
JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 14, Number 4, 2007

© Mary Ann Liebert, Inc.

Pp. 408–422

DOI: 10.1089/cmb.2007.A003

Sorting by Reciprocal Translocations via

Reversals Theory

MICHAL OZERY-FLATO and RON SHAMIR

ABSTRACT

The understanding of genome rearrangements is an important endeavor in comparative

genomics. A major computational problem in this field is finding a shortest sequence of

genome rearrangements that transforms, or sorts, one genome into another. In this paper

we focus on sorting a multi-chromosomal genome by translocations. We reveal new relation-

ships between this problem and the well studied problem of sorting by reversals. Based on

these relationships, we develop two new algorithms for sorting by reciprocal translocations,

which mimic known algorithms for sorting by reversals: a score-based method building on

Bergeron’s algorithm, and a recursive procedure similar to the Berman-Hannenhalli method.

Though their proofs are more involved, our procedures for reciprocal translocations match

the complexities of the original ones for reversals.

Key words: genome rearrangement, sorting by translocations, sorting by reversals.

1. INTRODUCTION

FOR OVER A DECADE NOW, much effort has been put into large-scale genome sequencing projects.

Analysis of the sequences that have accumulated so far showed that genome rearrangements play an

important role in the evolution of species. A major computational problem in the research of genome

rearrangements is finding a most parsimonious sequence of rearrangements that transforms one genome

into another. This is called the genomic sorting problem, and the corresponding number of rearrangements

is called the rearrangement distance between the two genomes. Genomic sorting gives rise to a spectrum

of fascinating combinatorial problems, each defined by the set of allowed rearrangement operations and

by the representation of the genomes.

In this paper we focus on the problem of sorting by translocations. We reveal new similarities between

sorting by translocations and the well studied problem of sorting by reversals. The study of the problem

of sorting by translocations is essential for the full comprehension of any genomic sorting problem that

permits translocations. Below we review the relevant previous studies and summarize our results. Formal

definitions are provided on the next section.

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

408

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 409

Following the pioneering work by Nadeau and Taylor (1984), reversals and translocations are believed

to be very common in the evolution of mammalian species. Reversals (or inversions) reverse the order and

the direction of transcription of the genes in a segment inside a chromosome. Translocations exchange

tails between two chromosomes. A translocation is reciprocal if none of the exchanged tails is empty.

The genomic sorting problem where the allowed rearrangement operations are reversals (respectively,

reciprocal translocations) is referred to as sorting by reversals, hereafter SBR (respectively, sorting by

reciprocal translocations, hereafter SRT).

Both SBR and SRT use restricted models that allow for a single type of genome rearrangement. Clearly,

a model that allows both reversals and translocations is biologically more realistic than each of these two

restricted models. Still, the study of sorting by reversals only or by translocations only is of great importance

to the understanding of more complex models that allow for several types of genome rearrangements. For

example, the problem of sorting by reversals, translocations, fissions, and fusions is reduced to SBR in

polynomial time (Hannenhalli and Pevzner, 1995; Ozery-Flato and Shamir, 2003; Tesler, 2002a). In many

cases, algorithms for restricted models can be integrated into algorithms for complex models (Ozery-Flato

and Shamir, 2006a; Tesler, 2002a).

SBR and SRT were both proven to be polynomial. Hannenhalli and Pevzner (1999) gave the first poly-

nomial algorithm for SBR; since then, other, more efficient algorithms and simplifications of the analysis

have been presented. Berman and Hannenhalli (1996) presented a recursive algorithm for SBR. Kaplan

et al. (2000) simplified the analysis and gave an O.n2/ algorithm for SBR. Using a linear time algorithm

by Bader et al. (2001) for computing the reversal distance, the algorithm of Berman and Hannenhalli can

be implemented in O.n2/. A score-based algorithm for SBR was presented by Bergeron (2005). Tannier

et al. (2007) presented an elegant algorithm for SBR that can be implemented in O.n3=2
p

log.n// using

a clever data structure due to Kaplan and Verbin (2005).

SRT was first introduced by Kececioglu and Ravi (1995) and was given a polynomial time algorithm

by Hannenhalli (1996). Bergeron et al. (2006a) pointed to an error in Hannenhalli’s proof of the re-

ciprocal translocation distance formula and consequently in Hannenhalli’s algorithm. They presented a

new proof and gave an O.n3/ algorithm for SRT. Recently, we (Ozery-Flato and Shamir, 2006a) proved

that the algorithm of Tannier et al. (2007) for SBR can be adapted to solve SRT in O.n3=2
p

log.n//)

time.

Can the rich theory on SBR be used to solve SRT? It is well known that a translocation on a multi-

chromosomal genome can be simulated by a reversal on a concatenation of the chromosomes (Hannenhalli

and Pevzner, 1995). However, different translocations require different concatenations. In addition, intra-

chromosomal reversals do not have matching translocations. Last but not least, the formulas of the reversal

distance and the reciprocal translocation distance are different. They differ in particular in the parameters

that concern difficult structures for SBR/SRT, which are sometimes referred to as “bad components.”1

Thus, from a first glance the similarity between SRT and SBT is rather superficial.

In Ozery-Flato and Shamir (2006a) we introduced a new auxiliary graph for the analysis of SRT (the

“overlap graph with chromosomes” of two multi-chromosomal genomes, an extension of the “overlap

graph” of two uni-chromosomal genomes) and used it to adapt the fastest extant algorithm for SBR

to SRT (Ozery-Flato and Shamir, 2006a; Tannier et al., 2007). In this paper we reveal new relationships

between SRT and SBR. Based on these relationships we develop two new algorithms for SRT, which mimic

known algorithms for SBR: a score-based method building on Bergeron’s algorithm (2005) and a recursive

procedure similar to the Berman and Hannenhalli (1996) method. Though the proofs of the algorithms

are more involved than those of their counterparts for SBR, our procedures for translocations match the

complexities of the original ones for reversals: the score-based algorithm performs O.n2/ operations on

O.n/-long bit vectors; the recursive algorithm runs in O.n2/ time.

The paper is organized as follows. Section 2 gives the necessary preliminaries. Section 3 presents the

score-based algorithm and Section 4 presents the recursive algorithm. Related genomic sorting problems,

as well as possible applications of our results and future research problems, are discussed in Section 5.

1Hurdles (Hannenhalli and Pevzner, 1999; Kaplan et al., 2000) for SBR, leaves (Bergeron et al., 2006a) (equivalently,

minimal sub-permutations [Hannenhalli, 1996]), for SRT.

