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Abstract(
An) important) goal) in) contemporary) biomedical) research) is) to) understand)
biological) systems.) System) level) understanding) requires) large) quantities) of)
experimental) data) and) algorithms) that) can) infer) system) behavior) from) them.)
Gene) regulatory)networks) (GRNs))are)of)particular) interest) since) they) regulate)
core)cellular)processes)such)as)the)cell)cycle)and)embryonic)development.)A)GRN)
is)a)network)formed)by)a)set)of)genes)and)regulatory)interactions)between)them.)
For) example,) a) gene) can) turn)on) the) expression)of) another) gene,)which)will) in)
turn)shut)off)the)expression)of)the)first)gene.)Real)GRNs)are)complex)and)contain)
many)feedback)loops.)
It)has)been)conjectured)for)various)biological)phenomena)that)specific)dynamic)
behaviors)of)a)GRN)correspond)to)physiological)states.)A)dynamic)behavior)is)in)
essence)a)sequence)of)gene)expression)patterns)that)changeover)time.)
Recent)years) saw) the)development)of) a)new)brand)of) experimental) techniques)
that)are)termed)''High)Throughput)Technologies''.)These)technologies)enable)the)
experimentalist) to) measure) the) states) of) genes,) proteins) and) even) binding) of)
proteins)to)DNA)on)a)genomeJwide)scale.)They)can)be)used)to)probe)the)state)of)
the) GRN) at) different) times) and) under) different) conditions,) and) from) this)
information) a) mathematical) model) can) be) created) and) used) for) predictions.))
However,) there) is) a) downside) to) high) throughput) technologies) –) the) data) that)
they)produce)are)incomplete)and)noisy.)This)is)an)additional)layer)of)complexity)
on)the)already)intricate)task)of)modeling)a)complex)system.)Therefore,)many)labs)
worldwide)have)commenced)in)an)effort)to)develop)computational)methods)that)
can)correct)and)extrapolate)high)throughout)data)with)the)final)goal)of)creating)
predictive)models.)Once)such)methods)are)available) they)will)allow)us) to)study)
this) important)biological)mechanism)and)we)may) learn) to)affect)processes) that)
are)toJdate)poorly)understood.)
In) this) thesis) I) present) a) new) methodology) for) predicting) the) effect) of)
perturbations) on) GRNs.) I) show) that) useful) conclusions) about) the) effect) of)
perturbations) can) be) drawn)without) knowing) the) network) structure) exactly.) I)
characterize) the) difficulties) in) fitting) gene) expression) data) to) a) logical) model)
using) computational) complexity) theory,) and) give) a) heuristic) algorithm) to)
perform) this) task.) ) I) demonstrate) the) effectiveness) of) the) algorithm) by)
reconstructing)the)mouse)embryonic)stem)cell)network.))I)develop)an)algorithm)
that) given) an) ensemble) of) alternative) network) structures) finds) minimal)
perturbations) that) induce) a) desired) network) behavior.) ) I) also) present) a)
randomized) approach) that) improves) the) running) time) of) the) latter) algorithm)
significantly.))
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1.'Introduction'
1.1'The'systems'approach'to'biology'
Up)to)about)a)decade)ago)most)biologists)conducted)research)based)on)the)reductionist)

approach.) This) approach) assumes) that) in) order) to) understand) biological) systems) one)

needs) to) examine) each) component) separately.) The) emerging) discipline) of) Systems)

Biology)advocates)that)the)most)important)properties)of)biological)systems)emerge)from)

the) system)as)a)whole)and)are)not) always)evident) in) each) component) separately(5,6).))

Driving) this) new) approach) are) new) experimental) technologies) that) produce) genomeJ

wide)measurements)and)have)become)known)as)"highJthroughput)technologies".) )High)

throughput) technologies) are) rapidly) improving) in) accuracy)and) scale)while) innovative)

ways)to)probe)cellular)systems)are)developed)(7J11).))To)exploit)this)abundance)of)data,)

computational)methods)are)developed)alongside)"wet)lab")techniques)and)are)primed)to)

complement)them.)

A) distinctive) property) that) a) system) can) exhibit) is) dynamic) behavior(1).) ) Dynamic)

behavior) can) be) viewed) as) a) propagation) of) changes) of) the) local) states) of) single)

components)as)triggered)by)the)local)states)of)other)components.) )Indeed,)the)amounts)

and)the)temporal)pattern)in)which)molecular)species)appear)in)cells)play)a)major)role)in)

orchestrating)the)processes)of) life.) ) In)particular,)gene)regulatory)networks)govern)the)

levels)of) gene)expression)and)hence) studying) these)networks) is)high)on) the)agenda)of)

Systems)Biology.)

1.2'Gene'regulatory'network'models'

Like)any)phenomenon)in)nature,)gene)networks)can)be)described)using)different)levels)

of) complexity.) ) While) more) detailed) descriptions) can) be) more) accurate,) they) require)

finer) measurements) that) may) be) hard) to) obtain.) ) However,) sometimes) inaccurate)

descriptions)can)also)contribute)to)our)understanding)of)nature)(12).))On)the)other)hand,)

when)abstraction)renders)the)network)into)an)obscure)mathematical)entity,)little)can)be)

gained)from)its)analysis.) )Therefore,)a)key)question)that)should)precede)any)discussion)

about)analysis)of)biological)networks)is)what)kind)of)model)describes)the)network?)

Various) computational) models) have) been) developed) for) regulatory) network) analysis.)

These)models)can)be)roughly)divided) into) three)classes.)The) first)class,) logical)models,)

describes) regulatory) networks) qualitatively.) They) allow) users) to) obtain) a) basic)

understanding) of) the) different) functionalities) of) a) given) network) under) different)

conditions.) Their) qualitative) nature) makes) them) flexible) and) easy) to) fit) to) biological)

phenomena,) although) they) can) only) answer) qualitative) questions.) To) understand) and)

manipulate)behaviors)that)depend)on)finer)timing)and)exact)molecular)concentrations,)a)
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second)class)of)models)was)developed)—)continuous)models.)For)example,) to)simulate)

the)effects)of)dietary)restriction)on)yeast)cells)under)different)nutrient)concentrations,)

users) must) resort) to) the) finer) resolution) of) continuous) models) (13).) A) third) class) of)

models) was) introduced) following) the) observation) that) the) functionality) of) regulatory)

networks) is) often) affected) by) noise.) As) the) majority) of) these) models) account) for)

interactions)between)individual)molecules,)they)are)referred)to)here)as)single)moleculeJ

level) models.) Single) moleculeJlevel) models) explain) the) relationship) between)

stochasticity)and)gene)regulation.) )The)different)classes)are)described)in)more)detail) in)

the)following)subsections.)

1.2.1'Logical'models'

The)most)basic)and)simplest)modeling)methodology)is)discrete)and)logic)based,)and)was)

introduced) by) Kauffman) and) Thomas) before) the) emergence) of) high) throughput)

technologies) (14,15).) ) Logical) models) represent) the) local) state) of) each) entity) in) the)

system) (for) example,) genes,) proteins) and) small) molecules)) at) any) time) as) a) discrete)

level,) and) the) temporal) development) of) the) system) is) often) assumed) to) occur) in)

synchronous,)discrete)time)steps.)Entity)levels)are)updated)at)each)time)step)according)

to) regulation) functions.) ) Discrete) modeling) allows) researchers) to) rely) on) purely)

qualitative) knowledge.) Such) models) can) be) analyzed) using) a) broad) range) of) well)

established)mathematical)methods.)

Boolean) networks) are) the) simplest) discrete) model) and) many) other) discrete) models)

share) similarities) with) Boolean) networks.) ) Boolean) regulatory) networks) were) first)

presented)by)Kauffman(15).)In)a)Boolean)network,)an)entity)can)attain)two)alternative)

levels:) active) (1)) or) inactive) (0).) For) example,) a) gene) can)be) described) at) any) time) as)

expressed)or)not)expressed.)The)level)of)each)entity)is)updated)according)to)the)levels)of)

several)entities,)via)a)specific)Boolean)function.)The)0–1)vector)that)describes)the)levels)

of) all) entities) is) called) the) system’s) state,) or) the) global) state.) It) is) assumed) to) change)

synchronously,) such) that) at) every) time) step,) the) level) of) each) entity) is) determined)

according) to) the) levels)of) its)regulators)at) the)previous) time)step)and)according) to) the)

entity's)regulation)function.))An)associated)computational)problem)is)exploring)the)state)

transition)graph)of)large)networks,)a)problem)that)stems)from)the)fact)that)the)number)

of) global) states) is) exponential) in) the) number) of) entities.) ) Methods) that) exhaustively)

enumerate)of)all)the)possible)trajectories)are)only)practical)for)small)networks(16).)

'

)

)
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1.2.2'Continuous'models'

Biological)experiments)usually)produce)real,)rather)than)discrete)valued,)measurements.)

Examples) include) reaction) rates,) cell) mass,) cell) cycle) length) and) gene) expression)

intensities(17,18).) ) In) most) of) the) works) that) used) logical) models) real) valued)

measurements) were) discretized,) a) process) that) reduces) the) accuracy) of) the) data.)

Continuous)models,)using)real)valued)parameters)over)a)continuous) timescale,)allow)a)

straightforward) comparison) of) the) global) state) and) experimental) data) and) can)

theoretically) be) more) accurate.) In) practice,) however,) quantitative) measurements) are)

almost) always) partial) (that) is,) they) cover) only) a) fraction) of) the) system’s) entities).)

Therefore,) some) of) the) parameters) of) continuous) models) are) usually) based) on)

estimations) or) inference.) ) This) may) potentially) introduce) more) errors) than)

discretization,) but) nevertheless) the) continuous) approach) has)many) followers) (19J21).))

Large) metabolic) networks) have) also) been) successfully) modeled) in) steady) state) using)

continuous) approaches,)which) shows) that) a) steady) state) assumption) can)be)useful) for)

inference)of)continuous)parameters)(22).)

1.2.3'Molecular@level'models'

Even)continuous)models)that)are)based)on)enzyme)kinetics(23))are)inaccurate)when)one)

delves)into)a)finer)level)of)description)using)singleJcell)measurements)(24,25).At)a)finer)

level) biological) networks) contain) stochastic) components) and) may) manifest) different)

behaviors)starting) from)the)same) initial)conditions(26,27).)This) is)particularly) true) for)

regulatory) networks,)where) the) number) of) regulatory)molecules) is) often) low) (28,29).))

How) important) is) stochasticity) to) the) understanding) of) gene) networks) in) general?) An)

instructive) example) comes) from) the) phage) lambda) model) of) McAdams,) Arkin) and)

Ross(30).) ) They) showed) that) the) phage's) choice) between) the) lysogenic) and) lytic)

pathways) depends) on) a) stochastic)mechanism.) ) The) presence) of) stochasticity) in) gene)

regulatory)networks)needs)to)be)further)studied)and)kept)in)mind)when)modeling)such)

networks.) )Some)of)the)computational)problems)that)arise)at)this)level)of)detail)are)the)

need)to)use)simulation)and)its)high)computational)cost)(31).)

)

1.3'Experimental'data'and'network'models'
Despite)the)new)tantalizing)capabilities)that)high)modern)experimental)techniques)offer,)

the)data)that)they)produce)require)careful)interpretation.))To)elaborate)on)this)point)we)

shall)consider)gene)expression)measurement)using)microarrays,)and)similar)arguments)

can) be)made) with) regard) to) other) highJthroughput) technologies.) ) A)microarray) is) an)

array)of)typically)thousands)of)oligonucleotide)probes)that)hybridize)with)fluorescentlyJ
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tagged)complementary)oligonucleotides)called)targets.))In)order)to)measure)the)level)of)

gene)expression,)one)extracts)mRNA)from)a)population)of)cells)and)applies)it)as)targets)

for)the)microarray(2,$3).))The)measurement)of)gene)expression)is)done)at)a)specific)time)

point.) ) Clearly) this) time) point) has) to) be) chosen) carefully) since) cells) are) dynamic.) ) In)

addition,) if)one) is) interested) in)changes)over)time)the) intervals)between)different) time)

points)also)need) to)be)decided)upon.) )Also,) the)measurement) is)a)continuous) intensity)

level)–)what)does)each)intensity)mean,)and)is)that)meaning)the)same)for)all) the)genes?)))

Another)problem)is)that)we)are)measuring)an)average)over)a)population)of)cells)that)are)

sometimes) hard) to) synchronize.) ) Does) this) averaging) process) render) the) mixture)

uninterruptable?) ) Finally,) how) noisy) is) microarray) technology?) ) Can) this) noise) be)

corrected?))Practical)utilization)of)gene)expression)data)depends)on)answers)to)all)these)

questions.) ) That) is) also) the) case) for) other) high) throughput) data) like) ChIP) on) chip.))

Therefore,)computational)techniques)and)in)particular)gene)network)models)often)offer)

methods)to)tackle)such)problems.)

The)fact)that)most)available)experimental)data)are)inaccurate)is)widely)acknowledged)by)

the)modeling)community.))Modeling)tools)are)often)designed)to)handle)inaccuracies)and)

to)generate)predictions)that)can)be)interpreted)despite)these)inaccuracies.) )A)modeling)

methodology)that)produces)the)same)predictions)from)datasets)that)differ)only)by)noise)

is)called)robust.)

1.3.1'Robust'model'construction'

Akutsu)et)al.)proposed)a)polynomial)algorithm)that) infers)regulatory) interactions) from)

experimental)data)by)finding)for)each)gene)a)Boolean)function)that)predicts)its)level)with)

maximal) accuracy) (32).) The) inputs) of) that) function) are) the) levels) of) the) gene's)

regulators.)This)algorithm)requires)that)continuous)expression)data)first)be)discretized)

into)Boolean)values,) i.e.) that)each)real)value)will)be)converted) into)a)Boolean)one,)and)

then) it) selects) the) function) and) regulators) that) are) in) best) agreement) with) the)

discretized)data.)A)later)extension)allows)each)discretized)sample)to)be)associated)with)a)

continuous) confidence) value) (33),) namely,) the) reliability) of) each)microarray)profile) (a)

vector)of) gene)expression)values)) in) the)dataset.)Akutsu)et) al.) also) studied) the) case) in)

which) only) partial) experimental) data) are) available,) and) showed) that) learning) the)

regulation)functions)in)this)setting)is)NPJcomplete)(34).)

Segal) et) al.) (35)) developed) a) methodology) that) uses) expression) data) for) inferring)

regulatory)functions)formulated)as)decision)trees:)each)node)of)the)tree)corresponds)to)

a) regulator) and) some) threshold)value,) and) the) level) of) the) regulatee) is)determined)by)

traversing) the) tree) from) root) to) leaf,) selecting) a) child) at) each) node) by) comparing) the)
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regulator's)continuous)expression) level) to) the)threshold.) )The)algorithm)clusters)genes)

into)groups)that)have)a)similar)expression)pattern)and)assigns)to)every)cluster)its)set)of)

regulators.))

Shamir) and) Tanay) presented) an) efficient) algorithm) that) assumes) a) monotone)

relationship)between)a)transcription)factor's)(TF))continuous)level,)its)affinity)to)a)target)

gene)and)the)strength)of)regulation,)and)uses)this)assumption)to)determine)whether)or)

not) a) target) gene) is) activated.) Since) their) algorithm) requires) TFJtarget) affinities,) they)

also) suggested) a)method) for) inferring) the) affinity) of) a)TF) to) its) target) genes)based)on)

analysis)of)the)promoters)of)regulated)genes(36).)

Other)approaches)to)model)reconstruction)can)be)found)in(21,35,37,38).))The)quality)of)

a) static) model) that) one) can) construct) depends) critically) on) the) properties) of) high)

throughout) input)data.) )As)a)consequence,) the)predictions) that)a)model)generates)also)

depend)on)these)properties.)))

1.3.2'Robust'dynamical'analysis'

Probabilistic) Boolean) networks) (PBNs)) are) one) approach) to) generating) predictions)

based) on) gene) expression) data) despite) the) inherent) inaccuracies) (39,40).) PBNs)

generalize) the)Boolean)network)model) such) that)an)entity)can)have)several) regulation)

functions,)and)each)of)which)is)given)a)probability)based)on)its)compatibility)with)prior)

data.) At) each) time) step,) every) entity) is) subjected) to) a) regulation) function) that) is)

randomly)selected)according)to)the)defined)probabilities.)Hence)the)model)is)stochastic)

and) an) initial) global) state) can) lead) to)many) trajectories) of) different) probabilities.) The)

resulting) model,) the) probabilistic) Boolean) network,) generates) a) sequence) of) global)

states)that)constitutes)a)Markov)chain.)For)example,)a)PBN)was)used)to)model)a)15Jgene)

subnetwork) that)was) inferred) from)human) glioma) expression)data) (39).) This) analysis)

demonstrates) that) the) stationary) distributions) of) entities) may) indicate) possible)

regulatory)relationships)among)them:)entities)that)have)the)same)states)in)a)significant)

proportion)of)the)global)states)are)likely)to)be)related.)A)problem)with)this)approach)is)

that)the)Markov)chain)will)have)a)number)of)states)that)is)exponential)in)the)number)of)

entities.))Another)problematic)point)is)that)in)a)single)trajectory)a)gene)can)be)regulated)

by) several) different) regulation) functions,) which) seems) to) somewhat) depart) from)

biological)reality.))

Dynamics) in)which) not) all) entities) are) subjected) to) regulation) functions) at) every) time)

step)is)called)asynchronous.))Steggles)et)al.)relied)on)the)asynchronous)dynamics)of)Petri)

nets) in) order) to) generate) more) robust) predictions) (41).) ) They) showed) that) the)

asynchronous)nature)of)Petri)nets)can)be)used)to)allow)some)degree)of) freedom)in)the)
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choice) of) regulation) functions.) ) As) in) the) case) of) PBNs,) several) different) functions) can)

regulate) the) same) gene) in) a) single) trajectory.) ) In) contrast) to) probabilistic) Boolean)

networks,)regulation)functions)are)not)assigned)probabilities.))There)is)no)quantification)

of)the)likelihood)of)different)network)structures.))They)used)their)approach)to)model)the)

regulatory) network) of) Bacillus$ subtilis) sporulation) and) obtained) a) behavior) that) is) in)

good)agreement)with)existing)literature.)For)example,)when)initializing)the)system)to)a)

global)state)that)corresponds)to)vegetative)growth)and)activating)the)sporulation)signal,)

the) dynamics) of) the) system) leads) to) a) state) that) corresponds) to) sporulation.) ) Their)

model) also) correctly) predicted) the) sporulation) capabilities) of) mutants.) ) Similar)

approaches)to)handling)incomplete)models)can)be)found)in)(42J44).)))

1.4'Computational'problems'in'modeling)
Modeling) raises) some) inherent) computational) problems) that) are) independent) of) the)

sources)of)data)from)which)the)model)is)constructed.))These)problems)are)characterized)

by)the)need)to)search)a)space)that)grows)very)rapidly)with)the)size)of)the)model.))

1.4.1'State'explosion'

A)model) that) has)N) entities) and) each) entity) can) assume)2) states) or)more)will) have) at)

least) 2N)global) states.) ) Exhaustively) searching) this) state) space) for)particular) states,) for)

example)steady)states)of)a)gene)regulatory)network,) is)only)practical) for)small)models.))

While) statistical) methods) can) provide) general) insights) about) network) behavior) (45),)

searching) the) state) space) of) specific) models) is) limited) by) computational) complexity.))

Even) for) a) Boolean) network,) finding) a) steady) state) is) NPJComplete) (46).Counting) the)

steady) states) of) a) Boolean) network) is) #PJcomplete) (47).) ) Finding) Boolean) network)

inputs)that)will)drive)the)network)to)a)particular)state)is)NPJHard)(48).))One)can)prune)

the) state) space) by) considering) a) single) initial) network) state) and) only) close) reachable)

states.))If)the)model)is)synchronous)then)there)is)only)one)trajectory)and)we)can)follow)

this)trajectory)for)a)sequence)of)k)steps)stating)from)the)initial)state.))It)has)been)argued)

that) synchronicity) in) gene) regulatory) networks) is) an) oversimplification) and) yields)

essentially)different)dynamic)behavior)than)the)more)realistic)asynchronicity)(49).) )If)a)

model)is)asynchronous,)one)initial)state)can)lead)to)an)exponential)number)of)states)that)

are)separated)from)the)initial)states)by)at)most)k)traversals)on)the)state)transition)graph.))

A) simple) example) that) illustrates) this) fact) is) a) Boolean) network) in) which) each) node)

regulates)itself.))

1.4.2'Complexity'of'asynchronous'systems'

From) a) purely) biological) perspective) asynchronous) models) seem) to) have) clear)

advantages)for)describing)the)dynamics)of)a)gene)network.))There's)apparently)no)global)
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clock)that)synchronizes)the)expression)times)of)all)the)genes,)and)therefore)there)is)no)

reason)to)impose)synchronicity)in)the)model.) )However,)synchronous)models)are)much)

simpler) to) analyze)and)on) these)grounds) they)have)been)often)preferred(50J52).) )The)

relationship) between) the)maximal) number) of) edges) in) the) state) transition) graph) of) a)

synchronous)model)and)an)asynchronous)model)is)quadratic.))In)other)words)a)node)in)

the)graph)of)the)latter)can)have)N)outgoing)edges,)compared)to)at)most)one)in)the)graph)

of)the)former.))Results)from)the)field)of)model)checking)(53J55))predict)that)analysis)of)

asynchronous) models) can) be) computationally) expensive.) ) Notably,) Thieffry) and)

colleagues) created) predictive) asynchronous) models) that) contain) several) dozens) of)

entities)(56,57).)

1.4.3'The'curse'of'dimensionality'

In) the) context) of) network) modeling,) the) curse) of) dimensionality) refers) to) the) large)

number) of) parameter) sets) that) can) be) assigned) to) a) model.) ) Even) if) the) topology) is)

known)perfectly,)different)parameter)sets)can)yield)entirely)different)behaviors)(58).))It)

was) recently) shown) that) resolving) discrepancies) between) a) logical) model) and)

experimental) data) is)NPJComplete) (3)) .) ) Sensitivity) analysis) can) prioritize) parameters)

according) to) the) impact) of) change) in) their) value) on) the) model,) thereby) reducing) the)

number)of)parameter)sets)that)need)to)be)explored(59).The)size)of)the)parameter)space)

can) also) be) decreased) by) using) a) simple)model) such) as) a) linear)model(21).) ) Another)

approach) circumvents) parameter) space) search) by) generating) predictions) from) an)

ensemble)of)alternative)parameter)sets(42).))The)impact)of)a)few)wrong)parameters)on)

dynamic) behavior) can) be) profound) and) therefore) searching) the) parameter) space)

efficiently)is)a)problem)of)primary)importance)(60).)

1.5'Research'objectives)
The) goals) of) this) research) are) to) classify) and) compare) current) modeling) strategies,)

characterize) and) study) computational) problems) associated) with) modeling) of) GRNs,)

develop) solutions) for) these)problems)and) improve) existing)methods) for) incorporating)

highJthroughput)data)into)a)model.))Chapter)3)reviews)modeling)methods)and)classifies)

them)into)different)types)according)to)various)criteria.))Chapter)4)presents)an)algorithm)

that)predicts)minimal)network)perturbations)given)an)ensemble)of)alternative)network)

structures.) )Chapter)5)analyzes) the)problems)of)network) reconstruction)and)describes)

an) algorithm) that) aims) to) solve) some) of) these) problems.) ) Chapter) 6) shows) how) to)

improve) the) running) time) of) the) minimal) perturbation) algorithm) of) Chapter) 4) by)

adopting)a)randomized)strategy.)Chapter)7)tries)to)predict)where)the)field)is)going)and)

specifies)my)future)research)plans.)
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I) prove) that) even)when) the) network) structure) is) known,) fitting) high) throughput) gene)

expression)data) to)a) logical)model) is)NPJComplete.) )This)proof) is)based)on)a)reduction)

from) the) vertex) cover) problem(61).) ) Given) an) instance) of) the) vertex) cover) problem) a)

simple) acyclic) GRN) can) be) constructed) such) that) fitting) a) set) of) two) microarray)

experiments)to)it)will)provide)a)solution)to)the)vertex)cover)problem.))Since)it)is)easy)to)

verify) that) a) dataset) fits) a)model,) the) fitting) problem) is) in) NP)meaning) that) it) is) NPJ

Complete.)

