ ∪iMi between p+4 (ν) and p−4 (ν), using the path

edges, the double path of ν.

• Bypassing edges: The edges j̃1p3 ∈ M0 and j̃0p0 ∈ M1 for each half, and

the edges j̃+2 p
+
1 , j̃

−
2 p̃

−
2 , p

+
2 p

−
2 ∈M0.

• Junction edges (see Figure 5.2):

– The edges p4j̃i ∈Mi for each 0 ≤ i ≤ 2 and for each half.

– The edges j2j̃0, j0j̃1 ∈M2 and j1j̃2 ∈M1 for each half.

– The edges j0j2 ∈M1 for each half, and the edge j+1 j
−
1 ∈M2.

To other J group
j0

p4

j2 j1

j̃0j̃1j̃2

Arc-representing edges

Figure 5.2: Zoom in on one J group. Only junction edges are drawn.

• Dangling edges: As explained, at this stage we only specify the incidence of

a dangling edge, without explicitly specifying the edges.
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– Dangling edges of M0 are incident on p̃4, p̃3 for each half, and to p̃+
2

and p̃−1 .

– Dangling edges of M1 are incident on p̃1 for each half.

– Dangling edges of M2 are incident on p̃0 for each half.

We now describe the arc-representing edges. For each node ν ∈ N , arbitrarily

number its three arcs a0(ν), a1(ν), a2(ν). For an arc νν′ = ai(ν) = ai′(ν ′) ∈ A

add the edge j+i (ν)j−i′ (ν
′) to M0. Note that the edge j+i′ (ν

′)j−i (ν) will also be

added to M0.

We will now describe some simple properties of our construction so far:

Property 5.2.4 Each bypassing or dangling edge is incident on at least one vertex

along the double path, which is not an endpoint of this path.

Property 5.2.5 For each matching Mi, let M ′
i be the subset of Mi excluding all

dangling edges Observe that each of Mb ∪M ′
1 and Mb ∪M ′

2 is a collection of |N |
(disjoint) paths, and each such path passes through all the vertices of some node

component C(ν) (see Figure 5.3 and Figure 5.4).

group
J− J+

group

Dangling
edges

p+
4p−4

Figure 5.3: Mb ∪M1 forms a path in each component.

Denote the paths described in property 5.2.5 PATH1(ν) and PATH2(ν), re-

spectively. Both endpoints of such a path are vertices where dangling edges are

incident on and both are along the double path of ν, one in P+(ν) (called head)

and the other in P−(ν) (called tail)
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group
J− J+

group

p+
4p−4

Dangling
edges

Figure 5.4: Mb ∪M2 forms a path in each component.

Property 5.2.6 Mb ∪ M ′
0 is a collection of 2|A| (disjoint) paths, each passing

through one arc-representing edge j−i (ν)j+i′ (ν
′) (see Figure 5.5).

group
J− J+

group

Dangling
edges

p+
4p−4

Arc-representing edges

Figure 5.5: Mb ∪M0 forms a path in through each arc-representing edge.

Denote the paths described in property 5.2.6 PATH0(ν, ν ′). This path has its

endpoints on two vertices along the double paths of ν and ν′, respectively, with

a dangling edge incident on each of them. The lengths of such paths may vary

between 4 and 8 vertex pairs.

We now describe how to connect the vertices on which dangling edges are

incident, thus constructing the dangling edges themselves. Number the nodes

ν0, ν1, . . . , νn−1, νn = ν0 in an arbitrary order. For each i = 1, 2 and k =
0, . . . , n − 1, add to Mi a dangling edge connecting the tail of each PATHi(νk)
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to the head of PATHi(νk+1).

Let D(N, 
A) be a directed graph formed by replacing every arc νν′ of A by

a pair of anti-parallel directed arcs νν′ and ν′ν. Clearly, D is Eulerian. Let T be

an arbitrary directed Euler tour of D. For every two consecutive directed arcs νν′

and ν′ν ′′ in T , the paths PATH0(νν ′) and PATH0(ν ′ν ′′) each have one endpoint

in C(ν′). Connect these two endpoints by a M0 edge. All the dangling edges are

constructed by this process, since every node ν′ is visited exactly 3 times by T ,

with each of the six dangling edges endpoints in C(ν′) visited once.

Note that no dangling edge thus constructed is parallel to any other edge in

any Mi. Therefore, each dangling edge is single, and no double or triple edges are

generated when determining the dangling edges.

We set wtarget to be 25n.

Clearly, the reduction is polynomial. We prove now the validity of our con-

struction.

Claim 5.2.7 I is an instance of C3HM.

Proof: Mb is a perfect matching. For each i = 0, 1, 2, every vertex in V is incident

to exactly one edge of each Mi, so also Mi is a perfect matching. The construc-

tion of the dangling edges connects all the paths {PATH1(ν)|ν ∈ N} into one

Hamiltonian cycle, whose edges are exactly Mb ∪ M1. Similarly, Mb ∪ M2 is

a Hamiltonian cycle. Also, the construction of the dangling edges connects all

the paths {PATH0(νν ′)|νν ′ ∈ A} into one Hamiltonian cycle, whose edges are

exactly Mb ∪M0. Hence, Mi is a Hamiltonian matching for i = 0, 1, 2.

Claim 5.2.8 If there is a Hamiltonian cycle in G, then I is a “yes” instance.

