
Sorting by translocations via reversals theory

Michal Ozery-Flato and Ron Shamir

School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
{ozery,rshamir}@post.tau.ac.il

Abstract. The understanding of genome rearrangements is an impor-
tant endeavor in comparative genomics. A major computational prob-
lem in this field is finding a shortest sequence of genome rearrangements
that ”sorts” one genome into another. In this paper we focus on sorting
a multi-chromosomal genome by translocations. We reveal new relation-
ships between this problem and the well studied problem of sorting by
reversals. Based on these relationships, we develop two new algorithms
for sorting by translocations, which mimic known algorithms for sorting
by reversals: a score-based method building on Bergeron’s algorithm,
and a recursive procedure similar to the Berman-Hannenhalli method.
Though their proofs are more involved, our procedures for translocations
match the complexities of the original ones for reversals.

1 Introduction

For over a decade, much effort has been put into large-scale genome sequenc-
ing projects. Analysis of biological sequence data that have accumulated so far
showed that genome rearrangements play an important role in the evolution of
species. A major computational problem in the research of genome rearrange-
ments is finding a most parsimonious sequence of rearrangements that transforms
one genome into the other. This is called the genomic sorting problem, and the
corresponding number of rearrangements is called the genomic distance between
the two genomes. Genomic sorting gives rise to a spectrum of fascinating combi-
natorial problems, each defined by the set of allowed rearrangement operations
and by the representation of the genomes.

In this paper we focus on the problem of sorting by translocations. We reveal
new similarities between sorting by translocations and the well studied problem
of sorting by reversals. The study of the problem of sorting by translocations is
essential for the full comprehension of any genomic sorting problem that permits
translocations. Below we review the relevant previous results and summarize our
results. Formal definitions are provided on the next section.

Following the pioneering work by Nadeau and Taylor [11], reversals and
translocations are believed to be very common in the evolution of mammalian
species. Reversals (or inversions) reverse the order and the direction of transcrip-
tion of the genes in a segment inside a chromosome. Translocations exchange tails
between two chromosomes. A translocation is reciprocal if none of the exchanged
tails is empty. The genomic sorting problem restricted to reversals (respectively,
reciprocal translocations) is referred to as SBR (respectively, SRT).

2

SBR and SRT were both proven to be polynomial. Hannenhalli and Pevzner [7]
gave the first polynomial algorithm for SBR and since then other more efficient
algorithms and simplifications for the analysis have been presented. Berman and
Hannenhalli [4] presented a recursive algorithm for SBR. Kaplan, Shamir and
Tarjan [8] simplified the analysis and gave an O(n2) algorithm for SBR. Using
a linear time algorithm by Bader, Moret and Yan [1] for computing the rever-
sal distance, the algorithm of Berman and Hannenhalli can be implemented in
O(n2). A score-based algorithm for SBR was presented by Bergeron [2]. Tan-
nier, Bergeron and Sagot [13] presented an elegant algorithm for SBR that can
be implemented in O(n3/2

√
log(n)) using a clever data structure by Kaplan and

Verbin [9].
SRT was first introduced by Kececioglue and Ravi [10] and was given a

polynomial time algorithm by Hannenhalli [5]. Bergeron, Mixtacki and Stoye
[3] pointed to an error in Hannenhalli’s proof of the translocation distance

formula and consequently in Hannenhalli’s algorithm. They presented a new
proof followed by an O(n3) algorithm for SRT. In a recent study [12] we proved
that the algorithm of Tannier et al.[13] for SBR can be adapted to solve SRT
while preserving the original time complexity (that is O(n3/2

√
log(n))).

