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Abstract: Sleep deprivation (SD) critically affects a range of cognitive and affective functions, typically
assessed during task performance. Whether such impairments stem from changes to the brain’s intrin-
sic functional connectivity remain largely unknown. To examine this hypothesis, we applied graph the-
oretical analysis on resting-state fMRI data derived from 18 healthy participants, acquired during both
sleep-rested and sleep-deprived states. We hypothesized that parameters indicative of graph connectiv-
ity, such as modularity, will be impaired by sleep deprivation and that these changes will correlate
with behavioral outcomes elicited by sleep loss. As expected, our findings point to a profound reduc-
tion in network modularity without sleep, evident in the limbic, default-mode, salience and executive
modules. These changes were further associated with behavioral impairments elicited by SD: a
decrease in salience module density was associated with worse task performance, an increase in limbic
module density was predictive of stronger amygdala activation in a subsequent emotional-distraction
task and a shift in frontal hub lateralization (from left to right) was associated with increased negative
mood. Altogether, these results portray a loss of functional segregation within the brain and a shift
towards a more random-like network without sleep, already detected in the spontaneous activity of
the sleep-deprived brain. Hum Brain Mapp 38:3300–3314, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: sleep deprivation; fMRI; modularity; amygdala; mood; functional connectivity; graph
theory

r r

INTRODUCTION

Sleep deprivation (SD) has been associated with various
cognitive and affective impairments ranging from decreased
executive attention [Dinges et al., 1997] to increased emo-
tional reactivity [Zohar et al., 2005] and worse mood
[Pilcher and Huffcutt, 1996]. These changes were later asso-
ciated with altered activity patterns in executive prefrontal
regions [Drummond et al., 2005] as well as in core regions
of the limbic system, such as the amygdala [Simon et al.,
2015; Yoo et al., 2007]. For instance, several neuroimaging
studies have now shown that SD results in hyper activation
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of the amygdala typically coupled with reduced amygdala-
prefrontal connectivity (see review by Goldstein and Walk-
er [2014]). Interestingly, resting-state studies have also
revealed significant alterations in the connectivity profile of
the amygdala following 36 h of SD, reflecting preexisting
changes in limbic network connectivity, prior to any task
performance [Lei et al., 2015; Shao et al., 2014]. Changes in
resting thalamic connectivity were also detected following
SD, demonstrating a reduction in thalamic connectivity
with multiple temporal and prefrontal regions [Shao et al.,
2013], thought to reflect substantial changes in vigilance
without sleep.

Beyond region specific connectivity, sleep deprivation
has also been associated with reduced connectivity within
the default mode, dorsal attention, auditory, visual and
motor networks [Gao et al., 2015; Kaufmann et al., 2016;
Yeo et al., 2015]. In fact, changes to resting whole-brain
connectivity patterns following one night of sleep loss are
so robust, they allow for the successful classification of
sleep state (deprived vs. rested), with over 60% accuracy
[Kaufmann et al., 2016].

Beyond this accumulating evidence on the network-level
effects of sleep deprivation, it still remains unclear how such
changes ultimately shape the brain’s global functional orga-
nization when deprived of sleep. Graph theory studies have
shown that the brain is functionally organized into distinct
modules [Bullmore and Sporns, 2009], which are further
maintained across sleep stages [Tagliazucchi et al., 2013].
Functional modules are identified by grouping regions in a
way that maximizes the number of within-group links while
minimizing the number of between-group links, reflecting
the network’s ability to maintain functional segregation
[Bullmore and Sporns, 2009]. Graph theory tools can there-
fore offer, for the first time, a global insight into the brain’s
intrinsic functional organization without sleep. Examined
from this perspective one can portray the global functional
“trends” inflicted upon the network without sleep and their
association with behavior.

To this end, we constructed functional graphs from resting
fMRI data of 18 healthy participants acquired both under
sleep rested (SR) and sleep deprived (SD) states. Graphs
were formed using a predefined functional parcellation
[Craddock et al., 2012], with each of the 200 regions of inter-
est (ROIs) defined as nodes, while edges were set by thresh-
olding functional connectivity levels between node pairs. To
examine key changes in functional segregation without sleep
these graphs were further subdivided into stable functional
modules in a data driven manner [Maron-Katz et al., 2016a),
allowing for an effective examination of network modularity.

Given earlier reports of reduced functional connectivity
across several networks following sleep loss, we hypothe-
sized that SD would induce a significant change in the
brain’s modularity structure, leading to a loss of functional
segregation and a reduction in network modularity. These
changes were further hypothesized to mirror cognitive
and emotional impairments known to occur without sleep.

To look into affective changes, we examined behavioral
indices of emotional state (mood questionnaires) and their
association with graph measures of affective networks.
Cognitive impairments were assessed using the psychomo-
tor vigilance task (PVT, [Chee et al., 2008]), known to be
impaired by low vigilance and sleepiness, and their associ-
ation with graph measures of attentional networks.

MATERIALS AND METHODS

Participants and Study Design

Eighteen adults (age range: 23–33 years, mean 26.9 6 3
years; 10 females) completed a within subject paired
design across SD and SR sessions. Participants were
healthy with no prior history of sleep, neurologic or psy-
chiatric disorders. Recent use of psycho-stimulants (e.g.
Ritalin), psychiatric or hypnotic drugs or high caffeine
consumption (>3 cups a day) also excluded subjects from
participation in the study. Normal sleep-wake patterns
were further validated using actigraphy as well as subjec-
tive sleep logs. The study was approved by the Tel-Aviv
Sourasky Medical Center�s ethical review board and all
participants provided written informed consent.

