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ABSTRACT

Problems of genome rearrangement are central in both evolution and cancer. Most evolu-
tionary scenarios have been studied under the assumption that the genome contains a single
copy of each gene. In contrast, tumor genomes undergo deletions and duplications, and
thus, the number of copies of genes varies. The number of copies of each segment along a
chromosome is called its copy number profile (CNP). Understanding CNP changes can assist
in predicting disease progression and treatment. To date, questions related to distances
between CNPs gained little scientific attention. Here we focus on the following fundamental
problem, introduced by Schwarz et al.: given two CNPs, u and v, compute the minimum
number of operations transforming u into v, where the edit operations are segmental deletions
and amplifications. We establish the computational complexity of this problem, showing that
it is solvable in linear time and constant space.

Keywords: copy number, edit distance, genome rearrangement.

1. INTRODUCTION

The genome of a species evolves by undergoing small and large mutations over generations. Large

mutations modify genome organization by rearrangement of genomic segments. Computational analysis

of the process of genome rearrangement has been the subject of extensive research over the last two decades

(Fertin et al., 2009). The majority of these studies to date were restricted to a single copy of each gene and

were concerned with the reordering of segments. Extant models that do not make this assumption often result

in NP-hard problems (Tannier et al., 2009; Savard et al., 2011; Shao and Lin, 2012).

While most work on genome rearrangements to date was done in the context of species evolution, there

is today great opportunity in analysis of cancer genome evolution. Cancer is a dynamic process charac-

terized by the rapid accumulation of somatic mutations, which produce complex tumor genomes. Species

evolution happens over eons and changes are carried over from one generation to the next. In contrast,

cancer evolution happens within a single individual over a few decades. In many tumor genomes, a lot of

the changes are segmental deletions and amplifications (The Cancer Genome Atlas Research Network,

2011). As a result, the number of copies of each segment along a chromosome, known as its copy number

profile (CNP), changes during cancer development, compared to the normal genome that has two copies
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(or alleles) for each segment. Understanding these changes can assist in predicting disease progression and

the outcome of medical interventions. However, computational questions related to distances between

CNPs received little scientific attention to date. Such questions are the topic of this article.

Over the years, a variety of methods were used to determine the CNP of a cancer genome, at different

resolutions. G-banding allows viewing the chromosome bands (Pinkel et al., 1986). Fluoroscent In Situ

Hybridization (FISH) measures the copy numbers of tens to hundreds of targeted genes (Chowdhury et al.,

2014). Array comparative genomic hybridization gives a higher resolution of CN estimation for a cell

population (Urban et al., 2006). Most recently, deep sequencing techniques yield CNPs by using read depth

data (Oesper et al., 2012). While it would have been preferable to analyze the genome (karyotype) itself

and not its CNP, detection of structural variations from sequencing data is still problematic (McPherson

et al., 2012; Abo et al., 2014). Today it is a routine procedure to obtain detailed CNPs of cancer genomes,

but utilizing them to understand cancer evolution is still an open problem.

Given two CNPs, the healthy tissue’s and the tumor’s, evaluating the distance between them can help in

understanding cancer progression. A naive measure of distance is the Euclidean distance between the two

profiles (Schwarz et al., 2014). Chowdhury et al. defined edit distance between CNPs obtained from FISH,

where the edit operations are amplification or deletion of single genes, single chromosomes, or the whole

genome (Chowdhury et al., 2013, 2014, 2015). However, calculating these distances requires exponential

time in the number of genes and therefore is limited to low-resolution FISH data. The TuMult algorithm

uses the number of breakpoints (loci where the CNs change) between two profiles as a simple distance

measure (Letouzé et al., 2010).

Schwartz et al. introduced a model that admits amplification and deletion of contiguous segments

(Schwarz et al., 2014). The edit distance between two CNPs was defined as the minimum number of

segmental deletions and duplications over all separations of the profiles into two alleles (a procedure known

as phasing). Their algorithm MEDICC for computing the edit distance uses finite-state transducers (FSTs)

(Mohri, 2003) to model the profiles and efficiently compute the distance. However, the complexity of this

method was not analyzed. Even without the phasing computation, the method needs to compose a three-

state transducer with itself B times, resulting in a transducer with 3B states (Mohri, 2004; Schwarz et al.,

2014). Here, B is the maximum CN in the input. The running time of FST procedures relies on the number

of states and transitions, and in some cases may be exponential (Mohri, 2003, 2004).

1.1. Copy number transformation

We investigate the following problem, which underlies the model of Schwarz et al. (2014): Given two

CNPs, u and v, compute the minimum number of segmental duplications and deletions needed to transform

u into v. We call this problem the Copy Number Transformation Problem (CNTP). A CNP is represented by

a vector of non-negative integers (the number of copies of each segment). A segmental deletion (ampli-

fication) decreases (resp. increases) by 1 the values of a contiguous interval of the vector, where zero values

are not affected. Formal definitions are given in Section 2.

1.2. Our contribution

We show that the CNTP is solvable in linear time and constant space. The algorithm relies on several

properties of the problem that we establish in Section 3.1, which may also be relevant to the analysis of

other problems involving CNPs. By exploiting these properties, we obtain a pseudopolynomial dynamic

programming algorithm for CNTP, presented in Section 3.2. In Section 3.3, by establishing that a certain

function in the dynamic programming recursion is piecewise linear, we improve its performance and obtain

our main result, namely, a linear-time algorithm for CNTP.

Preliminary version of this article appeared in the proceedings of CPM 2016 (Shamir et al., 2016).

2. PRELIMINARIES

In this section, we give definitions and notations that are used throughout the article. Let n 2 N. A CNP

is a vector V = (v1‚ v2‚ . . . ‚ vn), where vi 2 N [ f0g. Each position in V corresponds to a segment in the

normal genome, where the segments are ordered as in the normal genome. For simplicity we call a position

a gene. A CN operation (CNO) is a triple c = (‘‚ h‚ w), where 1 � ‘ � h � n and w 2 f - 1‚ 1g. We say that
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a CNO c = (‘‚ h‚ - 1) is a deletion and c = (‘‚ h‚ 1) is an amplification. Given a CNP V = (v1‚ v2‚ . . . ‚ vn)

and a CNO c = (‘‚ h‚ w), we define the operation c(V) = (c(v1)‚ c(v2)‚ . . . ‚ c(vn)) as follows. For each

i 2 f1‚ 2‚ . . . ‚ ng, if ‘ � i � h and vi � 1, then c(vi) = vi + w, otherwise (i.e., if i < ‘ or i > h or vi = 0)

c(vi) = vi. A triple c = (‘‚ h‚ w) with h < ‘ has no effect on the CNP, that is, c(V) = V . Given two CNPs,

S = (s1‚ s2‚ . . . ‚ sn) (source) and T = (t1‚ t2‚ . . . ‚ tn) (target), a CN transformation (CNT) is a vector C =
(c1‚ c2‚ . . . ‚ cm), where m 2 N and each ci = (‘i‚ hi‚ wi) is a CNO, such that C(S) = cm(cm - 1( � � � (c1(S)))) = T .

