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Abstract

Motivation: We present Faucet, a two-pass streaming algorithm for assembly graph construction.

Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be

stored locally, as they can be processed while downloading data and then discarded. We demon-

strate this functionality by performing streaming graph assembly of publicly available data, and ob-

serve that the ratio of disk use to raw data size decreases as coverage is increased.

Results: Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data

derived from them. We show these metadata—coverage counts collected at junction k-mers and

connections bridging between junction pairs—contain most salient information needed for assem-

bly, and demonstrate they enable cleaning of metagenome assembly graphs, greatly improving

contiguity while maintaining accuracy. We compared Fauceted resource use and assembly quality

to state of the art metagenome assemblers, as well as leading resource-efficient genome assem-

blers. Faucet used orders of magnitude less time and disk space than the specialized metagenome

assemblers MetaSPAdes and Megahit, while also improving on their memory use; this broadly

matched performance of other assemblers optimizing resource efficiency—namely, Minia and

LightAssembler. However, on metagenomes tested, Faucet,o outputs had 14–110% higher mean

NGA50 lengths compared with Minia, and 2- to 11-fold higher mean NGA50 lengths compared with

LightAssembler, the only other streaming assembler available.

Availability and implementation: Faucet is available at https://github.com/Shamir-Lab/Faucet

Contact: rshamir@tau.ac.il or eranhalperin@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Assembly graphs encode relationships among sequences from a com-

mon source: they capture sequences as well as the overlaps observed

among them. When assembly graphs are indexed, their sequence con-

tents can be queried without iterating over every sequence in the in-

put. This functionality makes graph and index construction a

prerequisite for many applications. Among these are different types of

assembly—e.g. de novo assembly of whole genomes, transcripts, plas-

mids etc. (Pertea et al., 2015; Rozov et al., 2017)—and downstream

applications—e.g. mapping reads to the graphs, variant calling, pan-

genome analysis etc. (Iqbal et al., 2012; Novak et al., 2017).

In recent years, much effort has been expended to reduce the

amount of memory used for constructing assembly graphs and

indexing them. Major advances often relied on index structures that

saved memory by enabling subsets of possible queries: e.g. one could

query what extensions a given substring s has, but not how many

times s was seen in the input data. A great deal of success ensued in

reducing the amount of memory needed to efficiently construct the
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central data structures used by most de novo assembly algorithms,

namely, the de Bruijn and string graphs (Chikhi and Rizk, 2012; Pell

et al., 2012; Simpson and Durbin, 2010; Ye et al., 2012).

Furthermore, efficient conversion of de Bruijn graphs to their com-

pacted form (essentially string graphs with fixed overlap size) has

been demonstrated Chikhi et al., 2014, 2016; Minkin et al., 2016).

In parallel to these efforts, streaming approaches were demon-

strated as alternative resource-efficient means of performing ana-

lyses that had typically relied on static indices. Although appealing

in terms of speed and low memory use, these approaches were ini-

tially demonstrated primarily for counting-centered applications

such as estimating k-mer frequencies, error-correction of reads, and

quantification of transcripts (Melsted and Halldorsson, 2014;

Mohamadi et al., 2017; Roberts and Pachter, 2012; Song et al.,

2014; Zhang et al., 2014).

Recently, a first step towards bridging the gap between stream-

ing approaches and those based on static index construction was

taken, hinting at the potential benefits of combining the two.

El-Metwally et al. (2016) demonstrated a streaming approach to as-

sembly by making two passes on a set of reads. The first pass sub-

samples k-mers in the de Bruijn graph and inserts them into a Bloom

filter, and the second uses this Bloom filter to identify ‘solid’ (likely

correct) k-mers, which are then inserted into a second Bloom filter.

This streaming approach resulted in very high resource efficiency in

terms of memory and disk use. However, LightAssembler finds solid

k-mers while disregarding paired-end and coverage information,

and thus is limited in its ability to resolve repeats and to differentiate

between different possible extensions in order to improve

contiguity.

In this work, we extend this approach with the aim of providing

a more complete alternative to downloading and storing reads for

the sake of de novo assembly. We show this is achievable via online

graph and index construction. We describe the Faucet algorithm,

composed of an online phase and an offline phase. During the online

phase, two passes are made on the reads without storing them lo-

cally to first load their k-mers into a Bloom filter, and then identify

and record structural characteristics of the graph and associated

metadata essential for achieving high contiguity in assembly. The

offline phase uses all of this information together to iteratively clean

and refine the graph structure.

