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Abstract

The availability of the human genome sequence has revolutionized human genetics

research. By studying the differences in the genomes between sick and healthy

individuals one can associate particular differences with the disease. Such as-

sociation is the first step towards understanding disease cause, diagnostics and

eventually therapy. In this thesis we study several problems related to the most

common type of sequence differences, single nucleotide polymorphisms (SNPs).

We first explore tag SNP selection criteria. We compare two algorithms that

use different criteria for selecting tag SNPs: the r2 criterion and the prediction

accuracy criterion. By performing extensive simulations with real haplotypes

we show that tags selected according to the prediction accuracy criterion provide

higher power to association studies. We show that the magnitude of the advantage

in power is dependent on the tag density. When choosing tags at high density,

both methods provide comparable and very high power, but as the tag density

decreases, the advantage of the prediction accuracy criterion grows larger.

We next describe a software package for genotype analysis that we developed.

The software package combines state-of-the-art algorithms for genotype phas-

ing, tag SNP selection, and association testing, with convenient visualizations.

By streamlining the application of the algorithms, which were only available as

batch executables previously, we make the algorithms accessible to the broad

community of researchers in genetics.

Lastly, we describe three studies on Crohn’s Disease performed in collabora-

tion with gastroenterologists from Wolfson and Rambam medical centers. In these

studies we applied common methods for statistical analysis and developed neces-

sary ad-hoc adjustments, in order to identify genotype-phenotype and phenotype-

phenotype associations. The studies and methods used are briefly summarized

here while full information is given in articles published in the literature.
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Chapter 1

Introduction and Summary

The availability of the human genome sequence has revolutionized human genetics

research. By studying the differences in the genomes between sick and healthy

individuals one can associate particular differences with the disease. Such as-

sociation is the first step towards understanding disease cause, diagnostics and

eventually therapy. In this thesis we study several problems related to the most

common type of sequence differences, single nucleotide polymorphisms (SNPs).

Chapter 2 provides biological background and discusses several key chal-

lenges in human genetics. It also describes three of the most common tasks in

human genetics research: genotype phasing, tag SNP selection, and association

studies.

In Chapter 3 we explore tag SNP selection criteria. We compare two al-

gorithms that use different criteria for selecting tag SNPs: Tagger [12], a very

popular and widely used program, which uses the r2 criterion, and STAMPA [21]

which uses the prediction accuracy criterion. We ask the following question: given

the two tag SNP selection algorithms, which one would give the highest power

to association studies that use tag SNPs selected by it? In order to answer the

question we perform extensive simulations with real haplotypes. We choose tag

SNPs with both methods, simulate case/control panels, and perform association

tests to evaluate the power of each method. Several scenarios and tag densities

were tested. We show that STAMPA attains significantly and consistently higher

power than Tagger. We also show that the strong advantage in the power is

explained primarily by the selection criterion of STAMPA, prediction accuracy.

When choosing tags at high density, both methods provide comparable and very
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Chapter 1. Introduction and Summary

high power, but as the tag density decreases, STAMPA’s advantage grows larger.

This study, which was done jointly with Dr. Gad Kimmel and Dr. Eran Halperin,

was submitted for publication and is currently under review.

In Chapter 4 we describe a software package for genotype analysis that we

developed. The software package, called GEVALT, combines state-of-the-art al-

gorithms for genotype phasing (GERBIL [27]), tag SNP selection (STAMPA [21]),

and association testing (RAT [28]), with convenient visualizations. By stream-

lining the application of GERBIL, STAMPA and RAT together with strong visu-

alization for assessment of the results, GEVALT makes the algorithms accessible

to the broad community of researchers in genetics. Most of these results were

published in BMC Bioinformatics [10].

Lastly, Chapter 5 describes three studies on Crohn’s Disease (CD) per-

formed in collaboration with gastroenterologists from Wolfson and Rambam med-

ical centers. In the first study, published in Inflammatory Bowel Diseases [32],

we searched for genotype–phenotype and phenotype–phenotype correlations in a

large pediatric cohort consisting of patients from Israel, USA, and Italy. We found

a correlation between age of onset of the disease and the disease location. Inter-

estingly, this correlation was also dependent on genotype. In the second study,

published in The American Journal of Gastroenterology [25], we studied perianal

Crohn’s disease (PD) which is a frequent complication of CD. We found two

factors to be associated with PD: rectal inflammation and ethnicity (Sephardic

origin). All SNPs tested were not associated with PD. The third study, published

in International Journal of Colorectal Disease [31], searched for an association

between a SNP in the NFKBIA gene and CD. This SNP was previously found to

be associated with CD in a German cohort. We did not find the SNP to be asso-

ciated with CD in our Israeli cohort. Neither associations with other phenotypes

nor interactions with other SNPs were found.
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Chapter 2

Background

This chapter provides background on common terms and tasks in human genetics.

The chapter is organized as follows. Section 2.1 defines biological terms that are

in frequent use throughout this thesis. Section 2.2 discusses a key aspect in the

organization of the genome, known as linkage disequilibrium. The last three

sections describe three of the most common tasks in human genetics research:

genotype phasing, tag SNP selection, and association studies.

2.1 Biological Background

DNA (Deoxyribonucleic acid) is a nucleic acid molecule that contains the ge-

netic instructions used in the development and functioning of all known living

organisms. Chemically, DNA is a long polymer of four simple units called nu-

cleotides or bases. The four bases are adenine, cytosine, guanine, and thymine,

abbreviated as A, C, G, and T, respectively. The DNA is organized in separate

linear molecules called chromosomes. The human genome, for example, contains

approximately three billion bases divided into 23 chromosomes. Most sexually

reproducing organisms are diploid, i.e., have a duplicate set of genetic material

consisting of paired chromosomes, one from each parent. Such paired chromo-

somes, called homologous, are essentially identical, having only small differences

originating from the variability present in the population.

One main source of variation comes from Single Nucleotide Polymorphisms

(SNPs) (see [61] for a review). A SNP is a single nucleotide position in the

genome that differs across members of a species. The different possible bases in
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Chapter 2. Background 2.1. Biological Background

Figure 2.1: SNPs and haplotypes. (a) Four chromosomes from the population are

shown. The chromosomes are identical in all positions except three positions in-

dicated by an arrow. These positions are called Single Nucleotide Polymorphisms

(SNPs). Each SNP has two alleles. For example, the leftmost SNP has alleles T

and C. (b) The four chromosomes are shown as haplotypes. A haplotype is the

sequence of alleles in contiguous SNP positions along a chromosomal region.

a site are called alleles (see Figure 2.1a). Almost all SNPs have only two alleles

(out of four possible). In the human genome, around five millions of SNPs have

been detected [47, 63], out of an estimated total of ten million common SNPs.

As mentioned above, homologous chromosomes of an individual are almost

identical with some small differences. These differences occur mainly at SNPs,

although other types of polymorphisms occur (e.g. microsatellites [46], restric-

tion fragment length polymorphisms [6], rearrangements [35], and copy number

variations [50]). An individual is said to be homozygous for a SNP if the same

allele is present at both homologous chromosomes, and heterozygous otherwise.

The sequence of alleles in contiguous SNP positions along a chromosomal region

is called a haplotype (see Figure 2.1b). Conflating the two haplotypes of an in-

dividual (from both homologous chromosomes) creates the individual’s genotype

(see Section 2.3). A major source for variation of haplotypes in the population

comes from recombination. Generally, recombination is the process by which a

strand of DNA is broken and then joined to the end of a different DNA molecule.

In this context recombination occurs as chromosomal crossover between paired

homologous chromosomes (see Figure 2.2). This process occurs naturally in

meiosis, and leads to ”mixing” of the two chromosomes in each parent, before
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Chapter 2. Background 2.2. Linkage Disequilibrium

one of them is passed to the offspring.

Figure 2.2: Chromosomal crossover. A short region of two homologous chromo-

somes is shown. This individual is heterozygous for three SNPs with alleles de-

noted by a,A,b,B,c,C. Its two haplotypes are: ABC and abc. After the crossover

event two new haplotypes are created: ABc and abC.

2.2 Linkage Disequilibrium

Linkage Disequilibrium (LD) is a term used for the non-random association of

alleles at two or more loci in the population. In this section we will focus on

LD between two SNPs. Denote the two alleles of the first SNP as A and a, and

the two alleles of the second SNP as B and b. If the two SNPs are independent,

we will expect the frequency of the AB haplotype in the population to be ap-

proximately the product of the frequencies of alleles A and B. If this is true for

all four haplotypes we say that the SNPs are in linkage equilibrium. Deviations

from the expected frequencies of haplotypes suggest that the SNPs are in linkage

disequilibrium. The larger the deviation from these frequencies, the larger the LD

between the SNPs. A wide variety of statistics have been proposed to measure

the amount of LD between a pair of SNPs [13, 4]. The most widely used are

D, D′ and r2, described below:

D = p(AB)− p(A)p(B),
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Chapter 2. Background 2.2. Linkage Disequilibrium

where p(·) is the frequency of the allele/haplotype. Note that |D| is independent

of the choice of the major and minor alleles in A and B.

D′ = D/Dmax,

where

Dmax =

{
min{p(A)p(b), p(a)p(B)} D ≥ 0

max{−p(A)p(B),−p(a)p(b)} D < 0
,

and

r2 =
D2

p(A)p(a)p(B)p(b)
.

Both D′ and r2 take values in the range [0, 1], where 0 corresponds to linkage

equilibrium. D′ = 1 can be described as ”complete LD” because the correlation

between the SNPs is as strong as possible (D = Dmax), given the allele frequencies

of the two SNPs. r2 equals 1 only when the two SNPs are completely identical,

and therefore described as ”perfect LD”.

Another common statistic is the logarithm of odds (LOD) score. This statistic

compares the likelihood of the data under two hypotheses: H0 – linkage equilib-

rium, and H1 – linkage disequilibrium. The likelihood of the data is calculated

assuming a multinomial distribution as follows:

L =
(nAB + nAb + naB + nab)!

nAB!nAb!naB!nab!
p(AB)nABp(Ab)nAbp(aB)naBp(ab)nab

where nij is the observed number of occurrences of the ij haplotype. The LOD

score is log10(L1/L0), where L1 is the likelihood of the data under H1, and L0 is

the likelihood under H0. L1 is calculated by plugging in the observed haplotype

frequencies into the equation above. L0 is calculated by plugging in the expected

haplotype frequencies under linkage equilibrium (i.e. p(AB) = p(A)p(B) etc.).

All LD statistics described above require knowing the haplotype frequencies

in the population. It is straightforward to calculate these frequencies when hap-

lotypes are given but in most cases only genotypes are known. The haplotypes of

an individual that is heterozygous in both SNPs are unknown since he can have

two possible pairs of haplotypes: AB and ab, or Ab and aB. So in the case where

only genotypes are given the maximum-likelihood estimators of the haplotype

frequencies can be estimated by a simple Expectation-Maximization (EM) pro-

cedure [15]. EM iteratively estimates the haplotype frequencies in the population

and assigns the most probable haplotypes to double heterozygous individuals.
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Chapter 2. Background 2.2. Linkage Disequilibrium

LD tends to decay with physical distance between SNPs, so high values of

LD are expected mainly between SNPs located closely on the same chromosome.

This can be explained by the fact that the main cause for LD between two

SNPs is the rate of recombination between the two sites which increases with

physical distance. Other causes for LD are random drift, non-random mating,

and interactions between loci.

A major recent discovery is that the recombination rate along chromosomes is

not fixed, but tends to vary widely [17, 40]. It seems that recombination is very

frequent in some narrow regions called hotspots, with very little recombination

occurring between these hotspots. The regions between hotspots are called blocks

of LD since the SNPs inside those regions tend to be in high LD (see Figure 2.3).

