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Abstract

In matching with don’t-cares and k mismatches we are given a pattern of length m
and a text of length n, both of which may contain don’t-cares (a symbol that
matches all symbols), and the goal is to find all locations in the text that match the
pattern with at most k mismatches, where k is a parameter. We present new algo-
rithms that solve this problem using a combination of convolutions and a dynamic
programming procedure. We give randomized and deterministic solutions that run
in time O(nk2 log m) and O(nk3 log m), respectively, and are faster than the most
efficient extant methods for small values of k. Our deterministic algorithm is the
first to obtain an O(poly(k) · n log m) running time.

Key words: Analysis of algorithms, Pattern matching, Approximate wildcard
matching

1 Introduction

The problem of pattern matching with don’t-cares requires finding all occur-
rences of a pattern p of length m in a text t of length n, where the pattern and
the text contain don’t-cares (or wildcards), often marked as ’*’, that match all
symbols. Fischer and Paterson developed an algorithm for solving this problem
that utilizes boolean convolutions, computed using the Fast Fourier Trans-
form (FFT) [1]. Assuming the RAM model, which is the computational model
used by most studies on FFT-based pattern matching techniques, its running
time is O(log |Σ| · n log m), where Σ is the alphabet. This time complexity
has been improved over the past decade using various FFT-based methods.
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Cole and Hariharan were the first to obtain an O(n log m) time deterministic
algorithm [2], which was simplified by Clifford and Clifford [3].

In many practical scenarios, one may want to search for approximate matches,
that is, locations in the text that match the pattern up to a small pre-specified
distance. Perhaps the most widely used metric is the Hamming distance, which
counts the number of mismatched pattern symbols. Applications of this vari-
ant of approximate matching are very common. For example, in bioinformatics
they arise when comparing genes or proteins, and in the context of motif find-
ing and primer design. The Hamming distance between the pattern and the
text at every offset can be computed using the match-count algorithm, which
computes |Σ| boolean convolutions in time O(|Σ|n log m) [1]. Abrahamson
combined the match-count algorithm with a divide-and-conquer technique to
compute the Hamming distance in time O(n

√
m log m) [4]. Randomized solu-

tions for Hamming distance computation can also be obtained using sketching
protocols (e.g., [5,6]).

In this paper we focus on the problem of matching with k mismatches. Given a
pattern, a text and an integer k, we would like to report all locations in the text
that match the pattern with at most k mismatches. This problem has been
studied extensively for simple strings (i.e., without don’t-cares). Currently, the
most efficient method runs in time O(n

√
k log k) [7]. As in the case of exact

matching, searching for approximate matches becomes much more difficult
when we allow don’t-cares. This variant, which we call matching with don’t-
cares and k mismatches, has received attention only very recently (see details
below). Here, we describe new efficient algorithms for matching with don’t-
cares and k mismatches, which are conceptually simpler, and in some cases
faster, than extant techniques.

2 Problem definition and preliminaries

Let Σ be a finite alphabet, and denote by ’*’ the don’t-care symbol. A text
t = t1 . . . tn and a pattern p = p1 . . . pm are strings over Σ∪’*’. Define HD(i)
to be the Hamming distance between p and ti. . . ti+m−1:

HD(i) = | { 1≤j≤m | pj 6= ti+j−1 and pj, ti+j−1 6= ’*’ } |

Matching with don’t-cares and k mismatches: Given a pattern p and a
text t with don’t-cares, and an integer k, find all occurrences of p in t with at
most k mismatches, i.e., report all locations i in t with HD(i) ≤ k.