410 OZERY-FLATO AND SHAMIR

2. PRELIMINARIES

This section provides a basic background for the analysis of SRT. We follow to a large extent the

nomenclature and notation of Hannenhalli (1996) and Kaplan et al. (2000). In the model we consider, a

genome is a set of chromosomes. A chromosome is a sequence of genes. A gene is identified by a positive

integer. All genes in the genome are distinct. When it appears in a genome, a gene is assigned a sign of

plus or minus. For example, the following genome consists of 8 genes in two chromosomes:

A1 D f.1;�3;�2; 4;�7; 8/; .6; 5/g:

The reverse of a sequence of genes I D .x1; : : : ; xl/ is �I D .�xl ; : : : ;�x1/. A reversal reverses a

segment of genes inside a chromosome. Two chromosomes, X and Y , are identical if either X D Y or

X D �Y . Therefore, flipping chromosome X into �X does not affect the chromosome it represents.

A signed permutation � D .�1; : : : ; �n/ is a permutation on the integers f1; : : : ; ng, where a sign of

plus or minus is assigned to each number. If A is a genome with the set of genes f1; : : : ; ng then any

concatenation �A of the chromosomes of A is a signed permutation of size n. In the following, we assume

for simplicity and without loss of generality that there is a concatenation �B of the chromosomes in the

target genome B which is the identity permutation. For example,

B D f.1; 2; : : : ; 5/; .6; 7; 8/g:

Let X D .X1; X2/ and Y D .Y1; Y2/ be two chromosomes, where X1, X2, Y1, Y2 are sequences of

genes. A translocation cuts X into X1 and X2 and Y into Y1 and Y2 and exchanges segments between

the chromosomes. It is called reciprocal if X1, X2, Y1 and Y2 are all non-empty. There are two ways to

perform a translocation on X and Y . A prefix-suffix translocation switches X1 with Y2 resulting in:

.X1; X2/; .Y1; Y2/) .�Y2; X2/; .Y1;�X1/:

A prefix-prefix translocation switches X1 with Y1 resulting in:

.X1; X2/; .Y1; Y2/) .Y1; X2/; .X1; Y2/:

Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation by a flip of one of the

chromosomes followed by a prefix-suffix (respectively, prefix-prefix) translocation. As was observed by

Hannenhalli and Pevzner (1995), a translocation on A can be simulated by a reversal on �A in the following

way:

.: : : ; X1; X2; : : : ; Y1; Y2; : : : /) .: : : ; X1;�Y1; : : : ;�X2; Y2; : : : /:

The type of translocation depends on the relative orientation of X and Y in �A (and not on their order): if

the orientation is the same, then the translocation is prefix-suffix, otherwise it is prefix-prefix. The segment

between X2 and Y1 may contain additional chromosomes that are flipped and thus unaffected.

For an interval of genes I D .i1; : : : ; ik/ define Tails.I / D fi1;�ikg. Note that Tails.I / D Tails.�I /.

For a genome A1 define Tails.A1/ D [X2A1
Tails.X/. For example:

Tails.f.1;�3;�2; 4;�7; 8/; .6; 5/g/D f1;�8; 6;�5g:

Two genomes A1 and A2 are called co-tailed if Tails.A1/ D Tails.A2/. In particular, two co-tailed genomes

have the same number of chromosomes. Note that if A2 was obtained from A1 by performing a reciprocal

translocation then Tails.A2/ D Tails.A1/. Therefore, SRT is defined only for genomes that are co-tailed.

For the rest of this paper, the word “translocation” refers to a reciprocal translocation, and we assume that

the given genomes, A and B , are co-tailed.

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 411

FIG. 1. The cycle graph G.A1; B1/, where A1 D f.1;�3;�2; 4;�7; 8/; .6; 5/g and B1 D f.1; : : : ; 5/; .6; 7; 8/g.

Dotted lines correspond to gray edges. The gray edge .1; 2/ is internal, whereas .4; 5/ is external. .2; 3/ is an adjacency.

2.1. The cycle graph

Let N be the number of chromosomes in A (equivalently, B). We shall always assume that both A

and B contain genes f1; : : : ; ng. The cycle graph of A and B , denoted G.A; B/, is defined as follows.

The set of vertices is [n
iD1fi

0; i1g. For every pair of adjacent genes in B , i and i C 1, add a gray

edge .i; i C 1/ � .i1; .i C 1/0/. For every pair of adjacent genes in A, i and j , add a black edge

.i; j / � .out.i/; in.j //, where out.i/ D i1 if i has a positive sign in A and otherwise out.i/ D i0, and

in.j / D j 0 if j has a positive sign in A and otherwise in.j / D j 1. An example is given in Figure 1.

There are n� N black edges and n �N gray edges in G.A; B/. A gray edge .i; i C 1/ is external if the

genes i and i C 1 belong to different chromosomes of A, otherwise it is internal.

Every vertex in G.A; B/ has degree 2 or 0, where vertices of degree 0 (isolated vertices) belong to

Tails.A/ (equivalently, Tails.B/). Therefore, G.A; B/ is uniquely decomposable into cycles with alternating

gray and black edges. An adjacency is a cycle with two edges.

2.2. The overlap graph with chromosomes

Place the vertices of G.A; B/ along a straight line according to their order in �A. Now, every gray

edge can be associated with an interval of vertices of G.A; B/. Two intervals overlap if their intersection

is not empty but neither contains the other. The overlap graph with chromosomes of A and B w.r.t. �A,

denoted �.A; B; �A/, is defined as follows. There are two types of nodes. The first type corresponds to

gray edges in G.A; B/. The second type corresponds to chromosomes of A. Two nodes are connected if

their associated intervals overlap (Fig. 2). For the rest of this paper we will refer to overlap graphs with

chromosomes as �-graphs.

In order to avoid confusion, we will refer to nodes that correspond to chromosomes as “chromosomes”

and reserve the word “vertex” for the nodes that correspond to gray edges of G.A; B/. Observe that

a vertex in �.A; B; �A/ is external iff there is an edge connecting it to a chromosome. Note that the

internal/external state of a vertex in �.A; B; �A/ does not depend on �A (the partition of the chromosomes

is known from A). A vertex in �.A; B; �A/ is oriented if its corresponding edge connects two genes with

different signs in �A, otherwise it is unoriented.

Let OV.A; B; �A/ be the subgraph of �.A; B; �A/ induced by the set of nodes that correspond to gray

edges (i.e., excluding the chromosomes’ nodes). We shall use the word “component” for a connected

component of OV.A; B; �A/. A component is external if at least one of the vertices in it is external,

otherwise it is internal. A component is trivial if it is composed of one internal vertex. A trivial component

FIG. 2. The overlap graph with chromosomes �.A1; B1; �A1
/, where A1 and B1 are the genomes from Figure 1 and

�A1
D .1;�3;�2; 4;�7; 8; 6; 5/. The graph induced by the vertices within the dashed rectangle is OV.A1; B1; �A1

/.

412 OZERY-FLATO AND SHAMIR

corresponds to an adjacency. The span of a component M is the minimal interval of genes I.M/ D Œi; j � �

�A that contains the interval of every vertex in M . If the spans of two components intersect then either

they overlap by at most gene, or one span contains the other. Clearly, I.M/ is independent of �A iff M is

internal. Thus the set of internal components in �.A; B; �A/ is independent of �A. Denote by IN .A; B/

the set of non-trivial internal components in �.A; B; �A/. The following lemma follows from the definition

of “sub-permutations” in Hannenhalli (1996):

Lemma 1. Suppose I is the span of an internal component. Then the genes of I form a continuous

interval I 0 in one of the chromosomes of B and Tails.I / D Tails.I 0/.