We show that Faucet requires less disk space than the input data,

in contrast with extant assemblers that require storing reads and

often produce intermediate files that are larger than the input. We

also show that the ratio of disk space Faucet uses to the input data

improves with higher coverage levels by streaming successively

larger subsets of a high coverage human genome sample.

Furthermore, we introduce a new cleaning step called disentangle-

ment enabled by storage of paired junction extensions in two Bloom

filters—one meant for pairings inside a read, and one meant for

junctions on separate paired end mates. We show the benefit of dis-

entanglement via extensive experiments. Finally, we compared

Faucet’s resource use and assembly quality to state of the art meta-

genome assemblers, as well as leading resource-efficient genome as-

semblers. Faucet used orders of magnitude less time and disk space

than the specialized metagenome assemblers MetaSPAdes and

Megahit, while also improving on their memory use; this broadly

matched performance of other assemblers optimizing resource effi-

ciency—namely, Minia and LightAssembler. However, on metage-

nomes tested, Faucet’s outputs had 14–110% higher mean NGA50

lengths compared with Minia, and 2- to 11-fold higher mean

NGA50 lengths compared with LightAssembler, the only other

streaming assembler available.

2 Preliminaries

For a string s, we denote by s[i] the character at position i, s[i: j] the

substring of s from position i to j (inclusive of both ends), and jsj the

length of s. Let pref(s, j) be the prefix comprised of the first j charac-

ters of s and suff(s,j) be the suffix comprised of the last j characters

of s. We denote concatenation of strings s and t by s�t, and the re-

verse complement of a string s by s0.

A k-mer is a string of length k drawn from the DNA alphabet

R ¼ fA;C;G;Tg. The de Bruijn graph G(S,k)¼ (V,E) of a set of se-

quences S has nodes defined by consecutive k-mers in the sequences,

V ¼ [s2S [jsj�kþ1
i¼0 s½i : iþ k� 1�; E is the set of arcs defined by

(k�1)�mer overlaps between nodes in V. Namely, identifying verti-

ces with their k-mers, ðu; vÞ 2 E() suff ðu;k� 1Þ ¼ pref ðv; k� 1Þ.
Each node v is identified with its reverse complement v0, making the

graph G bidirected, in that edges may represent overlaps between ei-

ther orientation of each node (Medvedev et al., 2007). When neces-

sary, our explicit representation of nodes will use canonical node

naming, i.e. the name of node ðv; v0Þ will be the lexicographically

lesser of v and v0. Junction nodes are defined as k-mers having in-

degree or out-degree > 1. Terminal nodes are k-mers having out-

degree 1 and in-degree 0 or in-degree 1 and out-degree 0. Terminals

and junctions are collectively referred to as special nodes. The com-

pacted de Bruijn graph is obtained from a de Bruijn graph by merg-

ing all adjacent non-branching nodes (i.e. those having in-degree

and out-degree of exactly 1). The string associated with merged ad-

jacent nodes is the first k-mer, concatenated with the single charac-

ter extensions of all following non-branching k-mers. Such merged

non-branching paths are called unitigs.

Since a junction v having in-degree > 1 and out-degree 1 is iden-

tified with v0 having out-degree > 1 and in-degree 1, we speak of

junction directions relative to the reading direction of the junction’s

k-mer. Therefore, a forward junction has out-degree > 1, and a

back junction has in-degree > 1. We refer to outbound k-mers be-

ginning paths in the direction having out-degree > 1 as heads, and

the sole outbound k-mer in the opposite direction as the junction’s

tail. It is possible that a junction may have no tail.

A Bloom filter B is a space-efficient probabilistic hash table ena-

bling insertion and approximate membership query operations

(Bloom, 1970). The filter consists of a bit array of size m, and an

element x is inserted to B by applying h hash functions, f0, . . . ,fh�1

such that 8i2½0;h�1� fiðxÞ 2 ½0;m� 1�, and setting values of the filter

to 1 at the positions returned. For a Bloom filter B and string s, by s

2 B or the term ’s in B’ we refer to B[s] ¼ 1, i.e. when the h hash

functions used to load B are applied to s, only 1 values are returned.

Similarly, s 62 B or ‘s not in B’ means that at least one of the h hash

functions of B returned 0 when applied to s. For any s that has been

inserted to B, B[s] ¼ 1 by definition (i.e. there are no false nega-

tives). However, false positives are possible, with a probability that

can tuned by adjusting m or h appropriately.

