Tel Aviv University
Raymond and Beverly Sackler
Faculty of Exact Sciences

School of Mathematical Sciences

Computational Expansion of

Genetic Networks
by

Amos Tanay

The research work has been conducted
under the supervision of
Prof. Ron Shamir

Submitted as partial fulfillment of the requirements

towards the M.Sc. degree

NOVEMBER 2001

Acknowledgment

I wish to express my thanks to Prof. Ron Shamir for not giving up on teaching me how to
transform vague ideas into science . I also wish to acknowledge Itsick Pe’er, Zohar Yakhini,

Martin Kupiec and Jacques Tanay for helpful discussions, ideas and support along the way.

Abstract

Computational genetic networks are mathematical models for biological systems. Biological
systems were shaped by evaluation as extremely complex, parallel and robust entities. The
many biological functions that are essential to the existence of any leaving organisms are
achieved via interaction of genes, proteins and external signals where the nature of interac-
tion is as important as the potency of specific biological factors. The emergence of modern
DNA sequencing techniques allows us to fully describe many organisms genomes, but cre-
ating long lists of genes cannot by itself shed light on their function, or on the interaction
scheme that tie them together. The technology of DNA chips, with its many applications and
variants, provides high throughput measurements of thousands of biological factors (mRNA,
binding sites). The work in this thesis is focused around the problem of network recon-
struction: Given a large data set of measurements, what is the model that best explains
the data. We develop the concept of network expansion which uses a known sub model
as a starting point for the network reconstruction process. The motivation for expansion is
the combinatorial explosion of data needed for ”de-novo” reconstruction and the attempt to
provide computational tools that may be of help to the biologist specializing on a subsystem
of a complex organism. We have formulated new network models that can integrate biologi-
cal constraints and built methods and algorithms for evaluation of models vs. experimental
data. The entire environment was implemented in a new software system called GENESYS.
We used GENESYS to evaluate the performance of our methods on both simulated and real
life data sets. The results show that the network expansion methodology as implemented in
GENESYS can be used to improve our understanding of relevant and important biological

subsystems.

Contents

1 Introduction
1.1 Our Approach o L e
1.2 Outline of Thesis Results,
2 Background
2.1 Biological Motivation L
2.2 Previous Computational Work oL,
3 Theory
3.1 Theoretical Framework Lo o
3.2 Evaluation of Fitness Functions
3.3 The Pathway Expansion Problem
3.3.1 Complexity e
3.3.2 A Practical Approach o o
4 Simulation Results
4.1 Simulation Setupo
4.2 Results.
5 Results On Biological Datasets
5.1 Preprocessing Expression Data 0 0.
5.2 Ergosterol Metabolism o oo
5.3 Transcription Factors Screening oL
5.4 Screening All Genes L

13

19
19
24
30
30
32

34
34
36

6 The GENESYS environment
6.1 GENESYS viewers i e e e
6.2 GENESYS back-end services o o v i i e e e

Chapter 1

Introduction

The work described in this thesis deals with the computational identification of biological
relations among genes and proteins in a living organism. This problem is of major scientific
importance, even more so in the post-genomic era, where the dictionary of biological factors
(genes, proteins) is at hand or within reach. Biological systems are the outcome of an evolu-
tionary process, and they manifest phenomena which are massively parallel and stochastic.
This shapes biological networks (composed of the entire set of biological variables and the
relations among them) as an extremely complex entity, having numerous levels of redundan-
cies in one hand and composed of multi-function factors on the other hand. The vision of
creating a biological network reconstruction ”pipeline” that will rapidly analyze and ”reverse

engineer” the biological machinery is thus as difficult as it is attractive.

The advent of novel biological analysis methods, most notably the ability to profile gene
expression on a genomic scale using DNA chips, has changed the way biology is being explored.
Huge databases of biological data are accumulated in an accelerated pace, stressing more and
more the challenge of making sense out of the data. Still, as we will explain below, the
amount of information needed for a naive computational attack on network reconstruction

suffers from combinatorial explosion and will always be impractical to obtain.

One way to address these difficulties is by introducing new experimental techniques,
collecting focused and high quality information on the relations among biological factors
[43, 35]. A complementary approach, which is the subject of our work, is to use sophisticated
computational methods that would enable biologists to ask directed questions on specific
functional units and to get statistically sound answers. These methods should support the
incorporation of large datasets and use them to generate and validate high quality biological

hypotheses.

1.1 Owur Approach

In this section we sketch the approach taken by this study. The terms used here will be

defined more fully and formally later.

As we shall explain below in detail, the challenge of genetic network reconstruction is
difficult due to many reasons. The main reason being the complexity of a massively parallel,
redundant and ”evolution made” system. Compared to the numerous degrees of freedom
in the space of possible molecular networks, even datasets with hundreds of well planned
distinct cellular states cannot directly identify the perfect model out of many other possible
alternatives. Another major source of difficulties is the noise inherent in high throughput
experiments and the need to either give away much of the data or tolerate significant levels

of "false positives”.

The methodology developed in this thesis offers computational devices that improve our
ability to handle both complexity and noise. A network model consists of a set of elements
(e.g., genes, proteins) and the laws of interactions among them. Given an ensemble of possible
network models (the models space), tailored for the description of a selected target system,
we define a network core as a sub-network consisting of a set of known elements and
interactions among them. Cores can be constructed manually by an expert with a focused
interest on a specific pathway or directly from a database containing collections of known
pathways. Our approach avoids ”de novo” reconstruction and instead tries to add factors
and interactions to the core so that a given dataset is predicted better by an extended core
model. We call this process network expansion. Limiting our search to expansion of a
given network core leads to a major reduction in model space dimensionality and enables the
algorithm to both spend more computational power on a target subsystem and to be less
sensitive to over fitting. The core serves us also as a means for integrating diverse sources of

information into the computational process.

We have implemented the expansion methodology with discrete network models and for-
malized the required concepts and mathematical models. Discrete network models are not
new [40, 2] but we have generalized them to better suit our needs. Our models distinguish
local logic constraints and global network topology limitations and uses multiple valued logic

to represent different states and control of biological variables.

To improve our process specificity, we have developed specialized scoring functions to
assess the fit of each possible core expansion to the input dataset. Our methods enable
the approximate calculation of a p-value for a speculated regulation pattern and simulation
studies show that compared with conventional scoring method (mutual information for exam-
ple) the novel scoring function gives more specific results. In an attempt to further improve
the utilization of high throughput dataset we have built a probabilistic representation for

expression data sets and generalized our scoring functions to use it.

A new software platform, named GENESYS (GEnetic Network Expansion SYStem) was
developed and used to test the framework with real biological information. We have focused
on budding yeast and used publicly available transcription profile data to generate likely
expansions of ergosterol related pathways. The results suggest a novel transcription factor
and identify interesting regulation patterns, proving that computational analysis can reveal

complex relations in genetic networks, even with today’s data sets.

Using GENESYS simulation engine, we have also tested our algorithm with simulation of
networks and datasets. Results show that, under our model hypothesis, very specific results
can be obtained. We have also compared different scoring functions and analyzed the method

robustness to noise with good results on both aspects.

GENESYS was built to support an interactive workflow and should be considered as a
prototype for a biological network analysis system. The many viewers in GENESYS allow
various ways of viewing and manipulating network concepts, and are connected with the com-
putational back-end to enable an on-line expansion workflow. Our algorithms were designed
and implemented to provide very fast response time and are capable of expanding cores of
more than a dozen variables within minutes on a standard PC, so interactive manipulation

of the network is really possible.

We believe the expansion methodology may prove a valuable tool for the working biologist
who is interested in a specific function of a living organism and cannot deal simultaneously
with thousands of genes interacting with each other. In the future, if a large database of
transcription profiles and other datasets is available, an expansion process can serve as a
search tool giving the expert of a particular biological domain the freedom to take advantage

of the whole dataset in a focused way.

1.2 Outline of Thesis Results

The main results of this thesis are listed below, a perliminary version of most of these has
been published in [47] :

a. We formulate a new network model that generalizes prior work by allowing multi-
valued variables and logic and incorporating noise.

b. We define several new measures to assess the fitness of a network and show how to

compute or approximate them.
c. We define a new computational challenge, the pathway expansion problem.

d. We study the complexity of several variants of the expansion problem and provide

hardness results.

Figure 1.1: Overview of the core expansion methodology. A) Large data sets (e.g. expression
profiles) are transformed into a uniform database. B) A pathway core is constructed based on
the literature. The core shown here is the dependency structure of part of the yeast ergosterol
pathway, consisting of 7 variables. The exact logic of the system is defined by the association
of a discrete function to each model variable. C) The core model is expanded with additional

variables and interactions. Expansions are scored by their level of fitness to the database.

e. We define a sub-challenge of the pathway expansion problem which is more tractable,

the single node expansion problem.

f. We develop a software system for modeling, visualizing and manipulating networks,

and for solving single node expansion problems.

g. We study the performance of the new system on both simulated and real biological
data.

The thesis is organized as follows: Chapter 2 contains biological and computational back-
ground. Chapter 3 contains results a-e. Chapter 4 describes simulation results and Chapter

5 describes results on real biological data. Chapter 6 describes the software system.

Chapter 2
Background

In this chapter we provide basic background on genetic networks. We define and illustrate
the elements of such networks and their different relations. We also describe prior work
on computational modeling and analysis of networks. The biological literature is full with
excellent expositions on the various aspects of regulation in biological systems (e.g. [5]). We

provide in this chapter sporadic examples from it to motivate later modeling decisions.

2.1 Biological Motivation

Every organism in nature is completely characterized by its DNA sequence (with some excep-
tions that are irrelevant here). The DNA provides instructions for the synthesis of proteins
which function in a wide variety of biochemical reactions as amazingly efficient, robust and
flexible molecular machines. This was the basic paradigm of later 20th century biology, and

the source of many puzzling questions still awaiting to be resolved.

Each cell in a multi cellular organism contains duplicates of the same DNA molecules,
with the same instruction for the synthesis of the same proteins. Still, two of these cells
can be remarkably different from each other in size, shape and function (compare a large
neuron to a lymphocyte) and produce an entirely different collection of proteins. What are
the details of the sophisticated program enabling a human egg to transform, in a well defined
and tightly reproducible process, into the detailed and complex system of cells forming a

human being?

A different aspect of basically the same question can be seen in much lower organisms.
Yeast, the popular model system, can sense and respond to external stimulations (heat,
starvation, antibiotics) by changing the concentration of important proteins and performing
controlled modification in others. This is done without changing the DNA or learning to

produce new proteins. How are such programs implemented? How did these mechanisms

evolve?

Having studied molecular biology for half a century, science is now in a position to start
and understand how complex biology actually works. The basic paradigm of DNA-RNA-
Protein-Function is still the key, but now it is only the basic pattern of a complicated bio-
logical system or biological network. A biological system is composed of a large number
of biological factors (different molecules and metabolites, including DNA, RNA and proteins).
The different factors interact with each other in a variety of biochemical reactions (protein
synthesis, mRNA transcription, protein docking and many others). The exact nature of in-
teraction determines how the system would react to different conditions and how it should
develop in time. The details of interaction are still determined by the DNA (which acts as the
only inheritance device) but we must look not only for genes (segments of the DNA used for
generating proteins) but also for other regulatory signals. We must also examine proteins in
a broad context, searching for the relations with other proteins and their potential regulatory

role.

Before giving some examples on important regulation mechanisms, let us examine the
more global aspect of the architecture of a biological network. It turns out that natural
systems such as the two mentioned above (human cell differentiation and development, fungi
adaptation to environment) are completely different from systems built by humans. The
engineering ideals of simplicity and precision through well defined components are not the
dominating rules in biology. The reason for that is evolution. Consider, by way of analogy,
how evolution would try to turn a car into a airplane. In order to do so, a viable evolutionary
path should exist in which each intermediate step has a chance to survive (i.e. have high
fitness, e.g., in car/plain terms, it must be able to move and carry passenger efficiently and
reliably). But a car is extremely vulnerable to perturbations. Changing a single component
of the cylinders, fuel system, cooling system or wheels would create a useless piece of metal.
This would completely prevent the emergence of wings or jets since mutations would have a

huge chance of simply destroying the species.

Biological systems are built differently. As an outcome of evolution they are redundant
and robust. Not only is the genetic code degenerate, but also many of the interactions and
relations are backed by alternatives. Single points of failure would rarely exist and this en-
ables evolution to explore new possibilities without destroying useful building blocks. This
is greatly facilitated by the mathematical nature of the genetic network. Theoretical and
simulative studies have shown [38] that a random boolean network can feature a surprisingly
simple underlying structure when adequate parameters are chosen (see below). Specifically,
although there might be a very large number of interacting factors, and although it may seem
that the system can behave chaotically, order can be found in the network state space such
that a relatively small family of network modes (”attractors”, in the language of dynamical

systems) exists. This feature enables a large collection of factors to behave in an ordered, non

chaotic way and provide evolution with a relatively smooth and non rugged fitness land-
scape. The fitness as a parameter of the DNA would behave reasonably since changing few
parameters of the system would have a low probability for dramatic effects on the structure

of network modes.