2.3. The reciprocal translocation distance

Let c.A; B/ denote the number of cycles in G.A; B/.

Theorem 1 (Bergeron et al., 2006a; Hannenhalli, 1996). The reciprocal translocation distance be-

tween A and B is d.A; B/ D n � N � c.A; B/ C F.A; B/, where F.A; B/ � 0 and F.A; B/ D 0 iff

IN .A; B/ D ;.

Let �c denote the change in the number of cycles after performing a translocation on A. Then �c 2

f�1; 0; 1g (Hannenhalli, 1996). A translocation is proper if �c D 1. A translocation is safe if it does not

create any new non-trivial internal component. A translocation � is valid if d.A � �; B/ D d.A; B/ � 1. It

follows from Theorem 1 that if IN .A; B/ D ;, then every safe proper translocation is necessarily valid.

In a previous study (Ozery-Flato and Shamir, 2006a), we presented a generic algorithm for SRT that uses

a sub-procedure for solving SRT when IN .A; B/ D ;. The algorithm focuses on the efficient elimination

of the non-trivial internal components. We showed that the work performed by this generic algorithm, not

including the sub-procedure calls, can be implemented in linear time. This led to the following theorem:

Theorem 2 (Ozery-Flato and Shamir, 2006a). SRT is linearly reducible to SRT with IN .A; B/ D ;.

By the theorem above, it suffices to solve SRT assuming that IN .A; B/ D ;. Both algorithms that we

describe below will make this assumption.

2.4. The effect of a translocation on the overlap graph with chromosomes

Let �CH � �CH .A; �A/ be the linear order of the chromosomes in A, as defined by �A. Slightly

abusing terminology, we extend the definition of the �-graph to include �CH . In other words, an �-graph

carries also a permutation of its chromosome nodes defined by �A. Two chromosomes in �.A; B; �A/ are

called consecutive if they are consecutive in �CH .

Let H D �.A; B; �A/ and let v be any vertex in H . Denote by N.v/ � N.v; H/ the set of vertices

that are neighbors of v in H , including v itself (but not including chromosome neighbors). Denote by

CH.v/ � CH.v; H/ the set of chromosomes that are neighbors of v in H . Clearly, if v is external then

jCH.v/j D 2, otherwise CH.v/ D ;.

Every external gray edge e defines one proper translocation that cuts the black edges incident to e. (Out

of the two possibilities of prefix-prefix or prefix-suffix translocations, exactly one would be proper.) For

an external vertex v denote by �.v/ the proper translocation that the corresponding gray edge defines on

A. If v is an oriented external vertex then �.v/ can be mimicked by a reversal O�.v/ on �A. For an oriented

external vertex v define H � �.v/ D �.A � �.v/; B; �A � O�.v//. The following two lemmas refine claims in

Ozery-Flato and Shamir (2006a).

Lemma 2. Let v be an oriented external vertex in H and suppose the chromosomes in CH.v/ are

consecutive. Then H � �.v/ is obtained from H by the following operations. (i) Complement the subgraph

induced by N.v/ and flip the orientation of every vertex in N.v/. (ii) For every vertex u 2 N.v/ complement

the edges between u and CH.u/ [CH.v/. In particular, the external/internal state of a vertex u 2 N.v/

is flipped iff u is internal or CH.u/ D CH.v/.

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 413

Proof. The correctness of (i) follows immediately from Observation 4.1 in Kaplan et al. (2000).

To prove (ii), let u 2 N.v/. Since the chromosomes in CH.v/ are consecutive, u is either internal or

jCH.u/ \ CH.v/j 2 f1; 2g. In each of these cases, CH.u/ is complemented w.r.t. CH.u/ [CH.v/ (for

illustration, see Fig. 3). Suppose w … N.v/. Let Iv and Iw be the intervals associated with v and w

respectively (see Section 2.2). Then there are three possible cases:

Case 1: Iw � Iv and w is internal. Then Iw is contained entirely in one of the exchanged segments.

Thus w remains internal and hence CH.w; H � �.v// D CH.w; H/ D ;.

Case 2: Iw � Iv and w is external. Then CH.w; H/ D CH.v; H/ and the two endpoints of Iw exchange

their chromosomes after �.v/ is performed. Thus CH.w; H � �.v// D CH.w; H/.D CH.v; H//.

Case 3: Iw \ Iv D ; or Iv � Iw . In these two cases the endpoints of Iw are not affected by �.v/ and

hence CH.w; H � �.v// D CH.w; H/.

We shall sometimes need to change the chromosome order or flip a chromosome. These operations can

be mimicked by reversals on �A but do not correspond to translocations, and thus are not covered by

Lemma 2. For an interval of chromosomes I � �A, let O�.I / denote the flip, i.e., reversal, of I in �A. Let

H � �.I / D �.A; B; �A � O�.I //.

Lemma 3. For an interval of chromosomes I � �A, H � �.I / is obtained from H by the following

operations. (i) Reverse the order of the chromosomes in I . (ii) Complement the subgraph induced by the

set fv W exactly one of the chromosomes in CH.v/ is contained in I g, and flip the orientation of every

vertex in it. In particular, if I is a single chromosome of A then H � �.I / is obtained by complementing

the subgraph induced by the neighbors of I in H , and flipping the orientation of every vertex in it.

Proof. The vertices affected by �.I / are the ones that overlap I . A vertex v overlaps I iff exactly

one of its endpoints belong to I (hence it must be external). The rest of the proof follows directly from

Observation 4.1 in Kaplan et al. (2000).

We refer to two �-graphs of the same pair of genomes A and B , irrespective of the concatenation �A,

as equivalent. Clearly, we can transform an �-graph to any other equivalent graph by a sequence of flips

of chromosomes intervals, as defined by Lemma 3.

FIG. 3. The effect of performing a translocation, mimicked by a reversal, on overlapping intervals. X1, X2, and

X3 are chromosomes, and the dashed lines denote the borders between them in the concatenation .X1; X2; X3/. The

letters x1; : : : ; x8 denote the endpoints of the intervals (the endpoints are vertices of the cycle graph). The interval v

corresponds to an (external) edge on which a translocation is performed.

414 OZERY-FLATO AND SHAMIR

Observation 1. Let H and H 0 be two equivalent graphs in which v is an oriented external vertex.

Then the set of internal components is the same for H � �.v/ and H 0 � �.v/.

Proof. We can transform H � �.v/ into H 0 � �.v/ by a sequence of flips of chromosomes intervals. By

Lemma 3, a flip of an interval of chromosomes does not change the internal/external state of any vertex,

and does not affect the neighborhood of any internal vertex. Thus H � �.v/ and H 0 � �.v/ must have the

same set of internal components.