I) develop) an) algorithm) that) interprets) continuous) high) throughput) values)

probabilistically)in)order)to)find)a)good)fit)of)data)to)a)model.))The)algorithm)computes)

the) conditional) entropy) of) every) regulatee) given) his) regulators,) based) on) the)

probabilistic)interpretation)of)the)data,)and)minimizes)the)sum)of)conditional)entropies)

using)gradient)descent)(62).))In)order)to)obtain)truth)tables)in)which)every)regulator)can)

change) the) output) value) in) some) state,) I) develop) a) branch) and) bound) algorithm) that)

finds)an)optimal)solution)under)this)constraint)(63).)))

As) an) approach) to) generate) predictions) of) gene) network) response) to) perturbations) I)

suggest) to)add)a)desired) certainty) level) to)queries)about)network)behavior.) )Based)on)

this) desired) certainty) level) the) state) space) of) alternative) perturbed) models) can) be)

searched)such)that)the)proportion)of)a)model's)state)space)that)is)searched)depends)on)

that)model's)probability.))The)choice)of)certainty)level)is)a)tradeoff)between)certainty)on)

one)side)and)speed)and)minimal)perturbation)size)on)the)other)side.) )A)modification)of)

McMillan's)unfolding)algorithm)is)used)in)order)to)optimize)performance)(55).)

In) order) to) improve) the) utilization) of) model) checking) techniques) in) predicting) gene)

network) dynamic) behavior,) in) particular) the) latter) method) for) finding) minimal)

perturbations,) I) design) and) implement) a)Monte) Carlo) version) of)McMillan's) unfolding)

algorithm.) ) I)modify) the) improved)unfolding)algorithm)of)Esparza)et)al.) and)show)that)

the)Monte)Carlo)algorithm)is)significantly)faster)than)the)deterministic)algorithm)(64).)

) '
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2.'Summary'of'articles'included'in'this'thesis'
'

2.1'Modeling'and'analysis'of'gene'regulatory'networks'

Guy)Karlebach)and)Ron)Shamir'
) Published)in)Nature$Reviews$Molecular$Cell$Biology)

Various) computational)models) have) been) developed) for) regulatory) network)

analysis.) These) models) can) be) roughly) divided) into) three) classes.) The) first)

class,) logical)models,)describes)regulatory)networks)qualitatively.)They)allow)

users)to)obtain)a)basic)understanding)of)the)different)functionalities)of)a)given)

network) under) different) conditions.) ) Their) qualitative) nature) makes) them)

flexible) and) easy) to) fit) to) biological) phenomena,) although) they) can) only)

answer)qualitative)questions.) )To)understand)and)manipulate)behaviors) that)

depend)on)finer)timing)and)exact)molecular)concentrations,)a)second)class)of)

models)was) developed)—) continuous)models.) ) For) example,) to) simulate) the)

effects) of) dietary) restriction) on) yeast) cells) under) different) nutrient)

concentrations,)users)must)resort)to)the)finer)resolution)of)continuous)models.))

A) third) class) of) models) was) introduced) following) the) observation) that) the)

functionality) of) regulatory) networks) is) often) affected) by) noise.) ) ) As) the)

majority) of) these) models) account) for) interactions) between) individual)

molecules,) they)are)referred)to)here)as)singleJmolecule) level)models.) )SingleJ

molecule)level)models)explain)the)relationship)between)stochasticity)and)gene)

regulation.) ) Here) we) review) the) available) methodologies) for) modeling) and)

analyzing)regulatory)networks.))These)methodologies)have)already)proved)to)

be)a)valuable)research)tool,)both)for)the)development)of)network)models)and)

for) the) analysis) of) their) functionality.) )We) discuss) their) relative) advantages)

and) limitations,) and) outline) some) open) questions) regarding) regulatory)

networks,) including)how)structure,)dynamics)and)functionality)relate)to)each)

other,) how) organisms) use) regulatory) networks) to) adapt) to) their)

environments,) and) the) interplay) between) regulatory) networks) and) other)

cellular)processes,)such)as)metabolism.)

)

) '
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2.2'Minimally'perturbing'a'gene'regulatory'network'to'avoid'a'
disease'phenotype:'the'glioma'network'as'a'test'case'

) Guy)Karlebach)and)Ron)Shamir)

) Published)in$BMC$Systems$Biology(4)(4).)

Mathematical)modeling)of)biological)networks)is)an)essential)part)of)Systems)

Biology.) ) Developing) and) using) such) models) in) order) to) understand) gene)

regulatory) networks) is) a) major) challenge.) ) ) We) present) an) algorithm) that)

determines) the) smallest) perturbations) required) for) manipulating) the)

dynamics)of)a)network)formulated)as)a)Petri)net,)in)order)to)cause)or)avoid)a)

specified)phenotype.)By)modifying)McMillan's)unfolding)algorithm,)we)handle)

partial) knowledge) and) reduce) computation) cost.) ) The) methodology) is)

demonstrated) on) a) glioma) network.) Out) of) the) single) gene) perturbations,)

activation) of) glutathione) SJtransferase) P) (GSTP1)) gene)was) by) far) the)most)

effective) in) blocking) the) cancer) phenotype.) Among) pairs) of) perturbations,)

NFkB)and)TGFJß)had)the) largest) joint)effect,) in)accordance)with)their)role) in)

the) EMT) process.) ) Our) method) allows) perturbation) analysis) of) regulatory)

networks)and)can)overcome)incomplete)information.))It)can)help)in)identifying)

drug)targets)and)in)prioritizing)perturbation)experiments.)

) '
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2.3'Constructing'Logical'Models'of'Gene'Regulatory'Networks'by'
Integrating'Transcription'Factor@DNA'Interactions'with'Expression'
Data:'An'Entropy'Based'Approach'

) Guy)Karlebach)and)Ron)Shamir)

Published)in)Journal$of$Computational$Biology)

Models) of) gene) regulatory)networks) (GRNs)) attempt) to) explain) the) complex)

processes)that)determine)cells’)behavior,)such)as)differentiation,)metabolism,)

and)the)cell)cycle.)The)advent)of)highJthroughput)data)generation)technologies)

has) allowed) researchers) to) fit) theoretical) models) to) experimental) data) on)

geneJexpression) profiles.) GRNs) are) often) represented) using) logical) models.)

These)models)require)that)realJvalued)measurements)be)converted)to)discrete)

levels,) such)as)on/off,)but) the)discretization)often) introduces) inconsistencies)

into) the) data.) ) Dimitrova) et) al.) posed) the) problem) of) efficiently) finding) a)

parsimonious) resolution) of) the) introduced) inconsistencies.) ) We) show) that)

reconstruction)of)a) logical)GRN)that)minimizes)the)errors) is)NPJcomplete;)so)

that) an) efficient) exact) algorithm) for) the) problem) is) not) likely) to) exist.) ) We)

present) a) probabilistic) formulation) of) the) problem) that) circumvents)

discretization)of)expression)data.) )We)phrase)the)problem)of)error)reduction)

as) a) minimum) entropy) problem,) develop) a) heuristic) algorithm) for) it,) and)

evaluate)its)performance)on)mouse)embryonic)stem)cell)data.)The)constructed)

model)displays)high)consistency)with)prior)biological)knowledge.)Despite)the)

oversimplification) of) a) discrete) model,) we) show) that) it) is) superior) to) raw)

experimental) measurements) and) demonstrates) a) highly) significant) level) of)

identical)regulatory)logic)among)coJregulated)genes.)

) )
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2.4'A'Fast'Randomized'Unfolding'Algorithm'for'Solving'
Reachability'Problems'on'Petri'Nets'

) Guy)Karlebach)and)Ron)Shamir))

) Submitted)

Petri)nets)are)a)modeling)formalism)for)concurrent)systems.))Given)a)Petri)net)

and)its)initial)state,)determining)if)a)target)state)or)a)set)of)states)is)reachable)

is) a) fundamental) problem.) McMillan's) unfolding) algorithm) constructs) a)

compact) representation)of)a)Petri)net's) state)space.) )However,) the)algorithm)

can) solve) in) practice) only) very) small) reachability) problems,) due) to) the)

computational) resources) required.) ) We) developed) a) MonteJCarlo) algorithm)

based) on)McMillan's) unfolding) for) solving) the) reachability) problem)on)Petri)

nets.))The)algorithm)repeatedly)constructs)random)prefixes)of)the)state)space)

representation,) thereby) avoiding) some) of) the) computational) problems) that)

arise) when) the) full) representation) is) constructed.) Our) tests) show) that) the)

randomized) algorithms) can) solve) problems) size) greater) than) 100) within)

seconds,)and)it)is)faster)than)the)deterministic)algorithm)by)several)orders)of)

magnitude.)

) '
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3.''Modeling'and'analysis'of'gene'regulatory'networks'
) '



The genome encodes thousands of genes whose pro-
ducts enable cell survival and numerous cellular func-
tions. The amounts and the temporal pattern in which 
these products appear in the cell are crucial to the 
pro cesses of life. Gene regulatory networks govern the 
levels of these gene products. A gene regulatory net-
work is the collection of molecular species and their 
inter actions, which together control gene-product 
abundance. Numerous cellular processes are affected 
by regulatory networks.

Innovations in experimental methods have ena-
bled large-scale studies of gene regulatory networks 
and can reveal the mechanisms that underlie them. 
Consequently, biologists must come to grips with 
extremely complex networks and must analyse and 
integrate great quantities of experimental data. Essential 
to this challenge are computational tools, which can 
answer various questions: what is the full range of 
behaviours that this system exhibits under different 
conditions? What changes are expected in the dynamics  
of the system if certain parts stop functioning? How 
robust is the system under extreme conditions? 

Various computational models have been developed 
for regulatory network analysis. These models can be 
roughly divided into three classes. The first class, logi-
cal models, describes regulatory networks qualitatively. 
They allow users to obtain a basic understanding of the 
different functionalities of a given network under dif-
ferent conditions. Their qualitative nature makes them 
flexible and easy to fit to biological phenomena, although 
they can only answer qualitative questions. To under-
stand and manipulate behaviours that depend on finer 
timing and exact molecular concentrations, a second 

class of models was developed — continuous models. 
For example, to simulate the effects of dietary restriction 
on yeast cells under different nutrient concentrations1, 
users must resort to the finer resolution of continuous 
models. A third class of models was introduced follow-
ing the observation that the functionality of regulatory 
networks is often affected by noise. As the majority of 
these models account for interactions between individual 
molecules, they are referred to here as single-molecule 
level models. Single-molecule level models explain the 
relationship between stochasticity and gene regulation.

Predictive computational models of regulatory net-
works are expected to benefit several fields. In medi-
cine, mechanisms of diseases that are characterized by 
dysfunction of regulatory processes can be elucidated. 
Biotechnological projects can benefit from predictive 
models that will replace some tedious and costly lab 
experiments. And, computational analysis may con-
tribute to basic biological research, for example, by 
explaining developmental mechanisms or new aspects 
of the evolutionary process. 

Here we review the available methodologies for mod-
elling and analysing regulatory networks. These meth-
odologies have already proved to be a valuable research 
tool, both for the development of network models and 
for the analysis of their functionality. We discuss their 
relative advantages and limitations, and outline some 
open questions regarding regulatory networks, includ-
ing how structure, dynamics and functionality relate to  
each other, how organisms use regulatory networks  
to adapt to their environments, and the interplay between 
regulatory networks and other cellular processes, such as 
metabolism.
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Stochasticity
The property of a system 
whose behaviour depends on 
probabilities. In a model with 
stochasticity, a single initial 
state can evolve into several 
different trajectories, each with 
an associated probability.

Modelling and analysis of gene 
regulatory networks
Guy Karlebach and Ron Shamir

Abstract | Gene regulatory networks have an important role in every process of life, including 
cell differentiation, metabolism, the cell cycle and signal transduction. By understanding the 
dynamics of these networks we can shed light on the mechanisms of diseases that occur 
when these cellular processes are dysregulated. Accurate prediction of the behaviour of 
regulatory networks will also speed up biotechnological projects, as such predictions are 
quicker and cheaper than lab experiments. Computational methods, both for supporting  
the development of network models and for the analysis of their functionality, have already 
proved to be a valuable research tool.
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Local state
At any time point, the value 
representing the status of an 
entity in a model is its (local) 
state. For example, the state of 
a protein may indicate whether 
it is phosphorylated or not  
(a Boolean value), or the time 
since its last phosphorylation 
(a continuous value). 

Synchronous model 
A model wherein the time 
steps at which the global state 
changes are discrete and 
(usually) equally spaced.  
On each step, all the states  
are updated simultaneously, 
depending on the model’s 
regulation functions and on the 
global state at the previous 
step. In asynchronous models, 
system changes are not 
confined to specific times and 
global states do not progress 
according to ‘a common clock’. 
Time is often continuous, and 
entities may change their 
states at different times.

Regulation function
A rule that determines the state 
of a specific entity in the model 
as a function of the states of 
some (other) entities. For 
example, several transcription 
factors may together regulate 
the expression of a gene. The 
set of entities whose states 
determine the state of entity X 
are entity X’s regulators. 

Global state
The combination of all the local 
states of a model at one time 
point. 

Steady state
A global state that, once 
reached, always repeats itself 
in a trajectory. Another 
important dynamic behaviour 
in biological systems is a cycle 
of global states. For example, 
the oscillations observed in the 
cell cycle.

Robustness
A measure of a model’s ability 
to withstand changes without 
changing its essential 
properties. For example, in 
network models, robustness 
can be quantified as the 
fraction of edge additions and/
or removals that change the 
trajectory that emanates from 
some initial state.

Logical models
The most basic and simplest modelling methodology is 
discrete and logic-based, and was introduced by Kauffman 
and Thomas2,3. The reconstruction of the regulatory 
network that controls the development of sea urchin 
embryos4,5 is a seminal example of the profound insights 
that qualitative examination of regulatory network models 
can provide. This work demonstrates how maternal cues 
initiate the activity of the regulatory network and how this 
network orchestrates the developmental process. Logical 
models represent the local state of each entity in the system 
(for example, genes, proteins and small molecules) at any 
time as a discrete level, and the temporal development 
of the system is often assumed to occur in synchronous, 
discrete time steps. Entity levels are updated at each time 
step according to regulation functions (FIG. 1a). Discrete 
modelling allows researchers to rely on purely qualitative 
knowledge. Such models can be analysed using a broad 
range of well established mathematical methods. 

Boolean networks. Boolean regulatory networks were first 
presented by Kauffman2,6. In a Boolean network, an entity 
can attain two alternative levels: active (1) or inactive (0). 
For example, a gene can be described as expressed or not 
expressed at any time. The level of each entity is updated 
according to the levels of several entities, via a specific 
Boolean function. The 0–1 vector that describes the levels 
of all entities is called the system’s state, or the global state. 
It is assumed to change synchronously, such that at every 
time step, the level of each entity is determined according 

to the levels of its regulators at the previous time step and 
according to the regulation function (FIG. 1a).

Boolean networks were recently used to analyse the 
relationship between regulation functions and network 
stability in the yeast transcriptional network, using only 
the network’s structure7. According to this study, the 
network is stable when random regulation functions are 
used, and solution stability increases when the regulation 
functions are biologically meaningful. It also showed that 
Boolean networks do not correctly model the dynamics of 
a transcription factor that downregulates its own expres-
sion, due to the model’s limited level of detail. Another 
problem is that it is computationally expensive to analyse 
the dynamics of large networks, as the number of global 
states is exponential in the number of entities. However, 
when the number of entities is small and only qualitative 
knowledge is available, Boolean networks can provide 
important insights, such as the existence and nature of 
steady states or network robustness.

To study the dynamics of cell-cycle regulation in 
yeast, Li et al.8 constructed a literature-based Boolean 
network in which all the regulation functions are thresh-
old functions. This model generated trajectories with a high 
degree of overlap, most of which led into a path that cor-
responded to the cell-cycle phases of yeast. In addition, 
most small changes in the model did not significantly 
change its dynamic behaviour, indicating that it is robust. 
As the analysis relied on an exhaustive enumeration of all  
the possible trajectories, this method is only practical for 
small networks.

Figure 1 | Logical models. a | A Boolean network. Each of the entities a, b and c in the network can be in state 0 or 1. State 
transitions obey the regulation functions shown on the right, which describe the rules of the model. For example, if a is in 
state 1 and c is in state 0, at the next time step the state of b will be 0. Thin arrows indicate the regulators of each node. Time 
steps are represented by thick arrows. The global state of the model is the combination of the three entity states. The system 
cycles through the six global states. A sequence of consecutive global states is called a trajectory. b | A Petri net. The net 
contains ‘places’ (light blue circles) that are the model’s entities, and ‘transitions’ (rectangles) that constitute the regulation 
functions and define the model’s dynamics. Arcs connect input places to transitions, and transitions to their output places. 
Places that receive discrete values are called tokens (dark blue dots). A transition that is activated, or ‘fired’, reduces the 
tokens in its input places and increases the number of tokens in each of its output places. At any time step, every transition 
that has enough tokens in its input places may be fired. In the example, every transition consumes one token from every 
input place, and produces one token at every output place. Labels at thick arrows indicate which transition fired. Transitions 
t1 and t3 can be fired in alternation indefinitely, whereas no other transition can be fired after t2 has fired.
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Threshold function
A regulation function is a 
threshold function if it 
determines the state of the 
output entity by summing  
the states of its inputs and 
comparing the sum to some 
fixed value. For example, a 
gene upregulated if any two 
out of three transcription 
factors are active can be 
modelled by such a function.

Trajectory
In logical models, a trajectory  
is a sequence of global states 
that occur consecutively. In 
continuous models, a 
trajectory is the change of the 
level of an entity over time.

Markov chain
A stochastic process in which 
the next state depends only  
on the present state, regardless 
of the trajectory that led to the 
present state.

Heuristic
An algorithm for solving a 
problem that does not always 
provide an optimal solution  
to it. Heuristics are often used 
when it is impractical to obtain 
an exact optimal solution, and 
in many cases they provide 
satisfactory solutions.

Bayesian network
A probabilistic model that 
represents (in)dependencies 
between variables, taking the 
form of a directed acyclic 
graph. Often, both inference 
and learning can be carried  
out efficiently in such models. 
Dynamic Bayesian networks 
are an extension that describes 
dynamic behaviour.

Module
A set of genes that have 
identical regulation functions 
(and regulators). In other 
contexts, a module can also be 
a set of genes with a common 
function.

Inference
The selection of regulatory 
functions (or regulators) that 
best agrees with a dataset.

In many cases, the regulatory relationships between 
network components have not been established, and 
therefore need to be derived from experimental data. For 
any entity under a Boolean network model, both its regu-
lators and a regulatory function that is consistent with a 
set of gene-expression profiles can be found efficiently, 
provided that the number of regulators of each entity 
does not exceed a set limit9. Such an algorithm is faster 
than a previous one proposed by Akutsu and colleagues10. 
Lahdesmaki et al.9 also presented an algorithm for select-
ing a set of candidate regulation functions in the presence 
of contradictory evidence, whereby each expression pro-
file is associated with a certainty level (that is, a numerical 
value that expresses one’s confidence in the profile). This 
algorithm was tested by deriving regulation functions 
for 5 yeast cell-cycle regulated genes using expression 
profiles of 733 candidate regulators11; the maximum 
number of regulators that together regulate a single gene 
was first set to 1, then 2 and finally 3. The analysis yielded 
a large number of regulation functions that were equally 
consistent with experimental data. Some of the suggested 
functions matched previous findings.

Probabilistic Boolean networks. Often, due to insufficient 
experimental evidence or incomplete understanding of 
a system, several candidate regulatory functions may 
be possible for an entity. This raises the need to express 
uncertainty in the regulatory logic. Shmulevich et al.12, 13 
addressed this idea by modifying the Boolean network 
model such that an entity can have several regulation 
functions, each of which is given a probability based on 
its compatibility with prior data. At each time step, every 
entity is subjected to a regulation function that is ran-
domly selected according to the defined probabilities12. 
Hence the model is stochastic and an initial global state 
can lead to many trajectories of different probabilities. The 
new model, the probabilistic Boolean network (PBN), 
generates a sequence of global states that constitutes a 
Markov chain14. For example, a PBN was used to model 
a 15 gene sub-network that was inferred from human 
glioma expression data13. This analysis demonstrates that 
the stationary distributions of entities may indicate pos-
sible regulatory relationships among them: entities that 
have the same states in a significant proportion of the  
global states are likely to be related. As the number of global  
states in the gene sub-network was prohibitively large, one 
study13 estimated the stationary distribution by sampling 
the global states15.

MetaReg. An exponential number of global states makes 
it difficult to analyse the dynamics of all but tiny models. 
In some cases, analysis under steady state conditions turns 
out to be a practical goal. Gat-Viks et al. 16 developed the 
MetaReg model, in which entities can have several levels  
(typically 3–5) and regulation functions are discrete. 
Two efficient heuristics were developed: the first detects a 
network’s steady states and the second selects regulation 
functions that are most consistent with these steady states. 
The former heuristic can be used to analyse the dynamics 
of the network, whereas the latter can complete or correct 
a literature-based network. MetaReg was used to analyse 

the regulation of lysine biosynthesis in yeast and indicated 
previously unknown transcriptional controls of several 
metabolic enzymes.

To express uncertainty in regulation functions, Gat-
Viks et al. 17 created a probabilistic version of the MetaReg 
model. In this model, an entity can have one of several 
possible regulation functions (with the same regulators), 
and probabilities that each one is correct. Technically, 
the model is represented as a factor graph (an expan-
sion of Bayesian networks)18. Analogously to the model in  
REF. 16, it can be subjected to steady state identification 
and optimization of regulation function18,19. It can also 
discover new regulatory relationships. The method has 
been improved20 to facilitate changes in the network 
structure (refinement) and inclusion of additional entities  
(expansion). Analysis of a network of 4 interconnected 
osmotic stress-related yeast signalling pathways, which 
consists of 43 entities, along with 106 expression pro-
files, identified novel regulatory modules and crosstalks 
between pathways. Thus, the model can correct and 
expand a known regulatory network.

Petri nets. The dynamics of a regulatory network can 
also be analysed using Petri nets21, non-deterministic 
models (FIG. 1b). An example of a question that users can 
ask with a Petri net is: how many transition sequences 
lead from global state A to global state B? The qualita-
tive description of biochemical reactions using a Petri 
net is straightforward, and Petri net models are useful 
analysis tools for large metabolic networks22–24. Chaouiya 
et al. showed that Petri nets can also model regulatory 
networks using Boolean regulatory functions25, and that 
the metabolic and regulatory layers can be connected26. 
Steggles et al. proved that the synchronous dynamics of 
a Boolean network can be captured by a Petri net27 and 
demonstrated that uncertainty in the regulation func-
tions can also be expressed by the model. Heuristics for 
analysing the dynamics of Petri nets have been studied 
extensively in the past 3 decades, and include detection 
of active pathways, testing if a given system state is reach-
able and detecting state cycles28. Steggles et al. modelled 
the regulatory network of Bacillus subtilis sporulation 
using Petri nets and produced a behaviour that is in good 
agreement with existing literature27. For example, when 
initializing the system to a global state that corresponds 
to vegetative growth and activating the sporulation 
signal, the dynamics of the system lead to a state that 
corresponds to sporulation. This model also correctly 
predicted the sporulation capabilities of mutants.

Inference of particular network properties. In certain 
cases, incomplete information about a regulatory net-
work can be used to infer topological features and regula-
tory interactions of the network. Due to the noisy nature 
of biological experiments, inference is usually based on 
a probabilistic framework that integrates experimental 
data in a network context. Here we briefly describe some 
static probabilistic models that infer properties of regula-
tory networks. These models do not describe in full the 
regulation of each entity under every possible condition, 
and do not describe dynamic processes (the concept of 
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Discretization
A process that transforms 
continuous numerical values 
into discrete ones. For example, 
real-valued measurements can 
be discretized to 0,1 or 2, 
corresponding to low, medium 
and high levels.

trajectory is not defined for them), but provide higher 
level, lower resolution modelling and analysis (REF. 29 is 
an excellent source on probabilistic inference). 