The size of C, denoted jCj, is m. An example is given in Figure 1. Finally, we denote the number of

operations of weight w 2 f - 1‚ 1g affecting si by op(C‚ w‚ i) = jf(‘‚ h‚ w) 2 C : ‘ � i � hgj. For example, in

Figure 1, op(C‚ - 1‚ 2) = 1.

The CN distance from S to T, dist(S‚ T), is the smallest size of a CNT C that satisfies C(S) = T , where if

no such CNT exists, dist(S‚ T) =1. Note that dist is not symmetric. For example, for S = (1) and T = (0),

dist(S‚ T) = 1 but dist(T‚ S) =1. Given two CNPs, S = (s1‚ s2‚ . . . ‚ sn) and T = (t1‚ t2‚ . . . ‚ tn), the CNTP

seeks dist(S‚ T) (if one exists). We say that a CNT C is optimal if it realizes dist(S‚ T)‚ that is,

jCj = dist(S‚ T) (there may exist several optimal CNTs). We let B = maxfmaxn
i = 1fsig‚ maxn

i = 1ftigg denote

the maximum CN in the input. Finally, for all 1 � i � n, we define ui = si - ti.

3. AN ALGORITHM FOR CNTP

We first present an O(nB2)-time and O(B)-space algorithm for CNTP, based on dynamic programming

(Sections 3.1 and 3.2). Recall that B is the maximal integer in the input, so that algorithm is pseudopo-

lynomial. Then, we modify this algorithm to run in linear time (Section 3.3). On a high level, the modi-

fication is based on the observation that the table used by the algorithm to store values of partial solutions

can be described by O(n) piecewise linear functions, where each function encapsulates O(B) entries of the

table. We show that each function has only three linear segments, and so, the computation of an entry can

be performed in time O(1) rather than O(B). Furthermore, since each function can be represented in a

compact manner, the size of table shrinks from O(nB) to O(n). The precise definitions of the table and the

functions are given in Sections 3.2 and 3.3. Our proof of the correctness of the use of these functions

requires a somewhat extensive case analysis that is presented separately in Section 3.4.

3.1. Key propositions

We start by developing DpCntpAlg, an O(nB2)-time dynamic programming algorithm for CNTP. Let

(S = (s1‚ s2‚ . . . ‚ sn)‚ T = (t1‚ t2‚ . . . ‚ tn)) be the input. Observe that there exists a CNT C such that C(S) = T

if and only if there does not exist an index 1 � i � n such that si = 0 and ti > 0. Since the existence of such

an index can be determined in linear time (where, if such an index is found, we return1), we will assume

that dist(S‚ T) <1. To simplify the presentation, we further assume w.l.o.g. that t1‚ tn 6¼ 0. Indeed, if t1 = 0

or tn = 0, we can solve the input (S¢ = (1‚ s1‚ s2‚ . . . ‚ sn‚ 1)‚ T ¢ = (1‚ t1‚ t2‚ . . . ‚ tn‚ 1)) instead, since it holds

that dist(S‚ T) = dist(S¢‚ T ¢). Finally, we assume w.l.o.g. for all 1 � i � n, si > 0. Indeed, if there exists

1 � i � n such that si = 0, then also ti = 0, and we can solve the input (S¢ = (s1‚ . . . ‚ si - 1‚ si + 1‚ . . . ‚

sn)‚ T ¢ = (t1 . . . ‚ ti - 1‚ ti + 1‚ . . . ‚ tn)) since dist(S‚ T) = dist(S¢‚ T ¢).
DpCntpAlg exploits four key observations about the nature of the problem at hand, summarized as

follows: (1) it is sufficient to examine CNTs where all of the deletions precede all of the amplifications; (2)

FIG. 1. The CNT C = (c1‚ c2‚ c3) transforms

S into T. The size of C is 3. Red (dotted) and green

(solid) blocks indicate deletions and amplifica-

tions, respectively. CNT, CN transformation.
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it is sufficient to examine CNTs that do not contain both a deletion that affects si but not si + 1 and a deletion

that affects si + 1 but not si, and the same is true for amplifications; (3) when seeking an optimal solution, it

is not necessary to store information indicating how many deletions/amplifications affect si if ti = 0; and

(4) the maximum number of deletions/amplifications that affect each si can be bounded by B.

To formally state the first observation, we need the following definition.

Definition 1. A CNT C = (c1‚ c2‚ . . . ‚ cm) is ordered if for all 1 � i < j � m, if cj is a deletion, then ci

is also a deletion.

Proposition 1. There exists an optimal ordered CNT.

We note that the ‘‘opposite’’ proposition, stating that there exists an optimal CNT where all of the

amplifications precede all of the deletions, does not hold: consider, for example, S = (1‚ 1‚ 1‚ 1‚ 1) and

T = (2‚ 0‚ 2‚ 0‚ 2). To prove this proposition, we will need the following claim.

Claim 1. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal CNT and let i be an index such that ci = (‘i‚ hi‚ 1) and

ci + 1 = (‘i + 1‚ hi + 1‚ - 1). Then, there exists an optimal CNT C¢ = (c1‚ . . . ‚ ci - 1‚ ci¢‚ c¢i + 1‚ ci + 2‚ . . . ‚ cm), where

c¢i = (‘¢i‚ h¢i‚ w¢i) and c¢i + 1 = (‘¢i + 1‚ h¢i + 1‚ w¢i + 1), such that one of the following conditions holds.

1. (h¢i - ‘¢i) + (h¢i + 1 - ‘¢i + 1) < (hi - ‘i) + (hi + 1 - ‘i + 1).

2. (h¢i - ‘¢i) + (h¢i + 1 - ‘¢i + 1) = (hi - ‘i) + (hi + 1 - ‘i + 1) and w¢i = - 1.

Proof. Consider the following exhaustive case analysis (Fig. 2). -

I. hi < ‘i + 1 or hi + 1 < ‘i: In this case, the segments corresponding to ci and ci + 1 are disjoint. Thus, we

can simply define ci¢ = ci + 1 and c¢i + 1 = ci. Then, Condition 2 is satisfied.

II. ‘i � ‘i + 1 � hi � hi + 1: Define ci¢ = (hi + 1‚ hi + 1‚ - 1) and c¢i + 1 = (‘i‚ ‘i + 1 - 1‚ 1). For any CNP

V = (v1‚ v2‚ . . . ‚ vn), c¢i + 1(c¢i(V)) = ci + 1(ci(V)). This argument holds because an application of ci, fol-

lowed by an application of ci + 1, does not change any entry vk such that ‘i + 1 � k � hi. We have that

C¢(S) = T . Since jC¢j = jCj, C¢ is an optimal CNT. Now, Condition 1 is satisfied.