Figure 2.3: Blocks of LD. Pairwise LD measures between ten SNPs are shown.

The pairwise LD is color coded from white (r2 = 0) to black (r2 = 1). Each

square is color coded with the LD between the two SNPs on the two diagonals it

belongs to. Two blocks are identified separating the first five SNPs from the last

five. It can be seen that the amount of LD between SNPs from the same block

is much higher than between SNPs from separate blocks. The figure was created

with the GEVALT software [10].
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Chapter 2. Background 2.3. Phasing

2.3 Phasing

Most current genotyping techniques produce the genotypes, and not haplotypes,

of the tested individuals. Since haplotypes are more informative than genotypes

(e.g. for LD calculations as described in the previous section) it is desirable to

estimate the haplotypes. The task of estimating the individuals’ haplotypes from

their observed genotypes is known as phasing. Formally, the input to the problem

is the genotypes of a set of unrelated individuals. The goal is to find the most

probable pair of haplotypes for each individual (see Figure 2.4 for an example).

Figure 2.4: Three individuals’ genotypes (g1, g2, g3) comprising of 6 SNPs are

shown (left) as unordered pairs of alleles. After phasing (right), every genotype,

gi, is split into two haplotypes (h1
i , h

2
i ).

A genotype with i heterozygous sites can be phased into 2i−1 different pairs

of haplotypes. Hence, the solution space grows exponentially with i. Meth-

ods for genotype phasing try to phase all individuals simultaneously and make

use of the LD structure between the SNPs in order to achieve accurate results.

The first methods for phasing assumed that the input data consisted of one

block with no recombination events inside it. It suggests that before applying

these phasing algorithms, blocks should be identified and then each block should

be phased separately. These algorithms include Clark’s parsimony-based algo-

rithm [9], Likelihood-based Expectation - Maximization (EM) algorithms [15, 34],

MCMC-based methods [55, 37], and methods based on the perfect phylogeny

model [14, 2].

More recent algorithms can handle recombination events. Greenspan and

8



Chapter 2. Background 2.4. Tag SNPs

Geiger’s HaploBlock algorithm [20] performs phasing while taking into account

the block structure. The method is based on a Bayesian network model. A very

accurate and widely used software is PHASE [54]. It is based on the coalescent

model [29] and performs phasing while simultaneously estimating the fine-scale

recombination rate between the SNPs. Recently, a faster and more flexible model

of PHASE, called fastPHASE [49] was suggested. Kimmel and Shamir [26, 27]

suggested a model-based approach for simultaneous phasing and block partition-

ing. They implemented their method in a software package called GERBIL.

2.4 Tag SNPs

The cost of a genetic study is directly influenced by the number of SNPs geno-

typed. Considering the vast amount of SNPs in the human genome (estimated

at ten million) it is impractical to genotype all SNPs. Also, the high correlation

between nearby SNPs suggests that only a subset of all SNPs needs to be typed.

An important challenge in every genetic study is to decide which SNPs to type.

The main idea is to choose SNPs that best ”represent” or ”tag” all other SNPs.

These SNPs are therefore called tag SNPs.

One problem that faces designers of algorithms for tag SNP selection is that

the goal of the algorithm is not clearly defined. What is the meaning of a subset

of SNPs that best ”represent” the other SNPs? Should the emphasis be on min-

imizing the number of tag SNPs needed, on the quality of the ”representation”,

or some tradeoff between the two?

The main scheme of all tag SNP selection algorithms is as follows. A training

set of genotypes or haplotypes is accepted as input. This training set usually

contains all known SNPs in a small set of individuals (e.g. individuals from the

HapMap resource [59]). The algorithm selects tag SNPs that best ”represent”

all the SNPs in the training set. Eventually, only the tag SNPs are typed in a

large cohort of interest (e.g. patients having some disease and matching healthy

controls), and the typed SNPs are used for subsequent analysis (e.g. test of

association, haplotypes inference, etc.).

Many of the tag SNP selection algorithms adopt the following method: par-

tition the dataset into haplotype blocks and select, within each block, a subset

of ”haplotype tagging” SNPs sufficient to reconstruct the diversity within that

block. The algorithms differ in their method for defining blocks and in the criteria

9



Chapter 2. Background 2.4. Tag SNPs

for tag selection within a block. Avi-Itzhak et al. [1] developed a simple numer-

ical algorithm that selects the minimal subset of SNPs required to capture the

diversity of a haplotype block. Patil et al. [40] defined a consecutive set of SNPs

as a block if the common haplotypes (haplotypes with frequency > β) account

for at least α percent of all the observed haplotypes. They select tag SNPs in a

block as to minimize the number of SNPs that can distinguish at least α percent

of all the observed haplotypes. A greedy algorithm is used in order to parti-

tion the entire data into blocks such that the total number of tags is minimized.

Zhang et al. [69] replaced the greedy algorithm with a dynamic programming

algorithm. In a follow up study [70] they combined the dynamic programming

algorithm with the partition-ligation-expectation-maximization (PL-EM) algo-

rithm for haplotype inference [45]. This allows their algorithm, HapBlock, to

accept genotype data as input. There are two drawbacks to such methods. First,

it is not always clear how to define blocks, and different definitions might result in

different block partitioning, which consequentially affects the tag SNP selection.

Second, correlation between blocks (which is known to exist) is ignored.

Many ”block free” methods, which select tag SNPs without partitioning the

data into blocks, have also been developed. Bafna et al. [3] described a new

measure of informativeness of a SNP, that provides a direct measure of how a

SNP, or a set of SNPs, can be used to characterize another SNP or a set of

SNPs. They showed that finding a minimal set of informative SNPs is NP-hard

and provided an algorithm that solves a special case of the problem where the

predictive SNPs are in close proximity to their target. Carlson et al. [7] suggested

a greedy algorithm based on LD between markers. Their algorithm selects tags

that capture all SNPs with an r2 above some threshold. de Bakker et al. [12]

further extended the algorithm and implemented it in a program called Tagger.

Tagger is described in detail in Section 2.4.1. Halperin et al. [21] proposed a

novel measure for tag selection, called prediction accuracy, and developed a dy-

namic programming algorithm to select tags with maximal prediction accuracy.

Their algorithm, STAMPA, is described in detail in Section 2.4.2. He and Ze-

likovsky [23] used multiple linear regression in order to predict the non-tag SNPs

based on all tag SNPs. They suggested a greedy algorithm that selects tag SNPs

with maximal prediction accuracy. Eyheramendy et al. [16] proposed a method

for predicting the non-tags based on the tags which uses the Li and Stephens

model for haplotype data [33]. They developed a method to select tags with

10



Chapter 2. Background 2.4. Tag SNPs

maximum prediction.

2.4.1 Tagger

Tagger, developed by de Bakker et al. [12], is based on the r2 criterion (see

section 2.2). It uses a greedy algorithm to select tags that capture all other SNPs

with r2 exceeding a prescribed threshold (actually, this is an implementation of

the ldSelect [7] algorithm of Carlson et al.). In addition, to improve efficiency, it

can carry out an aggressive search attempting to replace each tag with a specific

multi-marker predictor (on the basis of the remaining tags). We will first describe

the standard mode (called pairwise mode) and then the aggressive mode.

The input of Tagger is a set of haplotypes or genotypes as a training set, and

a threshold θ. First, the pairwise r2 between every pair of SNPs is calculated.

In case the input contains genotypes, a simple two marker EM is used in order

to estimate the maximum-likelihood values of the four gamete (AB, Ab, aB, ab)

frequencies needed for the calculation of r2. We say that SNP i captures SNP j if

the r2 between them exceeds θ. Then, a single SNP capturing a maximum number

of other SNPs is identified. This SNP and its associated SNPs are grouped as

a bin. Within the bin, every SNP capturing all SNPs in the bin is specified as

a ”potential tag SNP for the bin”. Not all SNPs within the bin will be selected

because pairwise association is not a transitive property: if r2 > θ for SNP pairs

A/B and B/C, r2 < θ for SNP pair A/C is possible. Only one of the potential

tag SNPs in the bin will eventually be reported as a tag SNP. It can be selected

randomly or by some other properties such as coding vs. non-coding or ease

of assay design. The binning process is iterated, analyzing all unbinned SNPs

at each round, until all SNPs are binned. Finally, the selected tag SNPs are

reported. Also, for every tag SNP, a list of SNPs that reside in the same bin are

reported (these SNPs are said to be tagged by this tag SNP, and the tag SNP

is called the proxy of these SNPs). Note that the SNPs in a bin need not be

consecutive.

Tagger’s aggressive mode is an extension of the pairwise mode. After com-

pleting the steps described above, Tagger attempts to replace each tag with a

specific multimarker predictor. Specifically, for each tag Tagger searches for a

specific combination of tag SNPs (i.e., a haplotype of tag SNPs) that can capture

the tag and all the SNPs captured by that tag. If such a combination is found

11
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then the tag is discarded from the list of tags, and instead, the combination of

tags (termed test) is added to the list. See Figure 2.5 for an example. The

maximal number of tags comprising such test is user defined (tests may consist

of up to six SNPs). To minimize risk of overfitting, tags in a specified test are

forced to be in strong LD (defined as LOD score greater than some user defined

threshold) with one another and with the discarded tag.

Figure 2.5: An example of the operation of Tagger’s aggressive mode. Tag SNPs

1-3 create a multimarker predictor that captures tag SNP 4. This predictor (test)

is the haplotype AAG. More specifically, a new vector is created by assigning ”1”

to the AAG haplotype of the combination of tag SNPs 1-3, and assigning ”0” to

all other haplotypes. This vector captures tag SNP 4 and all non-tag SNPs that

were captured by it, and therefore can replace tag SNP 4.

Tagger can also select a user predefined number of tag SNPs (called the ’best

N ’ method). In this method Tagger prioritizes the tags by the number of SNPs

for which they can serve as a proxy. The first N tag SNPs are reported.

2.4.2 STAMPA

The main idea behind STAMPA [21] is to view tag SNPs as predictors of the

non-tag SNPs. After typing the tag SNPs in the study cohort, the geneticist can

12
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use the tags to predict the values of the non-tag SNPs and then use all SNPs

(typed and predicted) for the analysis. Hence, STAMPA selects tags according

to their prediction accuracy. Before describing the STAMPA algorithm we will

briefly present a formal definition of the tag SNP selection problem, needed for

the presentation of the algorithm.

We assume that each haplotype is represented by a binary string. Thus, a

haplotype of length m is a sequence over {0, 1}m. A genotype of length m is

represented by a {0, 1, 2} sequence, where 0 and 2 stand for the homozygous

types {0,0} and {1,1}, respectively, and 1 stands for a heterozygous type. We

are given a training set of n genotypes g1, . . . , gn of length m each. We use gi,j

to denote the j-th component (0,1, or 2) of the vector gi.

Consider a genomic region that spans a set of m SNPs. The frequencies of

the genotypes in that region across the entire population are determined by some

unknown distribution function Pr(gi ∈ G), where G is the sample space of all

genotypes in the population. Let S be the set of all SNPs, and suppose a set

T of t tags was selected (i.e., |T | = t). A prediction algorithm is a function

f : {0, 1, 2}t → {0, 1, 2}m. Informally, the prediction algorithm uses the genotype

values of the tag SNPs in T in order to predict the values of the rest of the

SNPs. For a given vector w ∈ {0, 1, 2}t of tag SNPs values, let [f(w)](j) be the

j-th component of that vector. Finally, let zT : {0, 1, 2}m → {0, 1, 2}t be the

restriction of the genotype to the tag SNPs in T .