Proof: Assume there exists a Hamiltonian cycle h in G. We construct a matching

M̂ as follows:

• Include all 9 double path edges of each node component (4 of each half, and

one connecting the two halves).
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• Choose an arbitrary orientation for h. Let νν′ = ai(ν) = ai′(ν ′) be an arc of

h in this orientation. For each such arc add toM̂ the following seven edges:

– Edges in J+ and P+: p+
4 (ν)j̃+i+1(ν), j

+
i+1(ν)j̃

+
i+2(ν), j

+
i+2(ν)j̃

+
i (ν).

– Edges in J− and P−: p−4 (ν ′)j̃−i′+1(ν
′), j−i′+1(ν

′)j̃−i′+2(ν
′), j−i′+2(ν

′)j̃−i′ (ν
′).

– The edge j+i (ν)j−i′ (ν
′).

Subscripts for junction vertices are calculated modulo 3. Compare Figure 5.6

and Figure 5.2.

j0

p4

j2 j1

j̃0j̃1j̃2

j0

p4

j2 j1

j̃0j̃1j̃2

j0

p4

j2 j1

j̃0j̃1j̃2

Figure 5.6: The three possible ways we use to connect the vertices of a junction

group by a Hamiltonian matching.

Clearly, M̂ is a matching. Since h is Hamiltonian, M̂ ∪Mb is a Hamiltonian cycle.

For the double edges in M̂ , w(e) = 2. For the other edges in M̂ , w(e) = 1. It

follows that w(M̂ ) = 2 · 9n+ 7n = 25n

Claim 5.2.9 If I is a “yes” instance, then there is a Hamiltonian cycle in G.
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Proof: Let M̂ be a Hamiltonian matching in I , with w(M̂ ) ≥ 25n. We call a

Hamiltonian matching M in I proper if all the vertices of each node component

appear consecutively along the cycle M ∪Mb. We now prove that M̂ is proper.

Since there are exactly 16n edges in M̂ , and there are only 9n double edges

in I , M̂ must contain all the double edges, and furthermore, for every other edge

e ∈ M̂ , w(e) = 1, i.e., e ∈ Mi for some i. It follows that M̂ ∪Mb contains the

double path of each ν. Furthermore, according to property 5.2.4, every bypassing

or dangling edge is incident on an internal vertex of such a path,M̂ contains no

bypassing edges, nor dangling edges (See Figure 5.7).

group
J− J+

group

p+
4p−4

Arc-representing edges

Figure 5.7: The component without the bypassing edges and the dangling edges. A

proper Hamiltonian matching must pass through the six J+ vertices consecutively,

and immediately “after” (direction is arbitrary) the P vertices.

Fix some ν. M̂ must contain one edge incident on p+4 (ν). Since this edge is a

member of some Hamiltonian matching Mi, it is p+
4 (ν)j̃+i (ν), for some 0 ≤ i ≤ 2

(see Figure 5.6). Since M̂ must contain no other edge incident on p+4 (ν), the edges

of the two other Hamiltonian matchings incident on p+4 (ν) are not in M̂ . Formally,

for i′ �= i, p+
4 (ν)j̃+i′ (ν) �∈ M̂ . Now we can examine the vertex j̃+i′ (ν). There must

be some non-bypassing edge in M̂ incident on it, and the only possible candidate

is j+i′−1(ν)j̃
+
i′ (ν) (see Figure 5.2), therefore j+i′−1(ν)j̃

+
i′ (ν) ∈ M̂ .

Hence, the path through J+(ν) ji+2, j̃i+2, ji+1, j̃i+1, j
+
i , j̃ip4 is contained in

M̂ ∪Mb. The argument for a path passing through J−(ν) is similar, proving that

M̂ is proper.

Let C(ν), C(ν ′) be two components visited consecutively byM̂ ∪Mb. There

must be an edge e connecting the two components, and sinceM̂ ∪Mb contains no
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dangling edges, e must be an arc-representing edge (all other edges are incident on

two vertices in the same component). According to our construction, there must be

an arc in G between ν and ν′.

Let h = ν0, ν1, . . . , νn−1, ν0 be the order in which components are visited by

M̂ ∪Mb. It follows that h is a Hamiltonian cycle in G.

Claims 5.2.7, 5.2.8, and 5.2.9 complete the proof of Theorem 5.2.3.

Corollary 5.2.10 The signed permutations median problem is NP-complete.

Proof: Immediate from Theorem 5.2.3 and Proposition 5.2.2.

Corollary 5.2.11 Finding a tree and corresponding signed permutations in inter-

nal nodes so as to minimize overall breakpoint distance along tree edges is NP-

hard, both if the tree topology is known and if it is unknown.

5.2.5 Unsigned Permutations

We map each unsigned permutation π on the elements 1, 2, . . . , n−2 to the Hamil-

tonian cycle on n vertices hcycle(π) = v0, vπ(1), vπ(2), . . . , vπ(n−2), vn−1, v0.

This is a 1-1 mapping, whose range is all the Hamiltonian cycles on n vertices

passing through the compulsory edge vn−1v0. We call such cycles image cy-

cles. For two image cycles, hcycle(π) and hcycle(σ), a non-compulsory edge

in hcycle(π) ∩ hcycle(σ), maps to an adjacency between π and σ, and vice versa.