3 Materials and methods

We developed an algorithm called Faucet for streaming de novo as-

sembly graph construction. A bird’s eye view of its entire work-flow

is provided in Figure 1. Below we detail individual steps.

3.1 Online Bloom filter loading
Faucet begins by loading two Bloom filters, B1 and B2, as it iterates

through the reads, using the following procedure: all k-mers are in-

serted to B1, and only k-mers already in B1 (i.e. those for which all

hash queries return 1 from B1) are inserted to B2. Namely, for each
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k-mer s, if B1[s] ¼ 1 then we insert s into B2, otherwise we insert

into B1. After iterating through all reads, B1 is discarded and only

B2 is used for later stages. This procedure imposes a coverage thresh-

old on the vast majority of k-mers so that primarily ‘solid k-mers’

(Pevzner et al., 2001) observed at least twice are kept. This process

is depicted in Round 1 of Figure 1A. We note that a small propor-

tion of singleton or false positive k-mers may evade this filtration.

No count information is associated with k-mers at this round.

3.2 Online graph construction
B2, loaded at the first round, enables Faucet to query possible for-

ward extensions of each k-mer. Faucet iterates through all reads a

second time to collect information necessary for avoiding false posi-

tive extensions, building the compacted de Bruijn graph, and later,

cleaning the graph. The second round consists of finding junctions

and terminal k-mers, recording their true extension counts, and re-

cording k-mer pairs (Round 2 of Fig. 1A).

Faucet’s Online stage has one main routine—Algorithm 1—that

calls upon two subroutines—Algorithms 2 and 3. First, junction k-

mers and their start positions are derived from a call to Algorithm 2.

To find junctions, Algorithm 2 makes all possible alternate exten-

sion queries (Lines 3–5) to B2 for each k-mer in the read sequence r.

A junction k-mer j may have multiple extensions in B2—either be-

cause there are multiple extensions of j in G that are all real (i.e. pre-

sent on some read), or because there is at least one real extension in

G and some others in B2 that are false positives. Accordingly, each

k-mer possessing at least one extension that differs from the next

base on the read is identified as a junction. Whenever one is found,

its sequence along with its start position are recorded (Line 4), and

the list of such tuples is returned. We note that each k-mer in the

read is also queried for junctions in the reverse complement direc-

tion, but this is not shown in Algorithm 2.

Fig. 1. Faucet work-flow. (A) The online stage involves a first round of processing all reads in order to load Bloom filters B1 and B2, and a second round in order to

build the junction map M and load additional Bloom filters B3 and B4. M stores the set of all junctions and extension counts for each junction, while B3 and B4 cap-

ture connections between junction pairs. The two online rounds capture information from and perform processing on each read, and the processing performed

always depends on the current state of data structures being loaded. (B) The offline stage uses B2 and M, constructed during the online stage, in order to build

the compacted de Bruijn graph by extending between special nodes using Bloom filter queries. ContigNodes (not shown) take the place of junctions and are

stored in M 0, allowing access (via stored pointers) to Contigs out of each junction, and coverage information. An additional vector of coverage values at fake or

past junctions is also maintained for each Contig. Then, B3, B4, and this coverage information are used together to perform simplifications on and cleaning of the

graph

Algorithm 1. scanReads(R, B2)

Input: read set R, Bloom filter B2 loaded from round 1, an

empty Bloom filter B3

Output: 1. a junction Map M comprised of (key, value) pairs.

Each key is a junction k-mer, and each value 2 N
4 is a vector

½cA; cC; cG; cT � of counts representing the number of times

each possible extension of key was observed in R; 2. B3 is

loaded with linked k-mer pairs (i.e. specific 2k-mers—see

text—are hashed in).

1: M 1
2: for r 2 R do

3: juncs findJunctionsðr;B2Þ " call to Algorithm 2

4: for ðjunc;posÞ 2 juncs do

5: if junc 62M then

6: M½junc�  ½0; 0;0;0�
7: increment counter in M for r½posþ k�

recordPairsðr; juncs;B3Þ " call to Algorithm 3

8: return M,B3
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Algorithm 1 then uses this set of junctions to perform accounting

(Lines 4–8). All junctions are inserted into a hash map M that maps

junction k-mers to vectors maintaining counts for each extension.