Let v be an external vertex in H , and let H 0 be an equivalent graph to H in which v is oriented,

possibly H D H 0 if v is already oriented in H . A key definition that will be crucial throughout the paper

is the following: �IN.H; v/ is the set of vertices that belong to external components in H (equivalently,

H 0) but are in non-trivial internal components in H 0 � �.v/. By Observation 1, if (i) v is an external vertex

in H , and (ii) H 0 is equivalent to H , then �IN.H; v/ D �IN.H 0; v/. It follows that in order to compute

�IN.H; v/, we can assume without loss of generality that v is oriented and the chromosomes in CH.v/

are consecutive. As we shall see, the additional work required to satisfy this assumption will not change

the overall complexity of the algorithms.

3. A SCORE-BASED ALGORITHM

In this section, we present a score-based algorithm for SRT when IN .A; B/ D ;. This algorithm is

similar to an algorithm by Bergeron (2005) for SBR. Denote by NIN.v/ and NEXT.v/ the neighbors of

v that are respectively internal and external. It follows that NIN.v/ [NEXT.v/ [fvg D N.v/. For two

chromosomes X and Y , let VXY D fv W CH.v/ D fX; Y gg.

Lemma 4. Let X and Y be two consecutive chromosomes in H D �.A; B; �A/. Suppose v 2 VXY

is oriented. Let w 2 N.v/. If w has no external neighbors in H � �.v/ then NEXT.w/ � NEXT.v/ and

NIN.v/ � NIN.w/.

Proof. It follows from Lemma 2 that if u 2 .NEXT.w/ n NEXT.v// [.NIN.v/ n NIN.w// then u is an

external neighbor of w in H � �.v/.

For each vertex v in H D �.A; B; �A/ we define the score of v as jNIN.v/j� jNEXT.v/j. The following

lemma lays the basis for the score-based approach and is used by the implementation of the recursive

algorithm as well.

Lemma 5. Let X and Y be two consecutive chromosomes in H D �.A; B; �A/ for which VXY ¤ ;.

Let O � VXY be a set of oriented (external) vertices and suppose O ¤ ;. Let v 2 O be a vertex with a

maximal score in H . Then O \�IN.H; v/ D ;.

Proof. Assume u 2 O \ �IN.H; v/. Then u 2 N.v; H/, and by Lemma 4 NEXT.u/ � NEXT.v/

and NIN.v/ � NIN.u/. However, since v has the maximal score in O , we get NEXT.u/ D NEXT.v/ and

NIN.v/ D NIN.u/. Therefore, N.u/ D N.v/, and by Lemma 2 it follows that u is an isolated internal

vertex in H � �.v/, a contradiction to the assumption that u 2 �IN.H; v/.

Theorem 3. Let X and Y be two consecutive chromosomes in H D �.A; B; �A/. Let O be the set of

all the oriented external vertices in VXY and suppose O ¤ ;. Let v 2 O be a vertex that has the maximal

score in H . Let S D S.v/ be the set of all the vertices w that satisfy the following conditions in H :

1. w is a neighbor of v,

2. w is an unoriented external vertex and CH.w/ D CH.v/,

3. NEXT.w/ � NEXT.v/,

4. NIN.v/ � NIN.w/, and

5. O \N.v/ � NEXT.w/.

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 415

If S D ; then �.v/ is safe. Otherwise, let w 2 S be a vertex that has a maximal score in H � �.X/, where

X 2 CH.v/. Then �.w/ is safe.

Proof. Suppose S D ; and assume v is unsafe. Let w 2 �IN.H; v/ be a neighbor of v in H . w

satisfies conditions 3 and 4 by Lemma 4, it is external and CH.w/ D CH.v/, by Lemma 2. It follows

from Lemma 5 that O \�IN.H; v/ D ;. Hence w is unoriented in H and the last condition is satisfied

(otherwise w has a neighbor from O in H � �.v/, in contradiction to the choice of w 2 �IN.H; v/).

It follows that w 2 S , a contradiction.

Suppose S ¤ ;. Let H 0 D H � �.X/, where X 2 CH.v/. Let w 2 S be a vertex with maximal score

in H 0. We prove below that if �IN.H 0; w/ ¤ ; then �IN.H 0; w/\ S ¤ ;, in contradiction to Lemma 5.

Let O1 D O \ N.v/ in H . Then in H 0 : (i) all the vertices in S are oriented (condition 2), (ii) O1

contains all the unoriented external vertices with CH D CH.v/ that are not neighbors of v, and (iii) there

are no edges between S and O1 [fvg (condition 5). It follows that each vertex in O1 [fvg remains

external after performing a translocation on any vertex in S .

Assume that �IN.H 0; w/ ¤ ;. Let u 2 �IN.H 0; w/ be a neighbor of w in H 0. We shall prove that

u 2 S . Clearly, u is an external vertex in H 0 and CH.u/ D CH.w/ D CH.v/. Since all the vertices in

O1 [fvg are external and there are no edges between them and w in H 0, u … O1 [fvg and there are no

edges between u and O1 [fvg in H 0 (Lemma 4). Since all the unoriented vertices that are not neighbors

of v belong to O1, u must be oriented. It follows that in H , u satisfies conditions 1, 2 and 5. We now

prove that u satisfies conditions 3 and 4 in H as well, thus u 2 S—a contradiction to Lemma 5.

Suppose u does not satisfy condition 4 in H . Let x 2 NIN.v/nNIN.u/ in H . Since w satisfies condition 4

in H , x 2 NIN.w/ n NIN.u/ in H . Since x is internal, all its edges are the same in H and H 0. Hence

x 2 NIN.w/ nNIN.u/ in H 0. It follows from Lemma 4 that u has an external neighbor (x) in H 0 � �.w/, a

contradiction to u 2 �IN.H 0; w/. Thus u must satisfy condition 4 in H .

Suppose u does not satisfy condition 3 in H . Let z 2 NEXT.u/ nNEXT.v/ in H .

Case 1: X … CH.z/. Since w satisfies condition 3, z 2 NEXT.u/ n NEXT.w/ in H . Then in H 0:

z 2 NEXT.u/ n NEXT.w/ (Lemma 3). Then according to Lemma 4, u has an external neighbor (z) in

H 0 � �.w/, a contradiction to u 2 �IN.H 0; w/.

Case 2: X 2 CH.z/. In H : since w satisfies condition 3 and z … NEXT.v/ then z … NEXT.w/. Thus in

H 0: z … N.u/, z 2 N.v/ \ N.w/ (Lemma 3). Therefore, in H 0 � �.w/ the path u; z; v exists (Lemma 2),

a contradiction to u 2 �IN.H 0; w/ (since v is external in H 0 � �.w/).

