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Abstract

In this thesis we study the Bicluster Graph Editing Problem. The goal

is to add/remove fewest edges from a bipartite graph so that it becomes a

vertex disjoint union of complete bipartite graphs. The problem arises in

analysis of gene expression data in molecular biology. We show that the

problem is NP-hard and provide a polynomial algorithm that guarantees an

approximation factor of 11.
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Chapter 1

Introduction

In this chapter we first review the biological background that motivated

the problem studied in this thesis. We then discuss the clustering problem,

its formulations, principles, use and disadvantages. Next, we describe the

biclustering problem. We discuss different formulations and review some

known heuristics. Finally, we introduce the problem studied in this work,

and summarize the thesis results.

1.1 Biological background

DNA, or deoxyribonucleic acid, is the hereditary material in humans and

almost all other organisms. Nearly every cell in a persons body has the same

DNA and most DNA is located in the cell nucleus. The information in DNA

is stored as a code made up of four chemical bases or nucleotides: A, T , C

and G. The order, or sequence, of these bases constitutes the information
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available for building and maintaining an organism, similar to the way in

which letters of the alphabet appear in a certain order to form words and

sentences. The DNA molecule consists of two strands, or sequences. The

bases in the two strands are paired, so that A in one strand matches T in the

other, and C matches G. This way the sequence of one strand completely

determines that of the other, complement strand. The two long strands form

a spiral called a double helix.

An important property of DNA is that it can replicate, or make copies

of itself. Each strand of DNA in the double helix can serve as a pattern for

duplicating the sequence of bases. This is critical when cells divide because

each new cell needs to have an exact copy of the DNA of the old cell.

Most genes contain the information needed to make functional molecules

called proteins (A few genes produce other molecules that help the cell as-

semble proteins). The journey from gene to protein is complex and tightly

controlled within each cell. It consists of two major steps: transcription

and translation. Together, transcription and translation are known as gene

expression.

During the process of transcription, the information stored in a gene’s

DNA is transferred to a similar molecule called RNA (ribonucleic acid) in

the cell nucleus. Both RNA and DNA are made up of a chain of nucleotide

bases, but they have slightly different chemical properties. The type of RNA

that contains the information for making a protein is called messenger RNA

(mRNA) because it carries the information, or message, from the DNA out

of the nucleus into the cytoplasm.
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Translation, the second step in getting from a gene to a protein, takes

place in the cytoplasm. The mRNA interacts with a specialized complex

called a ribosome, which ”reads” the sequence of mRNA bases. Each se-

quence of three bases, called a codon, usually codes for one particular amino

acid. Amino acids are the building blocks of proteins.

The flow of information from DNA to RNA to proteins is one of the

cornerstones of molecular biology. It is so important that it is sometimes

called the central dogma. For much more information on this topic see [3, 16]

Under any particular condition, each cell expresses only a fraction of its

genes, while the rest of the genes are silent. The process of turning genes on

and off is known as gene regulation. Gene regulation makes a brain cell look

and act different from a liver cell or a muscle cell. Although we know that

the regulation of genes is critical for life, this complex process is far from

being fully understood.

Gene regulation can occur at any point during gene expression, but most

commonly occurs at the level of transcription (when the information in a

genes DNA is transferred to mRNA). Signals from the environment or from

other cells activate proteins called transcription factors. These proteins bind

to regulatory regions of a gene and increase or decrease the level of transcrip-

tion. By controlling the level of transcription, this process can determine the

amount of protein product that is made by a gene at any given time.

Today’s high throughput DNA microarrays technology and other tech-

niques enable us to measure the mRNA level of thousands of genes simulta-

neously [43, 13, 2, 27]. A microarray experiment typically assesses a large
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number of gene expression levels under multiple conditions.

The gene expression data are usually displayed as a matrix, in which

the rows correspond to different genes, and the columns to conditions. The

conditions might be different individuals, different experimental conditions

of the organism, or different tissues (e.g., cancerous vs healthy) from the

same individual [11, 34]. The row vector of a gene is called the expression

pattern of that gene. A column vector is called the expression profile of the

condition.

The expression matrix is a powerful source of information for obtaining

biological insights [1]. One goal of gene expression studies is to get better

understanding of gene functions [45, 36, 35]. The idea is that genes with

similar expression patterns are likely to be involved in similar processes, and

hence have similar functionality.

Other than deducing function of unknown genes, gene expression analysis

has proven to be helpful to identify diseases profiles [19, 30], deciphering

regulatory mechanisms [22, 23, 49], genotyping [48] and drug developing [23].

The number of genes whose expression level is measured under one condi-

tion is thousands or tens of thousands. Since the expression matrix consists

of a vast number of measurements, computational aids are needed, and the

biological challenge should be formulated as a mathematical problem. Two

very central methods in this analysis are clustering and biclustering, that

will be briefly reviewed in the next sections.
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1.2 Clustering

The concept of grouping data into clusters arises in numerous contexts and

disciplines. This subject has been extensively studied and various exact algo-

rithms, approximations and heuristics were proposed. For basic reviews and

monographs on clustering see [42, 17, 28, 29, 37]. In the context of computa-

tional biology, clustering algorithms aim to partition the expression matrix

into a collection of rows (or columns) subsets. The genes (or conditions) of

each subset should share similar properties or biological function. Each such

subset is called a cluster, and the collection of clusters is called a clustering,

or a clustering solution. See Figure 1.1 for an example.

For concreteness suppose from now on that the matrix has rows cor-

responding to genes and columns corresponding to conditions, and assume

that we wish to cluster the genes. Clustering of the conditions can be done

analogously.

There can be many different formulations of the problem but they all

share some basic demands. First of all, a measure of similarity or distance

between expression patterns needs to be defined. Using this measure, one

can use the original expression data to form a new matrix of the distances

between every two genes.

