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Abstract 
Background: During cancer progression genomes undergo point mutations as well as larger 

segmental changes. The latter include, among others, segmental deletions duplications, 

translocations and inversions. The result is a highly complex, patient-specific cancer 

karyotype. Using high-throughput technologies of deep sequencing and microarrays it is 

possible to interrogate a cancer genome  and produce chromosomal copy number profiles 

and a list of breakpoints ("jumps") relative to the normal genome. This information is very 

detailed but local, and does not give the overall picture of the cancer genome. One of the 

basic challenges in cancer genome research is to use such information to infer the cancer 

karyotype. 

We present here an algorithmic approach, based on graph theory and integer linear 

programming, that receives segmental copy number and breakpoint data as input and 

produces a cancer karyotype that is most concordant with them. We used simulations to 

evaluate the utility of our approach, and applied it to real data. 

Results: By using a simulation model, we were able to estimate the correctness and 

robustness of the algorithm in a spectrum of scenarios. Under our base scenario, designed 

according to observations in real data, the algorithm correctly inferred 69% of the karyotypes. 

However, when using less stringent correctness metrics that account for incomplete and noisy 

data, 87% of the reconstructed karyotypes were correct. Furthermore, in scenarios where the 

data were very clean and complete, accuracy rose to 90%-100%. Some examples of analysis 

of real data, and the karyotypes reconstructed by our algorithm, are also presented.  

Conclusion: While reconstruction of complete, perfect karyotype based on short read data is 

very hard, a large portion of the reconstruction will still be correct and can provide useful 

information. 

Keywords: cancer, karyotypes, genome rearrangements, structural and numerical variations, 

deep sequencing, reconstruction, graph theory, integer linear programming.  
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Background 
The current understanding of cancer suggests that it is a disease driven by somatic mutations 

that accumulate in the genome, within a certain tissue, during the lifetime of an individual. 

These mutations vary in size and effect. They can be small, e.g., single nucleotide mutations, 

or large structural variations caused by rearrangements such as deletions, inversions, tandem 

duplications and chromosomal translocations, or duplication and losses of entire 

chromosomes 1. Over time these rearrangements accumulate and result in genomes less and 

less similar to the germline genome. 

Cancer genomes are often described in the form of karyotypes. A karyotype is a high level 

description of the genome as a set of chromosomes and the number of copies of each. Normal 

karyotypes have two copies of each chromosome 1 to 22 and the sex chromosomes. In 

contrast, in cancer karyotypes some chromosomes may contain fragments originating from 

several normal chromosomes. 

Types of aberration events Most segmental changes that happen during the progression 

of the disease can be categorized as deletion, tandem duplication, inversion, translocation, 

and deletion and duplication of entire chromosomes. 

A deletion is characterized by a missing segment of a chromosome, a tandem duplication 

happens when part of the chromosome is duplicated and thus two copies of a segment appear 

where normally there would only be one. An inversion occurs when a segment of a 

chromosome is reversed relative to its original orientation (Figure 0).  

 

 

Figure 0: Basic types of rearrangements. (1) Deletion: segment B of the normal chromosome is deleted. (2) Tandem 
duplication:  segment C duplicates and repeats. (3) Inversion: segment B is inverted. Stars indicate breakpoints. 

A translocation happens when two different chromosomes "switch" end segments. 

Schematically, a translocation on two chromosomes (A,B) and (C,D) produces the 

chromosomes (A,D) and (C,B). A whole chromosomal duplication (deletion) adds (removes) a 

copy of a complete chromosome.  

Breakpoints  The molecular mechanisms that cause somatic genome rearrangements are 

still the focus of investigation. The main paradigm is that a genome rearrangement occurs 

when one or more chromosomes break and a following joining event reassembles the 

fragments in a different order. A breakpoint is defined as a genomic location where the normal 

DNA sequence is interrupted and two non-adjacent sequence segments appear consecutively 

due to a joining event. A breakpoint can be considered as the most basic unit of 

rearrangement. The stars in Figure 0 indicate breakpoints. 

Models of genomic distance  Modeling the somatic evolution of cancer holds great value 

for understanding the disease process. In 1995 Hannenhalli and Pevzner proposed a method 

to calculate the genomic distance between two species based on the minimal number of 
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reversals (or reversals and translocations, in the multi-chromosome case) required to 

transform the genome of one species to another 2,3. 

Braga et al. proposed another distance metric between genomes. They developed a method 

that calculates the distance between two genomes based on Double-Cut and Join (DCJ) 

operations and indels (Insertions and deletions), and utilized it to show evidence for deletion 

clusters in six species of Rickettsia 4. Feijão et al. defined another metric based on Single-cut 

and join (SCJ) operations, and by using it they were able to recover between 60 and 90 percent 

of the topology of a phylogenic tree with 200 different genomes and with as many as 3000 

genes 5,6.  Zeira and Shamir defined a generalized model, called SCJD, allowing the operations 

of cut, join and whole chromosome duplication. They developed a linear time algorithm for 

computing the shortest sequence of operations transforming one linear genome with one 

copy per gene into another with two copies per gene 7. 

Ozery-Flato and Shamir introduced the elementary distance between two karyotypes, defined 

as the least number of elementary operations – breakage, fusion, duplication and deletion – 

transforming one into the other. They suggested a polynomial time 3-approximation 

algorithm to find the shortest elementary distance between two karyotypes. Applying the 

algorithm on some 58,000 karyotypes taken from the Mitelman database 8, 99.9% of the 

resulting solutions matched the lower (optimal) bound 9. 