Theorem 3 immediately implies the following polynomial time algorithm (Algorithm 1) for finding a

safe proper translocation using H D �.A; B; �A/:

Algorithm 1. Find_Safe_Translocation_Using_Scores (H)

1. Let X and Y be two chromosomes for which there exists a common adjacent (external) vertex u.

2. Flip chromosomes, if necessary, to make X and Y consecutive and to make u oriented.

3. Let v 2 VXY be an oriented (external) vertex with a maximal score.

4. Compute the set of vertices S.v/ defined by Theorem 3.

5. If S.v/ D ; then return �.v/.

6. Otherwise,

a. Flip chromosome X or Y , and recalculate the score of the vertices.

b. Let w 2 S.v/ be a vertex with a maximal score.

c. Return �.w/.

The above algorithm can be implemented in O.n2/ time using O.n/ operations on O.n/-long bit

vectors, in a similar manner to the implementation of the algorithm of Bergeron (2005) for SBR. The

implementation is presented in Figure 4 and uses the following notations. The symbols v, X , ext and

416 OZERY-FLATO AND SHAMIR

FIG. 4. An O.n2/ implementation of Algorithm 1 using O.n/-long bit vectors.

o represent bit vectors of size n � N . The vector v corresponds to the vertex v, where vŒu� D 1 iff

u is a neighbor of v. The vector X corresponds to chromosome X , where X Œv� D 1 iff X 2 CH.v/.

The chromosome vectors are ordered according to their order in �A. The vectors ext and o correspond to

the sets of external vertices and oriented vertices respectively. In other words, extŒu� D 1 iff u is external,

oŒu� D 1 iff u is oriented. The score of each vertex is stored in an integer vector score. The symbols ^,

_, ˚ and : respectively denote the bitwise-AND, bitwise-OR, bitwise-XOR and bitwise-NOT operators.

Steps 1–6 in the algorithm in Figure 4 locate a safe proper translocation �.v/. Steps 7 and 8 perform �.v/

and update the above vectors.

Corollary 1. The score-based algorithm solves SRT in O.n3/ time.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.a003&iName=master.img-019.jpg&w=372&h=465

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 417

4. A RECURSIVE ALGORITHM

In this section, we present a recursive algorithm for SRT when IN .A; B/ D ;. This algorithm is similar

to the algorithm of Berman and Hannenhalli (1996) for SBR.

4.1. The algorithm

Denote the number of vertices in a graph H by jH j. For two chromosomes, X and Y , let OXY

(respectively UXY) be the set of oriented (respectively unoriented) vertices in H for which CH D fX; Y g.

Thus OXY [UXY D VXY .

Theorem 4. Let H D �.A; B; �A/. If H contains an external vertex then it contains an external

vertex v for which �IN.H; v/ � jH j
2

.

Proof. Let X and Y be two chromosomes for which VXY ¤ ;. Assume w.l.o.g. that X and Y are

consecutive and OXY ¤ ;. Let v 2 OXY be a vertex with maximal score in H . If �IN.H; v/ D ; then we

are done since j�IN.H; v/j D 0 � jH j
2

. Suppose �IN.H; v/ ¤ ;. By Lemma 5, �IN.H; v/ \ OXY D ;.

Thus �IN.H; v/\UXY ¤ ;. Let H 0 D H ��.X/ and let u 2 UXY be a vertex with maximal score in H 0.

Let Mv D �IN.H; v/ and Mu D �IN.H 0; u/ D �IN.H; u/. We shall prove that Mu\Mv D ;, and hence

minfjMvj; jMujg �
jH j
2

. Assume x 2 Mv and let x D x0; : : : ; xk; xkC1 D v be a shortest path from x to

v in H . Then by Lemma 2, CH.xk/ D CH.v/ and x0; : : : ; xk�1 are internal. Hence the path x0; : : : ; xk

exists in H 0. Moreover, xk … OXY since the path x0; : : : ; xk exists in H � �.v/ and Mv \ OXY D ;.

Thus xk 2 UXY . If none of the vertices in fx0; : : : ; xkg is in N.u; H 0/ then the path remains intact in

H 0 � �.u/. Otherwise, let xj be the first vertex in x0; : : : ; xk that is in N.u; H 0/. Thus the path x0; : : : ; xj

exists in H 0 � �.v/. If xj 2 fx0; : : : ; xk�1g then xj is external in H 0 � �.u/. If xj D xk then by Lemma 5

Mu \ UXY D ; and hence xk … Mu. Thus in any case x D x0 … Mu.

Theorem 5. Let v be an external vertex in H D �.A; B; �A/. Suppose �IN.H; v/ ¤ ;. Let w 2

�IN.H; v/ be an external vertex in H . Then �IN.H; w/ � �IN.H; v/.

Proof. Assume w.l.o.g. that the chromosomes in CH.v/ are consecutive and v is an oriented (external)

vertex in H . By Lemma 2, w is a neighbor of v in H and CH.v/ D CH.w/ (otherwise it would

remain external in H � �.v/). Let x be a vertex in H such that x … �IN.H; v/. It suffices to prove that

x … �IN.H; w/. Let x D x0; : : : ; xk D y be a shortest path from x to an external vertex in H ��.v/. Then

in H : xj is neighbor of v iff xj is a neighbor of w, for j D 1::k (otherwise there is a path in H � �.v/

from w to the external vertex xk D y).

Case 1: w is oriented in H . Then the subgraphs induced by the vertices fx0; : : : ; xkg in H � �.w/ and

H � �.v/ are the same. Hence in H � �.w/: y is external and the path in x D x0; : : : ; xk D y exists.

Case 2: w is unoriented in H . In H � �.v/ the vertices in fx0; : : : ; xk�1g are internal and xk.D y/ is

external. Therefore xj 2 fx0; : : : ; xk�1g satisfies in H : (i) xj is a neighbor of v iff xj is external and

CH.xj / D CH.w/, and (ii) xj is not a neighbor of v iff xj is internal. Denote by H 0 the graph obtained

from H after flipping one of the chromosomes in CH.w/.

Case 2.a: At least one vertex in fx0; :::; xk�1g is a neighbor of v in H . Choose xj 2 fx0; : : : ; xk�1g
a neighbor of v in H such that fx0; : : : ; xj �1g are not neighbors of v in H . Then in H the following

conditions are satisfied: (i) x0; : : : ; xj is a path, (ii) all the vertices in fx0; : : : ; xj �1g are internal and (iii)

xj is external satisfying CH.xj / D CH.v/. Therefore in H 0 the path x0; : : : ; xj still exists and none of

the vertices in the path is a neighbor of v (equivalently, w). Hence, the path remains intact in H 0 � �.w/.

Case 2.b: None of the vertices in fx0; : : : ; xk�1g is a neighbor of v in H . Then the path x0; : : : ; xk

exists in H 0. v is not a neighbor of w in H 0 hence v remains external in H 0 � �.w/. If xk is a neighbor

of v (and w) in H 0 then the path x0; : : : ; xk; v exists in H 0 � �.w/ and hence x D x0 … �IN.H; w/. If xk

is not a neighbor of v and w in H 0 then xk is necessarily external in H 0 (equivalently, H). In this case

the path x D x0; : : : ; xk D y remains intact in H 0 � �.w/ and x D x0 … �IN.H; w/.

