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Abstract

This thesis concerns applications of combinatorial and algorithmic techniques in molec-
ular biology. We focus on two main areas. In the first part we consider algorithms for
tracing genome rearrangement events. Genome rearrangements are large scale DNA mu-
tations, in which large segments are rearranged in order and orientation. Since these
mutations are very rare, they are useful in evolutionary studies. In particular, we consider
rearrangements in which a segment of DNA is cut out and inserted in a different location
in the same chromosome. If the segment is inserted in the same orientation it is called
transposition; otherwise it is a transreversal.

We first study the problem of sorting permutations by transpositions only. We develop
a novel 1.5-approximation algorithm, that is considerably simpler than the extant ones.
Moreover, the analysis of the algorithm is significantly less involved, and provides a good
starting point for studying related open problems. Next, we consider the problem of sorting
permutations by transpositions, transreversals and revrevs (an operation reversing each of
two consecutive segments). Our main result is a quadratic 1.5-approximation algorithm for
sorting by these operations, improving over the extant best known approximation ratio of
1.75. We present an implementation of both algorithms that runs in time O(n3/2

√
log n),

improving over the quadratic running time of previous algorithms. The improvement is
achieved by exploiting an efficient data structure.

The second part of the thesis is devoted to algorithmic issues that arise in the at-
tempt to extract DNA sequence information from oligonucleotide arrays experiments. We
consider two main drawbacks of the sequencing by hybridization (SBH) method: lack of
methods to handle realistic levels of hybridization errors, and an inherent limitation on
the length of uniquely reconstructible sequence by standard universal arrays. We intro-
duce a simple polynomial reconstruction algorithm which can be applied to spectra from
standard arrays and has provable performance in the presence of both false negative and
false positive errors. We also propose a novel design of chips containing universal bases,
and give a simple algorithm that uses spectra from such chips to reconstruct, with high
probability, random sequences of length lower only by a squared log factor compared to the
information theoretic bound. Our algorithm is very robust to errors, and has a provable
performance even if there are both false negative and false positive errors. Simulations
indicate that its sensitivity to errors is also very small in practice.

Finally, we study a design and optimization problem that occurs in universal DNA
tag arrays. The problem of optimizing the universal array to avoid disruptive cross-
hybridization between universal components of the system was addressed previously. Cross-
hybridization can, however, also occur assay-specifically, due to unwanted complementarity
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involving the amplified probes. We examine the problem of identifying the most economic
experimental configuration of the probes that avoids cross-hybridization. Our formulation
translates this problem into that of covering the vertices of one side of a bipartite graph
by a minimum number of balanced subgraphs of maximum degree 1. We show that the
general problem is NP-complete. However, in a realistic biological setting the vertices
that need to be covered have degrees bounded by d. Under this restriction we develop an
O(d)-approximation algorithm for the problem. We also give an O(d)-approximation for a
variant of the problem in which the covering subgraphs are required to be vertex-disjoint.

This thesis is based on the following papers:

1. T. Hartman and R. Shamir. A Simpler and Faster 1.5-Approximation Algorithm for
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Chapter 1

Introduction

In this thesis we study algorithmic problems that arise from research in molecular biology.
More specifically, we consider issues that relate to DNA sequence information. DNA
macro-molecules are located in the cells of every living organism, and contain its genetic
material. They serve as a program for the cell to construct and operate the molecular
machinery. Each DNA molecule is composed of small molecular building blocks, called
nucleotides. There are four types of nucleotides, denoted by A,C, T and G. Thus, the
DNA molecule is represented in computer science as a sequence over these four letters.
The DNA sequence of a species is called a genome. Determination of the genome sequence
(a process called sequencing) is a fundamental task towards revealing the secret of life. The
sequencing of the human genome was completed recently by the Human Genome Project
[Lander et al., 2001, Venter et al., 2001], and genomes of many other organisms have been
or are currently being sequenced.

In its stable state the DNA is double stranded, i.e., it is composed of two DNA strands
that are anti-parallel to each other. Each nucleotide in one strand is hybridized (i.e.,
chemically bound by hydrogen bonds) to a corresponding complementary nucleotide in
the other strand, where A is the complement of T , and C is the complement of G. The
phenomenon of hybridization is exploited in many experiments in molecular biology (see
Part II).

Genes are regions of DNA that encode the instructions to the production of proteins,
which are molecules that are in charge of virtually all organic activity in the cell. Proteins
are polymers that are composed of building blocks called amino acids. The encoding is
done by the genetic code, which is a simple mapping that assigns one of the 20 types of
amino acids to each of the 64 possible triplets of nucleotides, called codons.

When cells divide the DNA is replicated. The replication, however, is not perfect. Er-

11



12 CHAPTER 1. INTRODUCTION

rors in replication are called mutations. Most of the mutations are local point mutations,
i.e., they involve change in the DNA sequence only in a specific location (such as deletion,
addition or substitution of nucleotides). Large scale mutations, also known as genome
rearrangements, are considerably more rare than point mutations. In this case, large seg-
ments of DNA are rearranged in both order and orientation. Since genome rearrangements
are very rare they are used in evolution studies (see Part I).

For more background on molecular biology refer to [Alberts et al., 1994].

1.1 Overview of the Results

In this section we provide a brief summary of the thesis results. We defer definitions to the
relevant chapters. In the first part of the thesis we study algorithms for tracing genome
rearrangement events (for background refer to Chapter 2). In the second part we consider
algorithmic issues that arise in the attempt to extract DNA sequence information from
microarray experiments.

1.1.1 Part I: Algorithms for Genome Rearrangements

Chapter 3

In this chapter we study the problem of sorting permutations by transpositions. First, we
prove that the problem of sorting circular permutations by transpositions is equivalent to
the problem of sorting linear permutations by transpositions. Hence, all algorithms for
sorting linear permutations by transpositions can be used to sort circular permutations.
Then, we derive our main result: A novel 1.5-approximation algorithm, that is considerably
simpler than the extant ones [Bafna and Pevzner, 1998, Christie, 1999]. Moreover, the
analysis of the algorithm is significantly less involved, and provides a good starting point
for studying related open problems.

The results of this chapter can be found in [Hartman and Shamir, 2004] (preliminary
version in [Hartman, 2003]).

Chapter 4

In this chapter we study the problem of sorting permutations by transpositions, transre-
versals and revrevs (an operation reversing each of two consecutive segments). We show
that the sorting problem is equivalent for linear and circular permutations. Moreover, we
observe that for circular permutations revrev and transreversal are equivalent operations.
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Thus, any sorting algorithm that uses transpositions, transreversals and revrevs (such as
our algorithm and that of Lin and Xue [2001]) can be used to sort circular permutations by
transpositions and transreversals, which are more biologically motivated operations. Then
we derive our main result: A quadratic 1.5-approximation algorithm for sorting by trans-
positions, transreversals and revrevs, improving over the extant best known approximation
ratio of 1.75 for this problem [Lin and Xue, 2001].

The results of this chapter can be found in [Hartman and Sharan, 2004a] (preliminary
version in [Hartman and Sharan, 2004b]).

Chapter 5

We introduce a fast implementation of algorithms SortTranspos (Chapter 3) and Sort-
Transrev (Chapter 4). We present an implementation of both algorithms that runs in
time O(n3/2

√
log n), improving on the quadratic running time of previous algorithms. The

improvement is achieved by exploiting an efficient data structure introduced by Kaplan
and Verbin [2003] in the context of sorting by reversals.

The results of this chapter can be found in [Hartman and Shamir, 2004] and [Hartman
and Sharan, 2004a] (preliminary version in [Hartman and Sharan, 2004b]).

1.1.2 Part II: Extracting Sequence Information from DNA Microarrays

Chapter 6

In this chapter we consider two main drawbacks of the sequencing by hybridization (SBH)
method: lack of tools to handle realistic levels of hybridization errors, and an inherent
limitation on the length of uniquely reconstructible sequence by standard universal ar-
rays. We introduce a simple polynomial reconstruction algorithm which can be applied
to spectra from standard arrays and has provable performance in the presence of both
false negative and false positive errors. We also propose a novel design of chips containing
universal bases, that differs from the one proposed by [Preparata et al., 1999, Preparata
and Upfal, 2000]. We give a simple algorithm that uses spectra from such chips to recon-
struct with high probability random sequences of length lower only by a squared log factor
compared to the information theoretic bound. Our algorithm is very robust to errors, and
has a provable performance even if there are both false negative and false positive errors.
Simulations indicate that its sensitivity to errors is also very small in practice.

The results in this chapter were published in [Halperin et al., 2003] (preliminary version
in [Halperin et al., 2002]).
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Chapter 7

In this chapter we study a design and optimization problem that occurs, for example, when
single nucleotide polymorphisms (SNPs) are to be genotyped using a universal DNA tag ar-
ray. The problem of optimizing the universal array to avoid disruptive cross-hybridization
between universal components of the system was addressed in previous work [Ben-Dor
et al., 2000]. Cross-hybridization can, however, also occur assay-specifically, due to un-
wanted complementarity involving assay-specific components.

Here we examine the problem of identifying the most economic experimental configu-
ration of the assay-specific components that avoids cross-hybridization. Our formulation
translates this problem into that of covering the vertices of one side of a bipartite graph
by a minimum number of balanced subgraphs of maximum degree 1. We show that the
general problem is NP-complete. However, in the real biological setting the vertices that
need to be covered have degrees bounded by d. Under this restriction we develop an
O(d)-approximation algorithm for the problem. We also give an O(d)-approximation for a
variant of the problem in which the covering subgraphs are required to be vertex-disjoint.

The results in this chapter were published in [Ben-Dor et al., 2004] (preliminary version
in [Ben-Dor et al., 2003]).



Part I

Algorithms for Genome

Rearrangements

15





Chapter 2

Introduction

When trying to determine evolutionary distance between two organisms using genomic
data, one wishes to reconstruct the sequence of events that have occurred, transforming
one genome into the other. One of the most promising ways to trace the evolutionary
events is to compare the order of appearance of identical (or orthologous) genes in two
different genomes. In late 1930’s, Dobzhansky and Sturtevant [1938] have shown evidence
of inversions in the genome of Drosophila. In the 1980’s, Palmer and colleagues [Palmer
and Herbon, 1986, 1987, 1988, Palmer et al., 1988, Hoot and Palmer, 1994] gave evidence
that many different species have essentially the same set of genes, but their order may differ
between species. This suggests that global rearrangement events (such as reversals and
transpositions of genome segments) can be used to trace the evolutionary path between
genomes. Such rare events may provide a more accurate and robust clue to the evolution
than local point mutations (i.e. insertions, deletions, and substitutions of nucleotides).

The biological data for addressing a rearrangement problem may be obtained via vari-
ous experiments, including sequence homology between genes, restriction maps, and other
hybridization techniques (see [Li and Graur, 1991] for details). The data obtained from
each technique reveals identical locations (points or segments) between the two genomes
that can be mapped to each other. These can be extended to maximal similar segments
between the two genomes. The mapping between the segments might have them running
in the same direction, or in opposite directions, and hence, usually the direction (sign) of
the mapping is known.

The field of genome rearrangements offers a wide range computational and combina-
torial problems. This diversity results from the consideration of different rearrangement
events, and of different models of the rearrangement process. Several types of questions
are studied, including algorithmic, statistic, and combinatoric problems.

17



18 CHAPTER 2. INTRODUCTION

The possible global rearrangement events are:

• A reversal (inversion) of a chromosome segment, namely, cutting the segment from
the chromosome and re-inserting it reversed at the same location.

• A transposition of a chromosome segment, namely, cutting the segment and pasting
it (possibly reversed) in a new position.

• Chromosome fusion - joining two chromosomes into one chromosome.

• Chromosome fission - splitting one chromosome into two.

• Insertion/deletion of a chromosome segment.

• Reciprocal translocation between chromosomes, namely, cutting ending segments of
two chromosomes, and exchanging them.

All these events apparently occur in evolution, as was demonstrated convincingly in
the biological literature (cf. [Miller and Therman, 2001]. Due to the model and problem
complexity, simplified problems have been studied. The solution to simplified problems
may be an approximate solution to the real life problem, or may apply perfectly to spe-
cific instances of the problem. One usually assumes that the mapping between the two
genomes is one-to-one, namely, with no repeating segments. For a single chromosome, i.e.,
when considering only intra-chromosomal events, the problem combinatorially formulates
as the sorting of a permutation, or, when the sign is known, sorting of a signed permuta-
tion. One can also restrict the analysis only to inter-chromosomal gene-exchange events,
and disregard the intra-chromosomal order of genes, resulting in the problem of syntenic
distance between genomes.

The genomic distance and the metric it defines give rise to many types of problems:

• What is the distance (i.e. minimum number of events) between two genomes?

• What are the possible shortest sequences of events, that transform one genome to
another? How many such sequences are there?

• What is the diameter of the genome space (Sn for the case of unsigned permutations)
under the genomic distance metric?

• Given several genomes, find their most parsimonious evolutionary tree. Specifically,
construct a tree with the known genomes at the leaves and additional genomes at
internal nodes (which represent ancestral species). The edges are weighted by the
distance between the genomes at the adjacent nodes. The problem can be studied
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when the topology of the tree is known, or is not known. An interesting special case
is the median tree for three genomes.

For more background on genome rearrangements refer to [Pevzner, 2000, Shamir, 2002,
Setubal and Meidanis, 1997, Sankoff and El-Mabrouk, 2002].

2.1 Definitions

We will focus on comparing two single chromosomes, which will be modelled mathemat-
ically by permutations. Let π be a permutation of length n. Denote by id the identity
permutation. For a particular operation X (e.g., reversals or transpositions), sorting by
X is the problem of finding a shortest sequence of Xs that sorts a given permutation
(i.e. transforms it into id). The distance of π, denoted d(π), is the minimum number
of operations required to sort π. Note that this formulation is equivalent to the realis-
tic problem of finding the distance between two arbitrary permutations π and φ, since
d(π, φ) = d(φ−1 · π, id). The diameter, D(n), is the maximal value of d(π), where π is a
permutation of n elements (it is actually the diameter of the Cayley graph of the symmetric
group, Sn, with respect to the specific operation).

A reversal ρ = ρ(i, j) reverses the order of the segment [i, j − 1]. Hence, it transforms
the permutation π = [π1 . . . πi−1 πi πi+1 . . . πj πj+1 . . . πn] into the permutation
[π1 . . . πi−1 πj−1 . . . πi+1 πi πj . . . πn]. When considering signed permutations (which
is biologically more relevant, since every gene has an orientation), each element of the
permutation is given a sign, ’+’ or ’-’. In signed permutations, the reversal flips the
orientation of each element it is acting upon (in addition to reversing their order). Thus,
it transforms π into [π1, . . . , πi−1, −πj , . . . ,−πi+1, πj , . . . , πn].

A transposition τ(i, j, k) (where 1 ≤ i < j < k ≤ n) is an operation which ’cuts’ the
segment [i, j − 1] and ’pastes’ it before the kth position. Formally, it transforms π into
[π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn]. A transreversal (sometimes called inverted
transposition) is a transposition in which the segment may be inserted in reverse order.
From a biological point of view, a transversal is as probable as a transposition, since after
the segment is cut, it can be inserted in reverse order with the same probability. As with
ordinary reversals, when the permutation is signed the transreversal also flips the sign of
each element in the inverted segment.

An important notion in the genome rearrangements literature is the notion of break-
point. A pair of elements (i, i + 1) is called a breakpoint if πi − πi−1 6= 1 (for unsigned
permutations the condition is |πi − πi−1| 6= 1).
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2.2 Sorting by Reversals

A reversal can remove at most two breakpoints in a permutation. Therefore, a simple
lower bound on the reversal distance is

d(π) ≥ db(π)
2

e

where b(π) is the number of breakpoints in permutation π. Kececioglu and Sankoff [1995]
present a greedy 2-approximation algorithm which at each step chooses a reversal that
removes the most breakpoints from the permutation. They also provide an exponential
exact algorithm using a branch-and-bound approach.

Bafna and Pevzner [1996] introduce the notion of the breakpoint graph of a permutation.
The breakpoint graph of π = [π1 . . . πn] is an edge-colored graph on n + 2 vertices
{π0, π1, . . . , πn+1}. Vertices πi and πj are joined by a black edge if (πi, πj) is a breakpoint
in π and by a gray edge if (i, j) is a breakpoint in π−1. An alternating cycle is a cycle that
has edges of alternating colors. We ignore cycles of length 2. Since each vertex has an
equal number of incident gray and black edges, the graph can be completely decomposed
(usually non-uniquely) into edge-disjoint alternating cycles. Denote by c(π) the number of
alternating cycles in a maximum alternating-cycle decomposition. Note that the identity
permutation is the only one who has no breakpoints and no alternating cycles. Bafna and
Pevzner [1996] show that every reversal changes the value b(π) − c(π) by at most one,
implying that

d(π) ≥ b(π)− c(π)

Bafna and Pevzner obtain an O(n2) 1.75-approximation algorithm for sorting unsigned
permutations by reversals, based on properties of the breakpoint graph. The approxima-
tion ratio was improved to 1.5 [Christie, 1998] and further to 1.375 [Berman et al., 2002],
which is the best known approximation guarantee. The problem of sorting unsigned per-
mutations by reversals was proved to be NP-hard by Caprara [1997]. Furthermore, Berman
and Karpinski [1999] prove that it is NP-hard to approximate the unsigned reversal dis-
tance to within a factor of 1.008.

As discussed above, the biologically more relevant problem is sorting signed permuta-
tions by reversals. Bafna and Pevzner [1996] note that the concept of breakpoint graph
extends naturally to signed permutations. Define a transformation of the signed permuta-
tion π of length n into an unsigned permutation π′ of length 2n by replacing the element
+i with 2i − 1, 2i and −i with 2i, 2i − 1. By using only reversals ρ(i, j) such that i is
odd and j is even, sorting the resulted unsigned permutation is equivalent to sorting the
original signed one. In the resulting breakpoint graph every vertex has degree 0 or 2 and
therefore it has a unique alternating-cycle decomposition.
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In their seminal paper, Hannenhalli and Pevzner [1999] further investigate the break-
point graph. They give a closed formula for the reversal distance of a permutation (based
on parameters of the breakpoint graph) and provide a polynomial algorithm for sorting
by signed reversals. A reversal is called proper if it decreases the value of b(π) − c(π)
by one. A cycle is oriented if a proper reversal can be performed on edges belonging to
that cycle. Gray edges (πi, πj) and (πk, πl) are interleaving if the intervals [i, j] and [k, l]
overlap but neither of them contains the other. Cycle C1 interleaves with cycle C2 if it
contains an edge that interleaves with an edge in cycle C2. An interleaving graph is a
graph in which each vertex represents a cycle in the original graph, and the edges connect
between interleaving cycles. A connected component of the interleaving graph is oriented
if it contains a vertex that corresponds to an oriented cycle.

Hannenhalli and Pevzner [1999], show that oriented components can be resolved by
proper reversals (the first proper reversal follows from the definition of oriented compo-
nents, the fact that a proper reversal can be found at all of the other steps is not trivial).
The unoriented components are divided into ”good” and ”bad” components. The good
components can be resolved by using only proper reversals (roughly speaking, they can be
transformed into oriented components while doing a proper reversal on a different compo-
nent without ”wasting” a reversal). Every bad component, which is called a hurdle, needs
an extra reversal. Based on a deep analysis of these notions, the following theorem was
obtained:

d(π) = b(π)− c(π) + h(π) + f(π)

where h(π) is the number of hurdles in π and f(π) ∈ {0, 1} equals 1 if and only if π is a
special kind of permutation, called fortress. An O(n4) exact algorithm is obtained based
on the theorem.

The bottleneck in the running time of the Hannenhalli-Pevzner algorithm is finding
the next reversal in oriented components, which involves computing the connected com-
ponents in the interleaving graph. Berman and Hannenhalli [1996] present a O(nα(n))
algorithm (where α is the inverse Ackerman function) for computing connected compo-
nents in such graphs, which in turn yields an O(n2α(n)) algorithm. Kaplan et al. [2000]
simplify the combinatorial structures and improve the running time to O(n2) (it is actually
O(r · n + nα(n)), where r is the number of reversals required to sort the permutation).
Recently, Tannier and Sagot [2004] present an algorithm for sorting by reversals in time
O(n3/2

√
log n).