Formally, for a given number t, our objective is to find a set T of t tag SNPs,

and a prediction function f , such that the following expression is minimized.

η =
m∑

j=1

Pr[[f(zT (g))](j) 6= g(j)], (2.1)

where the probability is over the sample space given by Pr(g ∈ G). In other words,

for a randomly picked individual from the population, we want to minimize the

expected number of prediction errors.

The prediction algorithm used in STAMPA is based on the observation that

the correlation between SNPs tends to decay as the physical distance increases.

This monotonicity does not always hold but is a good practical approximation

of biological reality. Formally, the algorithm assumes that given the genotype

values of two SNPs, the probabilities of the values at any intermediate SNPs do

not change by knowing the values of additional distal ones. Thus, the prediction
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Chapter 2. Background 2.4. Tag SNPs

Figure 2.6: The procedure Predict. We implicitly assume that the training set

and its phase are given. The variables x and y computed by the case analysis

represent the majority votes for the two haplotypes induced by the values a1 and

a2. Note that the output value is determined by simply counting the frequencies

of different partial haplotypes in the training set that match a1 and a2 and taking

the majority vote. Source: [21]

function predicts a SNP value using only the values of the two closest tag SNPs

flanking it, while ignoring the values of all other tags. Given a set of tag SNPs

T = (s1, . . . , st), we use the procedure Predict given in Figure 2.6 to predict the

value of SNP i given the value of its flanking tag SNPs. We assume that we are

given the training set of genotypes g1, . . . , gn together with their corresponding

haplotypes h1
1, h

2
1, h

1
2, . . . , h

2
n, where hk

i = (hk
i1, . . . , h

k
im) ∈ {0, 1}m for k = 1, 2 (if

only genotypes are given, the haplotypes can be resolved as described in Sec-

tion 2.3). Let j1 and j2, j1 < i < j2 be the positions of the tag SNPs closest to

position i on both sides. If there is no tag SNP in position j2 > i, then j1 and j2

are the two rightmost tag SNPs, and if there is no tag SNP in position j1 < i then

j1 and j2 are the two leftmost tag SNPs. The procedure Predict(i, j1, j2, a1, a2)

uses a majority vote in order to determine which value is more likely to appear

in position i given that positions j1 and j2 have the values a1 ∈ {0, 1, 2} and

a2 ∈ {0, 1, 2}, respectively.

The goal of the algorithm is to find a set of tag SNPs T of size t, such

that expression 2.1 is minimized when the genotype is randomly picked from the

training set. Practically, we want to minimize XT where XT = |{(i, j)|gi,j 6=
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Predict(j, j1, j2, gi,j1 , gi,j2))}|. STAMPA uses dynamic programming in order to

solve this problem to optimality. See [21] for details.

Since correlation between SNPs usually decays with distance between the

SNPs, tag SNPs will only be useful when predicting SNPs in their close neigh-

borhood. So STAMPA accepts as input a parameter indicating the maximum

allowed distance between tags. By considering only pairs of SNPs within the

specified distance a major reduction in running time is achieved.

2.5 Association Studies

The holy grail of human genetics is finding genetic variations that are associated

with a certain disease. The abundance of SNPs and the ease of SNP genotyping

make them the genetic markers of choice for most association studies. In these

studies researchers look for certain alleles that predispose their carriers to a cer-

tain disease. High throughput genotyping techniques are rapidly progressing and

as much as one million SNPs can be genotyped today with Affymetrix’s Genome-

Wide Human SNP Array 6.0 [62] and Illumina’s human1M beadchip [64]. In

parallel, the cost of per SNP genotyping is dramatically decreasing, making asso-

ciation studies with thousands of patients a reality. For example, the Wellcome

Trust Case Control Consortium recently performed an association study with a

total of 14,000 patients from seven common diseases [60].

Generally, association studies are divided into two categories: family-based

and population-based. In the family-based studies, affected individuals and their

parents are collected. Then, one searches for alleles that are transmitted from

parents to their affected child more often than would be expected by chance. The

population based studies are comprised of unrelated affected individuals (called

cases) and unrelated healthy individuals (called controls). In this study design

one searches for alleles whose frequency among the cases is different from their

frequency among the controls. In both study designs, finding associated SNPs

is not the end of the story. An associated SNP may be the direct cause for the

disease, but alternatively, it may only be genetically linked to the causal SNP.

Therefore, further investigation and fine-mapping of the areas around associated

SNPs are usually necessary.

Many different tests have been proposed and used in association studies. The

most widely used test for family-based studies is the transmission disequilibrium
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test (TDT), introduced by Spielman et al. [53]. The TDT measures the over-

transmission of an allele from heterozygous parents to affected offsprings. Let

the two alleles of a SNP be denoted as A and a. Then the number of transmitted

and non-transmitted alleles from parents can be summarized in a 2-by-2 table

(Table 2.1).

non-transmitted allele

Transmitted allele A a

A b c

a d e

Table 2.1: TDT counts table

Under the null hypothesis of no association between the SNP and the disease,

every heterozygote parent has an equal chance of transferring allele A or a to

its child. When summing over all heterozygous parents it translates to c = d.

This hypothesis can be tested using a binomial (asymptotically χ2) test with one

degree of freedom (df):

X2 =
(c− d)2

c + d

An extended version of the TDT test [52] can also handle multi-allelic markers

(e.g. microsattellites).

In population-based studies the most common test for single SNPs, suggested

by Olsen et al. [39], is based on building a contingency table of genotypes vs.

disease status (case/control). The paired observations, expressed in the contin-

gency table, are tested for independence by the standard Pearson χ2 test. There

are several ways to build the contingency table on which the test is performed.

The most general and conservative approach is to build a 3×2 contingency table

of genotypes vs. disease status (Table 2.2). The χ2 test on this table has two dfs

and it can capture association with the disease under any kind of disease model.

Merging the first two rows of the table by summing up their values creates a 2×2

table. The 1-df χ2 test on this table corresponds to a dominant disease model

(Allele A is the dominant one). A test under recessive disease model is achieved

similarly by merging the last two rows. A widely used approach is building a

2× 2 table that counts alleles instead of genotypes (Table 2.3). The χ2 test here

corresponds to a multiplicative penetrance model of disease, meaning that each
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copy of allele A multiplies the risk by the same factor. The 2-df test has the

advantage of being able to capture all kinds of disease models but with reduced

power compared to the 1-df tests.

Genotype Case Control

AA b c

Aa d e

aa f g

Table 2.2: Case/control 3× 2 contingency table – counting genotypes

Allele Case Control

A 2b + d 2c + e

a 2f + d 2g + e

Table 2.3: Case/control 2× 2 contingency table – counting alleles

Another approach widely used is logistic regression. Logistic regression meth-

ods model the probability of disease p as a function of the genotype. The most

general model codes a genotype with two variables x1 and x2. x1 = 1 for a het-

erozygote and 0 otherwise. x2 = 1 for a homozygote AA and 0 otherwise. The

linear model is

ln
p

1− p
= β0 + β1x1 + β2x2

The maximum likelihood estimates of β0, β1, and β2 can be calculated with stan-

dard generalized linear models tools. No association between the genotype and

the disease translates in this model to β1 = β2 = 0. The log-likelihood ratio

(LLR) test, whose statistic is 2(l1 − l0), is used to test for association. l1 denotes

the log-likelihood of the full model (i.e. , the maximum likelihood estimates of

β0, β1, and β2 are found and the log-likelihood of the model under these param-

eters is calculated) and l0 denotes the log-likelihood of the null model (forcing

β1 = β2 = 0). The test is asymptotically distributed as χ2 with 2 dfs, and for

large sample sizes it is equivalent to the Pearson χ2 2-df test. It is easy to fit

specific disease models to the logistic regression model. For example, forcing

β2 = 2β1 corresponds to a multiplicative model. It is also easy to add covariates,

such as age and sex, and to handle multiple SNPs, including interactions between

them (all at the expense of adding variables to the model).
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The block-like structure of the human genome suggests using another promis-

ing strategy – haplotype-based methods. The general scheme in these methods

is to partition the data into blocks of little recombination, infer the haplotypes

within each block and test these haplotypes for association with the disease. The

simplest analysis involves treating a block as a k-allelic marker, where k is the

number of haplotypes in the block. Then a 2× k contingency table is built and

a k− 1 df χ2 test is performed. However, this method ignores the uncertainty of

haplotype assignment for individuals. Zaykin et al. [67] suggested a method in

which haplotype frequencies are estimated through the EM algorithm, and each

individual in the sample is expanded into all possible haplotype configurations

with corresponding probabilities, conditional on their genotype. A regression-

based approach is then used to relate inferred haplotype probabilities to the

case/control status. Schaid et al. [48] used generalized linear models to develop

efficient score statistics for haplotype specific tests. Both methods, and others,

were implemented in the software package WHAP (Haplotype-based association

analysis package) [44].

One common problem with the above haplotype-based methods is what should

be done about rare haplotypes. Including them in the analyses can lead to loss of

power because there are too many degrees of freedom, but excluding them may

result in loss of valuable information. One possible remedy is to use clustering to

identify sets of haplotypes that are assumed to share recent common ancestry and

therefore convey a common disease risk that is more frequent among cases. This

approach (often called cladistic) was first introduced by Templeton et al. [57],

who recently developed a method called Tree Scanning [58]. This method uses

evolutionary trees of haplotypes to study phenotypic associations by exhaustively

examining all possible biallelic partitions of the tree.

Association between SNPs and disease status is not the only connection re-

searchers are after. Finding association between SNPs and other phenotypes,

including continuous (or quantitative) traits such as blood pressure, height, and

weight is also of great importance. There are several statistical tools for finding

association between genomic loci and quantitative traits (such loci are termed

Quantitative Trait Loci – QTLs). The most natural one is analysis of variance

(ANOVA). In this analysis the mean values of the trait in each of the three geno-

type groups are compared. The null hypothesis of no association corresponds

to equal means. An alternative to ANOVA is linear regression where a linear
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relationship between mean value of the trait and genotype are assumed. In ei-

ther case, tests require the trait to be approximately normally distributed for

each genotype, with a common variance. The Kolmogorov-Smirnov (KS) test is

another alternative. In this test the cumulative distributions of the trait among

the different genotype groups are compared.

The number of SNPs tested in association studies is rapidly increasing. As

mentioned above, DNA chips of one million SNPs are already available. When

using such chips, the number of statistical tests performed is extremely high and

spurious associations might arise if the method to declare statistical significance

does not take the multiple testing problem into consideration. One typical cor-

rection is the Bonfferoni correction, where each marker’s p-value is multiplied

by the number of tests. However, this correction does not take into account the

dependence of linked maker loci, and may lead to over-conservative conclusions.

A widely used alternative procedure is permutation testing, suggested for disease

association by Zhang et al. [68]. The procedure works as follows: the χ2 score of

each marker is calculated, and the maximum value over all markers is chosen as

the test statistic. Then, the same statistic is calculated for many data sets with

the same genotypes and randomly permuted labels of the disease status. The

corrected p-value of the highest scoring marker is the fraction of times the value

of the statistic in the permuted data exceeds the original value. The advantage

of this test is that correlations between markers are maintained, so the corrected

p-value tends to be less conservative than the Bonfferoni corrected p-value. The

disadvantage is that performing the test with k permutations gives p-values not

smaller than 1/k. Therefore, it can become prohibitively slow to compute low

(high significance) p-values in large studies. Kimmel and Shamir [28] developed

a faster algorithm for calculating low p-values which is based on importance

sampling.
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Chapter 3

The impact of tag SNP selection

criteria on the power of

association

Prior to an association study, a large number of SNPs are typed in a small sample

of individuals from the population. Based on this sample, tag SNPs are selected,

and only these tag SNPs are typed in a larger set of cases and controls. Thus,

the use of tag SNPs reduces the overall cost of the study. The eventual goal of

the study is to find sites in the genome that are significantly associated with the

disease. An important issue that has not been fully addressed so far in tag SNP

selection is the power: How does the selection method affect the power of the

subsequent association study?