Two main criteria need to be satisfied in a clustering: the first one is

homogeneity, which means that genes in the same cluster should be relatively

similar to each other. The second one is separation, which means that genes

in different clusters should have low similarity to each other.
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Figure 1.1: Clustering of a gene expression matrix. The rows of the matrix

correspond to the genes, and the columns correspond to the conditions. A

cluster is a partition of the rows. The features of each gene are all its column

coordinates, and genes of the same cluster should have similar features (or,

equivalently, similar row vectors). Since the clusters are disjoint, the rows of

the matrix can be reordered so that each cluster is a contiguous strip.

Though the clustering problem can be formulated in various ways, most

of the useful variations were proved to be NP-hard. We will describe here

three formulations, though many more were proposed and might be relevant

to different applications.

The Weighted Clustering Problem: Given a complete graph with

weights on the edges, find a partition of the graph nodes into sets called

clusters, that maximizes the sum of weights of edges inside clusters, and

minimizes the sum of edges weights between clusters.
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Note that there are two conflicting objectives here, which cannot be si-

multaneously optimized. One possible way around this is to fix the number

of required clusters and maximize the sum of edge weights within clusters.

Minimum Disagreements Clustering (MinDisAgree): Given a com-

plete edge weighted graph where the edges weights are +1 and -1 only, find

a partition of the vertices into clusters, that will minimize the number of er-

rors: An error is a +1 edge connecting vertices in different clusters, or a -1

edge inside a cluster.

Clearly, this problem is a special case of the weighted clustering problem.

Bansal et al. [4] proved that the problem is NP-hard and gave a polyno-

mial approximation that guarantees a (rather large) constant approximation

factor. They also present a polynomial time approximation scheme for the

maximization variant of the problem, in which the objective is to maximize

the number of non-errors. Charikar et al. [6] presented an improved poly-

nomial approximation algorithm that guarantees an approximation factor of

four. This approximation algorithm will serve as the starting point to the

approximation algorithm presented in this work.

An equivalent formulation originating from a graph modification view-

point is the following. An edit operation in a graph is an addition or a

deletion of an edge. A cluster graph is the disjoint union of cliques.

Cluster Graph Editing: Given a graph G and an integer k, determine

if one can make at most k edits in order to transform G into a cluster graph.

This problem and other cluster modification problems were studied by

Shamir et al. [38] and proved to be NP-hard.
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Emanuel and Fiat [12] studied several correlation clustering problems. In

particular, they studied the problem where ”don’t care” edges are present.

Precisely, given a complete graph with weights +1,−1 or 0 on the edges, find

a node partition that minimizes the number of disagreements. A disagree-

ment is a +1 edge between clusters or a −1 edge inside a cluster. They show

that the problem is NP-hard and give a polynomial-time approximation algo-

rithm that guarantees an O(logn) approximation factor. The proof is based

on showing equivalence to the multiway cut problem, and the approximation

factor is the same is that for multiway cut [47].

Since most of the clustering problems are hard, most of the clustering

algorithms are heuristics or approximations. In general, we can distinguish

between two types of clustering methods; agglomerative methods, that start

with small groups of genes and gradually join them to larger groups, and

divisive methods that start the analysis with large groups and divide them

into smaller clusters.

One clustering technique used for gene expression data analysis is Hier-

archic Clustering [21, 24, 33], which attempts to place the input elements

in a tree hierarchy structure, with the elements located in the leaves. Other

methods include K-means clustering [25], self organizing maps [20, 44],

and CLICK [40]. All these methods and others have become powerful tools

of genetic research.

In spite of its tremendous utility, gene expression data analysis via clus-

tering has several limitations. To start with, the traditional clustering for-

mulations do not allow a gene to be a member of more than one group, while
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in reality genes can have multiple biological functions. Moreover, cluster-

ing calls for grouping the genes according to their expression pattern across

all conditions, while some conditions may be irrelevant to certain aims, es-

pecially when conditions are numerous and diverse. In other words, the

requirement of finding a disjoint cover of the genes and of the expression

patterns does not consistently reflect the biological motivation. A more flex-

ible structure and formulation must be designed.

In order to try and address these shortcomings, the concept of bicluster-

ing was introduced to gene expression analysis. In the next section we will

formulate the biclustering problem and discuss its application.

1.3 Biclustering

The concept of biclustering was first introduced in the seventies [17, 29], but

its first usage in the context of computational biology was due to Cheng

and Church [8]. Roughly speaking, biclustering calls for finding ”significant”

submatrices of the input matrix. A bicluster is a subset of rows and a subset

of columns, defining together a submatrix that shows unique, similar expres-

sion patterns according to some scoring method. The difference between

clustering and biclustering is illustrated in figures 1.1 and 1.2.

As in clustering, a good biclustering solution is one that satisfies the

criterion of homogeneity: Genes inside a bicluster should have high similarity

to each other. The second criterion of separation is not well defined, since

genes can belong to more than one bicluster.
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Figure 1.2: Biclustering of a gene expression matrix. Each bicluster is a

subset of genes (rows) and a subset of conditions (columns). The reordering

of rows and columns so that each bicluster forms a contiguous rectangle is

usually impossible.

The biclustering problem also has many alternative formulations, as well

as different applications and approaches. See Madeira and Oliveira [26],

Liang et al. [7] and Tanay et al. [46] for recent reviews. We will describe be-

low some of the possible mathematical formulations of biclustering problems,

and present heuristics for finding biclusters.

1.3.1 Problem formulations

In this section, we will give a glimpse into the broad spectrum of possible

formulations to the biclustering problem. These formulations differ in their

objective function, their constraints, their complexity and the algorithms
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used to solve them. Our terminology, as before, will be motivated by gene

expression, although the problems and results have other applications as well.

We transform expression matrix into a bipartite graph in which the ver-

tices in one part correspond to the genes and the vertices in the other part

correspond to the conditions. Edges weights reflect expression levels. In

some formulations a threshold on the (absolute) value of expression is used

to obtain an unweighted graph.

