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Abstract

The evolution of species is enabled by the capability of their genomes to mutate. Key
events in genome evolution are large scale mutations called genome rearrangements,
which relocate, duplicate, or delete large DNA segments. Genome rearrangements
can result in dramatic phenotypic consequences and are assumed to play an impor-
tant role in the evolution of species and in cancer. The study of genome rearrange-
ments concentrates on the reconstruction of the history of genome rearrangements
between two or more genomes, and on the understanding of contribution of those
to the evolutionary process. In this thesis we describe our studies of genome rear-
rangements. We focus on the fundamental genomic sorting problem, which seeks for
a shortest sequence of rearrangement events explaining the differences between two
related genomes. We present various computational models for genome rearrange-
ments, focusing on translocations events, and develop combinatorial algorithms for
solving the genomic sorting problem under these models. In cancer, we apply our
algorithms on real data, and perform statistical analyses on the reconstructed re-
arrangement events. We reveal new characteristics of chromosomal rearrangements
in cancer, which may shed light on aberration development mechanisms during car-

cinogenesis.
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Chapter 1

Introduction

1.1 General Background

The genetic instructions used in the development and functioning of all known liv-
ing organisms are encoded in their genomes. Genomes are passed from parents
to offspring during reproduction, and thus contain all the hereditary information.
Genomes are stored in DNA, which in our level of abstraction is a long sequence
of four letters, {A,C,G, T}, called nucleotides. The DNA sequence of a genome
is partitioned into contiguous subsequences called chromosomes. A gene, the basic
unit of heredity, is a specific sequence of nucleotides that, taken as a whole, specifies
a genetic trait. At low resolution, every chromosome can be viewed as a sequence of

genes, where each gene has a direction (forward or backward) along its chromosome.

Genomes can evolve in either local or global manner. Local alterations refer to
point mutations in the DNA sequence, which delete, replace, or insert individual
nucleotides. On the other hand, global mutations, also known as genome rearrange-
ments, relocate, duplicate, or delete large fragments of the DNA. In this thesis we
focus on genome rearrangements. Genome rearrangements can result in dramatic
phenotypic consequences. On the organismal level, certain rearrangements are asso-
ciated with mental retardation and birth defects [55]. On the cellular level, specific

rearrangements were proved to contribute to cancer formation (see Section 1.4).

One of the ambitious projects of the former century was the determination of
the DNA sequence in the human genome. With the advent of sequencing meth-

ods, complete genome sequences are now available for a wide range of organisms,
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ranging from various bacteria to different mammals. The current major challenge
is to decipher the genetic code in those genome sequences. A powerful approach to
analyze genome sequences is by their comparison. By examining the differences and
similarities between genomes, we can learn about the way these genomes evolved.
The conserved fractions in genomes of related species, such as human and mouse,
are associated with common similar functions and are likely to be inherited from
their most recent common ancestor. The differences between the genomes are ex-
plained by lineage-specific events occurring after the divergence of the corresponding

species.

1.2 Genome Rearrangements in Evolution

Genomes of related species are very similar. For example, over 90% of the mouse
and human genomes can be partitioned into corresponding regions in which gene
content and order is conserved [112] (see Fig. 1.1). The difference in the ordering
of these blocks along the human and mouse genomes is attributed to rearrangement
events occurring after the divergence of the two lineages. As human and mouse
are believed to have diverged more than 65 millions years ago [112], the number of
conserved blocks in their genomes implies that the rate of genome rearrangement
events in these lineages is relatively low: few events per million years. This makes
the inference of the rearrangement events between human and mouse a potentially

tractable problem.

The phenomenon of genome rearrangements in evolution was discovered more
than 80 years ago. In the 1930’s, Sturtevant and Dobzhansky [98] demonstrated
inversions between genomes of various drosophila species. In the late 1980’s Jeffrey
Palmer and colleagues discovered that mitochondrial genomes of related plants have
essentially the same gene content but different gene ordering [78, 79, 80, 81, 45].
This discovery suggested that the evolution of these plants was driven by genome
rearrangement events. Advances in molecular cytogenetics, mainly comparative
chromosome painting (“Zoo-FISH” [92]), led to the generation of large-scale com-
parative genome maps of more than 80 mammalian species [38]. The development
of bioinformatic methods for locating homolog blocks in different genome sequences
[82, 30, 102], enabled the creation of finer comparative maps based on genomes

sequences.
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Figure 1.1: The mouse genome is comprised of regions with conserved synteny in human.