Biological systems are thus complex yet ordered, and the order is introduced not by
a strict, engineering style hierarchal organization but via redundancy and stability in the
presence of small changes. The challenge of exploring these entities thus involves an interdis-
ciplinary effort from biologists, computer scientists and mathematicians. The numbers play
an important role in understanding why standard techniques would fail. There are about
40,000 genes in human [39] producing well over 100,000 proteins that may go through various
modifications to generate a total of over a million biological factors in this system. Assuming
we would like to have an analog of a physics field theory or state equation for this system
(the good old scientific ideal), this means we should write down equations for yet an order of
magnitude more (107) reactions between factors. This task cannot be done manually and it
is not like anything we have attempted before. It is the opposite of the 20th century physics
attempt to unify a theory, since the complexity is not an artifact waiting to be canceled by

an ingenious mathematical trick: It is the object itself.

We shall now describe some of the biological effects playing key roles in molecular net-
works. The first of these is called transcription control, and provides the basic understand-
ing for the reason why cells with the same DNA may look so different. The protein synthesis
pathway starts by transcribing a gene into an mRNA molecule. The biochemical reaction
responsible for transcription involves the assembly of a complicated protein complex (usually
TF-IT but sometime TF-I or TF-III) to a site near the gene sequence start (the promoter
of the gene). As always in biochemistry, chances of spontaneous TF-II assembly at a gene
promoter are negligible and some catalysis is needed to actually produce mRNA. This catal-
ysis is performed by a dedicated family of proteins called Transcription Factors. Some
of these factors are general and bind to any DNA sequence, with low sequence specificity.
These may be related to un-packaging DNA secondary structure (nucleosome packaging of
DNA may prevent transcription). The more interesting family of transcription factors are
sequence specific, i.e. can bind only special DNA motifs. This limits them to act only on
a specific subset of genes that have this motif in some proximity to their transcription start
site. Studies have showed that each gene may have more than two dozen DNA binding sites
and associated transcription factors in the short 2kbp sequence upstream of its TATA box
(gene start). The exact combination of transcription factor sites differentiate one gene from

another and can be viewed as the input of a complex genetic switch.

At each cell, and in each condition, the gene DNA binding motifs (categorized as cis
regulatory sites) may be bounded by transcription factors (TFs) or missing them. The exact

combination of existing bounded TFs may enable or disable transcription invocation. The

interaction between the various transcription factors may be formulated as a complex logical
expression, with some TFs acting positively and some negatively, or with others that may

have no effect unless their hetro-dimer partner is also available.

The mechanisms of transcription control were used by evolution to build a detailed net-
work of TF-gene interactions. The key point here is that TFs are protein themselves and so
are also subject to transcription control. This means that the global system of transcription
regulation looks like a network in which inputs of one gene are the output of others, similarly
to the abstract boolean network models we will describe below (and of course this was the
inspiration for these models). The cis acting motifs, being part of the DNA, are inherited and
are thus manipulated by evolution which can not only modify proteins and their structure

but also add or delete links in the network.

Biological regulation cannot be entirely dominated by transcription control. First of all,
the cell must sense external signals, and only then can the genetic network be used to respond.
The cell sensors are usually membrane proteins that change their conformation in response
to changes in the environment or the arrival of some external signaling protein (for example
hormone or an immune cell). The conformational changes may change the catalytic potency
of the sensor and trigger modification in other, internal proteins that may be TFs in the
simplest case. Such TFs will lack catalytic potency as long as their conformation is not
changed, and so the external signal may be transmitted from the membrane signaling protein

through the TF activation into the genetic network.

The example of the simplest signaling cascade noted above reflects a general pattern in
molecular networks. The conformational modification, usually achieved via phosphorilation
of selected amino acids in the protein is a type of post translational control device. A
special family of proteins (Kinases) can specifically phosphorilate given targets and change
their catalytic potency. We have noted that such devices are essential in signaling cascades,
but their role extends much beyond. Two other types of post translational control device are
cooperative binding and ubiquitination. The first of these may allow one active protein
to act only in the presence or absence of a catalytic or inhibitory partner. The second is used

to tag proteins for destruction by the proteosome.

Why did nature create both transcriptional and post-translational controls? The first
answer is that nature does not look for simplicity in the engineering sense, but there are
many additional explanations. Transcription control, as we saw above, is easily manipulatable
by evolution and provides much power and robustness. Post-translational control is on the
other hand much faster (two order of magnitudes) and enables fast signaling and ”real time”

controls. It is the combination of the two that makes complex biological functionality possible.

We will conclude our discussion of basic biological regulation mechanisms with an ex-

ample from the relatively well characterized regulatory circuit of yeast (s. Cerevisea) cell

10

mcDC2g—~PCDC28

CLN
CLNS /mCLNl/pL]\._
P \ — = mCLN2 —P \
mCLN3 SBR
psi:y pS\/KIG CAPC
~..
BCK mSWI4 mSWI6 ST W .
mBCK?2
CSCF

mSWI5—pSWI5—=mSICt—=pSIC1

. —-csciciB
cMBF mCLB5 pCLBS
o ——-cSICICLBG
CLB6 pCLB6

X DNA Replication (CDCS)..

Figure 2.1: Fraction of the yeast cell cycle regulatory network. G1 phase regulation is
modeled as a dependency graph with 3 types of nodes, mRNAs are denoted with an m prefix,
proteins with a p prefix and complexes are denoted by ¢ prefix. An arrow from x to y
indicates that the level of x is directly effecting the level of y. To proceed through the cell
cycle, transcription of G1 cyclins (clnl,cln2,clb5,clb6) must raise at the G1 phase, and this is
achieved by activating two transcription factor complexes (MBF,SBF) post translationally.
Function of the clb5,6 proteins is however inhibited by high levels of another protein, sicl, and
only when another post translational reaction takes place (phosphorilation of sicl by cIlnl and
subsequent ubiquitination and degradation of it via the SCF complex) the important function
of those cyclin can take place. These examples from G1 phase regulation show the importance

of the different regulation mechanisms to the understanding of the whole biological process.

cycle control. The system is controlled by three families of proteins and genes. The Cdk
(Cyclin Dependent Kinase) cdc28 serves as a platform for catalytic activity and is being
cooperatively bound by a group of cyclins proteins. Each of the complexes cyclin + cdk
is responsible for catalyzing a critical step in the cell cycle. The abundance of the cyclins
is controlled by transcription factors which invoke their transcription at well defined points
of the cycle. Important protein complexes (APC, SCF) are responsible for tagging specific
proteins (ubiquitination) so that their abundance would fall sharply when their function is
completed. Many signals may lock the cell cycle at specific steps (Pheromone response, DNA
damage). This is done by inhibiting critical post-translational reactions that are required for

the completion of the cycle. (see figure 2.1).

11

Budding yeast cell cycle control is considered as one of the best understood biological
control systems and is still only partially characterized. How can we approach the vast com-
plexity of biological networks in larger scale and make their systematical modeling possible?
Until recent years, this challenge was attempted via step by step experimental trial and error
process, analyzing few genes/proteins in each experiment and trying to gain insights both on
the general mechanisms of regulation and on specific regulatory pathways. The efforts of 40
years or so resulted in good understanding of the regulation mechanisms. Still, progress was

largely limited by the amount of information laboratories could have generated.

Recent years have witnessed an information revolution in biology with the introduction
of high throughput experimental methods. This revolution builds the foundation for a larger
scale understanding of biological networks. The most notable high throughput technology in
use today is DNA arrays [1, 21, 20]. Using high density cDNA or oligonucleotide microarrays,
biologists can measure mRNA levels in a genomic scale. While this technology becomes more
and more mature, the quality and reproducibility of results increases and additional standard
chips are being developed (following the completion of various genome projects). The output
of a single chip experiment is an expression profile, i.e., a vector of mRMA expression
levels of all genes present on the chip. cDNA microarrays are used to measure ratios between
expression of a baseline culture and the target cellular state. Oligo chips (as produced, for
example, by Affymetrix) output absolute values for expression levels. In both techniques,
only relatively large changes within or between experiments are considered significant. This

is due to both biological and experimental noise.

As mentioned above, mRNA levels by themselves are extremely important biological
factors and biologists have already used DNA chips to dramatically expand our knowledge
about many biological systems [29, 28, 32, 46, 26]. The technological possibilities of advanced
materials, robotics and image analysis go much further than measuring mRNAs, and new

important technologies provide insight into both transcription and post-translational effects.

Using Immunoprecipitation, PCR amplification and DNA chips, researchers at Stanford
and MIT [43, 35] developed a method for the genomic scale prediction of transcription factor
binding affinities. Using this method, the promoter region of each gene can be tested to see
if a specific transcription factor bind it. Although many effects contribute to the noise in
such experiments (most importantly effects of chromosome packaging), such data provide a
direct view into the genetic network and compensate for many of the problems in using only

expression data.

New types of chips are being suggested to measure various properties of proteins directly.
Brown et al. [23] have shown how membrane associated proteins can be searched for, Uetz
et al. [50] used high throughput two hybrid experiments to identify a large set of putative
protein interactions. These methods are complemented by emerging proteomics techniques

[54, 30, 31] that can measure the abundance of a large number of proteins, similarly to the

12

way DNA chips can do for mRNA.

The biological information revolution is accompanied by efforts for standardization and
automated data sharing via database systems and the Internet. Organism’s databases [7,
16, 14] provide standard reference for the genome and annotation of each model system and
are referenced by the entire community. Functional databases [51, 36] provide a specialized,
cross organism view of biology. The Gene Ontology consortium [15] is developing a generic
biological vocabulary that should make the translation of data and models across organisms
possible in a semi automatic way. These databases and atlases are a powerful resource in

using diverse data sources for genetic network analysis.

The incredible pace in which new methods are being invented and utilized, and the increas-
ing rate in which high throughput data is being collected make the vision of characterizing
biological networks realistic. The mathematics, statistics and algorithmic involved in such a

huge task are however in very early stages.

2.2 Previous Computational Work

We shall next review the current literature on computational genetic networks. As a young
field, one cannot identify a central body of work which dominates the domain. Rather,
there are different theories and techniques which may merge in the future and create a more
unified scientific discipline. As a result of this situation, one should pay particular care to

assumptions and terminology used in the different studies.

The mathematical formulation of a genetic network has been introduced in early works
on mathematical biology. An important example is Kauffman’s work on the evolutionary
implications of various biological structures [38]. Kauffman noted the effect of network struc-
ture on evolutionary stability and studied the evolving network and the possible advantages
of special organization of its state space. In particular, synchronous boolean networks were
suggested as a idealized model for a biological system. A boolean network N is defined
on a set of variables U by a set of boolean functions f, : {0,1}V — {0,1} for v € U. The
simplistic biological interpretation of a boolean network associates each variable with a gene
and interprets 0 values as deactivation of the gene and 1 values as activation of the gene.
Transcription control logic can be modeled by encoding the relations between variables (tran-
scription factors and genes) into the functions f,. The state of a network is the vector of the
levels of all variables. The model is a synchronous dynamical system, whose state at time
t depends on the values of variables at time ¢ — 1. As a dynamical system, one can analyze
the network behavior under different initial conditions or perform global state space analysis
looking for attractors and basins of attraction. Attractors are closed trajectories (cycles)

in the state space of the dynamical system; basins of attraction are equivalence classes of

13

states leading to the same attractor (since the state space is finite, every state must lead to

an attractor).

Kauffman studied random boolean networks behavior and noted that while random net-
works are chaotic in their behavior, enforcing bounded in-degree, i.e. limiting the direct
inputs of a variable to some small number, introduces order in the state space and results in
a number of basins of attraction that is less than square root the number of nodes. Kauffman
further interpreted each attractor as a distinct cell type and claimed that during the course
of cell differentiation, careful sorting of global states into local attractors takes place. The
ability to obtain organized state space using weak constraints, claimed Kauffman, was an
important factor in the evolution of higher organisms. Researchers at Santa Fe institute used
Kauffman’s ideas to develop the concept of a mathematical genetic network. Boolean models
were randomized and analyzed exhaustively to explore their attractor space structure and to

draw conclusions about the possible effect of known biological features on them.

The vision of computational network reconstruction from experiments became more and
more widespread with the first works on DNA chips circa 1996. Repeating DNA chips
experiments in different environment and cellular conditions yields a matrix of expression
level per gene per condition. Combining this novel technology and the emerging mathematical
formalization of genetic networks, Somogyi et al. [40] suggested a network reconstruction
algorithm. The basic goal is natural: Given a large data set of expression profiles taken
from different states of a cell, reconstruct the underlying genetic network such that the
measurements are explained in the best possible way. So, looking at a specific gene, and
assuming our model is boolean, we should look for a set of functions f, such that the behavior
of each gene is completely defined by the states of its inputs. Somogyi et al. developed their
theoretical reconstruction algorithm while making many assumptions on the data and the
biological model. The data was assumed to describe a trajectory of the synchronous boolean
network, i.e. the measurements at time t — 1 completely determine those at time ¢. The
topology of the network was simplified by allowing a limited number of D inputs for each
gene. Under these assumptions, the reconstruction algorithm is very simple: scan all D-
subsets for each gene and take a subset for which the input boolean expression states always

match the output expression state.