A biclique is a complete bipartite subgraph. The biclustering problem

aims to find large bicliques in the graph or, more generally, large dense sub-

graphs that are ”close” to bicliques. In the weighted formulation, high weight

subgraph are sought.

Several studies have dealt with the following biclustering problems:

Maximum Vertex Weight Biclique: Given a vertex-weighted bipartite

graph, find a biclique of maximum total vertex weight.

Yannakakis presented a polynomial solution for this problem [50], and an

alternative polynomial solution was later given by Hochbaum [18].

Exact Cardinality Biclique: Given a bipartite graph and positive in-

tegers k and l, does there exist a biclique whose parts are of size k and l

respectively?

This problem was shown to be NP-complete by Dawande et al. [10]. A

special case is the following:

Maximum Balanced Vertex Cardinality Biclique: Given a bipartite

graph G = (U, V,E) and an integer k, determine if there exist subsets A ⊆
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U,B ⊆ V such that |A| = |B| ≥ k and A ∪B induces a biclique.

The problem was shown to be NP-complete [14]. An equivalent problem

was proved to be NP-complete by Dawande et al. [10].

The following problems are ones in which the objective function relates

the edges.

Minimum Edge Deletion Biclique: Given a bipartite graph G =

(U, V,E) and a positive integer k, does there exist a biclique (A, B, E ′) in

G such that |E\E ′| ≤ k ?

This problem is NP-complete, as proved by Dawande et al. [9]. Hochbaum

[18] showed a polynomial approximation algorithm that guarantees an ap-

proximation factor of 2.

Maximum Edge Cardinality Biclique: Given a bipartite graph G and

a positive integer k, determine whether there exists a biclique (A, B, E ′) in G

such that |E ′| ≥ k.

Peeters [31] has shown that the problem is NP-hard.

Minimum Edge Deletion Weighted Biclique: Given an edge-

weighted bipartite graph G = (U, V,E,w) and a positive integer k, does there

exist a biclique (A, B, E ′) in G such that
∑

e6∈E′ w(e) ≤ k.

Dawande et al. [9] proved that the problem is NP-complete. A polynomial

approximation algorithm that guarantees an approximation factor of 2 was

given by Hochbaum [18].

Maximum Edge Weighted Biclique: Given an edge-weighted bipartite

graph, find a biclique of maximum total edge weight.
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The hardness of this problem was proved by Dawande et al. [10].

Maximum ±1 Edge Weighted Biclique: Given a complete bipartite

graph with edge weights +1 and -1 only, find a biclique of maximum total

edge weight.

This formulation of the problem has strong relation to the problem stud-

ied in this work. The complexity of the problem is still open.

1.3.2 Biclustering Heuristics

The first application of biclustering in the context of gene expression data

analysis was by Cheng and Church [8]. Their algorithm is greedy: it itera-

tively finds one bicluster on each step. This is done by finding a submatrix

that has a low mean squared residue score. Roughly speaking, the residue

score measures the variance across the genes in each column (see details be-

low). After finding the best candidate bicluster, the algorithm ”removes” it

from the graph by replacing its submatrix entries by neutral values.

Precisely, given a data matrix E, a subset of genes I and a subset of

conditions J , we define eIj =
∑

i∈I eij

|I| , eiJ =
∑

j∈J eij

|J | and eIJ =
∑

i∈I,j∈J eij

|I||J | .

The residue score of an element eij in the submatrix is RSIJ(i, j) = eij −

eIj − eiJ + eIJ , and the mean squared residue score of the entire submatrix

is
∑

i∈I,j∈J
RSIJ (i,j)2

|I||J | .

The goal of the algorithm is to find a bicluster of maximum size (which can

be defined in several ways) among all biclusters with mean squared residue

score not exceeding a threshold δ. After discovering such a bicluster, it is
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removed from the matrix by modifying its entries, preventing the correlative

signal in them to be beneficial for other biclusters. For applications of the

Cheng and Church algorithm see [8].

Getz, Levine and Domany [15] define a generic scheme for transforming

a one-dimensional clustering algorithm into a biclustering algorithm. Their

Coupled Two-way Clustering algorithm (CTWC) relies on having one-

dimensional clustering algorithm that can discover significant clusters. The

CTWC algorithm recursively applies this algorithm to submatrices of the

expression matrix, and at each step it selects a gene subset and a condition

subset and applies the one-dimensional clustering algorithm twice. The sub-

matrix created from pairing a significant subset of conditions and a significant

subset of genes is called stable.

During its execution, CTWC dynamically maintains two lists of stable

clusters (one for row clusters and one for column clusters) and a list of pairs

of row and column subsets. Newly generated stable clusters are added to the

row and column lists and a pointer that identifies the parent pair is recorded

to indicate where this cluster came from. The iteration continues until no

new clusters are found. The CTWC algorithm has been used in a variety of

applications, e.g. [32].

Another biclustering algorithm is SAMBA [45] which stands for Statis-

tical Algorithmic Method for Biclustering Analysis. The algorithm works as

follows: It forms a bipartite graph according to the gene expression matrix,

and calculates vertex pair weights according to a specific weighting scheme.

This scheme is based on probabilistic modeling of the data. Then graph
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theoretic techniques are used to derive scoring schemes for identifying signif-

icant subgraphs. Each subgraph corresponds to a bicluster, and the SAMBA

algorithm aims to find the k ”heaviest” biclusters.

More precisely, the expression matrix is transformed into a bipartite graph

G = (U, V,E), where U corresponds to the conditions and V corresponds to

the genes, and (u, v) ∈ E iff v responds to a condition u. The weight of

a subgraph H = (U ′, V ′, E ′) is the sum of its gene-condition pairs weights,

edges or non-edges.