All the above algorithms compute the reversal distance and also provide an optimal
sequence of reversals that sorts the permutation. Bader et al. [2001] provide a linear
time algorithm that computes only the reversal distance. A neat representation of the
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Hannenahalli-Pevzner theory, along with an algorithm for sorting by reversals without
using the breakpoint graph is given in [Bergeron, 2001, Bergeron et al., 2004].

The sorting algorithms provide an arbitrary sequence of reversals that optimally sorts
the permutation, out of many possible sequences. Bergeron et al. [2002] investigate the
space of all optimal sequences of reversals, and give a combinatorial structure to this space.

Bafna and Pevzner [1996] prove that the reversal diameter of Sn (unsigned permuta-
tions) is n− 1. The signed reversal diameter for permutations of length at least 4 is n + 1
(see [Christie, 1999]).

2.3 Sorting by Transpositions

Analogously to the reversal case, a transposition can remove at most 3 breakpoints from
a permutation and, therefore, a simple lower bound on the transposition distance is

d(π) ≥ b(π)
3

(2.1)

Bafna and Pevzner [1998] use the breakpoint graph (which was originally introduced for
sorting by reversals) for the problem of sorting by transpositions. As in the reversal case,
the identity permutation is the only permutation that has n + 1 cycles and therefore,
sorting can be viewed as a process that increases the number of cycles from c(π) to n + 1.
Since a transposition may change the number of cycles by at most 2, a better lower bound
is obtained [Bafna and Pevzner, 1998]

d(π) ≥ n + 1− c(π)
2

This lower bound and a careful analysis of the types of cycles in permutations leads
Bafna and Pevzner to provide a polynomial time 1.5-approximation algorithm for sorting
by transpositions. Christie [1999] further analyzes the structure of the transposition cycle
graph and gains a simpler algorithm with the same performance guarantee. An O(n3)
implementation of the latter algorithm, along with heuristics that improve its performance,
are given in [Walter et al., 2003]. A considerably simpler 1.5-approximation algorithm for
sorting by transpositions is given in Chapter 3. Eriksson et al. [2001] devise an algorithm
which sorts any given permutation by at most 2n/3 transpositions. Walter et al. [2000]
introduce a simple structure, called breakpoint diagram, and obtain a 2.25-approximation
algorithm. The complexity of sorting by transpositions is still open.

The transposition diameter of Sn is still an open problem. The algorithm of Eriksson
et al. [2001] gives an upper bound of 2n/3 on the diameter. Several works show that the
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transposition distance of the reverse permutation is bn/2c + 1 [Christie, 1999, Eriksson
et al., 2001, Walter et al., 1998] Therefore, bn/2c + 1 ≤ D(n) ≤ 2n/3. Eriksson et al.
[2001] show that for 1 ≤ n ≤ 15, D(n) = bn/2c+ 1 except for n = 13 and n = 15.

2.4 Mixed Operations

In real life, genomes evolve by several types of rearrangement operations. Walter et al.
[1998] describe a 3-approximation algorithm for sorting unsigned permutations by reversals
and transpositions, and a 2-approximation algorithm for the signed case. When allowing
also transreversals there is a 2-approximation algorithm as well [Gu et al., 1999]. Lin
and Xue [2001] describe a 1.75-approximation algorithm when allowing also the revrev
operation, in which two consecutive segments are reversed. The approximation ratio is
improved to 1.5 in the algorithm introduced in Chapter 4. Walter et al. [1998] show that
bn

2 c+2 is a lower bound on the reversal and transposition diameter for signed permutations.
The complexity of all the above minimum distance problems, as well as the diameter of
the symmetric group under these mixed operations, is unknown.

Blanchette et al. [1996] and Eriksen et al. [2001] investigate the relative frequency of
reversals and transpositions in real genomic data. They conclude that the most biologically
meaningful problem is to sort signed permutations by reversals and transpositions, where
the weight of transpositions is roughly twice the weight of reversals. Eriksen [2002] gives
a (1 + ε)- approximation algorithm (for any ε > 0) for the minimum weighted distance
problem allowing reversals and transpositions of signed permutations, where transpositions
are given double weight.

2.5 Circular Permutations

Circular genomes, such as bacterial and mitochondrial genomes, are represented by circular
permutations. All the above problems can be defined analogously for circular permuta-
tions. Meidanis et al. [2000] prove that sorting circular signed permutations by reversals
is equivalent to the linear case. The same result holds also for unsigned permutations
[Solomon et al., 2003]. The analogous results for sorting by transpositions and for sorting
by transpositions and transreversals are given in Chapters 3 and 4 respectively.
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Chapter 3

Sorting by Transpositions

3.1 Introduction

In this chapter we study the problem of sorting permutations by transpositions. First, we
prove that the problem of sorting circular permutations by transpositions is equivalent to
the problem of sorting linear permutations by transpositions. Hence, all algorithms for
sorting linear permutations by transpositions can be used to sort circular permutations.
Then, we derive our main result: A novel 1.5-approximation algorithm, that is considerably
simpler than the extant ones [Bafna and Pevzner, 1998, Christie, 1999]. Moreover, the
analysis of the algorithm is significantly less involved, and provides a good starting point
for studying related open problems.

The results of this chapter can be found in [Hartman and Shamir, 2004] (preliminary
version in [Hartman, 2003]).

3.1.1 Organization of the Chapter

In Section 3.2 we first prove the equivalence between the problem of sorting linear and
circular permutations by transpositions. Then, we review some classical genome rearrange-
ment results, and show that every permutation can be transformed into a so-called simple
permutation. Our main result, a new and simple 1.5-approximation algorithm for sorting
permutations by transpositions, is introduced in Section 3.3. We conclude in Section 3.4
with a short discussion and some open problems.

25
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3.2 Preliminaries

3.2.1 Linear and Circular Permutations

Let π = [π1 . . . πn] be a permutation on n elements. Define a segment A in π as a
consecutive sequence of elements πi, . . . , πk (k ≥ i). Two segments A = πi, . . . , πk and
B = πj , . . . , πl are contiguous if j = k+1 or i = l+1. A transposition τ on π is the exchange
of two disjoint contiguous segments (Figure 3.1a). If the segments are A = πi, . . . , πj−1

and B = πj , . . . , πk−1, then by performing τ on π, the resulting permutation, denoted
τ · π, is [π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn] (note that the end segments can
be empty if i = 1 or k− 1 = n). We shall say that τ cuts π before positions i, j and k. We
say that τ operates on index l if i ≤ l < k, i.e., if l belongs to one of the two exchanged
segments.

In circular permutations, one can define a transposition analogously as the exchange of
two contiguous segments. Note that here the indices are cyclic, so the disjointness of the
exchanged segments is a meaningful requirement. The transposition partitions a circular
permutation into three segments, as opposed to at most four in a linear permutation (see
Figure 3.1). Note that for circular permutations we can assume w.l.o.g. that all three
segments are nonempty, since otherwise the original and transformed permutations are
the same. Since there are only two cyclic orders on three segments, and each two of the
three segments are contiguous, the transposition can be represented by exchanging any
two of them. Note that the number of possible transpositions on a linear n-permutation
is
(n+1

3

)
, since there are n + 1 possible cut points of segments. In contrast, in a circular

n-permutation there are only
(n
3

)
possibilities.

The problem of finding a shortest sequence of transpositions, which transforms a (linear
or circular) permutation into the identity permutation, is called sorting by transpositions.
The transposition distance of a permutation π, denoted by td(π), is the length of the
shortest sorting sequence.

Theorem 1 The problem of sorting linear permutations by transpositions is linearly equiv-
alent to the problem of sorting circular permutations by transpositions.

Proof: Given a linear n-permutation, circularize it by adding an n+1′st element πn+1 = x,
and closing the circle (see Figure 3.1c). Call the new circular permutation πc. By the
discussion above, any transposition on πc can be represented by the two segments that do
not include x. Hence, there is an optimal sequence of transpositions that sorts πc, and none
of them operates on x. The same sequence can be viewed as a sequence of transpositions
on the linear permutation π, by ignoring x. This implies that td(π) ≤ td(πc). On the
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Figure 3.1: (a) A transposition τ , which is applied on a linear permutation, and exchanges
segments B and C. (b) A transposition τ , which is applied on a circular permutation.
τ can be viewed as exchanging A and B, or B and C, or A and C. (c) A one-to-one
transformation between linear and circular permutations. In the circular permutation, a
new element, πn+1, is introduced.

other hand, any sequence of transpositions on π is also a sequence of transpositions on πc,
so td(πc) ≤ td(π). Hence, td(π) = td(πc). Moreover, an optimal sequence for πc provides
an optimal sequence for π.

For the other direction, starting with a circular permutation, we can linearize it by
removing an arbitrary element, which plays a role of x above (see Figure 3.1c). The
same arguments imply that an optimal solution for the linear permutation translates to
an optimal solution for the circular one.

In the rest of the chapter, we will discuss only circular permutations. As implied by
Theorem 1, all the results on circular permutations hold also for linear ones. We prefer to
work with circular permutations since it simplifies the analysis.

3.2.2 The Circular Breakpoint Graph

We transform a permutation π on n elements into a permutation f(π) on 2n elements,
by replacing each element i by two elements 2i − 1, 2i. On the doubled permutation
f(π), we allow only transpositions that cut before odd positions. This ensures that no
transposition cuts between 2i − 1 and 2i, and therefore every transposition on π can be
mimicked by a transposition on f(π). We call such transpositions legal. We now define
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Figure 3.2: (a) The circular breakpoint graph of the permutation π = [1 6 5 4 7 3 2], for
which f(π) = [1 2 11 12 9 10 7 8 13 14 5 6 3 4]. Black edges are represented as thick lines
on the circumference, and gray edges are chords.(b) The circular breakpoint of π after
applying the transposition that acts on black edges b2, b4 and b7.

the circular breakpoint graph, which is the circular version of the breakpoint graph [Bafna
and Pevzner, 1996]. Throughout, in both indices and elements, we identify 2n + 1 and 1.

Definition 1 Let π = (π1 . . . πn) be a circular permutation, and f(π) = π′ = (π′1 . . . π′2n).
The breakpoint graph G(π) is an edge-colored graph on 2n vertices {1, 2, . . . , 2n}. For ev-
ery 1 ≤ i ≤ n, π′2i is joined to π′2i+1 by a black edge (denoted by bi), and 2i is joined to
2i + 1 by a gray edge.

Note that unlike previous studies of transpositions [Bafna and Pevzner, 1998, Christie,
1999], we chose to double the number of vertices and work with an undirected graph, as
done in the signed case [Bafna and Pevzner, 1996]. It is convenient to draw the breakpoint
graph on a circle, such that black edges are on the circumference and gray edges are chords
(see Figure 3.2(a)). We shall use this representation throughout the chapter.

Since the degree of each vertex is exactly 2, the graph uniquely decomposes into cycles.
Denote the number of cycles in G(π) by c(π). The length of a cycle is the number of
black edges it contains. A k-cycle is a cycle of length k, and it is odd if k is odd. The
number of odd cycles is denoted by codd(π). Define ∆c(π, τ) = c(τ · π) − c(π), and
∆codd(π, τ) = codd(τ · π)− codd(π).

Bafna and Pevzner proved the following useful lemma (This - and other results we
quote - was proved for linear permutations, but holds also for circular ones):

Lemma 2 (Bafna and Pevzner [1998]) For all permutations π and transpositions τ , it
holds that ∆c(π, τ) ∈ {−2, 0, 2}, and ∆codd(π, τ) ∈ {−2, 0, 2}.
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Figure 3.3: The only two possible configurations of 3-cycles. The left one is unoriented,
and the right one is oriented.

Figure 3.4: (a) Intersecting 3-cycles. (b) Non-intersecting 3-cycles. (b) Interleaving 3-
cycles.

Let n(π) denote the number of black edges in G(π). The maximum number of cycles
is obtained iff π is the identity permutation. In that case, there are n(π) cycles, and all
of them are odd (in particular, they are all of length 1) . Starting with π with codd odd
cycles, Lemma 2 implies the following lower bound on td(π):

Theorem 3 (Bafna and Pevzner [1998]) For all permutations π, td(π) ≥ (n(π)−codd(π))/2.

By definition, every legal transposition must cut three black edges. The transposition
that cuts black edges bi, bj and bk is said to act on these edges (see Figure 3.2(b)). A
transposition τ is a k-transposition if ∆codd(π, τ) = k. A cycle is called oriented if there is
a 2-transposition that acts on three of its black edges; otherwise, it is unoriented.

Observation 4 There are only two possible configurations of 3-cycles that can be obtained
by legal transpositions.

The two possibilities are shown in Figure 3.3. It is easy to verify that the left 3-cycle
is unoriented, and the right one is oriented.

Given a cyclic sequence of elements i1, . . . , ik, an arc is an interval in the cyclic order,
i.e., a set of contiguous elements in the sequence. The pair (ij , il) (j 6= l) defines two
disjoint arcs: ij , . . . , il−1 and il, . . . , ij−1. Similarly, a triplet defines a partition of the
cycle into three disjoint arcs. We say that two pairs of black edges (a, b) and (c, d) are
intersecting if a and b belong to different arcs defined by the pair (c, d). A pair of black
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Figure 3.5: A (g, b)-split. A dashed line indicates a path.

edges intersects with cycle C, if it intersects with a pair of black edges that belong to C.
Cycles C and D intersect if there is a pair of black edges in C that intersect with D (see
Figure 3.4a). Two triplets of black edges are interleaving if each of the edges of one triple
belongs to a different arc of the second triple. Two 3-cycles are interleaving if their edges
interleave (see Figure 3.4c).

Throughout the chapter, we use the term permutation also when referring to the
breakpoint graph of the permutation (as will be clear from the context). For example,
when we say that π contains an oriented cycle, we mean that G(π) contains an oriented
cycle.

3.2.3 Transformation into Equivalent Simple Permutations

A k-cycle in the breakpoint graph is called short if k ≤ 3; otherwise, it is called long. A
breakpoint graph is called simple if it contains only short cycles. A permutation π is called
simple if G(π) is simple. Following [Hannenhalli and Pevzner, 1999, Lin and Xue, 2001],
we show how to transform an arbitrary permutation into a simple one, while maintaining
the lower bound of Theorem 3.

Let b = (vb, wb) be a black edge and let g = (vg, wg) be a gray edge belonging to the
same cycle C = (. . . , vb, wb, . . . , wg, vg, . . .) in G(π). A (g, b)-split of G(π) is a sequence of
operations on G(π), resulting in a new graph Ĝ(π) with one more cycle, as follows:

• Removing edges b and g.

• Adding two new vertices v and w.

• Adding two new black edges (vb, v) and (w,wb).

• Adding two new gray edges (wg, w) and (v, vg).

Figure 3.5 shows a (g, b)-split transforming a cycle C in G(π) into two cycles C1 and
C2 in Ĝ(π). Note that the order of the nodes of each edge along the cycle is important,
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as other orders may not split the cycle. Hannenhalli and Pevzner [1999] show that for
every (g, b)-split on a permutation π of n elements, there is a permutation π̂ of n + 1
elements, that is obtained by inserting an element into π, such that Ĝ(π) = G(π̂). Thus,
a (g, b)-split can be viewed as a transformation from π to π̂. A (g, b)-split is called safe if
n(π)− codd(π) = n(π̂)− codd(π̂), i.e., if it maintains the lower bound of Theorem 3.

Lemma 5 (Lin and Xue [2001]) Every permutation can be transformed into a simple one
by safe splits.

Proof: Let π be a permutation that contains a long cycle C. Let b1 be a black edge in
C. Denote by b2 and b3 the black edges that are connected to b1 via a gray edge. Let g

be the gray edge that is connected to b2 but not to b1. Then a (g, b3)-split breaks C into
a 3-cycle and a (k − 2)-cycle in π̂. Clearly, n(π̂) = n(π) + 1, and codd(π̂) = codd(π) + 1,
so the split is safe. This process can be repeated until a simple permutation is eventually
obtained.

We say that permutation π is equivalent to permutation π̂ if n(π)− codd(π) = n(π̂)−
codd(π̂).

Lemma 6 (Hannenhalli and Pevzner [1999]) Let π̂ be a simple permutation that is equiva-
lent to π, then every sorting of π̂ mimics a sorting of π with the same number of operations.

In the following, we show how to sort a simple permutation by transpositions. We prove
that the number of transpositions is within a factor of 1.5 from the lower bound of The-
orem 3. Thus, we obtain a 1.5-approximation algorithm for sorting simple permutations.
The above discussion implies that this algorithm translates into a 1.5-approximation algo-
rithm for an arbitrary permutation: Transform the permutation into an equivalent simple
permutation (Lemma 5), sort it, and then mimic the sorting on the original permutation
(Lemma 6).

3.3 The Algorithm

In this section we provide a 1.5-approximation algorithm for sorting permutations by
transpositions. We first develop an algorithm for simple permutations, and then use the
results of Section 3.2.3 to prove the general case. Recall that the breakpoint graph of a
simple permutation contains only 1-, 2- and 3-cycles. Our goal is to obtain a graph with
1-cycles only, which is the breakpoint graph of the identity permutation. Thus, the sorting
can be viewed as a process of transforming the 2- and 3-cycles into 1-cycles.
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Figure 3.6: A (0, 2, 2)-sequence of transpositions for two interleaving unoriented 3-cycles.
At each step the transposition acts on the three black edges that are marked by a star.

First we deal with the case that the permutation contains a 2-cycle:

Lemma 7 (Christie [1999]) If π is a permutation that contains a 2-cycle, then there exists
a 2-transposition on π.

By definition, an oriented 3-cycle can be eliminated by a 2-transposition that acts
on its black edges. Suppose from now on that all 2-cycles were eliminated by applying
Lemma 7, and all oriented 3-cycles were eliminated. The only remaining problem is how
to handle unoriented 3-cycles. This is the case we analyze henceforth.

A (0,2,2)-sequence is a sequence of three transpositions, of which the first is a 0-
transposition, and the next two are 2-transpositions. Note that a (0, 2, 2)-sequence in-
creases the number of odd cycles by 4 out of 6 that are the maximum possible in 3 steps,
and thus a series of (0, 2, 2)-sequences preserves a 1.5 approximation ratio. We shall show
below that such a sequence is always possible.

Lemma 8 Let π be a permutation that contains two interleaving unoriented 3-cycles.
Then, there exists a (0, 2, 2)-sequence of transpositions on π.

Proof: The (0, 2, 2)-sequence is described in Figure 3.6.

Lemma 9 Let C and D be two intersecting unoriented 3-cycles that are not interleaving.
Then, there exists a transposition which transforms C and D into a 1-cycle and an oriented
5-cycle.

Proof: Let c1, c2 and c3 be the three black edges of C. Assume, without loss of generality,
that (c1, c2) intersects with D. We shall in fact prove a stronger statement, namely, for
any choice of a black edge d ∈ D such that (d, c3) intersects with (c1, c2), the transposition
on c1, c2 and d satisfies the lemma. There are three possible cases to consider, which are
shown in Figure 3.7. In each case, the first transposition, which acts on c1, c2 and d,
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Figure 3.7: The three possible cases of two intersecting unoriented 3-cycles that are not
interleaving. In each case, the transposition that acts on edges c1, c2, and d, transforms
C and D into a 1-cycle and an oriented 5-cycle.
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Figure 3.8: Cycle shattering. Cycle A is shattered by B and C. Cycle C is not shattered
by A and B.

transforms 3-cycles C and D into a 1-cycle and a 5-cycle. Then, in order to show that the
5-cycle is oriented, a 2-transposition which acts on three of its edges is shown.

We say that cycle E is shattered by cycles C and D if every pair of edges in E intersects
with a pair of edges in C or with a pair of edges in D (see Figure 3.8).

Lemma 10 Let π be a permutation that contains three unoriented 3-cycles C,D and E,
such that E is shattered by C and D. Then, there exists a (0, 2, 2)-sequence of transposi-
tions on π.