The unsigned permutations median problem formulates as the Consensus of 3

Hamiltonian Cycles (C3HC for short) problem:

Instance: Three image cycles C0, C1, C2 on n vertices, and an integer wtarget.

Question: Does there exist an image cycle Ĉ, s.t. w(Ĉ) =
∑

i |Ĉ∩Ci| ≥ wtarget.

Theorem 5.2.12 C3HC (and therefore also the unsigned permutations median

problem) is NP-complete.



138 CHAPTER 5. MEDIAN GENE ORDER

Proof: (sketch): The proof is very similar to the proof of Theorem 5.2.3. We use

a similar construction to reduce the problem of Hamiltonian cycle on 3-regular

graphs passing through a specific edge (actually, the Hamiltonian path problem),

to C3HC. The only differences are:

• We set Ci = Mi ∪Mb, thus replacing every edge e ∈Mb with a triple edge

e ∈ C0 ∩C1 ∩ C2.

• We number the vertices choosing a triple edge to be the compulsory edge.

• We increase wtarget by the total weight of the triple edges and set it to 25n+
3 · 16n = 73n.

Cardinality considerations of the weight of a consensus image cycle make sure that

this cycle passes through all triple edges, and the rest of the proof is similar.

Proof:(Other option): We reduce signed permutations median to unsigned per-

mutations median. Let I′ = (π′0, π
′
1, π

′
2, dtarget) be a signed permutations median

problem instance with each π′i being a signed permutation on n elements. Let

πi be the 2n + 2 element signed permutation obtained by the standard augmen-

tation of π′i. We claim that the unsigned permutations median problem instance

I = (π0, π1, π2, dtarget) is a “yes” instance iff I′ is.

For every two signed permutations σ′1, σ
′
2, whose standard augmentations are,

respectively, σ1, σ2, bp(σ1, σ2) = bp(σ′1, σ
′
2). Therefore it remains only to be

shown that:

Claim 5.2.13 If τ is an unsigned permutation satisfying
∑

i bp(τ, πi) ≤ dtarget,

then there is also some unsigned permutation σ satisfying
∑

i bp(σ, πi) ≤ dtarget,

with a signed permutation σ′ whose standard augmentation is σ.

Proof: We prove this by induction on the number p(τ) of pairs 2i − 1, 2i of non-

successive elements in τ .

Clearly, for p(τ) = 0, σ = τ is a standard augmentation of some unsigned σ′.

For positive k, assume correctness for all permutations ρ with p(ρ) < k, and

suppose p(τ) = k. It suffices to find a permutation ρ satisfying
∑

i bp(ρ, πi) ≤
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∑
i bp(τ, πi), with p(ρ) < k. Let C0, C1, C2, wtarget be the C3HC instance corre-

sponding to I′. Define w(e) = |{i|e ∈ Ci}|. Note that for each vertex v:

∑
u

w(uv) = 6 (5.1)

We call every edge e = v2i−1v2i a parity edge. Note that every parity edge e has

w(e) = 3.

Then there is a Hamiltonian cycle Cτ = v0, vτ1 , . . . , vτ2n , v2n+1 with weight

w(Cτ ) ≥ wtarget, and with n + 1 − k parity edges. Fix some i for which the

parity edge v2i−1v2i is not contained in Cτ . 2i − 1 and 2i are not successive in

τ , i.e. τj = 2i − 1, τj′ = 2i, and |j − j′| > 1. Let x = vτj−1 , y = v2i−1,

z = vτj+1 and x′ = vτj′−1
, y′ = v2i, z′ = vτj′+1

. w(yy′) = 3, so according to

equation 5.1 w(xy)+w(yz)+w(x′y′)+w(y′z′) ≤ 6, either w(xy)+w(x′y′) ≤ 3
orw(yz)+w(y′z′) ≤ 3. In the first case, defineCρ = (Cτ \{xy, x′y′})∪{xx′, yy′}
and in the latter define Cρ = (Cτ \ {yz, y′z′}) ∪ {zz′, yy′}. In either case, Cρ is

an image cycle, and w(Cρ) ≥ w(Cτ ). The corresponding permutation ρ is as

required.

Now it is clear that I is a “yes” instance iff I′ is, completing the proof of

theorem 5.2.12

5.3 Approximations to the Median Problem

In this section we consider the median problem for signed permutations, count-

ing breakpoints to measure genomic distance. Sankoff and Blanchette studied this

problem and developed several efficient heuristics. This problem was shown to be

NP-complete in the previous section and independently by Bryant [1998]. We pro-

vide polynomial approximation algorithms for the signed model, which guarantee

an approximation ratio of 7
6 .
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5.3.1 Preliminaries

All graphs in this chapter are finite, and unless specifically indicated otherwise,

undirected. Self loops are not allowed, but parallel edges are: edges may be single,

double or triple. For a set of 2n vertices, a perfect matching is a set of n edges,

incident on every vertex. A Hamiltonian cycle is a set of 2n edges, forming one

cycle passing through all the vertices.

Let d be a measure of genomic distance, namely an integer distance function

on the space of (signed) permutations. The (signed) median problem is defined as

follows:

Instance: Three (signed) permutations π0, π1, π2, and an integer k

Question: Does there exist a (signed) permutation π̂ s.t.
∑

i d(πi, π̂) ≤ k ?