III. ‘i + 1 � ‘i � hi + 1 � hi: Define ci¢ = (‘i + 1‚ ‘i - 1‚ - 1) and c¢i + 1 = (hi + 1 + 1‚ hi‚ 1). As in the second case,

we obtain an optimal CNT that satisfies Condition 1.

IV. ‘i � ‘i + 1 � hi + 1 � hi: Define ci¢ = (‘i‚ ‘i + 1 - 1‚ 1) and c¢i + 1 = (hi + 1 + 1‚ hi‚ 1). As in the second case,

we obtain an optimal CNT that satisfies Condition 1.

V. ‘i + 1 � ‘i � hi � hi + 1: Define ci¢ = (‘i + 1‚ ‘i - 1‚ - 1) and c¢i + 1 = (hi + 1‚ hi + 1‚ - 1). As in the second

case, we obtain an optimal CNT that satisfies Condition 1.

As we show below, Claim 1 implies the existence of an ordered optimal CNT. In each of the cases in

Claim 1, a local change is made in the CNT. Note, however, that just performing enough local operations

does not guarantee reaching an ordered optimal CNT. For example, in a CNT with three consecutive CNOs,

ci = (‘i‚ hi‚ 1)‚ ci + 1 = (‘i + 1‚ hi + 1‚ 1)‚ ci + 2 = (‘i + 2‚ hi + 2‚ - 1), one may loop between changing ci + 1 into a

deletion and then into an amplification.

Proof (Proof of Proposition 1). Let C be the set of optimal CNTs, and suppose, by way of contradiction,

that it does not contain an ordered CNT. The three following phases sieve some solutions out of C.
Informally, we initially consider only optimal CNTs that minimize the sum of the sizes of the segments

corresponding to their CNOs (C1); then, we further consider only the CNTs whose first amplification is as

late as possible (C2); finally, we only take the CNTs whose first deletion after their first amplification is as

early as possible (C3). An illustration is given in Figure 3.

FIG. 2. The proof of Claim 1. The green (solid)

lines correspond to ci, and the red (dotted) lines

correspond to ci + 1.

4 ZEIRA ET AL.

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

v 
Pa

ck
ag

e 
fr

om
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 1

0/
15

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



� Given C = (c1‚ c2‚ . . . ‚ cm) 2 C, define x(C) =
Pm

i = 1 (hi - ‘i). Let C1 be the set of every C 2 C for which

there does not exist C¢ 2 C such that x(C) > x(C¢).
� Given C = (c1‚ c2‚ . . . ‚ cm) 2 C1, let y(C) be the largest index 0 � i � m such that for all 1 � j � i, cj is

a deletion. Note that y(C) = 0 if and only if c1 is an amplification. Let C2 be the set of every C 2 C1 for

which there does not exist C¢ 2 C1 such that y(C) < y(C¢).
� Given C = (c1‚ c2‚ . . . ‚ cm) 2 C2, let z(C) be the smallest index i 2 fy(C) + 1‚ . . . ‚ mg such that ci is a

deletion. By the definition of y(C) and since C is not ordered, we have that z(C) is well defined and

z(C) � y(C) + 2. Let C3 be the set of every C 2 C2 for which there does not exist C¢ 2 C2 such that

z(C) > z(C¢).

Since C 6¼ ;, we have that C3 6¼ ;. Thus, we can let C = (c1‚ c2‚ . . . ‚ cm) be a solution in C3. Let i be the

smallest index such that ci is an amplification and ci + 1 is a deletion. Now, consider the conditions in Claim

1: if Condition 1 holds, we have a contradiction to the fact that C 2 C1, while if Condition 2 holds, we have

a contradiction either to the fact that C 2 C2 (if i = 1 or ci - 1 is a deletion) or to the fact that C 2 C3

(otherwise). Thus, we conclude that C contains an ordered CNT.

Definition 2. A CNT C is elongated if for all 1 � i < n and w 2 f - 1‚ 1g,

minfop(C‚ w‚ i)‚ op(C‚ w‚ i + 1)g = jf(‘‚ h‚ w) 2 C : ‘ � i‚ i + 1 � hgj:

Equivalently, C is elongated if no two amplifications (or deletions) ‘‘dovetail,’’ that is, one ending at

i and the other starting at i + 1. It is clear that for any CNT C, the inequality � holds above (since

f(‘‚ h‚ w) 2 C : ‘ � i‚ i + 1 � hg is a subset of both f(‘‚ h‚ w) 2 C : ‘ � i � hg and f(‘‚ h‚ w) 2 C :
‘ � i + 1 � hg). Our second key proposition implies the inequality � holds as well. An example for an

elongated CNT is given in Figure 4A.

To prove Proposition 2, we will need the following claim.

FIG. 3. The proof of Proposition 1.

A

B

FIG. 4. (A) Elongated and nonelongated CNTs. (B) A

zero-skipping solution. The top lines indicate the range

of deletions.
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Claim 2. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal ordered CNT, and let 1 � i < j � m be indices such that

either both ci and cj are deletions or both ci and cj are amplifications. Then, the CNT C¢ obtained from C by

swapping the locations of ci and cj is also an optimal ordered CNT.

Proof. Clearly, C¢ is ordered and jC¢j = jCj. Thus, it is sufficient to show that C¢(S) = C(S). Observe

that because C is ordered, for any 1 � q � n, the value of the qst CN in C(S) is x + y, where

x = maxfsq - op(C‚ - 1‚ q)‚ 0g, y = 0 if x = 0, and y = op(C‚ 1‚ q) otherwise. By the definition of C¢ (which is

also ordered and contains the same CNOs as C), this is also the value of the qst CN in C¢(S). -
We are now ready to show the following property.

Proposition 2. Every ordered optimal CNT is elongated.

Proof. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal ordered CNT. Suppose that, by way of contradiction, C is

not elongated. Thus, there exist 1 � i < n and w 2 f - 1‚ 1g such that

minfop(C‚ w‚ i)‚ op(C‚ w‚ i + 1)g > jf(‘‚ h‚ w) 2 C : ‘ � i‚ i + 1 � hgj:

Therefore, C contains two CNOs cp = (‘p‚ hp‚ w) and cq = (‘q‚ hq‚ w) such that hp = i and ‘q = i + 1. By

Claim 2, we can assume that p = q + 1. Now, by removing cp and replacing cq by the CNO c = (‘p‚ hq‚ w), we

obtain a CNT C¢ such that C¢(S) = T . However, jC¢j < jCj, which contradicts the optimality of C. -
To formalize our third key proposition, we need the following definition.