In a subsequent work, D’hasslear et al. [22] tried to model regulation in a linear framework.
This time, a linear equation was used to associate the expression of each gene with the
expression of its input genes. The linear approach is limited in its ability to describe complex
logic but can handle the real values measured in the DNA chips experiments without pre-
processing them by discretization. The results of using a linear system for the analysis of
a true biological system (mouse central nervous system) were naturally severely over-fitted
(the number of parameters needed to be determined was quadratic in the number of genes,

while the number of available states was sub-linear). The known biological mechanisms of

14

regulation are non linear by nature, and indeed linear models are not an attractive approach

to study gene regulation.

Much of our understanding of biological regulation, and the inspiration to study com-
putational problems related to it came from the works of Davidson and colleagues [53, 19].
Studying the sea urchin model organism, Davidson was able to construct very detailed ex-
amples of specific gene regulation. Well planned perturbations of the promoter region were
performed in order to identify cis regulatory sites, compose them into modules and analyze
their logical relations. The resulting logical apparatus is an impressive, sophisticated com-
putational device. One should note that the examples studied by Davidson relate to the cell
differentiation process and to development rather than to ”real time” control mechanisms.
Developmental biology is more naturally modeled by discrete genetic switches than other

effects.

A key to the research of biology in general, and of biological networks in particular is
the ability to perturb the genome via gene deletion, modification or over-expression. Akutso
et al. [2, 3, 4] studied the mathematical problem of boolean network reconstruction via
perturbations in a biologically inspired setting. In [2], Akutso et al. examined the worst case
behavior of an experimental plan in which small sets of genes are perturbed and the effect
on all genes expression levels is measured. Upper and lower bound were given on the number
of experiments under various assumptions regarding the structure of the direct dependencies
among variables in the network. The outcome of the combinatorial analysis implied that
it will take an unrealistically large number of experiments to reconstruct a network in the
worst case. It would take Q(NP) and O(N2P*1) perturbation on a network with N nodes
and maximal in-degree D to completely characterize a boolean network. In fact, we can
improve the upper bound to O(NP+2). Even when assuming an acyclic network, this lower
bound cannot be removed as it is a direct consequence of the case of a single node logic
reconstruction: The case where the level of a single node is an AND function of the levels of

D other nodes cannot be identified by less than Q(NP) experiments in the worst case.

A more optimistic approach was described in a latter paper [3] where it was shown that
in a randomized experimental plan, a logarithmic number of experiments is enough in order
to reconstruct the network with high probability. However, this result can be obtained only
when assuming a random distribution of samples, independently for each of the variables.
This is a problematic assumption since in practice many perturbations lead to the same

attractor and thus produce highly dependent samples.

The computational problem of bounded in-degree boolean network reconstruction is de-
fined by the set of expression profiles (of size m) on a set of variables (of size n). The goal
is to find an assignment of boolean functions to the variables that would best explain the
observed expression levels. The trivial O(mn?*1) algorithm suggested in [40] was improved

in [4] using fingerprinting and matrix multiplication techniques to O(n”?m“=2 + nP+v=3m)

15

time, where w is the matrix multiplication algorithm exponent) . The improvement remains

theoretical, since efficient matrix multiplication algorithms are not practical.

From a different direction, researchers have tried to address the related problem of opti-
mizing an experimental strategy for efficient network reconstruction. Karp et al. [37] aimed
at model verification. A specific logical circuit is assumed as a model that must be verified
experimentally and some of its nodes are defined as stimulators. The goal is to find a small
set of value assignments to the stimulators, such the measured outputs verify the correctness
of the model. The problem, which is easily shown to be NP-hard, was approached via branch
and bound algorithm and some results on a real biological pathway (pheromone response in

yeast) were presented.

Ideker et al. [34] addressed the related problem of dynamic experiment planning. The
authors assumed a boolean acyclic network and devised an algorithm for selecting the next
perturbation experiment given a current set of attempted perturbations and their resulting
expression profiles. The idea was that each experiment invalidates a sub model space by
making some logic and dependency assignments contradicting the measured profile. A good
perturbation should thus have high probability for disqualifying as many models as possible,
or, in an alternative formalization, have high expected mutual information on the model
space. The exact calculation of this probability is impractical and the authors suggested a
heuristic approximation to assess it. The method was tested with simulations. As of today,
there is no published practical use of this or any other method in genome wide experiment

planning, but efforts in these direction are emerging [33].

In the studies described above, researchers have created theoretical frameworks for the
computational manipulations of genetic networks. Important biological data sets that have
been published in the last three years [46, 32] both enable and require practical analysis
and modeling of specific biological systems. The analysis of microarray data is currently
dominated by clustering algorithms [6, 24, 45] which we shall not review here. Researchers
have also tried to combine clustering techniques with DNA motif search algorithms and apply
them to expression data [10, 48]. Such a ”pipeline” yields motifs which accurately predict
known cis sites. However, it cannot handle the complex logic models typical to genetic
network techniques and aims at the identification of objects (motifs, clusters) rather than

relations.

Using a yeast cell-cycle dataset [12], Chen et al. [11] attempted genetic network recon-
struction in a full scale. The time-series data was first analyzed using signal processing
techniques and then discretized to activation and de-activation events. The genetic network
model assumed was a digraph with edges marked as activators or repressors, requiring each
node to have at least one activator and one repressor. The reconstruction algorithm searched
for a minimal set of regulators that will completely ”explain” the dataset (each of the acti-

vation and de-activation event would be explained by at least one edge). The problem was

16

shown to be NP-hard and a 2-approximation algorithm with was described based on linear
programming relaxation. A simulated annealing heuristic was used to attempt reconstruction
of an actual network but no significant biological results were obtained. This early work may
be considered as one of the first attempts to try and computationally reconstruct a genetic
network using a large dataset. Although its biological reasoning is non-standard it might
have been more successful if the cell-cycle data set were less noisy and less dominated by

post-translational events.

In today’s largest expression datasets, hundreds of samples are characterizing expression
of thousands of genes. This makes any network reconstruction attempt very vulnerable to over
fitting. The high level of noise in the readings of DNA chips further complicates the task of
creating a practical network algorithm. One of the possible approaches for overcoming these
difficulties is to take a probabilistic approach and apply aggressive feature selection to filter
out non specific results. The work by Friedman et al. [25] outlines a Bayesian genetic network

learning framework to improve the validity of the results obtained by network analysis.

The Bayesian network paradigm assumes that the set of genes can be characterized by
the joint distribution of their expression levels. A Bayesian network is an economical repre-
sentation of such a distribution in which an acyclic directed graph encodes independencies
of variables (Given its parents values, a gene’s level is independent from the levels of all
other genes). The learning of a Bayesian network from examples uses a Bayesian local score
function that assesses the fit between examples and a given network topology. The Bayesian
Dirichlet equivalent (BDe) score function is a notable example. Given the local node score,
and assuming the global network score is decomposable (e.g., as sum of local scores), one
can view the learning process as an optimization problem and apply local search algorithms
to find a good model. To improve their techniques robustness, Friedman et al.[25] used non-
parametric bootstrap on the data set to re-apply their learning procedure repeatedly and filter
out dependencies with less than a given percent repeats across the bootstrap instances (i.e.,
only dependencies that were learned more then a certain percent of the time were considered

specific).

The framework was further extended in [42] to enable incorporation of genetic perturba-
tion information and to explore sub-networks of high significance. The extended methodology
searches ensembles of learned networks (generated again using non parametric bootstrap) and
locates separators (sets of nodes whose removal makes two nodes independent), cliques (sub-
graphs with high confidence on many of their edges) and more. When applied to the Rosseta
compendium data [32], results were predictive to known biological pathways and suggested

novel reasonable predictions of interactions.

Several authors constructed databases that can represent known network structures [36],
[561]. Indeed, years of biological exploration have created a vast body of knowledge regarding

many pathways and regulation mechanisms. A first attempt to systematically associate

17

existing knowledge with expression information was reported in [55], were metabolic pathways
were correlated with expression information. The authors scored a set of alternative pathways
(variations on galacatose metabolism in yeast) according to their match with expression data.
The scoring function used was based on correlation and time dependence. The use of a
metabolic pathway (series of enzymes responsible for the catalysis of a series of biochemical
reactions) may limit the practical results of such methodology, since such pathways do not
always reflect direct regulatory effects. The expression profiles of downstream enzymes need
not be directly correlated with that of their predecessors (the whole set of enzymes may be
clustered together, but the internal relations may be much more complicated and involve

different regulatory functions applied to critical steps of the pathway).

A different use for large interaction databases and assays is to try and review the global
structure of a genetic network. Combining information from many sources (two hybrid as-
says, locus proximity, orthologous genes) different authors [41, 50, 44, 52] suggested such an
analysis. The graphical model of the genome was used to try and relate different functions
and cellular components by arguing that whenever many edges connect genes with one func-
tion to genes with another function one may claim there is a specific association between the
two. The focus in these works was more on the analysis of a given network structure than

on a computational attempt to reconstruct the network.

18

Chapter 3

Theory

3.1 Theoretical Framework

In this section we provide definitions formalizing our model, and explain our modeling de-
cisions. We shall first define the models space which will later be used as our search space
in which attractive models should be located. We then formalize the concept of an experi-
ment and associate the two entities (models, experiments) using a scoring function (modeling
fitness).

Definition 1 A biological network (or model) is defined by a set U of variables, an
alphabet C of values or states that the variables may attain, and functions f¥ : CIVI — ¢
for each v € U. We use the term arguments of fY for the non trivial arguments of the
function. (u is a trivial argument of f, if changing the value of u alone never alters the value
of the function.) We denote by arg(fV) the set of arguments of f'. The dependency graph
of N is a directed graph G(N) = (U, A) where (u,v) € A iff u is an argument of f¥). The
set of arguments of v in G is arg®(v) = {u|(u,v) € E}. We shall use the term digraph for

dependency graph when there is no ambiguity.

The set U of biological variables may be composed of genes, proteins, mRNAs or metabo-
lites. It can also include artificial ”signal” variables indicating the occurrence of an event or
stimulation. The interpretation is that the value of variable v at time ¢ depends on the values
of its input variables at time ¢ — 1, and the functional dependence is described by fY. An

example of a network is given in Figure 3.1 and a dependency graph is shown in Figure 1.1.

One should note three major restrictions we have already enforced on our models. First,
our value alphabet is discrete, which means that our network logic is completely discrete.
Second, our functional dependencies (f") are deterministic, which means that stochastic

behavior cannot be directly described in the model. Finally, we are assuming Markovian

19

property of the network and even more importantly, we discretize the time which means that
our logic is synchronous. We shall discuss the reasoning behind those restrictions shortly, but
first introduce some additional structure over families of network models to create the model

space.

Definition 2 A model space is defined by the four-tuple (U, C, Fyio, Gpio) where U and C
are as above, Fy;, C F :={f : clull — C'} is the class of candidate functions and Gy, is
a class of dependency graphs on U. The space consists of all networks with functions from

Fyi, and dependency graphs from G-

The set of allowed functions Fjp;, should reflect biological knowledge and realistic con-
straints. For example, MONQy is the set of monotone functions with at most d inputs. In
contrast with Fj;, that constrains the properties of each particular function, Gy;, allows one
to prescribe constraints on the overall architecture of the network. For example, INDEG,
is the set of graphs with in-degrees at most r, M AX REG, is the set of digraphs having at
most 7 nodes with outgoing edges (those nodes would be interpreted as the regulators of the
network), and DI AMjy, is the set of all graphs with diameter at most k.

Examples :

1) In our study of transcription regulation in yeast using gene expression data (Chapter
5) the following model space is used: U was the set of all mRNAs corresponding to ORFs
in budding yeast. C' was the set (—1,0,1) representing down, normal and up regulation of

transcription. Gy;, was set to INDFEG,, and Fj;, was left unconstrained.

2) When trying to model cell cycle control in yeast, our variable universe U contained
not only mRNA variables but also a variable denoting the protein encoded by each gene.
In addition we have used special variables to denote the important transcription factors
complexes and cell cycle related events (chromosome alignment, mitosis, etc.). We have also
extended the alphabet C with special states indicating phosphorilation of specific proteins
(see Figure 2.1).

3) One can extend the framework outlined above by variable classification information.
A finite set of types is introduced and a mapping from U to the type set is defined. Types
are now used to control the dependency structure and logics. We can use different Fy;, for
each type or include type based constraints in Gy;, construction. For example, when studying
transcription regulation, one can identify the class T'F of putative transcription factors and

introduce Gp;, for which only variables from the T'F' class can have outgoing edges.