Study design was the same as described in our previous
work [Simon et al., 2015]. Briefly, participants took part in
two experimental sessions: once after a night of normal
sleep (i.e. the sleep-rested condition) and again following
24 h of supervised SD. Participants had to abstain from
alcohol and caffeine 2 days prior to each session as well as
throughout the SD night. For the SD session, participants
reported to the lab at 22:30 p.m., typically at the end of a
working day, and were continuously monitored by the
research staff. Starting from 23:00, and every 2 h, partici-
pants performed a battery of questionnaires assessing
sleepiness and mood (detailed below). The SD session typ-
ically included two subjects in the same night and activity
protocol was kept in accordance with our previous work
[Simon et al., 2015]. At approximately �08:30 a.m. (690
min) in the following morning of each session participants
entered the MRI scanner. Test sessions were separated by
a mean of 13.8 days with the order of the SR-SD sessions
counterbalanced across participants.

Scanning Session and Behavioral Measurements

In each experimental session, we acquired an fMRI
resting-state scan in which subjects were instructed to stay
awake and keep their eyes open on a fixation cross. Sub-
jects’ eyes were continuously monitored using a dedicated
camera to ensure compliance to these instructions. The rest
scan lasted for 6:50 min and was performed at the same
time of the day in both sessions (�8:30 a.m.), to avoid circa-
dian effects. Furthermore, the rest scan was performed
before any subsequent task performance to minimize possi-
ble impact of prior task performance on the resting-state
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data [Barnes et al., 2009; Liang et al., 2013]. Following the
rest scan, subjects performed an emotional distraction task,
the results of which have been published elsewhere [Simon
et al., 2015]. Since this task revealed amygdala hyper activa-
tion following SD, its results were further used in our post
hoc analysis to examine the link between rest and task
evoked changes in affective networks without sleep (see
details below and in the Supporting Information).

Cognitive and behavioral changes as a function of sleep
were further monitored across both experimental sessions.
To assess changes in cognitive performance participants
completed a 10-min version of the known Psychomotor
Vigilance Task [Drummond et al., 2005] (PVT) using the
PEBL task library [Mueller and Piper, 2014] every 2 h dur-
ing the SD night (from 23:00 until 7:00 a.m.) as well as
upon arrival at the sleep-rested session. To track mood
changes, the Positive and Negative Affective Scale (PANAS
[Watson et al., 1988]) was administered every 4 h across the
SD night as well as upon arrival at the sleep-rested session.
The PANAS consists of two 10-item questionnaires assess-
ing either positive or negative affect, that are rated on a
scale ranging from 1 to 5.

fMRI Preprocessing and Parcellation

Imaging was performed on a 3T General Electric (GE)
Horizon echo speed scanner with a resonant gradient echo
planar imaging system (GE, Milwaukee, WI). All images
were acquired using a standard head coil. The scanning
session included functional T2*-weighted images
(FOV 5 220 mm, matrix size 5 96 3 96, voxel size: 3 3 3 3

4, TR/TE 5 2,500/35, slice thickness 5 4 mm, 32 slices
without gap, oriented according to the fourth ventricle,
flip angle 908) and a three-dimensional (3D) anatomical
scan using T1 SPGR sequence (1 3 1 3 1 mm). SPM8 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm) was used for image
preprocessing as well as voxel-based statistical analysis. The
first 18 s of the functional data were discarded to allow
steady-state magnetization. Functional images were motion
corrected and slice time corrected, realigned to the first scan
and normalized according to standard MNI space. Due to
excessive head movements in both scans (>2 mm) one sub-
ject had to be excluded from further analysis and thus the
fMRI analysis includes 17 subjects. Spatial smoothing was
performed utilizing a Gaussian kernel (FWHM 5 6 mm).

Before further analysis, images were corrected for physio-
logical noise by band-pass filtering to eliminate signals out-
side the range of 0.01 to 0.08 Hz [Joyce et al., 2013; van den
Heuvel et al., 2008] using the REST toolbox [Song et al.,
2011]. To parcel the brain into multiple regions of interest
(ROIs) we used a whole brain functional parcellation
reported in [Craddock et al., 2012], which partitions the
brain volume into 200 parcels or ROIs. This parcellation
was originally generated by applying a correlation-based
clustering procedure on resting state fMRI data recorded
from 41 healthy subjects [Craddock et al., 2012]. Parcels

were further masked to include only gray matter voxels
using the WFU Pick Atlas Tool [Maldjian et al., 2003; Sta-
matakis et al., 2010]. As a result, 18 parcels with less than
five voxels in common with the gray matter mask were
excluded, leaving a total of 182 ROIs.

For each subject, average BOLD signal across all gray
matter voxels was calculated within each parcel at the two
rest sessions separately (SR and SD). This time series was
used as the parcel’s signal. In order to reduce the effects
of physiological artifacts and nuisance variables, six
motion parameters, cerebrospinal fluid, and white matter
signals were regressed out of the parcels’ signal. The resid-
uals of these regressions comprised the set of mean time
courses used for all downstream analysis. Given the
impact of head motion on functional connectivity mea-
sures [Power et al., 2012], we further examined whether
subjects’ movement parameters were different across SD
and SR states. For each subject, we calculated the number
of relative movements (i.e. from each TR to the next) larger
than 1 mm separately for each state. We found no signifi-
cant differences across sleep states (means 6 STD: SR
0.1176 6 0.3321; SD 0.2941 6 0.5879; P 5 0.5, Wilcoxon-
signed rank sum test). We further examined the correlation
between mean relative head movement and the difference
in modularity scores (DQ, both SD-SR), to ensure that
movement parameters were not associated with the change
in modularity across participants. We found no significant
correlation between the difference in relative head move-
ment across states and the change in modularity scores
(Spearman correlation coefficient r 5 0.21, P > 0.4).