All the algorithms described in this paper assume the RAM model, wherein
standard arithmetic on w-bit numbers are performed in constant time. Fol-
lowing common practice, we shall assume that the word size is w = O(log n).
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Convolution: The convolution of two vectors a, b is the vector a ⊕ b such
that:

(a⊕ b)[i]
def
= Σ

|a|
j=1ajbi+j−1 , for 1 ≤ i ≤ |b|−|a|+1

Given a pattern p of length m and a text t of length n (m < n), both encoded
using numbers with w bits, the convolution p⊕t can be computed in O(n log m)
time, as follows. First, the text is split into dn/me pieces of length 2m, with
overlap m between consecutive pieces. The convolution between the pattern
and each piece of the text is then computed using FFT in time O(m log m)
per piece (as in [1]).

3 Related work and previous results

Both match-count and Abrahamson’s technique for Hamming distance match-
ing can easily handle don’t-cares. Thus, matching with don’t-cares and k
mismatches can be solved in time O(|Σ|n log m) or O(n

√
m log m) [1,4]. In-

tuitively, finding the locations at which the pattern matches the text with
at most k mismatches should be easier than computing the exact Hamming
distance at all locations. Indeed, Clifford et al. [8] recently developed sev-
eral faster algorithms for this problem. Their algorithms, as well as the new
ones we introduce in this work, extend the elegant technique for wildcard
matching reported by Clifford and Clifford [3], which we now describe in brief
(note that this technique also appears in [9] in the context of string matching
with L2 distance, and that similar methods based on manipulation of poly-
nomials for solving various pattern matching problems were suggested earlier,
e.g., [10,11]).

3.1 Simple matching with don’t-cares

The simple algorithm for matching with don’t-cares first encodes the pattern
and the text, as follows. Each symbol is replaced by a unique positive number,
and don’t-cares are replaced by 0’s. Then, for each location i in the text, the
algorithm computes the sum A0[i]:

A0[i] =
m∑

j=1

xi,j (1)

where:

xi,j = pj ti+j−1 (pj − ti+j−1)
2 (2)
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It is easy to see that A0[i] = 0 if and only if there is an exact match at offset i.
The key observation is that this sum can be computed efficiently for all offsets
using three FFTs, since:

A0[i] =
m∑

j=1

p3
j ti+j−1 − 2

m∑

j=1

p2
j t2i+j−1 +

m∑

j=1

pj t3i+j−1 (3)

For example, the first sum in (3) is a convolution between p3
1, . . . , p

3
m and the

text t1, . . . , tn. Thus, the total running time is O(n log m) [3].

3.2 Matching with don’t-cares and k mismatches

Clifford et al. [8] further developed the above idea and devised an algorithm
for solving the 1-mismatch problem — given a pattern and a text that contain
don’t-cares, the algorithm reports all text locations that match the pattern
with at most one mismatch. In short, their algorithm computes (again, with
FFTs) an additional array A1[i] =

∑m
j=1(i + j − 1) xi,j. If there is a single

mismatch at offset i, then the value B[i] = A1[i]/A0[i] is the position of the
mismatch. Thus, there is one mismatch iff A0[i] = xi,B[i]−i+1, which could easily
be verified in constant time per text offset. Clifford et al. used this procedure as
a building block for solving the k mismatches with don’t-cares problem. They
present a randomized algorithm that runs in O(n(k + log n log log n) log m)
time and gives the correct answer with high probability. Their deterministic
algorithms, based on tools developed for group testing and for k-selectors,
run in time O(nk2 log3 m) and O(nk polylog m), respectively (the latter with
O(polym) time preprocessing).

4 Main ideas and results

Our approach is based on the fact that at a fixed location i in the text, the
number of mismatches between the pattern and the text is the number of
non-zero’s in the array xi,1, . . . , xi,m. Denote:

C[i] =
∑

1≤j1<j2<...<jk+1≤m

xi,j1 · xi,j2 · . . . · xi,jk+1
(4)

where the sum is over all possible (k+1)-tuples of ordered indices from {1, . . . , m}.
We claim that there is a k-mismatch if and only if C[i] = 0. This is because
if there are k or less mismatches at location i, then every set of k+1 indices
must contain at least one position j′ where the pattern matches the text, i.e.,
xi,j′ = 0, which implies that C[i] = 0. Conversely, if there are more than k
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mismatches at text location i, and let j1, . . . , jk+1, . . . denote their positions in
the pattern, then xi,j1 · xi,j2 · . . . · xi,jk+1

> 0. Since all xi,j’s are non-negative,
we get C[i] ≥ xi,j1 · xi,j2 · . . . · xi,jk+1

> 0, as required.