In our manipulation of network models, we will often use dependency structures instead
of the detailed discrete model. The main reason for this is that often we may still have
insufficient information to infer precise functional relations. Inferring dependencies only is

less prone to over-fitting, yet it provides key information on the network. We can use the

20

if((heme=-1 and HAP1=1) or (ROX1=1))
ERG11=1

if(heme=1 and HAP1=-1) ERG11=-1

otherwise ERG11=0

—
ERG11 @ [ROX 1

‘4 \
heme
[)

Figure 3.1: A fragment of a network describing the regulation of the yeast gene ERG11.
ERG11, ROX1 and HAPI1 are genes, while heme is a metabolite. A Boolean function de-
scribing the regulation of ERG11 is shown in the top box. Alternatively, it could be encoded
as a table, associating an output value to each combination of values of the input variables.

The bottom diagram shows the corresponding fragment of the dependency graph.

richer structure of the functional model space when developing computational devices to
assess the quality of a dependency structure (when analyzing a dependency structure we

actually view it as an equivalence class of detailed models with an identical digraph).

As remarked above, our model space is discrete, deterministic and synchronous. We
have selected this modeling approach in order to minimize the number of degrees of freedom
and to avoid over-fitting. We believe that important features of biological systems (mainly
complex genetic/protein switches) can be elucidated using such simplified models. Continuous
or stochastic modeling would require rate constants tuning, which drastically increase the
amount of information needed to validate a model, and thus is currently impractical for
all but very small networks. The discrete nature of our models enables the use of discrete
algorithms and combinatorial analysis techniques. This is another important advantage of

using discrete entities.

The definitions of network models and model spaces provide the platform for searching
high quality models of a given biological system. This search is driven by the availability
of significant amounts of experimental information characterizing the system behavior over
different conditions. We next define our viewpoint on micro-array data, thus providing a

formal definition for the most important biological data source today.

Definition 3 An experiment is a triplet (INP,OUT, PERT) where INP and OUT are
the input and output vectors, assigning values from C' to each variable in U, and PERT C
U is the set of perturbed variables.

21

PERT indicates those variable whose logic was perturbed in the experiment, e.g. by
knock-out or over-expression of a gene. If in a particular experiment v € PERT, then we
cannot draw conclusions on the regulation of v based on that experiment, since its value was
fixed, irrespective of the values of its inputs. We can, however, use that experiment to infer
possible regulatory effects v may have on other variables. Typically, a knock-out experiment
will produce one triplet. Time-series data, providing expression levels at a series of n time
points, yield n — 1 experiment triplets, where the vectors at time points ¢ and ¢ + 1 form
INP and OUT of the i-th experiment. Note that this transformation assumes that data
dependence is Markovian. We will use INP§ (OUTS) to denote the input (output) values of

the variable set S in the experiment e.

Some compensation for the modeling limitations caused by discretization of the network
is provided by using a probabilistic approach to model the data. This enables better data
utilization by factoring in the noise inherent in high throughput experiments. Below, and

occasionally later, we use overlines on vectors for clarity. Formally:

Definition 4 A (noisy) experiment is a triplet (PINP, POUT, PERT), where PERT C
U, and PINP and POUT assign to each variable in U a distribution over the values in C.
In other words, PINP,(c) (POUT,(c)) is the probability that v attains the value ¢ € C in
the input (output).

Definition 5 A steady state experiment is an experiment in which INP = OUT.

The distinction of steady state experiments is an important one. Real life data sets are
often either time series of samples along some synchronized biological process [46, 20], or a
single sample from a cell culture under some condition [32]. Steady state experiments might
contain an averaging of an underlying temporal process and so modeling them correctly
entails a less detailed representation of the biological system. Mathematically, for steady
state data, one must exclude models with variables regulating themselves, in order to avoid

the trivial self-regulation solution.

We can now tie models and experiments together using a scoring function, and provide

the key elements in the expansion process: a core and its expansion.

Definition 6 A fitness function is a function assigning a real value to each network in the
model space, based on experiments data. A model (or network) core is a network defined on
a subset U' C U. A core digraph is a dependency graph defined on U' C U. An expansion
of a core digraph G' is a digraph G containing G' as a subgraph.

In this terminology, the ultimate network reconstruction problem is to find a network of

maximum fitness in the model space. We focus here on a much more modest task: finding an

22

expansion of the core by a few nodes and/or edges so that fitness is maximized. See Figure

1.1 for an illustration of an expansion.

23

3.2 Evaluation of Fitness Functions

Our goal is to computationally infer biological pathways by finding an expansion network
or digraph that fit the experimental data best. The core graph would represent existing
biological knowledge and should enable us to achieve improved specificity (compared to the
quality of de-novo reconstruction). This must be preceded by developing a good fitness
function. Such function should perform well both in ”sensitivity” (scoring good expansions
high) and ”specificity” (scoring bad expansions low), and must also be efficiently computable.
Local fitness functions evaluate the fit of the experimental data to the function f of a single
variable v, while global fitness evaluates the overall network. The following definition serves

as our starting point in developing local fitness functions.

Definition 7 Given a function ¢ € Fy;, and a set of experiments E = (INP¢,OUT*¢, PERT®)

the consistency of ¢ for variable v, or the consistency of the pair (¢,v), is :

e<n’

Consist(v, ¢, E) = |{e € E,v ¢ PERT, | ¢(INP®) = OUT; }| (3.1)

Denote the arguments of ¢ by x1,...,24; the consistency of (¢,v) given a noisy experiment
set E 1s:

Consist(v, ¢, E) = Pr(¢(x1,...,2q) =v) = Z Z (H PINP; (u;)) x POUT, (¢(u))

e€E u=(uy,...,up)€Ck @
See Figure 3.2 for an illustration of consistent and inconsistent experiment set. The
explicit formula assumes statistical independence of the distributions PIN P and POUT.

In a similar fashion we define the consistency of a set S of arguments for node v as the

maximum consistency obtained by any fY € Fj;, whose arguments all belong to S:

Definition 8 Let S C U and v € U. The consistency of (S,v) based on a set E of experi-

ments 18:

Consist(v, S, E) = max{Consist(v, f*, E) |f* € Fyi, and arg(f’) C S}

We say that the consistency is perfect when its value is exactly n. In the unconstrained
case (Fp;o = F) this means that for each combination of arguments values, the output value
is unique. Indeed, when there are no constraints on functions in the model space we can

compute the consistency of a candidate argument set for a node efficiently, as follows:

Proposition 9 For any S = {si1,...,5q4} € U, if Fyo = F and E is a set of noiseless

experiments we have:

Consist(v, S, E) = Z mazcec{e € E|INP;, =c;,i=1,...,d N\OUT; = c}|

C1,-.,cq€EC

24

el
¢l
e3
¢
e

el
el

X | <3 —

ed
N | el

V1 V2 out V1 V2 out

Figure 3.2: The concept of consistency. S = {vq,vs} is the set of arguments of the variable
out. In the left figure, experiments e; and es have the same input values but a different
output value. This contradicts the assumption that S directly regulate out. The right figure

illustrates the perfectly consistent case.

Proof: Since we have no constraints on the function once its set of arguments is deter-
mined, we can optimize the consistency by making the best choice for each input assignment

independently. m

A similar reasoning applies to noisy experiments, by maximizing the likelihood of the
function value for each input assignment independently. Figure 2 outlines the algorithm
for noisy experiments. The algorithm uses a table of dimensions |C|¢ x |C| and iterates
on the experiments to simultaneously sum the probabilities of all i/o transitions. Let S =

{v1,...,v4}, denote the number of experiments by n and let m = |C/|.

Consist(v, S, E):

4 % m real valued table vote and

Initialize a m
a scalar consist with zeroes.
For allee F if v ¢ PERT® do
For all vectors v € C% do
pu = I INPE (w;)
For¢=1,...,m do:
votelu, 1| = vote[u,i] + p, x POUTE(c;)

For all v € C? do:

consist = consist + mazxi{vote(u,i)}.

Figure 3.3: Consistency computation.

25

Proposition 10 The consistency of an argument set for a wvariable in the model space
(U,C,F,INDEG,) can be computed in O(nm®t1) steps for noisy experiments and O(nd +

mt1) steps for perfect experiments.

Proof: For both cases we must iterate over all experiments. In the perfect experiments
case we spend O(d) time per experiment reading the arguments and updating the table and

d+1

conclude with exhaustive iteration over a m table to collect the maximum in each row. In

the noisy case we spend O(m?*!) time for each experiment (filling the table with each value

d+1)

combination), and again O(m time in the post process. m

One should note that other methods for evaluating the fitness of a dependency structure
can be used (for example, mutual information or Bayesian BDe/MDL). Consistency has the
advantage of being easy to compute and theoretically simpler. It also provide a convenient

basis for the development of the more sophisticated scoring functions below.

The main drawback of the consistency function is that it does not give information re-
garding the specificity of a speculated regulation pattern, and is thus very sensitive to over
fitting. For example, if every combination of values of the arguments appears at most once, a
function with perfect fitness can be formed, but it will have very pour confidence. To address
this problem, we shall describe how to calculate a probability, or as it is often called in the
life sciences, "p-value” of the observed consistency (to be denoted as the regulation specificity
function rSpec). As our null hypothesis, we assume independence of the measured values of
the variable v and the variables in arg(v). Having calculated the consistency of (arg(v),v)
we wish to estimate the probability of observing such level of consistency or higher in the
data under the null hypothesis. Consider first the case of n perfect experiments and assume
v was not perturbed in any experiment (if it was, simply remove these experiments from the
data set when considering fitness of v). Now define a probability space based on the data.

We use two random variables, X and Y. X attains values in C' with probabilities :

1
pi=Pr(X =¢)= g|{e € E|OUTy = ¢} (3.2)

If arg(v) = {vy,...,v4}, Y is taking values in C? with probabilities :

1
Pr(Y =(c1,..,¢q)) = ﬁ|{e €E|INP; =cii=1,...,d}| (3.3)

Definition 11 Let S C U andv € U. If (S,v) has consistency k based on a set E of noiseless
experiments, then the regulation specificity of (S,v) given E, denoted rSpec(S,v, E), is
the probability of obtaining a consistency of k or higher in the probability space (Y x X)™ (n
samples from'Y x X, each interpreted as an experiment with a value from'Y as the input and

a value from X as the output).

26

The size of the probability space defined above is exponential in the number of experi-
ments, so a naive algorithm for computing rSpec is not practical. We will present an ap-
proximation that is practical for the case where n — k is O(1) (almost perfect consistency)
and is linear in the number of experiments. We use a random variable from the space X
defined above and set the input values deterministically to (IN P§)c<,. We now calculate the
probability 7(k) for obtaining a consistency k or better in a data set with the n inputs from
IN Pg and outputs sampled from X. If there are [input configurations with multiplicities

ni,...,n; then (k) is the probability of getting n} identical values out of n; samples from
X fori=1,...,l where > n} > k.

Denote by v(r, s) the probability of getting exactly s identical values when sampling r
times from X. Then 1(r,s) can be computed exhaustively in O(rm”) time. To compute

P (r, s) efficiently we use the following lemma:
Lemma 12 ¢(r,s) can be computed in O(m + rm?T %)) time.

Proof: distinguish two cases:

(1) if s > 5 then 9(r,s) = 3, (})p}(1 — p;)"~°. This is true since we are sure that we
do not count any assignment twice (in more than half of the cases the value is identical).

Therefore, in that case 9 is computable in O(m) time.

(2) if s < 5 then 7 > 2s or 2r —2s > r, so rm" = O(rmz(’"_s)). m

So in particular, when r — s = O(1) computing % (r, s) is polynomial in r and m for all s.
Lemma 13 7(k) is computable in O((I + 1)*(Im + nm?t)) time

Proof: To compute w(k) we enumerate all integer partitions of ¢, ¢1,...,% s.t. Y. t; < ¢,

and compute :
w(k) =Y [T ¢(ni,ni —t) (3.4)
(ti) @
The number of partitions is bounded by (I + 1)!. By the previous lemma, each term in the

product 9 (n;,n; —t;) can be computed in O(m +n;m?) time. Hence, 7(k) can be computed
in O((I +1)!(Im + nm?")). m

Corollary 14 If (S,v) has consistency k and k =n — O(1) then rSpec can be approzimately
evaluated in polynomial time.

The main point here is that for fixed alphabet, we can approximate rSpec in linear time

in the number of experiments, whenever the consistency is almost perfect.

27

The generalization of regulation specificity to noisy experiments is done as follows. Given
a noisy experiment e = (PINP, POUT) we assume statistical independence of the distribu-
tions PINP and POUT and construct a probability space that represents possible deter-
ministic instantiations of e. The probability of obtaining a given perfect experiment value
h=(INP,OUT) is :

Pr(h) = H PINP,(INP,))POUT,(OUT,)) (3.5)
vel
The overall probability of a set of noisy experiments h = (hq,...,hy), assuming statistical

independence of the experiments is Pr(h) = [[; Pr(h;). Note that the latter independence

assumption would not hold for time series experiments.