Taken from [112]. Each color corresponds to a particular human chromosome.

1.3 The Genomic Sorting Problem

The computational study of genome rearrangements during species evolution was
pioneered by Sankoff [90, 91, 88]. This line of research builds on the assumption
that evolution is parsimonious and prefers a shortest path of events. A well studied
problem is genomic sorting, which seeks for a shortest sequence of rearrangement
events between two related genomes. The length of such shortest sequence is the
rearrangement distance between these genomes. Genomic sorting gives rise to a
spectrum of fascinating algorithmic and combinatorial problems, each defined by
the representation of the genomes and the set of allowed rearrangements operations.
For a review of the computational study of various genomic sorting problems see
[18].

In the model we consider, a genome is a collection of chromosomes, where each
chromosome is represented as a sequence of genes. A gene is identified by an (un-
signed) integer. When it appears in a chromosome, a gene is associated with a sign,
plus or minus, representing the direction of the gene along its chromosome. If A is
a genome with N chromosomes, and the k-th chromosome in A contains n; genes,
then

A= {(911>9127 e 7gln1)7 (92179227 T 7g2n2>? HRI (gNlagN2> e 7gN7LN)}
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A reversal of a sequence of genes is the operation of reversing the order of the
genes in the sequence and flipping their signs. For example, the reversal of S =
(91,92, -+-+9n)i8 =S = (—=gn, —Gn-1,- - -, —9g1)- A reversal on an entire chromosome is
called a chromosome flip. As chromosomes have no direction, a flip of a chromosome
does not affect the chromosome it represents and is usually used to move between

the two possible equivalent representations of a chromosome.

Two prominent rearrangement events are inversions and translocations, which
are believed to be most common in mammals. An wnversion is a reversal of a
segment of genes in a chromosome. The following example describes an inversion

on the underlined segment of genes:
Si, 59,83 — S1, — 5, Ss.
Inversions are commonly referred to as “reversals” in the computational research of
genome rearrangements, as we shall do for the rest of this thesis.
Translocations exchange the ends of two chromosomes as described below. Con-

sider the following two chromosomes:

(‘Xlr ‘X2>7 (3/1 YZ)
A prefiz-prefix translocation on the two chromosomes above results in:

(}(l ) §/:2)7 (ma ‘YZ)‘

Alternatively, a prefiz-suffiz translocation on these chromosomes results in:

(‘Xh _Yl>7 (_)(27 }/2)

A translocation is reciprocal if the involved segments (i.e. X;, Xs, Y7, and Y5)
are all non-empty. In the following, unless specified otherwise, we consider only

reciprocal translocations.

Sorting by reversals (SBR) and sorting by translocations (SBT) are two instances
of the genomic sorting problem confined to one type of rearrangement events, ei-
ther reversals (SBR), or translocations (SBT). While SBT is defined for multi-
chromosomal genomes, SBR is defined for only uni-chromosomal genomes. The
input genomes to SBR and SBT, say A and B, are required to satisfy the following

two requirements:
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1. A and B have identical gene content (i.e. no loss/gain)

2. Every gene in A (respectively, B) is unique.

While the first requirement follows from the fact that both reversals and translo-
cations do not alter gene content, the latter requirement was made to simplify the

computational analysis. In fact, when duplicate genes are allowed, SBR was proved

to be NP-hard [84, 28].

Following the requirements above, a uni-chromosomal genome is represented by
a signed permutation, which is a permutation on the integers {1,...,n}, where a
sign of plus or minus is assigned to each number. The following is an example of a

signed permutations with eight elements:
(1,-3,-2,4,-7,8,6,5)

A special signed permutation is (1,2,...,n), which we shall refer to as the identity
permutation. Multi-chromosomal genomes are presented by fragmented signed per-
mutation, where each fragment corresponds to a chromosome. Here is an example

of a genome with eight genes partitioned into two chromosomes:
{(]—7 _37 _2a 47 _77 8)7 (67 5)}

A concatenation of the chromosomes in a multi-chromosomal genome thus results
in a signed permutation. Given the input genomes, A and B, we can assume for
simplicity and without loss of generality that genome B is the identity permutation,
in case of SBR, or a fragmented identity permutation, in case of SBT. The trans-
formation of the “permutated” genome A into the “organized” genome B is thus

viewed as a sorting process.