Alas, the value C[i] is a sum of
(

m
k+1

)
products of k+1 xi,j’s — how can we com-

pute it efficiently? Our main observation is that C[i] can be expressed using a
recursion, whose base is made up of k+1 arrays of the type Ds[i] = Σm

j=1x
s
i,j.

Each of these arrays can be broken up into O(k) convolutions and computed
using FFTs. A dynamic programming procedure is then applied to com-
pute C[i] and report the results. An additional obstacle we need to overcome is
that the numbers computed by the algorithm are too large to fit inside a single
RAM word. We use simple tools from number theory to solve this problem.
The total time complexity of our randomized algorithm, which reports the cor-
rect locations with high probability, is O(nk2 log m). The running time of our
deterministic solution is O(nk3 log m). It is the first deterministic algorithm
that solves matching with don’t-cares and k mismatches in O(poly(k)·n log m)
time. In particular, for constant k, it matches the O(n log m) time complexity
for exact matching with don’t-cares [2,3].

5 The algorithm

Our algorithm for matching with don’t-cares and k mismatches, called k-
MISMATCH, consists of four main steps, outlined in Figure 1.

Algorithm k-MISMATCH (pattern p, text t, integer k):

1. Encode p and t using positive integers, ’*’ using 0
2. Compute the arrays D1[i] = Σm

j=1xi,j , . . . , Dk+1[i] = Σm
j=1x

k+1
i,j ,

where xi,j = pjti+j−1(pj − ti+j−1)
2

3. Compute the array C[i] =
∑

xi,j1 · xi,j2 · . . . · xi,jk+1

4. Report a match at location i iff C[i] = 0

Fig. 1. Algorithm for matching with don’t-cares and k mismatches. See also Figure 2.

In step 1, the pattern and the text are encoded as in [3] — each alphabet
symbol is replaced by a unique positive integer, and don’t-cares are replaced
by 0’s. Step 2 computes the arrays Ds[i] for s = 1, . . . , k+1:
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Ds[i] =
m∑

j=1

xs
i,j =

m∑

j=1

ps
j tsi+j−1 (pj − ti+j−1)

2s

=
m∑

j=1

p3s
j tsi+j−1 − 2s

m∑

j=1

p3s−1
j ts+1

i+j−1 + · · ·+
m∑

j=1

ps
j t3s

i+j−1

Thus, each array Ds[i] is a linear combination of 2s+1 convolutions of the type
pa⊕tb, so a total of O(k2) convolutions plus O(k2) linear-time operations on
arrays of length n are required in step 2. In order to perform step 3, we need
to define another family of arrays. Let s and t be positive integers, s+t≤k+2.
Define the following array:

Ft,s[i] =
∑

1≤j1≤m
1≤j2<...<jt≤m
∀l>1 jl 6=j1

xs
i,j1
· xi,j2 · . . . · xi,jt

If s = 1, we also require j1 <j2, so that each term occurs only once in the above
sum. Informally, Ft,s[i] is the sum of all terms of the type xs

i,j1
· xi,j2 · . . . · xi,jt ,

where the indices j1, . . . , jt are chosen in such a way that each term is taken
exactly once. Notice that F1,s[i] = Ds[i], and Fk+1,1[i] = C[i].