Detecting chromosomal aberrations 
Paired end reads  One of the main ways for inferring breakpoints in the genome, detecting 

structural variants and identifying rearrangements is using paired end reads produced by deep 

sequencing 10–13. Paired end reads are generated by fragmenting the genomic DNA into short 

segments, followed by sequencing both ends of (some of) the segments (Figure 1). Typical 

lengths are ~350 bp per fragment (also called insert) and ~100 bp per read (end). The 

unsequenced segment of the insert is called the gap (length ~150 bp in the example above). 

The two ends of each read are then aligned back to a reference normal genome (in the case 

of cancer – the genome of a healthy cell from the same patient). The approximate length of 

the insert and the relative orientation of its ends is known in advance. We expect the two ends 

of a fragment to be aligned to the reference genome at roughly that distance and with the 

correct relative orientation. An alignment is called a concordant if it meets those conditions, 

and discordant otherwise.  

Discordant reads suggest a breakpoint in the genome. A read taken from that spot will have 

its two ends aligned to locations on the reference genome where those positions originally 

lie. The type of discordance suggests the rearrangement event that occurred (See 14). 

 

Figure 1: The paired ends read alignment signature of a deletion rearrangements. The grey area on the reference 
genome between points A and B was deleted in the sample genome. Any read whose gap falls between A and B on 
the sample genome will have its ends aligned to locations that are far apart on the same chromosome, indicating 
a deletion. Other rearrangements leave unique signatures in a similar manner. 
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Detecting structural variations  A first step in analysis of paired end reads is their mapping 

to the reference genome. A variety of computational approaches were developed for inferring 

the structural variations from the discordant reads and produce a set of rearrangement events 
15–20. Other methods such as PREGO 21 take into account the concordant reads as well. 

BreaKmer 14 uses the misaligned reads together with the aligned concordant and discordant 

reads to predict rearrangements using k-mer statistics. CouGaR 22 is a method for identifying 

large-scale complex genomic rearrangements using both depth of coverage and discordant 

paired-ends mapping. SV-Bay 23 applies a Bayesian approach to data of mapped paired-ends 

reads to infer breakpoint locations and copy number variations and predict structural 

variations in a cancer genome. Recently, a new algorithm, Weaver 24, was proposed to 

estimate both the allelic copy number and inter-connectivity of SV’s using a probabilistic graph 

model. Expanding on Weaver, Rajaraman et al. 25 used a graph model and an ILP formulation 

to further predict SV phasing and the interconnectivity of unphased SV’s with high specificity. 

Other algorithmic approaches infer rearrangements that are less simple and have more 

complex signatures 14,26,27.  

Some methods seek to achieve higher accuracy by aggregating results from several different 

tools. MetaSV 28 offers an improvement of accuracy and precision in detecting different kinds 

of structural variants. By effectively merging the results from multiple tools, they were able 

to reach F1-scores (harmonic mean of sensitivity and precision) of 96.2% for deletions and 

84.7% for insertions. SomaticSeq 29 detects single nucleotide variants (SNVs) and small 

insertions and deletions (indels), using machine learning algorithms to incorporate the results 

from five somatic mutation callers. The authors report an F1 score of 90%.  

Copy number variations 
Duplications and deletions change the copy number (CN) of different segments of the DNA 

sequence, i.e. the number of times a segment is present in the karyotype. A normal (human) 

cell line has 22 diploid chromosomes (ignoring the sex chromosomes XX or XY) and so the CN 

of the entire karyotype is 2. A gain or a loss of an entire chromosome will decrease or increase 

the CN of that chromosome, respectively. A fraction of a chromosome can also be deleted or 

duplicated. The resulting segment or chromosome is said to have undergone a copy number 

variation (CNV). 

Large CNVs can be detected by traditional methods like Fluorescence in-situ Hybridization 

(FISH) 30. Higher resolution detection of CNVs can be achieved by Array Comparative Genomic 

Hybridization (aCGH) 31. With the advent of next-generation sequencing (NGS), several 

methods have been developed to infer CNV's using DNA sequences 21,32,33. NGS based methods 

have the potential to greatly increase the resolution of CNV analysis, but they present many 

computational challenges and different methods may still vary widely in the results they 

produce on the same DNA sequence 34. 

Graph models for rearrangements 
Graph theory has been highly instrumental in the area of genomic rearrangements. For 

example, de Bruijn graphs are used for genome assembly problems 35, and breakpoint graphs 

are used in reconstructing rearranged genomes across species 2,36. More recently, similar 

methods were adapted for cancer genomes 9,37. The breakpoint graph, introduced by Pevzner 

and Bafna in 1993 to represent the relation between two permutations of the same set of 

elements 38, remains today one of the key models in the study of genomic rearrangements. 
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Greenman et al. expanded on the breakpoint graph and introduced a construction that is 

essentially equivalent called the allelic graph and its counterpart the somatic graph 39. 

Oesper et al. proposed a construction that expands on the breakpoint graph, called interval 

adjacency graph 21. The interval adjacency graph is constructed directly from CN and 

breakpoint data. The discordant reads are used to infer breakpoint locations on the DNA 

sequence and partition it to intervals accordingly. A full description of the graph appears in 

Section 0. 

Using the interval adjacency graph it is possible to infer rearranged sequences that agree with 

the data. Oesper et al. showed that an Eulerian path on the graph alternating between interval 

edges and reference / variant edges corresponds to a rearranged sequence of the 

chromosome. They developed an algorithm called PREGO to determine the most likely 

sequence of a rearranged karyotype. Using simulations they showed their algorithm can 

deduce the correct multiplicity of more than 80% of the variant edges, even with high noise 

and when the sample is heterogeneous. Furthermore, they applied PREGO to five ovarian 

cancer genomes and were able to identify numerous rearrangements and structural variants, 

some of which were consistent with known mechanisms. PREGO combines CN and adjacency 

information from paired end reads to infer multiplicity of different segments in the cancer 

genome. However except in simple cases, the underlying karyotype cannot be uniquely 

resolved, as many reconstructions will be consistent with the data. 