1.3.1 Sorting by Reversals

SBR was intensively studied in the past two decades. Kececioglu and Sankoff for-
mulated SBR and gave the first constant factor approximation algorithm for this
problem [51]. The problem was further studied by Bafna and Pevzner [9] who in-
troduced the notion of cycle graph (aka breakpoint graph) of a signed permutation
and revealed important links between the cycle decomposition of this graph and the
reversal distance. The cycle graph of a permutation became the foundation of sub-

sequent analyses of SBR. The major breakthrough in the study of SBR was made
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by Hannenhalli and Pevzner [41] who proved that the problem is polynomial. In
[15], Berman and Hannenhalli presented a recursive algorithm for SBR that can be
implemented in O(n?a(n)) time, where a(n) is the inverse of the Ackerman’s func-
tion [2]. The analysis of SBR was greatly simplified by Kaplan, Shamir, and Tarjan
[49] who introduced the notion of overlap graph of a signed permutation. Bergeron
[11] further simplified the analysis by presenting a simple score-based O(n?)-time
algorithm using the overlap graph. An elegant algorithm was given by Tannier and
Sagot [104, 103], which has a relatively simple implementation in O(n?). Using a
clever data structure by Kaplan and Verbin [50], the algorithm of Tannier and Sagot

3/2, [log(n)) implementation [104, 103]. Very recently, Swen-

was shown to have O(n
son et al. [101] modified the data structure of Kaplan and Verbin, and presented
a new algorithm, which based on experimental results, runs in O(nlog(n)) on most
signed permutations. The reversal distance of a signed permutation 7 is computed
in linear time by an algorithm of Bader, Moret, and Yan [7]. Using this algorithm,

the recursive algorithm in [15] can be implemented in O(n?).

1.3.2 Sorting by Translocations

SBT was introduced by Kececioglu and Ravi [52] who gave a 2-approximation al-
gorithm for its solution. Hannenhalli extended the notion of cycle graph for multi-
chromosomal genomes, and showed that SBT is polynomial [39]. Bergeron, Mixtacki
and Stoye [14] pointed to an error in Hannenhalli’s algorithm and presented an al-
ternative modified O(n?) algorithm. The translocation distance can be computed
in linear time, in a similar manner to the computation of the reversal distance [14].
Li et al. [56] gave a linear time algorithm for computing the translocation distance
(without producing a shortest sequence). Wang et al. [111] presented an O(n?) al-
gorithm for solving SBT. However, the algorithms in [56, 111] rely on an erroneous

theorem in [39] and hence provide incorrect results in certain cases.

A genomic sorting problem that integrates both reversals and translocations was
first studied by Kececioglu and Ravi [52]. In this problem, which we will refer as
SBRT, translocations are allowed to be non-reciprocal, and chromosome fissions
and fusions are also allowed. SBRT was proved be polynomial by Hannenhalli and
Pevzner [40], by reducing it to SBR. In particular, it was shown that a translocation
can be mimicked by a reversal on a concatenation of the chromosomes. The theory

and algorithm for SBRT were later corrected and revised by Tesler [105], Ozery-Flato



1.4. CHROMOSOME INSTABILITY IN CANCER 7

and Shamir [68], and Jean and Nikolski [46].

1.3.3 Integrating the Centromeres

Every chromosome contains a special region called centromere, which is essential
to the segregation of the duplicated chromosomes during cell division. An acentric
chromosome, i.e., a chromosome that lacks a centromere, is likely to be lost during
subsequent cell divisions [99]. Therefore, a rearrangement scenario that preserves
a centromere in each chromosome is more biologically probable than one that does
not. Previous computational studies on genome rearrangements have ignored the
existence and role of centromeres, and thus may produce rearrangement scenarios
involving many acentric chromosomes. Due to their highly repetitive content, cur-
rent sequencing methods cannot be applied to centromeres. Therefore, we have no
information about centromere sequences, nor do we have homolog mapping between
centromeres in related genomes. For every centromere, we only know its location

within its chromosome.