It is well known that a translocation on a multi-chromosomal genome can be
simulated by a reversal on a concatenation of the chromosomes [6]. However, dif-
ferent translocations require different concatenations. In addition, not all of the
reversals on a concatenation of the chromosomes have matching translocations.
Thus, from a first glance the similarity between SRT and SBT ends here. In [12]
we presented the ”overlap graph with chromosomes” of two multi-chromosomal
genomes, which is an extension of the ”overlap graph” of two uni-chromosomal
genomes. This auxiliary graph established a new framework for the analysis of
SRT that enabled us to adapt the currently fastest algorithm for SBR to SRT
[13, 12]. In this paper we reveal new relationships between SRT and SBR. Based
on these relationships we develop two new algorithms for SRT, which mimic
known algorithms for SBR: a score-based method building on Bergeron’s algo-
rithm [2], and a recursive procedure similar to the Berman-Hannenhalli method
[4]. Though the proofs of the algorithms are more involved than those of their
counterparts for SBR, our procedures for translocations match the complexities
of the original ones for reversals: the score-based algorithms performs O(n2)
operations on O(n) bit vectors; the recursive algorithm runs in O(n2) time.

The paper is organized as follows. Section 2 gives the necessary preliminaries.
Section 3 presents the score-based algorithm and Section 4 presents the recursive
algorithm.

2 Preliminaries

This section provides a basic background for the analysis of SRT. It follows to a
large extent the nomenclature and notation of [5, 8]. In the model we consider,
a genome is a set of chromosomes. A chromosome is a sequence of genes. A gene
is identified by a positive integer. All genes in the genome are distinct. When it

3

appears in a genome, a gene is assigned a sign of plus or minus. For example,
the following genome consists of 8 genes in two chromosomes:

A1 = {(1,−3,−2, 4,−7, 8), (6, 5)}.

The reverse of a sequence of genes I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A
reversal reverses a segment of genes inside a chromosome. Two chromosomes, X
and Y , are identical if either X = Y or X = −Y . Therefore, flipping chromosome
X into −X does not affect the chromosome it represents.

A signed permutation π = (π1, . . . , πn) is a permutation on the integers
{1, . . . , n}, where a sign of plus or minus is assigned to each number. If A is
a genome with the set of genes {1, . . . , n} then any concatenation πA of the
chromosomes of A is a signed permutation of size n. In the following, we assume
w.l.o.g. that there is a concatenation of the chromosomes in B, πB , which is
identical to the identity permutation. For example,

B = {(1, 2, . . . , 5), (6, 7, 8)}.

Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2,
Y1, Y2 are sequences of genes. A translocation cuts X into X1 and X2 and Y
into Y1 and Y2 and exchanges segments between the chromosomes. It is called
reciprocal if X1,X2, Y1 and Y2 are all non-empty. There are two ways to perform
a translocation on X and Y . A prefix-suffix translocation switches X1 with Y2

resulting in:
(X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1,−X1).

A prefix-prefix translocation switches X1 with Y1 resulting in:

(X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2).

Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation
by a flip of one of the chromosomes followed by a prefix-suffix (respectively,
prefix-prefix) translocation. As was demonstrated by Hannenhalli and Pevzner
[6], a translocation on A can be simulated by a reversal on πA in the following
way:

(. . . , X1, X2, . . . , Y1, Y2, . . .) ⇒ (. . . , X1,−Y1, . . . ,−X2, Y2, . . .).

The type of translocation depends on the relative orientation of X and Y in πA

(and not on their order): if the orientation is the same, then the translocation is
prefix-suffix, otherwise it is prefix-prefix. The segment between X2 and Y1 may
contain additional chromosomes that are flipped and thus unaffected.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1,−xk}. Note that
flipping X does not change Tails(X). For a genome A1 define Tails(A1) =⋃

X∈A1
Tails(X). For example:

Tails({(1,−3,−2, 4,−7, 8), (6, 5)}) = {1,−8, 6,−5}.

4

Two genomes A1 and A2 are co-tailed if Tails(A1) = Tails(A2). In particular,
two co-tailed genomes have the same number of chromosomes. Note that if A2

was obtained from A1 by performing a reciprocal translocation then Tails(A2) =
Tails(A1). Therefore, SRT is defined only for genomes that are co-tailed. For the
rest of this paper the word ”translocation” refers to a reciprocal translocation
and we assume that the given genomes, A and B, are co-tailed.

2.1 The Cycle Graph

Let N be the number of chromosomes in A (equivalently, B). We shall always
assume that both A and B contain genes {1, . . . , n}. The cycle graph of A and
B, denoted G(A,B), is defined as follows. The set of vertices is

⋃n
i=1{i0, i1}.