Methods 
We propose here a novel method that receives as input discordant paired-end reads and 

genomic CNs obtained from sequencing a cancer genome, and reconstructs a karyotype that 

is in most agreement with the input. The outline of our approach is as follows. We use the two 

data types together to construct a bridge graph, akin to the adjacency graph proposed by 

Oesper et al. 21. An integer linear programming (ILP) optimization problem is formulated and 

then solved on the graph. The solution is a valid karyotype of the rearranged genome that is 

most concordant with the observed data. We also present the solution graphically. 

The adjacency and bridge graphs 
In our problem setup there is a normal (or reference) genome, whose contents is known, and 

an unknown target genome that should be reconstructed. A breakpoint is a point along the 

reference genome involved in a structural change event in the target genome.  

Let 𝐶 be the set of chromosomes in the reference karyotype. The breakpoints partition each 

chromosome 𝑐 ∈ 𝐶 into a set of 𝑘𝑐 intervals 𝐼𝑐 = {𝐼1
𝑐 , 𝐼2

𝑐 … 𝐼𝑘𝑐
𝑐 }, such that each 𝐼𝑘𝑐

𝑐  is an interval 

between consecutive breakpoints, or between a breakpoint and a chromosome end. The 

intervals are numbered in increasing order along 𝑐, so that 𝑐 is equal to the concatenation of 

the intervals 𝐼1
𝑐 , 𝐼2

𝑐 … 𝐼𝑘𝑐
𝑐  . We call the start and end points of interval 𝐼 the tail and head of  𝐼 

and denote them by 𝑡𝐼 and ℎ𝐼 respectively. Hence, 𝐼 = [𝑡𝐼 , ℎ𝐼], and −𝐼 = [ℎ𝐼 , 𝑡𝐼] is the 

interval 𝐼 reversed. An extremity is a tail or a head of an interval. The set of all intervals ℐ =

∪𝑐∈𝐶 𝐼𝑗
𝑐  constitutes the set of the basic building blocks of the reference and target genomes. 

The length of interval 𝐼𝑗 (in bases) is denoted by 𝑙𝑗, and 𝐿 = ∑𝑙𝑖 is the total length of all 

intervals.  

The target genome can be represented by a set of chromosomes, where each chromosome is 

a sequence of intervals, some possibly reversed (Figure 3). A bridge is a pair of extremities 
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that are not adjacent on the reference genome but are adjacent in the target genome. Bridges 

can be detected based on the paired-end read data of the target genome (Figure). The support 

level of bridge 𝑏𝑖 is the number of paired-end reads that support it, denoted 𝜇𝑖. The total 

support score for all bridges is denoted 𝜇 = ∑ 𝜇𝑖𝑏𝑖
. 

 

Figure 3: Reference and target genomes. A: reference (germline) chromosome segmented into intervals separated 
by breakpoints. B: The rearranged chromosome represented by the series of intervals 1,4,-4,-3,2,-1. Genome B 
contains the bridges {ℎ1, 𝑡4}, {ℎ4, ℎ4}, {𝑡3, 𝑡2}  and {ℎ2, ℎ1}. Note that {𝑡4, ℎ3} is not a bridge. 

Each interval 𝐼𝑖 ∈ 𝐼 has a CN 𝑁𝑖 ≥ 0 indicating the number of times it appears in the target 

genome. The set of CNs of all intervals is called the copy number profile of the target. That 

profile can be derived from deep sequencing data or from array CGH data. In perfect data, 

𝑁𝑖  is exactly the number of copies of the interval in the target genome. In practice, the CNs 

are real valued estimates based on mean coverage of each interval. 

Let us first reiterate the definition of the interval adjacency graph, introduced in 21. The input 

is (1) the reference genome represented as a sequence of intervals for each chromosome. 

These intervals form the set ℐ = {𝐼1, … , 𝐼𝑛}; interval 𝐼𝑗 has length 𝑙𝑗. (2) The CN profile of the 

intervals: Interval 𝐼𝑗 has CN 𝑁𝑗. (3) The set of bridges {𝑎𝑖, 𝑏𝑖}𝑖=1
𝑚  and the support 𝜇𝑖  for each 

bridge. Each 𝑎𝑖  and 𝑏𝑖 is an extremity of an interval in ℐ. We define a weighted undirected 

graph 𝐺(𝑉, 𝐸, 𝑤) whose vertices are the interval extremities. For each interval 𝐼𝑖 = [𝑡𝑖, ℎ𝑖], 

the graph contains an interval edge 𝑒𝐼(𝑡𝑖, ℎ𝑖) ∈ 𝐸𝐼 connecting its two extremities, of 

weight 𝑁𝑖. For each two intervals 𝐼𝑖, 𝐼𝑖+1 that are adjacent on the reference genome, a 

reference edge 𝑒𝑅(ℎ𝑖, 𝑡𝑖+1) ∈ 𝐸𝑅 connects the head of 𝐼𝑖 to the tail of 𝐼𝑖+1. Reference edges 

are unweighted. Each bridge is represented by a bridge (or variant) edge 𝑒𝑉(𝑎𝑖, 𝑏𝑗) ∈ 𝐸𝑉 

connecting the two extremities 𝑎𝑖  and 𝑏𝑗, with weight 𝜇𝑖. In total, the edge set of the graph 

is 𝐸 = 𝐸𝐼 ∪ 𝐸𝑅 ∪ 𝐸𝑉. We denote by 𝑆 ⊆ 𝑉 the set of vertices that represent telomere nodes, 

i.e. the nodes representing start and end points of each reference chromosome, hence 𝑆 =

∪𝑐∈𝐶 {𝑡1
𝑐 , ℎ𝑘𝑐

𝑐 } includes the heads of all starting intervals and the tails of all ending intervals in 

each chromosome's partition.  