Definition 15 For a set of noisy experiments E and the above setting:

rSpec(v, S, E) = E(rSpec(v, S, E;)) (3.6)

A naive computational approach for the finding the expectations above is not practical
here, since the size of the probability space is exponential in the number of experiments. We
have performed approximate evaluations by exhausting only part of the probability space for
E,. This was done by sampling from a set of artificial perfect experiments in which almost

all of the variables have their most frequent value in PIN P,.

Before moving on to define global fitness, we shall review a standard way of scoring
dependency structure using mutual information. The mutual information of two random
variables X and Y [17] is defined as M(X,Y) = H(X) + H(Y) — H(X,Y) where H is the
entropy function defined for discrete distribution as H(X) = Y_; —Pr(X = i)log(Pr(X =1))
(summing over the distribution alphabet). The entropy of X,Y is the entropy of their joint
distribution. Given an experiment set E, we can calculate the input (output) distribution of a
variable set S = {v1,...,vq} as Pr((c1,...,cq)) = fraction of experiments in F for which the
inputs (outputs) of S were exactly {c1,...,cq}. Denote this distribution by X¥. A variable
set thus induces a distribution over a probability space of m? elements and we can calculate
the entropy H(XE). We can now define :

Definition 16 The mutual information of a requlating set S, a variable v and an experi-
ment set F is defined as :

MInfo(S,v, E) = M(X§,X[}) (3.7)

Note that mutual information assumes by definition a constraint-less model space (Fp;, =

F), as its definition uses only the dependency structure. This may limit the incorporation of

biologically motivated constraints.

28

The computational tools we have developed so far define local evaluators, i.e. estimators
for the modeling quality of a single model variable given a speculated regulation formula or
dependency structure. We can extend this to evaluation of a core expansion in more than

one way. The most natural and immediate of these would be simple averaging.

Definition 17 Given a core dependency graph G' and an expansion G" = (U",E"), define
the fitness of the expansion G" by:

fit(G") == = 3" rSpec(v, Sy, E) (3.9)
1]
vel’

where S, = {x € G"|zv € E"}.

29

3.3 The Pathway Expansion Problem

Having created the framework for manipulating expansions and their fitness, we analyze in
this section the computational implications of some of the possible forms of the optimization

problem associated with the expansion procedure.

Definition 18 The pathway expansion problem is defined with respect to a model space
(U, C, Fyio, Gbio) and using a prescribed fitness function fit. Given a set of experiments E
and a core digraph G' = (U',E'), find a core expansion G" O G' mazimizing fit(G"). If

several solutions exists, find one minimizing ||G"||.

For an expansion G = (U",E") and v € U’, set S, = {z € G"|zv € E"} and define

fit(G") = Z consist(v, Sy, F) (3.9)
vel’

3.3.1 Complexity

Proposition 19 The pathway expansion problem, with the fitness function (3.9), is NP hard,

even assuming constant time computation of fitness, and even for cores of size one.

Proof: We shall show that the decision version of the problem, ”is there an expansion
with perfect consistency and size <[7” is NP-complete. Clearly that problem is in NP. We
will construct a reduction from SET COVER which is known to be NP-complete [27]. The
inputs to the latter problem are set S = {a,...a,}, a collection of subsets I = {S,...,S;}
of S and an integer [. The question is whether there exist a subset I’ C I, |I| < [such
that U;cprS; = S. We construct an instance of the expansion problem as follows. U will be
the set of subsets plus an additional variable, i.e., U = {1,...,q,”¢”}. The experiments set
will consist of n + 1 steady state experiments indexed by S U”0” and defined by the matrix

below (columns are variables, rows are experiments, x is the standard subset characteristic

function):
c 1 .. q
010 0 . 0
1 xs,(a1) ... xs,(a1) (3.10)
|1 XSy (ar) s XS (ar)

The core is set simply to the single variable ¢ and we set [= k + 1.

We will show that an expansion of ¢ with perfect ¢ consistency is equivalent to a set
cover. First note that any set of expansion variables corresponds to a collection of subsets

I' ¢ I. Now if ¢ is perfectly consistent with I’ then there do not exist ey, ey such that

30

INP;! = INP;? and OUTS' # OUTS?. Taking e as the ”0” experiment implies that there
is no e s.t. INPj, = INP;),. Since INPIO, is a vector of zeros, we conclude that for each

e € E — {0} (equivalent to an S element) we must have a variable in I’ (equivalent to a
subset in the cover) with non zero value (equivalent to having a subset covering the element).

In other words, I’ is a set cover.

Now assume I’ is a set cover. Taking the set I’ U {c¢} as an expansion yields perfect
consistency since the only experiment with 0 values over all the arguments in I’ is the ”0”

experiment (otherwise the node represented by the experiment is not covered).

In conclusion, there exist a set cover I’ with ||I'|| < k iff there exist an expansion U” =
I'u{c}st. |[U"|<k+1. m

In the case of bounded in-degree (e.g. if Gy, = INDEG,), the pathway expansion
problem is polynomial for bounded core sizes. To see this note that if each variable in the
core can have at most d inputs then the largest effective expansion cannot have more than
d * |U'| variables. If fitness calculation is polynomial (as consistency is), we can exhaust all
(d‘|[é|'\) subsets of U and take the smallest among those with optimal fitness. Note the same
argument holds for any fitness function which is polynomially computable but that we still

have exponential dependency in the size of the core.

Another interesting model space is Gy, = MAXREG,, i.e. all graphs with at most r
nodes of positive out degree. Biological studies show that the number of control genes is
often small fraction of the entire genome. It is thus desirable to add this constraint or goal

to the reconstruction environment.

Definition 20 The minimum regulation reconstruction problem is defined with re-
spect to a model space (U, C, Fy;o, Gpio) using a prescribed fitness function fit and a parameter
r. Given a set of experiments E we wish to determine if the set of optimal digraphs on U
(i.e. the set for which fit(G) is optimal) contains a graph for which at most r nodes have

non zero out degree.

Proposition 21 The minimum requlation reconstruction problem, with the fitness function
(3.9), is NP complete.

Proof: We will construct a reduction from TOTAL DOMINATION SET [13]. In this
problem, the input is a directed graph G = (V, FE) and an integer k. The question is whether
there exists a subset S of at most k vertices such that every vertex in G has an incoming
edge from a vertex in S. Note that in this variant each vertex in G must have an incoming
edge from a vertex in S and a vertex cannot dominate itself. The idea now is to tailor an
experiment set that will force any consistent regulation digraph to include for each variable

direct dependency on at least one of its neighbors.

31

Given a digraph G = (V, E), we let our variable universe U equal V' and work over the
binary states. Denote N; = {v € V|(v,i) € E} and M; = {u € V,u # i|Fv € Vs.t.(v,3) €
E,(v,u) € E}. Now generate the set of experiments E as follows. For each node i we
introduce one experiment e; with the following perturbations: All nodes in N; are perturbed
to 1 and all nods in M; are perturbed to 0. The node ¢ itself is left unperturbed. The
OUT, IN P function are now defined as:

1 j€N; u{i}

0 otherwise

INP(j) = OUT(j) =

We also add an unperturbed experiment reset for which INP(i) = OUT (i) = 0 for all
1. Finally set » = k. The reduction is clearly polynomial. We claim that a set of nodes is a
total domination set in the graph if and only if it can function as the set of regulators in a

network that will be consistent under the experiment set FE.

We first show that for each dependency graph which is perfectly consistent with E, the
set of regulators is a total domination set. This is true since for each node 7, the experiments
reset and e; can be consistent only if one of the nodes in Nj is an input of ¢ (all other variables

are set to 0 in this experiment).

For the other direction we shall show that each total domination set S can be used as a
consistent set of regulators. We construct the dependency graph connecting the nodes of S

to all their neighbors in G. We will show that no inconsistencies can happen.

Perfect consistency of a variable i is obtained whenever the input value combinations
for all experiments in which 4 is unperturbed and OUT (i) = 0 are disjoint from those where
OUT (i) = 1. Now note that the only experiment in which 7 is unperturbed and has OUT (i) =
1 is the experiment e;. In this experiment, those nodes of N; NS (denote them by D;) take
input values of 1. All other experiments in which the set D; has input values of 1 must
include either perturbation of i to 1 (in ey for which (i,k) € E) or perturbation of 7 to 0 (in
ey for which some (v, k) € E and (v,7) € E). This implies the input assignment of 1 to D; is
consistent. Since this is the only case in which OUT(:) = 1 and is unperturbed, we are done.

3.3.2 A Practical Approach

Core expansion is a very difficult problem when attacked in its fullness. Fortunately, very
limited expansions (1-3 variables) are very informative already and so computation is not the
current bottleneck in our methodology (experimental data is the bottleneck). We define the
single node expansion problem as the pathway expansion problem where U” is obtained
from U’ by adding a single node. The expansion process is thus an exhaustive pass over U

calculating the global score of the core with the addition of a single variable each time. We

32

can now examine the top scoring variables as potential candidates for involvement in the
core. We can also use the more detailed information of local (not global) gain in fitness for
specific core nodes in top scoring expansion candidates, and improve our understanding on

the potential function of the expansion candidate.

33

Chapter 4

Simulation Results

We have performed simulations to test our modeling assumptions and to verify our system
performance in a laboratory environment. The studies we report on here are by no means
complete. They only form the basis for deeper exploration of the relations between various
factors of the expansion problem. The results elucidate some interesting, non trivial effects,
enable us to compare the performance of different fitness functions and provide an insight on

the effects of noise and core structure on the performance of our algorithms.

4.1 Simulation Setup

There are numerous ways to simulate biological networks, even when assuming discrete,
synchronous models. Our selected simulation scheme, as described below, was designed to
follow known biological systems whenever it is possible, keeping in mind that we are using
the simulation mainly for a comparative study and that we are not trying to directly deduce

real life performance from the simulated runs.

Our simulated models had ternary values. The network topology was a layered graph
imitating the structure of master regulators/local regulators/functional genes known from
biology. We randomly partitioned the variable universe into layers and then selected random
edges such that variables in the upper layers will have larger expected out degree. All variables
had the same in-degree distribution. Our randomization procedure allows for feedback loops
as there can be edges from lower to upper layers. The topology mimics the tendency for
large out degrees in the ”master regulators” layers. The topology randomization algorithms

is described in Figure 4.1 and an example is given in Figure 4.2.

The logic of our randomized network model was generated using a combination of boolean
circuits of limited size. The idea was to limit the complexity of the logic we consider, again

imitating known biological features. To create a ternary function on ternary inputs we have

34

RandomizeNetworkTopo(U, [, p, w, de, 0):
de,0: The expectation and standard deviation for the normal distribution of in-degrees.
U : variable universe, [: number of layers
p = (po,...,pi—1): layer size distribution (p; > 0, >_; pi = 1).
w = (wy,...,w;—1): layer outgoing edges distribution (w; > 0, Y, w; = 1).
Step 1 : Partition U into layers
For each v € U determine the layer of v by sampling from the distribution p.
Step 2 : Determine in-degrees
For each v € U, the indegree of v, indeg(v) is computed by sampling from N (de, o).
Step 3 : Determine edges
For each v € U, repeat indeg(v) times :
Pick a layer k according to the distribution w.
Repeat sampling a vertex u in layer £ with uniform distribution
until (u,v) is not in E.
Add the edge (u,v) to E.

Figure 4.1: Network topology randomization process.

first randomized a layer of qualifier nodes transforming the ternary inputs to boolean values.
We have not limited the number of qualifiers for a single variable so that a given input could
have both negative and positive qualifiers. Using the qualifiers layer as inputs, we constructed
3 random boolean circuits with AND/OR nodes only, one for each output value. We also
randomized an order on the ternary alphabet. The function output was then computed by
iterating on the alphabet, calculating the outcome of each boolean circuit and choosing as
output the value of the first circuit giving true. A default value was chosen if all three circuit

values were false. An example of a function is given in Figure 4.3.

Note that we avoided completely random logic and used expressions which are biologically
reasonable (an AND gate may correspond to a protein complex needed to invoke transcrip-
tion or block it; an OR gate is interpreted as the combination of two alternative regulation
pathways). Still our functions were not monotone since a given variable could have been used

positively and negatively (see the example).

Having created random network model, we generated random data sets using perturba-
tions and trajectory recording. A set of perturbations were selected at random. We applied
only perturbations of one or two variables and interpreted them as knock-outs fixing the
perturbed variable value to -1. For each perturbation time we recorded the system trajec-
tory starting from the native state (0 for all variables) plus the perturbations (-1 for each

perturbed variable). The trajectory is calculated by repeated computation of logic function

35

Figure 4.2: Example of the layered topology used in our simulations. Note that all variables
have the same indegree distribution but upper layers have higher outdegrees. Note also we

enable loops in our random topologies.

output at time ¢ using as input the values at time ¢ — 1. Each time point was used as one

experiment.