Definition 3. A CNT C is zero-skipping if for every 1 � i < j � n such that for all i < r � j‚ tr = 0

we have

op(C‚ - 1‚ j) = max max
j

r = i + 1
fsrg‚ op(C‚ - 1‚ i)

� �
‚ and op(C‚ 1‚ j) = op(C‚ 1‚ i):

In words, for a block of consecutive zeros in the target profile, all deletions that span the block also

include its flanking positions. An example of a zero-skipping CNT is given in Figure 4B.

Proposition 3. There exists an optimal ordered zero-skipping CNT.

Proof. By Proposition 1, there is an optimal ordered CNT C = (c1‚ c2‚ . . . ‚ cm). If C is zero-skipping, we

are done, and thus we next suppose that it does not. Thus, there exists 1 � i < j � n such that tr = 0 for all

i < r � j, for which at least one of the following conditions is satisfied. -

1. op(C‚ - 1‚ j) 6¼ maxfmax
j
r = i + 1fsrg‚ op(C‚ - 1‚ i)g.

2. op(C‚ 1‚ j) 6¼ op(C‚ 1‚ i).

We can assume w.l.o.g. that j is the smallest index that is larger than i for which at least one of the above

conditions is satisfied. Thus, at least one of the following conditions is satisfied.

1. op(C‚ - 1‚ j) 6¼ maxfsj‚ op(C‚ - 1‚ j - 1)g.
2. op(C‚ 1‚ j) 6¼ op(C‚ 1‚ j - 1).

Since tj = 0, jf(‘‚ h‚ - 1) 2 C : ‘ � j � hgj � sj. Moreover, because C is ordered and tj = 0, we can re-

place each CNO c = (‘‚ h‚ w) in C such that h = j - 1 by the CNO c¢ = (‘‚ j‚ w). Thus, we overall obtain an

optimal ordered CNT C¢, such that, if it is not zero-skipping (in which case we are done), at least one of the

following conditions is satisfied.

1. op(C‚ - 1‚ j) > maxfsj‚ op(C‚ - 1‚ j - 1)g.
2. op(C‚ 1‚ j) > op(C‚ 1‚ j - 1).

Since C¢ is ordered and tj = 0, we can choose a CNO c = (‘‚ h‚ w) in C¢ such that ‘ = j, as well as w = - 1 if the

first condition is satisfied and w = 1 otherwise, and replace it by the CNO c¢ = (j + 1‚ h‚ w). This operation results in

an optimal ordered CNT. By repeating it enough times, we obtain an optimal ordered CNT that is zero-skipping.-
For a position with positive target value, knowing the number of deletions that affected it uniquely

determines the number of amplifications that affected it. This simple fact will help the efficiency of our

procedures. Formally:
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Observation 1. Let 1 � i � n be an index such that ti > 0, and let C = (c1‚ c2‚ . . . ‚ cm) be a CNT such

that C(S) = T. Then, op(C‚ 1‚ i) = - ui + op(C‚ - 1‚ i).

Finally, we formalize our fourth key proposition.

Definition 4. A CNT C is bounded if for all 1 � i � n and every w 2 f - 1‚ 1g, we have

op(C‚ w‚ i) � B.

Proposition 4. Every optimal ordered CNT that is zero-skipping is also bounded.

Proof. Let C be an optimal ordered CNT that is zero-skipping. Suppose, by way of contradiction, that C

is not bounded. That is, there exists 1 � i � n and w 2 f - 1‚ 1g such that op(C‚ w‚ i) > B. First suppose

that ti > 0. Then, since C is ordered and C(S) = T , we have that w = 1. However, this contradicts the

correctness of Observation 1. Thus, we can next suppose that ti = 0, which also implies that i > 1. We also

assume w.l.o.g. that i is the smallest index such that op(C‚ w‚ i) > B. Therefore, at least one of the

following conditions is satisfied.

1. op(C‚ - 1‚ j) > maxfsj‚ op(C‚ - 1‚ j - 1)g.
2. op(C‚ 1‚ j) > op(C‚ 1‚ j - 1).

Thus, we necessarily obtain a contradiction to the fact that C is zero-skipping. -

3.2. An O(nB2)-time algorithm for CNTP

On a high-level, the dynamic programming algorithm works as follows. It considers increasing prefixes

Si = (s1‚ s2‚ . . . ‚ si) and Ti = (t1‚ t2‚ . . . ‚ ti) of the input. It computes a table M having n(B + 1) entries where

M[i‚ d] is the best value of a solution on (Si‚ Ti) that uses exactly d deletions that affect the ith position. The

parameter d ranges between zero and B, and the values for each i are computed based on values M[j‚� ] for a

single specific j < i. In particular, at each point of time, only two rows of the table M are stored. By

Propositions 1–4, the algorithm considers only ordered, elongated, zero-skipping and bounded solutions.

We call such solutions good.

More formally, given 1 � i � n and 0 � d � B, we say that a CNT C is an (i‚ d)-CNT if C(Si) = Ti,

d = op(C‚ - 1‚ i), and C is good. We say that an (i‚ d)-CNT C is optimal if there is no (i‚ d)-CNT C¢ such

that jC¢j < jCj. Our goal will be to ensure that each entry M[i‚ d] stores the size of an optimal (i‚ d)-CNT,

where if no such CNT exists, it stores 1. We do not compute entries M[i‚ d] such that ti = 0; indeed, by

relying on Property 3, we are able to skip such entries (although our recursive formula does consider CNs si

referring to indices i such that ti = 0). In this context, observe that any ordered CNT C such that C(S) = T

consists of at least ui deletions that affect si, and if ti > 0, it cannot consist of more than si - 1 such deletions

(since after decreasing si to 0, it remains 0). Moreover, if ui � d < si, there exists an (i‚ d)-CNT—by

independently adjusting the value of each position < i to its target position and the value at position i with d

deletions, using operations of span 1.

Observation 2. Given 1 � i � n such that ti > 0 and 0 � d � B, there exists an (i‚ d)-CNT if and only if

ui � d < si.

In case si < ti, Observation 2 states that there exists an (i‚ d)-CNT if and only if d < si. In light of this

observation, we will use the following assumption.

Assumption 1. In the computation below, we assume that maxfui‚ 0g � d < si. Entries M[i‚ d] for which

it is not true that maxfui‚ 0g � d < si store 1.

By Observation 1, if a solution involved d deletions at position i with ti > 0, then it involved - ui + d

amplifications at that position. For convenience denote that number by a(i‚ d) = - ui + d for all 1 � i � n

satisfying ti > 0 and maxfui‚ 0g � d < si, and a(i‚ d) =1 otherwise.

For input profiles S‚ T , the algorithm precomputes two vectors. Given an index 1 < i � n such that ti > 0,

let prev(i) denote the largest index j < i such that tj > 0. Moreover, if prev(i) = i - 1, let Qi = 0, and otherwise

let Qi = maxprev(i)<j<ifsjg. A zero-skipping solution (Fig. 5) will skip the positions between i and prev(i) in the

computation, but will make sure to perform at least Qi deletions spanning the skipped positions.