Module networks, introduced by Segal and col-
leagues, is a model that infers the regulation logic of 
gene modules given gene-expression data30. A regula-
tion logic is represented by a decision tree, in which a 
path from the root to a leaf is determined by the up- 
or downregulation of regulatory modules, and a leaf 
determines the expression level of the corresponding 
genes. Module networks were tested with experimental 
data and correctly predicted some regulatory mod-
ules. Friedman et al. introduced Bayesian networks as 
a probabilistic tool for the identification of regulatory 
genes using high-throughput experimental data29 and 
showed that they can reproduce certain known regula-
tory relationships31,32. Physical network models combine 
protein–DNA interactions, protein–protein inter actions 
and knockout experiments for the discovery of regu-
latory interactions. The network structure of these 
models predicted knockout effects correctly33. Yeang and 
Vingron integrated perturbation data with knowledge 
from the literature into a joint model of regulation and 
metabolism and created a framework for the prediction 
of regulatory interactions and pathways34. They verified 
the predictive power of their model on the regulatory 
networks that govern the metabolism of glucose in 
Escherichia coli and found that the use of a joint model 
explains more perturbations than a regulatory network 
would explain alone. In all the probabilistic inference 
models above, predicted properties are assigned a cer-
tainty level. A cut-off for deciding which features will 
be selected for further analysis can then be determined. 
Examples for using cut-off criteria for network-feature 
selection can be found in REFS 7,32,35.

Continuous models
Biological experiments usually produce real, rather than 
discrete-valued, measurements. Examples include reac-
tion rates, cell mass, cell-cycle length and gene-expression 
intensities36–39. Logical models require discretization of the 
real-valued data, which reduces the accuracy of the data. 
Continuous models, using real-valued parameters over a 
continuous timescale, allow a straightforward comparison 
of the global state and experimental data and can theoreti-
cally be more accurate. In practice, however, quantitative 
measurements are almost always partial (that is, they 
cover only a fraction of the system’s entities). Therefore, 
some of the parameters of continuous models are usu-
ally based on estimations or inference. Below we describe 
some types of continuous models and the predictions that 
they can generate. 

Continuous linear models. The defining property of linear 
models is that each regulator contributes to the input of 
the regulation function independently of the other regula-
tors, in an additive manner. In other words, the change in 
the level of each entity depends on a weighted linear sum 
of the levels of its regulators. This assumption allows a 
high level of abstraction and efficient inference of network 
structure and regulation functions.

Time-series data usually contain many more genes than 
time points. This presents a difficulty in reverse engineer-
ing a network’s structure and regulation functions. Yeung 
et al.40 used a linear model and singular value decomposi-
tion41 to generate a family of candidate networks that are 
consistent with a given dataset, thus compensating for 
this deficiency in time points. The network that is most 
consistent with prior knowledge is selected. The authors 
demonstrated in simulations that this approach is effec-
tive in dealing with shortages of data. Weaver et al.42 
described a model in which the expression of each gene 
is regulated by a ‘squashing’ function that takes as input 
a weighted linear sum of regulator levels, and presented 
an algorithm for reverse engineering real networks under 
these assumptions. One recent study adopted the linear 
framework to create a model of a regulatory network that 
is subjected to an arbitrary number of perturbations and 
studied multiple perturbation scenarios using simulated 
data and a single-perturbation scenario using experimen-
tal data43. Another study added time delays to regulatory 
interactions44, which can be used to infer the duration of 
protein synthesis.

Linear models do not require extensive knowledge 
about regulatory mechanisms and can be used to obtain 
qualitative insights about regulatory networks, the 
simplest example being detection of novel regulations. 
However, when higher sensitivity to detail is desired, 
more complex models are preferable.

Models of transcription factor activity. The linear model 
is a crude description of the process of gene expression, 
and as such it cannot provide answers to subtle questions 
such as: how does the affinity of a transcription factor to 
a target promoter affect the network? Nachman et al.45  
created a fine-level model of gene regulation. In their 
model, entities correspond to either genes or transcrip-
tion factors, and levels represent mRNA abundance or 
transcription factor activity, respectively. All the regu-
lators are transcription factors. The levels of genes are 
determined by real-valued, non-linear regulation func-
tions that take the Michaelis–Menten form46. The level of 
a gene is thus determined by that function together with 
the mRNA-decay rates. The time-dependent transcription 
factor activities are inferred from microarray time-series 
data using dynamic Bayesian networks47,48. An efficient 
heuristic aims to discover new regulators and regulatory 
relationships. Given an established regulatory network of 
141 yeast cell-cycle genes, the heuristic successfully pre-
dicted the activity levels of the 7 regulators that controlled 
this network. In addition, it proposed novel regulatory 
relationships that improved the explanatory power of  
the model. Moreover, when given the entities, but not the  
network structure, as input, this method identified  
the seven regulators.

Shamir and Tanay developed a different model for 
identifying transcription factor–gene regulations49. The 
method relies on an efficient algorithm that infers trans-
cription factor activity under the assumption that it is a 
monotone increasing function of both the transcription 
factor–promoter affinity and the transcription factor  
dosage. Transcription factor–promoter affinities are 
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inferred based on analysis of the promoters of the regu-
lated genes. The model was applied to 140 genes of the 
galactose system in yeast, and inferred transcription fac-
tor activities that were in accordance with the literature. 
Two putative novel transcription factors, along with their 
genomic binding sites, were suggested. This demonstrates 
that the integration of multiple datasets can yield addi-
tional predictions that would be difficult to obtain from 
either dataset alone. The increased prediction power is 
obtained by the algorithm’s ability to link different, but 
related, biological phenomena, in this case cis-regulatory 
elements and mRNA abundance. 

Recently, Pan et al. extended the model developed by 
Nachman and colleagues by integrating genome sequence 
data50. Although these models offer a detailed description 
of regulation and provide inference algorithms, they do 
not directly incorporate interactions between regulatory 
entities. A similar methodology that uses discrete global 
states was suggested for inferring transcription factor 
activities based on the complete regulatory structure51. 
The model of Segal et al.52 reproduced expression pat-
terns that are generated by maternal and zygotic factors 
in the early Drosophila melanogaster embryo and provided 
interesting insights about the regulatory interactions of 
this system.

Ordinary differential equations. A more general, detailed 
model of regulation can be described by ordinary differ-
ential equations (ODEs) (FIG. 2). These equations describe 
the (instantaneous) change in each entity as a function 
of the levels of some network entities. For simple ODE 
systems, an analytical solution can be formulated and 
the resulting set of algebraic equations then describes the 
change in entity levels over time. (REF. 46 provides a good 
overview for the use of ODEs in biological context and 
gives some illustrative examples). The Hill and Michaelis–
Menten functions are examples of such analytical solutions 
of small systems. Larger networks, which often use these 
functions in addition to linear and bilinear functions, 
practically always require a numerical solution.

The ODE approach provides detailed information about 
the network’s dynamics, but requires high-quality data on  
kinetic parameters and it is therefore currently applicable 
to only a few systems. The idea of using ODEs for model-
ling regulatory networks was suggested several decades 
ago53. Here we give some recent examples for modelling 
the dynamics of regulatory networks using ODEs.

Li et al. used ODEs to evaluate their model for the 
cell-cycle regulation in Caulobacter crescentus54. This bac-
terium divides asymmetrically into two morphologically 
distinctive cells, one of which, the stalked cell, is identical 
in form to the parent55–58. Their implementation follows 
the network dynamics from the parent cell to the stalked 
daughter cell. Entities correspond to protein concentra-
tions, to the constriction ring at the mid-cell plane, to the 
process of DNA synthesis and to gene promoters. The 
system contains 16 equations (one for each variable), and 
these make use of 44 constants that were initially retrieved 
from the literature and then adjusted by trial and error. 
In tests in wild-type and 16 mutant strains, the model’s 
simulations agreed with experimental measurements.

Chen et al. used the same approach to model the cell-
cycle regulatory network in yeast59. In their model, entity 
levels corresponded to protein concentrations, cell mass, 
DNA mass, the state of the mitotic spindle and the state 
of the emerging bud from which the daughter cell was 
formed. The change in cell mass is assumed to depend 
only on the current cell mass. Therefore, the mass at divi-
sion time is determined by the duration of the cell cycle. 
In total, 36 equations and 148 constants were used. After 
manual fitting, the model generated trajectories that  
reasonably matched the parent and daughter cell-cycle 
durations, the lengths of the G1, G2, S and M phases, and 
some of the experimentally determined ratios between 
groups of regulatory proteins. Moreover, 120 out of 131 
simulated mutant strains had properties that were con-
sistent with experimentally observed properties, including 
viability, growth rate, size at birth and size at budding.

Thus, ODE models can generate predictions that 
may subsequently be compared to cellular phenotypes. 
Additional examples for modelling with ODEs include 
the Arabidopsis thaliana circadian system60 and osmo-
regulation in yeast61. More restricted types of ODE have 
also been proposed for modelling regulatory networks62,63. 
These are usually more abstract, require less detail dur-
ing the modelling process and can be subjected to more 
powerful analysis.

Figure 2 | Ordinary differential equation model. a | A network of three genes is 
modelled using ordinary differential equations (ODEs). Reaction rate constants are 
denoted by ‘k’. b | The regulatory relations are depicted graphically. c | The trajectories of 
the model. Each equation shows the change in the level of a gene as a difference of its 
synthesis and degradation. Gene 1 is constitutively expressed, and is repressed by 
gene 3. Therefore, its level may reach a maximal rate of increase (k

1,s
; ‘s’ stands for 

synthesis) when the level of gene 3 is 0, in which case k
1,s

 will be multiplied by 1. When the 
level of gene 3 is non-zero, the level of gene 1 rises slower than k

1,s
. Transcription of gene 

2 is activated by gene 1. This is expressed in the second equation of panel a, in which 
gene 2 level rises as a Michaelis–Menten function of the level of gene 1. Similarly, 
transcription of gene 3 is activated when both gene 1 and gene 2 levels are non-zero, and 
this relationship is given in the third equation of panel a. Degradation is modelled as a 
first-order reaction with rate constants k

i,d
 (in which ‘i’ can be 1, 2 or 3). This formulation 

assumes that every transcript is immediately translated, and therefore the synthesis 
constants k

i,s
 refer to both transcription and translation. According to simulation 

(bottom), the system stabilizes in a steady state at about 4.5 time units. The values of the 
rates in the simulations were: k

1,s
=k

2,s
=2; k

3,s
=15; k

1,d
=k

2,d
=k

3,d
=1; k

2,1
=k

3,1
=k

3,2
=1; and 

k
1,3

=100. The initial levels were all zero. Equations were solved using  DESSolver v1.7 and 
the fourth order Runge–Kutta method.
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Regulated flux balance analysis. The cell-cycle ODE 
models incorporate cell growth and division by consider-
ing the progression of regulatory processes. However, in 
reality, changes in cell mass depend on metabolic activity. 
A complete picture of cellular regulation must take into 
account metabolic reactions and their interplay with the 
regulatory layer. For example, in the lac operon, a regu-
latory protein, the lac repressor, is regulated by a metabo-
lite, lactose64. Regulated flux balance analysis (rFBA)65,66 
is a modelling approach that aims to integrate regulation 
and metabolism. rFBA is an extension of FBA67 (see 
below; for more information on FBA, see REFS 67,68). 

A major problem in using ODEs for describing 
biochemical reactions is the scarcity of experimental 
data on rate constants. FBA addresses this problem by 
assuming that the network is in a steady state and there-
fore that the total concentration of each substance does 
not change. Under this assumption, a system of ODEs 
is transformed into a system of linear equations, and its 
rates can be obtained by solving a linear programming 
problem that optimizes a certain objective function, for 
example, cellular growth. Such optimization problems 
can be solved efficiently. Further constraints are added 
to narrow the solution space. For example, the rate con-
stants are restricted according to the catalytic capacities 
of metabolic enzymes69. The method has been success-
fully used to model large metabolic networks covering 
the near-complete metabolism of several species70–72.

rFBA extends FBA by adding a layer of Boolean regu-
latory entities. For example, transcription factors that 
can be active or inactive and that can regulate enzymes 
that catalyse metabolic reactions (FIG. 3). Hence, it models 
interactions of both logical and continuous entities. The 
reactions of FBA are subjected to Boolean regulation 
functions that can set the reaction rates to zero if the  
regulatory logic dictates inactivation. For example,  
the production rate of a metabolite can drop to zero 
if the enzyme that produces it is not transcribed. The 
entities of the regulatory layer may also regulate each 
other via Boolean functions, and can also depend on dis-
cretized levels of metabolic entities. This regulation can 
be associated with a time delay. For instance, a Boolean 
entity that corresponds to a transcription factor can 
switch from 0 to 1 after a delay due to transcription and 
translation times. 

Covert and Palsson74 used rFBA to model the regu-
lation of the central metabolic network of E. coli, which 
includes 149 genes, 16 regulatory proteins, 73 enzymes, 
45 transcriptional regulations and 113 biochemical 
reactions. Growth predictions agreed well with experi-
mental measurements in 106 out of 116 combinations of 
mutant strain–growth medium (measurements included 
viability, metabolite concentrations, cell mass and gene-
expression values). A more comprehensive model that 
accounts for 1,010 genes was later introduced by Covert 
and colleagues75.

Figure 3 | Regulated flux balance analysis model. The model shown contains three regulatory genes (squares) that regulate 
a metabolic layer. Metabolites are represented by circles, and metabolic fluxes by arrows that connect metabolites. Fluxes are 
denoted as v

1
–v

8
. The objective function that must be maximized is v

7
+v

8
. The metabolic flux v

7
 regulates r

1
. If it is non-zero,  

r
1
 becomes active. Otherwise, r

1
 becomes inactive. The regulators r

2 
and r

3
 regulate the flux v

5
. When r

2
 is not active and r

3
 is 

active, v
5
 is set to zero. Otherwise v

5
 is not constrained. The regulation functions are shown. When v

5
 is not constrained, a 

maximal value of v
7
+v

8
 is obtained by fluxes of magnitude 0.2 in all reactions, except v

6
, the value of which remains 0. This is 

one of several possible solutions for the linear programming problem (they are referred to together as the solution space). 
When v

5
 is constrained to 0 by the regulatory layer, v

7
 must also become 0, and, hence, v

8
 becomes the only outgoing flux.  

The trajectory cycles through five global states. The stoichiometric matrix describes the metabolites that each reaction 
consumes and produces. The columns correspond to reactions, and the rows to metabolites. For example, the third column 
means that the third reaction consumes one molecule of metabolite 1 for each molecule of metabolite 2 that is produced.
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Barrett and Palsson76 created an algorithm that uses 
rFBA to design a series of experiments for reverse engi-
neering a regulatory network. Before every lab experi-
ment, the algorithm chooses a set of transcription factors 
that will be knocked out and two growth environments 
between which the cells will be shifted. The goal is to mini-
mize the total number of experiments. Given probabilistic 
knowledge about regulatory interactions, the algorithm 
simulates cell growth for every possible combination of 
environments and knockout sets, and selects one under 
which the largest number of novel regulatory interactions 

are most likely to occur. The lab experiment that follows 
applies the suggested perturbations and environmen-
tal shift, generates an expression profile and verifies all 
the indicated regulatory interactions using chromatin 
immunoprecipitation (ChIP). Experimentally verified 
interactions are added to the model, and the process 
can be repeated. The algorithm’s selections showed good 
agreement with the decisions of scientists in the recon-
struction of an E. coli network. A similar methodology 
was proposed77 and tested experimentally33,78 for selecting 
experiments in Boolean network reconstruction.

Figure 4 | Single-molecule level model. a | Stochastic model for a negative-feedback loop. The system contains a single 
gene, the product of which represses its own promoter. The diagram shows the different interactions between molecules, 
each represented by a different entity. For example, the transcription complex is represented by a distinct entity for every 
location of the transcription complex on the open reading frame (ORF). Arrows represent transformations of molecular 
species that occur during a reaction. The tails of the arrows point to the substrates and the arrowheads point to the 
products. For example, the dissociation of the complex RNA polymerase + promoter is represented by the two arrows 
pointing from the complex to RNA polymerase and to the naked promoter (top left). b | Two possible trajectories for the 
mRNA and protein entities of the model. In the first trajectory, a transcription event occurs, followed by a translation 
event. Next, several ribosomes initiate translation consecutively and produce two additional proteins (the model allows 
this as initiations of translation do not consume an mRNA molecule, as is depicted in panel a). At the same time, the only 
transcript degrades. The last event is protein degradation. In the second trajectory, a transcript is produced at an earlier 
time, and also degrades earlier. Three proteins are generated and then gradually degrade. At about 90 seconds, RNA 
polymerase manages to bind the promoter and produces a second transcript. Simulations performed using STOCKS 2.0 
(REF. 138). The values of the rates in seconds–1 were: 100 for elongation of transcript; 30 for elongation of the polypeptide 
chain; 1 for termination of transcription and/or translation; 0.04 for transcript degradation; 0.025 for protein degradation; 
and 0.1 for all other reactions.  Transcript size was 100, and polypeptide chain size was 30.  Initial levels were 1 promoter. 
The initial number of RNA polymerase molecules is selected from the normal distribution N(35,3.5), and the initial number 
of ribosome molecules is selected from the normal distribution N(15,3.5), and 0 for all other entities.
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The rFBA approach offers a detailed description of 
the metabolic layer and also accounts for the interplay 
between regulation and metabolism. Although the model-
ling of the regulatory layer is qualitative and less detailed 
than in other continuous approaches, this is compensated 
for by the model’s capability to infer metabolic fluxes. (For 
another example of rFBA, see REF. 79 for an analysis of the 
regulation of metabolism in yeast.) Shlomi et al. extended 
rFBA to study the regulation of metabolism in the steady 
state80. In their model a steady state is obtained by solving 
a mixed integer linear programming problem rather than 
by following a trajectory. A different constraint-based 
approach that allows analysis of the regulatory network 
in various environments was introduced by Gianchandani 
and colleagues81.

Single-molecule level models
Every biological network is composed of stochastic com-
ponents, and therefore it may manifest different behav-
iours, even starting from the same initial conditions82,83. 
When the number of involved molecules of each species 
is large, the law of mass action46 can be used to accurately 
calculate the change in concentrations, and little or no 
stochastic effect is observable. However, when the number 
of molecules is small, significant stochastic effects may 
be seen (FIG. 4). This is particularly true for regulatory 
networks, in which the number of regulatory molecules 
is often low84–87. Recently, single-cell experimental assays 
demonstrated the stochastic behaviour of the processes 
of transcription88–90 and translation89,91,92. Here we present 
models that incorporate the stochastic nature of regu-
lation by accounting for the fluctuations that occur on 
the molecular level (reviewed in REF. 93).

Gillespie’s stochastic simulation algorithm. McAdams 
and Arkin94 showed that fluctuations in time intervals 
between biochemical reactions, and consequently in the 
occurrence times of regulatory events, can be expressed 
by a model that follows biochemical reactions at single-
molecule resolution. The model is based on Gillespie’s  
stochastic simulation algorithm (SSA)95,96. SSA takes as 
input the initial number of molecules of several species (for 
example, mRNAs and proteins) and reaction-probability 
constants, and simulates the dynamics of the system, reac-
tion by reaction. A reaction probability is the probability 
that the necessary combination of specific molecules will 
participate in that reaction in an infinitesimal time inter-
val. For example, consider the phosphorylation reaction: 

Kinase–phosphate + target  kinase + target–phosphate
c1

The reaction probability c1.dt is the probability that a 
specific kinase molecule will phosphorylate a specific 
protein molecule in the infinitesimal time interval dt. 
Gillespie has shown how reaction probability constants 
can be derived from deterministic reaction rates.

The basic assumption of the algorithm is that the sys-
tem is ‘well stirred’ — that is, that each molecule always 
has an equal chance of being anywhere in the system’s 
volume. This assumption applies, for example, if most 
of the collisions between molecules are non-reactive. 
Although it overlooks some biological processes that 
affect regulation, such as diffusion97 and transporta-
tion98,99, the algorithm proved useful in describing the 
time evolution of several small regulatory networks and 
mechanisms100–104. BOX 1 provides an example of how SSA 
can be used to analyse a biological system.

Approximations to SSA. Although Gisbon and Bruck 
introduced a way to speed up SSA105, SSA still requires 
extensive computational resources because it simulates 
every individual reaction. Consequently, SSA is not ideal 
for modelling large-scale networks. Therefore, researchers 
further modified SSA, sacrificing a certain level of detail 
for the sake of faster simulation.

-leaping is a variation of SSA that trades accuracy for 
efficiency106. Instead of generating every single reaction, 
-leaping ‘leaps’ over a time interval of size  and randomly 

selects the number of reactions of each type that occurred 
in this interval. Gillespie suggested106 a procedure for 
selecting  that was later improved and implemented as 
part of a stochastic simulation toolkit107 (REF. 97 describes 
in detail different SSA approximation methods). When 
some of the reactions can be described using ODEs, a more 
efficient strategy is to separate reactions into two regimes:  
discrete and continuous (see, for example, REFS 108, 

109). The integration algorithm of E-Cell version 3 (see 
Supplementary information S1 (table)) combines multiple 
stand-alone algorithms (for example SSA and a numerical 
ODE solver110). The use of effective reactions, which amal-
gamate several simple reaction steps into a single complex 
step, is a method for abstraction and increasing simulation 
speed111,112. Reaction steps can also be eliminated by apply-
ing a steady state assumption113. Additional approximation 
methods are described in REF. 93.

 Box 1 | Stochastic simulation of phage  development

Phage  is a bacteriophage that infects Escherichia coli cells. A network of regulatory 
interactions between phage molecules determines if the phage selects the lysogenic 
pathway or the lytic one137. When a phage chooses the lytic pathway, the concentration 
of the Cro protein in the host is relatively high and the concentration of the CI protein 
is relatively low. If the lysogenic pathway is chosen, the opposite is true. McAdams and 
Arkin simulated the pathway-decision process by using an stochastic simulation 
algorithm (SSA) under several simplifying assumptions (for example, that the host’s 
housekeeping molecules are present in constant concentrations)104. Their model 
defined 26 reaction types, 40 parameters and 18 molecular species (not including 
complexes). For example, elongation of a polypeptide chain is a single reaction with 
the same rate for all amino acids. They view the DNA as one species, although the 
position of RNA polymerase affects transcription rate, and consider the translation of 
any mRNA transcript by the ribosome as a single reaction type. The simulations showed 
that the trajectories of CI and Cro concentrations may vary substantially as a result  
of the intrinsic stochasticity of the system. Furthermore, the fraction of lysogens as a 
function of the average number of phages per host was in good accordance with 
experimental data.

This work demonstrated, for the first time, that a real regulatory network can 
generate profoundly different trajectories due to stochasticity. Subsequently, 
Weinberger et al.103, on the basis of experiments and simulations, proposed that a 
positive-feedback loop created by the Tat protein and affected by stochasticity 
generates fluctuations in latency time. Schultz et al.102 used SSA to explain the 
transition between vegetation and competence in Bacillus subtilis. Gonze and 
Golbeter100 investigated the effects of noise on circadian clocks and the conditions 
that promote their robustness. More efficient methods are needed to carry out 
simulations of larger networks.
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Lower Higher
Level of detail

Lower Higher
Faithfulness to biological reality

Smaller Larger
Amount of data needed for modelling

Lower Higher
Ability to model dynamics

Larger Smaller
Size of implemented models

Higher Lower
Speed of analysis

Higher Lower
Ability to perform inference

Boolean networks Petri nets

MetaReg rFBA ODEs
Approximations
to SSA

Linear differential
equations

SSA

Logical Continuous Single-molecule level

Summary
The introduction of novel and powerful experimental 
methods for studying gene regulation has created an 
upsurge of interest in modelling regulatory networks. 
In this article, three approaches to modelling were high-
lighted and some representative examples were discussed. 
We also discussed key differences among these approaches 
and rules of thumb for selecting an appropriate model 
(FIG. 5). Available modelling tools from each approach, 
as well as relevant databases, are listed in Supplementary 
information S1 (table).