Proof: If two of the three cycles are interleaving, the (0,2,2)-sequence follows from
Lemma 8. Otherwise, there are two general cases:

1. Two out of the three cycles are non-intersecting. In this case, there are three possible
configurations of the cycles, which are shown in Figure 3.9. For every sub-case, a
(0, 2, 2)-sequence is shown.

2. The three cycles are mutually intersecting. The general case is illustrated in Fig-
ure 3.10. Since cycles C and D are unoriented, the condition of the proof of Lemma 9
is fulfilled. Thus, we can apply a 0-transposition that acts on edges c1, c2, and d,
and obtain a new oriented cycle F . Now we apply a 2-transposition on E (which
has also become oriented). Cycle F remains oriented, since the latter transposition
does not change its structure. Thus, another 2-transposition is possible on the edges
of F , which completes the (0, 2, 2)-sequence.

A pair of black edges is said to be connected if they are connected by a gray edge.

Lemma 11 (Bafna and Pevzner [1998]) Let (bi, bj) be a connected pair in an unoriented
cycle. Then, (bi, bj) intersects with some other cycle.
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Figure 3.9: The three possible cases of three unoriented 3-cycles, such that one of them is
shattered by the other two, no pair is interleaving and two of them are non-intersecting.
In each case, a (0, 2, 2)-sequence of transpositions is shown. For simplicity, every 1-cycle
is shown only when it is formed and not in subsequent graphs (since it is not affected by
transpositions in later steps).

Figure 3.10: Three mutually intersecting unoriented cycles such that no pair is interleaving,
and one is shattered by the other two. A dashed line represents either a single gray edge
or a path of length 3. Note that edges c1 and c2 are connected by a single gray edge.
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We are now ready to present the full algorithm. It is described in Figure 3.11. Note
that in steps 2 - 3 it is impossible to create a long cycle, and thus the permutation remains
simple throughout the algorithm. Note also that in step 3 we do not create 2-cycles, and
hence, there is no need to iterate over step 2.

Algorithm SortTranspos (π)

1. Transform permutation π into an equivalent simple permutation π̂ (Lemma 5).

2. While G(π̂) contains a 2-cycle, apply a 2-transposition (Lemma 7).

3. While G(π̂) contains a 3-cycle C, do:

• Pick a connected pair of black edges c from cycle C. If C is oriented - apply

a 2-transposition.

• Otherwise, pick a connected pair d (from some cycle D) that intersects with

c (the existence of d is guaranteed by Lemma 11). If C and D are interleaving

- apply a (0, 2, 2)-sequence (Lemma 8).

• Otherwise, there is a connected pair c′ in C that does not intersect with

D. Pick a connected pair e (from some cycle E) that intersects with c′ (the

existence of e is guaranteed by Lemma 11). As cycle C is shattered by cycles

D and E, apply a (0, 2, 2)-sequence (Lemma 10).

4. Mimic the sorting of π using the sorting of π̂ (Lemma 6).

Figure 3.11: SortTranspos: A 1.5-approximation algorithm for sorting by transpositions.

Performing only steps 2 - 3 is an algorithm in its own, and is denoted by Algorithm Sort-
Simple. The following lemma claims that SortSimple is a quadratic time 1.5-approximation
algorithm for sorting simple permutations:

Lemma 12 Algorithm SortSimple is a 1.5-approximation algorithm for simple permuta-
tions, and it runs in time O(n2).

Proof: The sequence of transpositions that is generated by the algorithm contains only
2-transpositions and (0, 2, 2)-sequences of transpositions. Therefore, every sequence of
three transpositions increases the number of odd cycles by at least 4 out of 6 possible in
3 steps (as implied from the lower bound of Theorem 3). Hence, the approximation ratio
is 1.5.

We now analyze the running time of the algorithm. Step 2 can be done in linear time.
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The number of iterations in step 3 is linear, since every iteration we break a 3-cycle into
three 1-cycles. The main operations in each iteration is to find a connected pair that
intersects with a given pair, and to apply a transposition (the other operations can be
done in constant time). These operations can be done trivially in linear time. Hence, the
algorithm is quadratic.

Now we are ready to prove the correctness of Algorithm Sort:

Theorem 13 Algorithm SortTranspos is a 1.5-approximation algorithm for general per-
mutations, and it runs in time O(n2).

Proof: By Lemma 12, we are guaranteed that alg(π̂) ≤ 1.5 · td(π̂), where alg(π̂) is the
number of transpositions used by Algorithm SortSimple to sort π̂. Thus, by Theorem 3,

alg(π̂) ≤ 1.5td(π̂) ≤ 1.5
(

n(π̂)− codd(π̂)
2

)
= 1.5

(
n(π)− codd(π)

2

)
≤ 1.5 · td(π)

Using Lemma 6, we can sort π by alg(π̂) transpositions, which implies an approximation
ratio of 1.5.

Since steps 1 and 4 can be done in linear time, Lemma 12 implies that the running
time of Algorithm Sort is O(n2).

3.4 Discussion and Subsequent Work

In this chapter we studied the problem of sorting permutations by transpositions, simplified
the underlying theory, and gave a simple 1.5-approximation algorithm for the problem. We
believe that this is an important step towards solving some related open problems. The
main open problem is to determine the complexity of sorting by transpositions. Devising
algorithms with better approximation ratio and/or faster running time is also desirable.
Another direction, which is more biologically relevant, is to consider algorithms for sorting
permutations by a set of rearrangement operations (such as reversals, transpositions and
translocations). A step towards this direction is made in Chapter 4.

An implementation of our algorithm, along with a comparison to the previous ones is
reported in [Honda, 2004, Walter et al.].
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Chapter 4

Sorting by Transpositions and

Transreversals

4.1 Introduction

In this chapter we study the problem of sorting permutations by transpositions, transre-
versals and revrevs (an operation reversing each of two consecutive segments). We show
that the sorting problem is equivalent for linear and circular permutations. Moreover, we
observe that for circular permutations revrev and transreversal are equivalent operations.
Thus, any sorting algorithm that uses transpositions, transreversals and revrevs (such as
our algorithm and that of Lin and Xue [2001]) can be used to sort circular permutations by
transpositions and transreversals, which are more biologically motivated operations. Then
we derive our main result: A quadratic 1.5-approximation algorithm for sorting by trans-
positions, transreversals and revrevs, improving over the extant best known approximation
ratio of 1.75 for this problem [Lin and Xue, 2001].

The results of this chapter can be found in [Hartman and Sharan, 2004a] (preliminary
version in [Hartman and Sharan, 2004b]).

4.1.1 Organization of the Chapter

Background on rearrangement operations, permutations and their representation is given
in Section 4.2, where we also describe the reduction to sorting simple circular permutations,
and show that every permutation can be transformed into a so-called 3-permutation. The
approximation algorithm is given in Section 4.3.

39
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4.2 Preliminaries

A signed permutation π = [π1 . . . πn] on n(π) ≡ n elements is a permutation in which each
element is labeled by a sign of plus or minus. A segment of π is a consecutive sequence of
elements πi, . . . , πk (k ≥ i). We focus on four rearrangement operations. A reversal ρ is
an operation that reverses the order of the elements in a segment and flips their signs. If
the segment is πi, . . . , πj−1 then ρ · π = [π1 . . . πi−1 − πj−1 . . . − πi πj . . . πn]. Two
segments πi, . . . , πk and πj , . . . , πl are contiguous if j = k + 1 or i = l + 1. A transposition
τ exchanges two contiguous (disjoint) segments. If the segments are A = πi, . . . , πj−1

and B = πj , . . . , πk−1 then τ · π = [π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn]
(note that the end segments can be empty if i = 1 or k = n + 1). A transreversal
τρA,B is a transposition that exchanges segments A and B and also reverses A, i.e.,
τρA,B · π = [π1 . . . πi−1 πj . . . πk−1 − πj−1 . . . − πi πk . . . πn], and τρB,A · π =
[π1 . . . πi−1 . . . − πk−1 . . . − πj πi . . . πj−1 πk . . . πn]. A revrev operation reverses
each of the two segments (without transposing them). Thus, ρρ · π = [π1 . . . πi−1 −
πj−1 . . . − πi − πk−1 . . . − πj πk . . . πn].

The problem of finding a shortest sequence of transposition, transreversal and revrev
operations that transforms a permutation into the identity permutation is called sorting
by transpositions and transreversals1. The distance of a permutation π, denoted by trd(π),
is the length of the shortest sorting sequence.

4.2.1 Linear vs. Circular Permutations

Key to our approximation algorithm is a reduction from the problem of sorting linear
permutations to that of sorting circular permutations (indices are cyclic), on which the
analysis is simpler. An operation is said to operate on the segments that are affected by it
and on the elements in those segments. We say that two operations µ and µ′ are equivalent
if they have the same effect, i.e., µ · π = µ′ · π for all π. The following lemma is the basis
for the reduction, and is used to prove the subsequent theorem on the equivalence of the
sorting problem for linear and circular permutations, similarly to the transpositions only
case (Section 3.2.1).

Lemma 14 Let x be an element of a circular permutation π, and let µ be an operation
that operates on x. Then there exists an equivalent operation µ′ that does not operate on
x.

1We do not include revrevs in the problem name, as we provide in the next section a reduction of the

problem that allows us to mimic revrevs using transreversals.
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Figure 4.1: The equivalence of operations on circular permutations.

Proof: For reversals, this result was proven by Meidanis et al. [2000]; for transpositions
it follows from the discussion in Section 3.2.1. For transreversals and revrevs, the claim
relies on the observation that a chromosome is equivalent to its reflection, i.e., the reversed
sequence of elements with their signs flipped [Meidanis et al., 2000] (see the upper part of
Figure 4.1). Consider a permutation with three segments: A, B and C, where x ∈ A. Then
a transreversal that operates on segments A and B and reverses B (resp., A) is equivalent
to a revrev that operates on A and C (resp., B and C), since the result is a reflection of
the permutation (as illustrated in Figure 4.1). Similarly, a revrev that operates on A and
B (or C) is equivalent to a transreversal that operates on B and C.

Invoking Lemma 14 in the proof of Theorem 1 yields the following result:

Theorem 15 The problem of sorting linear permutations by transpositions and transre-
versals is linearly equivalent to the problem of sorting circular permutations by transposi-
tions and transreversals.

We observe that for circular permutations revrevs and transreversals are equivalent
operations. Thus, for circular permutations we can restrict attention to transpositions and
transreversals, which are better motivated biologically compared to revrevs. Moreover,
combined with Theorem 15, this observation implies that one can reduce the problem
of sorting a linear permutation by transpositions, transreversals and revrevs to that of
sorting a circular permutation by transpositions and transreversals only. We note that
the problem of sorting circular permutations is important on its own, since many genomes
including mitochondrial and bacterial ones are circular.
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Figure 4.2: The circular breakpoint graph of the permutation π = [1 −4 6 −5 2 −7 −3],
for which f(π) = [1 2 8 7 11 12 10 9 3 4 14 13 6 5]. Black edges are represented as thick
lines on the circumference, and gray edges are chords.

4.2.2 The Breakpoint Graph

In the following we define the breakpoint graph for signed permutations, which is a gen-
eralization of the graph defined in Section 3.2.2 for unsigned permutations. Some of the
definitions are the same as in the unsigned case. For completeness, we give here all rele-
vant definitions. We follow the construction of Bafna and Pevzner [1996] for representing
signed permutations. First, a permutation π on n elements is transformed into a per-
mutation f(π) = π′ = (π′1 . . . π′2n) on 2n elements. f(π) is obtained by replacing each
positive element i with two elements 2i− 1, 2i (in this order), and each negative element
with 2i, 2i − 1. For the extended permutation f(π), only operations that cut before odd
positions are allowed. This ensures that every operation on f(π) can be mimicked by an
operation on π. In the rest of the chapter we identify, in both indices and elements, 2n+1
and 1.

Definition 2 The circular breakpoint graph G(π) is an edge-colored graph on 2n vertices
{1, 2, . . . , 2n}. For every 1 ≤ i ≤ n, π′2i is joined to π′2i+1 by a black edge, and 2i is joined
to 2i + 1 by a gray edge.

It is convenient to draw the breakpoint graph on a circle, such that black edges are
on the circumference and gray edges are chords (see Figure 4.2). Since the degree of each
vertex is exactly 2, the graph uniquely decomposes into cycles. A k-cycle is a cycle with
k black edges, and it is odd if k is odd. k is called the length of the cycle. The number of
odd cycles in G(π) is denoted by codd(π). Gu et al. [1999] have shown that for all linear
permutations π and operations µ (reversals, transpositions, transreversals or revrevs), it
holds that codd(µ · π) ≤ codd(π) + 2. Their result holds also for circular permutations and
can be used to prove the following lower bound on trd(π):
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Theorem 16 (Gu et al. [1999]) For all permutations π, trd(π) ≥ (n(π)− codd(π))/2.

4.2.3 Transformation into 3-Permutations

Our goal in this section is to transform the input permutation into a permutation with
simple structure, to which we can apply our algorithm and mimic its steps on the original
permutation. A permutation is called simple if its breakpoint graph contains only k-
cycles, where k ≤ 3. It is called a 3-permutation if it contains only 1-cycles and 3-cycles.
A transformation from π to π̂ is called safe if n(π) − codd(π) = n(π̂) − codd(π̂), i.e.,
if it maintains the lower bound of Theorem 16. Next, we show how to transform an
arbitrary permutation into a 3-permutation using safe transformations. We note that the
transformation maintains only the lower bound, not the exact distance. Our starting point
is the standard safe transformation into simple permutations (cf. Section 3.2.3). Hence,
to obtain a 3-permutation it suffices to show how to convert 2-cycles into 3-cycles using
safe transformations.

Let C be a 2-cycle and let b = (π′2i, π
′
2i+1) be one of its black edges. A (C, b)-padding

extends the original permutation π by adding a new element πi + 1, and renaming all
elements j > πi + 1 by j + 1 (the renaming is done on the absolute values of the elements
and then their signs are reintroduced, e.g., -3 is renamed to -4). The new element πi + 1
has the same sign as πi, and is placed after (resp., before) πi if it is positive (resp.,
negative). Finally, the sign of πi is flipped. The effect on the breakpoint graph is that C

is transformed into a 3-cycle (see Figure 4.3 for an example). Overall, the permutation
after the padding has an additional element and one more odd cycle.

Lemma 17 Every simple permutation π can be transformed into a 3-permutation π̂ by
safe paddings. Moreover, every sorting of π̂ mimics a sorting of π with the same number
of operations.

Proof: Let π be a simple permutation that contains a 2-cycle C, and let b ∈ C. Let π

be the permutation obtained by applying a (C, b)-padding to π. Clearly, n(π) = n(π) + 1
and codd(π) = codd(π) + 1, so the padding is safe. This process can be repeated until a
3-permutation π̂ is obtained. Since π̂ is obtained from π by padding new elements, every
operation on π̂ can be mimicked on π by ignoring the padded elements.

In the rest of the chapter we shall restrict attention to circular 3-permutations and
often refer to the 3-cycles in our breakpoint graph simply as cycles. In Section 4.3 we show
how to sort a 3-permutation using at most 1.5l operations, where l is the lower bound of
Theorem 16. By Theorem 15 and Lemma 17 this implies a 1.5-approximation algorithm
for sorting arbitrary circular and linear permutations.
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Figure 4.3: (a) The breakpoint graph of the permutation π = [1 − 3 − 4 2 − 5]. (b) The
graph of [1 − 3 − 5 4 2 − 6], which is obtained by a (C, b)-padding.

Cycle Configurations

An operation that cuts some black edges is said to act on these edges. It is called a k-
operation if it increases the number of odd cycles by k. A (0, 2, 2)-sequence is a sequence
of three operations, of which the first is a 0-operation and the next two are 2-operations.
Since a 2-operation is the best possible in one step, a series of (0, 2, 2)-sequences guarantees
a 1.5 approximation ratio.

Definition 3 An odd cycle is called oriented if there is a 2-operation that acts on three
of its black edges; otherwise, it is unoriented.

A configuration of cycles is a subgraph of the breakpoint graph that contains one or
more cycles. There are four possible configurations of single 3-cycles, which are shown in
Figure 4.4(a-d). It is easy to verify that cycles a and b are unoriented, whereas c and d

are oriented.

Definition 4 A black edge is called twisted if its two adjacent gray edges cross each other
as chords in the circular breakpoint graph. A cycle is k-twisted if k of its black edges are
twisted. For example, in Figure 4.4 cycle a is 0-twisted and c is 2-twisted.

Observation 18 A 3-cycle is oriented iff it is 2- or 3-twisted.

Proof: For a 3-twisted cycle, a transposition is a 2-operation; for a 2-twisted cycle, a
transreversal that reverses the segment between the two twists is a 2-operation.

We now give terminology to describe certain configurations of cycles. A pair of black
edges is said to be connected if they are connected by a gray edge. A pair of connected
black edges is coupled if they are read in the same direction when reading the edges along
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Figure 4.4: Configurations of 3-cycles. (a-b) Unoriented 3-cycles. (c-d) Oriented 3-cycles.

the cycle (For example, the top edges in Figure 4.4b are coupled, and so are all pairs of
edges in Figure 4.4a). Let b = (i1, i2) and b′ = (j1, j2) be two black edges in the breakpoint
graph such that i1,i2,j1 and j2 occur in this order along the circle. Then b1 and b2 induce
two disjoint arcs on the circle, one between i2 and j1 and the other between j2 and i1.
Given a cycle C and two of its black edges b1, b2 that occur consecutively on C, we shall
refer to any black edge (of another cycle) as lying between b1 and b2, if this edge occurs
along the arc induced by b1 and b2 that does not involve any other edge of C. Two pairs of
black edges are called intersecting if they alternate in the order of their occurrence along
the circle. A pair of black edges intersects with cycle C, if it intersects with a pair of black
edges that belong to C. Cycles C and D intersect if there is a pair of black edges in C

that intersect with D (see Figure 3.4a). Two cycles are interleaving if their black edges
alternate in their order of occurrence along the circle (see Figure 3.4b). A 1-twisted pair
is a pair of 1-twisted cycles, whose twists are consecutive on the circle in a configuration
that consists of these two cycles only.

Two arcs are called adjacent if both endpoints of each arc are connected by gray edges
to the endpoints of the other arc. (For example, the arcs induced by the pairs (1, 2) and
(4, 5) in Figure 4.5(a)). Given a breakpoint graph G(π), we define its complement as the
graph formed from G(π) by replacing each black edge that connects π′2i to π′2i+1 with
a black edge that connects π′2i−1 to π′2i (this notion is related to Caprara’s Hamiltonian
Matching [Caprara, 1999]). By construction, every vertex i is connected in the complement
graph to i− 1 and i + 1, hence:

Observation 19 The complement breakpoint graph of a permutation is a cycle of length
2n.

The following lemma, proved originally by Gu et al. [1999], follows from the latter
observation:
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Lemma 20 (Gu et al. [1999]) Let (b1, b2) be a pair of coupled black edges. Then there
exists another pair of black edges that intersects with b.

Proof: Suppose to the contrary that no pair intersects (b1, b2). Then the complement
graph contains at least two disjoint cycles, one in each of the arcs induced by the endpoints
of b1 and b2, in contradiction to Observation 19.

Lemma 21 Let i1 and i2 be a pair of adjacent arcs. Then there exist two connected black
edges b1 and b2 such that: (1) b1 is either in i1 or in i2; and (2) b2 is neither in i1 nor in
i2.

Proof: Suppose to the contrary that no such gray edge exists. Then in the complement
graph there is a cycle that lies in arcs i1 and i2, but does not include all the vertices, a
contradiction.

A 1-twisted cycle is called closed (w.r.t. a configuration) if its two coupled edges
intersect with some other cycle in the configuration. A configuration is closed if at least
one of its 1-twisted cycles is closed; otherwise it is called open. As we show next, any
graph with a 1-twisted cycle has a closed configuration.

Observation 22 Let G(π) be a breakpoint graph that contains a 1-twisted cycle C. Then
G(π) contains a closed configuration.

Proof: By Lemma 20 there exists another cycle D that intersects with the coupled edges
of C. The configuration which consists of cycles C and D is closed.