For each junction of r, a count of 0 is initialized for each possible ex-

tension. These counters are only incremented based on extensions

observed on reads—i.e. extensions due to Bloom filter outputs alone

are not counted. As every real extension out of each junction must

be observed on some read, and we scan the entire set of reads, an ex-

tension will have non-zero count only if it is real. This mechanism

allows Faucet to maintain coverage counts for all real extensions out

of junctions. In later stages, only extensions having non-zero counts

will be visited, but counts are stored for real extensions of false junc-

tions as well. These latter counts are used to sample coverage distri-

butions on unitig sequences at more points than just their ends.

Proportions of real junctions versus the totals stored after account-

ing are described in the section ‘Solid junction counts’ in the

Supplementary Appendix.

Following the accounting performed on observed junctions,

Faucet records adjacencies between pairs of junctions using add-

itional Bloom filters—B3 and B4. These adjacencies are needed for

disentanglement—a cleaning step applied in Faucet’s offline stage.

Disentanglement, depicted in Figure 2, is a means of repeat reso-

lution. Its purpose is to split paths that have been merged due to the

presence of a shared segment—the repeat—in both paths. In order

to ‘disentangle’, or resolve the tangled region into its underlying la-

tent paths, we seek to store sequences that flank opposite ends of the

repeat. Pairs of heads observed on reads provide a means of ‘reading

out’ such latent paths by indicating which heads co-occur on

sequenced DNA fragments. The application of disentanglement is

presented in the section ‘Offline graph simplification and cleaning’,

while we now focus on the mechanism of pair collection and its ra-

tionale. To capture short and long range information separately,

Bloom filter B3 holds head pairs on the same read, while B4 holds

heads chosen such that each head is on a different mate of a paired-

end read. Algorithm 3 is the process by which pairs are inserted into

B3, and insertion into B4 is described in the Supplementary

Appendix.

In Algorithm 3, we aim to pair heads that are maximally inform-

ative. Informative pairs are those that allow us to ‘read out’ pairs of

unitigs that belong to the same latent path. We specifically choose to

insert heads because during the offline stage when disentanglement

takes place, adjacencies between each unitig starting at an edge to a

head and the unitig starting at the edge from the junction to its tail

of are known and accessible via pointers to their sequences.

Therefore, extension pairs capturing information of direct adjacen-

cies provide no new information. The closest indirect adjacency that

may be informative when captured from a read is that between two

junctions that either face in the same direction, or when the first

faces back and the second faces forward, as shown in Figure 3A.

Thus, when there are only two junctions on a read, their pair of

heads is inserted as long as the two junctions are not facing each

other. When there are at least three junctions on a read, every other

junction out of every consecutive triplet is paired, as shown for a sin-

gle triplet in Figure 3B. This figure demonstrates that selecting every

other head is preferable to selecting consecutive heads out of a trip-

let. This type of insertion is executed in Lines 1–6 of Algorithm 3

and ensures all unitigs flanking some triplet are potentially inferable.

For reads having more than three junctions, applying the triplet rule

for every consecutive window of size 3 similarly allows for all uni-

tigs on the read to be included in some hashed pair.

3.3 Offline graph simplification and cleaning
Given B2, B3, B4 and M resulting from the online stage, the com-

pacted de Bruijn graph is generated by traversing each forward ex-

tension out of every special k-mer, as well as traversing backwards

in the reverse complement direction when the node has not been

reached before by a traversal starting from another node. This is

done by querying B2 for extensions and continuing until the next

special node is reached. During each such traversal from special

node u to special node v, a unitig sequence suv is constructed. suv is

Algorithm 2. findJunctions(r, B2)

Input: read r and Bloom filter B2

Output: juncTuples, a list of tuples (seq, p), where p is the

start position of junction k-mer seq in r, in order of appear-

ance on r

1: juncTuples 1
2: for i 2 ½0; jrj � k� do kmer r½i : iþ k� 1�
3: for c 2 Rnfr½iþ k�} do

4: if ðsuff ðkmer; k� 1Þ � c 2 B2Þ then

juncTuples juncTuples [ ðkmer; iÞ
5: return juncTuples

Fig. 2. Disentanglement. (A) A tangle characterized by two opposite facing

junctions j1 and j2, each with out-degree 2. (B) Junction pairs linking exten-

sions on sa with sc and sb with sd. Since no pairs link extensions on sa with sd

or sb with sc, only one orientation is supported. (C) the result of disentangle-

ment: paths [sa,s,sc] and [sb,s,sd] are each merged into individual sequences,

and junctions j1 and j2 are removed from M

Algorithm 3. recordPairs(r, juncs, B3)

Input: read r, juncs—a list of pairs (j, p), where p is the start

position of junction j in r, and Bloom filter B3. We also make

use of a subroutine getOutExt(ji,pi,r) that for a junction ji re-

turns pref ðji; k� 1Þ � r½pi � k� if ji is a back junction, and

suff ðji;k� 1Þ � r½pi þ k� otherwise.