418 OZERY-FLATO AND SHAMIR

Corollary 2. Let v be an external vertex in H . Suppose M D �IN.H; v/ ¤ ;. Let HM be the

subgraph of H induced by the nodes in M [CH.v/, and let w be an external vertex in HM . Then

�IN.H; w/ � �IN.HM ; w/. In particular, if �IN.HM ; w/ D ; then �IN.H; w/ D ;.

Proof. We assume w.l.o.g. that the chromosomes in CH.w/ are consecutive and w is oriented in H .

Then HM � �.w/ is identical to the subgraph induced by M [CH.v/ in H � �.w/. It follows that every

component in H � �.w/ contained in M is also a component of HM � �.w/. By Theorem 5 every internal

component in H � �.w/ is contained in M . Thus �IN.H; w/ � �IN.HM ; w/.

The two theorems above are correct for any subgraph H 0 of �.A; B; �A/ that is induced by a set of

vertices and their adjacent chromosomes. By recursive use of Theorem 4 and Corollary 2 we get the

following algorithm for locating a safe proper translocation. Algorithm 2 receives H D �.A; B; �A/ as

an input.

Algorithm 2. Find_Safe_Translocation_Recursive (H)

1. Choose v from H satisfying �IN.H; v/ � jH j
2

, according to the proof of Theorem 4.

2. M �IN.H; v/

3. If M ¤ ;:

a. HM the subgraph of H induced by M [CH.v/

b. �.v/ Find_Safe_Translocation_Recursive(HM)

4. Return �.v/

4.2. A linear time implementation

We shall now prove that Algorithm Find_Safe_Translocation_Recursive can be implemented in linear

time. We shall use an algorithm of Bader et al. (2001) for the computation of �IN.H; v/. We shall use

an algorithm by Kaplan et al. (2000) for locating an external vertex v satisfying j�IN.H; v/j � jH j
2

.

A difficulty in trying to apply these algorithms is that they operate on signed permutations and not on

�-graphs. To overcome this, the algorithm will be initially called with genomes A and B . Before every

recursive call it will build two appropriate co-tailed genomes AM and BM and pass them as arguments to

the recursive call instead of HM .

Assume w.l.o.g. that there are no adjacencies in G.A; B/ (otherwise, every maximal run of adjacencies

can be replaced by one element in both A and B). Thus G.A; B/ contains no internal components.

4.2.1. Computing �IN.H; v/ in linear time. We apply the translocation �.v/ on A, and then compute

the set of non-trivial internal components. Suppose we want to compute the set of non-trivial internal

components in �.A; B; �A/. We compute the set of components in OV.�A/ in linear time, using an

algorithm by Bader et al. (2001). The output of this algorithm contains the set of components of OV.�A/

along with the span of each. The graph OV.�A/ contains additional vertices that are not in �.A; B; �A/.

These additional vertices correspond to edges between tails of B . Since A and B are co-tailed, the neighbors

of these vertices in OV.�A/ are all external. Therefore the removal of these additional vertices does not

affect the set of internal components in this graph. A component is internal iff the two endpoints of its

span belong to the same chromosome of A. An internal component is non-trivial if its span contains more

than two elements.

4.2.2. Finding an external vertex v satisfying j�IN.H; v/j � jH j
2

in linear time. Let X and Y be two

chromosomes that contain the endpoints of an external edge v. Build a concatenation �A in which X and

Y are consecutive. Let H D �.A; B; �A/ and let H 0 D H � �.X/. If OXY (respectively UXY) does not

induce a clique in H (respectively H 0) then we can use the following lemma:

Lemma 6. Let v1; v2 2 OXY . If v2 … N.v1/ then minfj�IN.H; v1/j; j�IN.H; v2/jg � jH j
2

.

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 419

Proof. It suffices to prove that �IN.H; v1/ \ �IN.H; v2/ D ;. Assume x 2 �IN.H; v1/ and let

x D x0; : : : ; xk D v1 be a shortest path from x to v1 in H . Since the neighborhood of v2 remains intact

in H � �.v1/ there is no edge from v2 to any vertex in that path. Therefore this path exists in H � �.v2/

and hence u … �IN.H; v2/.

Align the nodes of G.A; B/ according to �A. For two nodes in G.A; B/, p1 and p2, denote p1 < p2

iff p1 is to the left of p2. For a vertex v in H D �.A; B; �A/, denote by Left.v/ and Right.v/ the

left and right endpoints respectively of its gray edge. Suppose OXY D fv1; : : : ; vkg, where Left.vj / <

Left.vj C1/ for j D 1::k � 1. If there exist two consecutive vertices vj and vj C1 such that Right.vj / >

Right.vj C1/, then we found two edges that do not overlap. Thus vj C1 … N.vj ; H/. By Lemma 6

minfj�IN.H; vj /j; j�IN.H; vj C1/jg � jH j
2

. Otherwise, the vertices in OXY form a clique in H . We

can find whether UXY induces a clique in H 0 in a similar manner by aligning the nodes of G.A; B/

according to �A � �.X/.

Suppose OXY induces a clique in H and UXY induces a clique in H 0 (one of which might be empty).

In this case we use the proof of Theorem 4 in order to find a vertex v satisfying j�IN.H; v/j � jH j
2

. We

calculate the score in H for every vertex in OXY and the score in H 0 for every vertex in UXY in the

following way. Let fI1; : : : ; Ikg be a set of intervals forming a clique. Let U D fJ1; : : : ; Jlg be another set

of intervals. Let U.j / denote the number of intervals in U that overlap with Ij . There is an algorithm by

Kaplan et al. (2000) that computes U.1/; : : : ; U.k/ in O.k C l/. We use this algorithm twice to compute

jNEXT.vj /j and jNIN.vj /j, for j D 1::k.

4.2.3. Performing a recursive call Suppose the external vertex v chosen in the first step of the algorithm

satisfies M D �IN.H; v/ ¤ ;. Let H D �.A; B; �A/. Let HM be the subgraph of H induced by

M [CH.v/. We demonstrate below how to build two co-tailed genomes, AM and BM , in linear time, for

which there exists an �-graph H 0
M
D �.AM ; BM ; �AM

/ satisfying: (i) HM � H 0
M

, (ii) jH 0
M
j � jHM jC2,

and (iii) Every u 2 H 0
M
nHM is external and �.u/ D �.v/.

Every internal component in G.A � �.v/; B/ contains in its span one of the new black edges created

by �.v/. A component in M is maximal if its span is maximal. Since there are two new black edges in

G.A � �.v/; B/, there are at most two maximal components in M . Note that for every v 2 M , its two end-

points belong to the span of a maximal component. Construct genomes AM and BM in the following way.