For every pair of adjacent genes in B, i and i + 1, add a grey edge (i, i +
1) ≡ (i1, (i + 1)0). For every pair of adjacent genes in A, i and j, add a black
edge (i, j) ≡ (out(i), in(j)), where out(i) = i1 if i has a positive sign in A and
otherwise out(i) = i0, and in(j) = j0 if j has a positive sign in A and otherwise
in(j) = j1. An example is given in Fig. 1. There are n − N black edges and
n−N grey edges in G(A, B). A grey edge (i, i + 1) is external if the genes i and
i + 1 belong to different chromosomes of A, otherwise it is internal.

61 50 5180 81 6011 31 30

Chromosome 2Chromosome 1

10 41 71 7021 20 40

Fig. 1. The cycle graph G(A1, B1), where A1 = {(1,−3,−2, 4,−7, 8), (6, 5)} and B1 =
{(1, . . . , 5), (6, 7, 8)}. Dotted lines corresponds to grey edges.

Every vertex in G(A,B) has degree 2 or 0, where vertices of degree 0 (iso-
lated vertices) belong to Tails(A) (equivalently, Tails(B)). Therefore, G(A, B)
is uniquely decomposed into cycles with alternating grey and black edges. Note
that the cycle graph is uniquely decomposed into cycles iff A and B are co-tailed.
An adjacency is a cycle with two edges.

2.2 The Overlap Graph with Chromosomes

Place the vertices of G(A, B) along a straight line according to their order in πA.
Now, every grey edge can be associated with an interval of vertices of G(A,B).
Two intervals overlap if their intersection is not empty but none contains the
other. The overlap graph with chromosomes of A and B w.r.t. πA, denoted
OVCH(A,B, πA), is defined as follows. There are two types of vertices. The

5

first type corresponds to grey edges in G(A,B)}. The second type corresponds
to chromosomes of A. Two vertices are connected if their associated intervals of
vertices overlap. For example see Fig. 2.

(7,8)(6,7) oriented internal

oriented external

unoriented external

chromosome 2

chromosome 1
unoriented internal

chromosome

(1,2) (3,4) (4,5)(2,3)

Fig. 2. The overlap graph with chromosomes OVCH(A1, B1, πA1), where A1, B1 and πA1

are as A1 and B1 are the genomes from Fig. 1 and πA1 = (1,−3,−2, 4,−7, 8, 6, 5). The
graph induced by the vertices within the dashed rectangle is OV(A1, B1, πA1).

In order to prevent confusion, we will refer to vertices that correspond to
chromosomes as ”chromosomes” and reserve the word ”vertex” for the vertices
that correspond to edges. A vertex in OVCH(A,B, πA) is external iff there is
an edge connecting it to a chromosome, otherwise it is internal. Note that the
internal/external state of a vertex in OVCH(A, B, πA) does not depend on πA

(the partition of the chromosomes is known from A). A vertex in the overlap
graph is oriented if its corresponding edge connects two genes with different signs
in πA, otherwise it is unoriented.

Let OV(A,B, πA) be the subgraph of OVCH(A,B, πA) induced by the set of
vertices that correspond to grey edges (i.e. excluding the chromosomes’ vertices).
We shall use the word ”component” for a connected component of OV(A,B, πA).
The set of components in OVCH(A,B, πA) can be computed in linear time using
an algorithm by Bader, Moret and Yan [1]. A component in OVCH(A,B, πA) is
external if at least one of the vertices in it is external, otherwise it is internal.
A component is trivial if it is composed of one internal vertex. A trivial compo-
nent corresponds to an adjacency. It is not hard to see that the set of internal
components in OVCH(A,B, πA) is independent of πA. Denote by IN (A,B) the
set of non-trivial internal components in OVCH(A, B, πA).

2.3 The Reciprocal Translocation Distance

Let c(A,B) denote the number of cycles in G(A,B).

Theorem 1 [3, 5] The reciprocal translocation distance between A and B is
d(A, B) = n−N − c(A,B) + F (A,B), where F (A,B) ≥ 0 and F (A,B) = 0 iff
IN (A,B) = ∅.