Standard terminology of genome rearrangements can be found in Pe’er and Shamir

[1998]. We omit these details, since this chapter deals only with an equivalent

representation of this problem from a graph theoretic approach, which we now

explain.

Let V = {vi}2n−1
i=0 be a set of 2n vertices. We call the perfect matching Mb =

{(v2iv2i−1)}n−1
i=0 the base matching on V (subscripts for V are calculated modulo

2n).

Let Mb be the base matching on the set V of 2n vertices. A perfect matching

M on V is called a Hamiltonian matching (with respect to Mb), ifMb∪M forms a

Hamiltonian cycle. For a Hamiltonian matching M , let unsigned(M) be the per-

mutation on {0, 1, . . . , 2n−1}, denoting the order of appearance of the vertices in

V along the cycle Mb ∪M , starting from v0, and ending on v2n−1. Clearly, 2i− 1
and 2i are consecutive in unsigned(M), for each 0 < i ≤ n, hence, there exists

a unique signed permutation denoted signed(M) on n − 1 elements, whose stan-

dard augmentation into an unsigned permutation on 2n elements is unsigned(M).
Furthermore, for every signed permutation π on n − 1 elements, its standard aug-

mentation into an unsigned permutation on 2n elements is π′, and the edge set

hmatch(π) = {v0vπ′(1), vπ′(2)vπ′(3), . . . , vπ′(2n−4)vπ′(2n−3), vπ′(2n−2)v2n−1} is

a Hamiltonian matching with respect to the base matching on 2n vertices.

Let π, σ be two signed permutations on n − 1 elements. Each adjacency be-
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tween them corresponds to an edge common to both hmatch(π) and hmatch(σ)
and, on the other hand, each such common edge corresponds to such an adja-

cency. Recall, that by 5.2.1, for signed permutations π and σ on n − 1 elements,

bp(π, σ) = n− |hmatch(π) ∩ hmatch(σ)|

The problem of Consensus of 3 Hamiltonian Matchings(C3HM for short) is

defined as follows:

Instance: Three Hamiltonian matchings M0,M1,M2 with respect to the base

matching Mb on a set V of 2n vertices, and an integer wtarget. Mb,M0,M1,M2

define a weight function w for any Hamiltonian matching M , setting w(M) ≡∑
i |M ∩Mi|.

Question: Does there exist a Hamiltonian matching M̂ with respect to Mb, s.t.

w(M̂ ) ≥ wtarget

We extend the weight function to edges, by defining w(e) = |{i|e ∈ Mi}|.
Then for a Hamiltonian matching M :

w(M) =
∑
e∈M

w(e) (5.2)

Recall, that according to 5.2.2, The instance (V,Mb,M0,M1,M2, wtarget) of

the C3HM problem and the instance (signed(M0), signed(M1), signed(M2), 3|Mb|−
wtarget) of the signed permutations median problem are equivalent. Moreover, the

optimization versions of these two problems are equivalent, and the mapping be-

tween their solutions guarantees that approximating one of the problems with a

ratio R implies an R-approximation to the other as well.

For a C3HM instance, we call G(V,Mb∪M0∪M1∪M2) the consensus graph,

with |V | = 2n. W.l.o.g., we assume there are no triple edges inG: Otherwise, such

an edge trivially belongs to an optimal consensus Hamiltonian matching, and can

be dropped, contracting its incident vertex pairs to one pair. In such a case, we can

solve the contracted instance, and the approximation ratio of our solution would

only improve upon re-insertion of the triple edge.

Let E1(G) (respectively, E2(G)) be the set of single (double) edges of G. Let

E0(G) be the set of all complete graph edges not in G. Let Ḡ be the complete
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graph on V , with edge weights w : E(Ḡ) �→ {−∞, 1, 2, 3}, defined as follows:

w(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 if e ∈ E0

2 if e ∈ E1

1 if e ∈ E2

−∞ if e ∈Mb

(Ḡ, w) can be considered an instance of the Traveling Salesperson Problem (TSP).

Solving the original C3HM instance is equivalent to solving TSP on (Ḡ, w) [Sankoff

and Blanchette, 1997, 1998], with the weight −∞ replaced by a finite negative

constant with large absolute value.

Let G2 be the subgraph of G whose edge set is E2∪Mb. Since each vertex has

exactly one Mb edge, and at most one E2 edge incident on it, G2 is a collection of

paths and cycles with alternating E2-Mb edges. We partition E2 edges to a set C

of cycle edges and a set P of path edges, according to their role in G2. The case

of G2 being one 2n-long cycle is trivial to solve (E2 is then an optimal solution)

and we ignore it in the rest of the chapter. Assume G2 is a collection of nc cycles

and np paths. The length of a cycle or path is the number of E2 edges in it. Let lc
(lp) denote the total length of all the cycles (paths, respectively). A pair of vertices

connected by an edge of Mb is considered a path of length 0. All the cycles contain

a total of lc edges of Mb, while all the paths contain a total of lp +np edges of Mb.

Observe that a Hamiltonian matching cannot include all the E2 edges of a cycle,

therefore

r ≡ |E2| − nc = lp + lc − nc (5.3)

is an upper bound on the number of E2 edges used by a solution. Note that

n− r = np + nc (5.4)

5.3.2 A Simple Approximation for C3HM

Outline

We prove that the optimal median solution value wopt satisfies wopt ≥ 2n − r.