1.4 Chromosome Instability in Cancer

Carcinogenesis, the transformation of normal cells into cancer cells, can be viewed
as an evolutionary process in which a normal genome accumulates mutations that
eventually transform it into a cancerous one. Cancer is associated with chromo-
some instability, as most cancer cells show chromosomal abnormalities caused by
genome rearrangements. Acquired chromosome abnormalities were first suggested
to be factors in the origin of cancer by Boveri in 1914 [21]. It remained an attractive
hypothesis until the discovery of the Philadelphia chromosome, an abnormal chro-
mosome that exists in 95% of the people with chronic myelogenous leukemia (CML).
The Philadelphia chromosome was discovered in 1960 by Nowell and Hungerford [67]
who named it after the city in which both labs were located. In 1973, Rowley iden-
tified the mechanism by which the Philadelphia chromosome arises as a reciprocal
translocation between chromosome 9 and 22 [87]. The result of this translocation
is the fusion gene BCR-ABL, composed of the BCR gene from chromosome 22 and
the ABL gene from chromosome 9 [31]. This gene was shown to contribute to the

development of CML, thus becoming a potential target for developing a new drug
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for CML. In the late 1990s the drug imatinib (aka Gleevec/Glivec) was identified
as an inhibitor for BCR-ABL [34], and in 2001 it was approved for treating CML
patients in the United States.

1.4.1 Chromosomal Aberrations

Chromosomal aberrations are disruptions in the normal chromosomal content, com-
monly classified as either numerical or structural. Numerical aberrations refer to
an abnormal copy number of specific chromosomes. This phenomenon, called chro-
mosomal aneuploidy, is caused by chromosome missegregation during cell division,
leading to the loss, or gain, of particular chromosomes [113]. Structural aberra-
tions refer to the existence of chromosomes with abnormal structure. In somatic
cells, and cancer cells in particular, structural aberrations are commonly associated
with mis-repair of double strand breaks (DSBs) in the DNA. DSBs are promoted
by extrinsic (e.g., radiation, chemicals) and intrinsic (e.g., reactive oxygen, stalling
of DNA replication forks) sources. They are estimated to be quite common with
several DSBs per cell cycle [3]. To preserve genomic integrity, elaborate systems for
DNA repair have evolved. As broken chromosome ends appear to be adhesive and
tend to fuse with some other broken ends, a failure in the repair of DSBs may result
in chromosomal rearrangements, including translocations, deletions, and duplica-
tions [53, 3]. Such rearrangement events can lead to carcinogenesis if, for example,
a deleted chromosomal region encodes a tumor suppressor gene, or if an amplified
region encodes an oncogene. Translocations can lead to the formation of new gene
products, such as the BCR-ABL gene in CML, or to the dysregulation of specific
genes caused by the swapping of promoter elements, such as the case of the oncogene
C-MYC in certain lymphomas [29].

1.4.2 Cancer Karyotypes

The classic laboratory methods for detecting chromosomal rearrangements use paint-
ing techniques on chromosomes undergoing mitosis. In the resulting visualized
genome each chromosome is partitioned into continuous genomic regions called
bands, where each band usually spans 5-10 millions of nucleotides (see Fig. 1.2(a)).
Therefore only large rearrangements are detected with these techniques. A karyotype

is a description of the visualized genome in banding resolution. The accuracy of kary-
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otypes can be enhanced by integrating the more modern techniques of FISH and
SKY / M-FISH. FISH (Fluorescence In Situ Hybridization) [83] is a technique that
uses fluorescent tags to locate the position of a specific DNA sequence along the chro-
mosome. SKY (Spectral Karyotyping, [93]) and M-FISH (Multiplex Fluorescence
In Situ Hybridization, [97]) are molecular cytogenetic techniques that permit the si-
multaneous visualization of all the chromosomes in different colors (see Fig. 1.2(b)).
SKY / M-FISH considerably simplify the detection of material exchange between
chromosomes, such as translocations, but cannot detect rearrangements internal to

chromosomes, such as inversions.