Here we demonstrate that the prediction accuracy criterion produces better

tag SNPs than the r2 criterion, in terms of the power of association studies using

the tags. We performed extensive simulations on 5,000 case-control panels which

were generated from SNPs of the HapMap dataset. We tested two tag SNP

selection algorithms: STAMPA – which uses the prediction accuracy, and Tagger

– a state of the art algorithm that uses the r2 criterion. Our simulations show

that STAMPA attains higher power than Tagger, over a wide range of significance

levels. When the tag SNPs are selected at high density, both methods show high

power. As the density of selected tag SNPs decreases, STAMPA’s advantage

grows larger, reaching up to 18% increase in the relative power. Hence, the

method for tag SNP selection has a major effect on the eventual chances of
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finding the disease association.

This study, which was done jointly with Dr. Gad Kimmel and Dr. Eran

Halperin, was submitted for publication and is currently under review.

3.1 Introduction

Genome-wide disease association studies are becoming a reality due to recent

technological advances, and many such studies are under way. As described in

Section 2.5, the goal of such studies is to identify the genetic causes of complex

diseases, by finding sites in the human genome that are correlated with the dis-

ease. In these studies, differences in the frequencies of SNPs between cases and

controls are evaluated statistically. These discrepancies serve as evidence for the

association of particular SNPs with the disease. The significance of a test is the

probability to declare association when the SNPs are not associated with the

disease. The power of a test is the probability to correctly conclude that there is

association when one of the SNPs is associated with the disease.

The statistical significance and power of a study are directly affected by the

number of tested individuals and by the number of SNPs typed. When more SNPs

are typed, more information is obtained, and the chance to find an association, if

such exists, increases. On the other hand, resources are limited so only a certain

number of SNPs can be typed. Therefore, in every study a given number of tag

SNPs are to be selected and typed. A key problem is to find a set of tag SNPs

of a given size that would have a sufficiently high power.

The tag SNP selection problem has been under study for about seven years,

and is still very important for association mapping, in three scenarios. First,

there are still many candidate gene studies, e.g., [18, 30, 42, 8, 56], which seek

association around a focused number of genes rather than genome-wide. Such

studies have two advantages: their cost is smaller than the cost of whole genome

association studies, and they are less prone to power loss due to large multiple

hypothesis testing. Second, in many cases, following a genome wide association

study, one wants to obtain fine mapping of suspected regions or genes. Third,

new tag SNPs must be selected in the course of developing a new SNP chip.

There are many methods for selecting a desirable set of tag SNPs (see Sec-

tion 2.4). Recently, de Bakker et al. [12] suggested a method called Tagger for
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tag SNP selection based on the r2 criterion. The method is explained in detail

in Section 2.4.1. Briefly, Tagger uses a greedy algorithm to select tags that cap-

ture all other SNPs with r2 exceeding a prescribed threshold. In addition, to

improve efficiency, it can carry out an aggressive search attempting to replace

each tag with a specific multi-marker predictor (on the basis of the remaining

tags). Tagger is implemented in the Haploview software [5] developed as part of

the HapMap project, and is very popular among geneticists. The method was

applied in a recent important study [11] to show that the HapMap DNA sam-

ples can be used to select tags for genome-wide association studies that would

remain informative when using other samples from different populations around

the world.

The power of Tagger in association tests was not fully addressed so far. More-

over, while there are theoretical reasons that justify using r2 as a measure for

selecting tag SNPs [43], Tagger’s greedy heuristic for choosing the tag SNPs pro-

vides no guarantee for optimality.

Halperin et al. [21] proposed a novel measure for tag selection, called predic-

tion accuracy, which directly evaluates the average SNP prediction quality. They

implemented tag SNP selection and prediction algorithms that optimize this cri-

terion, in a program called STAMPA, described in Section 2.4.2. Under certain

biologically realistic restrictions, STAMPA was shown to find an optimal set of

tag SNPs using a dynamic programming algorithm.

STAMPA was compared to two state of the art algorithms that were avail-

able at the time of its publication: ldSelect [7] (an algorithm very similar to

Tagger, which also uses the r2 criterion) and HapBlock [70]. STAMPA consis-

tently outperformed both of these methods on several different data sets in terms

of prediction accuracy. However, although intuitively the prediction accuracy is

a reasonable optimization criterion, the power of an association study that uses

the tags is a more meaningful optimization criterion, as it directly measures the

chance of success of the study. So far no comparison of tag SNP selection al-

gorithms in terms of power was made. This raises the following question: given

several tag SNP selection algorithms, which one would give the highest power to

association studies that use tag SNPs selected by it?

In this chapter we study in a systematic fashion the relation of tag SNP

selection, association and power. We would like to choose a specific number of

tag SNPs that represent the studied population, out of a larger set of reference
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SNPs in that population. These tags are to be typed in cases and controls of new

individuals collected from the population. For a fixed significance level (say, 5%),

the goal is to choose the tag SNPs such that the power is maximized. Which tag

SNP selection method would give higher power?

To empirically test the power of Tagger and STAMPA, we conducted extensive

simulations in a similar way to de Bakker et al. [12]. In order to have a realistic

scenario, we worked with real SNPs from the HapMap project [63]. We sampled

100 disjoint regions of 1,000 SNPs each from chromosome 1, and selected tag SNPs

in each region. We then simulated cases and controls according to a multiplicative

model, where the causal SNP is randomly chosen. We performed permutation

tests to evaluate the significance of each experiment. In total, 5,000 case-control

panels were generated and 155,000 association tests were performed. We tested

both STAMPA and Tagger (in both its pairwise and aggressive modes). Our

simulations show that STAMPA attains higher power than Tagger, across a broad

range of significance levels. When Tagger picks tags that capture the entire region

with r2 ≥ 0.8, the tag SNPs density is relatively high (one tag per 5-8 kb),

resulting in a comparable high power for both algorithms. At lower densities

of selected tag SNPs, STAMPA attains an advantage that grows larger as the

tags density decreases. The relative power of STAMPA is up to 18% higher than

Tagger’s when the tag SNP density is low (one tag per 40 kb).

Our results show that the method for tag SNP selection has a major effect on

the eventual chances of finding the disease association. The optimization of the

prediction accuracy by STAMPA yields a clear advantage in terms of power, and

particularly, it is more powerful than Tagger.

3.2 Methods

3.2.1 Datasets

We used phased data from parents of CEU (west European ancestry) trios from

the HapMap resource (release 21) [63]. We first extracted the 120 haplotypes of

chromosome 1. Then, SNPs with minor allele frequency < 5% were removed, and

the dataset was partitioned into 100 contiguous regions of 1,000 SNPs per region

(spanning the first 172Mb of chromosome 1). The average distance between

adjacent SNPs was 1,364bp. For each region, the matrix of 120 haplotypes ×
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1000 SNPs constitutes a reference panel.

3.2.2 Comparisons

We compared three algorithms: STAMPA (as implemented in the software pack-

age GEVALT [10], see also Chapter 4), Tagger (as implemented in Haploview)

and Rand – an algorithm that randomly selects tag SNPs. Tagger was tested in

both the standard mode and in its “aggressive mode”, which uses haplotypes (we

call the latter here Tagger-A). Several tagging scenarios were tested (see Results

section). The following procedure was repeated for each tagging scenario (see

Figure 3.1 for a flow chart):

1. Repeat for each of the 100 reference panels:

(a) Select tag SNPs by each algorithm using the reference panel as the

training set.

(b) Repeat 50 times:

i. Select a causal SNP at random and simulate a test panel of geno-

types for 1000 cases and 1000 controls as described below.

ii. For each set of tag SNPs selected in step 1.a, hide the values of

the non-tag SNPs in the test panel and compute the significance

of association between the disease status and the values of the tag

SNPs in the test panel. A detailed description of this computation

appears below.

iii. Compute the significance of association between the disease status

and the values of all SNPs in the test panel (i.e. without hiding

SNPs).

2. Compute the relative power of each algorithm as described below.

For simulating case/control panels (step 1.b.i) we used the HAPGEN soft-

ware [36]. HAPGEN accepts as input a set of known haplotypes, an estimate of

the fine-scale recombination rate across a region, the causal SNP, and the disease

model parameters in terms of relative risk. Genotypes for cases and controls at

the causal SNP are simulated under the disease model, and data at flanking SNPs

are simulated using the known haplotypes. These haplotypes are recombined to
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form the simulated haplotypes using a Hidden Markov Model approximation to

the Li-Stephens population genetics model [33]. For the disease model we used

a standard multiplicative model [70] with relative risk of 1.5 (i.e. heterozygous

relative risk of 1.5 and homozygous relative risk of 2.25). As the set of known hap-

lotypes we used the 120 HapMap haplotypes. The fine-scale recombination rates

were estimated by the PHASE program (rates were downloaded from HAPGEN’s

website).

In step 1.b.ii, for each panel and for the tag SNPs selected by each algorithm,

χ2 allelic tests with one degree of freedom were computed and the p-values of

association were computed using a permutation test (done with the RAT soft-

ware [28]). For STAMPA, the set of tag SNPs was used to predict the values of

the other SNPs (as described in Section 2.4.2), and the entire set of SNPs was

tested for association. For Tagger-A, the set of tests was generated as described

in Section 2.4.1. Since Tagger-A uses haplotypes in the case-control panel to gen-

erate the tests, we also tested a version of STAMPA that uses haplotypes instead

of genotypes in the prediction, in order to have a fair comparison. For Tagger

and Rand, the χ2 tests were applied only to the tag SNPs.

After completing step 1 of the testing procedure we have a list of 5000 p-

values for each algorithm (100 regions and 50 test panels per region). In step

2 we compute the relative power of each algorithm as follows. For a fixed sig-

nificance level p0, we count the number of test panels in which the algorithm

had a significant (≤ p0) p-value. We then divide this number by the number of

panels that are detected as significant when all SNPs (including the non-tags)

are available (computed in step 1.b.iii). Hence, this measure evaluates how well

an algorithm performs in comparison to an algorithm that has full genotype (or

haplotype) information. In order to test if the difference in relative power be-

tween two algorithms is significant we use a paired, 1-tailed T-Test between 0/1

vectors indicating the success on each panel. Significance levels p0=0.05, 0.01,

0.005, and 0.001 were used.

3.3 Results

Several tagging scenarios were explored. The first scenario used Tagger’s default

parameters (r2 ≥ 0.8) and pairwise tagging in order to capture the entire set

of SNPs. On average, 26.4% (standard deviation (SD) 6.3%) of the SNPs were

25



Chapter 3. The impact of tag SNP selection criteria 3.3. Results

Figure 3.1: A flow chart of the testing procedure. The procedure for one test

panel in one region and for one tag selection algorithm is shown. (A) We start

with a reference panel containing the 120 HapMap haplotypes. (B) Tag SNPs

are chosen. (C) A causal SNP is randomly selected and a panel of 1000 cases

and 1000 controls is simulated. (D) The non-tag SNPs are hidden. (E) The

case/control panel is tested for association. (F) Steps C-E are repeated for 50

times. The whole procedure is done in each of the 100 regions, resulting in a

list of 5000 p-values from which the power of the tag SNP selection algorithm

is calculated. (G) Each case/control panel is also tested for association without

hiding the non-tag SNPs. This allows the calculation of the relative power of

each algorithm.

selected as tags (an average of one tag SNP per 5.4kb). Figure 3.2A shows the

power of the three algorithms. Both STAMPA and Tagger obtain a very high

relative power (over 96% under all four significance levels) with non-significant

differences between the methods (T-test p-values > 0.14). Rand has significantly

lower power than both, but interestingly, it attains quite high relative power of

over 90%.
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We next applied Tagger’s aggressive method (using 2 and 3-marker haplo-

types, and default parameters r2 ≥ 0.8, LOD threshold 3.0) in order to capture

the entire set of SNPs. The average fraction of SNPs selected as tags was 21.2%

(SD 5.3%), i.e., on average one tag SNP per 6.7kb. Figure 3.2B shows the

comparison between the algorithms. Here STAMPA has a significant advantage

over Tagger for p-value cutoffs 0.001 and 0.005 (T-test p-values of 8.9 ∗ 10−5 and

0.04 respectively).