A bridge graph is an interval adjacency graph with two minor changes: (1) bridge edges are 

assigned weights. The weight 𝑤(𝑒) of the bridge 𝑒(𝑢, 𝑣) is its support score, namely the 

number of paired end reads supporting that bridge. Hence, in a bridge graph both bridge and 

interval edges have weights. (2) We transform each undirected edge 𝑒(𝑢, 𝑣) in the interval 

adjacency graph into two directed edges 𝑒→: 𝑢 → 𝑣, 𝑒←: 𝑣 → 𝑢. The original undirected edge 

is referred to as a connection to distinguish it from the directed edges, and 𝐸 = 𝐸→ ∪ 𝐸← is 

the set of edges in the graph. An example of a bridge graph is given in Figure 4.  
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Figure 4: Bridge graph. The normal karyotype is the single chromosome (1,2,3,4,5). A: The measured CN and bridge 
data with the observed support score for each bridge. B: The corresponding bridge graph with weights for interval 
and bridge edges. All connections are composed of two antiparallel directed edges. 

Reconstructing the rearranged karyotype 
Given the bridge graph 𝐺(𝑉, 𝐸, 𝑤), we wish to find paths in 𝐺 that correspond to rearranged 

chromosomes. Suppose first that the input data are complete and errorless. Recall that 𝑆 ⊆ 𝑉 

is the set of vertices that represent telomere nodes, i.e. the nodes representing the start and 

end points of each chromosome. A valid path 𝑝 is a path through 𝐺 beginning and ending at 

𝑠1, 𝑠2 ∈ 𝑆 that alternately traverses interval and non-interval (i.e. reference/bridge) edges, 

and where the number of times each interval connection 𝑒𝑖 is traversed (in either direction), 

denoted 𝑓𝑝(𝑒𝑖) , is less than or equal to the CN of interval 𝑖, 𝑁𝑖.  

The requirement for an alternating path is because a traversal of an interval edge corresponds 

to traversing a segment from the reference genome, while a traversal of a reference/bridge 

edge is equivalent to a transition between segments. Therefore, such an alternating path 

represents a sequence of segments from the reference genome. Note that 𝑓𝑝(𝑒𝑖) = 𝑓𝑝(𝑒𝑖→) +

𝑓𝑝(𝑒𝑖←) for every connection 𝑒. A set of such paths 𝑃 = {𝑝1, 𝑝2 … 𝑝𝑛} where for each interval 

connection 𝑒𝑖, ∑ 𝑓𝑝(𝑒𝑖)𝑝∈𝑃 = 𝑁𝑖 corresponds to a set of rearranged chromosomes, or a valid 

karyotype. 

The restriction that the path alternates between interval and non-interval edges means that 

at each non-telomeric node 𝑣 ∉ 𝑆, every traversal on an interval edge going into 𝑣 must be 

followed by a traversal on a reference\bridge edge going out of 𝑣, and vice-versa. Telomeric 

nodes are excluded from this constraint as by definition they are the start or end of a path.  

As detailed above, each connection between nodes 𝑢, 𝑣 is composed of two antiparallel 

directed edges. For each node 𝑣 ∈ 𝑉 we denote 𝐸𝐼←
(𝑣), 𝐸𝐼→(𝑣), 𝐸𝑅←(𝑣), 

𝐸𝑅→(𝑣), 𝐸𝐵←(𝑣), 𝐸𝐵→(𝑣) as the set of interval, reference and bridge edges that go in and out 

of 𝑣 respectively. As above, we denote by 𝑓𝑝(𝑒) the number of times a connection 𝑒 is 

traversed in path 𝑝 and 𝑓𝑃(𝑒) = ∑ 𝑓𝑝(𝑒)𝑝∈𝑃  is the total number of times a connection 𝑒 is 

traversed in 𝑃. Additionally, for a set of connections 𝐸, 𝑓𝑃(𝐸) = ∑ 𝑓𝑃(𝑒)𝑒∈𝐸  is the total 
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number of times all connections in 𝐸 are traversed in 𝑃. The constraints for a valid set of 

paths 𝑃, representing a rearranged karyotype, can be therefore formulated as:  

(1) 𝑓𝑃 (𝐸𝐼→
(𝑣)) =  𝑓𝑃 (𝐸𝑅←

(𝑣)) + 𝑓𝑃 (𝐸𝑉←
(𝑣)) 

∀𝑣∉𝑆 

(2) 𝑓𝑃 (𝐸𝐼←
(𝑣)) =  𝑓𝑃 (𝐸𝑅→

(𝑣)) + 𝑓𝑃 (𝐸𝑉→
(𝑣)) 

∀𝑣∉𝑆 

(3) 𝑓𝑃(𝑒) ∈ ℕ0 

∀𝑒∈𝐸 

Scoring candidate solutions  Recall that the interval and bridge edges have weights, 

representing the measured CN of the intervals and the support score for the bridges, 

respectively. These values are in practice noisy. Given a bridge graph 𝐺(𝑉, 𝐸, 𝑤) and a valid 

set of paths 𝑃 representing a rearranged karyotype, we define a discordance score of 𝑃, 

denoted  𝑑𝐺(𝑃), which measures how much 𝑃 is in agreement with the data in 𝐺, as follows: 

 

𝑑𝐺(𝑃) = ∑
𝑙𝑒

𝐿
|𝑓𝑃(𝑒) − 𝑤(𝑒)|

𝑒∈𝐸𝐼

+ 𝛼 ∑
𝑤(𝑒)

𝜇
𝑒∈𝐸𝑉
𝑒∉𝑃

 

The first sum measures the disagreement of 𝑃 with the CN profile. It is the sum over all interval 

edges 𝑒 ∈ 𝐸𝐼 of the absolute difference between 𝑓𝑃(𝑒) and the input weight 𝑤(𝑒), normalized 

by 𝑙𝑒. We normalize the weights of the intervals by their lengths since longer genomic intervals 

are expected to have more accurate CN values, and hence should be penalized more for 

disagreement. Dividing by 𝐿 guarantees that the range of the first sum is [0,1] if the absolute 

difference values are ≤ 1.  