6

Let ∆c denote the change in the number of cycles after performing a translo-
cation on A. Then ∆c ∈ {−1, 0, 1} [5]. A translocation is proper if ∆c = 1.
translocation is safe if it does not create any new non-trivial internal compo-
nent. A translocation ρ is valid if d(A · ρ,B) = d(A,B) − 1. A It follows from
Theorem 1 that if IN (A,B) = ∅, then every safe proper translocation is neces-
sarily valid.

In a previous paper [12] we presented a generic algorithm for SRT that uses
a sub-procedure for solving SRT when IN (A, B) = ∅. The generic algorithm
focuses on the efficient elimination of the non-trivial internal components. We
showed that the work performed by this generic algorithm, not including the
sub-procedure calls, can be implemented in linear time. This led to the following
theorem:

Theorem 2 [12] SRT is linearly reducible to SRT with IN(A,B) = ∅.

By the theorem above, it suffices to solve SRT assuming that IN (A,B) = ∅.
Both algorithms that we describe below will make this assumption.

2.4 The Effect of a Translocation on the Overlap Graph with
Chromosomes

Let H = OVCH(A,B, πA) and let v be any vertex in H. Denote by N(v) ≡
N(v, H) the set of vertices that are neighbors of v in H, including v itself (but
not including chromosome neighbors). Denote by CH(v) ≡ CH(v,H) the set of
chromosomes that are neighbors of v in H. Hence if v is external then |CH(v)| =
2, otherwise CH(v) = ∅.

Every external grey edge e defines one proper translocation that cuts the
black edges incident to e. (Out of the two possibilities of prefix-prefix or prefix-
suffix translocations, exactly one would be proper.) For an external vertex v
denote by ρ(v) the proper translocation that the corresponding grey edge defines
on A. Let H · ρ(v) = OVCH(A · ρ(v), B, πA). Given two sets S1 and S2 define
S1

⊕
S2 = (S1

⋃
S2) \ (S1

⋂
S2).

Lemma 1 [12] Let v be an oriented external vertex in H. Then H · ρ(v) is ob-
tained from H by the following operations. (i) Complement the subgraph induced
by N(v) and flip the orientation of every vertex in N(v). (ii) For every vertex
u ∈ N(v) such that the endpoints of u and v share at least one common chro-
mosome, complement the edges between u and CH(u)

⋃
CH(v) (In other words

CH(u, H · ρ(v)) = CH(u, H)
⊕

CH(v, H)).

Two overlap graphs with chromosomes are equivalent if one can be obtained
from the other by a sequence of chromosome flips. For a chromosome X let ρ(X)
denote a flip of chromosome X in πA. Let H · ρ(X) = OVCH(A,B, πA · ρ(X)).

Lemma 2 [12] H · ρ(X) is obtained from H by complementing the subgraph
induced by the set {u : X ∈ CH(u)} and flipping the orientation of every vertex
in it.

7

It follows that an unoriented external vertex v in H becomes an oriented
(external) vertex in H · ρ(X), where X ∈ CH(v).

3 A score-based algorithm

In this section we present a score-based algorithm for SRT when IN (A,B) = ∅.
This algorithm is similar to an algorithm by Bergeron for SBR [2].

Denote by NIN(v) and NEXT(v) the neighbors of v that are respectively
internal and external. It follows that NIN(v)

⋃
NEXT(v)

⋃{v} = N(v).

Lemma 3 Let v be an oriented external vertex in H and let w be a neighbor
of v. w has no external neighbors in H · ρ(v) iff NEXT(w) ⊆ NEXT(v) and
NIN(v) ⊆ NIN(w).

For each vertex v in H we define the score |NEXT(v)| − |NIN(v)|. Define
∆IN(H, v) as the set of vertices that belong to external components in H but
are in non-trivial internal components in H · ρ(v).

Lemma 4 Let O be a set of oriented external vertices. Let v ∈ O be a vertex
with maximal score in O. Then O

⋂
∆IN(H, v) = ∅.