The amount of tag SNPs needed by Tagger to capture all the SNPs in a region

was quite high: around 25%. We next explored scenarios where the tag density is

lower. We used Tagger’s ’best N ’ method, which, for a prespecified N , seeks the N

tags that capture the maximum number of SNPs with the prescribed r2 threshold

(see Section 2.4.1). We set N to be 34, 45, 68, and 136, which corresponds to

an average of one tag SNP per 40, 30, 20, and 10kb, respectively. We tested

both Tagger and Tagger-A (with default parameters r2 ≥ 0.8, LOD threshold

3.0). Results are shown in Figure 3.3. All algorithms show a linear decrease

in power as the tag density decreases, but the rate of decrease in STAMPA’s

performance is much lower than Tagger’s. In all tests STAMPA attains a higher

power than Tagger but with varying differences. The advantage in the relative

power is 11% at a tag distance of 40kb. STAMPA’s advantage is smaller but

statistically significant also at tag distances of 20 and 30kb under all significance

levels (T-test p-values < 0.007), but not at 10kb. Interestingly, Tagger-A had

essentially the same performance as Tagger. When STAMPA uses haplotypes

instead of genotypes in the prediction STAMPA’s advantage is larger, and the

differences are statistically significant at all tag distances. The highest advantage

is achieved at a tag distance of 40kb and a p-value cutoff of 0.001 where there is

18% improvement in power.

We wanted to verify that the gain in STAMPA’s advantage is due to the

different tags chosen and not merely because STAMPA predicts the values of

the non-tag SNPs and Tagger does not. For that, we selected tags with Tagger,

predicted the non-tag SNPs based on them using STAMPA’s prediction method,

and computed the association for each tag and for each predicted non-tag. The

results for the ’best N ’ scenario can be seen in Figure 3.3. The prediction

algorithm does improve Tagger’s relative power (all T-test p-values < 0.05) but

only by a modest factor (average increase of 1.1%), and still well below STAMPA.

Generally, the same trend was observed under all four significance levels
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Figure 3.2: Comparison of relative power when all SNPs are captured by Tag-

ger. Relative power is shown for STAMPA, Tagger , and Rand, calculated for

four different association significance levels (p-value cutoffs). A: Comparisons to

Tagger. B: comparisons to Tagger aggressive. Note that the number of SNPs

selected in each case was determined by Tagger, and then used in the two other

algorithms.
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Figure 3.3: Comparison of relative power when the number of tag SNPs is limited.

Relative power is shown for STAMPA, Tagger, Rand, STAMPA using haplotypes,

and Tagger using prediction. The number of tag SNPs per tested region was

limited to 34, 45, 68, and 136, which corresponds to an average distance between

tags of 40, 30, 20, and 10kb, respectively. The power is shown in four different p-

value cutoffs. Tagger-A gave virtually identical results to Tagger and is therefore

omitted from the figure.
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tested. However, STMAPA’s advantage is slightly larger under low significance

levels (0.001 and 0.005).

Since STAMPA and Tagger use different selection criteria we wanted to test

how STAMPA performs in terms of the r2 criterion. To test this, we calculated

the r2 coverage of tags selected by each method: For each threshold θ, we calcu-

lated the fraction of non-tag SNPs that are captured by some tag with r2 ≥ θ.

Figures 3.4A,B show that Tagger has a higher r2 coverage. This is expected,

since Tagger uses the r2 criterion in the optimization process.

We also compared the ability of each method to predict the non-tags, in the

following way. For each set of tags, we predicted the non-tags in the original

HapMap haplotypes and calculated the r2 between each real non-tag and its

prediction. Figures 3.4C,D demonstrate a large advantage of STAMPA over

Tagger. In fact, Tagger’s prediction ability is very similar to that of random

selection of tags. The large difference is also manifested by the error rates when

prediction was applied on the simulated panels. The error rate is defined as the

fraction of wrongly predicted alleles. At tag distances of 10, 20, 30, and 40kb,

the average error rates of STAMPA were 3.9, 5.2, 6.2, and 7.1%, respectively,

while Tagger’s error rates were almost twofold higher: 8.9, 9.4, 10.5, and 11.5%,

respectively.

3.4 Discussion

In this chapter, we compared the prediction accuracy and r2 as criteria for tag

SNP selection when the goal is to maximize the power of association studies.

Our experimental results show that STAMPA, which optimizes the prediction

accuracy, attains significantly and consistently higher power than Tagger, which

optimizes r2, in extensive simulations with real haplotypes. This strong advan-

tage in the power is explained primarily by the selection criterion of STAMPA,

prediction accuracy. An alternative possible explanation is that the advantage

is mainly due to the fact that STAMPA guarantees optimality, while Tagger

uses a local search heuristic which does not guarantee optimality. The fact that

STAMPA has a higher power although its tags have a lower r2 coverage (Figures

3.4A,B) rejects the latter explanation. Moreover, applying the prediction algo-

rithm on Tagger’s tags only marginally improves Tagger’s power (Figure 3.3),

which implies that the choice of tag SNP selection algorithm is important.
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A B

C D

Figure 3.4: Average SNP coverage as a function of the r2 threshold. A,B: For

every value of r2 (X-axis) the plots show the fraction of non-tag SNPs that have

equal or higher r2 with some tag SNP. C,D: For every value of r2 (X-axis) the

plots show the fraction of non-tag SNPs that have equal or higher r2 with their

predicted values as computed on the HapMap haplotypes. The curves do not

reach 100% since some of the SNPs are predicted to be monoallelic, which makes

the r2 measure undefined. Results are shown for the datasets with 10kb (A,C)

and 40kb (B,D) tag distance. Tagger-A gives almost identical results to Tagger

(not shown).
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As expected, when the density of tag SNPs is smaller, the power advantage

of STAMPA grows larger. As the tag densities decrease, both methods show

a linear decline in power, but STAMPA’s decline is much more moderate than

Tagger’s. When the density of tags is high, capturing all SNPs with r2 ≥ 0.8,

both Tagger and STAMPA obtain high power (above 96%). On the other hand,

if only a small fraction of the SNPs is to be selected and typed, the algorithm is

of great importance, with a prominent advantage to STAMPA. It is worthwhile

mentioning that STAMPA maintains quite good power even when the selected

tags are sparse. For example, using significance threshold of 0.05, STAMPA’s

relative power is 86% when the tag distance is 40kb.

When using haplotypes instead of genotypes in the prediction, STAMPA’s

advantage is larger, and the differences are statistically significant for all tag dis-

tances. It suggests that in real scenarios, if experimental information on phasing

is not available (e.g. from trios), one may gain power by doing the association

test on haplotypes that have been phased computationally. Testing this scenario

in our simulations was not possible due to the added computational burden of

phasing many thousand panels. On a limited number of examples we did per-

form phasing using fastPHASE [49], and measured the error rate of the phasing

algorithm. Our tests showed that the switch error rate [49] is small at tag dis-

tances 10kb or less (2-4%) (data not shown). Therefore, the results of STAMPA

with computationally derived haplotypes are expected to be only marginally less

accurate than if we were to use the true haplotypes, and the results of STAMPA

with haplotypes are close to a valid representation of this real scenario. Hence,

even at high tag densities STAMPA probably has an advantage over Tagger if

phasing of the tags is performed prior to predicting the non-tags.

Since the same haplotypes used to select tag SNPs were also used to create

the case/control data, there is a possible risk of overfitting in our results. Due

to the scarcity of large-scale published haplotypes we could not separate com-

pletely the data for the training and the test phases. As a partial remedy to this

problem, we created the test panels with the HAPGEN software [36]. HAPGEN

simulates case and control individuals conditional upon a set of known haplo-

type data using an estimate of the fine-scale recombination rate across a region.

This approach uses the Li-Stephens model [33], and is preferable over a direct

resampling approach [12], which produces new haplotypes that are copies of the

original HapMap haplotypes. Even if there is a modest amount of overfitting
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in the reported power levels, since the same simulated data sets were used by

STAMPA and Tagger, the relative performance should be accurate.

One might argue that the tag SNP selection problem is currently of lim-

ited interest, since today many studies use standard high-density SNP chips

(e.g. of Illumina and Affymetrix), and have no control over the tag selection;

moreover, genotyping costs are rapidly decreasing, and high density tags can be

achieved. Still, finding a better set of tags remains an extremely important issue

for three main reasons: First, certain platforms (such as Illumina’s Golden-Gate

and Affymetrix’s Custom SNP Kits) are designed for customized genotyping, and

require ad-hoc tag selection for each new study. Many focused association studies

cannot use standard arrays and have to select tags for specific genomic areas, of-

ten at modest density due to budget constraints (this large need is demonstrated,

for example, by over 150 studies citing Tagger since October 2005). Second, each

new generation of standard high-density chips involves the selection of a new set

of tag SNPs, and therefore the future chips produced by these technologies may

benefit considerably from using more powerful selection methods. While average

tag densities in such chips will grow, there are always sparse genomic regions

showing low LD, on which prediction-based tag selection will have an advantage.

Recently, several works [36, 66, 51, 41] used algorithms for predicting untyped

SNPs based on typed tag SNPs. The idea was to use all the imputed SNPs when

performing the association test. This approach was shown to have higher power

than using only the tags, without the predicted SNPs. This gives additional

support to using tag selection algorithms based on prediction accuracy: Since

a prediction procedure is performed on the tags, and only then the association

is tested, it makes sense to choose the tags that predict the rest of the SNPs

with minimal error rate (recall the differences between STAMPA and Tagger in

Figures 3.4C,D). In other words, we claim that if STAMPA would be used to

select the tags in such methods instead of r2 based selection, a higher power will

be achieved.

Every association study is preceded by selection of the tag SNPs to be typed,

whether explicitly by the researchers or previously, by chip producers. The suc-

cess of the study critically depends on its power. Here, we demonstrated that us-

ing the prediction accuracy in the tag selection stage is preferable over the widely

used r2 measure. In our experiments we assumed that association is tested on

each SNP separately, which is the common practice. However, different measures
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for tag SNP selection may give higher power in other testing approaches. Even

in the scenario tested here we do not claim that STAMPA gives optimal power,

only that it outperforms today’s common practice. Therefore, the connection

between tag SNP selection and power deserves further exploration.
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GEVALT

Most researchers in genetics prefer using software with graphical user inter-

face (GUI) over using batch executables. Since algorithms developed in our

lab for genotypes phasing (GERBIL), and tag SNP selection (STAMPA) were

only available as batch executables, we developed an integrated software tool,

called GEVALT, that streamlines the application of GERBIL and STAMPA. A

description of GEVALT (version 1.1) was published as an article in BMC Bioin-

formatics [10].