The second sum the disagreement of 𝑃 with the bridge data. The more bridges 𝑃 is utilizing, 

the more concordant it is with the bridge data. To reflect this, a penalty is given for each bridge 

edge 𝑒 ∈ 𝐸𝑉 that is not used in 𝑃. The bigger the support score for a bridge is, the bigger the 

penalty if it is not used, and so the penalties are normalized by 𝑤(𝑒). Dividing by 𝜇 =

∑ 𝑤(𝑒)𝑒∈𝐸𝑉
 guarantees that the range of the second sum is [0,1]. To avoid summing over 𝑒 ∉

𝑃, we can rewrite the second term as α ∑
w(e)

μe∈EV
(1 − min(1, fP(e))). 

The parameter 𝛼 determines the relative weight the algorithm gives to paired-end reads data, 

i.e. how much it tries to utilize bridge edges in the solution. Using the algorithm on real tumor 

data, we set 𝛼 = 0.5. 

The ILP formulation  We wish to find a rearranged karyotype that is most consistent with 

the data, i.e., it corresponds to a valid set of paths and has smallest possible discordance score. 

This problem can be formulated as an ILP on the bridge graph 𝐺(𝑉, 𝐸, 𝑤), as we now show. 

For each connection 𝑒𝑖 ∈ 𝐸 we define two variables 𝑥𝑖→, 𝑥𝑖←. The variables represent the 

number of times each edge is traversed in a path, and so 𝑓𝑃(𝑒𝑖) = 𝑥𝑖→ + 𝑥𝑖← . Each variable 

is noted 𝑥𝐼 , 𝑥𝐵 or 𝑥𝑅 for interval, bridge or reference edges respectively. Using these variables 

we can formulate the problem as follows.  

Minimize: 
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𝑑𝐺(𝑓𝑃) = ∑
𝑙𝑒

𝐿
|𝑥𝑒→

𝐼 + 𝑥𝑒←
𝐼 − 𝑤(𝑒)|

𝑒∈𝐸𝐼

+ 𝛼 ∑
𝑤(𝑒)

𝜇
𝑒∈𝐸𝑉

(1 − 𝑚𝑖𝑛(1, 𝑥𝑒→
𝐵 + 𝑥←

𝐵)) 

Subject to: 

(1) ∀𝑖𝑥𝑖 ∈ ℕ0 

 

(2) ∀𝑣∉𝑆  ∑ 𝑥𝑖→
𝐼

𝑒𝑖∈𝐸𝐼→
(𝑣) = ∑ 𝑥𝑖←

𝑅
𝑒𝑖∈𝐸𝑅←

(𝑣) + ∑ 𝑥𝑖←
𝐵

𝑒𝑖∈𝐸𝑉←(𝑣)  

 

(3) ∀𝑣∉𝑆 ∑ 𝑥𝑖←
𝐼

𝑒𝑖∈𝐸𝐼←
(𝑣) = ∑ 𝑥𝑖→

𝑅
𝑒𝑖∈𝐸𝑅→

(𝑣) + ∑ 𝑥𝑖→
𝐵

𝑒𝑖∈𝐸𝑉→(𝑣)  

Constraint set (1) guarantees an integral non-negative solution. Constraints (2) and (3) are the 

valid path constraints. Note that telomeric nodes in 𝑆 are not constrained. 

Tools 
The core of the algorithm was implemented in java using the ILP solver package CPLEX, 

distributed by IBM 40 and was run on UNIX. The simulations module and the rest of the 

algorithm was implemented in python version 2.7 on Windows. The code is available in 

https://github.com/Shamir-Lab/Karyotype-reconstruction. A typical run of a single karyotype 

on a standard PC takes around 1 second.  

Results and discussion 

Simulations 
To assess the performance of our algorithm, we simulated tumor karyotypes and applied the 

algorithm to them. To evaluate the quality of each reconstructed karyotype, it was compared 

to the correct karyotype, and summary statistics were computed. An overview of the 

simulation algorithm is as follows: 

1. Start with a normal diploid karyotype 𝐻 with 𝐶 chromosomes 

2. Perform 𝐾 operations resulting in karyotype 𝑇′ 

3. Compute the exact (noiseless) CN profile and the bridges in 𝑇′ 

4. Add noise to the CN data and generate support values for the bridges 

We start with a normal diploid karyotype 𝐻 with a prescribed number of chromosomes. For 

simplicity, each chromosome is represented by a sequence of 300 atomic segments, which 

are its basic units. We perform a series of operations on the karyotype by applying deletions, 

inversions, tandem duplications and translocations. The types and the positions of the 

rearrangements are drawn uniformly at random. The span of operations that affect a single 

chromosomes (deletions, duplications and inversions) was limited to 30 atomic segments. This 

limit was set in order to avoid rapid erasure of large chromosomal segments by deletions. The 

total number of operations applied varies and determines the complexity of the resulting 

tumor karyotype 𝑇. 

By comparing 𝐻 and 𝑇, breakpoints are detected and each normal chromosome is partitioned 

into segments. Each segment has a CN (the number of occurrences of that segment in 𝑇). Each 

two consecutive segments in 𝑇 that are not consecutive (and/or not in the same relative 
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orientation) in 𝐻 constitute a bridge. The clean (noiseless) data can thus be summarized as an 

integer-valued CN profile and the set of all bridges formed. 

To simulate noisy scenarios, the CN profile and the bridge information is modified as follows. 