Output: Bloom filter B3, loaded with select linked k-mer pairs

1: if len(juncs) > 2 then

2: for i 2 ½0; lenðjuncsÞ � 2� do

3: back getOutExtðji; pi; rÞ
4: front getOutExtðjiþ2;piþ2; rÞ
5: insertðback � front;B3Þ " insert the concatenation into B3

6: else if (lenðjuncsÞ ¼ 2Þ ^ ð:ðj0 is a forward junction^
j1 is a back junctionÞ) then

7: back getOutExtðj0; p0; rÞ
8: front getOutExtðj1;p1; rÞ
9: insertðback � front;B3Þ
10: return B3
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initialized to the sequence of u, and a base is added at each extension

until v is reached.

New data structures are constructed in the course of traversals in

order to aid later queries and updates. A ContigNode structure is

used to represent a junction that points to Contigs. ContigNodes are

structures possessing a pointer to a Contig at each forward exten-

sion, as well as one backwards pointer. This backwards pointer con-

nects the junction to the sequence beginning with the reverse

complement of the junction’s k-mer. Contigs initially store unitig se-

quences, but these may later be concatenated or duplicated. They

also point to one ContigNode at each end. To efficiently query

Contigs and ContigNodes, a new hashmap M0 is constructed having

junction k-mers as keys, and ContigNodes that represent those junc-

tions as values. Isolated contigs formed by unitigs that extend be-

tween terminal nodes are stored in a separate set data structure.

Once the raw graph is obtained, cleaning steps commence, incor-

porating tip removal, chimera removal, collapsing of bulges, and

disentanglement. Coverage information and paired-junction links

are crucial to these steps. Briefly, tip removal involves deletion of

Contigs shorter than the input read length that lead to a terminal

node. Chimera and bulge removal steps involve heuristics designed

to remove low coverage Contigs when a more credible alternative

(higher coverage, or involved in more sub-paths) is identified. These

first three steps proceed as described in (Bankevich et al., 2012),

thus we omit their full description here.

Disentanglement relies on paired junction links inserted into B3

and B4. We iterate through the set of ContigNodes to look for ‘tan-

gles’—pairs of opposite-facing junctions joined by a repeat se-

quence—as shown in Figure 2. Tangles are characterized by tuples

(j1,j2,s) where j1 is a back junction, j2 is a forward junction (or vice-

versa), and there is a common Contig s pointed to by the back

pointers of both j1 and j2. Junctions j1 and j2 each have at least two

outward extensions. We restrict cleaning to tangles having exactly

two extensions at each end. Let sa and sb be the Contigs starting at

heads of j1, and sc and sd be the Contigs starting at heads of j2. By

disentangling, we seek to pair extensions at each side of s to form

two paths. The possible outputs are paths [sa,s,sc] together with

[sb,s,sd] or [sa,s,sd] together with [sb,s,sc].

Thus, each such pair straddling the tangle—e.g. having one head

on sa and the other on sc—lends some support to the hypothesis that

the correct split is that which pairs the two. To decide between the

two possible split orientations, we count the number of pairs sup-

porting each by querying B3 or B4 for all possible junction pairings

that are separated by a characteristic length associated with the pairs

inserted to each. For example, B3 stores heads out of non-consecutive

junction pairs on the same read. Therefore, for each junction on sa

we count each pairing accepted by B3 with a junction on sc that is at

most one read length away. Specifically for B3, we also know that in-

serted pairs are always one or two junctions away from the starting

junction, based on the scheme presented in Figure 3. To decide when

Fig. 3. Rationale for B3 insertions. Narrow blue arrows indicate unitigs observed on a read, green circles are junctions and thick arrows are junction heads. Among

red arrows, solids are those inserted to B3. For simplicity, we provide a direction to each arrow. The opposite direction is equally valid, hence in this view heads can