The weight of an edge (u, v) is log pc

pu,v
, where pu,v is the fraction of bi-

partite graphs with degree sequence identical to G that contains the edge

(u, v), and pc results from an alternative model that assumes that each edge

in a true bicluster occurs with a constant probability. Similarly, the weight

of every non-edge (u, v) is set to be log 1−pc

1−pu,v
, and the weight of E is then:

∑
(u,v)∈E′

log
pc

pu,v

+
∑

(u,v)∈(U ′×V ′)\E′

log
1− pc

1− pu,v

Under this scoring scheme, the weight of a subgraph is the log-likelihood

ratio of that bicluster, so we need to discover the k heaviest subgraphs of G.

Since this problem is NP-hard, SAMBA employs a heuristic search for such

subgraphs. The implementation of the algorithm is part of the EXPANDER

platform [39].

The Plaid Model is another statistically inspired modeling approach.

Lazzeroni and Owen [22] represent the expression data as a matrix, which is

a sum of ”plaids” or layers: The matrix is approximated by a linear sum of

signals, each having non-zero value outside its specified submatrix. The goal
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is to find a small set of plaids, with a minimal difference between their sum

and the observed signal.

The model uses the metaphor of colors to describe the superpositions of

signal levels. It assumes the matrix entries values are a sum of a uniform

background color µ0 and k biclusters, each of them coloring a submatrix in a

color θij0. This color is composed of a background color of the bicluster, and

row and column specific additive constants. Under this model, the expression

matrix is represented as

Aij = µ0 +
K∑

k=1

θijkρikκjk

where ρik = 1 iff gene i belongs to bicluster k, and κjk = 1 iff the sample

j belongs to bicluster k. The biclustering problem is formulated as finding

parameter values so that the resulting matrix would fit the original data as

much as possible. The objective is to minimize the function:

∑
ij

[Aij −
K∑

k=0

θijkρikκjk]
2

where µ0 = θij0. The Plaid model algorithm was applied to yeast expres-

sion data [22].

Spectral Biclustering [19] uses techniques from linear algebra to iden-

tify bicluster structure in the input data. The algorithm assumes that, after

normalization, the matrix contains a ”checkerboard” structure.

Supposing the original matrix E has been normalized appropriately to

form the matrix E ′. The idea is to solve the eigenvalue problem E ′T E ′x = λ2x

and examine the eigenvectors x. If the constants in an eigenvector can be
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sorted to produce a step-like structure, the column clusters can be identified

accordingly. The row clusters are found similarly from y satisfying E ′T E ′y =

λ2y.

More precisely, the checkerboard pattern in a matrix E is reflected in

the constant structures of the pair of eigenvectors x and y that solved the

coupled eigenvalue problem E ′T E ′x = λ2x and E ′T E ′y = λ2y, where x and

y have a common eigenvalue.

The algorithm depends critically on the normalization procedure used

to transform the matrix, and Kluger et al. proposed three normalization

methods. In a cancer context, the checkerboards structure reveals genes

that are markedly up-regulated or down-regulated in patients with particular

types of tumors. The Spectral Biclustering algorithm was applied in cancer

research [19].

For other algorithmic approaches see [5, 49, 41, 30, 23].

1.4 Summary of thesis results

1.4.1 Two formulations of our problem

A ±1 bipartite graph is a complete weighted bipartite graph G = (U, V,E,w)

where for each edge e, its weight w(e) is +1 or −1. For convenience, we shall

sometimes use W = U ∪ V .

A biclustering of G is a partition of W into subsets B = {B1, B2...BK}.

Each Bi is called a bicluster. If Bi consists of a single vertex then it is called
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a singleton. Given a biclustering B, we denote Ui = Bi∩U and Vi = Bi∩V .

A negative error in a biclustering is a negative edge inside a bicluster,

i.e., one whose end vertices reside in the same bicluster. A positive error is

a positive edge between two biclusters. An error is a positive or a negative

error.

The ±1 Biclustering Problem: Given a ±1 bipartite graph, find a biclus-

tering of the graph with a minimum number of errors.

As seen in figure 1.3, the formulation we have chosen implies finding a

collection of submatrices so that: (1) Each two submatrices have disjoint row

and column sets.(2) The number of −1 values in these submatrices, plus the

number of +1 outside them, is minimum. A singleton bicluster corresponds

to a row or a column that does not intersect with any submatrix.

An equivalent formulation of the problem is motivated by graph modifi-

cations. In an unweighted bipartite graph, an ideal bicluster is a complete

bipartite subgraph, and any missing edge inside the subgraph is considered

an error. Similarly, edges that do not belong to any bicluster are errors. This

gives rise to the following formulation:

A bipartite graph G = (U, V,E) is called a bicluster graph if every

connected component of G is a biclique (a complete bipartite subgraph).

Define E4F = (E\F )∪(F \E). If G is any bipartite graph and F ⊂ U×V is

such that G′ = (U, V,E4F ) is a bicluster graph, then F is called a bicluster

editing set for G.

Bicluster Graph Editing: Given a bipartite graph G and an integer k,

determine if G has a bicluster editing set of size at most k.
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Figure 1.3: The ±1 Biclustering Problem. The goal is to find a collection of

submatrices that have disjoint row and column sets with a minimum number

of errors. The dashed area corresponds to singletons, i.e., rows and columns

that do not take part in any bicluster submatrix.

It is easy to notice that the problem is equivalent to the ±1 Biclustering

Problem. Given a ±1 bipartite graph G = (U, V,E,w) for the ±1 Biclus-

tering Problem, the corresponding input for the Bicluster Graph Editing is

G′ = (U, V,E ′) where e ∈ E ′ ⇔ w(e) = +1. In the opposite direction, we

change every edge to a positive edge and every non-edge to a negative edge.

A minimum bicluster editing set corresponds to a minimum number of errors.

1.4.2 Our results

We first prove the NP-completeness of the problem. Hardness is proved

by reducing the problem from the 3-Exact 3-Cover (3X3C) problem. The

reduction is inspired by the work of Shamir, Sharan and Tsur [38], in proving
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the hardness of the Clustering Editing Problem.

Next, we give a polynomial approximation algorithm for the problem.