Section 4.1 briefly describes GEVALT 1.1 and the full published paper appears

as Appendix A. Section 4.2 presents additional features that were developed

after the publication of the paper and were implemented in the next version of

GEVALT (version 2.0).

We would like to thank Daniela Amann and Dr. Edna Ben-Asher from the

Weizmann Institute of Science for helpful discussions and comments in the first

stages of the project.

4.1 Summary of GEVALT 1.1

GEVALT is an integrated software providing easy access to the GERBIL and

STAMPA algorithms as well as to some other tools for genotype analysis. It is

based on Haploview [5] and it maintains the user-friendly interface and strong vi-

sualization capabilities of Haploview, as well as its other functionalities, including

computation of marker quality statistics and LD information.

The input of GEVALT is genotype data that can be loaded as either unphased
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or phased genotypes. Genotype data dumps from the HapMap website [63] can

also be loaded, as well as additional information such as disease status and marker

positions. The data can consist of unrelated individuals and two-generation pedi-

grees. Upon loading a dataset, GEVALT first phases the genotypes (if necessary)

by using GERBIL. After phasing is completed, GEVALT generates several dis-

plays and option menus, and each of these is shown on a separate tab, allowing

the user to move from one to the other. The phased genotypes of each individual

are displayed with different colors to indicate alleles phased by GERBIL, missing

data and Mendelian errors.

The STAMPA option menu enables the user to run STAMPA, select the

desired number of tag SNPs according to the expected prediction accuracy, and

also calculate the prediction accuracy of a custom set of tags. The association

tab, taken from Haploview, displays association scores and p-values (χ2 test for

unrelated individuals and TDT for trios) for each marker and each haplotype in

a block.

GEVALT also allows performing permutation testing in order to obtain a

multiple testing corrected p-value. The permutation test in GEVALT was imple-

mented in C++ which makes it about 20 times faster than the JAVA implemen-

tation in Haploview. All other Haploview tabs are also available in GEVALT,

including an LD plot showing the LD between each pair of SNPs, and a tab

showing common haplotypes and their frequencies. The LD plot can be calcu-

lated using either the phased or the unphased genotypes. In addition, GEVALT

calculates summary statistics for each individual, including the percentage of

missing genotypes, the percentage of heterozygous markers, the percentage of

minor alleles and a tally of Mendelian inheritance errors.

GEVALT was implemented in JAVA based on the open source code

of Haploview version 3.2. The analysis algorithms (GERBIL, STAMPA

and permutation testing) were implemented in C++. Both Linux and

Windows versions of GEVALT are available and can be downloaded from

http://acgt.cs.tau.ac.il/gevalt

4.2 Improvements in version 2.0

A few features were developed and added to GEVALT in version 2.0. Because

GERBIL is prohibitively slow when phasing more than 300 SNPs, GEVALT 1.1
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was limited to handling only 300 SNPs or less. In order to enable the phasing of

more SNPs we developed a long phasing procedure, described in Section 4.2.1.

Section 4.2.2 describes an improvement to STAMPA that allows user defined

SNPs to be included or excluded from the solution. Finally, an option to use

the RAT software for fast permutation testing [28] was added to GEVALT in

addition to the standard permutation testing. All features were coded by Oded

Apel.

4.2.1 Long Phasing

We implemented a long phasing procedure that breaks the data into smaller

regions, uses GERBIL to phase each region separately, and ligates the resulting

haplotypes. The program has two parameters: b and l, the break factor and the

maximal linker size, respectively. First the data is divided into contiguous regions

of b SNPs each (except perhaps the last region). Then each region is phased by

GERBIL. The haplotypes of every individual are ligated by using linkers. A

linker is a region that covers the end of one region and the beginning of the

region following it. The linkers are also phased by GERBIL and the resulting

haplotypes are used for the ligation of haplotypes from consecutive regions. See

Figure 4.1 for a detailed example.

Figure 4.1: An example of the ligation process. The haplotypes of one individual

in two consecutive regions are shown. The linker region is six SNPs long to its

left side and seven SNPs long to its right. The black arrows indicate the selected

ligation solution. This solution results in only one disagreement (last SNP of the

linker), while the alternative solution produces two disagreements.

The ligation of haplotypes of an individual from consecutive regions requires
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that its linker contains heterozygous sites from both sides of the linker (i.e. from

both regions it ligates). Therefore, the length of each linker is set to the mini-

mal length that contains at least two heterozygous sites on each side for every

individual. The length on each side is limited to l in order to avoid very long

linkers.

We tested the long phasing program on haplotypes from the HapMap resource.

We used datasets consisting of 300 SNPs of 60 individuals in order to compare

phasing results with and without the long phasing procedure. The long phasing

program (with parameters b = 100 and l = 50) gave practically identical results

to GERBIL. The running time of the long phasing program is dramatically influ-

enced by the break factor parameter. For example, phasing 1000 SNPs of 1000

individuals with parameters b = 100 and l = 50 takes less than three hours on a

stand alone PC, and more than eight hours with b = 200.

4.2.2 STAMPA improvements

The ease and quality of genotyping varies from SNP to SNP. Therefore, a useful

utility for tag SNP selection programs is to allow the user to specify SNPs to

be included or excluded from the solution. In order to allow it in STAMPA we

modified its dynamic programming algorithm.

Recall from Section 2.4.2 that our objective was to minimize XT where XT =

|{(i, j)|gi,j 6= Predict(j, j1, j2, gi,j1 , gi,j2))}|. We will first describe the original

dynamic programming equations and then present the changes made. Let X i,j
T =

1 if gi,j 6= Predict(j, j1, j2, gi,j1 , gi,j2) and let X i,j
T = 0 otherwise. Then XT =∑

i,j X i,j
T . For every pair of SNPs m1 < m2 we next define three auxiliary score

functions. We assume that m1, m2 ∈ T and that for each j, m1 < j < m2, j 6∈ T .

Then, we define

score(m1, m2) =
n∑

i=1

m2−1∑
j=m1+1

X i,j
T

score(m1, m2) is the total number of prediction errors in SNPs m1 +1, . . . ,m2−1,

given that m1 and m2 are tag SNPs, and that there are no tag SNPs between m1

and m2.

For scoring SNPs at the very end of the list we define a score1(m1, m2), where

we assume that m1 and m2 are the two rightmost tag SNPs. Then, the score is
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defined as

score1(m1, m2) =
n∑

i=1

m∑
j=m1+1

X i,j
T

Similarly, for score2(m1, m2) we assume that m1 and m2 are the two leftmost tag

SNPs, and sum over SNPs j = 1, . . . ,m2 − 1.

The function f(m∗, l), which will be used in the dynamic programming, is

defined for l ≥ 2 and 1 ≤ m∗ ≤ m. For l < t, the function f(m∗, l) represents

the minimum number of prediction errors in SNPs 1, 2, . . . ,m∗, given that the

l-th tag SNP is in position m∗. For l = t , the function f(m∗, l) represents the

minimum number of prediction errors in all SNPs given that the last tag SNP is

in position m∗. Formally, we define f(m∗, l) in the following way:

• For l = t, f(m∗, l) =
∑n

i=1

∑m
j=1 X i,j

T when the last tag SNP is in position

m∗.

• For 2 ≤ l < t, f(m∗, l) =
∑n

i=1

∑m∗−1
j=1 X i,j

T when the l-th tag SNP is in

position m∗.

The dynamic programming recurrence formula (assuming t > 2) is as follows:

f(m∗, l) =


min1≤m′<m∗score2(m

′, m∗) l = 2

minl−1≤m′<m∗{f(m′, l − 1) + score(m′, m∗)} 2 < l < t

mint−1≤m′<m∗{f(m′, t− 1) + score1(m
′, m∗)} l = t

Now suppose some tag SNPs are dictated by the user and must be used, others

must be excluded, and the total number of tag SNPs is t. Excluding specific SNPs

from the solution is straightforward by simply ignoring these positions during the

recurrence. Including specific SNPs (termed forced SNPs) requires some changes

in the dynamic programming algorithm. First, the definition of f(m∗, l) slightly

changes. For l < t, the function f(m∗, l) represents the minimum number of

prediction errors in SNPs 1, 2, . . . ,m∗, given that the l-th tag SNP is in position

m∗ and all forced SNPs smaller than m∗ were selected as tags. For l = t , the

function f(m∗, l) represents the minimum number of prediction errors in all SNPs

given that the last tag SNP is in position m∗ and all forced SNPs were selected

as tags.

Let s(m∗) be the closest forced SNP smaller than m∗. Formally, s(m∗) =

max(i|i is a forced SNP and i < m∗). If no such i exists then s(m∗) = 1. s(m∗)

can be easily calculated for every 1 ≤ m∗ ≤ m as a preprocess step.
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The recurrence formula now changes as follows. For l = 2:

f(m∗, l) =


∞ k(m∗) > 1

score2(s(m
∗), m∗) k(m∗) = 1

min1≤m′<m∗score2(m
′, m∗) k(m∗) = 0

where k(m∗) is the number of forced SNPs smaller than m∗.

For l > 2 we have:

f(m∗, l) =

{
minδ(m∗,l)≤m′<m∗{f(m′, l − 1) + score(m′, m∗)} 2 < l < t

minδ(m∗,t)≤m′<m∗{f(m′, t− 1) + score1(m
′, m∗)} l = t

where δ(m∗, l) = max(s(m∗), l − 1). Thus, the search for the optimal neighbor

tag of m∗ is limited by the closest forced SNP if such one exists.

Since the use of dynamic programming guarantees an optimal solution, forced

excluded/included tags can only reduce the prediction accuracy of the selected

tags. In our experience, even increasing the total number of tags by adding extra

forced tags usually reduces the prediction accuracy. This is because of the nature

of the prediction algorithm that predicts a SNP by only considering its two closest

tags. Therefore it is recommended to include or exclude tags only when truly

needed because of external considerations.
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Crohn’s Disease

Crohn’s disease (CD) is a chronic inflammatory disease of the gastrointestinal

(GI) tract associated with dysregulation of the immune response. It can affect any

area of the GI tract, from the mouth to the anus, but it most commonly affects

the lower part of the small intestine, called the ileum, and the large intestine

(colon). See Figure 5.1. Several theories exist about what causes CD, but none

have been proven. It is thought to be caused by a combination of environmental

and genetic factors. CD can occur in people of all age groups, but it is more

often diagnosed in people between the ages of 20 and 30. There are differences

in CD prevalence among different populations. For example, people of Jewish

heritage have an increased risk of developing CD, while African Americans are

at decreased risk.

The NOD2/CARD15 gene on chromosome 16 was the first susceptibility

gene identified in patients with CD [24, 38, 22]. The NOD2/CARD15 protein

(Nucleotide-binding Oligomerization Domain containing 2 / CAspase Recruit-

ment Domain family, member 15) is an intracellular pattern recognition recep-

tor, which recognizes molecules containing the specific structure called muramyl

dipeptide (MDP) that is found in certain bacteria, and thus acts as part of the

immune mechanism against foreign bacteria. Three well described mutations,

causing loss of function, were found to be associated with the disease. Carriers of

these mutations have a tendency to be affected mainly in the ileum. Currently,

13 associated loci are listed in OMIM [65].

In the next section we describe three studies performed in collaboration with

gastroenterologists from Wolfson and Rambam medical centers. Some of the
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Figure 5.1: The digestive system. Crohn’s disease most commonly affects the

ileum and/or the colon.

common statistical methods used in these papers are described in Section 5.2.