A model’s quality can be assessed by how similar 
its predictions are to experimental data. If two models 
generate predictions that match the same data equally 
well, then the simpler model is preferable, because it can 
be better understood and is less prone to over-fitting. 
When available observations are qualitative in nature, 
logical models can be accurate and have the advantage 
of having a modest number of global states. This enables 

more intuitive and efficient analysis methods. When 
data include real-valued measurements, such as time74 or 
space55,114, real-valued predictions can be more accurate. 
In addition, the simplified dynamics of logical models 
are often less appropriate for the complex behaviours that 
generate such measurements, and this motivates the use 
of continuous models or models that combine logical and 
continuous approaches.

The stochastic nature of gene expression influences 
the dynamics of regulatory networks, and this aspect 
is usually not modelled by continuous approaches115. 
Single-molecule level models are the most detailed and 
can explain stochastic behaviour in several scenarios. 
While accounting for the full complexity of gene regu-
lation, single-molecule level models are also the hardest 
to study analytically, and stochastic experimental data are 
currently very scarce.

Limited availability of reaction rate constants and 
incomplete understanding of gene regulation are major 
impediments for building accurate models. In this respect, 
lower model resolution is an advantage, as it requires 
fewer parameters and less detailed understanding of the 
regulatory mechanisms116–123. Analytical methods that 
cope with these problems were developed for logical and 
continuous models, and some of these were presented 
above. As a brute force alternative, the space of potential 
parameters can be scanned for certain dynamic behav-
iours, provided that the model is both computationally 
simple and has a sufficiently small number of global 
states. For example, one study103 searches the parameter 
space of a continuous model and derives molecular level 
parameters from results. Another problem associated 
with building accurate models is that experimental data 
are usually derived from a population of cells that needs to 
be synchronized124. The mean behaviour of a population 
(for example, as measured by gene expression) does not 
always exhibit fluctuations that can be observed at a single 
cell level. In such cases, the accuracy of deterministic and 
stochastic approaches is equally limited.

Despite substantial progress in modelling regulatory 
networks over the past decade, nature’s design of regula-
tory networks confronts us with many open questions. 
Although it is clear that structure alone does not deter-
mine network dynamics125,126, the role of different network 
architectures in generating dynamic behaviours127,128, and 
the evolutionary processes that produced them, are far 
from understood. And, what is the effect of noise on 
regulatory networks? General strategies for overcoming 
stochastic effects are known82, but a large-scale quantita-
tive study has not yet been performed. Stochastic effects 
can also give rise to evolutionary advantages in a popu-
lation by creating diversity129,130. Characterization of the 
beneficial role of stochasticity remains a future challenge. 
Notably, stochastic effects have been extensively studied 
in other types of dynamic biological systems, including 
population genetics and theoretical ecology131–134.

Our current picture of how regulation is carried out is 
probably still missing several significant pieces. More exper-
imental work is needed, and we must incorporate results  
into improved network models. Experimental design  
approaches76–78 will help us to select the most efficient  

Figure 5 | A schematic comparison of regulatory network models. Models are listed 
along an imaginary scale, in which the level of detail of the models decreases, and the 
amount of detail increases, from left to right. Several pertinent criteria are indicated 
below the scale. Boolean networks are the purest form of logical models. They are 
highly abstract and hence require the least amount of data, but at the same time can 
display only qualitative dynamic behaviour. MetaReg is closer to biological reality 
because it can express intermediate regulator concentrations and accommodate 
probabilities, but requires more knowledge about the network and is limited to analysis 
of steady states. Petri nets can reveal finer detail to metabolic and signalling networks, 
and can therefore be used to describe integrated regulatory and metabolic/signalling 
networks and handle some dynamics. The analysis Petri nets offer is still qualitative. 
Regulated flux balance analysis (rFBA) produces metabolic predictions that can be 
compared to experimental measurements, but requires biochemical knowledge and is 
more challenging to analyse. Linear differential equations can model and predict 
experimentally observed concentrations of regulatory entities, and possess more 
detailed dynamics than the former models. General ordinary differential equations 
(ODEs) are more consistent with biochemical mechanisms than linear ODEs, but are 
harder to analyse. Single-molecule level models, the most detailed, can capture 
stochasticity, but are computationally expensive. To deal with this computational 
burden, approximations to stochastic simulation algorithms (SSAs) were developed, 
which sacrifice some detail for better performance. Methods that infer particular 
properties (not shown) can fall anywhere on the left half of the scale, depending on  
the properties of the chosen model. 
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set of experiments. In addition to understanding regu-
lation as a stand-alone process, models for the interplay 
of regulation with other processes, for example meta-
bolism and cell–cell signalling, need to be created135,136.  

The benefits of accurate, large-scale regulatory network 
models for medicine and biotechnology provide a strong 
incentive for cooperation between experimentalists and 
computational scientists.
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Abstract

Background: Mathematical modeling of biological networks is an essential part of Systems Biology. Developing
and using such models in order to understand gene regulatory networks is a major challenge.

Results: We present an algorithm that determines the smallest perturbations required for manipulating the
dynamics of a network formulated as a Petri net, in order to cause or avoid a specified phenotype. By modifying
McMillan’s unfolding algorithm, we handle partial knowledge and reduce computation cost. The methodology is
demonstrated on a glioma network. Out of the single gene perturbations, activation of glutathione S-transferase P
(GSTP1) gene was by far the most effective in blocking the cancer phenotype. Among pairs of perturbations, NFkB
and TGF-b had the largest joint effect, in accordance with their role in the EMT process.

Conclusion: Our method allows perturbation analysis of regulatory networks and can overcome incomplete
information. It can help in identifying drug targets and in prioritizing perturbation experiments.

Background
In contrast to the gene-centric approach, systems biol-
ogy [1] emphasizes the importance of the interactions
between different genes in determining the phenotype.
Instead of asking “what is the role of gene A”, the ques-
tion becomes “what is the role of gene A in system B”.
The activity (or inactivity) of a gene is therefore not
viewed as an isolated event, but assigned a meaning in
the context in which it is active. An analogy from the
sphere of computer science equates the genome to a
database, and the system’s dynamic behavior to the
execution of a computer program that uses the database
[2-4]. This paradigm shift has two major implications
for the biomedical community. First, it complicates
understanding cellular processes as each component
must be considered with respect to its environment.
Second, the fact that alternative phenotypes correspond
to alternative dynamic behaviors of the system offers
considerable advantages, because it is technically easier
to influence the dynamics of a cellular network than to
modify the information coded in the genome.

Combining computational tools, which can help over-
come the complexity of biological networks, with wet
lab testing can spearhead system-oriented research. In
this paper we present a method that was developed with
this principle in mind. Focusing on gene regulatory net-
works, we develop a method to find minimal perturba-
tions that change the network dynamics. By modifying
established network analysis algorithms from the field of
computer science, we are able to cope with some of the
difficulties commonly associated with this objective.
An important tool for network analysis that will be

used in this work is network perturbation. A common
procedure in model analysis, it refers to applying a mod-
ification of the network and observing its resulting
dynamic behavior. Knockout, knock-down or overex-
pression of a gene in the network are examples of possi-
ble perturbations. The exact type of perturbation varies
with the model and the goals of the modeler. In some
cases the motivation is to observe how single entities
respond [5,6], while in others it is to determine network
robustness [7] or change in the global state [8,9]. For
example, Sridhar et al. [10] find enzymes whose inacti-
vation eliminates compounds from a metabolic network.
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The implementation of a perturbation for our purposes
is described in the Methods section.
A related concept in theoretical computer science is

Minimal Cut Sets [11]. In reliability theory, network ele-
ments (e.g. edges) have a failure probability (e.g. an elec-
tronic component that has a chance for malfunction). A
network is called reliable if a set of paths within it con-
nect a given subset of vertices, and the joint probability
of the paths is above a given threshold. A minimal cut
set is the smallest set of elements whose removal from
the network makes the network unreliable. Network
reliability shares some important similarities with the
concepts proposed in this work, as we also associate the
existence of non-existence of network elements with
probabilities. A main difference between the two
approaches is that identification of minimal cuts sets is
a method for analyzing a network via its structural
properties. In contrast, our analysis will address the net-
work dynamics and hence will be based on the concept
of trajectories, as explained below.
Our first modeling choice will be to model the net-

work’s regulators as discrete entities, an approach that
proved effective in previous genetic regulatory network
(GRN) analyses [7,12-16]. This level of abstraction
reduces the need of the modeler to provide fine details
[17], while being detailed enough to capture the main
features of the GRN dynamics and render them easier
to analyze. In addition, the abstraction lends itself to the
development of effective methods for incorporating
uncertainty in the regulatory functions [18-22]. The glo-
bal state of a network is defined as a vector whose
entries are the local states of all the network’s compo-
nents. The network traverses from a certain global state
to another in discrete time steps as a result of the activ-
ity of regulation functions. We assume that regulation
functions act in an asynchronous manner: that is, that
at each time step any regulation function can occur,
provided its output changes the global state. A trajectory
is a sequence of global states that the network can tra-
verse in sequence.
Given a set of trajectories T and a set of global states

S, S is called a phenotype of T if every trajectory in T
visits only states of S. Similarly, S is called a prohibited
phenotype of T if no trajectory in T reaches any state
in S. We say that a network N has a phenotype S
(avoids a phenotype S) with respect to a global state g
if the set S is a phenotype (prohibited phenotype) of the
group of trajectories that the network generates starting
from the initial state g. The following question can now
be formulated: “How can the network dynamics be
manipulated in order to generate or avoid a specific
phenotype?” Answering this question has important
practical implications, such as promoting the discovery
of novel drug targets [23-25] or the design of synthetic

biological systems [26,27]. Therefore, it is desirable to
have a systematic way to answer the question for differ-
ent networks under different conditions.
This is quite difficult, even under the simplified dis-

crete model of GRNs: first, model dynamics can be
highly complex, and second, experimental methods give
only indirect clues about the network design. The sec-
ond problem makes it difficult to construct models for
networks that have not been extensively studied, espe-
cially when the number of participating entities is large.
As for the complexity of network dynamics, consider
the simple example of a network of n genes where each
gene is regulated by some of the others. Assuming that
a gene can be in one of two states, ON or OFF, the net-
work can assume 2n different global states. For ten
genes, this results in over one thousand states. For
twenty genes, there will be over a million states. Hence,
it is possible that from some initial states the network
will traverse an exponential number of states. Even this
scenario is a simplification, because it assumes the net-
work is known with perfect accuracy, which is seldom
true. We will address these problems in the following
sections.
In this study, given some initial states of the system

and a desired phenotype, we will determine how a net-
work should be perturbed in order to generate that
phenotype, where a perturbation sets the level of one
or more entities and thus changes the network’s tra-
versals between global states. In order to apply our
algorithm efficiently to the Boolean model, we trans-
late the network into a Petri net [28], and utilize
McMillan’s unfolding algorithm [29] to search the
state space of a perturbed network. When the struc-
ture of the network is not fully known, we assign prob-
abilities to alternative structures, redefine a phenotype
probabilistically, and generalize our method to handle
this case. To the best of our knowledge, this is the first
method that integrates the trajectories of multiple
alternative network structures, an important objective
given the quality of current knowledge about biological
networks. We demonstrate this methodology on the
human glioma GRN.

Results
Algorithm
Our model represents each gene by a distinct entity
that can take one of two levels: level 1 means a gene is
expressed and level 0 means it is not. The levels of
genes are controlled by Boolean regulation functions,
which can have any of the other genes (and even the
gene itself) as inputs. The initial global state of the
model is a vector that assigns an initial level to each
gene. Starting from the initial state, the global state of
the network can change in discrete time steps, where
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one regulation function is activated at each step. In
other words, regulation functions can act in any order,
and not all at the same time. This means that there
can be more than one trajectory per initial global state.
Figure 1A illustrates the model with a simple GRN.
We first give a description of our algorithm, followed

by its implementation using Petri nets. The algorithm
takes as input a network model, the network’s state
graph, a set of initial states A, and a group of states B.
It outputs all the minimal perturbations that cause the
network to have phenotype B with respect to every state
in A.

Given a GRN N, its state graph is a directed graph G
(V,E) whose nodes are global states of N. In G there is
an edge (a ,b) if and only if there is a regulation func-
tion f that can act in state a and lead directly to state b.
The label of (a,b) is the function f. Note that several
labels are possible on the same edge if it is a self loop.
Figure 1 illustrates a simple GRN and its state graph.
We define two operations on a network: An activa-

tion of a gene causes the gene to stay fixed on level 1.
For example, if we activate gene B in Figure 1C, the net-
work dynamics will lead to the endpoint state 111. Simi-
larly, a repression of a gene causes the gene to stay

Figure 1 A simple GRN and its state graph. A: A simple GRN. The network contains three entities, A, B and C. Entities A and C regulate entity
B, B regulates C, and C regulates A. Each table shows the level of the regulated gene when its regulation function acts, depending on the
regulators’ levels. B: The state graph of the GRN. Nodes correspond to global states (with coordinates A, B, C from left to right), and edges to
transitions between these states. The labels on the edges show the regulation functions that cause this transition. C: The restricted state graph
starting from the initial state 000. Only states that are reachable by transitions from 000 are shown. For simplicity, self loops are not shown.
Sequences of state traversals that follow from the initial state can be cyclic (return to the same state) or can lead to the endpoint state 111.
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fixed on level 0. In Figure 1C, repressing gene A will
result in cyclic behavior that will lead back to the initial
state. Self loops in the state graph are meaningless
under these definitions, and therefore are omitted.
The biological means of activation and repression vary

depending on the mechanisms of regulation [30-32].
Common examples are knock-down, overexpression,
and addition of inhibitors and activators, but less stan-
dard examples can be thought of, such as insertion of
artificial entities [33] or de-novo network design [26].
A network perturbation is a set of operations (activa-

tions and/or repressions) on genes. The maximal
allowed size k of a perturbation P is assumed to be a
small constant. An edge in the state graph contradicts
perturbation P if it leads to a state in which an activated
gene is at level 0 or a repressed gene is at level 1.
Let A and B be two groups of states in the state graph

G, such that A ⊆ B. We want to find a minimal pertur-
bation such that the network has phenotype B with
respect to every state of A. Assuming that k is constant,
the following algorithm runs in time polynomial in the
size of G

1. For i = 0,...,k do
For every possible perturbation set P of size i, do

i. Modify the group A according to P; i.e. set
the level of activated genes to 1 and the level
of repressed genes to 0.
ii. Add a node s and connect it by outgoing
unlabeled edges to all the nodes of group A.
iii. Add a node t and connect each node of
group B to it using outgoing unlabeled
edges.
iv. Create a modified graph G’ from G by
removing all edges that contradict operations
in P.
v. If there is no path from s to t, output the
set P and stop.

2. If this step is reached, then there is no solution of
size ≤k.

If one is interested in all the minimum solutions, then
instead of halting after finding the first good perturba-
tion of size i, halt only after enumerating all perturba-
tions of size i. If B is a prohibited phenotype then step
1a(iii) should be changed: the node t should be con-
nected to B instead of B .
The running time on a state graph G = (V,E) is O(2k‧

nk‧(|V|+|E|)), where n is the number of entities in the
GRN: the creation of G’ and searching for paths in it
can be accomplished by a BFS, and the loop occurs O
(2knk) times. Hence this algorithm is practical if we
assume that G is not too large. However, since |V| = 2n,

only very modest sized GRNs can be directly solved this
way in practice.
To address this complexity problem, we will formulate

our problem using Petri nets and present a methodology
that copes better with the state explosion problem.
Petri nets are a modeling formalism that has been

used to model different types of biological networks
[34-40]. A Petri net is a bipartite graph composed of
two sets of nodes: places and transitions (see Figure 2A).
The transitions set contains nodes that represent dis-
crete events that can occur concurrently. The places set
represents network entities. Transitions and places are
connected by directed edges that represent interactions
between network entities. The places having an edge
into (from) a transition are called its preset (postset)
places. The global state of the network is given by a dis-
crete assignment of tokens to different places (the level
of each entity), and is referred to as marking. For exam-
ple, the network in Figure 2A has three places, and the
marking in I assigns one token to each of the place p1
and p2 and zero tokens to p3. Tokens can be consumed
and produced by transitions. The rule that determines
token consumption and production is called the firing
rule, and it allows a transition to fire (consume and pro-
duce tokens) if every one of its preset places contains a
specified amount of tokens. When fired, a transition
consumes these tokens and produces a set number of
tokens to every one of its postset places. See Figure 2A
for an example.
Reddy et al [41] introduced the use of Petri nets in the

context of systems biology. Later, Chaouiya et al. [42]
suggested a methodology for translating Boolean regula-
tory networks into Petri nets, which we adopt. Addi-
tional examples of modeling GRNs with Petri nets are
refs. [43-45]. Translating the network to this framework
has the advantage of a rich literature on techniques for
analyzing the dynamics of Petri nets. In addition, Petri
nets are suitable for describing other types of biological
networks, such as GRN models with additional meta-
bolic and signaling layers.
McMillan’s unfolding algorithm [46] is a method for

dealing with the state explosion problem for Petri nets.
A full description of the unfolding algorithm can be
found in ref. [47]. Briefly, given an initial state, McMil-
lan’s algorithm gradually and implicitly records the
states reachable from it by constructing a directed graph
called a branching process. A branching process graph
begins with places that correspond to the initial marking
of the Petri net, and transitions that are added to it can
consume from these places and produce new places,
thereby representing consumption and production of
tokens. A transition can consume only from places that
do not belong to conflicting firing sequences, i.e. firing
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sequences that cannot occur concurrently. Thus, addi-
tions of new transitions preserve the acyclic property of
the branching process graph, and ensure that it repre-
sents only feasible firing sequences (Figure 2B). Refs.
[46,47] provide excellent illustrations of the algorithm’s
capacity to reduce the search space on larger network
instances.
Every reachable marking has a subset of transitions in

the branching process graph that correspond to the fir-
ing sequence that generates it. These subsets are called
configurations. For a transition t, the set of transitions

from which there is a directed path to t is referred to as
t’s local configuration (denoted [t]), and is associated
with a marking. The marking of [t] is the marking
obtained by firing all the transitions that belong to [t].
In the GRN representation that we adopted, every

entity e corresponds to two places: one represents its
active level and the other represents its inactive level.
The firing rules are set so that exactly one of the places
is marked at any time, i.e. each pair is place invariant 37.
These places will be called the active and inactive places
of the entity e. Figure 3 illustrates this concept.

Figure 2 A Petri net and its unfolding. A: A Petri net and its unfolding. The net contains ‘places’ (light blue circles), the model’s entities, and
‘transitions’ (rectangles), which constitute the regulation functions and define the model’s dynamics. Arcs connect input places to transitions,
and transitions to their output places. Places that receive discrete values are called tokens (blue dots). A transition that is activated, or ‘fired’,
reduces the tokens in its input places and increases the number of tokens in each of its output places. At any time step, every transition that
has enough tokens in its input places may be fired. In the example, every transition consumes one token from every input place, and produces
one token at every output place. Labels next to thick arrows indicate which transition fired. Transitions t1 and t3 can be fired in alternation
indefinitely, whereas no other transition can be fired after t2 has fired. B: Unfolding of the Petri net. Transitions are represented by rectangles,
places by circles. The two places p1 and p2 that have tokens in the initial marking in state I are the input-less places of the unfolding. The local
configuration of t2 at layer 2 corresponds to the marking 010, i.e. the marking in which only p2 contains a token, corresponding to II in Figure
2A. The local configuration of t3 corresponds to the firing of t1 followed by t3, and to the marking 110, i.e. the initial marking. The instances of t1
and of t2 at layer 6 are cutoff points, since their local configurations’ markings are already represented by other local configurations. The graph
constitutes a branching process.
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The unfolding algorithm can produce a much smal-
ler graph than the complete state graph. The following
preprocessing to the algorithm spans all the states that
are reachable from a given initial state under a pertur-
bation P:

1. For every activated entity e in P, set a token in the
active place of e.
2. For every repressed entity e in P, set a token in
the inactive place of e.
3. Remove all transitions that have edges outgoing to
places contradicting P.

When there are several initial states, a branching pro-
cess graph is generated for each initial state.
The above algorithm requires full information about

the GRN model. Since this is usually not the case, we
now address the handling of ambiguities in the GRN
logic. Consider a network in which every gene can
have several alternative regulation functions, each

associated with a probability that it is the true regula-
tion. The events corresponding to the true regulations
of different genes are assumed to be independent.
Hence, the probability of a trajectory is the product of
the probabilities of the regulation functions involved in
it. Given a parameter a, 0 ≤ a ≤ 1, the definition of a
phenotype can now be extended as follows: A network
has a phenotype P with respect to a set of initial states
if every subset S of regulation functions that has prob-
ability ≥a generates only trajectories that remain in P.
Note that if the condition holds for S it will hold also
for every S’ ⊆ S, which can have higher probability.
This definition induces a distribution of all alternative
networks into layers. The top layer contains networks
with probability ≥a. Sets of networks with lower prob-
abilities belong to lower layers, each layer correspond-
ing to a different probability. The lowest layer has
probability aN, where N is the number of entities.
Higher layers have lower capacity because there can be
less networks with high probability than networks with

Figure 3 Petri net representation of a Boolean entity. In this example gene 2 inactivates gene 1. Each of them is represented by two places
in the Petri net. The upper (lower) part of the figure shows the Petri net before (after) the transition fires. When gene 2 is active, it inactivates
gene 1. Therefore, the transition consumes a token from the active place of gene 1, and produces a token to its inactive place. The transition
also consumes a token from the active place of gene 2, and produces a token to the same place. The latter consumption and production
express the fact that gene 2 needs to be active in order to inactivate gene 1, but the inactivation itself does not change the level of gene 2.
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low probability (as all probabilities must sum to 1). For
networks in the top layer we examine every possible
trajectory - this follows from the definition of probabil-
istic phenotype, since the full set of regulation func-
tions of these networks has probability ≥ a. As we
descend in the hierarchy, layers have greater capacities
and contain networks of lower probabilities. For every
such network we examine only trajectories that are
generated by strict subsets of their regulation func-
tions, because the full sets of regulation functions of
these networks have probability <a. In other words, in
lower layers we still follow the dynamics of every net-
work, but to a lesser extent than in higher layers, and
so each structure has an influence on the phenotype in
proportion to its probability.
Similarly, a network has a prohibited phenotype P

with respect to a set of initial states if every subset S of
regulation functions that has probability ≥a does not
generate any trajectory that leads to P.
A naïve way to test for a probabilistic phenotype

would be to repeat the non-probabilistic algorithm for
every set of regulation functions with probability >a.
However, the number of such sets grows exponentially
with the number of entities that have more than one
regulation function. More specifically, assume that there
are n genes and every gene has k alternative regulation
functions. For each gene, a set can specify one of the k
regulation functions or leave that gene unregulated,
i.e. not commit to a specific function. This gives rise to
(k+1)n alternative sets of regulation functions. If k is
constant, the expression is exponential in n. Next we
discuss how to modify the unfolding algorithm to test
for a probabilistic phenotype.
Since we translate a regulatory network into a Petri

net, every transition of a configuration C in the branch-
ing process graph corresponds to a regulation function
(recall that in the probabilistic setting, one gene may
have several regulation functions). Denote by !(C) the
set of regulation functions that are represented by the
transitions of C. Note that if C contains a single regula-
tion function for each entity, the size of !(C) is at most
the number of entities in the model. Denote by !’(C)
the subset of !(C) that contains only regulation func-
tions with probability <1.0. We say that !’(C) is unam-
biguous if it does not contain two regulation functions
that regulate the same entity.
A key concept in the original unfolding algorithm is a

cutoff point; it is a transition t whose local configuration
[t] is associated with a marking that is also associated
with some other local configuration [t’] that contains
fewer transitions. At cutoff points one can prune redun-
dant branches in the constructed branching process
graph. Given such a pair of transitions t and t’, we mod-
ify McMillan’s cutoff criterion to handle probabilities by

adding another condition that must hold for t to
become a cutoff point:

Cutoff criterion 1: !’([t’]) ⊆ !’([t])

In addition, we make sure that each local configura-
tion is unambiguous by keeping track of the functions
that have been utilized in it, and allowing a transition t
to fire from C only if !’(C ∪ {t}) is unambiguous.
Finally, in order to save time and space, we add

another cutoff criterion to the algorithm

Cutoff criterion 2:

A transition is a cutoff point if the product of the
probabilities of regulation functions that are used in its
local configuration is <a.
Note that since we tightened the cutoff criterion, the

size of the branching process graph can become larger
than in McMillan’s algorithm.
Theorem 1: The modified version of McMillan’s algo-

rithm maintains:

1. For a phenotype P: If there is a set of regulation
functions F with probability ≥a that generates a tra-
jectory that does not remain in P, then such a trajec-
tory will be represented by a configuration C in the
branching process graph and !’(C) ⊆ F.
2. For an avoided phenotype P: If there is a set of
regulation functions F with probability ≥a that gen-
erates a trajectory that leads to P, then such a trajec-
tory will be represented by a configuration C in the
branching process graph and !’(C) ⊆ F.