Additionally, in order to ensure that motion related arti-
facts did not affect our main finding, we repeated the
modularity analysis using scrubbed data (scrubbing rela-
tive movement> 0.5 mm in accordance with [Power et al.,
2014]). We found no difference in modularity scores across
scrubbed vs. unscrubbed data in either state (mean (DQ):
SR 5 3.5839e-04, P 5 0.5618; SD 5 0.004, P 5 0.1859; both
Wilcoxon-signed rank sum test). Furthermore, a significant
difference in modularity across sleep states was still
evident following scrubbing (Q, mean (DQ) 5 20.036, P <

0.01, Wilcoxon-signed rank sum test).
Of note, we did not apply global signal removal, a prac-

tice that has been under debate in the last few years due
to its propensity to produce artificial deactivations [Mur-
phy et al., 2009], particularly in the white matter and cere-
brospinal fluid [Greicius and Menon, 2004]. A full
discussion on this topic can be further found in [Laurienti,
2004]. It is important to note that SD states in particular
[Yeo et al., 2015] and drowsiness in general [Wong et al.,
2013] have been shown to alter global signal modulations
and its removal might therefore obscure highly relevant
functional changes induced by SD. In accordance, attempt-
ing to classify SD-SR states using the LOCCV procedure
(see below) resulted in lower classification accuracy after
global signal removal (see Supporting Information for fur-
ther details).
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Graph Construction

In order to construct a whole-brain graph the following
steps were performed: first, for each subject and state, pair-
wise functional connectivity (FC) matrices were computed
based on the Pearson correlation coefficients [Lee Rodgers
and Nicewander, 1988] between the BOLD time-course of
each parcel/ROI pair. Hence the ROI-ROI for correlations for
all pairs define a symmetric correlation matrix C whose ði; jÞ
element is the correlation between ROIs i and j. These matri-
ces were then used to construct an unweighted, undirected
graph G for each subject in each state by applying a thresh-
old U on C. The nodes of G are the set of all ROIs, and an
edge between nodes i and j exists if C(i,j)>U. The correlation
threshold U was determined using link density d, defined as
the fraction of possible edges present in the graph.

The link density d was chosen as to maximize the classi-
fication accuracy between SD and SR graphs. We tested
each value of d in the range of 0.01 to 0.2 in 0.01 intervals.
Sleep state classification was achieved using leave-one-out
cross validation (LOOCV) analysis as follows: on each iter-
ation subject s is excluded, and the average graph over the
remaining subjects is computed by including only edges
that appear in the majority (at least 50%) of the subjects.
This is done separately on the SR and SD graphs. Each of
the two graphs of subject s is then classified as either SR
or SD based on its similarity to the two average group
graphs. We used the Jaccard score to measure the similari-
ty between graphs. Given two graphs with the same set of
nodes (i.e. parcels) G1(V, E1), G2(V, E2), the Jaccard score
between E1 and E2 is defined as follows:

jac G1;G2ð Þ5 jE1 \ E2j
jE1 [ E2j (1)

For each subject s, a success function was defined as
described below in equation (2). In this function Gs is the
graph for subject s, and G-s is the average graph for the
remaining subjects.

Total success level (suc) was defined as:

suc5
Xsubs

s51

Success sð Þ

Its significance was evaluated using the binomial
cumulative distribution function, with P 5 0.5, n 5 2 3

subjects:

The binomial cumulative distribution function is as
follows:

p suc � kð Þ5
Xn

i5k

n

i

 !
0:5n

Classification Optimization via Feature Selection

In order to identify ROIs that are most relevant to dis-
tinguishing between SD and SR states, we repeated the
SD-SR classification using only a subset of the ROIs (i.e.
the graph nodes). In a LOOCV procedure, each iteration
involved exclusion of one subject s, and ranking of the
nodes according to the absolute difference in average
group-level values between the two states (with subject s
excluded). Each of the left-out graphs was assigned to
either SR or SD state to whose k-length average degree
vector it was closer. Analysis was performed using k top
ranking nodes with k 5 1 to 182. Accuracy levels were
defined as the fraction of correct assignments. Sensitivity
was defined as the fraction of correctly assigned SD matri-
ces, while specificity was defined as the fraction of correct-
ly assigned SR matrices.

Examining Changes in Graph Modularity

The Brain Connectivity Toolbox (BCT) [Rubinov and
Sporns, 2010] was used to examine changes in network
modularity. The modularity of a graph is a measure of
functional segregation, and reflects the degree to which a
network can be clearly partitioned into delineated sub-
groups [Newman and Girvan, 2004; Rubinov and Sporns,
2010; Rubinov and Sporns, 2011]. It is measured by using
the modularity quality function/score (Q) [Newman and
Girvan, 2004]. Modularity was calculated on the graphs con-
structed for each subject and experimental session using the
Louvain algorithm for detection of community structure
[Blondel et al., 2008; Rubinov and Sporns, 2011]. As the
assumption of normality does not always hold for this
graph measure [Godwin et al., 2015], a nonparametric
signed rank-sum test was applied on the modularity score
to evaluate its change following experimental manipulations
(i.e. SD). This process was also repeated following randomi-
zation of graph edges (while preserving degree distribution)
to validate a state specific change in modularity score.