We also provide two simple approximation algorithms, indexed A and B, with
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performance guarantees of 2n− 2r
3 and 3n− 2r, respectively. The approximation

ratio of the algorithm A is bounded by
2n− 2r

3
2n−r , which is an increasing function of

r, while the approximation ratio of the algorithm B, is bounded by 3n−2r
2n−r , which

decreases whenever r increases. The threshold value of r, in which these two

bound meet, is rt = 3n
4 . Applying the both algorithms A and B, choosing the better

solution, guarantees an approximation ratio with guarantee min(2n−2r
3 , 3n−2r),

applying algorithm A iff r ≤ rt. The worst approximation ratio guarantee we thus

get is for r = rt, and then

wapprox

wopt
≤

min(2n − 2r
3 , 3n − 2r)

2n− r ≤
3n− 2 · 3n

4

2n− 3n
4

=
6
5

(5.5)

Bound on wopt

Let M be an optimal solution. Since M ∪Mb is a single cycle, for each cycle Ci

in G2, there is at least one E2 edge not in M . Hence, |M ∩ (∪iCi)| ≤ lc−nc, and

|M ∩ E2| ≤ lp + lc − nc = r. It follows that:

wopt ≥ 1 · r + 2 · (n − r) = 2n− r (5.6)

Approximation Algorithm A

Let di = |Mi ∩ E2|. Then d0 + d1 + d2 = 2|E2| = 2(r + nc). Therefore there is

some i for which di ≥ 2(r+nc)
3 . Our approximate solution is simply Mi. The value

of that solution satisfies:

w1
approx =

∑
e∈Mi

w(e) = 1 · di + 2 · (n− di) =≤ 2n− 2(r + nc)
3

≤ 2n − 2r
3

(5.7)

Note that Mi is the input Hamiltonian matching, whose sum of disagreement

distances from the two other input Hamiltonian matchings is minimal. Such an

approximation for the median problem is known [Sankoff et al., 1996b] for any

kind of metric, attaining an approximation ratio 3
2 , based on the triangle inequality.

Eq [5.7] provides a better bound on the performance of this approximation, when

the metric at hand is the number of breakpoints.
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Approximation Algorithm B

For each cycle Ci in G2, arbitrarily choose some edge ei, and denote E′ = E2 \
{ei}0≤i<nc . The graphH(V,E′∪Mb) is a collection of disjoint paths. Concatenate

these paths to a Hamiltonian cycle (which passes through all the edges of Mb), by

connecting path endpoints arbitrarily. Let E′′ be the set of those arbitrarily added

edges. E′ ∪ E′′ is our approximated solution. As |E′| = r and |E′′| = n − r, we

conclude

w2
approx =

∑
e∈E′∪E′′

w(e) ≤ 1 · |E′|+ 3 · |E′′| ≤ 3n− 2r (5.8)

5.3.3 Better Approximation

Outline

The bound in Eq [5.6] can be attained by an optimal solution if and only if such

a solution employs the maximum number, r, of E2 edges, and all the rest of the

edges are E1 edges. In this ideal scenario:

• All path edges are used.

• All cycle edges are used, except for one edge per cycle, breaking it into a

path.

• The paths and broken cycles are chained by E1 edges.

In such a case none of the paths is broken, and every cycle is broken only once.

Whenever the ideal bound in Eq [5.6] is not attained by a solution, the discrepancy

between the solution and the ideal bound can be attributed to deviations from the

ideal scenario, namely, to edges not of the above specified types, called non-ideal

edges. We call such a discrepancy waste, and charge non-ideal edges for this waste.

In this section we formalize these notions, distinguishing between several kinds

of waste, according to the non-ideal edges charged for it. We devise a better ap-

proximation algorithm, which tries to conform with the ideal scenario as much
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as possible, attempting to minimize the usage of non-ideal edges, thus reducing

the waste. In particular, we try to chain paths and (broken) cycles by E1 edges

whenever possible. More specifically:

• We use E1 edges which comprise a matching on a set of cycles and con-

nected components of paths These edges chain broken cycles and paths,

without any implied waste.

• We greedily choose E1 edges which are not charged for more waste.

Furthermore, we observe that sometimes waste is inevitable. We characterize

and quantify some of the inevitable waste, thus obtaining a better bound for the op-

timal solution. The new algorithm and the new bound guarantee a 7
6 approximation

ratio.

Some More Definitions

Each vertex v in V (G) = V (G2) is either a cycle vertex in G2, or an internal path

vertex, or a path endpoint. In these cases, we say that v is a c-vertex, an i-vertex,

or a p-vertex, respectively. Let I be the set of all i-vertices and p-vertices, and let

Mb[I] be the set of Mb along paths of G2. We distinguish between six categories

of edges in E0 ∪ E1 ∪ E2 according to the vertices they are incident on: Ecc, Eii,

Epp, Eci, Ecp and Eip. For i = 0, 1, 2, define Ei
cc = Ei ∩ Ecc, and similarly for

the rest of the edge categories. We define the subgraph Gpp(I,E2
ii ∪E1

pp ∪Mb[I])
of G, including all the paths of G2, and all the single edges of G connecting their

endpoints (see figure 5.8, top-middle).