The proof is provided in the Appendix. Given that the
theorem holds, we simply need to construct the branch-
ing process graph and test for such a configuration C in
order to verify that a phenotype is maintained or
avoided.

A Test Case
Shmulevich et al [48] constructed a probabilistic model
of a small autonomous subnetwork of genes based on
human glioma gene expression data [49] obtained for
588 known genes, in tissue samples with differing levels
of glioma severity. The inferred network was used for a
Probabilistic Boolean Network (PBN) simulation [50] by
Akutsu et al. (The probability of a regulation function is
the sum of coefficients of determination (CODs)
between expression levels of each of its input genes and
the output gene divided by the sum of CODs of the
expression level of the output gene and all its potential
regulators [48].) In view of its intriguing dynamic beha-
vior and biomedical relevance, we used that network
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model to test our minimum perturbation set algorithm.
After removing a gene that had no regulators, 14 enti-
ties remained, each associated with 1-3 regulation func-
tions. When there is more than one function for an
entity, the functions are assigned probabilities that add
up to one. Six genes have a single regulation function,
seven genes have two alternative regulation functions,
and one gene has three possible regulation functions. A
description of the logic functions appears in ref. [50]
We transformed this network into a Petri net (Figure

4), and applied our algorithm to find minimum pertur-
bations from 1000 random initial states. The initial
states were tested in this way because the “biologically
correct” initial states cannot be derived from current
knowledge. Moreover, since the glioma network is mani-
fested in dividing cells that constantly redistribute their
molecular contents, it is not unrealistic to assume a
variety of initial states.
We defined the prohibited phenotype S of the network

as where as the set of global states in which the gene Tie-2
for the receptor Tie-2[51] and the gene GNB1 for the
human G-protein beta subunit [52] are both expressed
(see Figure 4). The set S was selected following reports
that vasculogenesis, an important phase in tumor progres-
sion, is initiated by a signal to the receptor Tie-2 that is
propagated through a G protein [53,54]. Since repression
of either Tie-2 or GNB1 is a trivial solution, these genes
were excluded from the perturbations tested. Similarly,
initial states in which both Tie-2 and GNB1 are active
were excluded from the set of possible initial states,
because there is trivially no solution from these states. The
parameter a, which determines the least probability of a
trajectory that will be explored - and hence the running
time of the algorithm, was set to 0.05.
Figure 5 shows the distribution of solution sizes

found. In about 0.5% of the initial states the phenotype
is avoided without any perturbation. Perturbations of
size 1 cause the network to avoid the phenotype in
about 65% of the initial states, and perturbations of size
2 and 3 are needed in the remaining cases.
Figure 6 shows the frequency of perturbations of differ-

ent sizes. It should be pointed out that when there are sev-
eral perturbations of the minimal size, all of them are
found. As can be seen in the figure, the number of pertur-
bations that provide minimal solutions is much smaller
than the total number of possible perturbations. The acti-
vation of the gene GSTP is by far the most abundant
operation in size 1 perturbations. The probability that all
the operations that appear at least once in size 1 perturba-
tions are equally likely is 0.0001 (Χ2 test, 14 degrees of
freedom). In addition, in contrast to other genes, GSTP is
only activated and never repressed. Reassuringly, these
facts are consistent with experimental observations [55]

• Mice deficient in GSTP are viable, fertile, with life
spans essentially similar to animals not deficient in
the gene. However, they show an enhanced suscept-
ibility to carcinogen-induced skin papillomas.
• The absence of GSTP increases the activity of
stress kinases, which results in changes in gene
expression that enhance cell proliferation pathways.
• Hypermethylation of the GSTP regulatory region is
a common somatic alteration identified in human
prostate cancer. This alteration results in the loss of
GSTP expression and is proposed to occur during
pathogenesis of the disease.
• In the latter case it was suggested that there could
be therapeutic value in restoring GSTP activity,
although it has not been tried.

Our results are consistent with these observations.
They single out the activation of GSTP as an operation
that blocks tumor progression.
In initial states where no size 1 perturbation suffices,

GSTP does not participate in a perturbation. This is
consistent with the observation that GSTP is often
highly expressed in cells that have already turned
malignant.
There are four common perturbations of size 2. All of

them include repression of natural killer enhancing fac-
tor B, accompanied by activation of one of BCL2A,
TGF-b, NF!B, or Beta-Actin. The first two operations
are associated with repression tumor cell death, while
the latter three are associated with constant induction of
cell migration.
The most common perturbations of size 3 are activa-

tion of both TGF-b and NF!B or repression of these
entities in addition to activation of the entity BCL2A1.
These results can be understood in the context of the

stages of glioma progression Zagzag et al. distinguish
three stages that precede the formation of new blood
vessels.

a. In the first stage tumor cells migrate and adhere
to existing blood vessels. Huber et al. concluded that
NF!B, at least in part, substitutes for TGF-b in the
process of EMT, which is essential for tumor
migration.
b. In the second stage of tumor progression, blood
vessel cells undergo apoptosis, and the nearby tumor
cells undergo necrosis. Breaking cell-to-cell adhesion
is thought to be a trigger for the apoptotic process.
Disrupting cell migration or preventing apoptosis
may halt the regulatory program at the second stage.
c. In the final stage, new blood vessels are formed.
The initial states that correspond to this stage are
included in the prohibited phenotype.
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Figure 4 The glioma network. Genes (ovals) and their alternative regulation functions (rectangles) are bordered by frames of the same color.
Ovals contain the name of the relevant human gene, following the nomenclature in [48]. Rectangles contain the name of the regulation
function [49]. Regulation functions are connected by directed edges to the gene they regulate. Regulators are connected by directed edges to
the regulation functions in which they are involved. The figure was generated using Cytoscape [59]. The bold arrows indicate the two entities
that constitute the prohibited phenotype (see text).
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Thus, the combination of anti-apoptotic signals in
addition to setting of cell migration signals in size 2
and size 3 perturbations may correspond to blocking
of apoptosis and disrupting the formation of blood ves-
sels, and halting the regulatory program at the second
stage. The most common size 1 perturbation may cor-
respond to prevention of the first stage of tumor
progression.
We interpret our findings in light of existing experi-

mental data as follows: GSTP can prevent the initiation
of the vasculogenesis program. In later stages it is no
longer effective, but other genes can be disrupted in
order to halt this program, depending on the stage of
vasculogenesis - the later the stage the larger the pertur-
bation that is needed.
All executions were performed on x86 64 bits

machines with Pentium IV or Zeon processor and at
most 2 GB RAM. Jobs were run in a time-sharing envir-
onment and therefore the running times are only an
upper bound. The program code was written in C. After
12 hours, 70% of the jobs finished. Since the rest of the
jobs required more than 24 hours, we used only those
70% that concluded early in our analysis.

Discussion
System-level analysis presents researchers with new
challenges and at the same time offers new opportu-
nities for better understanding of the biology. The com-
plexity of reconstructing biological networks and
analyzing their dynamics makes computational tools
essential for system-level approaches [56,57]
We have described a computational method that

determines the minimum size perturbations required for
obtaining (or avoiding) a specific phenotype. Because
the function of genes depends on the global context in
which they are active - the state of the system - the

phenotype cannot be represented by the activity or inac-
tivity of a single gene, but rather by the global state of
the network. We therefore defined a phenotype based
on network dynamics as a set of global states that must
be preserved (or avoided), and designed an algorithm
that follows this definition. The method was implemen-
ted for a probabilistic Boolean model, and was demon-
strated on a glioma network.
We showed that two major problems in network ana-

lysis, namely state explosion and partial knowledge, can
be alleviated by translation to Petri nets and extensions
of the unfolding technique. Our method demonstrates
the power of computational analysis of the network’s
dynamics. On the glioma network it singled out one
perturbation of size 1 whose effect on the phenotype
was strongest. That perturbation has strong support in
the literature. In addition, the most prominent perturba-
tions of sizes 2 and 3 can be explained in the context of
glioma progression. We expect this method can be used
to derive such insights for other networks, because it
does not require perfect knowledge and uses the broadly
applicable Petri net semantics.
Though the paper focuses on GRNs, the suggested

computational method can be applied to signaling or
metabolic networks and to networks that integrate sev-
eral layers, e.g. metabolic and regulatory. Petri nets have
been used for modeling all these network types.
Our method has several limitations: Some instances of

the problem still require exponential running time, mak-
ing our method impractical for finding a minimal per-
turbation for large models. Our method is sensitive to
modeling accuracy and depends on the correctness of
prior knowledge, albeit in a probabilistic setting. In addi-
tion, we assume that the network is asynchronous, while
in some cases the order of occurrence of regulation
functions may be determined by large rate differences
among them.
Improving the algorithm’s performance is one of our

future goals. The minimal perturbation algorithm can be
used in practice only when the size of a perturbation is
small; allowing larger perturbations requires new algo-
rithmic ideas. However, to date it is impractical to per-
turb more than a few entities in the cell, making speed-
ups useful primarily for analyzing larger networks. The
case where some of the entities are synchronized and
some are not can also be considered (Ref. [37] shows
how synchronized networks can be modeled with Petri
nets). Finally, the unfolding algorithm may be improved
by modifying the cutoff criterion.
Other model checking techniques for Petri nets are

described in ref. [58]. Though not directly related to
unfolding, they provide alternative attempts to battle the
state explosion problem when using the Petri net
semantic.

Figure 5 Frequency of perturbation size needed. The histogram
plots the fraction of solutions of each size. “Size 0” indicates states
from which the avoided phenotype is not reachable.

Karlebach and Shamir BMC Systems Biology 2010, 4:15
http://www.biomedcentral.com/1752-0509/4/15

Page 10 of 14



Figure 6 Frequency of minimal perturbations of sizes 1, 2 and 3. Each bar shows the proportion of the occurrences of a different
perturbation. Act: activation; rep: repression
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Conclusion
The ability to effectively manipulate a given network’s
dynamics in order to produce a desired behavior
depends both on advances in experimental techniques
and on the ability to computationally analyze the net-
work. We presented a computational methodology for
determining a minimum size perturbation yielding a
desired phenotype that copes with some of the urgent
difficulties in modeling. Application of this methodology
to ongoing experimental projects and extension of its
theoretical foundations are among our future goals.

Appendix
Theorem
Let P be a phenotype (respectively, a prohibited pheno-
type). If there is a set of regulation functions F with
probability ≥a that generates a trajectory that does not
remain in P (respectively, that leads to P), such a trajec-
tory will be represented by a configuration C in the
branching process graph and !’(C) ⊆ F.

Proof of the theorem
We prove the theorem for a phenotype. The proof for a
prohibited phenotype is symmetric.
Let S be a state that does not belong to the pheno-

type, and let F be a set of regulation functions with
probability ≥a such that F generates some trajectory
that reaches S.
The proof is by induction on the number of state tra-

versals (edges) in the state graph that are needed for
reaching the state S. For purposes of the proof, we will
use the term “infinite branching process graph” for a
branching process graph in which cutoff points are not
applied, and the term “finite branching process graph”
for the branching process graph that is created by the
algorithm.

Base
Zero state traversals, i.e. the initial state. The initial state
is reachable by every set of regulation functions. In the
branching process graph it is represented by the initial
marking. The set ! of the initial marking is the empty
set, and therefore the theorem holds for the base case.

Assumption
Every state that is reachable by a set of regulation func-
tions with probability ≥a and N-1 edge traversals is
represented in the branching process graph.

Step
Let π be the path in the state graph that leads to S, and
let N be the length (number of state traversals) in π.
We want to show that some trajectory leading to S that

is generated by a set of regulation functions with prob-
ability ≥a is represented in the branching process graph.
Let e be the last edge (state traversal) in π. The result-

ing path π’ = π/{e} ends at some state S’ and is of length
N-1. Since there is a path of length N-1 to S’ whose
functions belong to the set F, by the inductive hypoth-
esis S’ is represented by some configuration C’ in the
branching process graph and !’(C’) ⊆ F.
Let t’ be the transition that represents the edge e. We

want to show that t’ can be added to the branching pro-
cess graph to yield a configuration C that represents π.
First, all of the input places that t’ requires are output

places of C’, and therefore are not in conflict. Add t’ to
the branching process graph such that it consumes from
these places. Since !’(C’) ∪ {t’ }⊆ F, t’ will not be set as
a cutoff point according to cutoff criterion 2. If t’ is not
set as a cutoff point due to cutoff criterion 1 either,
then we are finished, because we obtained a configura-
tion C that represents S. Therefore assume that t’ is set
as a cutoff point according to cutoff criterion 1.
In the latter case, [t’] is already represented by some

local configuration C’’. According to cutoff criterion 1,
!’(C”) ⊆ !’([t’]) ⊆ F. if !(C’’) ⊄ F, i.e. there are some reg-
ulation functions with probability 1.0 that are used in C’’
and not in [t’], then we will build the configuration C
for a set F’ that has the same probability as F, i.e. prob-
ability ≥a. Otherwise, we will build C for the set F. In
any case we will have !’(C’) ⊆ F.
Now, note that if [t’] was not set as a cutoff point,

then the set of transitions C/[t’] could have been added
to [t’] in the branching process graph to yield the con-
figuration C. Intuitively, imagine that the branching pro-
cess graph is infinite, i.e. cutoff points are not used at
all. Since C’’ corresponds to the same marking as [t’],
transitions that correspond to the transitions of C/[t’] in
the original Petri net can be added to C’’ in an infinite
branching process graph to produce a new configuration
C’’’ that is smaller than C and !’(C’’’) ⊆ F. If the new
configuration is not represented in the finite branching
process graph, then it must also contain a cutoff point
t’’. We can repeat the same process with the cutoff
point t’’, until we get a configuration that has the same
marking as C, uses only functions of F (or of a set with
equal probability), and is represented in the finite
branching process graph. We will surely obtain such a
configuration because each time that we repeat this pro-
cess the local configuration that corresponds to the cut-
off point becomes smaller, and the minimal size of a
configuration is 0.
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Constructing Logical Models of Gene Regulatory Networks
by Integrating Transcription Factor–DNA Interactions
with Expression Data: An Entropy-Based Approach

GUY KARLEBACH and RON SHAMIR

ABSTRACT

Models of gene regulatory networks (GRNs) attempt to explain the complex processes that
determine cells’ behavior, such as differentiation, metabolism, and the cell cycle. The advent
of high-throughput data generation technologies has allowed researchers to fit theoretical
models to experimental data on gene-expression profiles. GRNs are often represented using
logical models. These models require that real-valued measurements be converted to dis-
crete levels, such as on/off, but the discretization often introduces inconsistencies into the
data. Dimitrova et al. posed the problem of efficiently finding a parsimonious resolution of
the introduced inconsistencies. We show that reconstruction of a logical GRN that minimizes
the errors is NP-complete, so that an efficient exact algorithm for the problem is not likely to
exist. We present a probabilistic formulation of the problem that circumvents discretization
of expression data. We phrase the problem of error reduction as a minimum entropy
problem, develop a heuristic algorithm for it, and evaluate its performance on mouse em-
bryonic stem cell data. The constructed model displays high consistency with prior bio-
logical knowledge. Despite the oversimplification of a discrete model, we show that it is
superior to raw experimental measurements and demonstrates a highly significant level of
identical regulatory logic among co-regulated genes. A software implementing the method is
freely available at: http://acgt.cs.tau.ac.il/modent

Key words: algorithms, computational molecular biology.

1. INTRODUCTION

Gene regulatory networks (GRNs) play an important role in orchestrating the complex processes of
life. An understanding of these networks and their behavior can elucidate complex processes of disease

progression. The logical modeling approach describes a GRN and its dynamics as a set of entities that take
discrete levels (e.g., active/inactive). Each entity’s level is a function of the levels of certain other entities.
Models can assume synchronous or asynchronous updates. The first logical models in biology were presented
in the 1970s by Kauffman, Thomas, and colleagues (Glass and Kauffman, 1973; Thomas, 1973). For a review
on logical models, see Karlebach and Shamir (2008). In recent years, mapping between logical values and
continuous measurements has been revisited and empowered by high-throughput experimental data.
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Akutsu et al. (1999) proposed a polynomial algorithm that infers regulatory interactions from experi-
mental data by finding for each gene a Boolean function that predicts its level with maximal accuracy. The
inputs of that function are the levels of the gene’s regulators. This algorithm requires that continuous
expression data first be discretized into Boolean values (i.e., that each real value will be converted into a
Boolean one), and then it selects the function and regulators that are in best agreement with the discretized
data. A later extension allows each discretized sample to be associated with a continuous confidence value
(Lähdesmäki et al., 2003), namely the reliability of each microarray profile (a vector of gene expression
values) in the dataset. Akutsu et al. (2009) also studied the case in which only partial experimental data are
available, and showed that learning the regulation functions in this setting is NP-complete.

Segal et al. (2003) developed a methodology that uses expression data for inferring regulatory func-
tions formulated as decision trees: each node of the tree corresponds to a regulator, and the level of the regulatee
is determined by traversing the tree from root to leaf, selecting a child at each node by comparing the regulator’s
continuous expression level to some threshold value. The algorithm of Segal et al. (2003) clusters genes into
groups that have a similar expression pattern and assigns to every cluster its set of regulators.

Shamir and Tanay presented an efficient algorithm that assumes a monotone relationship between a tran-
scription factor’s (TF) continuous level, its affinity to a target gene and the strength of regulation, and uses this
assumption to determine whether or not a target gene is activated. Since their algorithm requires TF-target affinities,
they also suggested a method for inferring the affinity of a TF to its target genes (Shamir and Tanay, 2003).

The logical rules that govern gene expression were also studied for specific systems. Cox et al. (Cox, et al,
2007) created *300 artificial Escherichia coli promoters and analyzed their regulatory logic and other properties,
using population-level expression data. The promoters were composed from target sites of two activators and two
repressors. The authors observed that basal activity level and strength of induction for genes regulated by a single
activator are not correlated. This shows that naive discretization of expression data is likely to produce mistakes.

It should be noted here that inferring discrete logic from continuous measurements depends on the
activity threshold of the regulated gene; for example, in a Boolean model, the output should be 1 when the
regulated gene’s product is present in a sufficient amount to perform its role in the model, such as activating
another gene. Thus, the threshold may be specific to the regulated gene. In addition, the closer a real
expression value is to the threshold, the greater the chance that the mapping to a discrete value is incorrect.

Tsong et al. (2006) identified mating genes that were negatively regulated in Saccharomyces cerevisiae
and positively regulated in an ancestral specie. They showed that the change in logic occurred in two steps:
first, expression became independent of an activator, and second, then it came under the influence of a
repressor. The changes occurred due to mutations in regulatory sequences, suggesting that changes in
regulatory logic may have played a major role in modifying organism fitness during evolution.

Mayo et al. (2006) mutated regulatory sequences in the lac operon of E. coli and showed that certain
mutations can change the logic. They also found that the logic is plastic (i.e., many mutations do not cancel
a regulation but rather change its logic). This finding further supports the notion that changes in regulatory
logic may have played an important role in evolution.

In this study, we show that given a model and discretized expression data that contain errors, the problem
of correcting these errors using a minimal number of changes is computationally hard. This resolves an open
problem stated in Dimitrova et al. (2010). In the next section, Section 2, we reformulate the problem
probabilistically, and present an algorithm for constructing a Boolean model from partial prior knowledge and
real-valued expression data aimed at providing a practical solution to the problem. In Section 3, we dem-
onstrate the effectiveness of the method by using the algorithm to construct a logical model of the mouse
embryonic stem cell network, and make some observations about the properties of the inferred network.

A software called ModEnt implementing the method is freely available at: http://acgt.cs.tau.ac.il/modent

2. METHODS

In a Boolean network model of a GRN, every gene is associated with an entity that can take the levels 0
and 1, which correspond to the inactive and active states of the gene, respectively. Gene regulation is
described by assigning a Boolean function to each gene: the levels of a gene’s regulators are the inputs of
that gene’s regulation function, and the effect of the regulator levels on the target gene’s level is the output
of the function. The model is synchronous: If time-series data are available, the levels of the regulators of
each gene at time t-1 determine its level at time t according to its specific regulation logic. More formally, if
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or if the time intervals between measurements are relatively long, a steady state can be assumed, in which
case the regulation function produces an output at time t that agrees with its inputs at the same time t. For
the sake of discussion, let us assume from now on that the data are steady state, though the same method
applies to time-series data.

Comparison of a given model to discretized expression data may reveal discrepancies. A discrepancy
occurs when the same inputs of a regulation function produce more than one output. For example, if a gene
has two regulators that take level 0 in two profiles, but the gene itself has level 0 in one experiment and
level 1 in the other, a discrepancy occurs. The source of the discrepancy can be noise or wrong assignment
of discrete value to the target gene or to one of the regulators. Dimitrova et al. (2010) state the need for
systematic handling of discrepancies as an open problem. When there are multiple discrepancies, we seek
here the simplest explanation—the one that requires a minimal number of changes to the profiles of both
the regulators and regulatees. We next show that this problem is NP-hard.

Theorem. Given the topology of a Boolean network model and binary expression profiles of the
network’s genes, resolving the discrepancies with a minimum number of changes is NP-hard.

Proof. We will show a reduction from the NP-complete problem Vertex Cover (Karp, 1972) to the
decision problem: Given a GRN, a set of discretized microarray profiles and a number k, can all the
discrepancies be resolved by at most k changes to the profiles?

Let (G(V, E), k) be the input for the Vertex Cover problem, where G(V,E) is an undirected graph and k is
an integer between 1 and jVj. Construct a GRN as follows: For every vertex v in V, add a gene entity v to
the GRN. For every edge e = (u,v) in E, define a new gene euv and identify the genes that correspond to u
and v as the common regulators of euv (the regulatee). Figure 1a illustrates this construction. Hence, the
original vertices are regulators (and are not regulated), and the new vertices correspond to regulatees. The
set of microarray experiments will contain two profiles. In the first the levels of all the genes will be 0. In
the second, the levels of all the regulators will be 0 and the levels of all the regulatee genes will be 1 (Fig.
1b). Since the levels of the regulators are the same in both profiles, and the levels of the regulatees are not,
there are discrepancies. Clearly, this reduction can be performed in polynomial time.

Suppose there is a vertex cover S of size at most k. For every vertex u that belongs to S, change the level
of the corresponding gene in the second experiment to 1. Since every regulatee corresponds to an edge in G,

FIG. 1. Reduction from Vertex
Cover to resolution of dis-
crepancies in microarray expres-
sion data with respect to a gene
regulatory network (GRN). (a) The
graph that is the input for Vertex
Cover is shown in green, and the
resulting GRN is shown in yellow.
(b) The Boolean values of every
entity in the two microarray ex-
periments.
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and its regulators are vertices that are adjacent to that edge, for every regulatee at least one of its regulators
changes in experiment 2. Therefore, all the discrepancies are resolved by at most k changes.