The algorithm is based on the algorithm of Charikar et al. to the MinDis-

Agree clustering problem [6]. The algorithm uses linear programming, relax-

ation and rounding, and guarantees an approximation factor of 11.

Our formulation of the biclustering problem can be transformed to the

problem solved by Emanuel and Fiat [12]. This is done by constructing

a complete graph by adding to the original bipartite graph all the missing

edges, assigning a zero weight to them. By the results of Emanuel and Fiat

[12], this implies that the problem has a polynomial-time approximation

algorithm that guarantees an O(logn) approximation factor 1. This result is

improved here. The NP-hardness result that we obtain is stronger too.

1We thank Amos Fiat for this observation.

24



Chapter 2

NP-Completeness Proof

In this chapter we shall prove that Bicluster Graph Editing is NP-Complete.

Our proof is inspired by the NP-hardness proof of [38] for Cluster Graph

Editing.

Theorem: Bicluster Graph Editing is NP-complete.

Membership in NP is trivial. We prove NP-completeness by reduction

from the following restriction of Exact Cover by 3-sets:

The 3-Exact 3-Cover (3X3C): Given a collection C of triplets of ele-

ments from a set U = {1, 2, ..., 3n}, such that each element of U is a member

of at most 3 triplets, determine if there exist a sub-collection I ⊆ C of size

n that covers U .

This problem is known to be NP-complete [14].

The reduction: Let m ≡ 36n. Given an instance < C,U > of the 3X3C

problem we build a bipartite graph G = (U, V,E) as follows:
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U = U1 ∪ U2

V = V1 ∪ V2

U1 = {u1, ...u3n}

V1 = {v1, ...v3n}

U2 =
⋃
S∈C

{u1(S), ..., um(S)}

V2 =
⋃
S∈C

{v1(S), ..., vm(S)}

E =
5⋃

i=1

Ei

E1 = {(ui, vi) : i = 1...3n}

E2 = {(ui, vj) : ∃S ∈ C : (i, j) ∈ S}

E3 = {(ui(S), vj(S)) : S ∈ C, i, j = 1...m}

E4 = {(ui, vj(S)) : S ∈ C, i ∈ S, j = 1...m}

E5 = {(vi, uj(S)) : S ∈ C, i ∈ S, j = 1...m}

In words: for every element of U we construct two connected vertices, one

in each part of G. For each triplet in C we connect the corresponding six

vertices into a biclique. We also construct a balanced biclique of 2m vertices

for every triplet and connect the vertices of the biclique to the three original

vertices corresponding to that triplet in the other side. The reduction is

partially illustrated in Figure 2.1
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Figure 2.1: A sketch of the graph built by the reduction.

For every triplet S ∈ C we denote:

US = {ui, uj, uk : i, j, k ∈ S}

VS = {vi, vj, vk : i, j, k ∈ S}

WS = US ∪ VS

Um
S = {u1(S), ..., um(S)}

V m
S = {v1(S), ..., vm(S)}

Wm
S = Um

S ∪ V m
S

The reduction is clearly polynomial. Let M ≡ 2m(3|C| − 3n) and N ≡

|E2| − 6n. We prove that there is an exact cover of U if and only if there is

a bicluster editing set for G of size M + N .
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Proof:

⇒ Let I ⊆ C be an exact cover of U . Let F1 = {(ui, vj(S)) : S 6∈ I, ui ∈

S, j = 1...m}. Similarly, let F2 = {(vi, uj(S)) : S 6∈ I, vi ∈ S, j = 1...m}.

Also, let F3 = {(vi, uj) : S 6∈ I, i, j ∈ S} and let F = F1 ∪ F2 ∪ F3. It is easy

to verify that |F1| = |F2| = m(3|C| − 3n) and that |F3| = |E2| − 6n. Hence,

|F | = M + N . Since I is an exact cover, if follows that G\F is a bicluster

graph.

⇐ Let F ′ be a bicluster editing set for G with |F ′| ≤ M + N . Let F be

an optimum bicluster editing set for G for which |F | ≤ |F ′| ≤ M + N . We

prove that |F | = M + N and that we can derive from F an exact cover of

U . This implies |F ′| = |F |, and therefore F ′ is an optimum bicluster editing

set.

We know that each element of U occurs in at most 3 triplets and therefore

3|C| ≤ 9n. Hence M ≤ 2m(9n − 3n) = 12mn. In addition, in the graph

(U, V,E2) each vertex has at most 6 neighbors (being a member of at most 3

triplets) which implies |E2| ≤ 3n · 6 = 18n and N ≤ 18n− 6n = 12n. Hence:

|F | ≤ 12mn + 12n =
m2

3
+

m

3
= m(

m + 1

3
) (2.1)

Let G′ = (U, V,E4F ) be the bicluster graph obtained by editing G ac-

cording to F . We shall prove that for every subset S ∈ C there exists a

unique biclique in G′ that contains Wm
S .

We first show is that there exists a biclique B in G′ such that |B∩Wm
S | ≥

3m
2

+ 3. Suppose that the vertices of Wm
S are partitioned among k bicliques
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B1, ..., Bk in G′. Assume by contradiction that for every i, |Wm
S ∩Bi| ≤ 3m

2
+2.

Let xi = |Um
S ∩Bi| and yi = |V m

S ∩Bi|. So we suppose that xi+yi ≤ 3m
2

+2

for every i.

Missing edges between Wm
S ∩Bi and Wm

S \Bi are:

xi(m− yi) + yi(m− xi) = (xi + yi)m− 2xiyi

This expression is minimizes (for xi + yi fixed) when xi = yi and is at

least:

(xi + yi)(m− xi + yi

2
)

Therefore:

|F | ≥
k∑

i=1

(xi + yi)(m− xi + yi

2
)

≥
k∑

i=1

(xi + yi)(m−
3m
2

+ 2

2
)

= 2m(
m− 4

4
)

From (2.1) we know that |F | ≤ m(m+1
3

). Since m > 14, a contradiction

follows.