Normally distributed noise 𝑥 is added to the CN of each segment independently, 

where 𝑥~𝑁(0, 𝜖). The support for each bridge (corresponding to the number of discordant 

reads supporting it) is drawn independently from an exponential distribution 𝐸𝑥𝑝(𝜆) (The 

exponential distribution was chosen based on empirical data with 𝜆 = 0.1866. See below). To 

simulate the possibility of bridges being completely missed, each bridge has probability 𝑝 to 

completely be omitted from the final set of bridges.  

In summary, the simulation program receives the following parameters (the default values 

appear in parentheses): 

 𝐶 -   The number of chromosomes (default: 5). 

 𝑁 -  The number of structural and numerical operations applied (default: 5). 

 𝜖 -   The standard deviation of the noise in the CN profile data (default: 0.28) 

 𝑝 – The probability to completely miss a bridge (default: 0.05). 

In the base scenario, all parameters were at their default values. These parameters 

correspond to those computed on a tumor sample of medium complexity and a realistic level 

of noise (see Real tumor analysis below). Other scenarios were explored by changing the value 

of one of the parameters above while keeping the rest at their default levels. 

Solution quality measures  We used five different measures for the level of correctness of 

a solution. Let 𝑇 be the simulated (true) karyotype, let 𝑇∗ be the simulated noisy karyotype, 

and let 𝑆 be the karyotype produced by the algorithm: 

1. Is 𝑆 equivalent to 𝑇? We say that 𝑆 is equivalent to 𝑇 if they have the same CN profile 

and both use the same bridges. Most equivalent karyotypes only differ in 

chromosomal orientation, and thus represent the same solution. We call such a 

solution correct. 

2. Do 𝑆 and 𝑇 have the same CN profile? The CN of an interval is determined by many 

reads (or probes) and so is expected to be more robust than bridge information, 

determined by a few paired end reads. This criterion tests if 𝑆 and 𝑇 match in their CN 

profile. We call this criterion Equal Copy Number (ECN). 

3. Does 𝑆 have an equal or better score than 𝑇? When noise level is high, 𝑇 and 𝑇∗ may 

differ substantially, and a solution closer to 𝑇∗ than to 𝑇 does not indicate a failure of 

the algorithm but rather that the noise level is too high. Here the score is the ILP 

objective function value. We call this criterion Equal or Better Score (EBS). 

4. Is 𝑆 equivalent to 𝑇 excluding missing bridges?  𝑇∗ may not include all the bridges 

found in 𝑇, and in that case 𝑆 can never be equivalent to 𝑇. However, we consider 𝑆 

to be correct for all observed bridges if it has the correct CN profile for all segments 

that are unaffected by a missed bridge, and is using all the bridges from 𝑇 that are 

included in 𝑇∗(Figure S2). We call this metric Equivalent for Observed Bridges (EOB). 

5. What fraction of the intervals has the correct CN? This score is the percentage of 

intervals, weighted by length, that have the same CN in 𝑆 and 𝑇. Unlike criteria 1-4, 

which are binary, this criterion measures the extent of correctness of a solution, and 

thus is more sensitive and accounts also for partially-correct solutions. We call it the 

CN score.   
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Base scenario  10,000 karyotypes were generated for the base scenario, and the algorithm 

was applied with bridge support weight 𝛼 = 0.1. The performance is summarized in Figure . 

To assess the distribution of each success rate criterion, the karyotypes were divided into 100 

batches of 100 karyotypes each. Mean scores were captured for each batch and the variation 

of the mean was computed.  

The algorithm correctly identified between 55% and 73% of the karyotypes in each batch, with 

an average of 62%. For an additional 13% of the cases, the solution had an equal CN profile as 

the correct solution, reaching a total of 75%. An average of 82% of all karyotypes resulted a 

solution with a score equal or better than the correct one. When disregarding missing bridges, 

the algorithm correctly identified an average 84% of karyotypes. The mean CN score of all the 

10,000 simulations was 0.97 with a small standard deviation of 0.009. 

 

Figure 5: Distribution of the success rate over 100 independant simulations of the base scenario. Error bars are ± 
the standard deviation. 

 

The effect of separate parameters The effect of separate parameters was tested by 

simulations in which one parameter was altered, while keeping the other parameters at their 

value in the base scenario. 100 simulated karyotypes were generated for each value and the 

percentage of solutions falling into the categories of correct, ECN, EBS and EOB was evaluated. 

Bridge support weight We first tested the effect of 𝛼, the relative weight assigned the 

bridges, on the performance, for 0 ≤ 𝛼 ≤ 2. There is a noticeable improvement when 𝛼 > 0, 

and little effect for the range of 0 < 𝛼 ≤ 0.1. For larger values of 𝛼 there is a small but 

noticeable negative effect. (Table S1). 

Noise in copy number measurements  We tested the algorithm for different levels of CN 

noise  𝜖 under the base scenario. The results are shown in Figure 6. As expected, a higher level 

of noise makes it harder for the algorithm to find the correct solution. For 𝜖 ≤ 0.3 the 

performance of the algorithm is quite good, and for 𝜖 ≥ 0.4 the results begin to deteriorate. 

As expected, at high noise levels the majority of the solutions have better score than the true 

one.  
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Figure 6: Performance of the algorithm as a function of noise level. For the CN score, the bars represent ±0.5 std. 
Data points for the default value of 𝜖 = 0.28 are marked with a triangle. 

The number of operations We tested the algorithm on karyotypes that underwent 1 ≤

𝑁 ≤ 30 structural and numerical operations, under the base scenario. The results are shown 

in Figure 0. As expected, more operations make the problem harder and the success rates 

decrease. For example, the fraction of perfectly solved cases drops from 88% with one 

operation to less than 10% with 30 operations. The CN score drops more slowly, as CN of long 

fragments can still be reasonably inferred even if their order is incorrect.  