Construct a bipartite graph Hcp(A∪B,F ), withA = {av|p-vertex v} andB =
{bi|cycle Ci}, and for each uv ∈ E1

cp, with u ∈ Ci, include in F its representative

avbi (see figure 5.8, bottom-right). Define also the graph Hcc(A∪B,F ∪Fcc), with

Fcc being the set of all representatives bibj of edges uv ∈ E1
cc, with u ∈ Ci and

v ∈ Cj . Define H ′
cp(A′ ∪B,F ′

cp), with a vertex a′S for each connected component

S in Gpp. Set F ′
cp to include all representatives a′Sbi of edges uv ∈ E1

cp, for which

u ∈ S, v ∈ Ci. Let Mcc, Mcp,M ′
cp be maximum matchings of Hcc, Hcp, and H ′

cp
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Figure 5.8: This is a 3HMM instance graph which we shall use for our examples

(top left). Solid lines denote double (E2) edgexs. Dashed lines denote single (E1)

edges. E0 edges are omitted. Instead of drawing Mb edges, each pair of adjacent

circles denotes a pair of Mb-matched vertices. The c-vertices appear in bold. Also

shown in the top row are G2 (middle) and Gpp (right) of this example. On the

bottom left Gpp is depicted, along with cycle edges and E1
cp edges (in our example,

E1
cc = ∅). Hcp of our example appears on the bottom right. The large nodes denote

the cycles Ci. Since in our example E1
cc = ∅, this is also Hcc. Furthermore, since

this graph contains only two edges with no common endpoint, Mcc = Mcp = Hcp.
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respectively (see figure 5.8, bottom-right). Surely, |Mcc| ≥ |Mcp| ≥ |M ′
cp|. We

use Mcp and M ′
cp only for analyzing performance, while Mcc is actually computed

by our algorithm.

For a Hamiltonian matching M , define the waste of M as

waste(M) = w(M) − (2n− r)

Substituting Eq [5.2] and Eq [5.3], we obtain:

waste(M) = |E2 \M | − nc + |E0 ∩M | (5.9)

Let the i-waste of a Hamiltonian matching M be

iwaste(M) = 2|M ∩ (E0
ii ∪ E1

ii)|+ |M ∩ (Eci ∪Eip)|

Claim 5.3.1 A Hamiltonian matching M with i-waste(M) = 2x, uses no more

than lp − x path edges.

Proof: Define WI = {i-vertex v|∃e(v) = uv ∈ (E0 ∪ E1) ∩M}, and observe

that iwaste(M) = |WI |. Each v ∈WI has a path edge e2(v) ∈ E2
ii incident on it.

Since e2(v) �= e(v), and they both share a vertex, surely e2(v) �∈M . Therefore:

|M ∩ E2
ii| = |E2

ii| − |E2
ii \M | ≤ lp − {e2(v)|v ∈WI} ≤ lp −

|WI |
2

= lP − x

Let the c-waste of a Hamiltonian matching M be

cwaste(M) = 2|M ∩ (E1
cc ∪ E0

cc)|+ |M ∩ (Eci ∪ Ecp)| − 2nc

Claim 5.3.2 A Hamiltonian matching M with c-waste(M) = 2y, uses no more

than lc − y − nc cycle edges.

Proof: Define WC = {c-vertex v|∃e(v) = uv ∈ (E0 ∪ E1) ∩M}, and observe

that cwaste(M) = |WC | − 2nc. Each v ∈ WC has a cycle edge e2(v) ∈ E2
cc
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incident on it. Since e2(v) �= e(v), and they both share a vertex, surely e2(v) �∈M .

Therefore:

|M∩E2
cc| = |E2

cc|−|E2
cc\M | ≤ lc−{e2(v)|v ∈WC} ≤ lc−

|WC | − 2nc

2
= lc−y−nc

Let the o-waste of a Hamiltonian matching M be owaste(M) = 2|M ∩ E0|.

Eq [5.9], claim 5.3.1, and claim 5.3.2 imply:

Corollary 5.3.3 2waste(M) = cwaste(M) + owaste(M) + iwaste(M)

Algorithm C

For a set X of edges, and an edge e, we define the neighborhood of e in X, Nx(e),
to be the set of all edges in X sharing a vertex with e. Algorithm C is as follows:

1. Initialize M,M̃ ← /o.

2. Construct Hcc and find a maximum matching Mcc, in it. For each edge xy

in Mcc, if both x,y represent cycles, add to M̃ an edge incident on vertices

of these cycles, respectively. Otherwise, x represents a cycle Cx, while y

represents a vertex vy in G. In this case, add to M̃ an edge incident on vy
and on a vertex of Cx (see figure 5.9, top-left).

3. Find a forest F ⊆ E2
ii ∪ E1

pp, s.t. F∪·Mb is a maximum spanning forest of

Gpp. (see figure 5.9, top-middle).

4. Set F ← F \ ∪e∈M̃NF (e) (see figure 5.9, top-right).

5. While F �= /o do:

(a) Choose a leaf u of F , with the edge uv ∈ F .

(b) Add uv to M.

(c) Set F ← F \NF (uv) (see figure 5.9, middle row).

6. Add M̃ to M (see figure 5.9, bottom-left).
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7. For each cycle Ci, add to M all the cycle edges of Ci, except one edge. If

Ci is matched by Mcc, then choose the omitted edge to be incident on the

vertex in M ∩ Ci (see figure 5.9, bottom-middle).

8. Add arbitrary edges to M to complete a Hamiltonian matching (see fig-

ure 5.9, bottom-right).