4.2.4 Canonical Labeling of Cycles

In this section we develop a characterization of oriented cycles that allows us to borrow
some of the theory developed in Section 3.3 for unsigned permutations. A useful tool that
we will require is the signed canonical labeling2 of a cycle in a breakpoint graph, which
we present next.

For a given cycle C (of any length), consider the labeling of its black edges obtained by
labeling an arbitrary edge by 1, and labeling the rest of the cycle’s black edges according
to their occurrence in clockwise order along the circle. The signed canonical labeling of C

is the signed permutation obtained by starting with the edge labeled 1 and reading the
labels in the order they appear along the cycle, where the signs stand for the direction in

2A generalization of the notion of canonical labeling in [Christie, 1999].
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which the edge is read: An edge that is visited in the same direction as the edge labeled
1 is positive, and otherwise it is negative (see Figure 4.5). This definition captures the
notion of twists in 3-cycles; indeed, a 0-twisted 3-cycle has labeling (1, 2, 3), a 3-twisted
cycle has labeling (1,−3,−2), etc. Note that a cycle typically has more than one possible
canonical labeling, since it depends on the choice of the first edge.

A canonical labeling of a 5-cycle is called oriented if it starts with 1, b, a or 1,−a,−b

or 1,−b, a or 1, b,−a, where 1 < a < b. The motivation for this definition comes from the
following observation:

Figure 4.5: A 5-cycle with signed canonical labeling (1,−4,−3,−2, 5).

Lemma 23 A 5-cycle is oriented iff it has an oriented canonical labeling.

Proof: A general 5-cycle that has a canonical labeling that starts with 1, b, a (where
1 < a < b) is depicted in Figure 4.6. A transposition that acts on 1, a and b transforms
the cycle into two 1-cycles and one 3-cycle, showing that the 5-cycle is oriented. A general
5-cycle that has a canonical labeling that starts with 1,−a,−b (resp., 1,−b, a or 1, b,−a)
is depicted in Figure 4.7. In these cases we consider a transreversal that acts on these
three edges, while reversing the segment between edges a and b (resp., 1 and a, or b and
1). This operation breaks the 5-cycle into two 1-cycles and one 3-cycle, implying that the
5-cycle is oriented.

Conversely, consider a 5-cycle C that admits a 2-operation. By definition, this opera-
tion creates two 1-cycles and one 3-cycle. An example for the case of a 2-transposition is
given in Figure 4.6. Thus, starting clockwise with the edge that will be part of the 3-cycle
as edge 1, we obtain the requested canonical labeling (see, e.g., Figure 4.6).

Lemma 24 Let C be a 5-cycle that admits a 2-transposition, and let D be a cycle that
has the same canonical labeling as C, up to flipping the sign of one element. Then D is
also oriented.
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Figure 4.6: A general 5-cycle that has a canonical labeling that starts with 1, b, a. The
dashed line stands for a path of two black edges and two gray edges (the black edges can
be located anywhere along the circle).

Figure 4.7: General 5-cycles that have a canonical labeling that starts with 1,−a,−b and
1,−b, a and 1, b,−a.

Proof: By the proof of Lemma 23, C has a canonical labeling that starts with 1, b, a,
where 1 < a < b. Let x be the element whose sign is flipped. If x is one of the last two
elements in the canonical labeling then D still has a labeling that starts with 1, b, a and,
thus, admits a 2-transposition. If x is the second (resp., third) element of D then D has
a canonical labeling that starts with 1,−b, a (resp., 1, b,−a). Hence, by Lemma 23 the
5-cycle is oriented. If x is the first element, we observe that the reflection of D has a
canonical labeling that starts with 1,−a,−b.

4.3 The Algorithm

In this section we provide a 1.5 approximation algorithm for sorting by transpositions and
transreversals. We first develop an algorithm for sorting 3-permutations, and then use
the results of Section 4.2.3 to generalize it to arbitrary permutations. By definition, an
oriented cycle can be eliminated by a 2-operation that acts on its black edges. Thus, from
now on, we will only consider unoriented cycles. Since configurations involving only 0-
twisted cycles were handled in Section 3.3, by Observation 22 we may restrict attention to
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closed configurations. For each possible closed configuration we shall prove the existence
of a (0, 2, 2)-sequence of operations.

The following lemma deals with interleaving cycle pairs:

Lemma 25 Let π be a permutation that contains two unoriented, interleaving cycles C

and D that do not form a 1-twisted pair. Then π admits a (0, 2, 2)-sequence.

Proof: If both cycles are 0-twisted then a (0, 2, 2)-sequence of transpositions is given in
Section 3.3. Suppose that C is 0-twisted and D 1-twisted (resp., both are 1-twisted and
their twists are not consecutive on the circle). First apply a 0-transposition that acts on
the black edges of C. This makes D 2-twisted, so it is possible to eliminate it using a 2-
transreversal. The latter operation makes C 2-twisted (resp., 3-twisted). A 2-transreversal
(resp., 2-transposition) on C completes the (0, 2, 2)-sequence. The (0, 2, 2)-sequences are
depicted in Figure 4.8.

Figure 4.8: (0, 2, 2)-sequences for the two cases of two interleaving cycles considered in
Lemma 25. Here and throughout the chapter, three asterisks represent a transposition
that acts on the three marked black edges. Two x’s and a asterisk stand for a transreversal
that acts on the three marked edges and reverses the segment between the two x’s.

In order to deal with intersecting cycles we use the notion of canonical labeling of
cycles, defined in Section 4.2.4. The following lemma handles the case of two intersecting
0-twisted cycles.

Lemma 26 Let π be a permutation that contains a closed configuration with two inter-
secting, 0-twisted cycles C and D. Then π admits a (0, 2, 2)-sequence.
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Proof: Since C and D are intersecting, C has a pair of coupled edges that do not intersect
with D. By Lemma 20 there exists a cycle E that intersects with this pair of edges. The
case in which E is 0-twisted was treated in Section 3.3. If E is 1-twisted there are two
cases to consider:

1. D and E are non-intersecting. Our starting point is the (0, 2, 2)-sequences for con-
figurations of three 0-twisted cycles given in Figure 3.9, where two of the cycles are
non-intersecting, and the third one intersects both. In our case, one of the non-
intersecting cycles corresponds to E and is 1-twisted. Depending on the location
of the twist in E, it is always possible to apply the first two transpositions shown
in Figure 3.9 to the closed configuration–the first transposition is applied to the
edges shown in the figure, if all are non-twisted, or to a symmetric set of edges.
Since the three configurations given here are symmetric with respect to the two
non-intersecting cycles, we can ensure that the black edge(s) from cycle E that are
involved in the transposition do not include a twist. Indeed, if this is not the case,
we simply exchange the choice of edges between D and E, choosing in each case sym-
metric edges from the other cycle. By Lemma 24, the resulting 5-cycle is oriented,
which completes the (0, 2, 2)-sequence.

2. D and E are intersecting. Consider the (0, 2, 2)-sequences for three mutually inter-
secting 0-twisted cycles given in Figure 3.10. In our case either D or E are 1-twisted.
If all three edges d, e1 and e2 that are cut by the first transposition are non-twisted,
we apply the first two transpositions as in Figure 3.10. By Lemma 24, the result-
ing 5-cycle F is oriented. The same holds for any set of symmetric edges that are
non-twisted. The only closed configurations in which no such symmetric set is pos-
sible is when some arc induced by a pair of black edges of C contains a single twist.
There are three such configurations, for which (0, 2, 2)-sequences are described in
Figure 4.9.

Next, we deal with closed configurations that include two intersecting, 1-twisted cycles.
We need the following observations:

Observation 27 Let π be a permutation that contains a 2-twisted cycle C and a 1-twisted
cycle D, such that C and D are intersecting and none of the arcs induced by the two twists
of C contains both non-twists of D. Then π admits two consecutive 2-operations.

Proof: Applying a 2-transreversal on C eliminates it, while making D 2-twisted. Thus,
two consecutive 2-operations are possible.
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Figure 4.9: (0, 2, 2)-sequences for some cycle configurations that contain two intersecting
0-twisted cycles. First we apply a 0-transreversal on the three marked edges, such that
the segment between the two x’s is reversed, resulting in an oriented 3-cycle and a 5-cycle.
Next, we eliminate the oriented 3-cycle and are left with a 5-cycle, which can be verified
to be oriented by Lemma 23. Hence, a (0, 2, 2)-sequence is possible.

Observation 28 Let C be a 2-twisted cycle such that in a given configuration there are
no black edges from other cycles between its two twists. Then it is possible to apply a
2-operation on C that does not affect other cycles in the configuration.

Proof: A 2-transreversal on C switches the segment between its two twists with a segment
between a twist and a non-twist of C. Since the former segment does not involve black
edges from other cycles in the configuration, the claim follows.

Observation 29 Let C and D be two 2-twisted, interleaving cycles. Then these cycles
admit two consecutive 2-operations iff at least three of their twists are consecutive on the
circle.

Proof: If C and D have at least three consecutive twists then a 2-operation on any of
them leaves the other cycle 2-twisted, and the claim follows. Conversely, suppose to the
contrary that the non-twist of each cycle lies between the two twists of the other cycle
(which is the only configuration in which there are no three consecutive twists). Then a
2-operation on one cycle makes the other one 0-twisted, a contradiction.

Lemma 30 Let π be a permutation that contains a closed configuration with two inter-
secting, 1-twisted cycles C and D. Then π admits a (0, 2, 2)-sequence.

Proof: There are six possible cases, shown in Figure 4.10. For cases (a-d), we first apply
a 0-reversal that acts on the black edges that are marked by an asterisk. This makes the
other cycle 2-twisted, and two additional 2-operations follow from Observation 27. For
cases (e-f), we observe that by Lemma 20 there is another cycle that has a black edge in
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the arc denoted x, and a black edge in one of the other five arcs. We apply a reversal that
acts on these two edges of the third cycle. If the edges are coupled then the reversal does
not affect the cycle. Otherwise, it breaks this 3-cycle into a 1-cycle and a 2-cycle (which
we safely transform into a 3-cycle). Thus, in both cases the reversal is a 0-operation. To
show that two 2-operations follow, we consider three possible cases with respect to the
resulting configuration of C and D:

• The resulting configuration consists of a 1-twisted cycle and a 2-twisted cycle. In
all cases the configuration fulfills the condition of Observation 27 and, thus, two
2-operations follow.

• C and D intersect and are both 2-twisted. In all cases one of the cycles fulfills the
condition of Observation 28 and can be eliminated, while leaving the other cycle
2-twisted. Thus, two 2-operations are possible.

• C and D interleave and are both 2-twisted. In all cases C and D have at least three
consecutive twists on the circle, and two 2-operations follow from Observation 29.

Figure 4.10: Closed configurations of two intersecting 1-twisted cycles.

The following two lemmas deal with closed configurations that involve two intersecting
cycles, one of which is 0-twisted and the other 1-twisted.

Lemma 31 Let π be a permutation that contains a 0-twisted cycle C that intersects with
the coupled edge pairs of two non-intersecting, 1-twisted cycles D and E. Then π admits
a (0, 2, 2)-sequence.

Proof: Since cycles D and E both intersect with C, there is an arc a induced by two
black edges of C that includes edges from both D and E. We apply a 0-transreversal



4.3. THE ALGORITHM 53

Figure 4.11: One possible scenario of Lemma 31. C is a 0-twisted cycle that intersects
with the coupled edge pairs of two non-intersecting, 1-twisted cycles D and E. First we
apply a 0-transreversal on the three marked edges. Now both D and E become oriented
and remain non-intersecting, allowing two 2-transreversals.

on the edges of C that reverses a. In the resulting permutation, D and E are both 2-
twisted and remain non-intersecting, implying two 2-transreversals. An example of such
a (0, 2, 2)-sequence is given in Figure 4.11.

Lemma 32 Let π be a permutation that contains a 0-twisted cycle, which intersects with
the coupled edges of a 1-twisted cycle. Then π admits a (0, 2, 2)-sequence.

Proof: There are two possible configurations of a 0-twisted cycle C that intersects the
coupled edges of a 1-twisted cycle D, depicted in Figure 4.12. By Lemma 20, there is
another cycle E that has a black edge in the arc marked by x, and in some other arc(s) (see
Figure 4.12). If E is 0-twisted then a (0, 2, 2)-sequence follows from Lemma 26. Otherwise,
E is 1-twisted and (0, 2, 2)-sequences for all possible configurations are summarized in
Table 4.1.

Figure 4.12: Closed configurations consisting of two intersecting cycles, such that one is
0-twisted and the other is 1-twisted.

The final configuration that needs to be taken care of involves 1-twisted pairs of inter-
leaving cycles. This case is handled by the following lemma:

Lemma 33 Let π be a permutation that contains k ≥ 2 mutually interleaving 1-twisted
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Figure 4.13: (0, 2, 2)-sequences for configurations described in Table 4.1.

cycles, such that all their twists are consecutive on the circle and k is maximal with this
property. Then π admits a (0, 2, 2)-sequence.

Proof: Such an arrangement is possible iff the edges of all cycles alternate along the
circle (see Figure 4.14). Consider the arc induced by the twist of the k-th cycle and the
first non-twisted edge of the first cycle; further consider the arc induced by the twist of
the first cycle and the second non-twisted edge of the k-th cycle. These two arcs (marked
by an asterisk in Figure 4.14) are adjacent, so by Lemma 21 there is a cycle C that has a
black edge in one of these arcs, and another black edge in some other arc.

Now, if C interleaves with one of the k interleaving cycles then a (0, 2, 2)-sequence
follows from Lemma 25 (the case in which C is 1-twisted and interleaves with all k cycles
is impossible, since it contradicts the maximality of k). If C has an edge that lies between
the two non-twists of one of the k cycles, then these two intersecting cycles form a closed
configuration; a (0, 2, 2)-sequence then follows from Lemma 32, if C is 0-twisted (resp.,
Lemma 30, if C is 1-twisted). If C is 1-twisted, has an edge between two twists of the k
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cycles and forms a closed configuration with one of the cycles it intersects, then a (0, 2, 2)-
sequence follows Lemma 30. There are five other configurations that are not covered
by these cases. The five configurations and (0, 2, 2)-sequences for them are depicted in
Figure 4.15.

Figure 4.14: Mutually interleaving 1-twisted cycles.

Figure 4.15: (0, 2, 2)-sequences for some closed configurations that involve a 1-twisted pair
and a third cycle that intersects at least one of the other cycles.

We are now ready to describe our sorting algorithm, which is given in Figure 4.16. For
3-permutations, Step 2 suffices for the sorting and we call this part Algorithm Sort3Perm.
The following lemma shows that Algorithm Sort3Perm is a quadratic 1.5-approximation
algorithm for sorting 3-permutations:

Lemma 34 Sort3Perm is a 1.5-approximation algorithm for sorting 3-permutations, run-
ning in time O(n2).

Proof: First, we observe that it suffices to consider only closed configurations, since for
configurations that contain only 0-twisted cycles a (0, 2, 2)-sequence is given in Section 3.3;
in all other cases, by Observation 22 there must exist a closed configuration.

The sequence of operations that is generated by the algorithm contains only 2-operations
and (0, 2, 2)-sequences of operations. Therefore, every sequence of three operations in-
creases the number of odd cycles by at least 4 out of 6 possible in 3 steps (as implied from
the lower bound of Theorem 16). Hence, the approximation ratio is 1.5.
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Algorithm SortTransrev (π)

1. Transform π into a 3-permutation π̂ (Lemma 17).

2. While G(π̂) contains a 3-cycle C do:

(a) If C is oriented, apply a 2-operation.

(b) Otherwise, find a cycle D that intersects with a coupled pair of C.

(c) If C and D interleave, apply a (0, 2, 2)-sequence (Lemmas 25, 33).

(d) Else if C or D are 1-twisted, apply a (0, 2, 2)-sequence (Lem-

mas 30, 32).

(e) Otherwise, apply a (0, 2, 2)-sequence (Lemma 26).

(f) If new 2-cycles were introduced by the last operations, transform π̂

into a 3-permutation π̂′ by safe paddings (Lemma 17), and let π̂ = π̂′.

3. Mimic the sorting of π using the sorting of π̂ (Lemma 17).

Figure 4.16: Algorithm SortTransrev. After Step 2(a) we assume that all cycles involved
in the configuration of C are unoriented. Obviously, if an oriented cycle is involved, then
a 2-operation can be applied on it.

We now analyze the running time of the algorithm. The number of iterations in step
2 is linear, since in every iteration two cycles are eliminated and there is a linear number
of cycles. Deciding whether two given cycles are interleaving or intersecting can be done
in constant time. Thus, the bottleneck in each iteration is to apply an operation to the
permutation, and to find an arbitrary cycle that intersects a given coupled pair of black
edges (Step 2b). The latter task can be performed by a procedure that finds an arbitrary
pair of connected black edges that intersects with a given pair of connected black edges.
These tasks can be done easily in linear time. The number of new 2-cycles introduced
in each iteration is constant and, therefore, Step 2f takes constant time. Overall, the
algorithm can be implemented in quadratic time.

Now we are ready to prove the correctness of Algorithm SortTransrev:

Theorem 35 Algorithm SortTransrev is a 1.5-approximation algorithm for sorting arbi-
trary permutations by transpositions and transreversals, and it runs in time O(n2).

Proof: By Lemma 34, we are guaranteed that alg(π̂) ≤ 1.5 · trd(π̂), where alg(π̂) is the
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number of operations used by Algorithm Sort3Perm to sort π̂. Thus, by Theorem 16

alg(π̂) ≤ 1.5trd(π̂) ≤ 1.5
(

n(π̂)− codd(π̂)
2

)
= 1.5

(
n(π)− codd(π)

2

)
≤ 1.5 · trd(π)

Using Lemma 17, we can sort π by alg(π̂) operations, which implies an approximation
ratio of 1.5.

Since the transformation into 3-permutations can be done in linear time, Lemma 34
implies that the running time of Algorithm Sort is O(n2).
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Config. of cycles
C & D

2nd black edge
of E in arc

3rd black edge of
E in arc

Twisted edge in arc (0, 2, 2)-sequence
by

a,b 1 2 all cases Lemma 30

a,b 1 or 2 3 or 4 or 5 all cases Lemma 25

a 3 4 4 Figure 4.13(k)

a 3 4 x Figure 4.13(l)

a 3 4 3 Lemma 25

b 3 4 4 Figure 4.13(n)

b 3 4 x Lemma 25

b 3 4 3 Figure 4.13(o)

a,b 3 5 all cases Lemma 30

a 4 5 4 Figure 4.13(m)

a 4 5 x or 5 Lemma 30

b 4 5 all cases Lemma 30

a,b 1,5 same arc E closed by C Lemma 31

a 1,5 same arc E not closed by C Figure 4.13(a-d)

b 1,5 same arc E not closed by C Figure 4.13(e-h)

a,b 2,3 same arc all cases Lemma 30

a 4 same arc E not closed by C Figure 4.13(i-j)

a 4 same arc E closed by C Lemma 30

b 4 same arc all cases Lemma 30

Table 4.1: (0, 2, 2)-sequences for the two configurations shown in Figure 4.12. Each row of
the table describes possible configurations of cycles C,D and E. The first column indicates
to which of the two configurations from Figure 4.12 this row refers. As explained in the
proof of Lemma 32, cycle E has black edges in arc x and in some other arc(s), with the
possible locations listed in the second and third columns. The fourth column specifies the
location of the twist of E, completing the description of the configuration of cycles C,D

and E. The last column points to a reference for a (0, 2, 2)-sequence in each case.



Chapter 5

An O(n3/2√log n) Implementation

In this chapter we introduce a fast implementation of algorithms SortTranspos (Chapter
3) and SortTransrev (Chapter 4). We present an implementation of both algorithms that
runs in time O(n3/2

√
log n), improving on the quadratic running time of previous algo-

rithms. The improvement is achieved by exploiting an efficient data structure introduced
by Kaplan and Verbin [2003] in the context of sorting by reversals.

The results of this chapter can be found in [Hartman and Shamir, 2004] and [Hartman
and Sharan, 2004a] (preliminary version in [Hartman and Sharan, 2004b]).