Case 1: There are two maximal components in M . Let I1 and I2 be the spans of the two maximal

components in M (after applying �.v/). I1 and I2 are disjoint since every maximal component belong

to a different chromosome of A � �.v/. By Lemma 1, there exist two intervals I 0
1 and I 0

2 in B , where for

i D 1; 2 Ii and I 0
i have the same set of elements and Tails.Ii / D Tails.I 0

i /. Let BM D fI
0
1; I 0

2g. Let AM

be the result of the translocation on fI1; I2g that cuts the two new black edges in I1 and I2 and recreates

the old black edges that were originally cut by �.v/ (i.e., the translocation inverse to �.v/).

Case 2: There is exactly one maximal component in M . In this case only one of the chromosomes in

A � �.v/ contains components from M . Let I be the span of the maximal component in M . Again, by

Lemma 1 there exists an interval I 0 in B with the same elements as I , satisfying Tails.I / D Tails.I 0/.

Let BM D fI
0; .i1; i2/g, where .i1; i2/ is the new black edge in A � �.v/ that is not contained in any of the

components in M . Let AM be the result of the translocation on fI; .i1; i2/g that cuts the new black edge

in I1 and .i1; i2/ and recreates the old black edges that were originally cut by �.v/ (i.e., the translocation

inverse to �.v/).

Obviously in both cases AM and BM are co-tailed. Each of the two chromosomes in AM (respectively,

BM) is an interval in A (respectively, B). Moreover, AM (equivalently, BM) contains the endpoints of

each and every gray edge in M . Let H 0
M
D �.AM ; BM ; �AM

/ where �AM
is a concatenation of the

two chromosomes in AM in which the elements appear in the same order as in �A. It is not hard to see

that the HM is an induced subgraph of H 0
M . H 0

M contains one or two additional vertices that do not

belong to HM . These additional vertices define the same translocation as v (one of which is indeed v)

and correspond to isolated vertices (i.e., trivial internal components) in H 0
M � �.v/. Thus, the (one or two)

additional vertices in H 0
M

are external. Since HM does not contain adjacencies, so does H 0
M

.

The above described implementation implies:

Lemma 7. Algorithm Find_Safe_Translocation_Recursive can be implemented in linear time.

420 OZERY-FLATO AND SHAMIR

Proof. We have demonstrated how to implement the first two steps of the algorithm in linear time.

Let v be the vertex chosen in step 1 of the algorithm. Suppose M D �IN.H; v/ ¤ ;. In this case we

presented a way to construct two co-tailed genomes, AM and BM , whose �-graph is almost identical to

HM (there are one or two additional external vertices in H 0
M

that define the same translocation as v).

Obviously this construction can be done in linear time. It is only left to prove that the number of elements

in the genomes decreases by a constant factor in every call.

Let n and nM be the number of genes in A and AM , respectively. In every recursive call, the number

of chromosomes involved is 2. Hence jH j D n � N (i.e., gray edges in G.A; B/) and jH 0
M j D nM � 2.

Suppose jHM j �
jH j
2

(step 1), then jHM j �
n�N

2
� n

2
� 1. Now nM D jH

0
M
j C 2 � jHM j C 4 � n

2
C 3.

Thus for n � 18, nM �
2n
3

. We update the algorithm as follow. At the beginning, we verify that the

number of genes is at least 18. In this case a recursive call (if needed) will be made with genomes with at

most 2
3

of the genes in A and B . Otherwise, we simply search for a proper safe translocation by computing

�IN.H; v/ for every external vertex v.

Corollary 3. The recursive algorithm solves SRT in O.n2/ time.

5. DISCUSSION

The fundamental observation of Hannenhalli and Pevzner (1995) that translocations can be mimicked by

reversals was made over a decade ago, but until recently the analyses of SRT and SBR had little in common.

Here and in Ozery-Flato and Shamir (2006a), we tighten the connection between the two problems, by

presenting a new framework for the study of SRT that builds directly on ideas and theory developed for

SBR. Using this framework we show here how to transform two central algorithms for SBR, Bergeron’s

score-based algorithm and the Berman-Hannenhalli’s recursive algorithm, into algorithms for SRT. These

new algorithms for SRT maintain the time complexity of the original algorithms for SBR. These results

improve our understanding of the connection between the two problems. Still, deeper investigation into

the relation between SRT and SBR is needed. In particular, providing a reduction from SRT to SBR or

vice versa is an interesting open problem.

Algorithms for SRT can only be applied to a pair of genomes having the same set of chromosome

ends. This requirement is removed if SRT is extended to allow for non-reciprocal translocations, including

fissions and fusions of chromosomes, and the latter can be viewed as translocations involving empty

chromosomes (Hannenhalli and Pevzner, 1995). This more general problem of sorting by translocations

can be reduced in linear time to SRT, as we intend to prove in a future work.

The problem of sorting by reversals, translocations, fissions, and fusions (SBRT) was studied (Han-

nenhalli and Pevzner, 1995; Ozery-Flato and Shamir, 2003; Tesler, 2002a) and proven to be polynomial.

An algorithm solving SBRT is used by the applications GRIMM (Tesler, 2002b) and MGR (Bourque and

Pevzner, 2002), which analyze genome rearrangements in real biological data (Bourque et al., 2004; Mur-

phy et al., 2005; Pevzner and Tesler, 2003). The first step in the current algorithm for SBRT generates two

co-tailed genomes, say A and B , with the same distance as the two input genomes (Tesler, 2002a). In the

following steps, genome A is sorted into genome B using reciprocal translocations and internal reversals

that do not alter the set of chromosome tails. In other words, SBRT is solved by a reduction to a more

constrained problem that allows only for reciprocal translocations and internal reversals. We refer to this

constrained problem as SBRTC. SBRTC is currently solved by a reduction to SBR, where each reversal

simulates either a reciprocal translocation or an internal reversal. We believe that an algorithm for SBRTC

that explicitly treats translocations and reversals as distinct operations would be more natural and powerful

than one that does not. In a future work, we intend to prove that each of the algorithms presented here

and in (Ozery-Flato and Shamir, 2006a) can be extended to solve SBRTC, even when reversals are given

priority over translocations (i.e., a “good” reversal move have a higher priority than a “good” translocation

move).

In an optimal solution to SRT, SBR, and SBRT, every move is safe, i.e., it does not create “bad

components.” Thus the algorithms for these problems mainly focus on finding safe moves. Finding safe

moves is conceptually and algorithmically the hardest part in all these algorithms. In a ground-breaking

paper, Yancopoulos et al. (2005) proposed a new formulation that bypasses the need for safe reversals/

SORTING BY RECIPROCAL TRANSLOCATIONS VIA REVERSALS THEORY 421

translocations by introducing a new genome rearrangement operation called double-cut-and-join (DCJ).

Translocations, reversals, fissions, and fusions can all be viewed as special cases of the DCJ operation.

Unlike all the above operations, a DCJ operation can “loop out” a circular chromosome, which can be

later reabsorbed by another operation. Thus the problem of sorting by DCJ operations (SDCJ) allows for

the creation of intermediate circular chromosomes. Looping out a circular chromosome followed by its

reabsorption can also simulate a block interchange of two blocks in the same chromosome. The problem

of sorting by block interchanges was studied in Christie (1996) and Lin et al. (2005). The ability of DCJs

to create and reabsorb circular chromosomes yields a powerful rearrangement model, for which no “bad

components” exist. This makes the analysis, distance formula, and algorithms of SDCJ (Bergeron et al.,

2006b; Yancopoulos et al., 2005) much simpler and very elegant, in comparison with SRT, SBR, and SBRT.