For a triplet S, let BS be the biclique Bi for which xi + yi is maximized.

We next prove that BS ⊆ Wm
S ∪ WS. Assume by contradiction that there

exists a vertex x in BS \ (Wm
S ∪ WS) and w.l.o.g. assume that x ∈ U .

Consider a new partition obtained from the original partition by moving x
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outside BS, and turning it into a singleton. Let F̃ be the new editing set and

let G̃ = (U, V,E4F̃ ).

We have shown that |BS ∩Wm
S | ≥ 3m

2
+3 which implies that |BS ∩V m

S | ≥
m
2

+ 3. Since there are no edges between x and BS ∩ V m
S in G, these edges

belong to F but not to F̃ . The new edges that might have been added to

F̃ due to the new partition are edges between x and at most m
2
− 3 edges

between x and BS \ (Wm
S ). Also, the edges between x and at most 3 vertices

of VS might be in F̃ and not in F (if these vertices belong to BS). So we get

that:

|F | − |F̃ | ≥ (
m

2
+ 3)− (

m

2
− 3 + 3) = 3

Since F is an optimum editing set we get a contradiction. Hence, BS ⊆

Wm
S ∪WS.

Next we show that Wm
S ⊆ BS. Assume by contradiction that there exists

a vertex y in Wm
S \ BS and w.l.o.g. assume that y ∈ U . Consider a new

partition obtained from the original partition by moving y into BS. Again,

let F̃ be the new editing set and let G̃ = (U, V,E4F̃ ).

As previously, note that |BS ∩V m
S | ≥ m

2
+3. All the edges between y and

BS ∩ V m
S belong to F but not to F̃ . The new edges that might have been

added to F̃ due to the new partition are edges between y and at most m
2
− 3

vertices of V m
S \ BS. Also, the edges between y and at most 3 vertices of VS

might be in F̃ (if these vertices don’t belong to BS). We get that:

|F | − |F̃ | ≥ (
m

2
+ 3)− (

m

2
− 3 + 3) = 3

Again, we get a contradiction to the optimality of F . In summary, we
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have shown that Wm
S ⊆ BS ⊆ Wm

S ∪WS.

To complete the proof we will show that |F | ≥ M + N with equality if

and only if for every S ∈ C either BS = Wm
S or BS = Wm

S ∪WS. We denote

F ′ = F ∩ (E4∪E5) and F ′′ = F ∩ (E1∪E2). (Note that since we have shown

that each Wm
S is contained in some bicluster, it follows that E3 ∩ F = ∅).

Hence, F ⊇ F ′ ∪ F ′′.

Examine an element i ∈ U that is a member of (at least) two subsets

S1, S2 ∈ C. By the previous claim, Wm
S1

and Wm
S2

are subsets of distinct

bicliques in G′. Hence either the edges between ui and Wm
S1

belong to F or

the edges between ui and Wm
S2

belong to F (or both). If each ui remains

connected to precisely one Wm
S , the total contribution to F of edges incident

on ui is m(3|C|− 3n) and this is the minimum possible. The same argument

applies to the edges incident on vi. Therefore |F ′| ≥ M , with equality iff

each ui is connected in G′ to exactly one V m
S and each vi is connected in G′

to exactly one Um
S .

Since each BS ⊆ Wm
S ∪WS, it follows that in G′, every ui is a neighbor of

at most three vertices from V1. Since |V1| = 3n, there are at most 9n edges

between U1 and V1 in G′. Therefore:

|F ′′| ≥ |(E1 ∪ E2)| − 9n = |E1| − 6n = N

Combining the previous results we get that |F ′′| ≥ N and |F ′| ≥ M .

Since M + N ≤ |F ′| + |F ′′| ≤ |F | ≤ M + N , we must have |F | = M + N ,

and, more importantly, for every S ∈ C either BS = Wm
S or BS = Wm

S ∪WS.

The set {S ∈ C|BS = Wm
S ∪WS} induces an exact cover of U .
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Note that in both directions of the proof only edge deletions are per-

formed. Hence the same reduction also proves the NP-hardness of the fol-

lowing problem:

The Bicluster Graph Deletion Problem: Given a bipartite graph

G = (U, V,E), find a set F ⊆ E of minimum cardinality such that (U, V,E \

F ) is a bicluster graph.

Corollary: Bicluster Graph Deleting is NP-complete.
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Chapter 3

An Approximation Algorithm

In this chapter we will present an approximation algorithm for the ±1 biclus-

tering problem. The algorithm is based on the algorithm to the MinDisAgree

clustering problem [6]. The algorithm uses linear programming, relaxation

and rounding, and guarantees an approximation factor of 11.

3.1 The Linear Program

An equivalent formulation of the problem is as follows: Assign a binary

variable xij to every edge ij, such that xij = 0 iff i and j are both in the

same bicluster. Define the following integer programming problem (IP).
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Minimize
∑

+(ij) xij +
∑

−(ij)(1− xij)

Such that xij ≤ xil + xkj + xkl for all i, k ∈ U and j, l ∈ V

xij ∈ {0, 1} for all i ∈ U and j ∈ V

Here and throughout +(ij) = {ij|w(ij) = +1}, and −(ij) = {ij|w(ij) =

−1}.

The objective function measures the number of errors. This includes

positive errors, i.e., positive edges between biclusters (positive edges ij for

which xij = 1), as well as negative errors, i.e., negative edges inside biclusters

(negative edges ij for which xij = 0).

It is easy to see that the inequalities xij ≤ xil + xkj + xkl guarantees that

if i and l are in the same bicluster, k and l are in the same bicluster, and so

are k and j, then i and j must be in the same bicluster as well.

Relaxation is obtained by replacing the integer constraints of xij ∈ {0, 1}

with linear programming (LP) constraints 0 ≤ xij ≤ 1. Under this LP

formulation, we refer to xij as the distance between i and j. Intuitively,

points (nodes) that are close should be placed in the same bicluster and

points that are far should be placed in different biclusters.