Now, assume conversely that there are k changes that resolve all discrepancies. If after the changes there
is a regulatee that has the same level in the two profiles (i.e., its level was changed by the solution) and each
of its regulators has the same level in the two profiles, we will restore that regulatee’s level to 0 in profile 1
and 1 in profile 2, and change the level of one of its regulators in profile 1. This does not increase the total
number of changes: The regulatee has regained the levels it had before any changes took place, which
cancels at least one change, and a single change was made to a regulator’s level. We repeat this for every
regulatee that changes its levels from the original levels assigned by the reduction, and thus obtain a set of
at most k changes—all of which are in regulator levels—with no discrepancies. Now define a set S that
contains the nodes corresponding to every regulator that has different values in the two profiles. This set is
of size at most k. For every edge in G, there is a vertex in S that is adjacent to it, because every regulatee
has at least one regulator that has different levels in the two experiments. Therefore, S is a vertex cover.

It remains to show that the problem is in NP. Given k changes, we perform them and check in poly-
nomial time whether there are any discrepancies left. -

We now approach the problem from a different direction: we return to the real-valued expression
profiles, and instead of discretizing them, a process that may cause discrepancies that are difficult to
resolve, we take a probabilistic approach. We interpret the real-valued profiles probabilistically, select a
set of TF-target interactions that minimizes the total entropy, and use the selected topology and the
probabilistically-interpreted profiles to resolve discrepancies. Our algorithm is outlined in Figure 2.

Following is a detailed description of the algorithm. We interpret a vector of continuous values as a
probability distribution over all possible Boolean vectors of the same dimension. In other words, instead of
creating a single Boolean vector with probability 1 for a given continuous vector, we create all possible
Boolean vectors of the same dimension, and assign each such vector a probability. The probabilities are
chosen as follows: First, normalize the continuous expression values of every gene to have mean 0 and
standard deviation 1.5 (a value determined empirically). Second, after normalization, set the probability
that a single (one-dimensional) real value c corresponds to the Boolean value 1 to k(c)¼ 1

1þ e# c (the logistic
function with parameter value c). The probability that a real-valued vector c corresponds to a specific
Boolean vector b then becomes

p(b j c)¼
Y

ijbi ¼ 1

1

1þ e# ci

Y

ijbi ¼ 0

1# 1

1þ e# ci

! "
‚

where ci (bi) is the value of the ith entry of c ( b). Note that by setting the standard deviation value for all the
genes one avoids using any parameters in the logistic function.

Given a continuous dataset of n i.i.d. profiles, the probability of seeing the Boolean vector b in this
dataset is:

FIG. 2. An outline of our algo-
rithm. The input consists of real
valued expression profiles (a) and a
set of putative regulations of genes
by transcription factors (b). The
expression profiles are interpreted
probabilistically (c) and used for
determining the topology of the
network by selecting a set of regu-
lators that minimize the entropy
(d). In this process, some putative
interactions are rejected (dashed
arrows), and some new interactions
are added (red arrows). The net-
work’s regulation functions (e) are
determined using the probabilisti-
cally interpreted expression profiles
and the inferred topology.
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P(b)¼ 1

n

X

c j2profiles

p(b j c j) (")

In other words, for each Boolean vector, the probabilities that each continuous vector corresponds to it are
averaged. In practice, the samples may not be i.i.d, but that assumption is made for the sake of this analysis.

With the probability distribution over all Boolean vectors at hand, information theory can be used to
evaluate different topologies of the network. Suppose we know which of the genes are transcription factors
(TFs) and assume that all regulators are TFs. Denote by HC(xjYx) the conditional entropy for a gene x and a
set Yx of regulators as computed using continuous data. We use this notation in order to stress that the
conditional entropy is a function of continuous values—a fact that will be used by our algorithm. Select for
every gene x the set Yx of regulators that gives the best HC(xjYx) score among all sets of TFs.

Since in practice a larger set of regulators will tend to score better than a smaller one, a threshold that
will separate significant improvement from insignificant improvement is needed: when increasing the set of
regulators, any improvement less than the threshold will be considered insignificant. This threshold can be
estimated empirically by computing the average and standard deviation of the improvement in entropy that
occurs when non-regulator genes are assigned as regulators. Improvement that surpasses the average by 3
standard deviations will be interpreted as non-random. We refer to this threshold value as s.

After the network structure is constructed, steepest descent can be used for decreasing the entropy: given
the set Yx minimizing the score HC(xjYx) for every gene x, perform steepest descent on the scoreP

x2genes HC(xjYx), i.e. on the total entropy of the network. We compute the derivative of the total entropy
function with respect to each gene and regulator and change their profiles in the direction of the gradient,
and repeat this iteratively until the change in entropy is very small.

If we had discrete profiles and change a level from 0 to 1, the value of the conditional entropy will also
change. Since we do not discretize, we have continuous profiles, and every function HC(xjYx) is a function
of continuous values. Therefore, HC(xjYx) will change with every change of one of its continuous pa-
rameters. Given the real level cij of gene i at profile j, the partial derivative of the total entropy with respect
to cij can be computed exactly. By the chain rule for conditional entropy, we have:

q
qcij

HC(xjYx)¼ q
qcij

HC(x‚ Yx)# q
qcij

HC(Yx)

We show how to compute HC(Yx). The computation of HC(x,Yx) only differs in indices and is omitted:

q
qcij

HC(Yx)¼ q
qcij

X

Yx

P(Yx) log P(Yx)¼

¼ #
X

Yx

!
q
qcij

P(Yx)

"
log P(Yx)#

X

Y

P(Yx)

!
q
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log P(Yx)

"
¼

¼ #
X

Yx

!
q
qcij

P(Yx)
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X

Y

q
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where the sum is over all Boolean values of the vector Yx. The probability of a specific Boolean value of
the vector Yx is given by (*), and for qP(Yx)

qcij
, we have the following sum:

1

n
$ q
qcij

X

ci2profiles

p(Yx j ci)¼ 1

n
$ q
qcij

p(Yx j c j)

where the latter equality is due to the fact that the derivative is 0 for profiles other than the jth profile, which
contains cij. Now in order to find the latter derivative, we recall that it is a product of the logistic function k
or (1- k), and only one of the factors is k(cij) or (1- k(cij)). For example, if Y is the vector (1,1,.,1), the
derivative would be:

q
qcij

p(Y j c j)¼
Y

ckj2cj‚ k 6¼i

k(ckj)

0

@

1

A $ q
qcij

k(cij)¼
Y

ckj2cj‚ k 6¼i

k(ckj)

0

@

1

A $ k(cij) $ (1# k(cij))
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Now we can compute the gradient of the function
P

x2genes HC(x j Yx).
Every iteration, we make a step of size 1 in the opposite direction of the gradient, until the change in

entropy is very small. Changing the real value has the effect of reducing the entropy, which reflects the
discrepancies.

After steepest descent converges, a truth table (i.e., regulation logic) needs to be assigned for each gene.
First, note that the probability to observe a certain line in the truth table, with output x = a and input Y ¼ b, is
the value P(x¼ a‚ Y ¼ b), which is computed as discussed above. Second, for every regulator there should
be at least one input in which changing that regulator’s value will change the output of the regulation
function. If the latter property holds, the regulation function is said to be non-redundant. We use a simple
branch and bound algorithm to find a consistent regulation function with maximum probability. Given a
partial choice of outputs, a bound on the maximal probability of every non-redundant function that contains
this choice can be obtained by completing it with the most probable output choices. An initial bound is
obtained by picking the maximal probability of a non-redundant function from the following set: the
function F* that is formed from the highest probability choice for every output, and the functions that are
formed from changing one of the outputs of F* (we set the initial bound to zero if the set does not contain
non-redundant functions).

We implemented the method in a program called ModEnt (for entropy-based modeling). The im-
plementation is freely available at: http://acgt.cs.tau.ac.il/modent

3. A CASE STUDY

The GRNs that regulate differentiation in mammalian embryonic stem cells (ESCs) control a fascinating
process whose understanding can lead to far-reaching breakthroughs in medicine, making them the subject
of extensive research (Chickarmane et al., 2006; Novershtern et al., 2011; Xu et al., 2010; Zhou et al.,
2007). We used our method to construct a logical model of mouse ESC GRN by integrating putative TF-
DNA interactions with expression data. More specifically, we combined the core20 network that is
available in the Integrated Stem Cell Molecular Interaction Database (MacArthur et al., 2009), the mouse
ESC network of Zhou et al. (2007), and the expression data of Ivanova et al. (2006) to obtain 728 reported
putative interactions between 25 potential regulators and 236 target genes. The number of regulators per
gene varied between 1 and 14 (mean 3.15). The number of regulated genes per TF varied between 1 and
170 (mean 9.24). In addition, we used 70 microarray profiles from Ivanova et al. (2006).

For each gene x, a subset of its putative regulators Y was selected such that the conditional entropy
HC(xjY) was minimized (a steady state was assumed for every profile). Since not all the genes had the same
number of reported interactions, addition of more regulators was allowed in case all of the reported regulators
were selected. When computing HC(xjY), we excluded those profiles in which the regulatee was knocked-out.

The maximal number of regulators for a gene in the set of reported interactions was 14. Thus, for each
gene, we tested every set of regulators of size £ 14 out of the total 25 regulators. A set S1 of size n was
preferred over a set S2 of size m < n if the difference in conditional entropy was greater than (n-m)$s, where
s = 0.00775244 is the value of the threshold defined in the previous section.

Our reconstructed model contained 449 edges (interactions), of which 298 belong to the published
interaction set. The appendix contains the network topology, list of regulation functions, and list of cohorts
(the appendix is available at the authors’ website: http://acgt.cs.tau.ac.il/modent). Since we picked regu-
lators to minimize the discrepancies with expression data, whereas the reported interactions were based on
binding assays, we expected to see a different distribution of regulator-regulatee edges, and this was indeed
the case (Fig. 3). Some of these differences are attributed to the false positives and false negatives in the
reported interactions, although a true positive will not be inferred without proper expression data. For
example, if we know that R regulates G, but in all the available expression profiles R is knocked down, we
will not be able to use our knowledge in a model. Similarly, if the reported interactions are insufficient to
produce a regulation function that satisfactorily predicts the target gene’s level, unreported interac-
tions need to be selected. The lower frame of Figure 3 shows that, for the ESC network, often one of the
latter cases applied. Figure 4 illustrates the number of common target genes for each pair of regulators.
Figure 5 illustrates the cohorts and their regulators; as can be seen, the TFs Pou5f1 and Sox2 regulate the
two largest cohorts, while each of Nanog, Esrrb, Tcf7, and Etv5 regulate cohorts of intermediate size. Four
cohorts are each regulated by four regulators, including Pou5f1, Rnf2, Zfp281, Dax1, Etv5, Sox2, Nr5a2,
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Phc1, and Otx2. It is reasonable to assume that genes that have more regulators are subjected to a more
complex regulatory program, and therefore may have roles in more specific contexts compared to other
genes; a better understanding of this network’s behavior requires analysis of the dynamics involved.

We turned to the dataset of Young and colleagues, found in Marson et al. (2008), to assess the quality of
the selected interactions. In this study, ChIP-seq technique was used to measure binding of five TFs:
Pou5f1, Sox2, Nanog, Tcf3, and Suz12, to regulatory regions of 200 genes in our network. The dataset
corresponds to a 200 · 5 Boolean matrix M, in which the entry in the ith row and the jth column is 1 if TF j
(1 £ j £ 5) binds gene i according to the ChIP-seq data. Now if S is the set of regulators of gene i in the

reconstructed model, we define the similarity between S and row i in the matrix M as

P
j2S

M[i‚ j]

jSj . The average

similarity between the regulators of a gene in the reconstructed model and the matrix M was 0.63. To assess
the significance of this result, we randomly permuted each row in the matrix M independently and com-
puted the average similarity. By repeating the randomization 10,000 times we conclude that this overlap
value is significant at p-value < 10 - 4 (Fig. 6). Figure 7 compares the number of common regulators and the
number of different regulators for each gene in the inferred model and in Marson et al. (2008).

We call a set of genes that have the exact same regulators a cohort. We wanted to test whether genes that
share the same set of regulators tend to have the same regulatory logic. We define similarity between two
regulation functions as the fraction of inputs that produce identical outputs. The average similarity in a cohort
is the average similarity between pairs of genes in that cohort. In order to eliminate genes whose levels may
have been incorrectly modeled, genes with truth tables that were on average less than 50% similar to all other
genes in the cohort were excluded. This filtering left 144 out of 184 genes that belong to cohorts, excluding no
more than a third of the genes in any cohort. The average percentage of logic similarity that was obtained
among the remaining genes in each cohort is 84%. To assess the significance, we permuted edges in the
network of Young and colleagues, found in Marson et al. (2008), by conducting a long series of edge swaps, a

FIG. 3. Comparison of reported
interactions and interactions se-
lected from expression profiles.
Top frame: The number of reported
targets compared to the number of
selected targets for every tran-
scription factor (TF). Bottom
frame: For every gene, the number
of reported TFs that were selected,
the number of reported TFs that
were not selected, and the number
of unreported TFs that were se-
lected. For clarity, the gene names
were omitted.
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process that preserves the degree of each node, and then reconstructing the model given the permuted network
(Ulitsky, et al, 2010). For every permutation, the average percentage of cohort similarity and the number of
excluded genes were computed as described above, and compared to the values that were obtained for the
model. We considered a solution as scoring better only if (i) the similarity was equal or higher and (ii) the
number of genes that were included in cohorts was equal or higher. Both conditions must be taken into
account, since otherwise similarity is maximized by reducing the number and size of cohorts through gene
exclusion or edge swap. Repeating the process 105 times showed that the logic similarity was significant at
p-value < 10 - 5. Figure 8 compares the scores of 1000 random permutations and the score obtained by the
real topology. In order to make sure that our exclusion scheme does not generate any biases, we repeated the
test by applying criteria (i) and (ii) without excluding genes from cohorts and obtained a p-value of 1.1$10- 4.
In order for the simulation to run sufficiently fast, a speed-up of the selection procedure was used in which

FIG. 5. Cohorts and their sets of
regulators. Each cohort is re-
presented by a trapezoid, and the
corresponding set of regulators is
represented by an ellipse that is
connected to its cohort’s trapezoid.
The names of the genes or regula-
tors that belong to each set are gi-
ven inside the shapes.

FIG. 4. The number of common
target genes for each pair of tran-
scription factors (TFs). The colored
arcs along the circumference indi-
cate the inferred targets of TFs
where, for clarity, each TF is re-
presented by a different color. The
internal arcs connect two groups of
targets of two TFs and are colored
by one of the two colors of the TFs.
The size of an internal arc between
two TFs is proportional to the
number of common targets they
share. An internal arc from a TF to
itself indicates the total number of
target genes of that TF. The figure
was generated using Circos.
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regulators are added incrementally to the regulators set as long as the entropy improves significantly. A
similar speedup was used in Hashimoto et al. (2003), using discrete data and a different score.

Figure 9 shows the similarity of regulation function of all the genes in the network. The network is seen
to contain cohorts with highly similar regulation functions. There are some similarities in the regulation
functions of genes that belong to different cohorts (depicted as edges that cross the interior of the circle),
due perhaps to reuse of certain ‘‘regulatory logic motifs’’ in gene regulation (Milo et al., 2002).

These results are in line with the common assumption that regulatory logics within cohorts are similar,
and also with the more general observation that networks contain ‘‘reusable components’’ (Milo et al.,
2002). The term ‘‘reusable components’’ means that regulatory elements can be used similarly for different
parts of the network. Segal et al. (2003) based their method on this assumption. Since our method does not
impose any constraints on logic within cohorts and we still observe a high level of identical regulation
within cohorts, we conclude that the reconstructed model is reasonably reliable.

4. DISCUSSION

We have presented an algorithm for constructing a logical model and resolving discrepancies between
the model and experimental data. After demonstrating that the general problem of resolving discrepancies
is computationally hard and there is probably no efficient algorithm that solves it, we adopted a proba-

FIG. 7. The number of common
transcription factors (TFs) and dif-
ferent TFs for each gene in the in-
ferred network and the dataset of
Marson et al. (2008).

FIG. 6. Comparison of inferred and
measured transcription factor (TF)–
gene interactions. The average simi-
larity of TF–gene interactions be-
tween the inferred network and the
ChIP-seq interactions reported by
Young et al., found in Marson et al.
(2008), for five TFs was computed for
randomized and real datasets. The
figure shows the values for 10,000
random permutations of the Chip-seq
dataset of Marson et al. (2008) and for
the real dataset. Each blue dot repre-
sents the values obtained for one
permutation. The red plus sign corre-
sponds to the score of the real dataset.
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bilistic approach to the network reconstruction problem. We developed an algorithm that uses reported
interactions and expression data to select a set of regulators for each gene, and that resolves discrepancies in
the resulting logical model. We used our algorithm to construct a logical model of the mouse ESC GRN.
The model supports the notion that genes which share the same regulators have similar regulatory logics.

Unlike Dimitrova et al. (2010) and other discretization methods, our algorithm refrains from directly
discretizing the data, thereby avoiding the errors that are inherent to this process and the intractability of
minimizing them. Instead, it assigns a probability to each discrete value and adjusts the input real values to
improve model consistency, as reflected by the conditional entropy. Other methods that use information
theory for selecting regulators discretize the data, but do not provide a means of discrepancy resolution
(Liang et al., 1998; Lopes et al., 2008). Our algorithm can be applied when using only expression profiles as
input, but can also utilize information on putative regulations (e.g., from ChIP-chip or ChIP-seq data) to
improve the prediction. Given a set of such putative interactions, it can reject those that lack support in
expression data. A disadvantage of our method is that we normalize the expression profiles of all the genes
using the same parameters, which may be inferior to preprocessing using gene-specific parameters. Another
disadvantage is that the inferred discrete logic is a necessary oversimplification of the biological reality.

FIG. 9. The similarity of regula-
tion functions for every pair of
genes that have at least one com-
mon regulator. Similarity is mea-
sured as the fraction of identical
outputs. Similarity of regulation
functions of genes that have a dif-
ferent number of regulators are also
compared: each output of the
function with less regulators is
compared to several outputs of the
function with more regulators. For
clarity, only genes that share > 75%
similarity are connected. The figure
was generated using Circos.

FIG. 8. Logic similarity and co-
hort sizes for randomized and real
networks. The figure shows the
values for 1000 random permuta-
tions of the embryonic stem cell
(ESC) network and for the real to-
pology. Each blue dot is a value
obtained for one permutation, where
the y-coordinate is the within-cohort
similarity and the x-coordinate is the
number of genes in cohorts of size at
least 2. The red plus sign corre-
sponds to the score of the real
topology.
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Finally, as the general problem is computationally hard, we resort to heuristics, and at least for some
instances of the problem, we may not find the optimal solution.

At this point, it is natural to ask whether one can obtain logical models that are sufficiently accurate. A
model that contains even a small number of errors can produce erroneous predictions. Theoretical examples
in which a small error in the model has a large impact on its predictions are easily found (Lorenz, 1993).
Further research is required to determine whether domain-specific algorithms can produce accurate logical
models. Another approach to the problem is developing algorithms that analyze a model without trying to
resolve all the ambiguities in it (Karlebach and Shamir, 2010).

The probabilistic approach to discretization that we describe could be applied to other purposes in
bioinformatics. Because discretization of expression data is used in methods such as clustering (Ben-Dor
et al., 1999; Koyuturk et al., 2004) and feature selection (Saeys et al., 2007; Akutsu and Miyano, 2001),
resolving discrepancies in discretized expression data can be performed as a preliminary step.

We intend to proceed with the analysis of the mouse ESC model, including its dynamic behavior and the
effect of perturbations. Our reconstruction algorithm should be tested on other datasets in order to further
characterize its advantages and disadvantages. Reconstruction of accurate logical models and their use for
generating useful predictions are objectives that require further exploration.
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Abstract. Petri nets are a modeling formalism for concurrent systems.  Given a 
Petri net and its initial state, determining if a target state or a set of states is 
reachable is a fundamental problem. McMillan's unfolding algorithm constructs 
a compact representation of a Petri net's state space.  However, the algorithm is 
limited in practice to solving relatively small reachability problems, due to the 
computational resources required. We developed a Monte-Carlo algorithm 
based on McMillan's unfolding for solving the reachability problem on Petri 
nets.  The algorithm repeatedly constructs random prefixes of the state space 
representation, thereby avoiding some of the computational problems that arise 
when the full representation is constructed. Our tests show that the randomized 
algorithm can solve problems of size greater than 100 within seconds, and it is 
faster than the deterministic algorithm by several orders of magnitude. 

Keywords: Petri net, Unfolding, Monte-Carlo Algorithms 

1   Introduction 

A Petri net (1) is a modeling formalism that was developed in the 1960's for 
modeling of concurrent systems and has been studied extensively since. It has broad 
applications in numerous areas, including software design and verification, discrete 
process control, workflow management and diagnosis (2-6). A key difficulty in 
utilizing Petri nets is the explosion of the state space, which prevents utilizing the 
model for large or even moderate problems. McMillan (7) described a seminal 
method called unfolding to explore the state space more efficiently, and Esparza, 
R!mer and Vogler (8) improved unfolding further. Still, in some cases the size of 
problems that can be handled is restricted, and methods were developed to improve its 
performance (9)(10)(11).  In this study we describe a new way to speed up the 
exploration significantly, while sacrificing some accuracy. Our method is a 
randomized (Monte Carlo) relaxation of the unfolding method. We show that it can 
solve certain reachability problems several orders of magnitude faster. 

We start by an informal introduction of the problem and of our method. A more 
formal representation is provided in the next section. A Petri net is specified by a 
directed bipartite graph that is composed of two types of nodes:  places and 
transitions.   The places represent the state of the network – each place contains a 
number of tokens that may change as a result of the network's dynamic behavior.  



Transitions represent events that generate the network's dynamic behavior – a 
transition consumes tokens from places from which it has incoming edges and 
produces tokens into places to which it has outgoing edges.  One of the notable 
properties in which Petri nets differ from traditional automata is their non-
determinism:  Petri nets describe concurrent events, and therefore do not impose 
synchronization or a specified order of occurrence on events.  Testing properties such 
as the existence of deadlocks, reachability of a given state or the infinite accumulation 
of tokens in a place are some examples for computations that can be performed using 
a Petri net model. 

A key computational problem in Petri net models and other discrete models (12) is 
how to check reachability when the state space is too large to be represented 
explicitly:  a network that has N Boolean entities has a state space of size 2N (the state 
of the network is described by the N-long vector describing the level of each of its 
entities).  One approach for dealing with this problem is to create an implicit 
representation of the state space in the form of a new graph called a branching process 
(BP) (13):  a directed, acyclic graph that captures the causality and concurrency 
relationships between network events.  This technique, called unfolding, often 
provides relatively modest state space representations and has been studied 
extensively (reviewed in a recent book by Esparza and Helijanko (14)).   McMillan 
presented an algorithm that generates a finite prefix of the branching process graph by 
introducing the concept of a cutoff point – a terminal node from which the BP graph 
need not be further extended (7).  He showed that this prefix graph captures all the 
reachable states in the full (typically infinite) BP. Subsequently, Esparza, Romer and 
Vogler generalized the original cutoff criterion, gave an alternative cutoff criterion, 
and showed that the prefix it produces is always equal or smaller than McMillan's. 
Moreover, they demonstrated that in some cases it produces a graph of polynomial 
size while McMillan's criterion produces one of exponential size (8).  

In this work we present a new randomized (Monte Carlo) method that uses 
unfolding to test reachability and that alleviates some of the problems in constructing 
the BP efficiently. The method randomly generates subgraphs of the BP that are 
computationally easier to construct than the BP itself.  If the state that is sought is 
reachable, then it is represented in at least one of these subgraphs with high 
probability.  The gains in efficiency enable fast reachability testing for some families 
of large models that cannot be handled by the deterministic algorithm in reasonable 
time.  In particular, we demonstrate reachability testing on Boolean networks and 
cellular automata of up to 144 nodes within seconds. 