Group level graphs were constructed by averaging state-
specific graphs across subjects in a weighted manner

Success sð Þ5

0 if jac GSR
s ; GSD

2s

� �
< jac GSR

s ; GSR
2s

� �
and jac GSD

s ; GSD
2s

� �
< jac GSD

s ; GSR
2s

� �
2 if jac GSR

s ; GSR
2s

� �
� jac GSR

s ; GSD
2s

� �
and jac GSD

s ;GSD
2s

� �
� jac GSD

s ;GSR
2s

� �
otherwise 1

8>><
>>: (2)
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[Tagliazucchi et al., 2013]. This averaging resulted in graphs
GSR and GSD, in which the weight w(i,j) given to an edge con-
necting node i with node j, represents the fraction of subject-
specific graph in which this connection appeared (e.g. 0.5 if a
link is present in 50% of all subjects and 0 if a link is never
found). These average graphs, GSR and GSD, were then used to
evaluate state-specific modularity structures separately for SR
and SD, by applying the weight-conserving Louvain modular-
ity algorithm [Rubinov and Sporns, 2011]. To account for pos-
sible instability of the results due to heuristic steps in
algorithm implementation (see [Rubinov and Sporns, 2011]),
this procedure was repeated 1,000 times for each graph, and
the results were merged using the BCT implementation of
consensus clustering in complex networks described in [Lanci-
chinetti and Fortunato, 2012]. In addition, for each of the iden-
tified group-level modules, a measure of module density was
calculated separately for each subject and state, by dividing
the number of intramodular connections by the number of all
node pairs in the module.

Identified modules were also tested for statistical enrich-
ment of seven predefined functional brain networks
(reported in [Yeo et al., 2011]). The principal idea behind
enrichment analysis is to examine if a specific class of ele-
ments with an established function is much more preva-
lent within a given group than would be expected by
chance. If so this group is suggested to have a non-
random association with the established function [Huang
et al., 2009]. Such enrichment is assigned with a p-value
that is calculated using a hypergeometric test, and can
thus be used as a statistically sound way of characterizing
groups of neural parcels (see examples in [Lahav et al.,
2016; Maron-Katz et al., 2016b]. This analysis was con-
ducted using the RichMind toolbox (http://acgt.cs.tau.ac.
il/RichMind [Maron-Katz et al., 2016a]).

To further delineate the changes in functional organization
of the brain following SD, we examined the participation
coefficient, or the degree to which nodes connect with other
nodes outside their assigned module. The participation coef-
ficient provides a measure of a node’s importance in inter-
modular communication. Nodes with high participation
indicate regions that contribute to between-module commu-
nication [Tagliazucchi et al., 2013]. The participation coeffi-
cient of node i is calculated by:

Participation coefficient

Pi512
XNM

j

k
Uj

i

ki

 !2

In this equation, j runs over all modules, ki is the degree
of node i and k

uj

i is the number of links between node i
and all nodes of module Uj.

Examining Changes in Graph Modularity in

Relation to Behavior/Task Induced Activity

Lastly, in order to examine whether network changes fol-
lowing SD might be associated with behavioral impair-
ments displayed by our subjects, we correlated modular
and nodal measurements with cognitive and affective out-
comes assessed by PVT task performance and PANAS
mood scores, respectively. Given prior evidence for the role
of thalamic and motor connectivity in PVT performance fol-
lowing SD [Chee et al., 2008], we examined the correlation
between the number of PVT lapses and the density of the
relevant somato-motor/salience module across states. To
examine changes in mood, we examined both negative and
positive PANAS scores as a function of mid-frontal degree,
given previous work relating left middle frontal gyrus
(MFG) activation to changes in mood [Miller et al., 2013].

Beyond behavioral measures we were also interested to
explore whether the observed resting state changes in the
limbic module might predict changes in amygdala reactivity
during a subsequent emotional distraction task. To that end
we conducted a post hoc analysis of the correlation between
limbic module density across states with the change in task
related amygdala activation. The emotional distraction task,
performed following the rest scan in both SD and SR ses-
sions, is an emotional version of the classic N-back task that
utilizes neutral and negative images as distractors during
the performance of the N-back task. The results of this task
were published elsewhere [Simon et al., 2015] and further
task details are provided in the Supporting Information.

RESULTS

Selecting an Optimal Graph Density Based on

State Prediction Accuracy

An unweighted, undirected graph was generated for
each subject and state using a pre-defined link-density (d;
the fraction of edges present in the graph). To select the

Figure 1.

State prediction accuracy as a function of graph density. Classifica-

tion accuracy as a function of graph density. Y-axis depicts percent

cases of correct SD-SR classification as a function of chosen graph

threshold (x-axis). d 5 12 produced the highest accuracy (0.765)

and was therefore used for all subsequent analyses.
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optimal link density, we used leave-one-out cross valida-
tion (LOOCV) and classified the SR and SD graphs of the
left-out subject under different density values (d 5 0.01–0.2;
0.01 intervals, see Methods). Figure 1 depicts the accuracy
achieved in this procedure. According to this test, d 5 0.12
produced the highest state classification accuracy (76.5%, P

5 0.0015, binomial distribution) and was therefore used
for all downstream graph analysis.

STATE-PREDICTION OPTIMIZATION USING

FEATURE SELECTION

In order to pinpoint the nodes (i.e. ROIs) that contribute
most to SD-SR classification accuracy, we repeated the
classification procedure using a subset of k nodes, for
which nodal degrees exhibited the largest change from SR
to SD (k 5 1 to 182, see Methods). A maximum accuracy of

82.35% (P 5 1.93 3 1025, Binomial distribution) was
achieved using only 24 nodes; with specificity and sensi-
tivity of 82.35%. Of these top-ranking nodes, six repeatedly
appeared in over 70% of all classification iterations, reflect-
ing the most robust ROIs in sleep state classification. These
nodes are listed in Table I and presented in Figure 2.