5.1 Summary of Articles

1. Pediatric Onset Crohn’s Colitis is Characterized by Genotype De-

pendent Age–Related Susceptibility

Arie Levine, Subra Kugathasan, Vito Annese, Vincent Biank, Esther Leshinsky–

Silver, Ofir Davidovich ,Gad Kimmel, Ron Shamir , Palmieri Orazio, Amir Kar-

ban, Ulrich Broeckel, Salvatore Cucchiara

Published in Inflammatory Bowel Diseases [32].

Crohn’s disease patients can be classified into four categories according to the

location of the disease: ileum (denoted L1), colon (L2), both ileum and colon

(L3), and upper gastro-intestinal (L4). This classification is called the Vienna

classification [19].

Pediatric onset CD is associated with more colitis (L2) in comparison to adult

onset CD. Differences in disease site by age may suggest a different genotype, or

different host responses such as decreased ileal susceptibility or increased suscep-

tibility of the colon. In this paper we evaluated 721 pediatric onset CD patients
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from three cohorts (from USA, Israel and Italy). The patients were evaluated

for interactions between age of onset, NOD2/CARD15 genotype and disease lo-

cation.

NOD2/CARD15 mutations were highly associated with ileal disease location,

as expected. We found no association between NOD2/CARD15 mutations and

age of onset (AOO). In order to correctly test for association between disease

location and AOO we had to neutralize the strong effect of NOD2/CARD15

mutations on disease location. We subdivided the cohorts into patients carrying

a NOD2/CARD15 mutation and those with wild type NOD2/CARD15. In the

wild type NOD2/CARD15 cohort, we found a high tendency for isolated colitis

(L2) in first decade patients compared with second decade patients. In first

decade patients, the rate of isolated colitis is higher as AOO decreases. Among

the carriers of NOD2/CARD15 mutations, a similar trend was observed, but for

colonic involvement (L2+L3) instead of isolated colitis. See Figure 5.2.

Together, these findings demonstrate that pediatric onset CD may be char-

acterized by different genes that predispose to early onset and isolated colitis.

Recently, following our work, a new locus was found to be associated with iso-

lated colitis and early age of onset (Arie Levine, personal communication).

2. Risk Factors for Perianal Crohn’s Disease: The Role of Genotype,

Phenotype, and Ethnicity

Amir Karban, Maza Itay, Ofir Davidovich, Esther Leshinsky-Silver, Gad Kimmel,

Herma Fidder, Ron Shamir, Matti Waterman, Rami Eliakim, and Arie Levine

Published in The American Journal of Gastroenterology [25].

As mentioned before, Crohn’s disease can affect any part of the gastrointestinal

tract from mouth to anus. Perianal Crohn’s disease (PD) occurs when Crohn’s

disease affects the anus, and its surrounding areas, such as the rectum, vagina

and skin. PD is a frequent complication of Crohn’s disease. Recent studies have

found genetic and clinical distinctions between cases with or without PD. These

observations may suggest that perianal CD is a distinct phenotype with possible

specific susceptibility genes or environmental factors. This study was undertaken

to evaluate the role of genotype, clinical, and demographic characteristics with

PD in an Israeli cohort.

Phenotypic data (e.g. disease location, smoking, rectal involvement) on 121

CD patients with PD and 179 patients without PD were carefully character-
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Figure 5.2: Colitis ratio and colonic involvement ratio vs. AOO in patients with

and without NOD2/CARD15 mutations.

X-axis - AOO; Y-axis: ratio for patients with AOO within +/- 2 years of the X

value. (A) Isolated colitis (L2) ratio. (B) Colonic involvement (L2+L3) ratio.

Windows with median age below 6 were excluded since they contained less than

30 patients. Source: [32].
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ized. The patients were also genotyped for disease-associated OCTN1/2 and

NOD2/CARD15 variants and the TNF-α promoter polymorphisms. Analysis

was performed to evaluate the differences in phenotype and genotype frequencies

between the PD group and the non-PD group.

PD was found to be associated with rectal involvement and with Sephardic

(non-Ashkenazi) ethnicity (the two associations were independent). Table 5.1

presents all phenotypes tested and their association with PD. No association was

found among the studied OCTN, NOD2, TNF-α variants and the risk for PD.

The association of ethnicity with PD may suggest that there are as yet unknown

genetic variants that are associated with PD.

Table 5.1: Demographic and clinical characteristics in CD patients with or with-

out perianal disease. Source: [25].

3. Lack of association of the 3’-UTR polymorphism in the NFKBIA

gene with Crohn’s disease in an Israeli cohort

Esther Leshinsky-Silver, Amir Karban, Sara Cohen, Marcelo Fridlander, Ofir

Davidovich, Gad Kimmel, Ron Shamir and Arie Levine

Published in International Journal of Colorectal Disease [31].

Patients with CD have a TH1-type inflammatory response characterized by nu-

clear factor kappa B (NFκB) activation. Mutations in the bacterial pattern

recognition receptors NOD2/CARD15 and Toll-like receptor 4 (TLR4) genes,

which lead to activation of NFκB under normal circumstances, have been as-

sociated with increased susceptibility for CD. NFκB plays a critical role in the

immune response and is down-regulated by NFκB inhibitor α (NFKBIA). Re-
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cently, NFKBIA was found to be a susceptibility gene for German CD patients

lacking NOD2/CARD15 mutations.

In this study a cohort of 231 Israeli CD patients, previously genotyped for the

SNPs in the CARD15 and TLR4 susceptibility genes for CD, was analyzed for

the 3’-untranslated region (UTR) SNP of the NFKBIA gene. The same SNP was

genotyped in a group of 100 healthy ethnically matched controls. We searched

for association between the NFKBIA SNP and CD, as well as with several phe-

notypes: age of onset, disease location, and disease behavior. We also evaluated

the association between interactions of SNPs (NFKBIA, NOD2/CARD15, and

TLR4) and the phenotypes. Finally, the same associations were checked in a

subset of the cohort lacking NOD2/CARD15 mutations. We did not identify a

significant difference in allele and genotype frequencies between either groups or

an effect on phenotype.

5.2 General Methods

In all three studies some common methods for statistical analysis were used with

some necessary ad-hoc adjustments. Below is a short summary of the methods.

See the Methods sections of the papers for a more detailed explanation.

Haplotype inference of NOD2/CARD15 SNPs Since all three

NOD2/CARD15 mutations are known to be deleterious we did not consider

each one separately, but created a new artificial locus called ”Any NOD” as

follows. The NOD genotypes were phased into haplotypes using the software

GERBIL [27]. Any haplotype that contained at least one NOD mutation was

considered as an ”Any NOD” mutation, and a haplotype without mutations was

considered as an ”Any NOD” wild type allele. This method was applied in papers

1 and 3.

Association analysis The association between SNPs and a phenotype was

evaluated as follows. We first calculated a score for each SNP. For a discrete

trait (e.g., case/control status, disease location) we used the Pearson χ2 score

as the test statistic. The contingency table for the Pearson χ2 score was built

based on allele counting (2 × 2 table). This statistic assumes the multiplica-

tive model for penetrance (see Section 2.5). For a continuous trait (e.g., AOO)

both ANOVA and Kolmogorov-Smirnov (KS) scores were used. We used the per-

mutation test [69] described in Section 2.5 in order to derive a multiple testing
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corrected p-value for the highest scoring SNP. The permutation test was used

even when only one SNP was tested. Although it is possible to derive a p-value

directly from the statistics (e.g. using the χ2–test for the χ2 statistic, and the

F–test for the ANOVA statistic) using the permutation test has the advantage

of creating a null model free from any assumptions (unlike F–test, for example,

that assumes a normal distribution of the trait).

Interactions In addition to association of single SNPs, one often wishes to

test interactions, i.e., pairs of SNPs that together have association with the phe-

notype. The permutation test can be readily generalized to handle this case. For

a specific pair of SNPs, a 4× 2 contingency table is built by counting haplotypes

of the pair, and the Pearson χ2 score is calculated as the test statistic. When

haplotypes are unknown (SNPs are far away or on different chromosomes) then

for double heterozygotes, a value of 0.5 is added in each of the four cells in the

relevant column of the table. This statistic is calculated for every pair of SNPs

and multiple testing corrected p-value for the highest scoring pair is calculated

with the permutation test. This method was applied in paper 3.

Population correction A potential contributor to a false-positive associa-

tion is confounding effect due to differences in genetic background, termed popula-

tion stratification. Population stratification refers to differences in allele frequen-

cies between cases and controls due to differences in ancestry between the two

groups rather than association of SNPs with disease. Since each study contained

two or more different population groups, all permutation tests were corrected as

follows: The association score was calculated for each population separately, and

the test statistic was defined to be the weighted average of these scores, where

the weight of each score is the fraction of its corresponding population. In cal-

culating the p-value, permutations were generated by randomly permuting the

labels within each population independently. In all studies, Israeli patients were

divided into populations according to ethnicity – Ashkenazim and Sephardim.

Patients with mixed or unknown ethnicity were excluded from the cohort when

applying the population correction.

Power calculations The power of an association study is defined as the

probability to correctly conclude that there is association when one of the SNPs

is truly associated with the disease. It is especially important to evaluate the

power of a study when no associations are found. We calculated the power of the

studies by simulations. The power of an association test between a single SNP
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and a disease was calculated as follows. Several differences in allele frequency

between cases and controls were tested (e.g. 5, 10, 15, and 20%). For each of

these differences, the following test was performed: 1,000 data sets of cases and

controls (with the same number of case and control individuals as in the real

study) were simulated, where alleles were drawn according to the defined allele

frequency. The permutation test described above was applied to each of these

data sets. The power of the test was calculated as the fraction of the data sets

that received a p-value lower than 0.05. Since no association between SNPs and

the tested phenotype were detected in papers 2 and 3, we applied this method in

order to evaluate the power of the tests. Similar tests can evaluate the power of

association when interactions or haplotypes are considered.

48



List of abbreviations

ANOVA (ANalysis Of Variance) – a statistical procedure used to test hypothe-

ses concerning means of several populations.

CD (Crohn’s Disease) – a chronic inflammatory disease of the gastrointestinal

tract associated with dysregulation of the immune response.

GERBIL (GEnotype Resolution and Block Identification using Likelihood) – a

software for simultaneously phasing genotypes into haplotypes and block parti-

tioning. [27]

GEVALT (GEnotype Visualization and ALgorithmic Tool) – an integrated soft-

ware tool for genotype analysis. GEVALT combines the visual (and algorithmic)

abilities of Haploview with the STAMPA, GERBIL, and RAT algorithms. [10]

HAPGEN – a program that simulates case control datasets from a given set of

haplotypes. [36]

Haploview – a very popular software providing a common interface to several

tasks relating to haplotype analysis. [5]

HapMap Project – a multi-country effort to identify and catalog genetic simi-

larities and differences in human beings. Contains millions of SNPs of 270 indi-

viduals from four different origins. [59]

KS-test (Kolmogorov-Smirnov test) – used to determine whether two probabil-

ity distributions differ.

LD (Linkage Disequilibrium) – the non-random association of alleles at two or

more loci in the population.

PD (Perianal Crohn’s Disease) – a variant of Crohn’s disease affecting the anus,

and its surrounding areas. PD is a frequent complication of Crohn’s disease.

RAT (Rapid Association Test) – a software for testing association between SNPs

and a disease. [28]

SNP (Single Nucleotide Polymorphism) – a single nucleotide position in the

genome that differs across members of a species.

STAMPA (Selection of TAg SNPs to Maximize Prediction Accuracy) – a soft-

ware for tag SNP selection based on the prediction accuracy criterion. [21]

Tagger – a popular software for tag SNP selection based on the r2 criterion.