Karyotyping have become an increasingly important tool in the management
of cancer patients, helping to establish a correct diagnosis, select the appropriate
treatment and predict outcome [63]. The largest available depository of cancer
karyotypes is the Mitelman database of chromosomal aberrations in cancer [62],
which records cancer karyotypes reported in the scientific literature. Currently, this
database contains almost 60,000 cancer karyotypes, most of which (70%) are from
hematological disorders. This bias toward hematological disorders, which consist
less than 10% of cancer cases, are due to technical difficulties in getting karyotypes
of solid tumors. Array-based comparative genomic hybridization (array-CGH) [96]
is a modern laboratory technique that can provide information on copy number
aberrations (i.e. gain / loss) at high resolution. Alas, array-CGH is incapable of
detecting structural rearrangement such as translocations. Moreover, the number of
currently available cases analyzed by array-CGH and other novel techniques is one
or more orders of magnitudes smaller than the number of cancer karyotypes in the

Mitelman database.

End Sequence Profiling (ESP) [108] is a laboratory technique that provides high
resolution data on structural aberrations as follows. First, the tumor genome is split
into small (100-300 kb), overlapping pieces (clones). Second, both ends (~ 500bp
each) of each clone are sequenced. Third, the resulting end sequences are mapped to
the human genome sequence. Each clone whose end sequences map uniquely to the
human genome yields a pair (z,y) of locations in the human genome corresponding
to the mapped ends. A pair of locations that are too far to fit a contiguous genomic
segment in the healthy genome indicates a rearrangement. Currently, ESP data
exist for only few cancer samples [108, 107, 17]. In future, with the advent of next
generation sequencing techniques (see [94, 6] for reviews), more ESP data, and even

whole sequence data, are expected to become available for cancer genomes.
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Figure 1.2: Visualization of genomes using cytogenetic techniques. (a) Classical chromosome
painting (G-banding) of a normal male genome. Taken from [1]. (b) Spectral Karyotyping
(SKY) of a normal male genome (left) and of an abnormal breast cancer genome (right).
Taken from [35].

The karyotypes in the Mitleman database are described using the ISCN nomen-
clature [61], and thus can be parsed automatically. In our analyses of cancer kary-
otypes we used the CyDAS ISCN parser [42]. An ISCN description reports on the
chromosomal aberrations observed in a sample, where a sample consists of several
cells. Each aberration reported in a karyotype must be present in at least two cells in
the described sample. In some cases, the cell population may be non-homogeneous,
and contain cells with several distinct aberrations, resulting from the existence of
different cell lineages in the evolution of the cancer. A homogeneous cell sample
is described by a simple karyotype, while a non-homogeneous one has a complex
karyotype, which consists of several simple karyotypes. Karyotypes may contain
missing information (denoted by ’?’), in case the observed aberration could not be
determined. When there is no such missing information, we refer to a karyotype as

well-characterized.

1.4.3 Genome rearrangements with duplications

The model that assumes for reversals and translocations as the only allowed re-
arrangements was commonly used to analyze the different gene/synteny block or-
derings between species (e.g. [82, 20, 65]). Is this model adequate for analyzing
rearrangements in cancer genomes? The answer is probably negative, as this model

does not allow for deletion or duplication events. Moreover, while in evolutionary
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studies the haploid genome is considered (i.e. one representative from every pair of
homologous chromosomes), in cancer studies we need to consider the diploid genome
(i.e. all chromosomes), as every chromosome is free to gain its own mutations. In
other words, when analyzing the evolution of a normal genome into a cancer genome,
we need to consider to two copies of each chromosome. In the past decade there
have been many computational studies of genome rearrangements with duplicate
genes and / or duplication events. Below we briefly review some of the studies that

are more pertinent to our study.