Initialization: The initialization step sets all entries M[1‚ d] as follows.
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M[1‚ d])d + a(1‚ d):

Recursion: If ti = 0 position i is skipped. Suppose that i > 1, ti > 0, and maxfui‚ 0g � d < si. The order

of the computation is determined by the first argument. The computation is summarized in the following

formula and illustrated in Figure 5.

M[i‚ d]) min
0�d¢�B

fM[prev(i)‚ d¢] + maxfd - d¢‚ 0g

+ maxfa(i‚ d) - a(prev(i)‚ d¢)‚ 0g + maxfQi - maxfd‚ d¢g‚ 0gg
(1)

Roughly speaking, to compute M[i‚ d] we look back to the previous nonzero position in T, and for each

value d¢ in that position add the difference from d if needed, the number of amplifications to be added if

needed, and the number of additional deletions if such are needed to take care of the zero positions that

were skipped. After filling the table M, DpCntpAlg returns min0�d�B M[n‚ d]. The full algorithm is given

in Algorithm 1. An example of a partially filled table is given in Figure 6.

Algorithm 1: DpCntpAlg

Input: S, T, Q, prev

Output: dist(S, T)

for d = 1, ., B do

M[1, d] ) d + a(1, d)

end for

for i = 2, ., n, ti > 0 do

for d = 0, ., B do

if max{ui, 0} £ d < si then

M[i,d] ) min0£d ¢£B{M[prev(i), d ¢] + max{d – d ¢, 0} + max{a(i, d) - a(prev(i), d ¢), 0}

else

M[i, d] ) N
end if

end for

end for

return min0£d£B M[n, d]

FIG. 5. Zero-skipping in the recursive formula. T has a maxi-

mal block of zeros between positions prev(i) and i, S has values 2

and 3, respectively, in these positions and a maximum value 4

within the interval of genes, attained at position Qi. d¢ deletions

can be elongated from prev(i) up to position i. d - d¢ deletions can

be extended forward up to position i and backward to position

prev(i) + 1. In addition, Qi - d additional deletions are needed to

delete Qi.

FIG. 6. The DP M[i‚ d] matrix for the two CNPs in Figure 4B.
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Correctness: First, we claim that the entries of the table M are computed properly.

Lemma 1. For all 1 � i � n such that ti > 0 and for all 0 � d � B, M[i‚ d] stores the size of an optimal

(i‚ d)-CNT, where if no such CNT exists, it stores N.

Proof. We prove the lemma by induction on the order of the computation. -
The correctness of the initialization step follows from the definition of an (i‚ d)-CNT and Observation 1.

Now, fix 1 < i � n such that ti > 0, and fix maxfui‚ 0g � d < si. Let m be the size of an optimal (i‚ d)-

CNT. Suppose that the lemma is correct for all i¢ < i and 0 � d¢ � B. We need to show that M[i‚ d] = m.

First Direction: First, we show that M[i‚ d] � m. Let C = (c1‚ c2‚ . . . ‚ cm) be an optimal (i‚ d)-CNT, and

for all 1 � j � m, denote cj = (‘j‚ hj‚ wj). For all 1 � j � m, let c¢j = (‘j‚ minfhj‚ prev(i)g‚ wj). Now, define

C¢ = (c¢1‚ c¢2‚ . . . ‚ c¢m). We further let Ĉ = (ĉ1‚ ĉ2‚ . . . ‚ ĉq) denote the CNT obtained from C¢ by removing all

of the CNOs c = (‘‚ h‚ w) such that h < ‘. Denote d̂ = op(Ĉ‚ - 1‚ prev(i)). Observe that d̂ � B and that Ĉ is a

(prev(i)‚ d̂)-CNT (because C is an (i‚ d)-CNT). Therefore, by the induction hypothesis, M[prev(i)‚ d̂] � q

(recall that q = jĈj). If prev(i) = i - 1, then Qi = 0 and since C is ordered and elongated, by Observation 1 we

have that m - q = maxfd - d̂‚ 0g + maxfa(i‚ d) - a(prev(i)‚ d̂)‚ 0g. Thus, by the recursive formula, in this

case we get that M[i‚ d] � m.

Now, suppose that prev(i) < i - 1. Then, since C is ordered and zero-skipping, and by the definition of

Qi, the two following conditions hold.

1. op(C‚ - 1‚ i - 1) = maxfQi‚ op(C‚ - 1‚ prev(i))g.
2. op(C‚ 1‚ i - 1) = op(C‚ 1‚ prev(i)).

Thus, since C is ordered and elongated, by Observation 1 we have that m - q = maxfd - d̂‚ 0g + maxfa(i‚ d) -
a(prev(i)‚ d̂)‚ 0g + maxfQi - maxfd‚ d̂g‚ 0g. Again, by the recursive formula, this implies that M[i‚ d] � m.

Second Direction: Next, we show that M[i‚ d] � m. To this end, it is sufficient to show that there exists an

(i‚ d)-CNT C such that M[i‚ d] � jCj. Let d̂ be an argument d¢ at which the value computed by using the re-

cursive formula is minimized. By the inductive hypothesis, there exists a (prev(i)‚ d̂)-CNT Ĉ = (ĉ1‚ ĉ2‚ . . . ‚ ĉq)

such that M[prev(i)‚ d̂] � q. For all 1 � j � q, denote ĉj = (‘j‚ hj‚ wj). Now, if prev(i) = i - 1, define eC = Ĉ, else

define eC as follows. For all 1 � j � q, let ~cj = (‘j‚ eh‚ wj), where eh = hj if hj < prev(i) and eh = i - 1 otherwise. LeteC = (~c1‚ ~c2‚ . . . ‚ ~cq). Moreover, as long as there exists prev(i) < j < i such that op( eC‚ - 1‚ j) < sj, choose the

smallest such j, and append to the beginning of eC the CNO (j‚ i - 1‚ - 1). Let C¢ be the CNT obtained at the end

of this process. Denote C¢ = (c¢1‚ c¢2‚ . . . ‚ c¢r), and for all 1 � j � r, denote c¢j = (‘¢j‚ h¢j‚ w¢j). Now, let p and q be the

number of deletions and amplifications in C¢ whose segments include i - 1, respectively. If p < d, append to the

beginning of C¢ d - p ‘‘dummy’’ deletions of the form (i‚ i - 1‚ - 1), and if a(i‚ d) < q, append to the end of C¢
a(i‚ d) - q ‘‘dummy’’ amplifications of the form (i‚ i - 1‚ 1). Let C† = (c†1‚ c†2‚ . . . ‚ c†k ) be the resulting CNT, and

for all 1 � j � k, denote c†j = (‘†j‚ h†j‚ w†j ). Finally, we define C as follows. Let D (A) be a set of exactly d deletions

(resp. amplifications) in C† whose second argument is i - 1. We let C be defined as C†, except that each CNO

(‘‚ h‚ w) 2 D [ A is replaced by the CNO (‘‚ i‚ w). It is straightforward to verify that C is an (i‚ d)-CNT such

that jCj = q + maxfd - d̂‚ 0g + maxfa(i‚ d) - a(prev(i)‚ d̂)‚ 0g + maxfQi - maxfd‚ d̂g‚ 0g, which concludes

the correctness of the second direction.