Randomized methods for model checking based on sampling random trajectories 
were previously developed (15)(16). Our method differs from them in two main 
aspects:  First, the models that we apply our method to are not stochastic but rather 
concurrent.  Second, instead of generating random single runs of the model, we 
generate random representations of fractions of the state space.  Hence, in one 
sampling we test multiple alternative runs of the system.   

The next section provides a more detailed introduction to the concepts of a Petri 
net and a branching process.  We then describe the randomized technique and prove 
its properties. Finally, we demonstrate it on test cases. 



2   Methods 

2.1   Petri Nets and Their Branching Processes 

We now define the model more formally. For a fuller (and more rigorous) 
formulation see (8). A Petri net is a tuple N=(P,T,F,M0) where P is a set of nodes 

called places, T is a set of nodes called transitions, ( ) ( )F P T T P! " # "  is a set 

of directed edges between P and T.  Each place has a non-negative integer number of 
tokens. That number represents its state. The vector of tokens of the places of P is 
called a marking, and it represents the network’s state. M0 is a marking called the 
initial marking of N.  In a 1-safe Petri net, at any given time each place contains at 
most one token.   We will assume that our nets are 1-safe.  For extensions of the 
unfolding technique beyond the class of 1-safe Petri nets see, e.g.,  (14).   

We call the places from which there  is a directed edge to some transition its input 
places.  Similarly, we call the places to which a transition has directed edges its 
output places.  A transition is enabled if all of its input places contain tokens.  An 
enabled transition can fire:  consume a token from each of its input places and 
produce a token to each of its output places.  Hence, at any marking, an enabled 
transition can fire and produce a new marking, and the process can repeat indefinitely.  
Enabled transitions can fire at any order, i.e. the firing order is non-deterministic. A 
marking that can be obtained by some firing sequence starting from the initial 
marking is called a reachable marking. Fig. 1 shows a Boolean circuit and its 
representation as a Petri net.   

The branching process of a Petri net N, denoted by BP, is an acyclic graph that 
represents every reachable marking.  It is defined iteratively.  Initially, there is one 
node in BP for every place in N that contains a token in M0.   In order to explain how 
BP is extended, we define two types of relationships between places in BP: 

 
1. Place x is causal of place y if there is a path from x to y in BP. 

2. Places x, y are in conflict if there is a place z in BP such that one can reach 

both x and y by exiting z through different edges. 



A     B 

 

Fig. 1: A:  A Boolean circuit.  The circuit contains three Boolean entities, A, B and C.  Entities 
A and C determine the value of entity B, B determines the value of C, and C determines the 
value of A.  Each table shows the level of the output entity when its corresponding Boolean 
function acts, depending on the values of the inputs. B:  A Petri net model for the Boolean 
circuit in A.  Places are represented by circles and transitions by rectangles.   The pairs of 
places (A0,A1), (B0,B1), and (C0,C1) are place invariants, which means that the sum of tokens in 
every pair of places is always 1.  Every initial marking assigns one token to one place of each 
pair.   The label of each transition is the regulated entity in parenthesis and the number of line 
in the Boolean truth table as a subscript in A.  For example, F(A)0 is the label of the transition 
that corresponds to the first line in the truth table FC(A).  

Relationship 1 means that y represents the token that is produced by a firing 
sequence that consumes the token that x represents.  Relationship 2 means that x and 
y represent tokens that are produced by two different firing sequences out of which 
only one can occur in the same run of N, since they both consume the same token - 
the one that is represented by z.   

If a set of places does not contain any pair of places in conflict or in causal 
relationship we say that the places in that set are concurrent.  After the initialization 
all the places in BP are concurrent.  However, as BP is extended places that are not 
concurrent are added to it.  In order to extend BP, we pick a transition t in the Petri net 
and find a set of concurrent places in BP that correspond to its input places.  Then we 
add t to BP, add outgoing edges from these places in BP to t, and also add places to 
BP that correspond to t's output places,  with incoming edges from t.  The new 
transition that was added to BP represents the firing of t, and its output places 
represent assignment of tokens to the output places of t.  Thus, there can be multiple 
transitions (places) in BP that correspond to the same single transition (place) in the 
Petri net. 

The iterative process can generate a finite or an infinite BP. McMillan defined a 
method that disallows continuation from specific transitions and creates only a finite 
prefix of the BP but still contains the information on all reachable markings.  In order 
to explain the method works, we need to define another concept, a local 
configuration.  Every reachable marking has a subset of transitions in BP that 
corresponds to a firing sequence that generates it. These subsets are called 



configurations. For a transition t, the set of transitions from which there is a directed 
path to t is referred to as t's local configuration (denoted [t]), and is associated with a 
marking.  Note that [t] includes t itself. The marking of [t] is the marking obtained by 
firing all the transitions that belong to [t].  McMillan  (7)  showed that a finite BP still 
represents every reachable marking if extension is halted in transitions t for which the 
local configuration [t] is associated with a marking that is also associated with some 
other local configuration [t'] that contains fewer transitions.  He called these 
transitions cutoff points.  Fig. 2 shows the unfolding of the Petri net from Fig. 1B. 

 

 

Fig. 2:  Part of the branching process graph of 
the Petri net from Fig. 1B starting from state 
(OFF, ON, ON).  Places are represented by 
circles and transitions by rectangles.  For 
clarity, places and transitions in the branching 
process graph that correspond to the same 
place/transition in the Petri net carry the same 
label.  The transition F(C)1 (bottom) is an 
example for a cutoff point.  The marking of its 
local configuration is the same as the initial 
marking, i.e. (OFF, ON, ON) (note that the 
initial marking is also considered a local 
configuration).   The two places marked by 
two red stars are in a causal relationship.  The 
two places that are marked by a black star are 
in a conflict relationship.  The places that 
have directed edges to F(C)1 are an example 
for concurrent places.  The local configuration 
of F(C)1 is { F(C)1, F(B)0, F(C)0, F(B)2 }.   

 

 
 

One of the main tasks for which a BP is useful is answering reachability queries 
about the Petri net. Once the truncated BP has been constructed, it can be used for 
testing whether a given target marking or set of markings are reachable.  Given a 
target marking and a set of places in the Petri net that contains tokens in that marking, 
add an artificial absorbing transition to the Petri net that consumes from all the places 
in the set and upon any addition to the BP check first if that transition can fire. If it 
can - stop with a positive answer.  This is equivalent to testing if there is a concurrent 
combination of places in the BP that represents the target marking, in which case the 
answer is positive, or none was found, in which case the answer is negative.   

Esparza, R!mer and Vogler (8) showed that McMillan's criterion can sometimes 
produce a BP of exponential size even though the actual state space size is 
polynomial, and presented an improved cutoff criterion.  According to the criterion, 
every local configuration is assigned a string that is a lexicographic concatenation of 



the labels of transitions that occur in it.  Each label is concatenated a number of times 
equal to the number of its appearances in the local configuration.  For example, if t1 
appears once and t2 appears twice, the label would be t1t2t2.  Now a transition is a 
cutoff point if there is another transition that represents the same marking whose local 
configuration is smaller, or if the other transition's local configuration is of identical 
size but has a lexicographically smaller label. 

We review the proof of (8) that the resulting graph represents every reachable 
marking, because we will use a similar idea in the proof of our method.  Let us call 
the original, typically infinite, BP the full BP, and its finite prefix obtained using a 
cutoff criterion the truncated BP.   Suppose that we add to the BP transitions as long 
as we can, so that it can even become infinite.  This full BP is then an interleaving of 
every possible firing sequence, and every reachable marking has a configuration in 
the full BP that corresponds to it.  Consider some reachable marking and some 
configuration C that corresponds to it in the full BP.  The truncated BP may not 
contain C, because one of its transitions t can become a cutoff point.   In that case, 
according to the cutoff criterion there must be a transition t' in the truncated BP that 
satisfies either |[t']|<|[t]| or |[t']|=|[t]| and the label of [t'] is lexicographically smaller.  
So we can add to [t'] all the transitions in C\[t'], and obtain a new configuration C' that 
represents the same marking as C.  If C' also contains a cutoff point, i.e. a transition 
that fires only in the full BP and not in the truncated BP, we can repeat the same 
construction.  The process must stop because in every step we move towards a 
minimal element in a finite order of local configurations. 
 

2.2   A Monte Carlo Method 

The unfolding algorithm does more than determining whether a marking is 
reachable or not:  if the target state is reachable, it also finds a sequence of transitions 
whose firing lead to that marking.  Now suppose that we limit the unfolding algorithm 
using some criterion such that only a fraction of the markings will be represented in 
the truncated BP.  In that case, if a marking is represented - it is reachable with 
certainty, and we can show a sequence of transitions that lead to it.  However, if a 
marking is not represented - it can either be reachable or not.   

Based on this observation, we propose a randomized Monte Carlo algorithm:  If the 
randomized algorithm answers 'no' (i.e. that a state is unreachable), it has a constant 
probability smaller than 1 of making a mistake.  If it answers 'yes' then the probability 
that the state is reachable is 1.  By repeating the randomized algorithm sufficiently 
many times and answering 'reachable' if and only if the answer was 'reachable' in at 
least one of the repetitions, we get a small mistake probability.  Note that it is 
essential that the probability of making a mistake in every repetition is independent of 
the other repetitions.  By allowing the randomized algorithm a certain probability of 
mistake, it will run much faster than the deterministic unfolding algorithm.  The 
improvement in running time is so significant that even when repeating the 
randomized algorithm many times it is still much faster the deterministic algorithm.   

The algorithm depends on three parameters: The number of repetitions is denoted 
by !.   Another parameter, 0<"<1, determines the probability of making a mistake in 



a single repetition. N is an integer number greater than the maximum size of a 
configuration.  A small N is generally not known in advance, and in the next section 
we discuss how to select one.  The idea of bounding the number of steps in a 
trajectory in order to gain running time improvements has been used before in the 
context of bounded model checking (17).  

The randomized algorithm adds a new type of cutoff point to the BP, which we call 
a randomized cutoff point (we refer to the other cutoff points as "ordinary").  A 
transition t becomes a randomized cutoff point according to the following criterion: 

! "#$!$!$%!&#!'!()$%**!+%,-$!.,$/!+0%&'&,1,$2!
|][| tN !"   

where |[t]| is the size of the local configuration of t.  Note that like any other 
transition the local configuration of a transition that becomes a randomized cutoff 
point is still recorded among all the local configurations detected by the algorithm. 
Therefore, other transitions, even if not originally direct descendants of it, can become 
normal cutoff points if their local configuration represents the same marking.     The 
process is repeated at most ! times and is stopped earlier with success if the desired 
marking is reached. A repetition ends with failure if no extension is possible, i.e. no 
transition can be added from the leaves of the current BP. If ! repetitions ended with 
failure, the algorithm reports that the target is not reachable and terminates.  

 

Lemma:  The error probability in a single run is )1(1
1

#
$

!!
N

i

i"
.   

Proof: Let C be some configuration of size j in the full BP. We would like to upper-
bound the probability that it will not be represented in the truncated BP. Let s1,…sj be 
the sizes of the local configurations of the transitions in C. The probability that none 
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that this probability is minimal for a configuration that corresponds to a chain of j 
transitions, i.e., the second transition consumes from the output of the first transition, 
the third from the output of the second, and so on.  Hence, the probability that C does 
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Theorem: For any !"0, using the randomized cutoff criterion, we can obtain an error 
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!   repetitions. 

Proof. We return to the original algorithm's proof and use a similar rationale.  
Assume first that there are no ordinary cutoff points in the truncated BP, only 
randomized ones.  
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Using the Taylor series for ln(1-x) we have: 
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So far the analysis ignored ordinary cutoff points.  Now we will extend the proof to 
include them (since we use ordinary points as well in the randomized version).  Let C 
be a configuration in the full BP that contains an ordinary cutoff point t in the 
truncated BP.  Since t is an ordinary cutoff point, there is another transition t' in the 
truncated BP such that [t'] has the same marking and either |[t']|<|[t]|,  or |[t']|=|[t]| 
and the label of [t'] is lexicographically smaller.  We build a new configuration C' as 
in the original proof, by adding to [t'] the transitions in C\ [t'].  It must hold that C’ is 
smaller than C in the partial order of local configurations.  Now if C' still contains an 
ordinary cutoff point, we repeat the process exactly as in the proof of the original 
algorithm.  Note that as long as the configuration C' that we have contains ordinary 
cutoff points we can continue this process, even if C' contains randomized cutoff 
points, because the local configuration of an ordinary cutoff point in the truncated BP 
does not contain randomized cutoff points.  Eventually we obtain a configuration that 
does not contain any ordinary cutoff points.  From here the arguments presented 

earlier apply./� 
 

Note that if we have M disjoint configurations that represent the same marking as C, 

we can divide 
&̂

 by M.  M can even be larger when we are not seeking one specific 
marking, but rather any marking in which all the places in a prespecified subset 



contain tokens, irrespective of the other places.  The latter problem is well studied in 
the context of Petri net modeling and has been shown to be PSPACE-Hard (7,18). 
Schwoon et al. demonstrate a factorial growth in the number of representations of 
places and transitions in a Petri net that contains read arcs (19).  This redundancy has 
a central role in the usefulness of random partial state space representations.   In 
particular, it counterbalances a high rate of random cutoffs that would otherwise cause 
failure.  Networks that do not display this kind of redundancy are more likely to be 
handled efficiently by the deterministic algorithm.     

The theorem implies that with a sufficient (but possibly very large) number of 
repetitions a constant probability of error is assured, even if every marking is 
represented by exactly one configuration.  In practice, one can apply the algorithm for 
a much smaller number of repetitions, which we denote by !, and obtain good results 
without the theoretical guarantee. For some types of networks and markings the 
number of configurations that represent the marking that we seek will grow very fast 
with the size of the model, and then we can adjust the parameters ! and " in order to 
cope with larger networks - increasing ! will decrease the running time and increase 
the probability of making an error, and increasing " will increase the running time 
and decrease the probability of making an error.  As we show in the next section, 
these parameters can be empirically calibrated to get a small error probability and a 
running time of seconds for networks of 100 nodes.  

 

3   Experimental Results 

To test the performance of our algorithm, we first randomly generated 
asynchronous Boolean networks, and transformed them into 1-safe Petri nets. An 
initial state was chosen randomly for each net, a long trajectory of states was followed 
starting from it, a subset of nodes was chosen randomly, and the algorithm was asked 
to check if the state of these nodes at the end state (the target marking) can be reached 
from the initial state. Hence, all tests had a 'true' answer.  We applied both the 
randomized algorithm and the deterministic algorithm of (8) to each instance. In both 
algorithms we tested the target marking after each increment of the BP, and halted the 
construction of the BP when the target marking is found. In subsequent tests we 
evaluated different network topologies and sizes as well as unreachable instances. 

 
Generating Boolean networks. The structure of the Boolean network we 

constructed is as follows:  Each node in the network is regulated by either one or two 
other nodes, with equal probability to each number of regulators.  We select the 
regulator or the two regulators uniformly and independently (disallowing self 
regulations). The regulation logic is determined by setting the level of the regulated 
node to 0 or 1 with equal probability independently for each combination of 
regulators values. Hence, the value of the regulated node in each row of its truth table 
is set independently to 0 or 1 with probability 0.5.  The use of random topologies is 
aimed to test the applicability of our method to realistic design problems, in which 
strict constraints on topology do not always emerge. Some examples for uses of 



random topologies can be found in (9,20).  The initial state is determined by setting 
the value of each node to 0 or 1 with equal probability independently of the other 
nodes. The target state is generated by repeatedly performing the following step: 
randomly choose a node and update its level. The target marking here is the resulting 
state after k updates, where k is a parameter of the experiment. Hence, the target 
marking is reachable, i.e. a ‘yes’ instance. We use this method instead of random 
selection of the target state since in many of our examples, when selecting the target 
state randomly the deterministic algorithm did not terminate even after a very long 
time, so we could not be certain that the target state is not reachable.  

 

Fig. 3:  Transformation of a Boolean network to 
a Petri net. Each Boolean variable matches two 
states in the net, corresponding to values 0 and 1. 
Initially exactly one of the two contains a token. 
We call such a state legal. a. X regulates Y. The 
subnetwork corresponding to the rule "if X is 0 
then Y is 1" is shown. The transition can be fired 
only if X=0 and Y=0 (left) and the result is X=1 
and Y=1 (right). b. The subnetwork for the rule 
"if X=0 then Y=0". c.  X and Y regulate Z.  d. 
The truth table of the regulation of Z by X and Y. 
For simplicity anti-parallel arcs are merged. Note 
that each line in the truth table has a separate 
transition. Note also that if the initial state is 
legal then each transition generates a legal state, 
and thus the generated Petri net is 1-safe. 

 

 

 

 

 

 
To represent the Boolean network as a Petri net we replace each node by a pair of 

places corresponding to the 0 and 1 levels of the variable, and add a transition for 
each row in its truth table. See Fig. 3 for an example. Note that this standard 
representation always produces a 1-safe network (21).   The resulting Petri net will 
have 2s places and 4s-2t transitions if the Boolean network had t nodes with one 
regulator and s-t nodes with two regulators.  

Testing the theoretical bound. In order to test the theoretical bound on ! that we 
computed in the previous section, we analyzed Boolean networks of limited problem 



size that is common in contemporary applications of model checking(20,22,23).  
We generated 100 networks with s=15 nodes, for each one generated a trajectory of 
size s and recorded the target state as the final local state of every entity, generating a 
target state of size 15.  We ran the deterministic and the randomized unfolding 
algorithms on this test set.  For the randomized algorithm, we selected φ=0.85 in 
order to obtain a truncated BP within a few seconds. According to the Theorem, for 
an error probability ε=0.01 we set the number of repetitions to ρ=310,975 ln(100).  N 
is set to s as we know that this is the maximal possible local configuration size.   

Out of the 100 instances, 20 runs of the deterministic algorithm did not terminate 
within five days and were stopped. Fig. 4 compares the running times of the two 
algorithms on the remaining 80 instances.  The randomized algorithm terminated on 
all 100 instances and always found the correct target state, in accordance with the 
prediction of the theoretical upper bound. The randomized algorithm was on average 
~437 times faster. The figure also shows correlation between the running times of the 
two algorithms.  The instance for which the randomized algorithm required the 
longest time was solved quickly by the deterministic algorithm, suggesting that in that 
case the randomized algorithm performed a high number of repetitions that missed the 
target state. The average running time of the randomized algorithm on the 20 
instances for which the deterministic algorithm did not terminate was ~4.5 hours, 
indicating that on average these instances were more difficult than the other 80 for 
both algorithms. 

 

 

Fig. 4  Running times of 
the deterministic and 
randomized algorithms on 
random Boolean networks.  
The instances are sorted 
according to the running 
time of the deterministic 
algorithm.  The randomized 
algorithm is faster or 
comparable to the 
deterministic algorithm in 
most cases.  Of 100 tested 
networks, only the 80 on 
which the deterministic 
algorithm terminated within 
five days are shown. 

 
Tests on larger Boolean networks with smaller number of repetitions. The 

randomized algorithm can be practical in some cases even when using a much lower 
value of ρ than the theoretical upper bound.  In order to demonstrate that, we proceed 
by showing that the randomized algorithm can successfully test reachability for 
Boolean networks of 50 nodes and a target marking composed of five places. 

Fig. 5 plots the average and standard deviation of the running time of the algorithm 
for networks of 50 nodes and trajectory length L=50,70,90,…,450.  For every value of 
L we generated 100 random Boolean networks that have a trajectory of length L. 



and ! grow with the size of the model.  The deterministic unfolding algorithm (8) was 
run on the same networks, until the target state of the chosen nodes is reached. Its 
average running time is also given in the table.  On some instances it did not terminate 
after 24 hours, and at this point we halted the algorithm and considered its running 
time to be 24 hours, although it would in fact be longer.   The table shows the number 
of instances on which the algorithm terminated.   

 
Generating cellular automata. Next, to test a different model topology, we 

generated asynchronous cellular automata.  This model has been used in numerous 
different studies, for example as a model for the migration of glioma cells [1] and 
ecological systems (24,25).  We generated the automata using a two-dimensional 
square lattice. For a kxk lattice, the cells correspond to lattice points {(i,j), 1"i,j"k}, 
and the regulators of a cell (i,j) are its neighbors {(i-1,j), (i+1,j), (i,j-1), (i,j+1)} that 
fall within the lattice boundaries.  Therefore, the inner cells have four regulators each, 
and cells at the border have 3 or 2 neighbors.  The cells change their level from 0 to 1 
or vice versa asynchronously, according to the state of their regulators.  The 
regulatory logic of each cell is a majority vote over its regulators' levels, where 
equality in the vote gives output 0.  Hence, a corner cell will attain level 1 if and only 
if both its neighbors are at level 1.  A boundary (resp. internal) cell will attain state 1 
iff at least two (resp. three) of its regulators are at state 1.   

 
Impact of the topology on the algorithm’s parameters. We generated automata 

in square lattices of sizes s=16,25,36,..100.  Note that for each size there is only one 
automaton.  Therefore, what is chosen at random is only the initial state.  Every cell is 
set to 0 or 1 independently with probability 0.5.  For every lattice size we generated 
100 random initial lattice states.  For each initial state we generated a target state by 
following a trajectory of length s and recording the state of two randomly selected 
nodes in the final state as above.  N was set to s. The encoding of an automaton as a 
1-safe Petri net uses the same transformation as in Fig. 3, but with 2-4 regulators for 
each state.   

Table 2 shows the parameters ! and " for each lattice size, and the results for the 
deterministic algorithm. On both network structures, the randomized algorithm 
handles all the networks up to size 100 within seconds without errors, while the 
deterministic algorithm requires on average a long time for sizes beyond 20-30.  The 
deterministic algorithm has somewhat higher termination rates with the cellular 
automaton model, which can be attributed to the restricted topology and to our choice 
of uniform logic for this model, but it is still slower for most of the large datasets.  
Interestingly, even for the larger networks, the deterministic algorithm tended either 
to give a solution within seconds or to consume the whole 24 CPU hours without 
reaching a solution. The fraction of the slow instances grew with the problem size. 

 
 



The unreachability analysis and the tests in Tables 1 and 2 were performed on x86 64 
bits machines with a Pentium IV or Xeon processor and at most 2 GB RAM. Jobs 
were run in a time-sharing environment.  The results described in Fig. 4 were 
generated sequentially on an x86 64 bit machine with a Xeon processor and 8 GB 
RAM.   The code was written in C and compiled in Linux. Interestingly, the Windows 
random number generator proved to be inappropriate for the randomized algorithm 
and using it reduced the probability of finding the target state Writing an ad-hoc 
generator solved the problem. For the deterministic and the randomized algorithms, 
the Esparza-R!mer-Vogler (8) version of the unfolding algorithm was implemented, 
with a speedup for selection of concurrent places (details are given in the appendix).  
Our source code is freely available at http://www.tau.ac.il/~guykarle/CAV2012.zip. 
 
 

4   Discussion 

A branching process is a compact representation of a Petri net's state space.  
Constructing a small representation is vital for alleviating the state explosion problem.  
Even with the best deterministic algorithms for testing reachability, the problem is 
intractable for all but very small models.  
 

 Size Places Transitions 

Randomized Algorithm Deterministic Alg.  

! " Time 
(sec) 

Time 
(sec) 

% 
ended 

10 20 20-40 0.5 1 0.01 0.02 100 
20 40 40-80 0.97 100 0.01 22466 74 
30 60 60-120 0.98 100 0.03 31149 64 
40 80 80-160 0.991 100 0.02 16935 81 
50 100 100-200 0.992 100 0.04 24451 72 
60 120 120-240 0.993 100 0.07 39617 54 
70 140 140-280 0.994 100 0.11 31198 64 
80 160 160-320 0.995 100 0.57 30873 65 
90 180 180-360 0.996 100 0.21 36295 58 
100 200 200-400 0.997 100 0.28 42337 51 

 

Table 1:  Algorithm performance and parameters for asynchronous Boolean networks of 
different sizes.  For each size, 100 networks were randomly generated and a random trajectory 
of length equal to the size was generated in each (networks that did not allow such a trajectory 
were rejected). The average running times of the deterministic and randomized algorithm are 
listed.  The deterministic algorithm was terminated after 24 hours if no solution was reached. 
“% ended” indicates the fraction of instances that gave a solution. Failed instances contribute 
24 hours to the average running times. 