As discussed in the proofs of Lemmas 12 and 34, the main tasks in each iteration
of both algorithms are finding an arbitrary connected pair that intersects with a given
connected pair, and applying an operation. In the sequel we describe a data structure
that allows to perform these tasks in sub-linear time. Based on this data structure, each
algorithm can be implemented in sub-quadratic time. This data structure is similar to the
one introduced by Kaplan and Verbin [2003], although here the required tasks are slightly
different. For completeness we give here a full description of the data structure.

By Theorems 1 and 15, the data structure can be presented for linear permutations
(we prefer doing that since it makes the presentation clearer). We consider the doubled
permutation f(π) (see Sections 3.2.2 and 4.2.2), which is denoted here simply by π. A
connected pair of black edges (b1, b2) is represented by the pair (2i, 2i + 1) which corre-
sponds to the gray edge that connects b1 and b2. Thus, π is a union of disjoint pairs. Two
elements that form a pair are called mates. We need a data structure that supports the
following tasks in sub-linear time:

• IntersectionQuery(π, e1, e2): Find a pair that intersects in π with the pair of ele-
ments (e1, e2).

59
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Figure 5.1: (a) Partition of the permutation π = [1 2 11 12 9 10 7 8 13 14 5 6 3 4] into
blocks. Below each element, the location of its mate in π is indicated. (b) The internal
order of each block (according to the order of the mates in π).

• Operation(π, e1, e2, e3): Apply an operation on π that cuts before elements e1, e2

and e3 (for reversals e2 = e3).

A query is said to act on the elements e1 and e2. Similarly, an operation acts on
elements e1, e2 and e3. The location of an element e is its number in a left-to-right ordering
of π, and is denoted by loc(e).

Now we describe the data structure. The permutation π is divided into Θ(
√

n
log n)

blocks of size Θ(
√

n log n) each, which are maintained in a list. The elements in each
block are ordered according to the order of their mates in π (see example in Figure 5.1).
Attached to each block is a splay tree [Sleator and Tarjan, 1985] in which the elements
of the block are maintained. This data structure is a balanced binary search tree that is
re-balanced via rotations, and supports split and concatenate operations in logarithmic
time. 1 We also maintain a lookup table that contains for each element a pointer to its
block.

In order to maintain signed permutations we introduce a ”reverse” flag for each node
in the splay tree. This flag indicates whether the elements of its subtree should be reversed
(in order and sign). The reverse flag of a node can be flipped by exchanging the order of
its two children, and flipping their own flags. The ability to clear the reverse flag allows
us to implement splits and concatenations, while correctly maintaining the permutation
[Kaplan and Verbin, 2003].

1As in [Kaplan and Verbin, 2003], we use splay trees since the implementation of the split and con-

catenate operations is very elegant. Therefore, our running times will be amortized. Amortization can be

avoided by using some other type of search tree.
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For simplicity, we assume that queries and operations act only on elements that are
on block boundaries (Lemma 37 will show why we can make this assumption). More
specifically, assume that e1 and e2 (for transpositions and transreversals also e3) are all
first elements in their blocks.

Lemma 36 Tasks IntersectionQuery and Operation can be performed in time O(
√

n log n),
assuming that they act only on elements that are on block boundaries.

Proof:

• IntersectionQuery(π, e1, e2): Let B1 and B2 be the blocks that contain e1 and e2

respectively, (these blocks are found by using the lookup table) and assume w.l.o.g
that B1 is located before B2. For each block that is before B1 or after B2 do the
following. Find, by binary search, the first element that is located after loc(e1) and
the element that is located right before loc(e2). Split the corresponding tree in the
locations of these two elements, and consider the subtree that is bounded by these
two elements. If this subtree is not empty, then pick an arbitrary element in it. By
construction, this element and its mate are intersecting with (e1, e2), i.e., the query
is answered. Otherwise, continue to the next block. The split operation is done
in logarithmic time. Since there are O(

√
n

log n) blocks of size Θ(
√

n log n), the total

time is O(
√

n log n).

• Operation(π, e1, e2, e3): A transposition can be done by applying three reversals,
and a transreversal or a revrev can be mimicked by two reversals. Since a reversal
takes time O(

√
n log n) [Kaplan and Verbin, 2003], all operations can be done within

the same time bound.

The following lemma is based on Kaplan and Verbin [2003], and shows why we can
assume that all tasks act only on elements that are at block boundaries:

Lemma 37 Suppose that it is possible to perform IntersectionQuery and Operation in
time O(

√
n log n), assuming that the tasks act only on block boundaries. Then, it is pos-

sible to perform these tasks with the same time complexity, even if they act on arbitrary
elements.

Proof: The idea is to (1) add for each task a pre-processing step that splits up to three
blocks, such that in the new partition of blocks the task acts only on boundaries of blocks;
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(2) apply procedures IntersectionQuery and Operation on these blocks, and (3) add a
post-processing step that ensures that at the end of the task the blocks are of size between√

n log n

2 and 2
√

n log n, and hence, there are still Θ(
√

n log n) blocks. We now describe
steps (1) and (3), and show that they can be performed in time O(

√
n log n).

• Pre-processing: Splitting a block is done by splitting the corresponding splay tree in
the appropriate location(s), and updating the lookup table accordingly. The splitting
locations are the elements that are right before loc(ei) for i = 1, 2, 3, and are found
by binary search (for queries we split in two locations). The number of splits is
at most three, each split is logarithmic and the number of elements to update is
O(
√

n log n). Thus, this step can be done in time O(
√

n log n).

• Post-processing: Due to the pre-processing step, there may be up to six blocks that

are smaller than
√

n log n

2 . If there is such a block, we first concatenate it to the
preceding block (if it is the first block, we concatenate to the last one). Now, it
is possible that a block that is bigger than 2

√
n log n is created. However, since

the size of this new block is bounded by 2.5
√

n log n, another single split in this
block ensures that the new blocks are of legal size. Concatenating two blocks is
done by concatenating the corresponding splay trees, and updating the lookup table
accordingly. Since the total number of splits and concatenations in this step is
constant and the number of updates is O(

√
n log n), it can be performed in time

O(
√

n log n).

By combining Lemmas 36 and 37 we get:

Corollary 38 Step 3 of Algorithm SortTranspos (and Step 2 of Algorithm SortTransrev)
can be implemented in time O(

√
n log n).

Now we are ready for the main result of this chapter :

Theorem 39 Algorithm SortTranspos (resp. Algorithm Transrev) guarantees a 1.5-
approximation ratio to sorting by transpositions (sorting by transpositions and transrever-
sals), and runs in time O(n3/2

√
log n).

Proof: The number of iterations in each algorithm is at most n. By Corollary 38, each
iteration can be implemented in time O(

√
n log n). Thus, both algorithms runs in time

O(n3/2
√

log n).



Part II

Extracting Sequence Information

from Oligonucleotide Arrays
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Chapter 6

Sequencing by Hybridization with

Errors

Sequencing by hybridization (SBH) is a DNA sequencing technique, in which the sequence
is reconstructed using its k-mer content. This content, which is called the spectrum of the
sequence, is obtained by hybridization to a universal DNA array. Standard universal arrays
contain all k-mers for some fixed k, typically 8 to 10. Currently, in spite of its promise
and elegance, SBH is not competitive with standard gel-based sequencing methods. This
is due to two main reasons: lack of tools to handle realistic levels of hybridization errors,
and an inherent limitation on the length of uniquely reconstructible sequence by standard
universal arrays.

In this chapter we deal with both problems. We introduce a simple polynomial recon-
struction algorithm which can be applied to spectra from standard arrays and has provable
performance in the presence of both false negative and false positive errors. We also pro-
pose a novel design of chips containing universal bases, that differs from the one proposed
in [Preparata et al., 1999, Preparata and Upfal, 2000]. We give a simple algorithm that
uses spectra from such chips to reconstruct with high probability random sequences of
length lower only by a squared log factor compared to the information theoretic bound.
Our algorithm is very robust to errors, and has a provable performance even if there are
both false negative and false positive errors. Simulations indicate that its sensitivity to
errors is also very small in practice.

The results in this chapter are published in [Halperin et al., 2003] (preliminary version
in [Halperin et al., 2002]).
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6.1 Introduction

Sequencing by Hybridization (SBH) was proposed in the late eighties [Bains and Smith,
1988, Drmanac et al., 1989] as an alternative approach to DNA sequencing. In this tech-
nique, a large set of short oligonucleotides (called probes) is arrayed on a solid surface,
forming a DNA chip. A solution with copies of the target DNA sequence (the sequence
we would like to read) is brought in contact with the chip. Oligonucleotides on the chip
hybridize with reverse complement segments of the target DNA molecules.Using the hy-
bridization signals, the subset of probes that hybridize with the target (the spectrum of
the sequence) is detected, and a combinatorial algorithm reconstructs the DNA sequence
from its spectrum. For an overview on SBH see [Pevzner, 2000, Pevzner and Lipshutz,
1994, Shamir, 2002].

Initially, SBH was designed for chips with probes consisting of all 4k strings of length k

over the DNA alphabet (A,C,G,T) (we call this design classical SBH). Assuming that the
spectrum is error-free and that the multiplicity of each k-mer in the spectrum is known,
the problem is reduced to finding an Eulerian path in a particular directed graph [Pevzner,
1989] and therefore is tractable. However, these two assumptions are not practical.

Real hybridizations are error prone. They contain both false negative errors (i.e.,
probes that match the sequence but are missing from the spectrum), as well as false
positives (probes in the experimental spectrum that do not match any position in the
sequence). For the case of false negatives only, several algorithms are proposed [Blazewicz
et al., 1997, Pevzner, 1989]. When there are also false positive errors, there are three
known algorithms. Lipshutz [1993] provides an iterative algorithm which assumes some
knowledge of the error rates, and assumes an error model in which false positives can
be obtained only by mismatches of a base at one end of the k-mer. The algorithm may
not always converge, but simulations indicate that this happens with low probability.
Blazewicz et al. [1999a,b] give two algorithms that minimize the number of errors and
have worst case exponential running time. None of the algorithms that was previously
proposed to address both types of errors in classical SBH has a theoretical proof that with
high probability, the obtained sequence is the original one.

Another main obstacle is that often reconstruction is not unique. Theoretical studies
[Arratia et al., 1996, Dyer et al., 1994, Shamir and Tsur, 2002] prove that the expected
length of unambiguously reconstructible sequences by classical SBH with probes of length
k is O(2k). This was also observed empirically [Pevzner and Lipshutz, 1994, Pevzner et al.,
1991]. In contrast, a simple information-theoretic argument [Preparata et al., 1999] yields
an upper bound of O(4k) if there are no restrictions on the set of probes, that is, the
length of the target sequence may be no more than linearly proportional to the number
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of probes on the DNA chip.

Several approaches were proposed to decrease the probability of ambiguous reconstruc-
tion. Among them are alternative chip designs [Pevzner et al., 1991, Preparata et al., 1999,
Preparata and Upfal, 2000], interactive protocols [Frieze and Halldorsson, 2002, Skiena and
Sundaram, 1995, Phan and Skiena, 2001], using additional positional information [Ben-
Dor et al., 2001, Hannenhalli et al., 1996, Shamir and Tsur, 2002], using a homologous
reference sequence [Pe’er and Shamir, 2000] and resolving ambiguities by restriction en-
zymes [Snir et al., 2002]. An important breakthrough result due to [Preparata et al., 1999,
Preparata and Upfal, 2000] uses universal bases, i.e., bases which hybridize with each of
the four standard DNA bases (Probes containing universal bases are also called gapped, as
the universal bases form gaps of unspecified positions between specified ones). Preparata
et al. have given a new chip design based on probes which contain universal bases and is
provably optimal (i.e., achieves the information theoretic bound) up to a constant factor
(all results here and below hold with high probability for random sequences of independent,
equiprobable bases).

In this chapter we deal with the problem of noise in SBH, as well as with the problem
of ambiguous reconstruction. We first provide a polynomial algorithm which solves the
classical SBH problem with both false negative and false positive errors. Our algorithm
does not assume knowledge of the spectrum multiplicities. If the false positive rate is
small and the probability of false negative is q, the probability that our algorithm fails to
reconstruct a random sequence of length O(2(1−3q)k) is bounded by an arbitrarily small
constant. To the best of our knowledge, this is the first rigorous theoretical analysis
of a polynomial algorithm for SBH with positive and negative errors. This answers the
challenge posed in [Pevzner and Waterman, 1995, Problem 35].

We also provide an alternative chip design to the one of Preparata et al. [1999],
Preparata and Upfal [2000] which uses universal bases. In contrast to the latter de-
sign, which has a deterministic periodic structure, we use randomized probes, in which
the locations of the real (specified) bases among the universal ones are chosen randomly.
We provide a second polynomial algorithm to reconstruct the target from such spectrum.
Here too we do not assume that the multiplicities are known. The probability that our
algorithm fails to reconstruct a random sequence of length O(4k

k ), using Θ(k4k) probes,
is bounded by an arbitrarily small constant, assuming there are no hybridization errors.
Hence, our design is optimal up to a squared log factor.

The main advantage of our randomized probes design is that the same algorithm has
provable performance in the presence of errors. If the false positive rate is small and the
probability of false negative is q, the probability that our algorithm fails to reconstruct a
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random sequence of length O((1−q)4k

k ), using Θ( k4k

1−q ) probes, is bounded by an arbitrarily
small constant. This is the first rigorous theoretical analysis of any algorithm for SBH with
gapped probes in the presence of errors: The analyses of [Preparata et al., 1999, Preparata
and Upfal, 2000] assumes error-free data. Doi and Imai [2000] report on an empirical study
on an extension of the algorithms of [Preparata et al., 1999, Preparata and Upfal, 2000]
which handles errors. Furthermore, our simulations show that our algorithm is much more
resistant to errors than both the algorithms of Preparata et al. and of Doi and Imai [2000].

6.1.1 Organization of the Chapter

In Section 6.2 we introduce the model, some definitions and useful lemmas. In Section 6.3
we describe and analyze the algorithm for classical SBH arrays. In Section 6.4 we introduce
the new array design that uses universal bases and analyze its reconstruction algorithm. In
Section 6.5 we describe our empirical study, and we conclude with some possible extensions
in Section 6.6.

6.2 Preliminaries

In this section we give some basic definitions, describe our model, and state some known
lemmas that we are going to use in the analysis.

Let Σ = {A,G,C, T}, where A,G,C and T represent (specified) nucleotide bases.
Following [Preparata et al., 1999, Preparata and Upfal, 2000], we add a “don’t care”
symbol N , implemented using a universal base [Loakes and Brown, 1990] (biologically, a
universal base can hybridize to any base). The DNA sequence that we wish to reconstruct,
also called the target, consists of specified bases only. A probe is a short sequence of
universal and specified bases. A sequence that contains universal bases will sometimes be
referred to as the gapped subsequence of its specified locations. Hence, AANNTNC is the
same as the subsequence AA**T*C.

Definition 5 (Matching Probe) Probe a matches sequence S if it appears contiguously
in S.

For example, a =AANNTNC matches TAAGCTGCC. Note that the probe must be
fully contained in S, so a does not match AACGTA.

A DNA array is a set of probes (typically of equal length). For a given array, the
theoretical spectrum of a target is the set of all the array probes that match the target.
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Note that we ignore multiplicities in the spectrum, so spectra are viewed as sets and not
as multisets.

Definition 6 (Fooling Probe) For a sequence S, which is not a subsequence of the
target, a probe is called a fooling probe if it matches both S and the target.

The (experimental) spectrum ES of a target is the set of probes in the array that were
recorded by the experiment as present in the target. For errorless data, the theoretical
and experimental spectra coincide. We model noise in the SBH experiment by adding
some false positives and some false negatives to the theoretical spectrum T : For every
probe a ∈ A independently, if a /∈ T then a ∈ ES (i.e., a appears in the spectrum)
with probability p. This is the false positive probability. If a ∈ T then a appears in the
spectrum ES with probability 1− q, so q is the false negative probability. This probability
is independent of the number of locations that a matches. Since the probability that a
probe matches more than one location is very low, this model approximates quite well a
model which assumes that false negative errors occur independently at each location. We
assume that p is small enough so that the number of probes in the spectrum is dominated
by the probes that do belong to T .

Definition 7 (Supporting Probe) A probe a supports a sequence S if it matches S

and appears in the spectrum.

Any probe that is a subsequence of the target is by definition a matching probe and, in
case there are no false negative errors, also a supporting probe. For example, given errorless
k-mer spectrum from a classical array, there will typically be k supporting probes for any
subsequence of the target of length 2k− 1 (if the subsequence is degenerate there may be
fewer). When errors are introduced, not all matching probes support a true subsequence,
due to false negatives. A sequence which is not a subsequence of the target may be
supported by fooling probes (which are not false negatives) and by false positive probes
(that do not appear in the theoretical spectrum). Note that the latter are not fooling
probes.

The SBH problem is to reconstruct the target S from the spectrum ES. We assume we
are given a prefix of S, of length i−1, where i is the length of the probes. Note that there
are biochemical methods to fulfill the prefix requirement (see [Preparata et al., 1999]). We
assume that S is chosen uniformly from all the DNA strings of a determined length m,
i.e., each symbol is chosen uniformly and independently.

In our analysis, we will use the following Chernoff-like upper bounds for large deviations
(their proof can be found, e.g., in [Alon and Spencer., 2000, Appendix A]):
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Lemma 40 Let Z be a random variable with a binomial distribution Z ∼ B(n, p). For
every λ > 1, Pr(Z > λpn) <

(
eλ−1λ−λ

)pn
.

Lemma 41 Let Z be a random variable with the binomial distribution, Z ∼ B(n, p). For
every a > 0, Pr[Z − np < −a] < e−a2/2pn.

6.3 Classical SBH with Errors

In this section we assume that the array consists of all 4k possible sequences of length
k ≥ 6, over the alphabet Σ = {A,G,C, T}. When there are neither false positives nor
false negatives, it is shown [Dyer et al., 1994, Arratia et al., 1996, Shamir and Tsur, 2002]
that with high probability, the longest possible sequences to be uniquely reconstructed,
are of length O(2k). In this section, we address the errors-prone case. We describe a
simple algorithm, and show that it reconstructs (with high probability) sequences of length
Θ(2k(1−3q)), for q < 1

3 . Notice that in the error-free case, when q = 0, our algorithm is
optimal up to a constant. As the number of probes is 4k, and the length of the sequence
is O(2k), we assume that p < 1

2k . Note that the length of the reconstructed sequences is
not affected by p.

Let the input sequence be s1, . . . , sm. Suppose that we already know the sequence
s1, . . . , si, and we want to find si+1. The reconstruction algorithm is described in Figure
6.1.

1. Enumerate all 4k sequences a = a1, . . . , ak.

2. Pick a sequence a′ such that the number of probes supporting

si−k+2, . . . , si, a
′
1, . . . , a

′
k is maximal (breaking ties arbitrarily).

3. Set si+1 = a′1.

Figure 6.1: Algorithm A for Classical SBH.

The running time of algorithm A is O(mk4k). Each of the (2k − 1)-long sequences
tried will be called a path.

6.3.1 Analysis of the Algorithm

Theorem 42 The probability that algorithm A fails is bounded by an arbitrary small con-
stant, if m = O(2(1−3q)k).
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Proof: At each step, the algorithm tries to extend the current sequence by all possible
sequences of length k. A sequence path si−k+2, . . . , si, a

′
1, . . . , a

′
k in which the first new

base (corresponding to a′1 in algorithm A) is wrong, will be called a bad path. Let us fix a
possible bad path. Denote by Pbad the probability that the number of supporting probes
of this bad path is greater or equal to the number of probes which support the correct
path (and hence in this case the algorithm fails). There are 3

44k possible bad paths, and
the number of possible locations that might lead to an error is bounded by m. We have
to show that the failure probability is bounded by a constant ε < 1. Hence, what we need
to prove is that

Pbad ·
3
4
4k ·m ≤ ε

Let X be a random variable that counts the number of supporting probes for the
correct path, and let Y be the number of supporting probes for the bad path. Clearly,
Y = Y1+Y2, where Y1 is the number of supporting probes for the bad path that are fooling
(probes that appear also in the theoretical spectrum), and Y2 is the number of supporting
probes arising from false positives. The algorithm fails if at some point X ≤ Y .