 

Figure 0: The effect of the number of operations. Success rates and CN scores. Error bars represent ±0.5 std. 

Other parameters When testing the effect of other parameters, the results met our 

expectations – karyotypes with less chromosomes (Figure S3) or a single copy of each 

chromosome instead of diploid (Figure S4) yielded better results. Results were also better 

when the probability of missing a bridge was lower (Figure S5). 

We also looked at cancer heterogeneity situations. Different cells of the same tumor can have 

different karyotypes, having taken different evolutionary paths 41–45. Most cancer data today 

is still based on DNA from numerous cells, providing measurements from a mixture of 
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genomes. Can the karyotype be reconstructed out of the heterogeneous mixture? When 

simulating data mixture of normal and a cancer karyotype results only dropped mildly with 

the relative abundance of normal data (Figure S8). However, when mixing two distinct cancer 

karyotypes, performance dropped rapidly with the heterogeneity (Figure S6).  

Finally, we simulated karyotypes by selecting operations with frequencies as reported in 46 

rounded to multiples of 10%. There was little difference in the success rates between the 

uniform distribution and the uneven one (Figure S7). 

Real tumor analysis 
We applied the algorithm on data extracted from real samples. Malhotra et al. 46 examined 

whole genome sequencing data of 64 different tumor samples, and reported for each sample 

a CN profile and a set of bridges with their support. We first filtered from the data very small 

segments and the corresponding breakpoints (see Supplement). Often the set of normal 

chromosomes that are involved in rearrangements and CN changes in a tumor can be 

partitioned into independent groups of chromosomes (i.e., no two segments in different 

groups are connected by a bridge). In our graph representation, each such group is a 

connected component, which can be analyzed separately by the algorithm. The 64 tumor 

samples in 46 constituted together 570 such components, and each was analyzed separately. 

Noise estimation  We first wanted to assess the noise level in the actual data affecting the 

reported CN values. Since CN in noiseless data should be integer, we estimated the noise 𝑑𝑖  

for the reported CN 𝑐𝑖 as 𝑐𝑖 − [𝑐𝑖], where [𝑥] is the nearest integer value to 𝑥.  The CN data 

include 22,321 CN segments. A scatter plot of the standard deviation of the noise level vs. the 

number of bridges in each component can be seen in Figure 8. As expected, the mean noise 

level across the data was 0, showing that the noise is unbiased towards neither negative nor 

positive values. The standard deviation was 0.28, a value that we used as our default 

simulation scenario. Note that this estimate is a lower bound, since some measured CN values 

may actually differ from the real ones by more than 0.5. 

In addition to CNs, the data include bridges and for each bridge an integer value, its support. 

The expected average support can be derived from the read depth and the insert size (see 

Supplement) and was found to be 10.7. The observed mean support score across all the data 

was 10.8. Figure 9 shows the distribution of the support scores across the data. The 

distribution closely resembles an exponential distribution with λ = 0.1866.  For that reason, 

that was the value used in our simulation model (see supplement for more details). 
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Figure 8: Estimated noise level in real cancer samples. The plot shows for each of the 670 components in the 
tumor samples in 46, the number of bridges and an estimate of the noise level calculated as standard deviation of 
the distances of the CN in the sample from the closest integer value. 

 

Figure 9: The distribution of the support score across the data plotted against an exponential distribution 
with 𝜆 = 0.1866. In both distributions values below 3 are ignored.  

The GBM10 sample. We analyzed in detail three components of bridge graphs obtained 

from real data. Table S2 shows information about them. Each has undergone 7-8 

rearrangements, involving 1-4 chromosomes. For each component, the ILP algorithm outputs 

a directed weighted graph with a weight function that minimizes the distance and that can be 

Number of bridges in cluster 

Distribution of support scores 
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broken into a set of paths 𝑃 = {𝑝1, … 𝑝𝑛}, starting and ending at a telomere nodes, and 

alternating interval and non-interval edges. Another script translates the solution of the ILP 

solver to a dot language representation 47 that can then be visualized using a graph 

visualization tool such as GraphViz 48. 

Figure 10A shows the graph corresponding to the component of chromosomes 4 and X in 

tumor sample GBM 10 (Glioblastoma multiforme). The resulting karyotype produced by our 

algorithm for this example is shown in Figure 10B. This graph can be broken into four different 

paths, representing both copies of the rearranged chromosomes 4 and X (Figure 10C). 

 

Figure 10: Results on sample GBM 10. The chromosomes were divided into segments according to the breakpoints 
inferred from the paired ends reads data and were named a-l. Segment sizes are not shown to scale. We mark 
interval, reference and bridge edges by black, dotted and red arcs respectively. The number next to a red edge 
(bridge) is the number of observed supporting reads for that bridge. In all subfigures the same intervals (here: a 
through l for Chr. 4 and a, b for Chr. X) are aligned. The numbers in the second line are observed coverage values. 
(A) Bridge graph for chromosomes X and 4. The bridge bteween segments k and l is a result of breakpoint filtering 
(see Supplement). (B) Solution suggested by our algorithm. For this sample the average distance of the resulting 
karyotype from the data, weighted by segment length, is 0.28. Note that segments a, c, d, and h have edges in both 
directions suggesting the solution includes traversal of these segments in both directions. (C) The different paths 
comprising the solution, representing the rearranged karyotype of chromosomes 4 and X.  

The other two examples are described in the Supplement. 

Conclusions 
In this work, the problem of inferring a tumor karyotypes from short paired end read data was 

investigated. A novel algorithm based on graph theory and ILP was introduced to solve the 

problem, and simulations were performed in order to evaluate the utility of such an approach. 