Proof. Assume that u ∈ O
⋂

∆IN(H, v). Then u ∈ N(v,H) and by Lemma 3
NEXT(u) ⊆ NEXT(v) and NIN(v) ⊆ NIN(u). However, since v has the maximal
score in O, we get NEXT(u) = NEXT(v) and NIN(v) = NIN(u). Therefore, u is
an isolated internal vertex in H · ρ(v), a contradiction for u ∈ ∆IN(H, v). ut

Theorem 3 Let O be a non-empty set of all the oriented external vertices in
H that overlap the same pair of chromosomes (i.e. CH(u) = CH(v) for every
u, v ∈ O). Let v ∈ O be a vertex that has the maximal score in O. Let S be the
set of all the vertices w that satisfy the following conditions in H:

1. w is a neighbor of v,
2. w is an unoriented external vertex and CH(w) = CH(v),
3. NEXT(w) ⊆ NEXT(v),
4. NIN(v) ⊆ NIN(w), and
5. O

⋂
NEXT(v) ⊆ NEXT(w).

If S = ∅ then ρ(v) is safe. Otherwise, let w ∈ S be a vertex that has a maximal
score in H · ρ(X), where X ∈ CH(v). Then ρ(w) is safe.

Proof. Suppose S = ∅ and assume that v is not safe. Let w ∈ ∆IN(H, v) be a
neighbor of v in H. It follows from Lemma 1 that CH(w) = CH(v). It follows
from Lemmas 3 and 4 that w ∈ S, a contradiction.

Suppose S 6= ∅. Let O1 = O
⋂

NEXT(v). Then there are all possible edges
between S and O1 in H (last condition). Let H ′ = H · ρ(X), where X ∈ CH(v).
In H ′ all the vertices in S are oriented. Moreover, there are no edges between S
and O1

⋃{v} in H ′. It follows that O1

⋃{v} remain external after performing a

8

translocation on any vertex in S. Let w ∈ S be a vertex with maximal score in
S and assume ∆IN(H ′, w) 6= ∅. Let u ∈ ∆IN(H ′, w) be a neighbor of w in H ′.
Then u satisfies: (i) CH(u) = CH(w) and (ii) there are no edges between u and
O1

⋃{v} in H ′. Moreover, u is oriented in H ′ since otherwise u ∈ O1 and thus
could not be a neighbor of w. It follows that u satisfies conditions 1, 2 and 5 in
H. However, by Lemma 4 it follows that u /∈ S. Hence there are two possible
cases:

Case 1: NEXT(u) * NEXT(v) in H (i.e. condition 3 is not satisfied). Suppose
z ∈ NEXT(u) and z /∈ NEXT(v) in H. Then z /∈ NEXT(w) in H (condition 3).

Case 1.a: X /∈ CH(z). Then in H ′: z ∈ NEXT(u) and z /∈ NEXT(w). Then
according to Lemma 3, z has an external neighbor in H ′ · ρ(w), a contradiction.

Case 1.b: X ∈ CH(z). Then in H ′: z /∈ N(u), z ∈ N(v), z ∈ N(w). Therefore,
in H ′ ·ρ(w) the path u, z, v exists, a contradiction (since v is external in H ′ ·ρ(w)).

Case 2: NIN(v) * NIN(u) in H (i.e. condition 4 is not satisfied). Then there
exists x ∈ NIN(v), x /∈ NIN(u) in H ′. It follows from condition 4 that x ∈ NIN(w)
in H ′. Since x is internal, all its edges exist in H ′. It follows from Lemma 3 that
u has an external neighbor (x) in H ′ · ρ(w), a contradiction. ut

Theorem 3 immediately implies an O(n3) algorithm that can be implemented
using operations on bit vectors, in a similar manner to the implementation of
the algorithm of Bergeron [2] for SBR. The algorithm is presented in Fig. 3 and
uses the following notations. v denotes a bit vector of size n−N corresponding
to a vertex v, where v[u] = 1 iff u is a neighbor of v. X denotes a bit vector of
size n−N corresponding to chromosome X where X[v] = 1 iff X ∈ CH(v). ext
and o are two bit vectors of size n − N . ext[u] = 1 iff u is external. o[u] = 1
iff u is oriented. The score of each vertex is stored in an integer vector score.∧

,
∨

,
⊕

and ¬ respectively denote the bitwise-AND, bitwise-OR, bitwise-XOR
and bitwise-NOT operators.