Lemma 1 The following recursion holds:

Ft+1,s[i] = 1
c

(Ft,1[i] · F1,s[i]− Ft,s+1[i]) , where c =





t+1 , if s = 1

1 , if s > 1

Proof: By definition:

Ft,1[i] · F1,s[i] = (
∑

1≤j1<...<jt≤m

xi,j1 · . . . · xi,jt) · (
∑

1≤j≤m

xs
i,j)

Opening the above parentheses, we get two types of terms — one with t+1
distinct x’s (when the index j in xs

i,j is not one of j1, . . . , jt), and one with t
distinct x’s (when j ∈ {j1, . . . , jt}). Collecting each type to a separate sum,
we get using simple algebra:

Ft,1[i] · F1,s[i] =

= c · ∑
1≤j1≤m

1≤j2<...<jt+1≤m

∀l>1 jl 6=j1

xs
i,j1
· xi,j2 · . . . · xi,jt+1 +

∑
1≤j1≤m

1≤j2<...<jt≤m
∀l>1 jl 6=j1

xs+1
i,j1

· xi,j2 · . . . · xi,jt

= c · Ft+1,s[i] + Ft,s+1[i]

By Lemma 1, step 3 of the algorithm can be computed using dynamic pro-
gramming. We first set F1,s[i] = Ds[i] for s = 1, . . . , k+1. We then compute
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F2,s[i] for s = 1, . . . , k using the recursion. We continue in this way, as illus-
trated in Figure 2, until we obtain Fk+1,1[i], which is the array C[i] we wished
to compute. Note that by examining the arrays F1,1[i], . . . , Fk+1,1[i], we can
infer the exact number of mismatches at each k-mismatch location:

HD(i) = min{ t | Ft+1,1[i] = 0 }

The number of arrays the algorithm computes in step 3 is k(k+1)/2. Since
each array is calculated in linear time, the running time of this step is O(nk2).

The overall running time of the algorithm is dominated by the time taken
to perform the O(k2) FFTs in step 2, which is O(nk2 log m). However, as
mentioned earlier, there is still one flaw we must address — the algorithm
computes numbers as large as

(
m
k+1

)
|Σ|4(k+1) < m5(k+1) (see (4)), i.e., numbers

with O(k log m) bits, whereas the RAM model commonly used in the pattern-
matching literature permits unit-cost operations only on O(log n)-bit words.
To solve this problem, we perform all computations modulo some large prime
number q that fits into a single RAM word, as described in the next sections.

Fig. 2. Our algorithm for matching with don’t-cares and k mismatches.
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5.1 Randomized algorithm

Our randomized algorithm, called k-MISMATCH-RAN, is outlined in Fig-
ure 3. The algorithm randomly chooses two large prime numbers — q1 and q2,
each with O(log n) bits, and computes the array Cq[i] = C[i] mod q, where
q = q1q2, using the procedure described above (integers in Zq fit into a single
RAM word, as required). Finally, it reports a match at location i if Cq[i]=0.
C[i] is an integer between 0 and some large number N , where N < mK and
K = 5(k+1). Thus, it has at most K prime factors larger than m. We therefore
choose q1 and q2 randomly and uniformly from the primes within a sufficiently
large interval, to guarantee that the probability of reporting a false match is
small. The following lemma specifies the required interval.

Lemma 2 For n≥17 and K =5(k+1)≤5n, there are more than nK primes
in the interval [n+1, 6n(K+1) ln n]. All these primes are O(log n)-bit numbers.

Proof: Following are well known bounds on the number π(x) of primes less
than or equal to x [12]:

∀x ≥ 17
x

ln x
< π(x) < 1.26

x

ln x

Since ln (6n(K+1) ln n) < 4 ln n for n≥17, it follows from the above bounds
that:

π(6n(K+1) ln n)− π(n) >
6n(K+1) ln n

4 ln n
− 1.26n

ln n
>

6n(K+1) ln n− 6n

4 ln n
> nK

Algorithm k-MISMATCH-RAN (p, t, k):

1. Randomly choose two prime numbers — q1, q2 ∈ [n+1, 6n(K+1) ln n],
where K = 5(k+1)

2. Cq[i] = k-MISMATCH(p,t,k) modq1q2

3. Report a match at location i iff Cq[i]=0

Fig. 3. Randomized algorithm for matching with don’t-cares and k mismatches.