also enter a junction and not only exit from it. In each case, a pair of red heads is inserted from a read. They will be inserted if they provide additional information to

infer a path on the graph. Black lines indicate a subset of possible paths; out of these the solid path is that observed on a read. (A) Two junctions observed on a

read. I, II: The two heads together imply the solid paths and rule out alternatives, so the pair is inserted to B3. III: The two heads lie on the ends of the same unitig

and thus add no information. (B) Three junctions observed on a read, comparing insertions of consecutive heads against non-consecutive heads. Four possible ar-

rangements are shown; there are four more that are symmetrical reflections and are not shown to save space. In each case, we compare the unitigs covered (i.e. ei-

ther having a head on them or being a sole extension at a junctionve heads against non-consecconsecutive (top) and non-consecutive (bottom) junctions are

chosen. Note that in Cases I–III the right-most unitig is not covered under consecutive heads (Color version of this figure is available at Bioinformatics online.)
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a tangle should be split, we apply XOR logic to arrive at a decision:

if the count of pairs supporting both paths in one orientation is > 0,

and the count of both paths in the other orientation is 0, we disentan-

gle according to the first, as shown in Figure 2. Similar yet more

involved reasoning is used for junction links in B4, using the insert

size between read pairs (see Supplementary Appendix). Once we ar-

rive at a decision, we add a new sequence to the set of Contigs that is

the concatenation of the sequences involved in the original paths. We

note one of the consequences of this simplification step is that the

graph no longer represents a de Bruijn graph, in that each k-mer is no

longer guaranteed to appear at most once in the graph. Furthermore,

the XOR case presented is the most frequently applied form of disen-

tanglement out of a few alternatives. We discuss these alternatives in

the Supplementary Appendix.

3.4 Optimizations and technical details
Here we discuss some details omitted from the above descriptions

for the sake of completeness. Based on the description of Algorithms

1 and 2, it is possible that false positive extensions out of terminal

nodes will ensue. This is possible because the mechanism described

for removing false positive junctions can differentiate between one

or multiple extensions existing in G for a given node, but cannot dif-

ferentiate between one or none. This may lead to assembly errors at

sink nodes.

To overcome such effects, we store distances between junctions

seen on the same read with the distance recorded being assigned to

the extension of each junction observed on the read. When an outer-

most junction on a read has not been previously linked to another

junction, we record its distance from the nearest read end—this sol-

ves the problem mentioned previously as long as paths to sinks are

shorter than read length. To obtain accurate measurements of dis-

tances on longer non-branching paths, we also introduce artificial

‘dummy’ junctions whenever a pre-defined length threshold is sur-

passed. In effect, this means that reads with no real junctions are as-

signed dummy junctions.

Once distances and dummy junctions are introduced, an add-

itional benefit is gained: the speed of the read-scan can be improved

by skipping between junctions that have been seen before. Once dis-

tances are known, if we see a particular extension out of a junction,

and then a sequence of length ‘ without any junctions, then, wher-

ever else we see that junction and extension, it must be followed by

the exact same ‘ next bases. Otherwise, there would be a junction

earlier. So we store ‘ when we see it, and skip subsequent

occurrences.

Finally, we note that Faucet can benefit from precise Bloom filter

sizing. When a good estimate of dataset parameters is known, the al-

gorithm can do the two-pass process above. Otherwise, to determine

the numbers of distinct k-mers and the number of singletons in the

dataset in a streaming manner, we have used the tool ntCard

(Mohamadi et al., 2017). This requires an additional pass over the

reads (for a total of three passes). The added pass does not increase

RAM or disk use. In fact, in tests on locally stored data, we found it

only adds negligible time.

4 Results

4.1 Assembling while downloading
As a demonstration of streaming assembly, we ran Faucet on pub-

licly available human data, SRR034939, used for benchmarking in

(Chikhi and Rizk, 2012). To assess resource use at different data

volumes, we ran Faucet on 10, 20 and 37 paired-end files out of 37

total. Streaming was enabled using standard Linux command line

tools: wget was used for commencing a download from a supplied

URL, and streamed reading from the compressed data was enabled

by the bzip2 utility. Downloads were initiated separately for each

run. The streaming results are shown in Table 1.