We applied measurement noise to our experiments using two parameters pyqseneg and
Dfalsepos- Pfalseneg Was used as the probability to changes of non zero variable values to 0.
Dralseps Was used as the probability to change 0 values to a non zero value, the actual value

is selected with uniform distribution on C' — {0}.

To generate pathway cores, we selected a focus node at random and perform breadth
first search from it in the undirected graph corresponding to the model topology. We used a
parameter Peoremisses 10 possibly ignore variables encountered in the search and so avoid the
assumption of perfect knowledge on the core. The BFS was terminated after s.,.. variables

were selected.

4.2 Results

Results of 840 different runs are summarized in the graphs below. The instances analyzed
varied in their scoring function (consistency, regulation specificity or mutual information),
their random core size, their core completeness factor and level of measurement noise. All
experiments were performed with variable universe of size 500 and experiments dataset con-
sisting of 250 different perturbations and 10 time points trajectory for each of them. A

complete list of parameters is given in Table 4.1.

To assess the quality of the expansion process, we define the speci ficity of the expansion

36

If out_1 then ocut = 1

Else 1f out 0 then out = 0O
Else 1f out_ -1 then out = -1
Else out = default

Figure 4.3: An example of limited complexity random discrete logic function. A qualifier layer
is used as input for three different boolean circuits that are combined together to determine

the function output.

process as the probability that a predicted expansion variable is at distance 1 from the core.
For each set of parameters we repeatedly generated the network and experiments followed by
single node expansion to score each of the variables in U vs. the core (the score, as defined
in earlier chapters, reflects the gain in the modeling fitness of the core obtained by adding
the variable to the core regulators). The k top scoring genes are tested to see if their graphic
distance is 1 and the specificity of the expansion process is defined as the fraction of correct
predictions (each selection of k gives a different specificity, larger k yield lower specificity).

The results were averaged across 20 different networks and datasets for each parameter set.

The expansion running times for core size 10 were 8-11 minutes for regulation specificity

and 5 minutes for mutual information/consistency scores. Times were measured on a Pentium

37

Parameter Values Remarks

Variable Universe size (||U]]) 500

Number of layers [5

Indegree distribution parameters de=3,0=1 Same for all layers
Layer size ratios (p) (1:5:10:20:100)

Layer outgoing edge distribution (w) (1:1:1:1:1) Note the relation to p
Core Size (Score) 10 or 5

Fraction of core misses (Pcoremisses) 0.1 or 0.5

Single gene perturbations 150

Two genes perturbations 100 Pairs of genes selected for single pert.
Trajectory steps 10

False positive noise 0.01,0.02,0.05 or 0.1

False negative noise 0.01,0.02,0.05 or 0.1

Table 4.1: Parameters used in the reported simulations.

ITT 500MHz Linux machine (laptop version, 992.87 bogomips).

The overall picture outlined by the results is that expansion using reasonable number
of experiments yield very high quality results (higher then 90% specificity with conservative
thresholds). One should, however, avoid drawing direct conclusions from these numbers to
real life biological systems, and use them only in comparison to other methods applied to

such artificial models.

Using the results we can compare the performance of various scoring schemes (Figure
4.44.54.6,4.7). In all cases, it is evident that rSpec performs consistently better than the
other two methods. This is an important validation of the theoretical development of rSpec

and serves as the basis for further development of high specificity scoring functions.

The effect of increased noise levels was studied in a series of parameters settings false
positive and false negative noise factors (Figure 4.8). As expected, high noise levels resulted
in poorer specificity, but the process functions reasonably even when noise levels are rather
high. The effect of false negative (nullifying non default readings) was almost unnoticed,
while the effect of false positive (making default readings non zero) was more severe when
noise levels were 0.05. One should note that the noise was applied on a global basis even
when the whole perturbation resulted in very local value changes, so the false positive levels
we have experimented with represent high noise levels (for an average variable, only 5% of
the perturbations yield value changes so false positive of over 5% means there is more noise

than signal in the non-default readings).

The effect of core size and completeness follows the expected pattern (compare Figure

38

4.4 and Figure 4.5). Larger cores are generally more reliably expanded, as the scoring is
based on more variables. When only the first one or two best variable are considered for
expansion, scoring is better for cores with more missing variables since there is a good chance
of identifying a missing variable that is tightly connected to the core. When more variables
are considered, dense cores are better, as there is better chance to find a new good variable

that is adjacent to a more compact set of variables.

The simulation environment available from GENESYS provides a convenient way for
continued exploration of hypotheses and novel scoring/expansion methods. We intend to use

it in our future study of the network expansion and reconstruction problems.

39

09

"Minf.10.0.5.0" —+

0.0.5
"Consist.10.0.5.0" ---x---
"PConsist.10.0.5.0" ------

0.3 L L 1 1 | | |
1 2 3 4 5 6 7 8 9
1 T T T T T T T

"MInfo.10.0.1.0" —+—

"Consist.10.0.1.0" ---x---

"PConsist.10.0.1.0" ---*---
09 4

SRR X

Figure 4.4: Specificity in noiseless experiments with core size 10, pcoremisses

= 0.5 (upper

figure) and 0.1 (lower figure). x axis: the k parameter (number of top scoring genes used),

y axis: Specificity. The '+’, 'x” and

1%

correspond to mutual information, consistency and

regulation specificity scoring methods, respectively.

40

09

""Minfo.5.0.1.0" —+—
"Consist.5.0.1.0" ---x---
"PConsist.5.0.1.0" ------

1 T T T T T T T
"MInfo.5.0.5.0" —+—
"Consist.5.0.5.0" ---%---
"PConsist.5.0.5.0" ------

0.9 %

Figure 4.5:

Specificity in noiseless experiments with core size 5, Pcoremisses

= 0.5 (upper

figure) and 0.1 (lower figure). x axis: the k parameter (number of top scoring genes used),

y axis: Specificity. The '+’, 'x” and

1%

correspond to mutual information, consistency and

regulation specificity scoring methods, respectively.

41

" "PConsist.10.0.5.0.01.0.01" —+—

"Minfo.10.0.5.0.01.0.01" -
09 f i
08 | i
07k i

I "PConsist.lIO.
0.

0.5.0.05.0
"Minf0.10.0.5.0.05.0.

09 4
0.8 4
0.7 4
0.6 - 4

05 4

Figure 4.6: Specificity in symmetric noise experiments. Upper figure: prassepos =
0.01, praiseneg = 0.01. Lower figure: praisepos = 0.02,pta15eneg = 0.02. Core size = 10 and
Deoremisses = 0.5. x axis: the k parameter (number of top scoring genes used), y axis: Speci-
ficity. The 'x’, and '+’ correspond to mutual information and regulation specificity scoring

methods, respectively.

42

" "PConsist.10.0.5.0.01.0.02" —+—

"Minfo.10.0.5.0.01.0.02" -
09 f i
08 | i
07k i

0.3 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
1 T T T T T - T T

"PConsist.10.0.5.0.02.0.01" —+—

"MInfo.10.0.5.0.02.0.01" ---x---
09 u
0.8 4
0.7 u

Figure 4.7: Specificity in non symmetric noise experiments. Upper figure: proisepos =
0.01, praiseneg = 0.05. Lower figure: paisepos = 0.05,Pfaiseneg = 0.01. Core size = 10 and
Deoremisses = 0.5. x axis: the n parameter (number of top scoring genes used), y axis: Speci-
ficity. The 'x’, and '+’ correspond to mutual information and regulation specificity scoring

methods, respectively.

43

T
"PConsist.

10.0.5.0.01.0.01" —+

"PConsist.10.0.5.0.01.0.02"

"PConsist.10.0.5.0.01.0.05" - -
09 b i
08 | i
07 F i

0.3 1 1 L 1 1 1 1
1 2 3 4 5 6 8 9
1 T T T T T . T T

"PConsist.10.0.5.0.01.0.01" —+—

"PConsist.10.0.5.0.02.0.01" ---x---

"PConsist.10.0.5.0.05.0.01" ------
09 4
0.8 4
0.7 4

Figure 4.8: Algorithm behavior under variable noise levels. All data from experiments with
core size 10, Deoremisses = 0.5 and rSpec scoring function. Upper figure represents three
different false positive rates with fixed false negative level of prgiseneg = 0.01. Lower figure
represents three different false negative rates under fixed false positive level of p r415epos = 0.01.
x axis: the k parameter (number of top scoring genes used). y axis: Specificity. The "+’,’x’

1%k

and correspond to noise levels of 0.01, 0.02 and 0.05, respectively. The rSpec score was

used in all experiments

44

Chapter 5

Results On Biological Datasets

To test our ideas in a real world setting, we applied GENESY'S to yeast transcription datasets
using the ergosterol pathway as a core. We focused on the simplest possible core expansion:
The single node expansion process (see section 4) examines each of the variables in U and
calculates the sum of fitness gains to all core variables from adding that variable to the core.
Note that unlike clustering or similarity tests, we are not looking for genes that are similar
across the entire data set, but rather seek genes that might regulate or indirectly affect the
pathway in those experiments which are left unexplained by the core model. We present

below the results of two different screening processes, with different limitations and goals.

The fitness function was computed as follows. Denote the core by U’. For each non-core

variable v, its global fitness is

Z max —rSpec(u, S, F).
uey SCUU{vhIs|<d

5.1 Preprocessing Expression Data

Our study focused on yeast, which has the largest publicly available gene expression datasets.
The variable set consisted of 6200 yeast ORFs. Transcription profiles were taken from two
large scale yeast cDNA arrays experiments: Hughes et al. [32] performed some 260 selected
knock-out experiments; Gasch et al. [28] performed 100 experiments testing yeast behavior
in stressful conditions. We have chosen to view all experiments as steady state experiments:
For knockout experiments this is a natural choice. For the stress time series data, we chose
to view each measured transcription profile as a different steady state experiment, since the
time intervals between measurements were non uniform and typically much larger than the

transcription activation delay.

Each experiment was normalized by computing log(X;)/log(R;) where X; and R; are

the intensity levels for gene ¢ in the specific condition of the experiment and in a common

45

reference tissue, respectively. By comparison with the same ratio measured in the wild type,

a decision was made whether the gene was up-regulated, down regulated or unchanged.

Transforming the data to our noisy experiments representation was done as follows. The
data in [32] contained detailed, per-gene noise model, assigning p-values for the statistical sig-
nificance of up or down regulation based on a large number of repeated wild type experiments.
We performed a conservative transformation of these values to distributions over the variables
{—1,0,1} as follows (compare table 5.1) : For genes designated in [32] as up (resp., down)
regulated with p-value below 0.005, we assigned POUT(1) = 1 (resp., POUT(-1) = 1).
Genes designated as up (down) regulated with p-value in the range 0.005 to 0.01 were as-
signed POUT (1) = .7 (POUT(-1) = .7) and POUT(0) = .3. All other designations were
assigned POUT(0) = 1. For the data of [28], genes with increase factor 2.5 (resp., 2) were

Rosetta designations GENESYS designations
regulation | P-value range | POUT(-1) | POUT(0) | POUT(1)
down [0,0.005) 1 0 0
down [0.005,0.01) 0.7 0.3 0
up [0,0.005) 0 0 1
up [0.005,0.01) 0.3 0.7
otherwise 0 1 0

Table 5.1: Ranges table for the transformation of Hughes et al. p-values to distributions.

assigned POUT(1) =1 (resp., POUT(1) = .7 and POUT(0) = .3). Down regulation with
the same factors were assigned symmetrically, and all changes less than twofold were assigned
POUT(0) = 1. These assignments are very conservative, trying to avoid false positive regu-
lation assignments and reduce noise. As we demonstrate below, with the quantities of data

available today, the noise introduced by the entire process can be tolerated.

Pathway cores were generated based on available literature, notably SGD [7] and YPD [16].

Other biological references will be cited when discussing the results.

Putative interaction datasets were taken from [44]. We have made the data available for
the interactive work on pathways and genes. Using the data as part of the computational
process was very limited since it turned out to be very sparse in the pathways we have worked

on and due to its somewhat problematic specificity.

5.2 Ergosterol Metabolism

Ergosterol is an essential lipid in yeast which is similar to cholesterol in mammals. Ergosterol’s

primary role is in the cell membranes but it is also involved in aerobic metabolism, sterol

46

uptake and sterol transport. Ergosterol metabolism is understood rather well. As many of the
knockout experiments of [32] targeted that pathway, and it is believed to undergo significant
transcription regulation, we chose it to test our analysis techniques. Ergosterol metabolism
is composed of two pathways in series. The first, the mevalonate pathway, transforms acetyl-
CoA to farnesyl and provides essential components for few important metabolic pathways
(e.g. heme and quinones). The second part transforms farnesyl to ergosterol. Much of the
regulation of ergosterol is believed to be transcriptionally mediated, but the actual details

are known only in part [18, 8, 49].