Correctness

Claim 5.3.4 Algorithm C produces a Hamiltonian matching

Proof: It suffices to show that until step 8, M satisfies:

1. M is a matching.

2. M ∪Mb includes no cycles.

• Edges added in step 5b:

Denote the set of all of the edges added to M in step 5b by M5b. Since

M5b ⊆ F and F ∪Mb is a forest in Gpp, M5b∪Mb is guaranteed not to form

a cycle with path edges, nor with cycle edges (which are never connected to

Gpp vertices). Furthermore, step 5c makes sure no added edge is incident on

a vertex of a previously chosen edge, thus M5b is a matching.

• Edges added in step 6:

Edges added in step 6 connect p-vertices to c-vertices, and until step 7 no

cycle edges have been considered. Hence, also adding M̃ ⊆ E1
cc ∪ E1

cp

to M (step 6) does not create cycles in M ∪Mb. Since no c-vertices were

considered till step 6, andM̃ is a matching, no degree 2 c-vertices are created

by this step. Also step 4 makes sure that no Gpp vertices receive degree 2 by

adding M̃ to M .

• Edges added in step 7:

Each cycle Ci is connected to the rest ofM ∪Mb by at most one edge, added
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Figure 5.9: Top-left: M̃ in our example. Top-middle: F , when first constructed. M̃

edges are dotted. ab is an arbitrary edge, indexed for future reference. Top-right:

F , after discarding the edges and neighboring edges ofM̃ (after step 4). Middle-

left: F , after the first loop iteration, choosing the edge ab to M . The vertices c, d,

and e are indexed for future reference. Middle: F , after the second loop iteration,

choosing the edge cd to M , discarding the edge de. Middle-right: M , after all the

loop iterations (end of step 5). All path edges are in M . Bottom-left: M , after

adding M̃ (end of step 6). Bottom-middle: M , after adding cycle edges (end of

step 7). Bottom-right: The final M . The edges added in Step 8 appear in longer

dashes line.
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to M̃ in step 2, and merged into M in step 6. Therefore, the path of Ci edges

added in step 7 creates no cycles in M ∪Mb. Ci has at most one edge e

sharing a vertex with an edge in M \ Ci, and e is never added to M , thus

step 7 does not create any vertices of degree 2 in M ,

A Better Bound on the Optimal Solution

Denote by F0 the forest F when it is first constructed. Let k be the number of

connected components in F0 ∪Mb. Let m = |Mcc|, m′ = |M ′
cp|.

Claim 5.3.5 If k > 2m′, then waste(M) ≥ k
2 −

3m′
4 for any Hamiltonian match-

ing M :

Proof: LetM be a Hamiltonian matching, and let the matching M′ be a maximum

cardinality subset ofE1
cp∩M , such that no two edges ofM′ are incident on vertices

of the same connected component of F0 ∪Mb, nor of the same cycle in G2. M ′ is

a matching, and each of its edges has a unique representative in H′
cp. These repre-

sentatives compose a matching of equal size in H′
cp, therefore |M ′| ≤ m′. Let P−

be the set of all connected components in F0 ∪Mb, unmatched by M ′. Obviously,

|P−| = k− |M ′|. Let U be the set of all vertices of connected components in P−,

with an edge of M incident on them. The Hamiltonian cycle M ∪Mb must enter

and leave each component in P− through a U vertex, thus:

|U | ≥ 2|P−| ≥ 2k − 2m′

Denote the edge of M incident on u by uvu. Let C+ be the set of all G2 cycles

matched by M ′, and let W ⊆ U be a maximal set of vertices x, with each vx being

in a distinct cycle in C+. Note that none of the vertices in U may be connected by

edges of M to cycles outside C+.

|W | ≤ |C+| = |M ′| ≤ m′

therefore |U \W | ≥ 2k − 3m′. We charge every u ∈ U \W for some increase in

waste(M), as follows:
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• If uvu ∈ E0, then owaste(M) increases by 1 on account of u. We charge u

for this increase.

• If either u or vu is an i-vertex, then iwaste(M) increases by at least 1 on the

account of uvu, charging u for half of this increase.

• Otherwise, uvu ∈ E1
cp. vu must be on a G2 cycle Ci in C+, or else adding

uvu to M ′ contradicts its maximality. Every such Ci has already one vertex

with an (uncharged) M edge incident to it, the edge of M′ connected to

Ci. Furthermore, Ci has another vertex with an uncharged edge M edge

incident to it, connecting it to a vertex of W , otherwise u can be added to

W , contradicting its maximality. Hence, if di denotes the number of Ci

vertices with M edges incident on them, then the sum
∑

i(di − 2) increases

by 1 on account of v. This sum equals cwaste(M), and we charge u for this

increase.

To conclude, u is charged for increasing waste(M) by at least 1
4 , and no increase

in waste(M) is charged for more than once, hence:

waste(M) ≥ |U \W |
4

≥ k

2
− 3m′

4

Performance Analysis of Algorithm C

Since F0 ∪Mb is a maximum spanning forest, F0 contains all path edges. For a

path edge e, always NF (e) ⊆ {e}. Therefore, no such edge is being discarded in

step 5c or in step 4, prior to adding it to M .

Connecting a total of np paths, F0 contains also exactly np − k edges of E1
pp.