We present a polynomial algorithm, that guarantees an approximation

factor of 11. We shall show that the algorithm solution is at most 11 times

the LP solution. Since the LP solution is not larger than the IP solution, the

result will follow.
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3.2 The algorithm

Let S = V ∪ U . Repeat the following steps:

1. Pick an edge uv with a distance smaller than 1
11

.

Let Nu and Nv be the set of vertices within a distance of at most 5
11

from u and v respectively (not including u and v themselves).

Similarly, let N ′
u and N ′

v be the set of vertices within a distance of at

most 3
11

from u and v respectively (Again, not including u and v).

In addition, denote by αu (αv) the average distance of the vertices in

Nu from u (Nv from v).

If Nu = ∅ then define αu = 1

2. Let

B =



{u, v} ; if αu, αv > 3
11

or if 1
11

< αu ≤ 3
11

and αv > 3
11

or if αu > 3
11

and 1
11

< αv ≤ 3
11

{u, v} ∪Nu ∪Nv ; if αu, αv ≤ 3
11

{u, v} ∪Nu ∪N ′
v ; if αu ≤ 1

11
and αv > 3

11

{u, v} ∪N ′
u ∪Nv ; if αu > 3

11
and αv ≤ 1

11

Output B as a bicluster, let S = S\B, and return to step 1.

3. When no edges with distance smaller than 1
11

are left, output all the

vertices of S as singletons.

For proving the approximation we shall use an ordering of the vertices at

each iteration of the loop, so that i < j if the distance of i from u or v is
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smaller than the distance of j from u or v. This ordering is applied to both

sides together. We call the algorithm above Algorithm A.

3.3 The approximation factor

In order to calculate the cost (number of errors) of the algorithm and compare

it to the LP cost, we consider one bicluster at the time, in the order generated

by the algorithm (singletons can be arbitrary ordered) and count the errors

in the edges associated with these biclusters. The set of edges associated with

bicluster B consists of the edges inside the bicluster, i.e., in(B) = {ij|i, j ∈

B}, and the set of edges connecting B to S\B, i.e., out(B) = {ij|i ∈ B, j ∈

S\B or j ∈ B, i ∈ S\B}. Note that S is a subset of U∪V whose size depends

on previous iterations.

Denote by a superscript +/− the subset of edges with positive/negative

weight, e.g., in−(B) = {ij ∈ in(B)|w(ij) = −1}. The cost of the algorithm

associated with B is:

A(B) = |in−(B)|+ |out+(B)|

The LP cost associated with B is:

LP (B) =
∑
+(ij)

xij +
∑
−(ij)

(1− xij)

We shall show that for every B, A(B) ≤ 11 ·LP (B), which will establish

the approximation factor. We analyze separately each of the four types of

biclusters generated by the algorithm:
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1. Type I: singletons (generated in step 3).

2. Type II: single edge biclusters.

3. Type III: biclusters of the form {u, v} ∪Nu ∪Nv.

4. Type VI: biclusters of the form {u, v} ∪Nu ∪N ′
v or {u, v} ∪N ′

u ∪Nv.

3.3.1 Type I

The edges associated with a singleton bicluster B = {x}, are simply all edges

adjacent to x in the current graph, and the positive ones are the errors of

A. Since a singleton bicluster is constructed when no edges with a distance

smaller than 1
11

are left in S, the LP cost associated to B will be at least 1
11

times the number of positive edges. Hence A(B) ≤ 11 · LP (B).

3.3.2 Type II

Let B be a bicluster of the form of {u, v}. There are two kinds of errors in

this case. The first possible error is when uv is negative, but in this case the

LP cost associated with it will be 1-xuv , and since xuv < 1
11

the LP cost will

be at least 10
11

. Since the algorithm A pays 1 for this error, the approximation

factor holds.

The second kind of errors are out+(B), i.e., positive edges between B and

S\B. We first consider edges connecting u to Nu and v to Nv. For type II

biclusters both αu, αv > 1
11

.Therefore, we know that:
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∑
i∈Nv

xiv +
∑
j∈Nu

xuj ≥

≥ 1

11
|Nv|+

1

11
|Nu| =

=
1

11
(|Nv|+ |Nu|)

.

Since for i ∈ Nv, 1 − xiv ≥ xiv, and for j ∈ Nu, 1 − xuj ≥ xuj, it follows

that the LP cost of all edges from u to Nu and from v to Nv is at least

1
11

(|Nv| + |Nu|). Since the number of positive errors is at most |Nv| + |Nu|,

this cost is at most 11 times the LP cost for these edges.

The remaining edges connect vertices outside Nu and Nv to u or v. Each

positive edge has a distance greater than 5
11

and so its error cost in A is at

most 11
5

times the LP cost.

We have thus shown A(B) ≤ 11 · LP (B) for biclusters of type II.

3.3.3 Type III

Let B be a bicluster of the form {u, v} ∪ Nu ∪ Nv, which was constructed

when both αu and αv were at most 3
11

. As in the previous sections, we will

separate the discussion to negative errors and positive errors. We will need

the following observations, which follow from the first type of constraints of

the linear programming (the quadrangle inequality):

Observation 1. The following is a lower bound for the LP cost of the positive
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edge ij:

xij ≥ xuj − xuv − xiv

Observation 2. The following is a lower bound for the LP cost of the neg-

ative edge ij:

1− xij ≥ 1− xuv − xuj − xiv

Negative edge errors

We first calculate the cost for edges ij ∈ in(B). If xuj and xivare both smaller

than 9
22

, then by Observation 2, we know that the LP cost of ij is at least

1− 1
11
− 9

22
− 9

22
= 1

11
, which satisfies the required factor.