Suppose there were i fooling probes for the bad path. It is easy to see that X ∼
B(k, 1 − q), Y1 ∼ B(i, 1 − q), and Y2 ∼ B(k − i, p). Note that these random variables
depend on i. However, the value of i will be clear from the context, so the random variables
are not written as functions of i.

We first prove the following lemma:

Lemma 43 The probability that a bad path has i fooling probes is at most 2(k − i + 1) ·
m · 4−k−i.

Proof: In the bad path, the first extension base is incorrect and therefore, all i fooling
probes match other locations in the sequence. (Note that for a false path that starts
with 1 ≤ j ≤ k correct bases - and hence is not called a bad path - the first j probes
that support such path match also the correct path. Thus, they appear in the theoretical
spectrum even if they do not match other locations in the sequence.)

Consider first the case where the i fooling probes of the bad path all match a single
location (with appropriate shifts), which means that k − 1 + i consecutive symbols of the
bad path appear consecutively elsewhere in the sequence. This happens with probability
at most (k − i + 1) · m

4k−1+i (there are k − i possible sequences of k − 1 + i consecutive
symbols in the bad path).

The more general case is that the fooling probes match x ≥ 1 different locations. In this
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case there are x different subsequences of the bad path of lengths k−1+ i1, . . . , k−1+ ix,∑x
j=1 ij = i that appear elsewhere in the sequence. There are

( i−1
x−1

)
possibilities of such

decompositions of i into ij ’s (the same as the number of possibilities of choosing a multiset
of i − x elements out of x elements). There are kx + i restricted symbols, at most

(m
x

)
possible sets of locations in the sequence and at most (k − i + x)x possible sets of indices
in the bad path. (Note that the fact that the occurrences of the probes in the sequence
may overlap does not affect the analysis, since the number of restricted symbols remains
the same.) Therefore the probability that there are i fooling probes is at most

i∑
x=1

(
i− 1
x− 1

)(
m

x

)
(k − i + x)x 4−kx−i ≤

4−i

i

i∑
x=1

(
i(k − i + x) ·m · 4−k

)x
≤ 2(k − i + 1) ·m · 4−k−i

The last inequality is obtained since for k ≥ 6, the first summand (the expression for
x = 1) is bounded by 1

2 (note that x ≤ i), so the whole sum is bounded by twice the first
summand.

Summing over the possible values of i, and using Lemma 43, we obtain

Pbad =
k∑

i=0

Pr[X ≤ Y ] · Pr[i fooling]

≤
k∑

i=0

Pr[X ≤ Y ] · 2(k − i + 1)m · 4−k−i

By denoting f(i) def= Pr[X ≤ Y ] · 2(k − i + 1)m2 · 4−i we get

m · 4k · Pbad =
(1−2q)k∑

i=0

f(i) +
k∑

i=(1−2q)k+1

f(i) (6.1)

which has to be bounded by 4
3ε.

We will bound separately the first and the second sum. Roughly speaking, the second
sum is bounded using the fact that the number of fooling probes i is high, an event which
happens with very low probability. The first sum is bounded by observing that when i is
small, it is unlikely that the number of probes that support the correct path is close to i,
since it is far from the expectation.

Let ρ = m2−(1−3q)k. We will first bound the second sum in (6.1). In order to bound
Pr[X ≤ Y ] we only use the fact that Pr[X ≤ Y ] ≤ 1

2 , and we get

k∑
i=(1−2q)k+1

f(i) ≤ 2(qk) max
i>(1−2q)k

f(i) ≤
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4(qk)2m2 · 4−k(1−2q) ≤ ρ2, (6.2)

where the last inequality holds since for every integer x ≥ 0, 2x2 ≤ 4x, and therefore,
4(qk)2 ≤ 4qk.

In order to bound the first sum in (6.1), we will first fix i ≤ (1− 2q)k, and bound f(i).
For every j > i,

Pr[X ≤ Y ] ≤ Pr[X ≤ j] + Pr[Y ≥ j]

So our goal is to find a number j, such that Pr[X ≤ j] + Pr[Y ≥ j] is very small.

We will first bound Pr[X ≤ j]. For simplicity of notation, let x = k−i+1
kq , y = k−j

kq ,
and δ = 1 − y

x , and thus, i = k − kqx − 1, j = k − kqy, and y = x(1 − δ). By applying
Lemma 40 for Z = k −X, and for λ = y, we have

Pr[X ≤ j] = Pr[k −X ≥ yqk]

<

(
ey−1

yy

)qk

=
(

1
e

(
e

y

)y)qk

(6.3)

In order to bound Pr[Y ≥ j], we first note that Y1 ≤ i is always true, and thus it is
sufficient to bound the probability Pr(Y2 ≥ j− i). We can now apply again Lemma 40 for
Y2 with λ = j−i

(k−i)p = δ
p , and get that

Pr[Y ≥ j] ≤ Pr[Y2 ≥ j − i]

<

(
e(δ−p)/ppδ/p

δδ/p

)xqkp

<

(
ep

δ

)δxqk

(6.4)

Denote by γ = qk. Define

g(x, γ) def= 2(k − i + 1)m24−iPr[X ≤ j]

and
h(x, γ) def= 2(k − i + 1)m24−iPr[Y ≥ j],

such that f(i) ≤ g(x, γ) + h(x, γ).

• From equation (6.3), we get that

g(x, γ) = 2(k − i + 1)m24−iPr[X ≤ j]

= 2xqkρ24(x−3)qkPr[X ≤ j]
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< 2ρ2xγ

(
4x−3

e

(
e

y

)y
)γ

≤ 2ρ2x

(
0.54 · 4x−3

(
e

y

)y)γ

,

where the last inequality holds since γ1/γ ≤ 1.45. Also, note that g(x, γ) only
depends on x and γ for given ε and ρ.

• From equation (6.4), we get

h(x, γ) = 2(k − i + 1)m24−iPr[Y ≥ j]

= 2xqkρ24(x−3)qkPr[Y ≥ j]

≤ 2ρ2xγ

(
1
64

(
4 (ep/δ)δ

)x
)γ

≤ 2ρ2x

(
1.45
64

(
4 (ep/δ)δ

)x
)γ

When we set δ = 0.05, we get

g(x, γ) ≤ 2ρ2x

(
0.54
64

)γ ( 11
x0.95

)xγ

,

h(x, γ) ≤ 2ρ2x

(
1.45
64

)γ (
5p0.05

)xγ

We first assume that γ ≥ 1. It is easy to verify that g(x, γ) ≤ 9ρ20.95xγ , for γ > 1, x ≥
2, and that h(x, γ) ≤ ρ20.95xγ when 5p0.05 ≤ 1. As p < 1

2k , p is sufficiently small, for
sufficiently large k (See Remark 44 regarding how to relax the restriction on p).

From the analysis above, we get that f(i) < 10ρ20.95k−i, and thus,

∑
i≤(1−2q)k

f(i) ≤ 10ρ2
∞∑
i=2

0.95i = 200ρ2 (6.5)

Putting together equations (6.2) and (6.5), and letting ρ =
√

ε
151 , we get

Pr[failure] ≤ Pbad ·
3
4
4k ·m ≤ 3

4
201ρ2 < ε

Hence, for every 0 < ε < 1, if m ≤
√

ε
1512(1−3q)k then the failure probability is bounded

by ε.
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The case where γ < 1 is trivial, as we can add artificial false negatives so that the false
negative rate will be 1

k , and then, we can recover a sequence of length ρ2k(1−3/k) = ρ
82k.

Remark 44 We note that the restriction that 5p0.05 ≤ 1 can be relaxed, by compromising
on other parameters. For example, one can verify that by using δ = 0.5, we get that all
we need in order to show that h(x, γ) is small is that p < 0.01, and to bound g(x, γ), it is
sufficient to use m = ρ · 2k(1−12q), and to use x ≥ 11. For x < 11, we can bound the sum
similarly to equation (6.2). Thus, in this way we get a shorter reconstructed sequence in
terms of q, but we can tolerate a constant frequency of false positives.

Remark 45 In case there are only false negative errors, a similar analysis shows that
the length of the sequence is asymptotically the same. However, the hidden constant is
significantly smaller. It is clear from the proof of Theorem 42 that in the case that there
are only false positives, p could be quite large, with a small constant factor loss in the
length of the reconstructed sequence.

6.4 A Randomized Chip Design Using Universal Bases

In this section we describe a new array design, over the alphabet {A,G,C, T,N}, that
is, this time we allow gapped probes. Preparata et al. [1999], Preparata and Upfal [2000]
describe a set of Θ(4k) gapped probes, and showed how a randomly chosen sequence of
size m = Θ(4k) can be determined unambiguously with high probability, in the absence
of errors. We shall prove that our new design is noise resistant, i.e., false positives or false
negatives have little affect on the length of constructible sequences.

We build randomized probes, and show that a sequence of length m ≈ 4k

k can be
determined unambiguously, with high probability, using a simple algorithm, based on a
spectrum of a set of Θ(k4k) probes, in the presence of errors. Actually, we take m = α 4k

βk

for some universal constant α and some constant β that depends on the error rates.

We choose a set of probes in the following way. Let c be a sufficiently large integer.
The length of each probe is c · k + 1. The last symbol of the probe is a specified base, that
is, A,G,C or T . First we form βk subsets of probes A1, . . . , Aβk. For each subset, we
pick a random set of k positions out of {1, . . . , ck} and form all possible 4k+1 probes with
specified bases in the chosen positions and in the last one, and the rest universal. Our
overall set of probes is the union of the above subsets. Thus, the total number of probes
we use is n = βk4k+1.
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We assume that we are given a prefix of length ck of the sequence. Let the input
sequence be s1, . . . , sm. Suppose that we already know the sequence s1, . . . , si, and we
want to find si+1. The reconstruction algorithm is described in Figure 6.2.

1. For each specified base X, count how many probes support si−ck+1, . . . , si, X.

2. Set si+1 to be a base that has maximum support (breaking ties arbitrarily).

Figure 6.2: Algorithm B for SBH with universal bases.

As to the running time of algorithm B, at each step we have to check 4 probes from
each of the βk subsets (one for each possible specified base in the probe’s last position).
Therefore, the total running time is O(km).

6.4.1 Bounding Probability of Fooling Probes

The following definitions will be useful in the proofs of this section. We will extend
definition 5: Probe a partially matches sequence S if its first ck bases (excluding the last
specified base) appear contiguously in S. Probe a matches sequence S in location l if it
appears contiguously in S, ending at location l.

Assume we are trying to extend the sequence at location l. In the absence of errors, a
probe that supports a false base extension has to satisfy two conditions:

1. It partially matches S in location l.

2. It matches S in some other location l′.

Hence, it is a fooling probe. Notice that when errors are introduced, a supporting
probe may be a false positive that does not satisfy the second condition.

Let Sx be the set of k indices of the specified bases of probe px, excluding the last
specified base. We say that the two probes p1 and p2 agree if the values of the specified
bases in indices S1 ∩ S2 are the same in both probes. A probe a = a1, . . . , ack+1 ∆-self-
agrees if for every position 1 ≤ j ≤ ck − ∆, aj = aj+∆ (using the convention that the
universal base N equals to all bases). Note that the last specified base (at position ck +1)
is not required to match the corresponding position. Note also that for ∆ ≥ ck, every
probe ∆-self-agrees.

Claim 46 For each step of algorithm B, the probability that a false base will get one
fooling probe is bounded by α.



6.4. A RANDOMIZED CHIP DESIGN USING UNIVERSAL BASES 77

Proof: The fooling probe partially matches S at location l, and matches S in some other
location l′. Let ∆ = |l′ − l|. Obviously, a necessary condition is that it ∆-self-agrees.

We use the notation Sx + y to denote the set Sx shifted by y. Let i = |Sx ∩ (Sx + ∆)|.
In each one of the βk sets of probes, there are exactly 4k+1−i probes which ∆-self-agree,
since there are i constrained symbols. A probe is a fooling probe if it ∆-self-agrees, the
|Sx ∪ (Sx + ∆)| = 2k + 1 − i relevant specified bases match the sequence, and the base
in location l′ is different from the one in location l. The latter two events, happen with
probability 3

4
1

42k+1−i .

We multiply this probability by the number of possible locations l′ and by the total
number of ∆-self-agreeing probes, and get that the probability that there is at least one
fooling probe in the lth location is

3
4
m · 1

42k+1−i
· βk4k+1−i ≤ α

Notice that this probability is independent of i and β.

Claim 47 The probability that a false base will get two fooling probes that arise from the
same location l′ is bounded by exp(4k/(c−1))

44k .

Proof: Let the two fooling probes be p1 and p2. Assume first that |l′ − l| > ck, and fix
i = |S1 ∩ S2|. Both probes partially match location l, and match location l′. Thus,

• p1 and p2 agree. This happens with probability 1
4i .

• The |S1∪S2| specified bases of both probes p1 and p2 match the appropriate symbols
in both locations l and l′. This happens with probability 1

42|S1∪S2|
= 1

44k−2i .

Thus, the probability of this event, given |S1 ∩ S2| = i, is 1
44k−i .

For the case |l′ − l| ≤ ck, if p1 and p2 agree, we can consider a new “meta-probe”
with specified bases in locations S1∪S2 with values induced naturally by the values of the
specified bases of p1 and p2. By combining the above argument with the argument in the
proof of claim 46, we get that in this case, the probability is 1

44k−2i .

Now we will sum over all the values of i to get the desired probability. Notice first,
that

Pr[|S1 ∩ S2| = i] =

(k
i

)((c−1)k
k−i

)(ck
k

) . (6.6)

Also notice that (k
i

)((c−1)k
k−i

)(ck
k

) ≤ ki

i!
((c− 1)k)k−i

(k − i)!
k!

((c− 1)k)k
≤ ki

i!(c− 1)i
. (6.7)
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Now, by equations (6.6) and (6.7), we get

Pr[probes match] =

k∑
i=0

Pr[probes match | |S1 ∩ S2| = i] · Pr[|S1 ∩ S2| = i]

≤ 1
44k

k∑
i=0

4iki

i!(c− 1)i

≤ 1
44k

∞∑
i=0

1
i!

(
4k

c− 1
)i =

exp(4k/(c− 1))
44k

Claim 48 For each step of algorithm B, the probability that a false base will get two fooling
probes is bounded by α2.

Proof: Each fooling probe matches some location in the sequence. It could be the
case that each probe matches a different location - that will happen, by Claim 46, with
probability at most α2, as these events are independent. Alternatively, they could arise
from the same location l′. That is, both probes match the current location and also the
same false location. There are at most m possible false locations and

(n
2

)
possible pairs of

probes. Thus, using Claim 47, the probability of the above event is bounded by

mn2 exp(4k/(c− 1))
44k

= βkα
exp(4k/(c− 1))

4k−2
≤ α2,

for c large enough.

Claim 49 The probability that throughout algorithm B, a false base will get three fooling
probes from the same location in the sequence is exponentially small.

Proof: Denote the three fooling probes by p1, p2, p3. Assume |S1 ∩ S2| = i and |(S3 ∩
(S1 ∪ S2)| = j. By the same arguments as in as in the proof of Claim 47, we get that the
probability that the three probes agree is 1

4i+j , and the probability that they match both
locations (given that they agree) is 1

42|S1∪S2∪S3|
= 1

46k−2i−2j .

Summing over all possible values of i and j, and using equations (6.6) and (6.7), we
get

Pr[the 3 probes match] =
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k∑
i=0

Pr[|S1 ∩ S2| = i]·

k∑
j=0

Pr[|(S3 ∩ (S1 ∪ S2)| = j||S1 ∩ S2| = i] · 1
46k−i−j

≤ 1
46k

k∑
i=0

1
i!

(
k

c− 1
)i

k∑
j=0

1
j!

(
2k − i

c− 2
)j · 4i+j

≤ 1
46k

k∑
i=0

1
i!

(
4k

c− 1
)i

k∑
j=0

1
j!

(
8k

c− 2
)j

≤ 1
46k

k∑
i=0

1
i!

(
4k

c− 1
)iexp(

8k

c− 2
)

≤ 1
46k

e4k/(c−1)e8k/(c−2) ≈ e12k/c

46k

There are at most m2 pairs of locations and at most n3 triplets of probes. Thus, the
probability is bounded by

m2n3 e12k/c

46k
≤ α2βke12k/c

4k
<< 1

for c large enough.

Hence, the probability that throughout the algorithm, there are three fooling probes
arising from the same location, is negligible.

6.4.2 Correctness of Algorithm B

Now we have the tools to prove the correctness of algorithm B in the various cases:

Theorem 50 The probability that algorithm B fails is bounded by an arbitrary small con-
stant, if the length of the sequence is m = O(4k

k ) and the number of probes is n = Θ(k4k),
assuming there are no hybridization errors.

Proof: Since there are no errors, the correct base has always at least k supporting probes.
Fix an incorrect base, and let Y be the number of supporting probes of this base. The
algorithm fails if at some point Y ≥ k. Therefore, we would like to show that for some
ε < 1,

Pr[Y ≥ k] <
ε

m
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For k > 3, if there are k fooling probes they can be partitioned into subsets of sizes
1 or 2 of probes which come from the same location (this is true since by Claim 49,
the probability of 3 fooling probes that arise from the same location is negligible). By
Claim 46, the probability of a single fooling probe is bounded by α and by Claim 48, the
probability of two fooling probes that arise from the same location is bounded by α2. The
number of possibilities for partitions into subsets is the kth Fibonacci number. Hence,

Pr[Y ≥ k] ≤ αk · 1√
5

(1 +
√

5
2

)k

−
(

1−
√

5
2

)k
 ≤ ε

m

for α small enough.

Hence, for any ε, one can get m = O(4k

k ) and n = Θ(k4k) with the desired failure
bound.

Note that by increasing k, one can get any derived failure probability even if m = α4k

k

and n = k4k.

Theorem 51 Suppose there are both false negatives and false positives, the length of the
sequence is m = O((1 − q)4k

k ) and the number of probes is n = Θ( k4k

1−q ), where q is the
rate of false negatives and the rate of false positives is p ≤ 1−q

430 . Then, the probability that
algorithm B fails is bounded by an arbitrary small constant.

Proof: Let X be a random variable that counts the number of supporting probes for
the correct base. Fix an incorrect base, and let Y be the number of supporting probes of
this base. Clearly, Y = Y1 + Y2, where Y1 is the number of supporting probes of the false
extension that are fooling probes, and Y2 is the number of supporting probes arising from
false positives. The algorithm fails if at some point Y ≥ X. Therefore, we would like to
show that for some ε < 1,

Pr[X ≤ Y1 + Y2] <
ε

m

We first bound X. In this case, X is binomial, as in our model, the errors are inde-
pendent. Thus, X ∼ B( 5k

1−q , 1− q) and therefore, by Lemma 41,

Pr[X < k] = Pr[X − 5k < −4k] < e−1.6k <
ε

3m

Y1 is the same random variable as Y in the proof of Theorem 50 and therefore, Pr[Y1 ≥
k
2 ] < ε

3m , for α small enough. Y2 is clearly bounded by 5k
1−q . As we need to bound the
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probability that Y2 is large, we can assume that Y2 ∼ B( 5k
1−q , p). The expectation of Y2 is

5kp
1−q ≤

k
86 . By Lemma 40,

Pr[Y2 >
k

2
] = Pr[Y2 > 43 · k

86
] <

(
(e/43)

1
2 e−

1
86

)k
<

ε

3m

Hence,

Pr[X ≤ Y ] ≤ Pr[X < k] + Pr[Y1 > k/2] + Pr[Y2 > k/2] <
ε

m

Remark 52 The assumption that the false positive rate is very low has the following
biochemical justification. By increasing the hybridization stringency, the number of false
positives can be decreased at the expense of increasing the false negative rate, which has a
small effect on the success probability (the length of the reconstructed sequence depends
linearly on the rate of false negatives).

6.5 Experimental Results

We implemented algorithm B and tested it in simulations with noisy data. The implemen-
tation is fast: on a regular workstation, reconstruction requires less than a second even
with n = 410 probes and targets of length 35,000.