One of the major differences between this algorithm and the original algo-
rithm [2] is that in some cases our algorithm performs two passes of maximum
score search while Bergeron’s algorithm performs only one pass.

4 A recursive algorithm

In this section we present a recursive algorithm for SRT when IN (A,B) = ∅.
This algorithm is similar to an algorithm by Berman and Hannenhali for SBR
[4].

Theorem 4 Let v be an oriented external vertex in H. Let w be a neighbor of
v in H. If w ∈ ∆IN(H, v) then ∆IN(H,w) ⊂ ∆IN(H, v).

Proof. Suppose w ∈ ∆IN(H, v). Obviously CH(v) = CH(w). Let x be a vertex
in H such that x /∈ ∆IN(H, v). We shall prove that x /∈ ∆IN(H, w). Let x =
x0, . . . , xk = y be a shortest path from x to an external vertex in H · ρ(v). Then
in H: xj is neighbor of v iff xj is a neighbor of w, for j = 1..k.

9

1. Choose v with maximal score such that ext[v] = o[v] = 1.
2. Choose X, Y such that X[v] = Y [v] = 1.
3. S1 ← X

V
Y
V

v
V¬o

4. Build the vector S as follows.
S[w] ← 1 if the following conditions hold:
– S1[w] = 1 (conditions 1 and 2)
– (w

V
ext)

W
v = v (condition 3)

– (v
V¬ext)

W
w = w (condition 4)

– (v
V

ext
V

o)
W

w = w (condition 5)
5. If S 6= 0 then flip X:

a. For every u such that X[u] = 1:
i. score ← score + u
ii. u ← u

L
X

iii. score ← score− u
b. Choose v such that S[v] = 1 and score[v] is maximal.

(Perform ρ(v) where v is an oriented external vertex)
6. score ← score + v
7. v[v] = 1
8. For every u such that v[u] = 1

a. If ext[u] = 1: then score ← score + u
else: score ← score− u

b. u[u] = 1, u ← u
L

v
c. If ext[u] = 0: X[u] = 1, Y [u] = 1, ext[u] = 1

Else if X[u] + Y [v] = 2: X[u] = 0, Y [u] = 0,ext[u] = 0
Else if X[u] = 1: X[u] = 0, Y [u] = 1.
Else if Y [u] = 1: Y [u] = 0, X[u] = 1.

d. If ext[u] = 1: score ← score− u
Else: score ← score + u

Fig. 3. A score-based algorithm for performing a safe translocation.

Case 1: w is oriented in H. Then the subgraphs induced by the vertices
{x0, . . . , xk} in H · ρ(w) H · ρ(v) are the same. Hence in H · ρ(w): y is external
and the path in x = x0, . . . , xk = y exists.

Case 2: w is unoriented in H. In H · ρ(v) the vertices in {x0, . . . , xk−1} are
internal and xk(= y) is external. Therefore xj ∈ {x0, . . . , xk−1} satisfies in H:
(i) xj is a neighbor of v iff xj is external and CH(xj) = CH(w), and (ii) xj is
not a neighbor of v iff xj is internal. Denote by H ′ the graph obtained from H
after flipping one of the chromosomes in CH(w).

Case 2.a: at least one vertex in {x0, ..., xk−1} is a neighbor of v in H. Choose
xj ∈ {x0, . . . , xk−1} a neighbor of v in H such that {x0, . . . , xj−1} are not neigh-
bors of v in H. Then in H the following conditions are satisfied: (i) x0, . . . , xj is
a path, (ii) all the vertices in {x0, . . . , xj−1} are internal and (iii) xj is external
satisfying CH(xj) = CH(v). Therefore in H ′ the path x0, . . . , xj still exists and
none of the vertices in the path is a neighbor of v (equivalently, w). Hence, the
path remains intact in H ′ · ρ(w).