Figure 5.1 shows the basic known ergosterol metabolic pathway from farnesyl to ergosterol,
including a series of 11 enzymes and three transcription factors. It is important to stress
here the difference between metabolic pathways and regulatory networks: The fact that
two enzymes follow each other in a biochemical process does not mean their transcription
regulation is directly connected. We have modeled the ergosterol dependency structure core
as the set of variables, with dependencies marked only between known transcription factors
and their targets. In other words, no dependency was prescribed between enzymes. We have
used this core and the expression data described above to test GENESYS.

Table 5.2 presents some of the pathway states (combination of pathway variables states)
observed in our data set. A number of experiments showed a global reaction of the pathway:
In those experiments most of the pathway enzymes underwent significant change. This is
presumably the result of some self regulatory mechanism (and indeed ergosterol itself is
reported to function as transcription regulator for its pathway enzymes). However, many
other experiments (about 40) showed a change in one or more of the pathway genes, which
is not explained by the above mechanism. Those experiments may be explained by a more
elaborate model. This motivates our attempt to expand the model and explain more of the
data.

5.3 Transcription Factors Screening

Out of the 6200 yeast ORFs, we identified 130 putative transcription factors (TFs). For this
we used SGD annotations, as well as typical structural motifs (e.g., zinc fingers). We then
applied the single node expansion algorithm, limiting the candidates for node expansions to
these putative TFs. In the first test, we ranked the fitness gain of each of the putative TF's
against a "naked” core consisting of the eleven ERG enzymes with no dependencies among
them. HAP1 was ranked second out of 130 (Table 5.3), in agreement with the known role of
HAP1 in ERG11 regulation. TUP1 is a general repressor and was thus ranked lower, ROX1

was less expressed in the data and was ranked much lower.

Having gained some confidence in the process quality, we focused on improving our un-

47

ERGo ERGI o

TUP1 \. ERG11
ERG4
ERG24 @
ERG5 HAP1
ERG3 ® G5
-

Figure 5.1: The ergosterol pathway from farnesyl to ergosterol. Only enzymes (names start-
ing with ERG) and known transcription factors (ROX1, HAP1, TUP1) are shown. Thin

arrows indicate subsequent enzymes (not a model dependency). Thick arrows indicate model

dependencies
HAP1 ROX1 7
Vo i
| I i — I i — 1 ERG11
URS27?? UASL URS1 UAS2

Figure 5.2: ERGI11 promoter region according to [49]. UAS/URS: upstream activa-
tion/repression site. The transcription factors HAP1 and ROX1 induce and repress, re-
spectively, ERG11 transcription via the binding sites UAS1 and URS1. UAS2 was identified
as a likely binding site of an unknown activator. One of our goals in this study was to

demonstrate that we can suggest the identity of the missing activator.

derstanding of ERG11 regulation. Turi and Loper (1992) analyzed the promoter region of
ERG11 with results that are summarized in Figure 5.2. This time we applied the single node
expansion to a core consisting of the eleven ERG enzymes as well as HAP1 and ROX1 as reg-
ulators of ERG11. The algorithm measured the improvement in fitness contributed by each of
the 130 TFs, and an uncharacterized gene (YLR266C) was ranked first. That gene improves
the fitness of ERG11 (and others). Remarkably, it also has a good homology to HAP1 (33%
identity, 50% similarity along 100 amino acids and even better in a shorter range). Moreover,
analyzing ERG11 logic as a function of HAP1, ROX1, TUP1 and the novel TF shows that
the effect of the new putative TF on ERG11 is inductive (as expected from a UAS2 binding
gene). We thus have evidence from three different methods: sequence homology, promoter
analysis indicating a second inducer should exist, and our screening procedure using some
360 different expression profiles in distinct cell states. All three support the hypothesis that
YLR266C is indeed an ERG11 regulator that might bind to UAS2.

48

lname |9 |17 [11]2a]25]6]2]3]5][4|
erg2 |+ | + e N
ergll + + | - + |+ |+ |+ |+ |+]+
ergd + | + + i e e B o T B ol e
ergd + |+ + + |+ -
hmg2 | + | + + + + |+
erg28 + + + + |+ +
10 exp

3 exp -
4 exp +

3 exp -

Table 5.2: States of the enzymes in the ergosterol pathway observed in [32]. Columns rep-
resent "ERG” genes (see Figure 5.1) with the enzyme number on the column label. Rows
represent knock out experiments, with the suppressed gene (or the number of experiments
manifested the same pattern) as the row label. + : up regulation, - : down regulation. The
upper part of the table represents a global reaction of the pathway, presumably mediated
through levels of ergosterol or ergosterol intermediates. The lower states are totally unex-
plained by current ergosterol regulation models and are highly unlikely to be entirely noise.
13 additional measured states in which some ERG genes are up or down regulated are not

shown.
5.4 Screening All Genes

The admission of putative transcription factors only as added variables was important in the
reduction of model space, and it allowed us to obtain very specific results. It is, however,
interesting to try and screen all 6200 yeast ORFs against the ergosterol core. This type
of analysis may discover more general patterns of regulation that cannot be directly tagged
as ”A is a factor of B”. Still, as shown below, some interesting biology may be learned
from it. The results of such a screen are given in Table 5.4. The two top ranking genes,
POS5, YBR043C, are both of unknown function. POS5 has homology to iron metabolism
enzymes. Both present significant fitness gain for ERG4 regulation. ERG4 is the last of
the ergosterol pathway enzymes, is not essential and little is known about its regulation.
Figure 5.3 gives a more detailed look on the relations among the three genes. Note that
using standard clustering or similarity, the behavior of ERG4 in experiments with no POS5,
YBR043C involvement would have masked the pattern identified here.

The fourth gene in the screening list is INO1 that is involved in inositol biogenesis. Inositol

has a regulatory function in the phospholipid pathway (adjacent to ergosterol). Note that the

49

Gene Annotation Gain

PIP2 Peroxisome proliferation 0.086
HAP1 ergll activator 0.070
YDR213W Unknown 0.062
GLN3 nitrogen catabolite 0.060
RAP1 transcription 0.054

Table 5.3: Putative transcription factors that ranked best in an expansion of the ”naked”

ergosterol core

dependency is localized differently (improving different variables) in that case. The relation of
GASI to ergosterol might be rooted in its function in the cell wall. The dependency between
our core and MKK2 is very reasonable considering its function in the signaling pathway to
the cell wall protein PCK1. The 11th gene in the list is ERG10, which is the first gene in the

mevalonate pathway leading to our core.

The dependencies revealed by the general 1-expansion screening can serve as the basis for
deeper biological exploration. The process pinpoints statistically significant patterns which
are hard to identify otherwise. In contrast with the TF 1-expansion screening, the results are

less direct and do not identify specific dependencies.

50

POSS BRO43C

crgd

Figure 5.3: ERG4 dependent genes. The Venn-like diagram represents all experiments in
which ERG4, POS5 and YBR043C were induced. Induction in this case is any up-regulation
with regulation specificity less than 0.01. The number inside each of the sets indicates its size.
The diagram shows that induction of POS5 and YBR043C strongly correlates with ERG4
induction (11/12 experiments in both cases). ERG4 is showing a second, separate regulation
pattern (5 experiments) which is unrelated to POS5,YBR043C.

Gene ORF Annotation Gain Gain location

1.POS5 YPL188W Unknown 0.026 ERG4

2.YBR043C YBR043C Unknown 0.023 ERG4

3.YDL054C YDL054C Unknown 0.021 ERG4,ERG5,ERG25
4.INO1 YJL153C Inositol biosynthesis 0.018 ERG6,ERG25,ERG5
5.YDR531W YDRA531W Unknown 0.017 ERG4,ERG5,ERG25,ERG6
6.RLI1 YDR091C Unknown 0.017 ERG6,ERG25

7.GAS1 YMR307TW cell surface glycoprotein 0.016 ERG4,ERG6,ERG5,ERG25
8.ZRT2 YGL225W zinc transporter 0.016 ERG6,ERG25,ERG5H
9.YDR302W YDR302W Unknown 0.016 ERG4,ERG6,ERG25ERG5
10.MKK2 YPL140C PCK1 signaling 0.016 ERG4

11.ERG10 YPL028W Ergosterol metabolism 0.016 ERG6,ERG25,ERG5,ERG7
12.YHR199C YHRI199C Unknown 0.015 ERG6,ERG25,ERG5,ERGT
13.ARG4 YHRO18C Arginine biosynthesis 0.015 ERG6,ERG5,ERG25,ERG4
14.YDR426C YDRA426C Unknown 0.015 ERG4,ERG25

15.YLR290C YLR290C Unknown 0.015 ERG4,ERG25,ERG5

Table 5.4: Top ranking genes (among all yeast ORFs) in l-expansion of the ergosterol core
pathway. Gene annotations are from SGD. ’Gain’: the increase to fitness by using the addi-
tional variable. ’Gain location’: the core genes whose regulation specificity was significantly

improved by the variable, in order of significance.

ol

Chapter 6

The GENESYS environment

GENESYS (GEnetic Network Expansion SYStem) is a new software platform implementing
the concepts and methods described above. The environment includes engines for represent-
ing networks and computing fitness, a flexible expansion algorithm, viewers for visualization
of biological data sets, an application to enable interactive usage of the viewers and engine

and an internal database scheme for the storage of datasets and pathways.

The system was implemented in C++ and Perl/Tk under Linux (about 25000 code lines).
It is built for efficient manipulation of data set with thousands of genes, thousands expression
profiles on them and cores of up to 30 nodes. See Chapter 4 for statistics on its run time and

performance.

The GENESYS environment is built as a modular prototype composed of back-end and
front-end implemented in C++ and Perl/Tk. The front-end is a GUI application featuring
a wide selection of viewers and providing means to invoke computational processes using the
back-end. The back-end provides a set of libraries and computational engines using them.

Both front-end and back-end use the same database, currently implemented over flat files.

To simplify the software architecture, and since GENESYS was implemented as a proto-
type, the relation between the front-end and back-end are based on process invocation and
the file system. No inter-process communication is used in this stage. The use of flat files as
database was also meant as a simplification but the code is built so that using a real database

would effect only wrapper classes.

We will briefly outline in what follows the basic features currently supported by GENESYS

front-end and the services provided by its back-end.

92

6.1 GENESYS viewers

The main GENESYS interface is the dependency structure editor, shown in Figure 6.1. The
editor enables creation, viewing and saving of network cores, manipulation of nodes and arcs

in the graph and it also provides connectivity to the logic viewer described below.

The GENESYS variable list window is a simple list widget providing access to the variable

universe U with all the information attached to it. It is shown in Figure 6.2.

The GENESYS matrix viewer visualizes time series information by presenting the states

of a selected set of variables and their development in time.

The knockout viewer (Figure 6.3) provides means for the analysis of knockout compendi-
ums - large collections of expression profiles in which different genes were systematically
knocked-out or over-expressed (e.g., [32]). The user selects a small set of focus variables
and the viewer displays a graph in which nodes correspond to genes equivalence classes
grouped by the effect of the focus variable knockout on their mRNA levels. Using this viewer,
one can explore the complex relations between knocked-out genes as revealed by the families

of genes behaving similarly on the different knock-out experiments.

The logic viewer (Figure 6.4) presents a binary decision diagram (BDD) given a focus
variable and its current incoming neighbors. A BDD [9] represents the effect of inputs values
on output value of the focus variable and provides insight into the structure of the discrete
logic induced by a given dependency structure. To create a BDD, a layered tree is constructed
where each level represents the addition of a new input variable. The leafs of the tree represent
groups of experiments in which the input added up to the leaf level takes the same value.
A parent child relation is added whenever the input assignment of level [is a subset of the
assignment of the bigger input set at level [/ + 1. In the final tree level, the output value is
introduced to reveal the relation between input assignment and output value. Note that the
order of the inputs change the topology of the tree. Using the BDD, users can explore the
logic underlying a putative dependency structure and deduce functional roles each input may

have (activator/repressor or more complicated functions).

The interaction window (Figure 6.5) shows putative interactions from the GENESYS
database. The window lets the user navigate in the interaction graph by showing each time
the neighborhood of a focus variable which may be selected interactively. Different edge

colors are used for different types of interaction.

The optimization window tracks the progress of an expansion process by displaying the
quality of the current best solution and updating the dependency structure window with its
structure. The user can control the progress of the optimization process, start, stop, resume
and kill it.

The one-expansion screen result window lists the be expansion candidates of a given core

93

after the completion of a screen. The user can sort the list according to various parameters

and evaluate the affinity of each of the expansion variables to different parts of the core.

The script window is the place of the main menu bar in the system, providing control on
all system features. It also enables writing scripts that specify the logic of a given system.
Currently not in use, the system supports compiling scripts into a dependency structure and

tabular representation of the logical relation.

6.2 GENESYS back-end services

The GENESYS back-end is organized in the following libraries :

The base library provides general infrastructure, portability macros and several design

patterns implementations.

The util library provides some utilities and data-structures which are not available from

the Standard Template Library. It also contains some basic text parsers.