We emphasize that Faucet required less space than the size of the

input data in order to assemble it, while most assemblers generate files

during the course of their processing that are larger than the input

data. Also, the ratio of input data to disk used by Faucet decreased as

data volume increased, reflecting the tendency of sequences to be seen

repeatedly with high coverage. We also note that Faucet’s outputs ef-

fectively create a lossy compression of the read data, in that the choice

of k value inherently creates some ambiguity for read substrings larger

than k. This compression format is also queryable, in that given a

k-mer in the graph, its extensions can be found: indeed, this is the

basis of Faucet’s graph construction and cleaning.

4.2 Disentanglement assessment
To gauge the benefits of disentanglement on assembly quality, we

compared Faucet’s outputs with and without each of short- and

long-range pairing information, provided by Bloom filters B3 and

B4, on SYN 64—a synthetic metagenome produced to provide a

dataset for which the ground truth is known comprised of 64 species

(dataset sizes and additional characteristics are provided in the

Supplementary Appendix). The results of this assessment are pre-

sented in Table 2. We measured assembly contiguity by the NGA50

measure. NG50 is defined as ‘the contig length such that using equal

or longer length contigs produces x% of the length of the reference

genome, rather than x% of the assembly length’ in (Gurevich et al.,

2013). NGA50 is an adjustment of the NG50 measure designed to

penalize contigs composed of misassembled parts by breaking con-

tigs into aligned blocks after alignment to the reference. We found

that disentanglement more than doubled contiguity measured by

mean NGA50 values, with greater gains as more kinds of disentan-

glement were enabled. This was also reflected by corresponding

gains in the genome fractions, and in the number of species for

which at least 50% of the genome was aligned to, allowing NGA50

scores to be reported. More applications of disentanglement also

increased the number of misassemblies reported and the duplication

ratio; however, two-thirds of the maximum misassembly count is al-

ready seen without any disentanglement applied.

Table 1. Resource use and data compression observed as data vol-

ume increases

No. of

files

Time (h) RAM

(GB)

Disk

(GB)

Data

size (GB)

Comp.

ratio

10 26.3 48.3 19.0 29.6 0.64

20 47.7 84.3 34.3 59.2 0.58

37 98.2 144.7 50.0 108.4 0.46

Table 2. The effect of increasing levels of disentanglement on con-

tiguity and accuracy

Measure No disent. B3 only B4 only both B3, B4

Genome fraction (%) 76.4 79.9 80.3 82.3

Dup. ratio 1.00 1.01 1.02 1.02

Mean NGA50 13048 21703 26356 29066

Misassemblies 388 480 521 572

Species reported 54 56 56 56
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4.3 Tools comparison
We sought to assess Faucet’s effectiveness in assembling metage-

nomes, and its resource efficiency. For the former, we compared

Faucet to MetaSPAdes (Nurk et al., 2017) and Megahit (Li et al.,

2014), state of the art metagenome assemblers in terms of contiguity

and accuracy that require substantial resources. To address resource

efficiency, we also compared Faucet to two leading resource efficient

assemblers, Minia 3 (Beta) (Chikhi and Rizk, 2012) and

LightAssembler (El-Metwally et al., 2016). We note these last two

were not designed as metagenome assemblers, but they perform oper-

ations similar to what Faucet does—both in the course of their graph

construction steps, and in their cleaning steps. They differ from

Faucet in that neither is capable of disentanglement, as they do not

utilize paired-end information, but counter this advantage with more

sophisticated traversal schemes. All tools were run on two metage-

nome datasets—SYN64 and HMP—a female tongue dorsum sample

sequenced as part of the Human Microbiome Project. Both datasets

were used for testing in (Nurk et al., 2017). To achieve a fair compari-

son, runs were performed with a single thread on the same machine,

as Faucet does not currently support multi-threaded execution. Full

details of the comparison, including versions, parameters, and data

accessions, are presented in the Supplementary Appendix.

Table 3 presents the full results for the tools comparison. There

was a strong advantage to Megahit and MetaSPAdes over the three

lightweight assemblers (Minia, LightAssembler, and Faucet) in

terms of contiguity achieved (shown by NGA50 statistics), but this

came at a large cost in terms of memory, disk space, and time, par-

ticularly in the case of MetaSPAdes. Among the lightweight assem-

blers, Minia used by far the most disk space, and differences in other

resource measures were less pronounced. Among these three, Faucet

had a large advantage in NGA50 statistics relative to the other two.

This is highlighted by the trend of Table 3, and shown by its 14–

110% advantage in the mean of NGA50 relative to Minia, and 2- to

11-fold advantage relative to LightAssembler.