 

We presented a fast new randomized method and showed that it can handle 
problem instances that existing algorithms cannot.  The method is based on randomly 
creating representations of prefixes of a state space representation, checking them for 
reachability, and repeating the process to reduce the chance for error.  For all but the 
smallest tested problem instances, the deterministic algorithm requires on some of the 
instances a running time larger by orders of magnitude from that of the randomized 
one.  The randomized algorithm requires seconds for networks of up to 144 nodes.  

One shortcoming of our algorithm is that it requires calibration of parameters 
depending on the input.  We observed that different input sizes require different 
parameters, and used a training set of networks for calibration. While the process was 
quick and effective on our problems, it is heuristic, and developing a better method 
for selecting these parameters is of interest.  Automatic implementation can utilize 
binary search in order to increase efficiency.  Another shortcoming is pointed out by 

theoretical analysis.  We showed that ! has an exponential dependency on 
1(1 )! "" , 

and since larger models require larger values of !, the number of repetitions to reduce 
the error  will become high. For the model sizes examined in this work the values of ! 
were small enough to obtain an efficient algorithm.  Ultimately a characterization of 
network classes for which specific values of ! perform well will obviate the need for 
this calibration.   

Our algorithm is randomized and is not guaranteed to work for every instance and 
every reachability query. It will not outperform the deterministic algorithm on all 
problem types. Since disjoint local configurations of the same marking will speed up 
the algorithm, the algorithm is expected to perform well when it seeks markings that 
can be reached by many (sometimes even exponentially many) firing sequences. Such 
situations are common in many applications (21,26). If the "breadth" of the unfolding 
grows fast relative to its "depth", then pruning the truncated BP is less likely to lose 

Size Places Transitions 
Randomized Algorithm Deterministic Alg 
" ! Time 

(sec) 
Time 
(sec) 

% 
ended  

9 18 48 0.5 1 0.01 0.01 100 
16 32 112 0.91 10 0.49 14128 84 
25 50 208 0.97 10 0.01 4321 95 
36 72 336 0.99 100 0.01 15554 82 
49 98 496 0.991 10 0.14 37183 57 
64 128 688 0.993 10 0.09 39745 54 
81 162 912 0.995 10 0.74 46656 46 
100 200 1168 0.995 10 0.03 2636 97 
121 242 1456 0.998 1000 0.29 6921 92 
144 288 1776 0.9985 1000 0.93 30412 65 
 

 
Table 2:  Algorithm performance and parameters for different network sizes of asynchronous 
cellular automata.  The average running times of the deterministic and randomized algorithm 
are compared.  The percentage of instances on which the deterministic algorithm ended within 
24 hours is given in the rightmost column Time is the average running time (including 
unfinished instances) over 100 random initializations. 



information about reachability of the target state, while a deterministic approach 
would slow down significantly as depth increases.  It should be noted in this context 
that the randomized algorithm can be easily parallelized, in which case the number of 
repetitions is divided by the number of processors. In the future we will further test 
the applicability of the algorithm on additional types and sizes of Petri nets.  
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 Appendix: Selection of Concurrent Places  
We address here the selection of sets of concurrent places in the BP.  Exhaustively 

testing all sets of places in BP is highly inefficient.  For example, if t is a transition 
that consumes from 3 places, we have to find all the sets of places in BP that 
correspond to these 3 places and are concurrent.  A more efficient way to select places 
for a transition that has L input places is the following procedure: 

 
BT_SELECT_SET(i) 

!" Select the next candidate for the transition's ith 

input place from BP, or if there is no such place 

return"#

2. If the selected place is in conflict with any of 

the previous places selected (1,..,i-1), go back to 

1. 

3. Otherwise 

a. If i=L, output the concurrent set and return. 

b. Otherwise BT_SELECT_SET(i+1) 

The procedure described above is a backtracking procedure.  It adds places to the 
concurrent set until it finds a complete set of input places.  At every depth of the 
recursion, the procedure selects one place from a list of places in BP that represent the 
same place in the corresponding Petri net.  When no place can be added at depth  ith of 
the recursion, which means that all the places that correspond to the ith input of the 
transition are in conflict with the previously selected places, the algorithm backtracks.   
Claim 1:  If p and p' are places in BP that represent the same place in the 
corresponding Petri net, and p' was added before p, then exactly one of the following 
must hold: 

!" $%&'&#()#*#+('&,-&+#.*-%#/'01#.2#-0#.#

3" .#*4+#.2#*'&#(4#,04/5(,-#

Proof:  Assume towards contradiction that the claim is not true.  p cannot have a path 
to p' because it was added after p' and BP is acyclic.  Then according to the 
assumption p and p' represent the same place and they are not in conflict.   Therefore, 
there exists a firing sequence in the corresponding Petri net that puts one token in the 
place that p represents and one token in the place that p' represents.   However, that is 
the same place, in contradiction to the fact that the Petri net is 1-safe. 

How can we use claim 1 to improve the selection of concurrent sets?   First, we 
make BT_SELECT_SET() go over the places in step 1 in decreasing order of addition 
time to BP.  I.e., it will first consider the last place that was added to BP, then the one 
that was added before the last and so on.   Now we implement another backtrack 
criterion: 
 
 
 
 



 
Claim 2:  If the following conditions hold: 
 

1. The backtracking procedure leaves depth i from step 3b (a recursive call) 

2. It returns to depth i without reaching step 3a (finding a solution) 

3. Every place at depths i+1,…,L that is in conflict with the place at depth i, 

and is concurrent with the places at depths 1,…,i-1 has a path to it from the 

place at depth i 

then the procedure can backtrack to depth i-1 without performing any additional 
recursive calls from depth i, and solutions will not be missed. 
 
 Proof:  Let pi be the place that was selected at depth i.  Due to Claim 1, every place p' 
that the procedure did not yet consider at position i either has a path to pi or is in 
conflict with it.  If p' has a path to pi, then due to condition 3 of claim 2, it also has a 
path to every place that is concurrent with the places at depths 1,…,i-1.  If it is in 
conflict with pi, then there is a path that starts in some place p'', exits through different 
transitions and reaches pi and p'.  Since pi has a path to every place that is concurrent 
with the places at depths 1,…,i-1, p' is in conflict with each one of these places as 
well.  Therefore, any p' that was not considered yet can be skipped, and the procedure 
can backtrack. 

 
 

References: 

(1) Carl Adam Petri. Kommunikation mit Automaten, Universitaet Hamburg; 1962.  

(2) Karatkevich A. Dynamic analysis of Petri net-based discrete systems. Berlin: 
Springer; 2007.  

(3) Karlebach G, Shamir R. Minimally perturbing a gene regulatory network to avoid 
a disease phenotype: the glioma network as a test case. BMC Syst Biol 2010 Feb 
25;4:15.  

(4) Koch I, Reisig W, Schreiber F. Modeling in systems biology the Petri net 
approach. London: Springer; 2011.  

(5) Li Z, Zhou M. Deadlock resolution in automated manufacturing systems: a novel 
Petri net approach. Berlin ; London: Springer; 2009.  

(6) Yakovlev AV, Gomes L, Lavagno L. Hardware design and Petri nets. Boston, 
Mass.: Kluwer Academic Publishers; 2000.  

(7) McMillan KL, Probst DK. A technique of state space search based on unfolding. 
Formal Methods Syst Des 1995;6(1):45-65.  



(8) Esparza J, Romer S, Vogler W. An improvement of McMillan's unfolding 
algorithm. Lecture Notes in Computer Science;Tools and Algorithms for the 
Construction and Analysis of Systems 1996;1055:87-106.  

(9) Bonet B, Haslum P, Hickmott S, Thiébaux S. Directed Unfolding of Petri Nets. 
Transactions on Petri Nets and other Models of Concurrency 2008;5100:172-198.  

(10) Khomenko V, Koutny M. Towards an Efficient Algorithm for Unfolding Petri 
Nets. Concurrency Theory 2001;2154:366-380.  

(11) Heljanko K, Khomenko V, Koutny M. Parallelisation of the Petri Net Unfolding 
Algorithm. Tools and Algorithms for the Construction and Analysis of Systems 
2002;2280:371-385.  

(12) Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat 
Rev Mol Cell Biol 2008 Oct;9(10):770-780.  

(13) Petri C. Non-sequential processes. Gesselschaft fur Matematik unt 
Datenverarbeitung. Technical Report ISF-77-5 1977.  

(14) Esparza J, Heljanko K. Unfoldings -- A Partial-Order Approach to Model 
Checking. : Springer-Verlag; 2008.  

(15) Younes H, Simmons R. Probabilistic Verification of Discrete Event Systems 
Using Acceptance Sampling. In: Brinksma E, Larsen K, editors. Computer Aided 
Verification: Springer Berlin / Heidelberg; 2002. p. 23-39.  

(16) Grosu R, Smolka S. Monte Carlo Model Checking. Tools and Algorithms for the 
Construction and Analysis of Systems 2005;3440:271-286.  

(17) Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y. Bounded Model Checking. 
Advances in Computers: Elsevier; 2003. p. 117.  

(18) Esparza J. Decidability and complexity of Petri net problems — An introduction. 
Lectures on Petri Nets I: Basic Models 1998;1491:374-428.  

(19) Rodriguez C, Schwoon S, Baldan P. Efficient Contextual Unfolding. CONCUR 
2011 – Concurrency Theory 2011;Volume 6901:342-357.  

(20) Ay F, Xu F, Kahveci T. Scalable steady state analysis of Boolean biological 
regulatory networks. PLoS One 2009 Dec 1;4(12):e7992.  



(21) Steggles LJ, Banks R, Shaw O, Wipat A. Qualitatively modelling and analysing 
genetic regulatory networks: a Petri net approach. Bioinformatics 2007 Feb 
1;23(3):336-343.  

(22) Parameter inference for asynchronous logical networks using discrete time series. 
Proceedings of the 9th International Conference on Computational Methods in 
Systems Biology New York, NY, USA: ACM; 2011.  

(23) Corblin F, Fanchon E, Trilling L. Applications of a formal approach to decipher 
discrete genetic networks. BMC Bioinformatics 2010 Jul 20;11:385.  

(24) Aubert M, Badoual M, Fereol S, Christov C, Grammaticos B. A cellular 
automaton model for the migration of glioma cells. Phys Biol 2006 Apr 13;3(2):93-
100.  

(25) Gronewold A, Sonnenschein M. Event-based modelling of ecological systems 
with asynchronous cellular automata. Ecol Model 1998;108(1-3):37.  

(26) Baldan P, Corradini A, Konig B, Schwoon S. McMillan's Complete Prefix for 
Contextual Nets. Transactions on Petri Nets 2008;5100:199-220.  

 



(

(
78 (

'
7.'Discussion'
)

In)this)chapter)I)discuss)my)conclusions)regarding)analysis)of)GRNs)using)logical)models.))

I) try) to) predict) their) use) in) regulatory) network) analysis,) and) to) pinpoint) some) of) the)

most)urgent)problems)that)need)to)be)studied.))At)the)end)of)the)chapter)I)discuss)how)

the)methods)that)I)developed)in)this)thesis)may)be)extended)and)improved.)

7.1'Logical'models'as'the'gold'standard'for'gene'network'analysis'
The)relatively)low)level)of)detail)in)logical)models)matches)well)with)the)current)limited)

mechanistic)knowledge)about)gene)networks.))On)the)other)hand)experimental)data)are)

not)straightforwardly)interpreted)by)these)models.))Hence)if)technology)will)advance)in)

a) direction) that) will) improve) our) understanding) of) how) gene) regulation) operates,)

continuous)models)may) replace) logical)models,) and)ultimately)molecular) level)models)

will) replace) continuous)models.) ) The) difficulty) in) analyzing) the)more) detailed)models)

could)be)overcome)by)simulation)or)approximation)techniques)(66).))))

At)this)stage)a)lot)is)still)unknown)about)gene)regulation.))For)example,)the)mechanism)

by)which) TFs) find) the) exact) location) of) their) targets) in) reasonable) time) has) not) been)

conclusively) determined) yet) (67),) and) there) are) many) open) questions) regarding) the)

transport) of) gene) products) between) the) nucleus) and) the) cytoplasm) and) its) impact) on)

gene) regulation) (68).) ) If)mechanistic) understanding)will) not) advance) so) quickly,) then)

logical)models)may)become)a)gold)standard,)provided)that)experimental)measurements)

could)be)interpreted)correctly)in)a)logical)context)(69).)

It)should)be)remembered)that)in)the)past)scientific)models)always)evolved)from)simple)

models) that)neglect)some)factors(e.g.)Galileo's)experiments)with) falling)objects)did)not)

include)air)resistance))into)more)accurate)descriptions)that)take)into)account)more)and)

more) refined) phenomena.) ) The) view) that) a) logical) description) of) gene) networks)

encompasses)complex)pathological)phenomena)like)cancer)supports)their)potential)as)a)

scientific)tool)(70,71).)

)

7.2'Open'questions'
There) are) several) open) questions) regarding) logical) modeling) of) GRNs,) some) directly)

related) to) biology) and) some) more) theoretical) but) motivated) by) their) biological)

relevance.)
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The)first)question)is)whether)to)use)synchronous)or)asynchronous)models)(49).))All)that)

has) been) discovered) about) gene) regulation) does) not) indicate) a) synchronization)

mechanism)in)any)direct)manner.) )On)the)other)hand,)some)studies)using)synchronous)

networks,) including) the) ones) discussed) in) Chapter) 1,) claim) to) be) quite) good)

approximations) to)what) occurs) in) nature,) and) some) theoretical) claims)have) also) been)

made) (72).) )The)state) transition)graph)of) synchronous)networks)has) fewer)edges,) and)

therefore) it) is)much)simpler) to)analyze.) ) If) the)asynchronous)scheme) is) to)be)adopted,)

methods)for)more)efficient)analysis)need)to)be)developed.)))

Another)question)is)how)to)discretize)experimental)data)and)fit) them)to)the) logics)of)a)

logical)model.))Experimental)data)provide)us)with)clues)to)the)interactions)between)TFs)

and) target) genes,) and) these) interactions) are) assigned) continuous) certainty) levels.) The)

data) also) contain) continuous) gene) expression) values.) ) In) order) to) construct) a) logical)

model) we) need) to) integrate) these) data,) since) separately) each) data) type) only) gives) a)

partial) picture) (73,74),) and)we) also) need) to) select) a) discretization) criterion.) ) How) to)

select)this)criterion,)and)how)accurate)such)a)selection)can)be,)are)problems)that)need)to)

be)studied)more)deeply.))As)we)have)seen)in)Chapter)5,)recovering)the)network)logic)is)

an)NPJHard)problem)(3).)))

The) connection) between) network) behavior) and) observed) phenotype) also) needs) to) be)

characterized) better.) ) Kauffman) conjectured) that) steady) states) and) state) cycles)

(attractors)) correspond) to) phenotypes,) by) qualitatively) comparing) these) behaviors) to)

cellular)phenotypes)like)the)cell)cycle)and)differentiation)(75).))He)based)his)conjecture)

on) statistical) analysis) of) randomly) generated)Boolean)networks) in)which)he) observed)

cycles)that)are)proportional)in)length)to)the)number)of)nodes)and)multiple)steady)states)

and) state) cycles) that) can) be) traversed) by) applying) small) perturbations.) ) Various)

contemporary) models) tried) to) apply) this) definition) to) real) networks) (13,16,76).))

However) sometimes) a) perturbation) of) a) single) TF) can) induce) a) rather) complex)

phenotype)like)speech)impairment)or)change)in)metabolic)flux)(77,78),)and)it)has)been)

suggested) that)a) relatively)modest)number)of)genes)can)define) the)state)of)a) cell) (79).))

One)may) ask) thus) if) it) is) necessary) to) define) a) network)phenotype)using)more) than) a)

small) subset) of) its) nodes.) ) In) addition,) if) a) phenotype) is) to) be) seen) as) a) steady) state)

behavior,) then) the) contribution) of) epigenetic)modifications) to) steady) state) expression)

should) be) studied) and) the) method) of) describing) them) as) a) part) of) a) Boolean) model)

should) be) determined) (80).) ) Finally,) a) biological) steady) state) may) not) be) adequately)

represented)by)a)steady)state)of)a)Boolean)network)due)to)inaccuracies)in)the)Boolean)

terminology,) and) therefore) definition) of) a) steady) state) as) phenotype) requires) proving)
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that) biological) GRNs)produce) a) behavior) that) is) comparable) to) a) deterministic,) logical)

behavior)(27).)

7.3'Future'research'
In)the)future)I)would)like)to)continue)the)research)developed)in)this)thesis)in)several)

directions.))

• Network' reconstruction:) )The)network)reconstruction)algorithm)presented)in)

this)work)needs)to)be)studied)further.) )The)entropy)landscape)that) it)generates)

and)its)dependence)on)the)quality)of)expression)data)should)be)better)quantified.))

The)introduction)of)an)asynchronous)update)policy)should)be)considered.))While)

our) current) experience) indicates) that) for) reconstruction) purposes) an)

asynchronous)model)may) be) a) good) approximation,)more) datasets) need) to) be)

tested.) ) A) comparison) between) the) scores) of) different) regulation) functions) or)

sets) of) regulators) can) also) lead) to) important) insights,) and) can) improve) the)

utilization) of) the) reconstructed)model) for) dynamical) analysis.) ) The) process) of)

discrepancy) reduction) may) also) be) harnessed) for) more) accurate) selection) of)

regulators.)

• The' embryonic' stem' cell' network:' Large) amounts) of) experimental) data) are)

available) for) the)mouse) embryonic) stem) cell) network.) ) The) reconstructed) ESC)

model) should) be) subjected) to) dynamical) analysis) in) order) to) study) the)

initialization) of) embryonic) development) in)mouse.) ) The) randomized) unfolding)

algorithm)can)be)used)for)searching)the)space)of)regulatory)states)and)compare)

it) to) evidence) obtained) from) timeJseries) expression) profiles.) ) Results) of)

perturbations) can) be) compared) to) the) effects) of) known) pluripotency) factors)

(81).)

• Dynamical' analysis:) ) The) analysis) of) network) dynamics) is) a) provably) hard)

undertaking.) )The)randomized)unfolding)algorithm)is)a)new)approach)to)model)

checking) that) utilizes) randomness.) ) The) role) of) randomness) in) state) space)

construction) should) be) studied) further.) ) Application) to) other) model) checking)

techniques)and)to)other)network)queries,)such)as)steady)state)detection,)needs)

to)be)examined.))In)addition,)other)model)checking)techniques)can)be)adapted)to)

test)the)probabilistic)phenotype)defined)in)Chapter)4,)and)their)performance)can)

be)compared)to)Petri)net)unfolding.'

• Using' networks' for' correcting' measurement' errors' in' gene' expression'

data:) Regulatory) networks) are) the)mechanism) that) underlies) gene) expression)



(

(
81 (

patterns)in)cells,)and)consequently)they)are)also)a)promising)tool)for)correcting)

errors) in) gene) expression) data.) ) The) network) reconstruction) algorithm)

presented) in) this) work) contains) a) procedure) for) minimizing) discrepancies)

between) expression) data) and) a) network) topology.) ) This) procedure) can) be)

extended) and) adapted) for) the) purpose) of) correcting) errors) in) gene) expression)

data,)and)thereby)improve)the)results)of)other)algorithms)such)as)clustering)(82))

and)feature)selection)(83).)

In)summary,)I)developed)methods)that)address)problems)arising)in)different)aspects)of)

modeling) –) network) reconstruction,) incorporation) of) uncertainties) and) dynamical)

analysis.) ) These)methods) are)meant) to) improve)our)understanding)of) gene) regulatory)

networks)and)our)ability) to)utilize) them)for) the)advancement)of)science)and)medicine.))

Several)applications)display)the)novelty)and)robustness)of)these)methods,)and)produce)

predictions)that)can)be)further)tested)in)the)lab.) ) In)the)future)I)would)like)to)continue)

both)the)theoretical)and)practical)study)of)gene)regulatory)network)models.))

)

)
) )
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Appendix'

Glossary'
Stochasticity'@'The)property)of)a)system)whose)behavior)depends)on)probabilities.)In)a)

model) with) stochasticity,) a) single) initial) state) can) evolve) into) several) different)

trajectories,) each)with) an) associated) probability.) ) Stochastic)models) in) the) context) of)

biological) systems) assume) that) stochasticity) is) a) property) that) is) derived) from) the)

physical)reality)of)the)system.)

Local' state' @' At) any) time) point,) the) value) representing) the) status) of) an) entity) in) a)

network)is)its)(local))state.)For)example,)the)state)of)a)protein)may)indicate)whether)it)is)

phosphorylated)or)not) (a)Boolean)value),) or) the) time) since) its) last)phosphorylation) (a)

real)value).)

Global'state'@'The)combination)of)all)the)local)states)of)a)model)at)one)time)point.)

Trajectory' @In) logical) models,) a) trajectory) is) a) sequence) of) global) states) that) occur)

consecutively.) In)continuous)models,)a)trajectory) is) the)change)of)the) level)of)an)entity)

over)time.)

Synchronous'model'@A)model)wherein)the)time)steps)at)which)the)global)state)changes)

are) discrete) and) (usually)) equally) spaced.) On) each) step,) all) the) states) are) updated)

simultaneously,)depending)on)the)model’s)regulation)functions)and)on)the)global)state)at)

the)previous)step.)In)asynchronous)models,)system)changes)are)not)confined)to)specific)

times) and) global) states) do) not) progress) according) to) ‘a) common) clock’.) Time) is) often)

continuous,)and)entities)may)change)their)states)at)different)times.)

State'transition'graph'J)A)directed)graph)whose)nodes)correspond)to)global)states)and)

in)which)an)edge)from)node)u)to)node)v)indicates)that)the)system)can)traverse)directly)

from)the)global)state)represented)by)u)to)the)global)state)represented)by)v.)

ChIP'on'chip' J)A)highJthroughput)experimental)technique)that)gives)indication)for)the)

binding)intensities)of)transcription)factors)to)DNA)sequences.)

PPI'J)HighJthroughput)measurements)of)interactions)between)proteins.)

Markov' chain' J) A) stochastic) process) in) which) the) next) state) depends) only) on) the)

present)state,)regardless)of)the)trajectory)that)led)to)the)present)state.)

Steady' state' @' A) global) state) that,) once) reached,) always) repeats) itself) in) a) trajectory.)

Another)important)dynamic)behavior)in)biological)systems)is)a)cycle)of)global)states.)For)

example,)the)oscillations)observed)in)the)cell)cycle.)

Discretization' @'A)process) that) transforms) continuous) numerical) values) into) discrete)

ones.) For) example,) realJvalued) measurements) can) be) discretized) to) 0,1) or) 2,)

corresponding)to)low,)medium)and)high)levels.)

Time'series'data'–'Experimental)measurements)from)several)consecutive)time)points.)
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ניתן לחלק את המודלים השונים של רשתות בקרת גנים לשלושה סוגים עיקריים.  הסוג הראשון 

ציות נקרא מודלים לוגיים והוא כולל מודלים המשתמשים בקבוצה קטנה של ערכים בדידים ובפונק

לוגיות כדי לתאר את ערכי הביטוי של גנים ואופן שינויים.  תכונה זו מאפשרת להתאים להם מדידות 

כאשר היכולת לתקן רעש מוגבלת ולנצל כלים ממדעי המחשב כדי לנתח
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של מדעי המחשב מציבה גבולות ליכולת הניתוח של המופעים הקשים ביותר של הבעיה,  התיאוריה

ולרוב כשאפיון זה מצביע על עלות חישובית גבוהה הוא חל על הרבה מופעים אחרים.  תיאוריה זו 

  אכן מראה שקרוב לוודאי לא ניתן יהיה לפתח אלגוריתמים לניתוח רשתות שיעבדו 
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"לפילוסופיה דוקטור" תואר קבלת לשם חיבור  

 

גיא קרליבך מאת  

שמיר רון' פרופ של בהנחייתו  
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