10

Case 2.b: none of the vertices in {x0, . . . , xk−1} is a neighbor of v in H.
Then the path x0, . . . , xk exists in H ′. v is not a neighbor of w in H ′ hence v
remains external in H ′ · ρ(w). If xk is a neighbor of v and w in H ′ then the path
x0, . . . , xk, v exists in H ′ · ρ(w) and hence x = x0 /∈ ∆IN(H, w). If xk is not a
neighbor of v and w in H ′ then xk is necessarily external in H ′ (equivalently,
H). Thus none of the subgraphs induced by {x0, . . . , xk} in H ′ and H ′ ·ρ(w) are
identical. Hence x = x0 /∈ ∆IN(H, w). ut

Theorem 5 If H contains an external vertex then there exists an external vertex
v such that ∆IN(H, v) ≤ n−N

2 .

Proof. Let v be an external vertex and assume CH(v) = {X, Y }. Let VXY =
{u : CH(u) = {X, Y }}. Let OXY ⊆ VXY be the set of oriented vertices in VXY .
We can assume w.l.o.g. that |OXY | ≥ |VXY |

2 (otherwise we flip X).
Case 1: there are two vertices, v1, v2 ∈ OXY , which are not neighbors. Let

M1 = ∆IN(H, v1) and M2 = ∆IN(H, v2). We shall prove that M1

⋂
M2 = ∅,

and hence min{|M1|, |M2|} ≤ n−N
2 . Assume u ∈ M1 and let u = u0, . . . , uk = v1

be the shortest path from u to v1 in H. Since v2 remains intact in H · ρ(v1)
there is no edge from v2 to any edge in that path. Therefore this path exists in
H · ρ(v2) and hence u /∈ M2.

Case 2: the vertices in OXY form a click. Let v be a vertex with maximal
score (|NIN(v)−NEXT(v)|). Then by Lemma 4, OXY

⋂
∆IN(H, v) = ∅ and hence

|∆IN(H, v)| ≤ |VXY \OXY | ≤ |VXY |
2 ≤ n−N

2 . ut

Algorithm Find Safe Translocation Recursive

1. πA ← a concatenation of the chromosomes in A
2. Choose v from H = H(A, B, πA) according to Theorem 5.
3. If ∆IN(H, v) 6= ∅:

a. M ← ∆IN(H, v)
b. Genes(M) ← {i : (i, i + 1) ∈ M}
c. Let AM (respectively, BM) be the genome accepted from A (respec-

tively, B) after deleting all the genes that do not appear in Genes(M).
Remove common adjacencies of AM and BM by deleting one of the
genes in each adjacency from both AM and BM . Relabel the genes in
AM and BM such that there is a concatenation of the chromosomes in
BM that is identical to the identity permutation.

d. v ← Find Safe Translocation Recursive(AM , BM)
4. Return v

Fig. 4. A recursive algorithm for locating a safe translocation.

Figure 4 presents a recursive algorithm for SRT that follows from Theorems
4 and 5. Note that in step 3.d the two genomes AM and BM must be co-tailed

11

since their cycle graph contains only cycles. We prove below that each call of the
algorithm can be implemented in linear time, hence the algorithm is O(n2).

Computing ∆IN(H, v): We use a linear time algorithm by Bader, Moret and
Yan [1] for computing the components of an overlap graph. The input for the
algorithm is the permutation πA ·ρ(v). The span of a component M is an interval
of genes I(M) = [i, j] ⊂ πA, where i = arg min{π−1

A (i1), π−1
A (i2) | (i1, i2) ∈ M}

and j = arg max{π−1
A (j1), π−1

A (j2) | (j1, j2) ∈ M}. Clearly we can compute the
spans of all the components in linear time. A component is internal iff the two
endpoints of its span belong to the same chromosome of A.

Implementation of step 2: Align the vertices of G(A,B) according to πA. For
v, a vertex in H, denote by Left(v) and Right(v) the left and right endpoints
respectively of its corresponding grey edge. Find two chromosomes X and Y
such that there exists an external vertex that overlaps both of them. Suppose X
is found to the left of Y in πA. Flip if necessary chromosome Y in πA to achieve
|OXY | ≥ |VXY |

2 . Suppose OXY = {v1, . . . , vk}, where Left(vj) < Left(vj+1) for
j = 1..k − 1.