Allowing for duplicate genes and/or duplication events makes the genomic sort-
ing problem much more difficult. For instance, the problem of sorting sequences
by reversals was shown to be NP-hard [84, 28]. Thus, most current approaches for
duplication analysis rely on heuristics, approximation algorithms, or restricted mod-
els of duplication. A heuristic for the sorting sequences by reversals was given in
[28]. Some studies focused on the problem of finding a matching between duplicated
genes in two compared genomes, based on their orderings. Sankoff [89] was the
first to test this idea with the exemplar approach that selects a single gene, called
exemplar, from each gene family (i.e. a set of identical genes in a genome), and
discards the remaining duplicate genes. Given a pair of genomes, the exemplars
are selected so as to minimize the rearrangement distance between the two reduced
genomes. The problem of identifying optimal exemplars was proved to be NP-hard
for the reversal distance, even when one genome contains no duplicate genes [25]. A
divide-and-conquer approach to compute an exemplar-based distance between two

genomes was given in [66].

Marron et al. [58] presented an approximation algorithm for computing a short-
est sequence of reversals, deletions, duplications, and insertions between an arbitrary
genome and the identity permutation. Although their algorithm has a large error-
bound, it was suggested to compute near-minimal solutions based on experimental
results. Later on, Swenson et al. [100] generalized the algorithm in [58] to work on
two arbitrary genomes. The problem of genome halving, which seeks for a shortest
sequence of non-duplicating rearrangements resulting in a perfectly doubled genome
(i.e. a genome after whole-duplication event), was shown to have an exact polyno-
mial solution under different rearrangement models [36, 4, 64]. Models considering
tandem duplications were also studied in [27, 8].Finally, a model for segmental du-
plications in the evolution of mammalian genomes was introduced and studied by

Kahn et al. [48, 47]. Under this model a duplication event copies a substring from
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a fixed source string into an arbitrary location in a target string.

The integration of duplications into rearrangement models poses a major com-
putational challenge. Therefore, many of the studies we reviewed above consider
restricted models for duplications and most of them rely on various heuristics. Fi-
nally, all (duplications-aware) rearrangement models in the works cited above were
designed for analyzing the genomes in the light of evolution. Following the tradi-
tional HP model, most of these models consider reversals as their main, sometimes
only, reordering event. To the best of our knowledge, none of these algorithms was

used to analyze cancer genomes, and cancer karyotypes in particular.

1.4.4 Associations among Chromosomal Aberrations

Cancer karyotypes exhibit a wide variety of chromosomal aberrations. For some
cancers, mainly hematological disorders and sarcomas, certain abnormalities are
highly specific or strongly associated with particular diagnostic entities. Typically,
these abnormalities are reciprocal translocations, such as the Philadelphia translo-
cation mentioned above. For most cancers, notably epithelial tumors, the observed
aberrations appear more sporadically and hence it is more difficult to prove their sig-
nificance to carcinogenesis process. Thus, for the majority of observed aberrations

their importance to the formation and progress of cancer is yet to be determined.

Inspired by the four-step model for colorectal cancer evolution, suggested by
Vogelstein et al. [106], many extant computational studies have focused on the
inference of primary pathways in which chromosomal aberrations are accumulated
in certain cancer types. Some of these methods used tree models [32, 33, 109],
later extended to acyclic networks [85, 44, 43]. These evolutionary models allow
the recognition of aberrations occurring at early stages of cancer. Such aberrations,
often referred to as “primary”, are suspected to contribute to the formation of cancer.
More recently, a statistical method named GISTIC [16] was developed for identifying
copy-number aberrations whose frequency and amplitude are higher than expected.
As all the methods described above were designed to analyze samples from the same
cancer type, they were applied to relatively small datasets, each containing a few

hundred samples.
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1.5 Summary of Articles Included in this Thesis

1. An O(n*?,/log(n)) algorithm for sorting by reciprocal translocations.
Michal Ozery-Flato and Ron Shamir.
Published in Proceedings of the 17th Annual Symposium on Combinatorial
Pattern Matching (CPM’06) [69] and Journal of Discrete Algorithms [77].

In this paper we proved that sorting by reciprocal translocations can be done in
O(n®/?,/log(n)) for a genome with n genes. Our algorithm was an adaptation
of the algorithm of Tannier, Bergeron and Sagot for sorting by reversals. This
improved over the O(n?) algorithm for sorting by reciprocal translocations

given by Bergeron, Mixtacki and Stoye.

2. Sorting by reciprocal translocations via reversals theory.
Michal Ozery-Flato and Ron Shamir.
Published in Proceedings of the fourth RECOMB Satellite Workshop on Com-
parative Genomics (RECOMB-CG’06) [70] and in Journal of Computational
Biology (JCB) [73].