Our results indicate that ROIs centered in the medial
thalamus, the lateral left and right middle frontal gyri,
right SMA, right amygdala and right fusiform gyrus sig-
nificantly modified their nodal degree (i.e. their connectivi-
ty) as a function of sleep, thus contributing to improved
classification accuracy. Specifically, we revealed a signifi-
cant decrease in the degree of a node located in the medial
thalamus (which was no longer considered a hub follow-
ing SD), as well as in nodes located in the left lateral MFG
and right SMA. A significant increase in nodal degree was
found in the right lateral MFG (considered a hub only fol-
lowing SD) as well as in the right fusiform. Notably a

Figure 2.

Top ranking nodes. The most contributing nodes to SD-SR classification accuracy. Regions are

depicted on a schematic three-dimensional brain; with circle size representing the magnitude of

change across states (see Table I). Blue (red) circles represent regions that are significantly less

(more) connected following SD, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Top ranking degree-based features used for LOOCV state-prediction

MNI center AAL label
% Iterations

used
SR mean degree

(6STD)
SD mean degree

(6STD)
hub status
(SR!SD)

P value
(rank sum)

(45,42,15) Right middle frontal
gyrus

100 14.24 (5.52) 27 (10.02) 0->1 0.0039

(0,–6,6) Thalamus 100 27.47 (14.85) 13.47 (12.03) 1->0 0.006
(–30,57,3) Left middle frontal

gyrus
100 29.53 (12.41) 15.82 (13.11) 1->0 0.0168

(30,–3,–39) Right fusiform 94.11 8.18 (8.81) 20.53 (17.51) No Change 0.0086
(15,21,60) Right SMA 88.24 36.41 (8.78) 24.41 (11.5) No Change 0.0129
(21,–9,–18) Right amygdala 76.47 17.71 (9.45) 29.24 (15.96) 0->1 0.0615
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Figure 3.

Changes in modularity structure following SD. Changes in modu-

lar structure following SD. (A) Modularity scores (Q) decreased

significantly across all participants following SD. (B) This is also

visualized in a circular graph of connectivity across all nodes (for

visual purposes only top 50% links are displayed). (C) The five

functional modules revealed in each state. Regions colored in

blue (red) were assigned to the specific module only during SR

(SD) sessions, respectively. Overlapping regions (identical across

states) are depicted in purple. [Color figure can be viewed at

wileyonlinelibrary.com]
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node located in the right amygdala demonstrated a mar-
ginally significant increase in nodal degree (P 5 0.06), con-
sidered a hub only following SD.

We further examined the contribution of specific function-
al connectivity pairs (i.e. edges instead of nodes) to sleep-
state classification using top ranking edges (k 5 1–500). This
analysis achieved lower accuracy levels with higher number
of features (k 5 152, accuracy 5 73.53%) and is further
detailed in the Supporting Information.

SD Induced Changes in Network Modularity

Examining modularity scores between states, we
observed a significant decrease across subjects (Q, mean
(DQ) 5 20.033, P < 0.01 Wilcoxon-signed rank sum test;
see Fig. 3a). Notably, a significant decrease in modularity
following SD was observed across all graph densities
(0.1< d< 0.19; 0.01 intervals). Furthermore, when random-
izing the graphs (while preserving degree distribution) no
significant differences in modularity were found between
sleep states (q> 0.7, see Methods for further details).

To explore consistent changes in modularity member-
ship across all subjects, we created a “group level” graph
by averaging state-specific graphs across subjects using the
weighted version of the Louvian algorithm (see Methods).
As with individual graphs, these group-level graphs also
revealed a decrease in modularity score following SD
(mean over 1,000 repetitions (DQ) 5 20.03; a decrease of
9% from original Q; repetitions were used for stabilization
purposes, see Methods). These changes are presented in
Figure 3 and Table II (for a full list of regions within each
module, also see Supporting Information Table S1). This
analysis revealed five modules in each experimental ses-
sion without a change in the total number of modules as a
function of sleep, also reported in [Tagliazucchi et al.,
2013].

In order to accurately characterize the functional
“identity” of each module in a statistically sound manner,
we applied an enrichment analysis on each module using

seven predefined functional brain networks as reported in
[Yeo et al., 2011]. Table II depicts the functional networks
that had a significant overlap with our reported modules.
These networks include: the visual network (the visual
module), the default mode and frontoparietal executive
networks (the FP-DMN module), the sensory-motor/
saliency networks (the SMN/saliency module), the dorsal
attention network (the DAttention module) and the limbic
network (the limbic module).

SD Induced Changes in Module Membership

To identify which modules were most affected by SD,
we examined the changes in module membership across
SR and SD states. Similar to the state-classification analy-
sis, changes in module membership were mostly centered
around several main hubs affected by SD. The thalamus, a
major hub of the somatomotor/salience module, lost most
of its cortical connections following SD, associated with a
substantial reduction in the density of the SMN-salience
module. In accordance with altered amygdala connectivity
as reported above, we further revealed an increase in lim-
bic module density following SD, which now included
regions such as the ventromedial PFC typically associated
with the default mode network (this region is in fact part
of the DMN module in the SR session). As a result DMN
module density was further reduced following SD.