While circular chromosomes are quite common in prokaryotes cells, they have been found sporadically

in eukaryotes cells, and with some rare exceptions, they are usually not inherited (Ishikawa and Naito,

1999). Thus for the evolution of eukaryotes species, it is reasonable to assume a minimal use, if any, of

circular chromosomes. In particular, when there are no bad components, any algorithm for SBRT solves

SDCJ without creating circular intermediates.

In the future we intend to study SBRT with additional restrictions that will make its solutions more

biologically acceptable. An example for an additional constraint is the exclusion of translocations that

create acentric chromosomes (i.e., chromosomes that lack a centromere), since these chromosomes are

likely to be lost during subsequent cell divisions (Sullivan et al., 2001). As a first step towards solving

this problem, we recently provided a polynomial time algorithm for the constrained problem where only

reciprocal translocations that do not create acentric chromosomes are allowed (Ozery-Flato and Shamir,

2007). Another interesting variant of SBRT we wish to study considers a model in which one type of

operation is preferable over the other. We believe that the study of SRT and its alignment with SBR theory

will assist in the study of these variants of SBRT.

ACKNOWLEDGMENTS

We thank the referees for careful and critical comments that helped to improve this paper. This study

was supported in part by the Israeli Science Foundation (grant 309/02). A preliminary version of this study

appeared in the proceedings of 4th RECOMB Satellite Workshop on Comparative Genomics (Ozery-Flato

and Shamir, 2006b).

REFERENCES

Bader, D.A., Moret, B.M.E., and Yan, M. 2001. A linear-time algorithm for computing inversion distance between

signed permutations with an experimental study. J. Comput. Biol. 8, 483–491.

Bergeron, A. 2005. A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Appl. Math. 146,

134–145.

Bergeron, A., Mixtacki, J., and Stoye, J. 2006a. On sorting by translocations. J. Comput. Biol. 13, 567–578.

Bergeron, A., Mixtacki, J., and Stoye, J. 2006b. A unifying view of genome rearrangements. Lect. Notes Comput.

Sci. 4175, 163–173.

Berman, P., and Hannenhalli, S. 1996. Fast sorting by reversal. Lect. Notes Comput. Sci. 1075, 168–185.

Bourque, G., and Pevzner, P.A. 2002. Genome-scale evolution: reconstructing gene orders in the ancestral species.

Genome Res. 12, 26–36.

Bourque, G., Pevzner, P.A., and Tesler, G. 2004. Reconstructing the genomic architecture of ancestral mammals:

lessons from human, mouse, and rat genomes. Genome Res. 14, 507–516.

Christie, D.A. 1996. Sorting permutaions by block interchanges. Inform. Process. Lett. 60, 165–169.

Hannenhalli, S. 1996. Polynomial algorithm for computing translocation distance between genomes. Discrete Appl.

Math. 71, 137–151.

Hannenhalli, S., and Pevzner, P. 1995. Transforming men into mice (polynomial algorithm for genomic distance

problems). 36th Annual Symposium on Foundations of Computer Science (FOCS’95), 581–592. IEEE Computer

Society Press, Los Alamitos, CA.

Hannenhalli, S., and Pevzner, P. 1999. Transforming cabbage into turnip: polynomial algorithm for sorting signed

permutations by reversals. J. ACM 46, 1–27.

422 OZERY-FLATO AND SHAMIR

Ishikawa, F., and Naito, T. 1999. Why do we have linear chromosomes? A matter of Adam and Eve. Mutation Res.

DNA Repair 434, 99–107.

Kaplan, H., Shamir, R., and Tarjan, R.E. 2000. Faster and simpler algorithm for sorting signed permutations by

reversals. SIAM J. Comput. 29, 880–892.

Kaplan, H., and Verbin, E. 2005. Sorting signed permutations by reversals, revisited. J. Comput. Syst. Sci. 70, 321–341.

Kececioglu. J.D., and Ravi, R. 1995. Of mice and men: Algorithms for evolutionary distances between genomes with

translocation. Proc. 6th Annual Symposium on Discrete Algorithms, 604–613. ACM Press, New York.

Lin, Y.C., Lu, C.L., Chang, H.-Y., et al. 2005. An efficient algorithm for sorting by block-interchanges and its

application to the evolution of vibrio species. J. Comput. Biol. 12, 102–112.

Murphy, W.J., Larkin, D.M., Everts van der Wind, A., et al. 2005. Dynamics of mammalian chromosome evolution

inferred from multispecies comparative maps. Science 309, 613–617.

Nadeau, J.H., and Taylor, B.A. 1984. Lengths of chromosomal segments conserved since divergence of man and

mouse. Proc. Natl. Acad. Sci. USA 81, 814–818.

Ozery-Flato, M., and Shamir, R. 2003. Two notes on genome rearrangements. J. Bioinformatics Comput. Biol. 1,

71–94.

Ozery-Flato, M., and Shamir, R. 2006a. An O.n3=2
p

log.n// algorithm for sorting by reciprocal translocations. Lect.

Notes Comput. Sci. 4009, 258–269.

Ozery-Flato, M., and Shamir, R. 2006b. Sorting by translocations via reversals theory. Lect. Notes Comput. Sci. 4205,

87–98.

Ozery-Flato, M., and Shamir, R. 2007. Rearrangements in genomes with centromeres. Part I: Translocations. In

Proceedings of the 11th Annual International Conference on Computational Molecular Biology (RECOMB 2007),

vol. 4453 of LNCS, Springer, 339–353.

Pevzner, P.A., and Tesler, G. 2003. Genome rearrangements in mammalian evolution: lessons from human and mouse

genomes. Genome Res. 13, 37–45.

Sullivan, B.A., Blower, M.D., and Karpen, G.H. 2001. Determining centromere identity: cyclical stories and forking

paths. Nat. Rev. Genet. 2, 584–596.

Tannier, E., Bergeron, A., and Sagot, M. 2007. Advances on sorting by reversals. Discrete Appl. Math. 155, 881–888.

Tesler, G. 2002a. Efficient algorithms for multichromosomal genome rearrangements. J. Comp. Sys. Sci. 65, 587–609.

Tesler, G. 2002b. GRIMM: genome rearrangements web server. Bioinformatics 18, 492–493.

Yancopoulos, S., Attie, O., and Friedberg, R. 2005. Efficient sorting of genomic permutations by translocation, inversion

and block interchange. Bioinformatics 21, 3340–3346.

Address reprint requests to:

Dr. Michal Ozery-Flato

School of Computer Science

Tel-Aviv University

Tel-Aviv 69978, Israel

E-mail: ozery@post.tau.ac.il