We tested the algorithm on various types of sequences:

• Randomly generated sequences.

• DNA sequences, which originate from bases 20,000,000 - 40,000,000 of human chro-
mosome 10 [National Center for Biotechnology Information, 2002a].

• DNA coding sequences, which were formed by a concatenation of the unigene file
Hs.seq.uniq
[National Center for Biotechnology Information, 2002b].

For some of the sequences we tested also the success of almost perfect reconstruction.
A reconstruction is considered almost perfect if up to 0.5% of the bases of the sequence
are incorrect.

Figure 6.3 summarizes the performance as a function of the noise parameters. Behavior
as a function false positive rate is surprisingly good and extends far beyond the range of
the theoretical analysis: In the absence of false negative errors, even if p = 0.2, we can
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reconstruct random sequences of length over 22, 000. Tolerance to false negatives is a
bit lower. The simulations indicate a nearly linear correlation between the length of
reconstructible sequence and p. As expected, the performance on randomly generated
sequences is the best, and coding sequences behave better than arbitrary DNA sequences,
since they are much less repetitive. An interesting feature of the algorithm is that it tends
to make few and local errors (if any): if we tolerate a very small number of mismatches
(almost perfect reconstruction), then, for example, the average length of reconstruction
with 0.2 error rates goes up from 379 to 2380.

Figure 6.4 measures the effect of the parameter c that reflects the length of the probes
(and the sparsity of specified positions in them), for various sequences. The increase in c

improves the results for all types of sequences. We do not have a complete explanation
to the jump observed for random sequences. Our theoretical analysis (section 6.4.2) re-
quires that c is sufficiently large, and perhaps c < 3 suffices, at least for almost perfect
reconstruction.

Figure 6.5 compares the performance of our algorithm to the only other experimental
report on performance on error-prone data using universal probes. Doi and Imai [2000]
develop an extension to the Preparata et al. scheme which handles noisy spectra. For
the comparison, we used the same number of probes reported by Doi and Imai [2000] and
plotted their and our experimental success rate as a function of the target length. For
the error-less case the algorithm of Preparata et al. is superior: For example, using 410

probes, that algorithm reconstructs sequences of length 70000 bases, while ours can only
reconstruct sequences of length 37000. However, the results in Figure 6.5 show that our
algorithm is much more robust to errors. For example, the length reconstructed with 97%
success rate improves the results of Doi and Imai [2000] by a factor of 4. The Doi-Imai
algorithm is superior for success rate bellow 50%, but obviously, this is not the range of
interest.

6.6 Discussion and Subsequent Work

In this chapter we introduced a new approach to design DNA arrays coping with false
positive and negative errors. To the best of our knowledge this is the first time a theoretical
analysis was done for such a model. We show that both theoretically, and in practice
(using simulations), the sensitivity of our algorithm to errors is smaller, in comparison
with previous algorithms.

A natural extension of algorithm B is an algorithm similar to algorithm A, that is,
instead of counting the number of supporting probes for only four possible extensions, we
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(a) Randomly generated sequences (b) DNA sequences

(c) DNA sequences (almost perfect reconstruction) (d) DNA coding sequences

Figure 6.3: The length of the reconstructed target sequences as a function of the error
rates, for various sequences. The z axis measures L, the length of the longest targets
correctly reconstructed in at least 90% of the cases. In all cases we used k = 8,n = 410

probes and c = 10. In (a), we used a sample of 200 random sequences to obtain statistics
on each data point. In (b),(c) and (d), we used non-overlapping substrings of length L,
covering together the DNA sequence source, to obtain statistics on each data point.



84 CHAPTER 6. SEQUENCING BY HYBRIDIZATION WITH ERRORS

Figure 6.4: The length of the reconstructed target sequences as a function of the sparsity
of specified symbols in the probes (the parameter c), for various sequences. The y axis
measures L, the length of the longest targets correctly reconstructed in at least 90% of
the cases. A sample of 200 sequences was used to obtain statistics on each data point. In
all cases we used k = 8,n = 410 probes and p = q = 0.05.
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Figure 6.5: Reconstruction success rate as a function of target length by our algorithm
(solid line) and the extension of Doi and Imai [2000] to the algorithm of Preparata et al.
(dotted line). The success rate is the fraction of correctly reconstructed sequence targets.
A sample of 200 random sequences was used to obtain statistics on each data point. In
both simulations there were 48 probes, the error level was p = q = 0.001. The probe
sparsity was c = 4.
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could count the number of supporting probes of a set of possible paths that extend the
current reconstructed sequence. It is likely that this algorithm will give better results in
practice than algorithm B.

Although universal bases have been generated successfully in the laboratory [Loakes
and Brown, 1990], it is unclear yet if long probes that contain many universal bases
hybridize reliably. The fact that low sparsity suffices (c = 4 when k = 6) is encouraging.

Our ideas are extended by Tsur to deal with resequencing by hybridization [Tsur,
2003a] and SBH with rounds [Tsur, 2003b]. Baptista and Guimares [2003] implemented
our algorithms and suggested an alternative approach.



Chapter 7

Multiplexing Applications of

Universal DNA Arrays

In this chapter we study a design and optimization problem that occurs, for example, when
single nucleotide polymorphisms (SNPs) are to be genotyped using a universal DNA tag ar-
ray. The problem of optimizing the universal array to avoid disruptive cross-hybridization
between universal components of the system was addressed in previous work [Ben-Dor
et al., 2000]. Cross-hybridization can, however, also occur assay-specifically, due to un-
wanted complementarity involving assay-specific components.

Here we examine the problem of identifying the most economic experimental configu-
ration of the assay-specific components that avoids cross-hybridization. Our formalization
translates this problem into the problem of covering the vertices of one side of a bipartite
graph by a minimum number of balanced subgraphs of maximum degree 1. We show
that the general problem is NP-complete. However, in the real biological setting the ver-
tices that need to be covered have degrees bounded by d. We exploit this restriction
and develop an O(d)-approximation algorithm for the problem. We also give an O(d)-
approximation for a variant of the problem in which the covering subgraphs are required
to be vertex-disjoint.

The results in this chapter are published in [Ben-Dor et al., 2004] (preliminary version
in [Ben-Dor et al., 2003]).

7.1 Introduction

SNPs (single nucleotide polymorphisms) are differences, across the population, in a single
base, within an otherwise conserved genomic sequence [Wang et al., 1998]. The sequence

87
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variation represented by SNPs is often directly related to phenotypic traits. Such is the case
when the variation occurs in coding or other functional (e.g., regulatory) regions [Cargill
et al., 1999]. Somatic or native SNPs in oncogenes or in related regions can determine
cancer susceptibility and are often related to pathogenesis (see, e.g., [Venitt, 1994, 1996,
Kristensen et al., 2000, Watanabe et al., 2002]). Genotyping is a process that determines
the variants present in a given sample, over a set of SNPs. SNPs also serve as genetic
markers that can be used in linkage and association studies (see, e.g., [Risch, 2000]). In the
latter case a population of samples is jointly measured and the frequencies of the different
variants are inferred. Efficient SNP detection, genotyping and measurement techniques
have, therefore, great clinical, scientific and commercial value.

Methods for high throughput SNP genotyping are under fast development and evolu-
tion. This task enlists various molecular biology techniques, separation technologies and
detection methods. Methods based on mass spectrometry or length separation are de-
scribed, e.g, in [Grant and Phillips, 2001, Schouten et al., 2002]. Other methods are based
on hybridization array technology [Syvanen, 1999, Hacia, 1999, Drmanac et al., 1991]. In
an array-based hybridization assay a target-specific set of oligonucleotides is synthesized
or deposited on a solid support surface (e.g., silicon or glass). A fluorescently labeled
target sample, a mixture of DNA or RNA fragments, is then brought in contact with the
treated surface, and allowed to hybridize with the surface oligonucleotides. Scanning the
resulting fluorescence pattern reveals information about the content of the sample mix-
ture. Theoretically, the assay conditions are such that hybridization only occurs in sites
on the surface that are Watson-Crick complements to some substring in the target. In
practice, cross-hybridization is a main source of signal contamination in any array-based
hybridization assay.

S. Brenner and others [Brenner, Morris et al., Gerry et al., 1999] suggest an alterna-
tive approach based on universal arrays containing oligonucleotides called antitags. The
Watson-Crick complement of each antitag is called a tag. The tag–antitag pairs are de-
signed so that each tag hybridizes strongly to its complementary antitag, but not to any
other antitag. We shall call the entire system a DNA Tag/AntiTag system and in short
a DNA TAT system. To exemplify the approach we describe in detail the application of
universal arrays to SNP genotyping. The method is illustrated in Figure 7.1 and consists
of the following steps:

1. A set of reporter molecules (one for each SNP) is synthesized. Each reporter molecule
consists of two parts that are ligated together. The primer part is the Watson–Crick
complement of the upstream sequence that immediately precedes the polymorphic
site of the SNP. The other part is a unique tag – an element of the universal set of
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tags.

2. When an individual is to be genotyped, a sample is prepared that contains the
sequences flanking each of the SNP sites. Typically these are PCR amplicons. The
sample is mixed with the reporter molecules and solution-phase hybridization takes
place. Assuming that specificity is perfect, the flanking sequences of the SNPs only
hybridize with the appropriate reporter molecule.

3. Single dideoxynucleotides, ddA,ddC,ddT,ddG, fluorescently labeled with four distinct
chemical dyes, are added to the mixture. In a polymerase-driven reaction each
hybridized reporter molecule is extended by exactly one labeled dideoxynucleotide.

4. The extended reporter molecules are separated from the sample fragments, and
brought into contact with the universal array. Assuming that specificity is perfect,
the tag part of each reporter molecule will only hybridize to its complementary
antitag on the array.

5. For each site of the array, the fluorescent dyes present at that site are detected.
The colors indicate which bases participated in the extension reaction, at the cor-
responding SNP site and, thus, reveal the SNP variations possessed by the tested
individual.

This method, with appropriate modifications, is also applicable in a pooled genotyping
strategy, where PCR is applied to pooled DNA from several individuals and the purpose
is to determine allele frequencies. In addition, the general idea of a universal array is also
applicable for other measurement purposes. For example, if the reporter molecules are
designed to be specific, each for some target mRNA, then the same protocol can be used
for expression profiling.

Designing DNA TAT systems presents a tradeoff. Clearly, it is desirable to have as
many tags as possible, in order to maximize the number of SNPs that can be genotyped in
parallel. On the other hand, if too many tags are used, similar tags will necessarily entail
cross-hybridization events (where tags hybridize to foreign antitags), reducing accuracy.
The design of DNA TAT systems is independent of any particular application scenario and
is, thus, optimized to avoid cross-hybridization between tags and foreign antitags. This
issue is addressed in [Ben-Dor et al., 2000].

In performing an actual genotyping assay there are also assay-specific sources of po-
tential cross-hybridization. One major source involves the primer parts of the reporter
molecules hybridizing to array bound antitags, producing a confusing signal unless the
corresponding site on the array is designated to the primed SNP site. As this problem is
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Figure 7.1: A scheme for SNP genotyping using a DNA TAT system.
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specific to the actual set of SNPs to be studied, it is impossible to address it in the TAT
system design stage.

In this chapter we assume that the set of primers for the reaction was designed to
achieve the desired level of specificity in the target genome, i.e., reporter molecules will not
extend on unintended genomic sequences. Remaining assay-specific sources of potential
confusing signal are as follows: Primer to antitag cross-hybridization as described above.
Sandwich cross-hybridization: A duplex of two reporter molecules hybridizes to a single
site in the array. The duplex is formed due to high complementarity of the sequences
and hybridizes to the array site through one of the tags. Sandwich cross-hybridization
involves a complicated configuration and is rare. Primer to primer mis-extension: The
primer parts of reporter molecules can hybridize to other primers in the extension step in
a configuration that allows for polymerase extension. Primer to tag mis-extension: Simi-
lar, but with primer parts of reporter molecules appropriately hybridizing to tags in the
extension step. The latter two are similar to primer-dimer formations in PCR. Note that
the cross-hybridization needs to be perfect at the 3’ end of the reporter for these problems
to occur.

Primer to antitag cross-hybridization is, therefore, by far the most probable source
of confusing signal. This is the only problem we explicitly address in this chapter, al-
though the methods we develop can be extended to handle primer to tag mis-extension.
In addition, any multiplexing scheme for a universal array based assay can be screened
for any undesired properties prior to performing the measurement. Avoiding less common
configurations should be deferred to such a screening stage rather than taken into account
in the design stage.

Maximizing the multiplexing rate for a given set of SNPs (alternatively, minimizing
the number of arrays to be used for a single genotyping measurement of this set), under
given primer to antitag cross-hybridization constraints, is the main subject of this chapter.
Every time we say cross-hybridization we mean primer to antitag cross-hybridization. To
control the multiplexing rate we use our freedom to choose how to partition the set of
SNPs into assignable subsets (subsets that can be measured using one array without
cross-hybridization) and to assign tags to SNP sites. The assignment of a primer to a tag
means that they will form a reporter molecule. A proper assignment (p1, t1), . . . , (pk, tk)
of primers to tags should avoid cross-hybridization between every primer pi and antitag
tj , unless i = j.

To approach the multiplexing problem we model the input data using a bipartite graph,
in which the primers are on one side and the tags are on the other side. Each edge in
the graph indicates potential cross-hybridization between a primer and the corresponding
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antitag. The multiplexing problem then translates to the problem of covering the primer
vertices of the graph using a minimum number of balanced induced subgraphs of maximum
degree one. We prove that the general problem is NP-complete. However, in actual
applications the primer vertices have degrees bounded by some constant d. We exploit
this restriction and develop an O(d)-approximation algorithm for the problem. Specifically,
we give an algorithm that produces a cover of cardinality (dm

n de + 2) for m primers and
n tags, whenever m ≤ n. We derive an algorithm for the case m > n, which guarantees a
cover of size dm

n e(d+2). We also give an O(d)-approximation for a variant of the problem
in which the covering subgraphs are required to be vertex-disjoint.

7.1.1 Organization of this Chapter

In Section 7.2 we mathematically model and formalize the optimization problem. In
Sections 7.3, 7.4 and 7.5 we present hardness results and algorithmic approaches to the
covering problem and its variants. Approximation results are given in Section 7.6.

7.2 Formal Problem Definition

Denote the set of DNA tag sequences associated with the universal array by T , and the
corresponding set of antitags by T . By P we denote the set of primers (the sequences
complementary to the upstream regions of the SNPs). Let m = |P | and n = |T |. A
reporter molecule is a primer-tag pair (p, t), where p ∈ P and t ∈ T . For a graph G and a
subset of its vertices R, we denote by GR the subgraph of G induced by R. We denote by
V (G) and E(G) the sets of vertices and edges of G, respectively. For a vertex v we denote
by N(v) its set of neighbors in G.

Potential cross-hybridization between primers and antitags can be determined experi-
mentally or predicted computationally, e.g., on the basis of the sequence [Ben-Dor et al.,
2000]. The methods presented here are not specific to any such determination mechanism.
We only assume that potential cross-hybridizations are given in the form of a binary m×n

matrix A, such that:

Apt =

{
1 if p ∈ P potentially hybridizes with t̄ ∈ T ,
0 otherwise.

Solutions to our multiplexing problem correspond to proper partitions of P into sub-
sets, where each subset corresponds to one array experiment. A set of SNPs can be
measured in a single array operation, without cross-hybridization, if all corresponding
members can be assigned to tags such that cross-hybridization is avoided. Formally:
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Definition 8 Let R = {(p1, t1), (p2, t2), . . . , (pk, tk)} be a set of reporter molecules with
distinct pi ∈ P and distinct tj ∈ T . R is said to be non-cross-hybridizing if Apitj = 0 for
all i 6= j.

Definition 9 A set of k distinct primers P ′ = {p1, p2, . . . , pk} ⊆ P is called assignable if
there exists a non-cross-hybridizing set of reporter molecules {(p1, t1), (p2, t2), . . . , (pk, tk)}
for k distinct tags t1, . . . , tk ∈ T . An assignable set of tags is similarly defined.

We now give a characterization of assignable primer sets in terms of the cross-hybridization
matrix A.

Definition 10 A subpermutation matrix is a 0–1-matrix whose rows and columns can be
permuted such that all entries outside the main diagonal are 0.

Lemma 53 A set of primers P ′ ⊆ P is assignable if and only if P ′ corresponds to the
row set of a square submatrix of A that is a subpermutation matrix.

Proof: Let P ′ = {p1, . . . , pk}. If P ′ is assignable then there exists a set of non-cross-
hybridizing reporter molecules {(p1, t1), (p2, t2), . . . , (pk, tk)} with Apitj = 0 for all i 6= j.
Hence, the square submatrix of A induced by the rows in P ′ and the columns in T ′ =
{t1, t2, . . . , tk} is a subpermutation matrix.

Conversely, suppose there exists a square subpermutation submatrix of A with row set
P ′. Denote by R = {(p1, t1), (p2, t2), . . . , (pk, tk)} those elements of the submatrix that
end up on the diagonal if its rows and columns are permuted such that all other entries
are 0. Clearly, R corresponds to a non-cross-hybridizing set of reporter molecules, and its
row set P ′ is assignable.

An alternative point of view models the input matrix A as a bipartite graph G =
(P, T,A), whose vertices are primers (P ) and tags (T ), and whose edges represent potential
cross-hybridizations between primers and the corresponding antitags. Throughout the
chapter we use graph and matrix language interchangeably. For convenience, we use A to
denote both the input cross-hybridization matrix and the edge set of G, which is the set
of primer-tag pairs {(p, t) : p ∈ P, t ∈ T,Ap,t = 1}. A subgraph H = (P ′, T ′, E′) of G is
called balanced if |P ′| = |T ′|. H is called an assignable subgraph if H is a balanced induced
subgraph of maximum degree 1.

Observation 54 A matrix A with a set of rows P and a set of columns T is a subper-
mutation matrix if and only if the bipartite graph G = (P, T,A) is an assignable graph.
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The following proposition formalizes a necessary and sufficient condition for a set of
primers to be assignable:

Proposition 55 Let G = (P, T,A) be a bipartite graph, with T = {t1, . . . , tn} and P =
{p1, . . . , pm}. For j = 1, . . . , n, let Y (j) = 1 if tj has degree zero, and 0 otherwise. For
i = 1, . . . ,m, let X(i) = 1 if G contains a tag of degree 1, which is adjacent to pi, and 0
otherwise. Then P is assignable if and only if

n∑
j=1

Y (j) +
m∑

i=1

X(i) ≥ m.

Proof: According to Observation 54 P is assignable if and only if G has an assignable
subgraph H that covers the m vertices of P . On the one hand, if such a subgraph exists,
each of its m tags contributes a value of 1 to either

∑n
j=1 Y (j) or

∑m
i=1 X(i). On the

other hand, if one attributes one tag to each 1 generated in the above sum, the subgraph
induced by m of these tags and P is an assignable graph.

Observation 54 leads to a short statement of our main optimization problem:

Definition 11 A partition E of the primer set P is called a primer cover if each P ′ ∈ E
is assignable.

Problem 1 (Minimum Primer Cover (MPC)) Given a bipartite graph G = (P, T,A),
find a minimum primer cover of P .

Equivalently, MPC calls for finding a minimum set of assignable subgraphs that cover
P , or a minimum set of square subpermutations submatrices of A that cover all rows of
A.

7.3 Minimum Primer Cover

In this section we show that MPC is NP-complete and give an algorithm with guaranteed
worst case performance for the problem when the degrees of the primer vertices in the
input graph are bounded.

Theorem 56 MPC is NP-complete.

Proof: By reduction from SET COVER, where all input subsets are required to have
cardinality at least 2. This problem is known to be NP-complete [Garey and Johnson,
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1979, Problem SP5]. Given an instance (P,S, l) of SET COVER, where S is a collection
of subsets of a finite set P , and l is an integer, we construct an instance (G = (P, T,A), l)
of MPC as follows: For every subset Si = {si,1, . . . , si,k} ∈ S, we add vertices Ti =
{ti,1, . . . , ti,k} to T , such that every ti,j (1 ≤ j ≤ k) is adjacent to all the vertices in P \Si

(and to no other vertex).