If there exist two subsequent vertices vj and vj+1 such that Right(vj) >
Right(vj+1), then we found two edges that do not overlap. The computation of
∆IN(H, vj) and ∆IN(H, vj+1) is as described above. Otherwise, the vertices in
OXY form a click. We calculate the score for all the vertices in OXY in linear
time in the following way. Let {I1, . . . , Ik} be a set of intervals forming a click.
Let U = {J1, . . . , Jl} another set of intervals. Let U(j) denote the number of
intervals in U which overlap with Ij . There is an algorithm by Kaplan, Shamir
and Tarjan [8] that computes U(j), j = 1..k in O(k + l). We use this algorithm
twice to compute |NEXT(vj)| and |NIN(vj)|, for j = 1..k.

5 Summary

In spite of the fundamental observation of Hannenhalli and Pevzner that translo-
cations can be mimicked by reversals [6], until recently the analyses of SRT and
SBR had little in common. Here and in [12] we tighten the connection between
the two problems, by presenting a new framework for the study of SRT that
builds directly on ideas and theory developed for SBR. Using this framework
we show here how to transform two central algorithms for SBR, Bergeron’s
score-based algorithm and the Berman-Hannenhalli’s recursive algorithm, into
algorithms for SRT. These new algorithms for SRT maintain the time complexity
of the original algorithms for SBR. These results strengthen our understanding
of the connection between the two problems. Still, deeper investigation into the
relation between SRT and SBR is needed. In particular, providing a reduction
from SRT to SBR or vice versa is an open interesting problem.

References

1. D.A. Bader, B. M.E. Moret, and M. Yan. A linear-time algorithm for comput-
ing inversion distance between signed permutations with an experimental study.
Journal of Computational Biology, 8(5):483–491, 2001.

12

2. A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory.
Discrete Applied Mathematics, 146(2):134–145, 2005.

3. A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. Journal of
Computational Biology, 13(2):567–578, 2006.

4. P. Berman and S. Hannenhalli. Fast sorting by reversal. In Daniel S. Hirschberg
and Eugene W. Myers, editors, Combinatorial Pattern Matching, 7th Annual Sym-
posium, volume 1075 of Lecture Notes in Computer Science, pages 168–185, Laguna
Beach, California, 10-12 June 1996. Springer.

5. S. Hannenhalli. Polynomial algorithm for computing translocation distance be-
tween genomes. Discrete Applied Mathematics, 71:137–151, 1996.

6. S. Hannenhalli and P. Pevzner. Transforming men into mice (polynomial algorithm
for genomic distance problems). In 36th Annual Symposium on Foundations of
Computer Science (FOCS’95), pages 581–592, Los Alamitos, 1995. IEEE Computer
Society Press.

7. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM, 46:1–
27, 1999. (Preliminary version in Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing 1995 (STOC 95), pages 178–189).

8. H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for sorting
signed permutations by reversals. SIAM Journal of Computing, 29(3):880–892,
2000. (Preliminary version in Proceedings of the eighth annual ACM-SIAM Sym-
posium on Discrete Algorithms 1997 (SODA 97), ACM Press, pages 344–351).

9. H. Kaplan and E. Verbin. Sorting signed permutations by reversals, revisited.
Journal of Computer and System Sciences, 70(3):321–341, 2005. A preliminary
version appeared in Proc. CPM03, Springer, 2003, pages 170–185.

10. J. D. Kececioglu and R. Ravi. Of mice and men: Algorithms for evolutionary
distances between genomes with translocation. In Proceedings of the 6th Annual
Symposium on Discrete Algorithms, pages 604–613, New York, NY, USA, January
1995. ACM Press.

11. J. H. Nadeau and B. A. Taylor. Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc Natl Acad Sci U S A, 81(3):814–818, 1984.

12. M. Ozery-Flato and R. Shamir. An O(n3/2
p

log(n)) algorithm for sort-
ing by reciprocal translocations. Accepted to CPM 2006. Available at
http://www.cs.tau.ac.il/∼ozery/srt cpm06.pdf.

13. E. Tannier, A. Bergeron, and M. Sagot. Advances on sorting by reversals. to appear
in Discrete Applied Mathematics.