Now, we turn to consider the correctness and running time of DpCntpAlg.

Theorem 1. DpCntpAlg solves CNTP in time O(nB2) and space O(B).

Proof. The table M contains O(nB) entries, and each entry can be computed in time O(B). Therefore, the

time complexity of DpCntpAlg is bounded by O(nB2). Moreover, for the computation of M[i‚ � ], it is

only necessary to keep O(B) entries for position prev(i), and therefore, the space complexity is bounded by

O(B). Since every (n‚ d)-CNT C satisfies C(S) = T , and since for every good optimal CNT C, there exists

0 � d � B such that C is an (n‚ d)-CNT, we have that Lemma 1 implies that DpCntpAlg returns the

smallest size of a good optimal CNT (if such a CNT exists). By Propositions 1–4, such a CNT indeed

exists, and therefore DpCntpAlg solves CNTP. -

3.3. A linear-time algorithm for CNTP

In this section we show how to modify DpCntpAlg to obtain an algorithm, called LinearCntpAlg, that

solves CNTP in linear time. The central lemma that leads to this improvement states that each column in

the table M can be described by a piecewise linear function of at most three segments.

A LINEAR-TIME ALGORITHM FOR THE CNTP 9

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

v 
Pa

ck
ag

e 
fr

om
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 1

0/
15

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



To present this lemma, we need the following notation. For all i 2 f1‚ 2‚ . . . ‚ ng such that ti > 0, let

dmin
i = maxfui‚ 0g and dmax

i = maxfsi - 1‚ 0g be the least and largest values of d for which M[i‚ d] is finite.

Now, the function fi : fdmin
i ‚ . . . ‚ dmax

i g ! N [ f0g will satisfy fi(d) = M[i‚ d]. Observe that the function fi is

discrete. We stress that in this section, we do not explicitly compute the entries of M—the definition of the

functions concerns the values that would have been stored in these entries if they were computed by using

DpCntpAlg.

Lemma 2. For each i 2 f1‚ 2‚ . . . ‚ ng such that ti > 0, there exist basei‚ ai‚ bi 2 N [ f0g such that for

all d 2 fdmin
i ‚ . . . ‚ dmax

i g:

fi(d) =
basei if dmin

i � d � ai

(basei - ai) + d if ai � d � bi

(basei - ai - bi) + 2d if bi � d � dmax
i

8<
:

Moreover, base1‚ a1 and b1 can be computed in constant time, and for each i 2 f2‚ 3‚ . . . ‚ ng such that

ti > 0, given baseprev(i)‚ aprev(i) and bprev(i), basei‚ ai and bi can be computed in constant time.

An example is given in Figure 7. The proof is based on Lemma 1 and on an exhaustive case analysis,

which, for the sake of clarity of presentation, is handled separately in Section 3.4.

Our algorithm, LinearCntpAlg, performs the following computation, using PiecewiseAlg, an

algorithm that computes basei, ai, and bi in constant time. That algorithm is described in the next sub-

section.

We are now ready to prove our main result.

Algorithm 2: LinearCntpAlg

Input: S, T, Q, prev

Output: dist(S, T)

base0 ) 0; a0 ) 0; b0 ) 0.

for i = 1,.,n, ti > 0 do

basei; ai, bi ) PiecewiseAlg(si, ti, Qi, baseprev(i), aprev(i), bprev(i)).

end for

return basen

Theorem 2. LinearCntpAlg solves CNTP in time O(n) and space O(1).

Proof. According to Lemma 2, fi(d) = M[i‚ d] is a piecewise linear function described by three values:

basei, ai and bi. Lemma 2 shows that PiecewiseAlg calculates these values in constant time and space

given the previous values. The time and space complexity of LinearCntpAlg follow directly. -

FIG. 7. An example of the piecewise linear

function fi(d) described in Lemma 2. The number

of segments is three but can be smaller, depending

on the values involved.
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Now, by the correctness of DpCntpAlg, it is sufficient to prove that LinearCntpAlg returns the

value min0�d�B M[n‚ d]. By Observation 2, min0�d�B M[n‚ d] = mindmin
n �d�dmax

n
M[n‚ d]. By Lemma 2, we

further have that mindmin
n �d�dmax

n
M[n‚ d] = basen. Thus, by the inductive proof of Lemma 2, we conclude that

LinearCntpAlg solves CNTP. -

3.4. Case analysis

This section is to prove the correctness of Lemma 2. That is, we want to show that fi(d) is a piecewise

linear function described by three parameters, and these parameters can be calculated in constant time. To

this end, let j = prev(i) and Ri = uj - ui. Accordingly, the term a(i‚ d) - a(j‚ d¢) can be written as Ri + d - d¢.
Moreover, let d¢opt be the argument d¢ that minimizes the recursive formula we use to compute M[i‚ d] under

certain conditions that will be clear from context.

We prove Lemma 2 by induction on i. To simplify the proof, let a0 = b0 = base0 = 0 and f0(d) = 2d for

every 0 � d � B. This definition is equivalent to adding the new entries s0 = t0 = B + 1 (which do not affect

the distance from S to T), and thus, it can serve as the basis of our induction. Next, suppose that Lemma 2

holds for j = prev(i) < i, we will prove that it holds for i.

The proof is based on an exhaustive case analysis that examines the position of Qi relative to dmin
j , aj,

bj, and dmax
j , as well as the sign of Ri. For example, Case 2(a)ii is defined by the conditions

dmin
j � Qi � aj, Ri � 0, and aj - Ri � Qi. In each case, we analyze the behavior of M[i‚ d] as we increase

d. More precisely, we examine several intervals that together contain all of the values that can be

assigned to d. For example, in the abovementioned case, we consider the intervals d � aj - Rj,

aj - Rj � d � Qi, and Qi � d. For each interval, we let d¢opt be an argument d¢ that minimizes M[i‚ d]

under the conditions of the examined case. These conditions along with d¢opt allow us to remove

the minimization and maximization functions from the formula defining M[i‚ d], and thus, we obtain

fi(d). In the latter example, if d � aj - Rj we can choose d¢opt = aj and get fi(d) = M[i‚ d] = M[j‚ aj] +
maxfd - aj‚ 0g + maxfRi + d - aj‚ 0g + maxfQi - maxfd‚ ajg‚ 0gg = basej. As a corollary of the analysis,

we get that indeed fi(d) is piecewise linear, and that ai, bi, and basei can be calculated in constant time

given aj, bj, basej, Ri, and Qi.