The bpm library provides interface to the GENESYS databases and objects to repre-
sent variables, systems, experiments, datasets and logic. It also provides some dependency
structure evaluators and factories for dynamic object generation of such evaluators. The
implementation of the consistency and rSpec algorithm is provided as part of the evaluator

inheritance structure.

The onexp library provides a computational engine to perform one node expansion screen-

ing and multi node expansion searches.

o4

| mmum Mau Jo) Fedp-joauod ‘ppe oy Y2 ajgnop ‘1o o) yonua-gbu ‘sabpajsa

L

e .___ _..|..._

SOHIW et

/L dniu

-1.—._

...I..
Lo 3w

pieg Oy3 wapsAs damala Acuapuadag e

Figure 6.1: GENESYS dependency structure editor. Using this editor, users can manipulate

cores and visualize expansion results.

95

K =1 IT":“:IE““H varia]:]les::ZZ

|| Extint| wame | Type| SGD | KO 2| Annotation

mMERGZ8 gene
MERGZE fjene
MERG4 gene
mMERGZ5 gene
mMERG1 gene
MERG11 gene
mERG/ gene
MERGY gene
MERGZ0 gene
mMERG3 gene
MERGZ7 fene
MERGE gjene
mMERG13 gene
MERGa gene
mMERGZ gene

YERD44C vyes
YGL001C
YGLO12W yes
Y GROGOYW
¥GR175C
YHROOD7C yes
YHRO7Z2W
YHR190W
¥JL167W
YLROS6W yes
YLR100W
YMLODBC yes
YML1Z260C
YMRO15C yes
YMRZ02W yes

Transmembrane domai
C-3 sterol dehydrogen:
sterol C-24 reductase;
C-4 sterol methyl ozid:
Squalene MoONoDODXYQen:
cytochrome P450 lanos:
carries out complex cy
sfualene synthetaseds
May be rate-limiting s
C-5 sterol desaturase;
J-keto sterol reductas
erjosterol synthesisi#a
involved in mevalonate
cytochrome P4a0 invol
sterol hiosynthesis#C-

mERG12Z gene

YMR208YW

mevalonate catabholism

MERGS gene

YMRZZ0W

Involved in isoprene an

Figure 6.2: GENESYS variable list window. Representing the current variable universe and

enabling the user to query and modify it.

o6

mCUPS mVkAS mMERGE m3IMG

() - mEINI. 7y - mRIPT
E—..___ Lt

1 - mYBR1 34

m F': FI |_ : 1 |E'| m EI | |'I'.I'|"4 Iri F: F: FI E. o .-l'::::::?l Im E F: IE-I 1 -I
mERG4 B~ 4 |®
‘ s
mTUPL-
&
008% mRPLZ0 &S
=

mHIS -~

mikH1
®

48 mRP: mBUDEZE

'|II
(8) - m ‘f RO43C..

double click to add from list selection, shift click to remove, drag to move
| |

Figure 6.3: GENESYS knockout viewer. Visualizing a large collection of knockout exper-
iments by grouping genes according to their behavior in selected experiments. Each node
represents a group of genes which are equivalent in the selected set of focus genes (ERG28
and GCN4 in this example). Large groups are denoted by their size and an example variable
and can be opened by clicking the mouse. User can manipulate the set of focus set to explore

the dataset interactively.

o7

~" Logic Viewer for mERG11:

0/0/0/-(1,241,1) - adel .
e

0407- (2, 246,27 - adBAl/-1/-kss1(h)

0/0/17-(+,4,17 - digl..
\ _.t i pul
[]

253,47 - adel..
@-5i=1/-imp2 rpRCDO2fpZ rpE COCA2(
o —

N swid werdddcih

0/1/T7=ergach) PMAT
O

Figure 6.4: GENESYS logic viewer. A Binary Decision Diagram showing the dependency of

a selected variable in the values of its direct inputs in an underlying dependency graph

o8

Sl Putative Interactions Viewer B X

MY KL0T4C
mYKRO7TIW O
O

o

ot MCDICER MPCLE
11 _g 2 [O

f PLOTOW g P K
O o

fns LM

my PLOT 3% mCLS o
0 mc ak1
C]

update selection

Figure 6.5: GENESYS interaction viewer. Visualizing a set of gene/protein interactions from

many sources. User can navigate through the graph by clicking on nodes.

99

Bibliography

[1]
2]

[10]

The chipping forecast. Special supplement to Nature Genetics Vol 21, 1999.

T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano. Identification of gene regulatory
networks by strategic gene disruptions and gene overexpressions. In Proc. Ninth Annual
ACM-SIAM Sympoium on Discrete Algorithms (SODA 98), pages 695-702, 1998.

T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks from a small
number of gene expression patterns under the boolean network model. In Proceedings
of the 1999 Pacific Symposioum in Biocomputing (PSB 99), pages 17-28, 1999.

T. Akutsu, S. Miyano, and S. Kuhara. Algorithms for identifying Boolean networks and
related biological networks based on matrix multiplication and fingerprint functions. In
Proceedings of the Fourth Annual International Conference on Computational Molecular
Biology (RECOMB 00), pages 8-14, 2000.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. Molecular Biology
of the Cell. Garlend Publishing Inc., New York and London, 1994.

U. Alon, N. Barkai, D. A. Notterman, G. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. PNAS, 96:6745-6750, June 1999.

C.A. Ball et al. Saccharomyces genome database provides tools to survey gene expression
and functional analysis data. Nucleic Acids Research, 29:80—-1, 2001.

G.F. Bammert and J.M Fostel. Genome-wide expression patterns in Saccharomyces
cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis
of ergosterol. Antimicrobial Agents and Chemotherapy, 44:1255-1265, 2000.

R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677-91, 1986.

P. Bucher. Regulatory elements and expression profiles. Curr. Opin. Struct. Biol.,
9:400-7, 1999.

60

[11]

[14]

[15]

[21]

[22]

23]

[24]

T. Chen, V. Filkov, and S. S. Skiena. Identifying gene regulatory networks from exper-
imental data. In Proceedings of the Third Annual International Conference on Compu-
tational Molecular Biology (RECOMB 99), pages 94-103, 1999.

R.J. Cho et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol.
Cell., 2:65-73, 1998.

E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi. Total domination in graphs. Net-
works, 10:211-9, 1980.

The FlyBase Consortium. The FlyBase database of the Drosophila genome projects and
community literature. Nucleic Acids Res., 27:85-8, 1999.

The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.
Nature Genetics, 25:25-29, 2000.

M.C. Costanzo et al. YPD, PombePD and WormPD: model organism volumes of the
BioKnowledge library, an integrated resource for protein information. Nucleic Acids
Research, 29:75-9, 2001.

T. M. Cover and J. M. Thomas. Elements of Information Theory. John Wiley & Sons,
London, 1991.

G. Daum, N.D. Lees, M. Bard, and R. Dickson. Biochemistry, cell biology and molecular
biology of lipids of Saccharomyces cerevisiae. Yeast, 14:1471-1510, 1998.

E.H. Davidson. Genomic Regulatory Systems. Development and Evolution. Academic
Press, San Diago, 2001.

J. DeRisi, V. Iyer, and P. Brown. Exploring the metabolic genetic control of gene

expression on a genomic scale. Science, 278:680-686, 1997.

J. DeRisi, L. Penland, P.O. Brown, et al. Use of a ¢cDNA microarray to analyse gene

expression patterns in human cancer. Nature Genetics, 14:457-460, 1996.

P. Dhaeseleer, X. Wen, S. Fuhrman, and R. Somogoyi. Linear modeling of mRNA
expression levels during CNS development and injury. In Proceedings of the 1999 Pacific
Symposioum in Biocomputing (PSB 99), pages 41-52, 1999.

M. Diehn, M.B. Eisen, D. Botstein, and P.O. Brown. Large-scale identification of se-
creted and membrane-associated gene products using DNA microarrays. Nature Genet-
ics, 25:58-62, 2000.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. PNAS, 95:14863-14868, 1998.

61

[25]

[34]

[35]

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to ana-
lyze expression data. In Proceedings of the Fourth Annual International Conference on
Computational Molecular Biology (RECOMB 00), pages 127-135, 2000.

E.E. Furlong, E.C. Andersen, B. Null, K.P. White, and M.P. Scott. Patterns of gene
expression during drosophila mesoderm development. Science, 293:1629-33, 2001.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

A. P. Gasch et al. Genomic expression programs in the response of yeast cells to envi-
ronmental changes. Mol. Biol. Cell., 11:4241-57, 2000.

T. R. Golub, D. K. Slonim, et al. Molecular classification of cancer: Class discovery and

class prediction by gene expression monitoring. Science, 286:531-537, October 1999.

T.J. Griffin and R. Aebersold. Advances in proteome analysis by mass spectrometry.
Journal of Biological Chemistry, 19:375-8, 2001.

B.B. Haab, M.J. Dunham, and P.O. Brown. Protein microarrays for highly parallel detec-
tion and quantitation of specific proteins and antibodies in complex solutions. Genome
Biology, 22RESEARCHO0004, 2001.

T.R. Hughes et al. Functional discovery via a compendium of expression profiles. Cell,
102:109-26, 2000.

T. Ideker, J.A. Thorsson, V. Ranish, R. Christmas, J. Buhler, J.K. Eng, R. Bumgarner,
D.R. Goodlett, R. Aebersold, and Hood L. Integrated genomic and proteomic analyses
of a systematically perturbed metabolic network. Science, 291:929-34, 2001.

T.E. Ideker, V. Thorsson, and R.M. Karp. Discovery of regulatory interaction through
perturbation: inference and experimental design. In Proceedings of the 2000 Pacific
Symposioum in Biocomputing (PSB 00), pages 305-316, 2000.

V.R. Iyer, C.E. Horak, C.S. Scafe, D. Botstein, M. Snyder, and P.O. Brown. Genomic
binding sites of the yeast cell-cycle transcription factors sbf and mbf. Nature, 409:533-8,
2001.

M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res., 28:27-30, 2000.

R. M. Karp, R. Stoughton, and K. Y. Yeung. Algorithms for choosing differential gene
expression experiments. In Proceedings of the Third Annual International Conference
on Computational Molecular Biology (RECOMB 99), pages 208-217, 1999.

62

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

S.A. Kauffman. The Origins Of Order, Self Organization and Selection in Evoultion.
Oxford University Press, 1993.

E.S. Lander et al. Initial sequencing and analysis of the human genome. International

human genome sequencing consortium. Nature, 409:860-921, 2001.

S. Liang, S. Fuhrman, and R. Somogoyi. REVEAL, a general reverse engineering algo-
rithm for inference of genetic network architectures. In Proceedings of the 1998 Pacific
Symposioum in Biocomputing (PSB 98), pages 18-29, 1998.

E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and D. Eisen-
berg. Detecting protein function and protein-protein interactions from genome. Science.,

285(5428):751-753, 1999.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed
expression profiles. Bioinformatics, 17 Suppl 1:5215-24, 2001.

B. Ren et al. Genome-wide location and function of DNA binding proteins. Science,
290:2306—9, 2000.

B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in
yeast. Nature Biotechnolgy, 8:1257-61, 2000.

R. Sharan and R Shamir. CLICK: a clustering algorithm with applications to gene ex-
pression analysis. In Proceedings of the Eighth Annual Conference on Intelligent Systems
for Molecular Biology (ISMB 00), pages 307-316, 2000.

P.T. Spellman et al. Comprehensive identification of cell cycle regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell., 9:3273—
3297, 1998.

A. Tanay and R. Shamir. Computational expansion of genetic networks. Bioinformatics,
17(Suppl 1):5270-8, 2001.

S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M. Church. Systematic

determination of genetic network architecture. Nature Genetics, 22:281-285, 1999.

T.G. Turi and J.C. Loper. Multiple regulatory elements control expression of the gene
encoding the Saccharomuces cerevisiae Cytochromoe P450, lanosterol 14a-demethylase
(ERG11). JBC, 267:2046-56, 1992.

P. Uetz et al. A comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisiae. Nature, 403:623—7, 2000.

63

[51] E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys,
H. Michael, R. Ohnhauser, M. Pruss, F. Schacherer, S. Thiele, and S. Urbach. The
TRANSFAC system on gene expression regulation. Nucleic Acids Res., 29:281-3, 2001.

[52] J. Wojcik and V. Schachter. Protein-protein interaction map inference using interacting
domain profile pairs. Bioinformatics, 17 Suppl 1:5296-305, 2001.

[53] C.H. Yuh, H. Bolouri, and E.H. Davidson. Genomic cis-regulatory logic: Experimental
and computational analysis of a sea urchin gene. Science, 279:1896-1902, 1998.

[54] H. Zhou, J.D. Watts, and R. Aebersold. A systematic approach to the analysis of protein
phosphorylation. Nature Biotechnology, 19:375-8, 2001.

[55] A. Zien, R. Kuffner, R. Zimmer, and T. Lengauer. Analysis of gene expression data with
pathway scores. In Proceedings of the Eighth Annual Conference on Intelligent Systems
for Molecular Biology (ISMB 00), pages 407-417, 2000.

64