In order to obtain the primes q1 and q2, one can randomly draw numbers
from the above interval and check each number for primality. This takes
O(polylogn) expected time [13], and can be done in preprocessing, as it de-
pends only on the length of the text. Since there are more than nK primes
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in the interval, out of which at most K are factors of C[i], it follows that if
C[i]>0 the probability that Cq[i]= 0 is:

P (Cq[i]= 0 | C[i]>0) <

(
K

2

)
/

(
nK

2

)
=

K(K−1)

nK(nK−1)
< 1/n2

In other words, the algorithm reports a false match at a given location i with
probability less than 1/n2 (a true match is always reported correctly, since
C[i] = 0 implies C[i]≡ 0 (mod q)). Thus, the probability that the algorithm
reports any false match in the entire text is less than 1/n.

Theorem 1 Algorithm k-MISMATCH-RAN solves matching with don’t-cares
and k mismatches in O(nk2 log m) time and gives the correct output (i.e., does
not report false matches anywhere in the text) with probability at least 1− 1

n
.

For k = O(
√

log n log log n) our algorithm improves upon the randomized
technique of Clifford et al. [8], which runs in O(n(k + log n log log n) log m)
time.

5.2 Deterministic algorithm

The deterministic algorithm, called k-MISMATCH-DET and outlined in Fig-
ure 4, chooses K prime numbers — q1, . . . , qK > m, and computes the array
C[i] modulo each of these primes separately. Lemma 3 specifies the interval
that contains these primes.

Algorithm k-MISMATCH-DET (p, t, k):

1. Find prime numbers — q1, . . . , qK > m, where K = 5(k+1)
2. For each prime qr do:

Let Cr[i] = k-MISMATCH(p,t,k) modqr

3. Report a match at location i iff ∀r Cr[i]≡0 (mod qr)

Fig. 4. Deterministic algorithm for matching with don’t-cares and k mismatches.

Lemma 3 For m≥17, the interval [m+1, 19m ln m] contains more than 5m
primes.

Proof: Since ln (19m ln m) < 3 ln m for m≥17, then using the bounds on π(x)
(see proof of Lemma 2) we get:

π(19m ln m)− π(m) >
19m ln m

3 ln m
− 1.26m

ln m
>

19m ln m− 4m

3 ln m
> 5m
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It follows from the above lemma that the primes q1, . . . , qK (K≤5m) can be
found in time o(m ln m) using modern sieve techniques [14], and that they
are O(log n)-bit numbers, as required. The algorithm completes by reporting
all locations for which C[i] is 0 modulo all K primes. This always yields the
correct answer, since:

0 ≤ C[i] < mK <
K∏

j=1

qj

The running time of the deterministic algorithm is o(m ln m) for finding the
prime numbers, plus O(Knk2 log m) for computing C[i] modulo each of the K
primes. Thus, its total running time is O(nk3 log m).

Theorem 2 Algorithm k-MISMATCH-DET solves matching with don’t-cares
and k mismatches in O(nk3 log m) time.

Our deterministic algorithm is faster than the O(nk2 log3 m) time determinis-
tic method of [8] for k = O(log2 m).

6 Summary

We presented efficient randomized and deterministic algorithms for match-
ing with don’t-cares and k mismatches with running times O(nk2 log m) and
O(nk3 log m), respectively. For small values of k, our algorithms are faster
than the recently published methods of Clifford et al. [8]. For small alpha-
bets (|Σ| = O(k2 min{k, log2 m})), the match-count algorithm is currently
the fastest. Our solution is the first O(poly(k) · n log m) time deterministic
algorithm. For fixed values of k, this matches the O(n log m) time complex-
ity of exact matching with don’t-cares [2,3]. An interesting open question is
whether an O(f(k)n log m) algorithm can be found with f(k) = o(k3), or even
f(k) = O(k).
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