SD Induced Changes in Intermodular

Connectivity

In order to examine which nodes were most influential in
modifying the network’s modularity structure, we calculated
each node’s participation coefficient (see Methods). High
participation coefficient indicates that a node has many con-
nections outside of its assigned module therefore participat-
ing in intermodular connectivity. In accordance with a
breakdown of modular organization following SD, the aver-
age participation coefficient was significantly higher without

TABLE II. Functional modules

SR module assignment

SR module coverage
(network parcels out of

all module parcels)
SD module
assignment

SD module coverage
(network parcels out of

all module parcels)

SD-SR module
overlap (Jaccard

score)

Visual network 23/30
(q 5 8.55E-14)

Visual network 26/45;
(q 5 2.48E-12)

0.67

Frontoparietal control
network & default
mode network

21/55 (q 5 4.67E-8).
25/55 (q 5 2.3E-8)

Frontoparietal control
network & default
mode network

19/42 (q 5 3.41E-8);
16/42 (q 5 0.0014)

0.64

Somato-motor network &
ventral attention network

21/62(q 5 22.24E-11)
16/62 (q 5 1.18E-4)

Ventral attention network 13/41 (q 5 1.76E-4) 0.58

Dorsal attention network 6/14
(q 5 8.19E-5)

Dorsal attention network &
somato-motor network

5/25 (q 5 0.025);
11/25 (q 5 1.73E-5)

0.18

Limbic network 8/21
(q 5 1.03E-6)

Limbic network &
default mode network

9/29 (q 5 9E-7);
12/29 (q 5 0.0043)

0.72
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sleep (P, mean (DP) 5 0.065, P < 0.001, Wilcoxon-signed
rank sum test; see Fig. 4a). We further examined which
nodes differed in their participation score following SD. This
analysis revealed 45 nodes that demonstrated a significant
increase in participation score (mean (DP) 5 0.18; q< 0.05,
FDR corrected). The distribution of these nodes according to
their functional module is depicted in Figure 4b.

Similar to the modularity analysis, our results reveal
that, the FP-DMN module as well as the SMN-Saliency
module underwent the largest alterations in participation
scores, demonstrating a prominent rearrangement of their
modular structure without sleep.

Notably, modularity scores could be affected by both
changes in intermodular connectivity (assessed by the

Figure 4.

Participation coefficient scores. Changes in participation coeffi-

cients across sleep states. (A) A significant increase in mean par-

ticipation coefficient scores across all nodes following SD. (B)

The distribution of nodes that significantly modified their partici-

pation score following SD (SR module assignment is displayed).

The majority of nodes undergoing a significant change in inter-

modular connectivity belong to the FP-DMN module as well as

to the SMN-salience module. (C) Changes in SMN-salience

module structure following SD. Solid lines represent stable intra-

modular links across states, while dashed lines represent links

lost following SD. For display purposes, only one node for each

pair of bilateral regions is shown, as well as edges that appear in

at least 80% of the subjects. Node colors represent module

assignment following SD (blue: salience module; yellow: visual

module; green: SMN-dorsal attention module). **P< 0.001.

[Color figure can be viewed at wileyonlinelibrary.com]
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participation coefficient) or by a decrease in intramodular
connectivity (assessed by intramodular degree), which
would indicate a breakdown of the modules themselves.
Interestingly, our analysis did not find a significant differ-
ence in intramodular connectivity (examining normalized
node score; q> 0.6, or actual node degree; q> 0.2), sugges-
ting that the changes in the modularity structure of the
network are mostly due to a loss of functional segregation.
Interestingly, the average clustering coefficient and path
length of the network, which also measure functional seg-
regation and integration respectively, did not differ as a
function of sleep (Wilcoxon’s signed-rank test, both P >

0.76). However, unlike modularity and participation coeffi-
cient, neither path length nor clustering coefficient take
into account module membership and are thus mostly sen-
sitive to changes in individual node connectivity. The fact
that only measures that are particularly sensitive to mod-
ule membership, were altered by SD, strongly suggests
that sleep loss is associated with a breakdown of the
brain’s global functional organization leading to a loss of
functional segregation.

Impact of Sleep Deprivation on Task

Performance and Mood

SD was associated with an increase in attentional lapses,
as indicated by the Psychomotor Vigilance Task (PVT)
measured at 7 a.m. of each session (M 5 2.94 6 2.49 to M

5 10.06 6 6.86; P< 0.0005) as well as across the SD night
(measured at 23 p.m. and 7 a.m. of the SD session, M 5

2.88 6 2.37 to M 5 10.06 6 6.86; P< 0.0005). Participants’
mood was also impaired by SD, as assessed by the
PANAS mood scores. PANAS scores revealed a significant
decline in the positive scale following SD compared to the SR
session (M 5 2.86 6 0.65 to M 5 2.01 6 0.85; P< 0.0005) as
well as a slight increase in the negative scale (M 5 1.3 6 0.28
to M 5 1.59 6 0.56; P< 0.05).

Network Changes in Relation to Behavior and

Task Induced Activity

Lastly, in order to examine the link between the
observed network changes following SD and cognitive and
affective outcomes, we correlated modular and nodal
measurements with PVT and PANAS scores, respectively.
First, given the psychomotor nature of the PVT task
(Drummond et al., 2005] we examined whether the
observed decline in the SMN-salience module density
might be associated with the reported decrease in task per-
formance following SD. Indeed, the decline in PVT perfor-
mance (indicated by increased number of attentional
lapses) was significantly correlated with the decrease in
SMN-salience module density (q 5 20.55, P < 0.02; see
Fig. 5a). This finding suggests that a breakdown of the
SMN-salience module (specifically a disconnection of

motor regions, see Table II and Fig. 4) was associated with
impaired sustained attention during the task.