5 Discussion

Streaming de novo assembly presents an opportunity to significantly

ease some of the burdens introduced by the recent deluge of second

generation sequencing data. We posit the main applications of

streaming assembly will be de novo assembly of very large individ-

ual datasets (e.g. metagenomes from highly diverse environments)

and re-assembly of pangenomes derived from many samples. In both

cases, very large volumes of data must be digested in order to ad-

dress the relevant biological questions behind these assays.

Therefore, streaming graph assembly presents an attractive alterna-

tive to data compression: instead of attempting to reduce the size of

data, the aim is to keep locally only relevant information in a man-

ner that is queryable and that allows for future re-analysis.

Here, we have demonstrated a mechanism for performing

streaming graph assembly and described some of its characteristics.

First, we showed that assembly can be achieved without ever storing

raw reads locally. By assembling the graph, an intermediate

by-product of many assemblers, we show this technique is generally

applicable. By refining the graph and showing better assembly con-

tiguity than competing resource efficient tools on metagenome as-

sembly, we showed this method can also be applied in the setting

when sensitive recovery of rare sequences is crucial.

In future work, we aim to expand the capabilities of Faucet in a

number of ways. Multi-threaded processing will reduce run times and

make the tool more applicable to large data volumes. We believe fur-

ther refinements of cleaning and contig generation can be achieved by

adopting a statistical approach to making assembly decisions. In add-

ition, beyond graph cleaning, we aim to apply Faucet’s data structures

to path generation, as done with paired end reads in (Nihalani and

Aluru, 2016; Prjibelski et al., 2014; Shi et al., 2017). Both have the

potential to greatly improve contiguity and accuracy.

Beyond this, this work raises several remaining challenges per-

taining to what one may expect of streaming assembly. For instance,

it is immediately appealing to ask if streaming assembly can be

achieved with a just a single pass on the reads, and if so, what inher-

ent limitations exist. In Song et al. (2014), a simple solution is pro-

posed wherein the first 1 M reads are processed to provide a

succinct summary for the rest, but such an approach is more suited

to high coverage or low entropy data, and thus unlikely to perform

well on diverse metagenomes or when rare events are of particular

interest. Another issue raised by the performance comparison herein

is that of capturing the added value that iterative (multi-k value)

graph generation provides. We have given a partial solution by cap-

turing subsets of junction pairs within each read, and between mates

of paired-end reads. Although it is possible to iteratively refine the

graph with more passes on the reads, each time for the collection of

k-mers at different lengths, this becomes unwieldy with large data

volumes. Identifying the contexts for which such information would

Table 3. Tool comparison on two metagenomes

SYN64 HMP

Measure Metaspades Megahit LightAssembler Minia Faucet Metaspades Megahit LightAssembler Minia Faucet

Genome fraction (%) 89.1 90.1 75.6 76.5 82.3 46.9 48.6 23.4 27.8 27.9

Duplication ratio 1.02 1.02 1.01 1.00 1.02 1.05 1.12 1.02 1.01 1.05

Mean NGA50 (kb) 167 99.0 2.60 14.6 30.7 28.3 36.8 3.18 6.25 7.12

Median NGA50 (kb) 71.1 57.6 2.30 10.5 23.7 28.3 36.8 3.18 6.25 7.12

Misassemblies 785 949 314 395 572 504 602 100 184 202

Species reported 59 61 55 52 56 12 12 5 3 6

Time (h) 41.2 10.9 1.63 0.97 2.61 30.5 13.0 3.35 0.99 2.30

Memory (GB) 26 9.1 2.7 4.8 6.0 14 8.3 3.4 3.7 7.3

Disk (GB) 43.1 14.3 1.84 28.2 1.59 53.2 11.5 1.30 23.5 1.61

Top values in each cell are for SYN 64 data, and bottom values are for HMP. Duplication ratio is the ratio between the total aligned length to the combined

length of all references aligned to. The mean and median NGA50 values are calculated on based on species sufficiently covered by all assemblers to yield an

NGA50 value (i.e. 50% of the genome is covered). Species reported are those for which an NGA50 value is reported. In the HMP data, only two species were re-

ported for all, making the mean and median NGA50 values equal. Disk and memory use are those reported by the Linux time utility, and Disk use is the total

amount written to disk during the course of a run.
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be useful in the graph and indexing the reads to allow for querying

of such contexts may provide more efficient means of extracting

such information.
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