In this paper we focused on sorting a multichromosomal genome by translo-
cations. We revealed new relationships between this problem and the well
studied problem of sorting by reversals. Based on these relationships, we de-
veloped two new algorithms for sorting by reciprocal translocations, which
mimicked known algorithms for sorting by reversals: a score-based method
building on Bergeron’s algorithm, and a recursive procedure similar to the
Berman-Hannenhalli method. Though their proofs were more involved, our
procedures for reciprocal translocations matched the complexities of the orig-

inal ones for reversals only.

3. Sorting Genomes with Centromeres by Translocations.
Michal Ozery-Flato and Ron Shamir.
Published in Proceedings of the 11th Annual International Conference on Com-
putational Molecular Biology (RECOMB’07) [72] and in Journal of Computa-
tional Biology (JCB) [75].

In this paper, we studied for the first time centromere-aware genome rearrange-
ments. We presented a polynomial time algorithm for computing a shortest

sequence of translocations transforming one genome into the other, where all
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of the intermediate chromosomes must contain centromeres. We viewed this
as a first step towards analysis of more general genome rearrangement models

that take centromeres into consideration.

. Sorting Cancer Karyotypes by Elementary Operations.

Michal Ozery-Flato and Ron Shamir.
Published in Proceedings of the sizth RECOMB Satellite Workshop on Com-
parative Genomics [74] and in Journal of Computational Biology (JCB) [76].

In this study, we proposed a mathematical framework for analyzing chromo-
somal aberrations in cancer karyotypes. We introduced the problem of sorting
karyotypes by elementary operations, which seeks a shortest sequence of el-
ementary chromosomal events transforming a normal karyotype into a given
(abnormal) cancerous karyotype. Under certain assumptions, we proved a
lower bound for the elementary distance, and presented a polynomial-time
3-approximation algorithm for the problem. We applied our algorithm to
karyotypes from the Mitelman database, which records cancer karyotypes re-
ported in the scientific literature. Approximately 94% of the karyotypes in the
database, totaling 58,464 karyotypes, supported our assumptions, and each of
them was subjected to our algorithm. Remarkably, even though the algorithm
is only guaranteed to generate a 3-approximation, it produced a sequence
whose length matched the lower bound (and hence optimal) in 99.9% of the
tested karyotypes.

. On the frequency of genome rearrangement events in cancer kary-

otypes.

Michal Ozery-Flato and Ron Shamir.

Technical report [71]. Accepted for presentation in the first RECOMB Satel-
lite. Workshop on Computation Cancer Biology (RECOMB-CCB’07) (peer-

reviewed, but with no proceedings).

In this study we introduced a new approach for analyzing rearrangement events
in carcinogenesis. This approach built on a new effective heuristic for com-
puting a short sequence of rearrangement events that may have led to a given
karyotype. We applied this heuristic to over 40,000 karyotypes reported in the
scientific literature. Our analysis implied that these karyotypes had evolved
predominantly via four principal event types: chromosomes gains and losses,

reciprocal translocations, and terminal deletions. We used the frequencies of
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the reconstructed rearrangement events to measure similarity between kary-
otypes. Using clustering techniques, we demonstrated that in many cases,
rearrangement event frequencies are an effective means for distinguishing be-

tween karyotypes of distinct tumor classes.

6. A systematic assessment of associations among chromosomal aber-
rations in cancer karyotypes.
Michal Ozery-Flato, Chaim Linhart, Luba Trakhtenbrot, Shai Izraeli, and Ron
Shamir. Submitted.