Implemented in Haploview. [12]
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Abstract
Background: Genotype information generated by individual and international efforts carries the
promise of revolutionizing disease studies and the association of phenotypes with alleles and
haplotypes. Given the enormous amounts of public genotype data, tools for analyzing, interpreting
and visualizing these data sets are of critical importance to researchers. In past works we have
developed algorithms for genotypes phasing and tag SNP selection, which were shown to be quick
and accurate. Both algorithms were available until now only as batch executables.

Results: Here we present GEVALT (GEnotype Visualization and ALgorithmic Tool), a software
package designed to simplify and expedite the process of genotype analysis, by providing a common
interface to several tasks relating to such analysis. GEVALT combines the strong visual abilities of
Haploview with our quick and powerful algorithms for genotypes phasing (GERBIL), tag SNP
selection (STAMPA) and permutation testing for evaluating significance of association. All of the
above are provided in a visually appealing and interactive interface.

Conclusion: GEVALT is an integrated viewer that uses state of the art phasing and tag SNP
selection algorithms. By streamlining the application of GERBIL and STAMPA together with strong
visualization for assessment of the results, GEVALT makes the algorithms accessible to the broad
community of researchers in genetics.

Background
Genotype information generated by individual and inter-
national efforts carries the promise of revolutionizing dis-
ease studies and the association of phenotypes with alleles
and haplotypes. Given the enormous amounts of public
genotype data, tools for analyzing, interpreting and visu-
alizing these data sets are of critical importance to
researchers.

In past works we have developed the following analysis
algorithms:

1. GERBIL [1,2] – an algorithm for simultaneously phas-
ing genotypes into haplotypes and block partitioning. The
algorithm is based on a stochastic model for recombina-
tion-poor regions ("blocks"), in which haplotypes are
generated from a small number of core haplotypes, allow-
ing for mutations, rare recombinations and errors. The
genotype phasing and block partitioning is solved by an
expectation-maximization algorithm. Gerbil accepts gen-
otype data as input and outputs the phased genotypes for
each individual, the block structure of the entire popula-
tion and the common haplotypes in each block. As part of
the algorithm, Gerbil also accurately completes missing
data according to the common haplotypes found. Gerbil
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was shown to be quick and accurate even for many hun-
dreds of individuals [1].

2. STAMPA [3] – an algorithm for tag SNP selection. The
algorithm finds a set of tag SNPs with maximal prediction
accuracy. The prediction accuracy of a set of tag SNPs is the
expected accuracy of predicting untyped SNPs, given the
tag SNPs. Dynamic programming is used in order to effi-
ciently find the set of tag SNPs. Halperin et. al tested
Stampa on many different genotype datasets from differ-
ent sources, and showed that it finds tag SNPs with con-
siderably better prediction ability than two other state-of-
the-art tag SNP selection algorithms [3].

Both GERBIL and STAMPA were available until now only
as batch executables. In this work we introduce GEVALT
(GEnotype Visualization and ALgorithmic Tool). GEVALT
(Version 1.1) is an integrated software providing easy
access to the GERBIL and STAMPA algorithms as well as to
some other tools for genotype analysis. GEVALT is based
on Haploview version 3.2 [4] and it maintains the user-
friendly interface and strong visualization capabilities of
Haploview, as well as its other functionalities, including
computation of marker quality statistics and LD informa-
tion.

Implementation
GEVALT is implemented in JAVA based on the open
source code of Haploview version 3.2. The analysis algo-
rithms (GERBIL, STAMPA and permutation testing) are
implemented in C++. Both Linux and Windows versions
of GEVALT are available for download, as well as the JAVA
source code.

Results and Discussion
GEVALT accepts input in a variety of formats. Genotype
data can be loaded as unphased genotypes in the standard
linkage format, or as either partially or fully phased chro-
mosomes. Genotype data dumps from the HapMap web-
site [5] can also be loaded. When using the standard
linkage format, the user can specify family structure as
well as disease status. The user can also specify marker
information, including name and location. Upon loading
a dataset, GEVALT first phases the genotypes in the follow-
ing manner: For data consisting of unrelated individuals,
GEVALT uses Gerbil to phase the genotypes. For data con-
sisting of two-generation pedigrees, GEVALT first creates a
set of trios, one per family, where each trio contains the
child with least missing data. In each trio phasing is done,
if possible, according to Mendelian rules. Then only the
children's genotypes are phased using Gerbil and each
parent's haplotypes are deduced from its child's haplo-
types. Gerbil is then run again on the set of the parents'
genotypes only to complete the missing data. The haplo-

types of the children that were not included in the trios are
deduced from their parents' haplotypes.

After phasing is completed, GEVALT generates several dis-
plays and option menus including the following:

• Phased genotypes: The phased genotypes of each indi-
vidual are displayed. Different colors are used to indicate
alleles phased by GERBIL, missing data and Mendelian
errors (Figure 1). For data consisting of pedigrees, the
phased genotypes are divided into two groups, parents
and children, and each group is displayed separately.

• Stampa: Select tag SNPs using the Stampa algorithm
(Figure 2). The user can specify the desired number of tag
SNPs, and the algorithm finds an optimal set of tag SNPs
and reports its prediction accuracy. The user can add or
remove tag SNPs from the set manually and GEVALT
recalculates the prediction accuracy of the new set.

• Individual Stats: Summary statistics for each individual
are displayed (Figure 3). These include the percentage of
missing genotypes, the percentage of heterozygous mark-
ers, the percentage of minor alleles and a tally of Mende-
lian inheritance errors.

All of Haploview's displays and option menus are availa-
ble. See [4] for a full description of these features. In addi-
tion, the following changes and extensions are
introduced:

• Association: GEVALT contains a faster implementation
of the permutation test in C++ instead of JAVA. The new
implementation runs about 20 times faster than the JAVA
implementation in Haploview. In the haplotype associa-
tions tab, a p-value is calculated for each block and for
each haplotype (Figure 4).

• LD Plot: The LD between each pair of SNPs can be cal-
culated using either the phased or the unphased geno-
types (Figure 5). The block structure displayed by default
is that found by GERBIL. The user can still employ any of
Haploview's block identification methods or select blocks
manually. Markers that were chosen as tag SNPs in the
Stampa tab are highlighted in this display.

• Haplotypes: The common haplotypes in each block are
computed based on the Gerbil solution.

• Check markers: Phasing by Gerbil is done only for the
set of picked markers. Whenever the set of picked markers
changes, GEVALT recalculates the phasing, and all dis-
plays are updated accordingly.
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Each of these displays and option menus is shown on a
separate tab, allowing the user to move from one to the
next. Interactive modifications made by the user in any
panel are reflected in all the others. The information on
each panel can also be exported to a PNG image file or to
a text file. Additionally, the program has a command-line
mode, which allows the user to run all the analyses with-
out opening the GUI on one or more files at once.

The running time of GEVALT is dominated primarily by
that of Gerbil and Stampa (see the references for detailed
reports on the running times of these programs). All other
operations, such as parameter adjustments and display
changes, are done with no noticeable delay even for data
sets with hundreds of markers and hundreds of individu-

als. Gerbil can currently handle up to 300 markers, while
Stampa can handle thousands of markers. Both algo-
rithms can handle thousands of individuals.

To the best of our knowledge, only two extant programs
offer both algorithmic and visualization tools for geno-
type analysis: Haploview [4] and HapScope [6]. As
described above, GEVALT maintains the popular, user-
friendly interface of Haploview, but replaces its standard
EM algorithm for phasing with the Gerbil algorithm. This
allows a more accurate estimation of the phased haplo-
types and a visualization of each individual's inferred hap-
lotypes (and not just common haplotypes as in
Haploview). Besides the Tagger algorithm for tag SNPs
selection implemented in Haploview (and also in

The Phased Genotypes displayFigure 1
The Phased Genotypes display. The phased genotypes display is divided into two tabs – parents and children. In this image 
the parents tab is displayed. For each parent, its two chromosomes are displayed, with an indication which of them was trans-
mitted to the child that was included in the trio. Different colors are used to indicate alleles phased by GERBIL, missing data 
that were completed by GERBIL, and Mendelian errors.
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GEVALT), GEVALT also offers STAMPA, which is not only
very efficient, but also allows the user to choose the
amount of tag SNPs. Other advantages and improvements
over Haploview are listed above. A current limitation of
Gerbil is allowing at most 300 markers. We intend to
remove this limitation in the future (see below). The Hap-
Scope software includes analysis programs and a visuali-
zation tool. Most of the analyses are done separately using
the command line and the results are then loaded into the
visualization tool. In contrast, in GEVALT all the analyses
are done within the graphical user interface, which makes
it more user friendly and easy to use. HapScope uses
PHASE [7] or SNPHAP [8] as its phasing algorithm.
PHASE was shown to be slightly more accurate than Ger-

bil but much slower [1]. In contrast to HapScope, GEVALT
facilitates association tests and can handle family struc-
tures. On the other hand, only HapScope includes mod-
ules for reference sequence annotation, SNP mapping and
SNP classification.

We intend to continue the development of GEVALT. In
particular, we shall extend Gerbil to handle more SNPs,
and improve Stampa so that it incorporates into its solu-
tion predefined tag SNPs. We also intend to incorporate a
new algorithm for evaluating the significance of disease
association, which is dramatically faster than the standard
permutation test [9].

The Stampa displayFigure 2
The Stampa display. Left – The Stampa configuration menu. After running Stampa, a table is displayed, showing for every 
number of tag SNPs, the prediction accuracy of the best set of tag SNPs of that size. The user can choose the number of tags 
to display according to the required prediction accuracy. Right – The Stampa results menu. The selected tag SNPs are marked. 
The user can add or remove tag SNPs manually and recalculate the prediction accuracy of the new set.
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Conclusion
GEVALT is an integrated viewer that uses state of the art
phasing and tag SNP selection algorithms. It streamlines
the application of GERBIL and STAMPA, which were
available until now only as batch executables, and allows
using them together with the strong visualizations of Hap-
loview for assessment of the results. Both running the
algorithms and visualizing the results are done within the
graphical user interface, unlike, e.g., the HapScope soft-
ware [6], which only enables the latter. This makes the

algorithms accessible to the broad community of
researchers in genetics.

Availability and requirements
• Project name: GEVALT

• Project home page: http://www.cs.tau.ac.il/~rshamir/
gevalt

• Operating systems: Windows and Linux.

The Individual Stats displayFigure 3
The Individual Stats display. This table summarizes statistics for each individual. These include the percentage of missing 
genotypes, the percentage of heterozygous markers, the percentage of minor alleles, and a tally of Mendelian inheritance 
errors and of phasing errors.
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• Programming language: Java and C++

• Other requirements: Java 1.3 or higher.

• License: free non-commercial research use license.

• Any restrictions to use by non-academics: license
needed for commercial use.

The Haplotypes and Single Markers Associations displaysFigure 4
The Haplotypes and Single Markers Associations displays. The Association tab contains three displays: Single Marker, 
Haplotypes, Permutation Tests. Top – The Haplotypes Association tab. For each block and each haplotype in a block a chi-
square score is calculated (TDT test for pedigrees, case/control test for unrelated individuals) and a p-value is derived. Only 
haplotypes above a certain frequency threshold are considered and displayed (the threshold is set by the user in the Haplo-
types tab). Bottom – The Single Marker tab for the same set of markers. In this example more significant associations are 
detected when testing for haplotype associations than when testing individual SNPs.
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LD plots comparisonFigure 5
LD plots comparison. Top – An LD plot calculated using the phased genotypes (default). Bottom – An LD plot calculated 
using the unphased genotypes. Different LD scores are observed in many SNP pairs. These differences result from unambigu-
ous phasing of double heterozygotes and from completed missing data. Markers that were chosen as tag SNPs in the Stampa 
tab are highlighted in blue.
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