Second, we found robust changes in bilateral mid-
frontal degree following SD (see Table I), which suggests a
shift from left to right dominance in lateral mid frontal
connectivity patterns. In light of previous work relating
the left middle frontal gyrus (MFG) to positive mood [Mil-
ler et al., 2013], we examined whether the decline in left
MFG degree is associated with participants’ altered mood
scores following SD. As mentioned above, both the nega-
tive and positive scales of the PANAS questionnaire were
affected by sleep deprivation, and therefore both were
examined as a function of change in left MFG degree
across states (SD–SR). Only the increase in negative mood
was found to be significantly anticorrelated with the
change in left MFG degree (q 5 20.50, P < 0.05; see Fig.
5b; for positive mood q 5 0.05, P > 0.8), suggesting that a
decrease in left MFG connectivity is associated with worse
mood following SD. Notably, the change in negative mood
was further found to be positively correlated with the
change in right MFG degree (q 5 0.47, P 5 0.05) suggesting
the opposite direction (i.e. that a more connected right
MFG is associated with worse negative mood following
SD). Altogether, these findings support the interaction
between bilateral mid-frontal connectivity and mood (see
review by [Miller et al., 2013]), and suggest that beyond
changes to the limbic module, connectivity pattern of the
left and right MFG might also be involved in the affective
impact of sleep loss.

Lastly, we wished to evaluate whether the observed
changes in limbic module density could predict activity
levels during subsequent task performance in a specific
region of interest. Given our previous work on task-
related hyperactivation of the amygdala following SD
[Simon et al., 2015], we examined whether changes in lim-
bic module density might be associated with amygdala
activity during a subsequent emotional distraction task
(for further details on the task see Methods and Support-
ing Information). As expected, the increase in limbic mod-
ule density following SD was significantly correlated with
the increase in the reported left amygdala response to task
stimuli (q 5 0.62; P < 0.02; see Fig. 5b). This finding sug-
gests that hyperactivity of affective brain regions following
SD is reflected in altered connectivity patterns of the lim-
bic network even prior to task performance.

DISCUSSION

Using graph-based analysis, we were able to capture a
large-scale change in the brain’s modular organization
induced by lack of sleep. Our data-driven whole-brain
approach revealed that sleep loss is associated with signifi-
cant changes in the modularity structure of key emotional,
salience and default mode regions, the latter two principal-
ly leading the decrease in the brain’s modular organiza-
tion. These changes were further associated with impaired
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Figure 5.

Modular change and relation to behavior. Changes in modular

structure following SD and relation to behavior and task reactivity.

(A) The mean number of PVT lapses across the SD night (left)

and its correlation with SMN-salience module density (right). The

negative correlation suggests that a sparser SMN module was

associated with worse task performance. (B) A significant increase

in negative mood following SD (left) and a negative correlation

between worse negative mood and a decrease in left MFG degree

right). (C) Left amygdala reactivity to neutral stimuli during the

emotional N-Back task in SR and SD (left) and correlation of

amygdala reactivity with increase in limbic module density (right).

The positive correlation suggests that sleep-related changes in

limbic module connectivity during rest could predict amygdala reac-

tivity during subsequent task performance. *P< 0.05, **P < 0.0001.
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behavioral and neural outcomes known to occur without
sleep. Specifically, we identified a significant association
between limbic module density during rest and hyper acti-
vation of the amygdala during a subsequent emotional
task as well as an association between mid-frontal degree
patterns and worse negative mood.

To begin with, we demonstrated that both modularity
and participation coefficient measures, which quantify the
integration/segregation balance in large-scale networks
[Godwin et al., 2015], are altered by sleep deprivation. These
alterations indicate a breakdown of the brain’s modular
organization, suggesting that the human brain moves
towards a more random like organization without sleep,
ultimately reducing functional segregation [Kitzbichler et al.,
2011]. In accordance, decreased modularity scores have been
reported in states of normal aging [Meunier et al., 2009],
schizophrenia [Alexander-Bloch et al., 2010], and Alz-
heimer’s disease [de Haan et al., 2012]. In contrast, increased
modularity was recently reported in the unconscious states
of deep sleep (stages N2 and N3) suggesting that sleep
might increase functional segregation [Boly et al., 2012;
Tagliazucchi et al., 2013] possibly resetting the brain’s inte-
gration/segregation balance back to an optimal state.

Notably, whether increased modularity is always a mark-
er for improved function has recently been challenged by a
neuroimaging study exploring brain modularity during
masked visual perception [Godwin et al., 2015]. The authors
demonstrated that aware versus unaware detection of visual
stimuli was associated with reduced modularity across the
entire brain, suggesting that reduced modularity might
enable conscious awareness through a temporary increase in
functional integration (as opposed to functional segregation
which is supported by increased modularity). Future studies
utilizing graph theory analysis across different functional
states (including different states of consciousness) could
prove valuable to further address this interesting topic.

In addition to whole brain modifications in modularity
we revealed that SD elicited a prominent change in the
connectivity patterns of key nodes within the salience and
limbic networks. The thalamus, known for its central role
in arousal regulation [Schiff, 2008] and in attention and
arousal interactions [Portas et al., 1998], was found to be
significantly less connected following sleep loss, ultimately
losing its hub status in the sleep deprived graph (see Table
I). In accordance with a recent study that examined resting
thalamic connectivity following sleep deprivation we fur-
ther observed a reduction of thalamic connectivity with
bilateral midtemporal regions [Shao et al., 2013] (also see
Fig. 4), and were further able to associate the decrease in
thalamic module density (i.e. the SMN-salience module)
with attentional lapses as assessed by the PVT (see Fig. 5).
Similarly, sleep deprivation was previously associated
with reduced thalamic activity during lapses in PVT [Chee
et al., 2008] as well as reduced resting metabolic activity in
the thalamus during PET recordings [Thomas et al., 2000;
Wu et al., 1991].