No more than 2m edges are discarded from F in step 4. Since at most two edges

are discarded from F in step 5c, for every edge added to M in step 5b, the total

number of E1
pp edges in M is at least m+ �np−k−2m

3 �. M further contains exactly
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r edges of E2, therefore:

w(M) ≤ 1 · r + 2 · (m+ �np − k − 2m
3

�) + 3 · (n− r − (m+ �np − k − 2m
3

�))

≤ 3n − 2r −m− np − k − 2m
3

= 3n − 2r − n− r − nc − k +m

3

=
8n
3
− 5r

3
+
nc + k −m

3

This performance guarantee gives an approximation ratio which increases when-

ever r decreases, meeting the performance guarantee of Eq [5.7] at the threshold rt
value for r, for which

8n
3
− 5rt

3
+
nc + k −m

3
= 2n− 2rt

3
− 2nc

3
2n
3

+ nc +
(k −m)

3
= rt

We apply both algorithms A, and C, choosing the best solution found. This guar-

antees an approximation ratio of 2n− 2rt
3 − 2nc

3 . We distinguish two cases:

case 1: If nc +m− k ≥ 0, then:

wapprox

wopt
≤

2n− 2rt
3 − 2nc

3

2n− rt

=
2n− 4n

9 −
2nc
3 + 2(m−k)

9 − 2nc
3

2n − 2n
3 − nc + (m−k)

3

=
28n − 24nc + 4(m− k)
24n − 18nc + 6(m− k)

≤ 28n − 24nc + 4(m− k) + 3nc + 3(m− k)
24n − 18nc + 6(m− k) =

7
6

case 2: If k > nc +m ≥ 2m, then the bound of Claim 5.3.5 applies, in particular:

wopt ≥ 2n− rt +
k

2
− 3m′

4
≥ 2n − rt +

k −m− nc

7
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wapprox

wopt
≤

2n− 2rt
3 − 2nc

3

2n− rt + k−m−nc
7

=
2n− 4n

9 −
2nc
3 + 2(m−k)

9 − 2nc
3

2n− 2n
3 − nc + (m−k)

3 − m−k
7 − nc

7

=
98n − 84nc + 14(m− k)
84n − 72nc + 12(m− k) =

7
6

5.3.4 Extension to Four Taxa

We shall now extend this approximation to handle trees with four leaves. We shall

use the algorithm of section 5.3.3 as a black box, using only the fact that it is a 7
6

approximation for the 3-leaves minimal Steiner tree problem, assuming nothing on

the norm space at hand.

More formally, consider a norm D over a space S . For triplet of points τ =
(a, b, c), a, b, c ∈ S , their distance to a point x ∈ S is d(x, τ) = D(a, x) +
D(b, x) + D(c, x). Define the median of a triplet τ ∈ S3 to be med(τ) ≡
argminxd(x, τ). The Steiner tree on a set S ∈ S of points calls for finding a

tree T = (V,E) whose leaf set is S, minimizing
∑

uv∈E D(u, v). Finding the

median is a restriction of the Steiner tree problem to only three input points. In the

sequel we write uv instead of D(u, v), for short.

Suppose there exists a polynomial algorithm which given τ ∈ S3 finds a point

m̂ed(τ) such that d(m̂ed, τ) ≤ 7
6d(med(τ), τ). We shall devise an algorithm,

which given four points Q = {a, b, a′b′} finds a Steiner tree of weight at most 11
8

the optimal tree.

Define the triplet τx to be the triplet of all four elements a, b, a′, b′ except x.

We apply the median approximation algorithm on some each τx, obtaining m̂x =
m̂ed(τx). For each x, y ∈ Q, we now define the weight of the 4-taxa tree Txy,

formed by taking mx as median of τx, and connecting x to the leaf y �= x:

w(Txy) = xy + d(m̂x, τx) (5.10)

Our approximated tree will simply be Txy for which w(Txy) is minimal. Let z and

w be the elements of Q \ {x, y}, and let T∗
xy be the optimal tree with topology
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separating x, y from z,w, and let mxy and mzw be its internal vertices connected

to these pairs, respectively. We observe that:

w(Txy) = xy + d(m̂x, τx)

≤ xmxy + ymxy +
7
6
d(med(τx), τx)

≤ xmxy + ymxy +
7
6
d(mzw, τx)

≤ xmxy + ymxy +
7
6
zmzw +

7
6
wmzw +

7
6
ymzw

≤ xmxy + ymxy +
7
6
zmzw +

7
6
wmzw +

7
6
ymyz +

7
6
mzwmyz

≤ xmxy +
13
6
ymxy +

7
6
zmzw +

7
6
wmzw +

7
6
mzwmxy

But:

min{w(Txy), w(Tyx)} ≤ 19
12

(ymxy + xmxy) +
7
6
(zmzw +wmzw) +

7
6
mzwmxy

(5.11)

obtaining, for Wxy = {w(Txy), w(Tyx), w(Tzw), w(Twz)}, that:

minWxy ≤ 33
24

(ymxy + xmxy + zmzw + wmzw) +
7
6
mzwmxy

≤ 11
8

(ymxy + xmxy + zmzw + wmzw +mzwmxy)

=
11
8
w(T ∗

xy)

Finally,

wapprox = min
xy

Txy ≤
11
8

= minxyw(T ∗
xy) =

11
8
wopt (5.12)

proving the approximation ratio.
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