The full case analysis is given in the Appendix. The analysis shows that in all cases, fi(d) is indeed

a piecewise linear function with at most three linear segments defined by some ai, bi, and basei. After

applying straightforward operations that reorganize the analysis (to present the results in a compact

manner), we obtain the algorithm PiecewiseAlg, whose pseudocode is given below. This algorithm

performs the iterative step of LinearCntpAlg, that is, it calculates ai, bi, basei given aj, bj, basej, and Qi

in constant time and space.

PiecewiseAlg first calculates Ri‚ dmin
i and dmax

i based on si and ti. Next, according to the sign of Ri and

the relative position of Qi in comparison to the previous aj and bj, the algorithm calculates the structure of

fi(d) defined by ai and bi. Finally, since fi(d) is defined only for the range dmin
i � d � dmax

i , we calculate

basei = fi(d
min
i ). Similarly, we limit the values of ai and bi to that range.

Algorithm 3: PiecewiseAlg

Input: si‚ ti‚ Qi‚ aj‚ bj‚ basej

Output: ai‚ bi‚ basei

Ri)uj - ui

dmin
i ) maxfui‚ 0g

dmax
i ) maxfsi - 1‚ 0g

ai) minfmaxfaj‚ Qig‚ bj - minfRi‚ 0gg- maxfRi‚ 0g
bi) maxfQi‚ bj - minfRi‚ 0gg

basei)basej + maxfQi - aj‚ 0g +
0 if dmin

i � ai

dmin
i - ai if ai < dmin

i � bi

2dmin
i - ai - bi if bi < dmin

i � dmax
i

8<
:

ai) maxfdmin
i ‚ minfai‚ dmax

i gg; bi) maxfai‚ minfbi‚ dmax
i gg

return basei‚ ai‚ bi
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4. CONCLUSION

In this article, we introduced the study of distances between CNPs from a theoretical point of view. We

focused on one fundamental problem, CNTP, and showed that it is solvable in linear time and constant

space. To this end, we proved several properties of CNTP that may be useful in solving other problems

involving CNPs. Our algorithm can be modified to return a transformation that realizes dist(S‚ T) in linear

time and linear space by backtracking the dynamic programming vector. We have implemented the algorithm

as well as a linear programming formulation of CNTP, and the implementations are available on request.

Many computational and combinatorial aspects in the analysis of distances between CNPs require further

research. Indeed, this article can be viewed as a first step toward understanding them. In our follow-up

article by El-Kebir et al. (2016), we investigated a generalization of CNTP where the input is a set of

profiles, and one seeks to construct a tree with the profile labels at the leaves and additional profile labeling

of internal nodes that minimizes the transformation distances along the edges. We showed this problem is

NP-hard and gave an Integer Linear Programming (ILP) formulation to solve it. Additional directions for

further research involve the introduction of edit operations other than basic segmental deletions and ampli-

fications, dealing with phasing of the profiles, as well as the handling of noise.
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Letouzé, E., Allory, Y., Bollet, M.A., et al. 2010. Analysis of the copy number profiles of several tumor samples from

the same patient reveals the successive steps in tumorigenesis. Genome Biol. 11, R76.

McPherson, A., Wu, C., Wyatt, A.W., et al. 2012. nFuse: Discovery of complex genomic rearrangements in cancer

using high-throughput sequencing. Genome Res. 22, 2250–2261.

Mohri, M. 2003. Edit-distance of weighted automata: General definitions and algorithms. Int. J. Found. Comput. Sci.

14, 957–982.

Mohri, M. 2004. Weighted finite-state transducer algorithms. An overview. In Formal Languages and Applications. pp.

551–563. Springer, Berlin-Heidelberg.

Oesper, L., Ritz, A., Aerni, S.J., et al. 2012. Reconstructing cancer genomes from paired-end sequencing data. BMC

Bioinformatics 13 Suppl 6, S10.

12 ZEIRA ET AL.

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

v 
Pa

ck
ag

e 
fr

om
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 1

0/
15

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



Pinkel, D., Straume, T., and Gray, J.W. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence

hybridization. Proc. Natl Acad. Sci. U. S. A. 83, 2934–2938.

Savard, O.T., Gagnon, Y., Bertrand, D., et al. 2011. Genome halving and double distance with losses. J. Comput. Biol.

18, 1185–1199.

Schwarz, R.F., Trinh, A., Sipos, B., et al. 2014. Phylogenetic quantification of intra-tumour heterogeneity. PLoS

Comput. Biol. 10, e1003535.

Shamir, R., Zehavi, M., and Zeira, R. 2016. A linear-time algorithm for the copy number transformation problem. In

Grossi, R., and Lewenstein, M., eds, 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016),

volume 54 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany.

Shao, M., and Lin, Y. 2012. Approximating the edit distance for genomes with duplicate genes under DCJ, insertion

and deletion. BMC Bioinformatics 13, S13.

Tannier, E., Zheng, C., and Sankoff, D. 2009. Multichromosomal median and halving problems under different

genomic distances. BMC Bioinformatics 10, 120.

The Cancer Genome Atlas Research Network. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615.

Urban, A.E., Korbel, J.O., Selzer, R., et al. 2006. High-resolution mapping of DNA copy alterations in human

chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl Acad. Sci. U. S. A. 103, 4534–4539.

Address correspondence to:

Ron Zeira

Blavatnik School of Computer Science

Tel-Aviv University

Tel-Aviv 69978

Israel

E-mail: ronzeira@post.tau.ac.il

5. APPENDIX

5.1. Detailed case analysis

In this appendix, we present the details of the case analysis outlined in Section 3.4. We analyze the

behavior of M[i‚ d] as we increase d. We assume, by induction, that fj(d) is a piecewise linear function with

parameters aj‚ bj and basej for j = prev(i). Then, we examine several intervals that together contain all of the

values that can be assigned to d. For each interval, we let d¢opt be an argument d¢ that minimizes M[i‚ d]

under the conditions of the examined case. Finally, we obtain the behavior of fi(d) in each interval, which is

the behavior of the form we desire (i.e., fi(d) is a piecewise linear function defined by three segments).

Denote maxfQi - maxfd‚ d¢g‚ 0g as arg3.

1. Qi � dmin
j (then‚ arg3 = 0):

(a) Ri � 0:

i. d � aj - Ri:

d¢opt = aj : fi(d) = basej.

ii. aj - Ri � d � bj:

d¢opt = d : fi(d) = basej + Ri - aj + d.

iii. bj � d � dmax
j :

d¢opt = d : fi(d) = basej + Ri - aj - bj + 2d.

iv. dmax
j � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

(b) Ri � 0:

i. d � aj + Ri:

d¢opt = aj : fi(d) = basej.

ii. aj + Ri � d � aj + Ri:

d¢opt = d : fi(d) = basej.

iii. aj � d � bj:

d¢opt = d : fi(d) = basej - aj + d.
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iv. bj � d � bj - Ri:

d¢opt = bj : fi(d) = basej - aj + d.

v. bj - Ri � d � dmax
j - Ri:

d¢opt = bj : fi(d) = basej + Ri - aj - bj + 2d.

vi. dmax
j - Ri � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

2. dmin
j � Qi � aj:

(a) Ri � 0:

i. Qi � aj - Ri : arg3 = 0 and the analysis is the same as in Case 1a.

ii. aj - Ri � Qi:

A. d � aj - Ri:

d¢opt = aj : fi(d) = basej.