Recall that i < j iff xiv < xuj. Each remaining negative edge ij will be

charged to the vertex with the greater distance from u or v, i.e., ij will be

charged to j iff i < j (with ties broken arbitrarily). W.l.o.g. we will assume

that this vertex is j ∈ V , and therefore we know that xuj lies in the range

( 9
22

, 5
11

]. The total LP cost of edges in in−(B) associated with j (using both

observations) is at least:

Θ(j) =
∑

i<j;+(ij)

(xuj − xuv − xiv) +
∑

i<j;−(ij)

(1− xuv − xuj − xiv)

Denote by pj the number of positive edges ij inside B, for which i is less

than this j. Similarly nj stands for the number of such negative edges. The

sum is then:
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Θ(j) = pj(xuj − xuv) + nj(1− xuv − xuj)−
∑
i;i<j

xiv

The edge uv was chosen such that xuv < 1
11

. In addition, we know that∑
i∈Nv

xiv ≤ 3
11
|Nv|. Now:∑

i∈Nv

xiv =
∑

i∈Nv ,i<j

xiv +
∑

i∈Nv ,i>j

xiv

Since all the items in the second sum are greater than 9
22

, we can be sure

that:

∑
i∈Nv ,i<j

xiv ≤
3

11
(pj + nj)

Therefore:

Θ(j) ≥ pj(xuj −
1

11
) + nj(

10

11
− xuj)−

3

11
(pj + nj) =

= pj(xuj −
4

11
) + nj(

7

11
− xuj) (3.1)

The LP cost is bounded below by the linear function (3.1) that lies be-

tween 1
22

pj + 5
22

nj (when xuj = 9
22

) and 1
11

pj + 2
11

nj when (xuj = 5
11

). In

particular the LP cost is at least 2
11

nj. Since the number of errors is nj, the

algorithm cost on these edges is at most 11
2

times the LP cost.

Positive edge errors

W.l.o.g. we will consider the positive edge ij such that xiv ≤ 5
11

and xuj > 5
11

.

If xuj ≥ 7
11

then by Observation 1 the LP cost of ij is at least 7
11
− 1

11
− 5

11
= 1

11
.
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Each remaining positive edge ij will be charged to a vertex outside B.

W.l.o.g. we will assume that this vertex is j ∈ V , and therefore we know that

xuj lies in the range ( 5
11

, 7
11

). The total LP cost of edges within B charged to

j (using both observations) is at least:

Θ(j) ≥
∑

i∈Nv ;+(ij)

(xuj − xuv − xiv) +
∑

i∈Nv ;−(ij)

(1− xuv − xuj − xiv)

As before, denote by pj the number of positive edges ij for which i ∈ Nv.

Similarly nj stands for the number of such negative edges. The sum is then:

Θ(j) ≥ pj(xuj − xuv) + nj(1− xuv − xuj)−
∑
i∈Nv

xiv

Again, since xuv < 1
11

and
∑

i∈Nj
xiv ≤ 3

11
|Nv|, we can derive the same

function as (3.1):

Θ(j) ≥ pj(xuj −
1

11
) + nj(

10

11
− xuj)−

3

11
(pj + nj) ≥

≥ pj(xuj −
4

11
) + nj(

7

11
− xuj) (3.2)

The LP cost is bounded below by the linear function (3.2) that lies be-

tween 1
11

pj + 2
11

nj (when xuj = 5
11

) and 3
11

pj (when xuj = 7
11

). In particular,

the LP cost is at least 1
11

pj. Since the number of errors performed by the

algorithm A is pj we get the cost ratio 11 again.
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3.3.4 Type IV

W.l.o.g. let B be a bicluster of the form {u, v}∪Nu∪N ′
v, that was constructed

when αu ≤ 1
11

and αv > 3
11

. Again, we will separate the discussion to negative

edges inside B and positive edges between B and S\B.

Negative edge errors

Negative errors are negative edges between Nu and N ′
v. In this case, by

Observation 2, we know that the LP cost of each negative edge is at least

1− 1
11
− 5

11
− 3

11
= 2

11
and hence we get the required approximation factor.

Positive edge errors

There are two types of positive errors. The first is positive edges between

(V ∩ S)\Nu and N ′
v. We will consider the positive edge ij such that i ∈ N ′

v

and j is outside Nu. From that we know that xiv ≤ 3
11

and xuj > 5
11

. Hence,

by Observation 1, the LP cost of ij is at least 5
11
− 1

11
− 3

11
= 1

11
.

The second type are positive edges between (U∩S)\N ′
v and Nu. Similarly

to the proof in 3.3.3, if xiv ≥ 7
11

then the LP cost of a positive edge ij is at

least 7
11
− 1

11
− 5

11
= 1

11
.

Each remaining positive edge ij will be charged to vertex i ∈ U outside

N ′
v. xiv lies in the range ( 3

11
, 7

11
). The total LP cost of edges charged to i is

at least:
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ρ(i) =
∑

j∈Nu;+(ij)

(xiv − xuv − xuj) +
∑

j∈Nu;−(ij)

(1− xuv − xiv − xuj)

Again, denote by pi the number of positive edges ij for which j ∈ Nu.

Similarly ni stands for the number of such negative edges. The sum is then:

ρ(i) = pi(xiv − xuv) + ni(1− xuv − xiv)−
∑
j∈Nu

xuj

From the way B was constructed we know that xuv < 1
11

and
∑

j∈Nu
xuj ≤

1
11
|Nu| = 1

11
(pi + ni). Hence:

ρ(i) ≥ pi(xiv −
1

11
) + ni(

10

11
− xiv)−

1

11
(pi + ni) =

pi(xiv −
2

11
) + ni(

9

11
− xiv) (3.3)

This time, the linear function (3.3) lies between 1
11

pi+
6
11

ni (when xiv = 3
11

)

and 5
11

pi +
2
11

ni (when xiv = 7
11

). The LP cost is thus at least 1
11

pi. Since the

number of errors made by the algorithm A is pj we get the factor 11.

We are now ready to state the main result of this chapter:

Theorem: Algorithm A is a polynomial-time approximation algorithm

for the Bicluster Graph Editing Problem which guarantees an approximation

factor of 11.
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