A set-cover Si1 , . . . , Sil induces a primer cover E = (S〉∞ , . . . ,S〉l) with the same car-
dinality, since each Sij is assignable. Conversely, suppose there exists a primer cover E of
size l. A set S ∈ E is called homogeneous if all its primers belong to the same subset Si.
S is called crossing if S = {p, p′} and no S′ ∈ S contains both p and p′.

Observe that every assignable primer set is either homogeneous or crossing. If all
the primer sets in the cover are homogeneous, taking the corresponding subsets yields a
set cover of size l. Otherwise, we can apply a series of modifications to the cover that
eliminate the crossing sets in the cover and preserve its cardinality. In each step we
consider a crossing primer set S = {si, sj} ∈ E , where si ∈ Si, sj ∈ Sj and i 6= j. If some
s′i ∈ Si is covered by a homogeneous set S′, we can move si from S to S′, eliminating
one crossing set. Otherwise, there exists a crossing set S′′ = {s′i, sk}, which contains some
s′i ∈ Si. By moving s′i to S and sj to S′′, we eliminate one crossing set. Applying these
modifications to the cover we necessarily end with a homogeneous cover of size l.

Note that the proof of Theorem 56 implies that MPC is NP-complete even if the
number of tags is required to be greater or equal to the number of primers.

In the context of DNA TAT systems, as constructed in [Ben-Dor et al., 2000], the choice
of tags implies that the degree of every p ∈ P is bounded by some constant d. This is
true since, by construction, strings that are long enough to potentiate cross hybridization
are not common to any two tags. Each primer (of bounded length) can have at most d

such substrings (where d depends on the primer length and the thermodynamical model)
and can, therefore, form edges with at most d tags. Practical values of d range between
5–15. We call an instance G = (P, T,A) of MPC a d-bounded instance if the degree of
every p ∈ P is bounded by d. We shall exploit this restriction and develop an O(d)
approximation algorithm for MPC on d-bounded instances.

By Proposition 55, instances that can be covered by one subgraph are easily deter-
mined. Henceforth we assume that the input MPC instance has an optimum solution of
cardinality at least 2. The case d = 1 is polynomial for m ≤ n:

Lemma 57 Let G = (P, T,A) be a 1-bounded instance of MPC, with m ≤ n. Then a
minimum primer cover can be found in polynomial time.
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Proof: Assume m = n (if n > m, remove arbitrarily n − m vertices from T ). Let G1

be the subgraph induced by the vertices of a maximal matching M in G. Let G2 be the
subgraph induced by all other vertices. Clearly, G1 and G2 are balanced and together
they span the entire set of primers. Since the degree of every primer is at most 1, G1 has
maximum degree 1. By maximality of M , G2 contains no edges. The claim follows.

Our main result in this section is a polynomial algorithm which guarantees finding a
solution of cardinality at most (dm

n de+ 2) for a d-bounded input instance with m ≤ n.

Theorem 58 Let G = (P, T,A) be a d-bounded instance of MPC with m ≤ n. Assume
that n > d(d + 1). Then we can find, in O(m2

n d(d + log m)) time, a solution to MPC on
G of cardinality at most dm

n de+ 2.

Proof: Algorithm: Let x = dm
n de. First, assume for simplicity that m

x+1 is an integer.
Consider the following iterative algorithm: The algorithm has x+1 steps. At each step it
identifies an assignable subgraph of size m

x+1 , deletes the primer vertices of this subgraph
(as they are covered), and continues the next iteration on the remaining graph. The
assignable subgraph at each iteration is constructed on the basis of the m

x+1 tags of lowest
degree. Altogether we obtain a cover with x + 1 assignable subgraphs. We now prove the
correctness of the algorithm.

In the i-th iteration (0 ≤ i ≤ x), the current graph Gi consists of m
(

x+1−i
x+1

)
primers

and n tags. Since the degree of each primer is bounded by d, the number of edges in Gi

is at most md
(

x+1−i
x+1

)
. Let T ′ be the set of m

x+1 tags with lowest degrees in Gi.

Claim 59 The degree of each tag in T ′ is bounded by x− i.

Proof: Suppose there exists a tag in T ′ with degree at least x − i + 1 ≥ 1. Hence, all
tags in T \ T ′ have degree at least x− i + 1, so the number of edges incident on T \ T ′ is
at least r =

(
n− m

x+1

)
(x− i + 1) = (n(x + 1)−m)

(
x+1−i
x+1

)
. Since n ≥ m and nx ≥ md,

we have r ≥ |E(Gi)|, a contradiction.

Claim 59 implies that the total number of edges adjacent to tags in T ′ is bounded by
m
(

x−i
x+1

)
. Therefore, there are at least m

(
x+1−i
x+1

)
−m

(
x−i
x+1

)
= m

x+1 primers with degree 0
in Gi. Taking these m

x+1 primers along with the tags in T ′ yields an assignable subgraph.
This completes the correctness proof.

If m
x+1 is not an integer, we can use the above algorithm to find x + 1 assignable

subgraphs of size b m
x+1c each. The number of primers left to cover is m− (x + 1)b m

x+1c ≤
x ≤ d. Those primers are adjacent to at most d2 tags, so there are at least x + 1 other
tags that together with the uncovered primers form an assignable subgraph.
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Complexity: The algorithm performs x+1 iterations. For every i, iteration i requires
sorting the tags by their degrees, which costs O(m log m) time, and finding m

x+1 primers

of degree 0 in Gi, which costs O
(
md

(
x+1−i
x+1

))
time. Summing over all iterations we get

the stated bound.

Note that our algorithm actually gives a solution in which every subgraph is an inde-
pendent set or, equivalently, the submatrices covering A are all 0.

Corollary 60 Let G = (P, T,A) be a bipartite graph in which the degree of each p ∈ P is
bounded by d, and m > n > d(d + 1). Then we can find, in polynomial time, a solution to
MPC on G of cardinality at most dm

n e(d + 2).

Proof: This follows by arbitrarily partitioning P into sets of size at most n and applying
Theorem 58.

7.4 Maximum Assignable Primer Set

In this section we study a greedy approach to MPC that mimics approximation algo-
rithms for SET COVER (cf. [Cormen et al., 1990]). The scheme is recursive: The largest
assignable subset in P is identified and removed, and the algorithm proceeds recursively
on the remaining graph. If possible, this approach could guarantee an O(log m) approxi-
mation, and would typically perform better. However, each of the stages is NP-complete:

Problem 2 (Maximum Assignable Primer-set (MAP)) Given a bipartite graph G,
find a maximum assignable subgraph H of G.

Theorem 61 MAP is NP-complete.

Proof: By reduction from the complete balanced bipartite subgraph problem, where the
input is a bipartite graph and an integer k, and the objective is to find a complete balanced
subgraph with k vertices on each side. This problem is known to be NP-complete [Garey
and Johnson, 1979, Problem GT24], and can be trivially reduced to the empty balanced
bipartite subgraph problem, where the input is a bipartite graph and an integer k, and
the objective is to find a balanced subgraph with k vertices on each side and no induced
edges. We reduce the latter problem to MAP.

Given an instance (G = (U, V,E), k) of the empty balanced bipartite subgraph prob-
lem, where |U |, |V | < l, we build an instance (G′ = (U ′, V ′, E′), lk) of MAP. Each vertex
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v in G is duplicated l times v1, . . . , vl in G′. For every edge (u, v) ∈ E we add the edges
(ui, vj) to E′ for all 1 ≤ i, j ≤ l.

Clearly, an empty balanced induced subgraph of size k induces a solution to MAP of
size at least lk. Conversely, suppose that H = (X, Y, F ) is an assignable subgraph of G′,
and |X| ≥ lk. We first claim that |F | < l. If |F | ≥ l, then F contains, w.l.o.g., two edges
(u1, a), (u2, b) for some u ∈ U . But then either a = b, implying that a has degree at least
2 in H, or both u1 and u2 have degree at least 2 in H, a contradiction.

Removing all vertices incident to edges in F we obtain a solution to MAP with size
(strictly) greater than (k − 1)l, since F is a matching. This implies an empty balanced
induced subgraph of size k in G.

Note that the related problem of finding a maximum induced matching in a bipartite
graph is also NP-complete [Cameron, 1989].

7.4.1 Algorithmic approaches

In this subsection we give a polynomial algorithm for MAP in the case that every primer
has at most one adjacent tag, and an integer programming formulation for the general
case.

Lemma 62 Let G = (P, T,A) be a bipartite graph in which the degree of each p ∈ P is at
most 1. Then a maximum assignable subgraph of G can be found in polynomial time.

Proof: Let T ∗ = {t : |N(t)| > 1} and let n∗ = |T ∗|.

Observation 63 Let H = (P ′, T ′, E′) be a solution to MAP. For every t ∈ T ∗, either
t 6∈ T ′ or |N(t) ∩ P ′| = 1. Moreover, for p′ = P ′ ∩ N(t) and for every other p ∈ N(t),
(H \ {p′}) ∪ {p} is also a solution.

The observation motivates the following algorithmic scheme for creating a solution:
For every t ∈ T ∗, either (1) remove t from G, or (2) arbitrarily choose p ∈ N(t) and
remove N(t)\{p} from G. It remains to show how choose for each t ∈ T ∗ between (1) and
(2). We can enumerate the number of tags from T ∗ in an optimum solution. Denote this
number by k. By choosing for removal the n∗− k lowest degree tags in T ∗, we end with a
graph of maximum degree 1, which contains the required number of tags and a maximum
number of primers.

We now give an integer programming formulation for MAP. In this formulation there
are binary variables ep,t for every primer-tag pair. These variables are constrained so that
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ep,t = 1 if and only if in a maximum assignable set of primers p ∈ P is matched with
t ∈ T .

max
∑
p,t

ep,t (7.1)

s.t. ep,t ∈ {0, 1} (7.2)

ep1,t + ep2,t ≤ 1 p1 6= p2 (7.3)

ep,t1 + ep,t2 ≤ 1 t1 6= t2 (7.4)

eπ,t + ep,τ ≤ 1 Ap,t = 1, π 6= p, τ 6= t (7.5)

Lemma 64 The above integer programming solves MAP.

Proof: Suppose that {ep,t} is a vector satisfying the constraints. We shall prove that it is
an appropriate primer-tag assignment. Constraints 3,4 ensure that there will be a 1-1 cor-
respondence between primers and tags. Let this correspondence be {(p1, t1), . . . , (pk, tk)}
(i.e., epi,ti = 1), then it suffices to prove that Api,tj = 0 for i 6= j. Suppose to the contrary
that Api,tj = 1 for i 6= j. Then constraint 5 ensures that epi,ti + epj ,tj ≤ 1, a contradiction.

Conversely, suppose that {(p1, t1), . . . , (pk, tk)} is a non-cross-hybridizing set. Define
epi,tj = 1 if and only if i = j ≤ k. It is easy to check that this assignment satisfies the
constraints of the programming.

7.5 Minimum Partition into Disjoint Assignable Subgraphs

In our discussion so far we did not require the covering subsets in a solution of MPC to be
tag disjoint. From the assay point of view there is no need for such requirement. In this
section we study a mathematically related question of optimally partitioning a bipartite
graph into a set of vertex-disjoint assignable subgraphs that cover the set of primers. Note
that it is meaningful only when the number of primers is at most the number of tags. We
henceforth assume this is the case. We give an algorithm which produces a cover of size
at most 2d for a graph with d-degree bounded primer vertices. The problem is formally
stated as follows:

Problem 3 (Minimum Partition into Disjoint Assignable Subgraphs (MPDAS))
Given a bipartite graph G = (P, T,A), find a minimum set of vertex-disjoint assignable
subgraphs that cover P .
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MPDAS is NP-complete by essentially the same reduction as in the proof of Theo-
rem 56. Our covering algorithm is based on graph coloring and is given below.

Theorem 65 Let G = (P, T,A) be a d-bounded instance of MPDAS with m ≤ n. Then
we can find, in time O(n + m2d), a solution to MPDAS on G of cardinality at most 2d.

Proof: Assume n = m (if n > m, remove arbitrarily n − m vertices from T ). We shall
find a collection of at most 2d assignable subgraphs that span the vertices of P . Let M

be a maximal matching in G. Let H be the subgraph induced by the set of vertices that
are not incident to edges of M . Clearly, H contains no induced edges and is assignable.

We now construct a directed graph G′ = (V ′, E′) as follows: Every vertex v ∈ V ′

corresponds to a pair of vertices p ∈ P, t ∈ T that were matched by M . An edge e ∈ E′

is directed from v1 = (p1, t1) to v2 = (p2, t2) if and only if (p1, t2) ∈ A. By construction
every vertex in G′ has out-degree at most d− 1. Hence, G′ can be colored using at most
2d − 1 colors using SLO (smallest-last ordering) coloring [Matula and Beck, 1983]. Each
coloring class corresponds to the vertices of an assignable subgraph, and together with H

these subgraphs cover P .

The running time is dominated by finding a maximal matching in G, which costs
O(m2d) time (cf. [Cormen et al., 1990]).

In fact, we can produce smaller covers if the number of tags is strictly greater than the
number of primers as the following theorem shows.

Theorem 66 Let G = (P, T,A) be a d-bounded instance of MPDAS with n ≥ (k + 1)m,
for some k ≥ 1. Then we can find, in polynomial time, a solution to MPDAS on G with
cardinality at most 2b d

kc.

Proof: We first remove from G all n −m ≥ mk tags with highest degrees. Clearly, the
degree of each remaining tag is bounded by b d

kc. By changing the roles of tags and primers
in the proof of Theorem 65, we obtain a solution of cardinality 2b d

kc.

We end this section by commenting on the applicability of MPDAS: There is a pro-
tocol solution to avoiding primer to antitag cross-hybridization. The idea is to introduce
blocking oligonucleotides, perfect Watson-Crick complements of the primers used in the
assay, right after the extension reaction and prior to the array hybridization step. As
these occupy the primer parts of the reporter molecule they block any potential hybridiza-
tion of these primers. The main source of confusing signal now becomes primer to tag
mis-extensions. By solving MPDAS for multiplexing the solution-phase experiments, it is
possible to perform the genotyping using a single array, at the cost of performing slightly
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more solution-phase experiments (since, typically, a solution for MPC would have smaller
cardinality than a solution for MPDAS on the same instance). This protocol has not been
experimentally tested, to our knowledge. The principal motivation for MPDAS, therefore,
remains purely mathematical.

7.6 Approximating MPC and MPDAS

In this section we study the approximation ratios of our algorithms for MPC and MPDAS.
The first set of results uses Proposition 55, which implies that for both problems we can
decide, in polynomial time, whether a solution of cardinality 1 exists.

Claim 67 There exists a
(
dm

n de/2 + 1
)
-approximation algorithm for MPC on d-bounded

instances with m ≤ n and n > d(d + 1).

Proof: Follows directly from Theorem 58 and Proposition 55.

Claim 68 There exists a (d+2)-approximation algorithm for MPC on d-bounded instances
with m > n > d(d + 1).

Proof: Follows from Corollary 60, and the fact that at least dm
n e subgraphs are needed

in order to cover the primer set of an instance with m > n.

Claim 69 There exists a d-approximation algorithm for MPDAS on d-bounded instances.

Proof: Follows directly from Theorem 65 and Proposition 55.

Claim 70 There exists a b d
kc-approximation algorithm for MPDAS on d-bounded in-

stances with n ≥ (k + 1)m.

Proof: Follows directly from Theorem 66 and Proposition 55.

Next, we show how to improve the approximation ratios of our algorithms for MPC
and MPDAS in the case that d > c log2 n for an appropriate constant c. This result is
based on an improved algorithm for the case that the optimum solution has cardinality
2. This algorithm uses an approximation algorithm for the minimum bisection problem
by Feige and Krauthgamer [2000]. A minimum bisection of a graph G with 2l vertices
is a partition of V (G) into two sets of size l, such that the number r of edges that cross
the partition is minimum. The algorithm of Feige and Krauthgamer [2000] produces a
bisection of size at most kr log2 l for an appropriate constant k.
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Theorem 71 Let G = (P, T,A) be a d-bounded instance of MPDAS with an optimum
solution of cardinality 2. Then we can find, in polynomial time, a solution to MPDAS on
G with cardinality O(log m

√
d).

Proof: We assume that n = m (otherwise remove n − m tags arbitrarily). Since P

can be covered using two vertex-disjoint assignable subgraphs, these subgraphs induce a
balanced cut (bisection) in G of size at most m. This bisection is formed by taking one
side of the cut to be the union of the set of primers of one subgraph and the set of tags of
the other subgraph. Our algorithm for MPDAS in this case starts by applying to G the
minimum bisection approximation algorithm of Feige and Krauthgamer [2000], producing
a bisection of size at most km log2 m. This bisection induces a partition into two balanced
subgraphs (by joining the primers on one side of the cut with the tags on the other side).
Clearly, in each subgraph there are at most km log2 m edges. Next, these two subgraphs
are handled using the following lemma.

Lemma 72 Let H = (P ′, T ′, E′) be a d-bounded instance of MPDAS with |P ′| = |T ′| = r

and |E| ≤ kr log2 r. Then we can find, in polynomial time, a solution to MPDAS on H

with cardinality at most 4 log r
√

kd.

Proof: Let c = log r
√

kd. We partition the set of primers into two subsets, and cover
each one separately:
(1) S1 = {p ∈ P : deg(p) > c}. Clearly, |S1| ≤ kr log2 r

c and, thus, by Theorem 66 S1 can
be covered by 2kd log2 r

c = 2 log r
√

kd subgraphs.
(2) S2 = {p ∈ P : deg(p) ≤ c}. By Theorem 65, S2 can be covered by 2c = 2 log r

√
kd

subgraphs.

Using Lemma 72 we can cover each of the two subgraphs produced by the bisection
approximation algorithm using 4 log m

√
kd vertex-disjoint assignable subgraphs. Overall,

we obtain a solution to MPDAS on G with cardinality at most 8 log m
√

kd.

Corollary 73 For d > 36k log2 m we can approximate MPDAS on d-bounded instances
in polynomial time to within a factor of 2d

3 of optimum.

Corollary 74 For d > 36k log2 m we can approximate MPC on d-bounded instances with
m ≤ n and n > d(d + 1), in polynomial time, to within a factor of 2d

3 of optimum.

Proof: Suppose the input instance has an optimum solution of cardinality 2. Observe
that every tag which participates in both subgraphs in the optimum solution must have
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degree at most 2. Let T ′ denote the set of those tags. As a first stage we handle the
subgraph induced by the tags in T ′ and up to |T ′| of their adjacent primers (arbitrar-
ily selected). Due to the degree bound, this subgraph can be covered using at most 4
assignable subgraphs. Now, the remaining subgraph H can be covered by two vertex-
disjoint assignable subgraphs. For convenience we shall assume that H = (P, T,E) and
|P | = |T | = r ≤ n.

7.7 Discussion and Open Problems

In this chapter we formulated three combinatorial problems arising in multiplexing uni-
versal array experiments. MPC, MAP and MPDAS were shown to be NP-complete.
Approximation algorithms were given for MPC and MPDAS in the case that the primer
degrees in the input graph are bounded.

This chapter is based on some of the results that appeared in [Ben-Dor et al., 2004]
(preliminary version in [Ben-Dor et al., 2003]). The paper contains also a stochastic model
for the input data that is used to prove a lower bound on the cover size. In addition, the
theoretical analysis is complemented by an implementation of two heuristic approaches
and tests of their performance on simulated and real SNP data. Since I did not take part
in these results, there are not included in this thesis.

Several theoretical problems remain open: The complexity of the MPC, MAP and
MPDAS, when the degree of each primer is bounded, is still unknown. The approximation
ratios achieved for MPC and MPDAS are not known to be tight. A variant of MPC arises
if we wish to solve simultaneously also the primer to primer mis-extension problem. The
corresponding graph is no longer bipartite; it contains edges between primers that may
potentially cross-hybridize. The goal here is to find a minimum partition into assignable
subgraphs, such that the set of primers in each subgraph induces no edges.
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