B. aj - Ri � d � Qi:

d¢opt = aj : fi(d) = basej + Ri - aj + d.

C. Qi � d : arg3 = 0 and the rest of the analysis is the same as in Case 1a.

(b) Ri � 0:

i. Qi � aj + Ri : arg3 = 0 and the analysis is the same as in Case 1b.

ii. aj + Ri � Qi:

A. d � aj + Ri:

d¢opt = aj : fi(d) = basej.

B. aj + Ri � d � Qi:

d¢opt = aj : fi(d) = basej.

C. Qi � d : arg3 = 0 and the rest of the analysis is the same as in Case 1b.

3. aj � Qi � bj:

(a) Ri � 0:

i. d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. aj - Ri � d � Qi - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

iii. Qi - Ri � d � Qi:

d¢opt = d + Ri : fi(d) = basej + Ri - aj + d.

iv. Qi � d � bj:

d¢opt = d : fi(d) = basej + Ri - aj + d.

v. bj � d � dmax
j :

d¢opt = d : fi(d) = basej + Ri - aj - bj + 2d.

vi. dmax
j � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

(b) Ri � 0:

i. d � aj:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. Qi � aj - Ri:

A. aj � d � Qi:

d¢opt = d : fi(d) = basej + Qi - aj.

B. Qi � d � aj - Ri:

d¢opt = d : fi(d) = basej - aj + d.

iii. aj - Ri � Qi:

A. aj � d � aj - Ri:

d¢opt = d : fi(d) = basej + Qi - aj.

B. aj - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi - aj.

iv. Qi � d � bj:

d¢opt = d : fi(d) = basej - aj + d.
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v. bj � d � bj - Ri:

d¢opt = bj : fi(d) = basej - aj + d.

vi. bj - Ri � d � dmax
j - Ri:

d¢opt = bj : fi(d) = basej + Ri - aj - bj + 2d.

vii. dmax
j - Ri � d:

d¢opt = dmax
j : fi(d) = basej + Ri - aj - bj + 2d.

4. bj � Qi � dmax
j :

(a) Ri � 0:

i. d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. Qi - Ri � aj:

A. aj - Ri � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � Qi - Ri:

d¢opt = bj : fi(d) = basej + Qi + Ri - aj - bj + d.

C. Qi - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi + Ri - aj - bj + d.

iii. aj � Qi - Ri � bj:

A. aj - Ri � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � Qi - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi + Ri - aj - bj + d.

C. Qi - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi + Ri - aj - bj + d.

iv. bj � Qi - Ri:

A. aj - Ri � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � Qi - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi + Ri - aj - bj + d.

C. Qi - Ri � d � Qi:

d¢opt = d : fi(d) = basej + Qi + Ri - aj - bj + d.

v. Qi � d:

d¢opt = Qi : fi(d) = basej + Ri - aj - bj + 2d.

(b) Ri � 0:

i. d � aj:

d¢opt = aj : fi(d) = basej + Qi - aj.

ii. Qi � aj - Ri:

A. aj � d � Qi:

d¢opt = aj : fi(d) = basej + Qi - aj.

B. Qi � d � aj - Ri:

d¢opt = aj : fi(d) = basej - aj + d.

C. aj - Ri � d � bj - Ri:

d¢opt = aj : fi(d) = basej - aj + d.

D. bj - Ri � d � Qi - Ri:

d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

iii. aj - Ri � Qi � bj - Ri:

A. aj � d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

B. aj - Ri � d � Qi:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

C. Qi � d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej - aj + d.

D. bj - Ri � d � Qi - Ri: d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.
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iv. bj - Ri � Qi:

A. aj � d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj

B. aj - Ri � d � bj - Ri:

d¢opt = p + Ri : fi(d) = basej + Qi - aj.

C. bj - Ri � d � Qi:

d¢opt = bj : fi(d) = basej + Mi + Qi - aj - bj + d.

D. Qi � d � Qi - Ri:

d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

v. Qi - Ri � d:

d¢opt = bj : fi(d) = basej + Mi - aj - bj + 2d.

5. dmax
j � Qi:

(a) Ri � 0:

i. Qi - Ri � dmax
j : The analysis is the same as in Case 4a for d � dmax

j .

A. dmax
j � d � Qi:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

ii. Qi - Ri � dmax
j :

A. d � bj - Ri:

d¢opt = d + Ri : fi(d) = basej + Qi - aj.

B. bj - Ri � d � dmax
j - Ri:

d¢opt = d + Ri : fi(d) = basej + Mi + Qi - aj - bj + d.

C. dmax
j - Ri � d � dmax

j :

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

D. dmax
j � d � Qi - Ri:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

E. Qi - Ri � d � Qi:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

iii. Qi � d:

d¢opt = dmax
j : fi(d) = basej + Mi - aj - bj + 2d.

(b) Ri � 0:

i. The analysis of the cases obtained by adding the constraints defining Cases 4(b)ii, 4(b)iii, and

4(b)iv is similar.

ii. dmax
j � Qi � dmax

j - Ri:

A. d � aj - Ri:

d¢opt = aj : fi(d) = basej + Qi - aj.

B. aj - Ri � d � bj - Ri:

d¢opt = bj : fi(d) = basej + Qi - aj.

C. bj - Ri � d � dmax
j :

d¢opt = d : fi(d) = basej + Mi + Qi - aj - bj + d.

D. dmax
j � d � Qi:

d¢opt = d + Ri : fi(d) = basej + Mi + Qi - aj - bj + d.

E. Qi � d � dmax
j - Ri:

d¢opt = dmax
j + Ri : fi(d) = basej + Mi - aj - bj + 2d.

F. dmax
j - Ri � d:

d¢opt = dmax
j + Ri : fi(d) = basej + Mi - aj - bj + 2d.

iii. dmax
j - Ri � Qi:

A. For d � dmax
j , the analysis remains the same as in Case 5(b)ii.

B. dmax
j � d � dmax

j - Ri:

d¢opt = d + Ri : fi(d) = basej + Mi + Qi - aj - bj + d.

C. dmax
j - Ri � d � Qi:

d¢opt = dmax
j : fi(d) = basej + Mi + Qi - aj - bj + d.

D. Qi � d:

d¢opt = dmax
j + Ri : fi(d) = basej + Mi - aj - bj + 2d.
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