Interestingly, reductions in thalamo-cortical connectivity
have also been demonstrated during NREM sleep [Taglia-
zucchi et al., 2013], propofol-induced unconsciousness
[Guldenmund et al., 2013], light anesthesia [Akeju et al.,
2016], and in presleep deep relaxation [Kinreich et al.,
2014]. These findings imply that the sleep-deprived brain
might be susceptible to short sleep onsets (i.e. sleep intru-
sion [Cirelli and Tononi, 2008]), while still behaviorally
awake, in line with recent suggestions [Vyazovskiy et al.,
2011]. This hypothesis is further supported by a recent
study demonstrating a significant reduction in thalamic
degree only during the first NREM stage of sleep onset
(N1), arguably the closest state to sleep deprivation
[Spoormaker et al., 2010; Tagliazucchi et al., 2013; Yeo
et al., 2015].

Our findings also reflect robust changes in the FP-DMN
module following SD, expressed in increased participation
coefficient scores (see Fig. 4), reduced module density and
changes in module membership, specifically within the
DMN. Indeed, the DMN has consistently been shown as
sensitive to sleep manipulations. For instance, Gujar et al.
demonstrated that one night of sleep loss triggers a
marked reduction in DMN deactivation during task per-
formance further associated with unsuccessful task trials
[Gujar et al., 2010]. SD has further induced a reduction in
DMN connectivity [Kaufmann et al., 2016; Yeo et al., 2015]
ultimately leading to a split within the DMN module,
mostly led by a breakdown of anterior-posterior DMN
connectivity [Wang et al., 2015]. Interestingly, sleep studies
have also reported a reduction in posterior-anterior con-
nectivity of the DMN, during the deeper stages of NREM
sleep (i.e. N3 and N4, [Horovitz et al., 2009; S€amann et al.,
2011; Tagliazucchi et al., 2013]), again suggesting that the
sleep deprived brain is highly susceptible to sleep-like
changes in brain function while still behaviorally awake.
One of the main features of DMN connectivity, i.e. its
functional de-coupling (or anti correlated activity) from
the brain’s attentional networks, has also been reported to
weaken following SD. This functional decoupling, thought
to reflect an adaptive mechanism of attention regulation
[Fox et al., 2009], has been reduced following both com-
plete and partial sleep deprivation [Bosch et al., 2013; De
Havas et al., 2012; S€amann et al., 2010], leading to a signif-
icant reduction in the brain’s functional segregation [De
Havas et al., 2012]. In accordance, Yeo et al. were able to
associate resilience to sleep deprivation (assessed via
improved task performance following SD) with the level
of preserved DMN anti correlations, demonstrating the
importance of intact functional segregation to counteract
the detrimental effects of sleep loss [Yeo et al., 2015].

In accordance with the impact of SD on emotional states,
we further revealed a decrease in left MFG degree that
was significantly correlated with the change in subjects’
negative mood (see Fig. 5b). The lateralized effect of left
and right mid-frontal regions on affect has long been
described in both healthy controls [Miller et al., 2013] as
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well as in patients suffering from mood disorders [Herring-
ton et al., 2010]. Though still debated [Wager et al., 2003],
positive affect has generally been associated with greater
left over right activity while a decrease in left MFG activity
has been associated with negative affect, a distinction fur-
ther supported by lesion studies [Hama et al., 2007]. In
accordance, we revealed a significant shift in lateralized
mid frontal dominance as a function of sleep; while left
MFG was considered a hub in the SR network, its connec-
tivity decreased following SD, leading to a loss of its hub
status. The exact opposite occurred in the right MFG, which
was only considered a hub following SD (see Fig. 2). These
findings suggest that the negative impact of sleep loss on
emotional well-being could stem from dynamic changes in
mid-frontal connectivity in addition to changes within the
limbic network.

Lastly, affective changes as a result of SD were also indi-
cated by the increase in limbic module density and in par-
ticular right amygdala connectivity (regarded as a hub
only following SD; see also [Shao et al., 2014]). Interestingly,
we were able to associate the increase in limbic module
density to task-related changes in amygdala activity during
subsequent performance of an emotional distraction task
(see Fig. 5c). This finding supports a functional link
between spontaneous neural activity in the limbic circuit
and prospective emotional control during task performance,
which enables to predict the impact of SD on emotional
processing even during rest [Raichle, 2011]. Altogether,
these findings support a profound change in emotional
processing elicited by sleep loss as indicated by both task
related activity as well as resting state measures of graph
connectivity. This association is particularly relevant to the
intimate link between disturbed sleep and various depres-
sive, manic, anxious and/or psychotic disorders (see review
by [Goldstein and Walker, 2014] and supports the invalu-
able importance of sleep to a healthy emotional state.

To conclude, using a data driven approach we were
able to detect robust changes in the functional segregation
of the human brain, leading to a more random-like struc-
ture without sleep. These changes were centered on key
regions of the limbic, salience and default mode networks,
further associated with impairments in cognitive task per-
formance, task-related amygdala reactivity as well as in
participants’ emotional state following SD. These findings
confirm the global impact of sleep loss on the brain’s func-
tional architecture detected even prior to task performance
and indirectly point to the importance of sleep in preserv-
ing the functional segregation of the human brain.
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