Some examples of analysis of real data were also presented. 
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To accurately estimate the correctness and robustness of the algorithm, validation against a 

data set of verified karyotypes is needed. However, a comprehensive set of sequenced tumor 

samples with CN profiles and paired-end reads data, matched with the corresponding true 

karyotypes, is currently not available. Data sets that currently exist either do not include a 

fully reconstructed karyotype, or include karyotypes of a very low resolution 8. We therefore 

used simulations to test and measure the success of our algorithm in a spectrum of scenarios, 

as well as to point out potential pitfalls. 

The analysis of simulated data suggests that the most meaningful factors affecting the 

accuracy of solutions produced by our method are the noise and completeness levels of the 

data. We tested the algorithm in a scenario, designed to mimic parameter values observed in 

real data. Under these conditions, the algorithm correctly inferred 69% of the karyotypes. 

However, the success rate increased to 79% when considering solutions that are correct 

relative to the noisy input, and when accounting for unreported bridges, 87% of the tested 

cases were correct (Figure 5). 

Furthermore, in scenarios where there is almost no noise, or when no bridges are unreported, 

the results are much better: accuracy was 90% and 100%, respectively (Figure 6, Figure S5). 

This strongly suggests that our method is limited mostly by the completeness and accuracy of 

the measured data. It suggests that more accurate sequencing technologies are needed in 

order to increase the chance to solve the karyotype reconstruction problem correctly. 

Our method was relatively robust when applied on data taken from tumor cells contaminated 

by healthy tissue (Figure S8). A sample that includes reads taken from a mixture of different 

tumor cells poses a bigger challenge, and the resulting karyotype is incorrect more often than 

it is correct (Figure S6). 

Depending on one's perspective, the results can be viewed as good or bad news. On the one 

hand, full, perfect reconstruction is not attained in over 30% of the cases. On the other hand, 

even in those imperfect cases, most of the reconstruction details are correct, as quantified by 

the other, less stringent, measurement criteria (Figure 5). Biological research has a great 

tradition of building up from incomplete data, the most obvious example being the human 

genome whose yet-incomplete versions have kept evolving for the past fifteen years. It may 

be the case that the imperfect reconstruction of cancer karyotypes can still produce valuable 

conclusions and findings.  

Limitations  Using simulations allows us to gain better understanding of the capabilities and 

limitations of our algorithm, but it requires us to make assumptions about the mechanisms 

driving genomic rearrangements in tumor cells and about the statistical properties of the read 

data. Both types of assumptions limit the generality of conclusions we can draw. 

Firstly, our model defines a limited set of possible rearrangements (deletion, duplication, 

inversion and chromosomal translocation) and assumes that they occur with equal 

probabilities. Furthermore, our simulation of rearrangement events (except translocations) 

limits the genomic range they can span (see section 0) and assumes that events are equally 

likely to occur in any position on the genome. While these assumptions are very far from the 

real process of mutating cancer cells, they do provide a mechanism that can generate any 

rearranged karyotype. Our method proved robust when adjusting the frequency of each type 

of rearrangement to that observed in the data obtained from 46 (Figure S7), but other possible 
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rearrangement mechanisms and their effect on the performance of the algorithm were not 

explored.  

A second problem arises when attempting to create very complicated karyotypes using a large 

number of rearrangements. Stephens et al 49 suggested that in some cases a single 

catastrophic event called chromothripsis occurs, in which a section of the chromosome is 

shattered into a large number of small fragments and then reassembled, creating a karyotype 

that is much more complex 49. While all possible karyotypes can be generated using our model, 

very complex ones are unlikely. Note that once a deletion operation has been performed, the 

deleted segment cannot reappear and will therefore be absent from the final karyotype. 

When performing a large number of rearrangements on a chromosome, deletions will occur 

and sometime remove segments that were rearranged by a previous operation, essentially 

reducing the complexity of the resulting final karyotype. We tested our method on karyotypes 

that have undergone a maximum of 30 operations (Figure 0), but a modified simulation model 

needs to be used in order to generate more complex karyotypes. Currently our results reflect 

more faithfully the ability of the algorithm on relatively simple karyotypes, which constituted 

the majority in the real data that we used. 

A third type of limitation is due to the noise model assumptions. While we tried to borrow 

values of noise as estimated from the real data (see Real tumor analysis), there are other 

parameters that affect the noise and thus the quality of the analysis, including incorrectly 

mapped reads due to sequencing errors, non-uniquely mappable reads, insert length variance, 

breakpoints that fall within a read (and not in the gap), non-uniform read coverage, etc. These 

are all left to future work. 

One of the limitations of our algorithm is its inability to “predict” bridges that were not 

observed in the data. The algorithm looks for a path on the graph corresponding to a 

karyotype that best fits the observed CN profile, yet it overlooks potential paths that can be 

constructed by bridging two unconnected interval edges – essentially predicting a bridge. This 

implies that data produced using sensitive methods, even with higher rates of false positives, 

might be preferable over data with false negatives. 

Future directions  One important aspect of the technology in detecting bridges is the  insert 

size. A bridge will usually be detected only when the two reads of a PER are on the two 

different sides of it (see supplement). Therefore, the larger the read length and insert - the 

higher the bridge coverage. This implies that sequencing techniques with longer inserts can 

dramatically change the performance of the algorithm. Several such techniques are 

forthcoming, and some methods for detecting structural variations were already developed 

for them 28 29 22. Note however that very short rearrangements that span less base pairs than 

the length of the read may be missed altogether. 

A possible extension to our method can be the addition of weights to the reference edges. 

Recall that reference edges represent a connection between two segments that is expected 

according to the reference genome. Unlike interval edges or bridge edges, reference edges 

are weightless in our model. One metric that can be used to establish a confidence score for 

a reference edge is the number of PERs whose ends span the two segments bordering the 

reference connection. 
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