In this paper we reported on a systematic study and a database on the char-
acteristics of chromosomal aberrations in cancers, using the largest available
repository of reported karyotypes. Our method was used to analyze chromo-
somal aberrations derived from over 15,000 cancer karyotypes in the Mitelman
database. We compared cancer types by their manifested aberrations, com-
puted scores for their similarity, and used these scores to draw an aberration-
similarity map of cancers. This map was highly concordant with the histolog-
ical classification of cancers. In addition, we revealed some novel similarities
between cancers, e.g. among three embryonic tumors: Wilms’ tumor, Hep-
atobalstoma, and Ewing’s sarcoma. In another analysis we revealed a large
number of significantly co-occurring aberrations, i.e., aberrations that tend
to appear together, which mostly involve chromosome aneuploidy (numerical
aberrations). Interestingly, the co-occurring aberrations were primarily con-
fined to one of two aberration classes: either two chromosome gains or two
chromosome losses, suggesting two separate progression paths for aneuploidy
in cancer. Our results assigned solid statistical foundations to many findings
reported in the literature, and also revealed novel findings that merit further
research. An accompanying database, called STACK (STatistical Associations
in Cancer Karyotypes), summarized all associations that were discovered and
allows easy search, filtering and sifting of the results, as well as direct viewing

of the relevant karyotypes in the Mitelman database.
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An O(n?/%,/log(n)) algorithm for sorting by
reciprocal translocations

Michal Ozery-Flato® Ron Shamir?®

aThe Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978,
Israel

Abstract

We prove that sorting by reciprocal translocations can be done in O(n3/24/log(n))
for an n-gene genome. Our algorithm is an adaptation of the algorithm of Tannier,
Bergeron and Sagot for sorting by reversals. This improves over the O(n?) algorithm
for sorting by reciprocal translocations given by Bergeron, Mixtacki and Stoye.

Key words: translocations; reversals; genome rearrangements

1 Introduction

In this paper we study the problem of sorting by reciprocal translocations (ab-
breviated SRT). Reciprocal translocations exchange non-empty ends between
two chromosomes. Given two multi-chromosomal genomes A and B, the prob-
lem of SRT is to find a shortest sequence of reciprocal translocations that
transforms A into B. SRT was first introduced by Kececioglu and Ravi [11]
and was given a polynomial time algorithm by Hannenhalli [6]. Bergeron, Mix-
tacki and Stoye [4] pointed to an error in Hannenhalli’s proof of the reciprocal
translocation distance formula and consequently in Hannenhalli’s algorithm.
They presented a new O(n?) algorithm, which to the best of our knowledge,
is the only extant correct algorithm for SRT!.

Reversals (or inversions) reverse the order and the direction of transcription
of the genes in a segment inside a chromosome. Given two uni-chromosomal
genomes m; and 7y, the problem of sorting by reversals (abbreviated SBR)

1 Li et al. [12] gave a linear time algorithm for computing the reciprocal transloca-
tion distance (without producing a shortest sequence). Wang et al. [16] presented an
O(n?) algorithm for SRT. However, the algorithms in [12, 16] rely on an erroneous
theorem of Hannenhali and hence provide incorrect results in certain cases.

Preprint submitted to Elsevier Science 9 June 2009



is to find a shortest sequence of reversals that transforms m; into m,. This
problem has been intensively studied [8, 5, 9, 1, 2, 15]. Tannier, Bergeron and
Sagot [15] presented an elegant algorithm for SBR that can be implemented

in O(n%?2,/log(n)) using a clever data structure by Kaplan and Verbin [10].
This is currently the fastest algorithm for SBR.

In this paper we prove that SRT can be solved in O(n%?2,/log(n)) for an n-
gene genome. Our algorithm for SRT is similar to the algorithm by Tannier,
Bergeron and Sagot [15] for SBR. The key idea is to recast translocations as
reversals, and then exploit the novel theoretical improvements in SBR the-
ory to obtain faster SRT algorithms. (It should be noted that Hanenhalli and
Pevzner have already established and exploited the basic connection between
translocations and reversals, in the context of sorting a genome by reversals
and translocations [7]). Our approach builds on generalizing the overlap graph.
Most studies of SBR to date relied explicitly or implicitly on the combinato-
rial structure of the overlap graph for representing the relations between two
permutations. Since translocations involve multiple chromosomes, we gener-
alize the notion of (uni-chromosomal) overlap graph to include chromosomal
information, and show that the same conceptual algorithmic framework de-
veloped for SBR applies to SRT, via this generalized overlap graph. While our
final algorithm is very similar to that of Tannier et al., the proofs had to be
completely redone. Another contribution of this study is in showing that the
general SRT problem can be reduced in linear time to a special case, and thus
time complexity analysis can be done for such special cases only.

The paper is organized as follows. The necessary preliminaries are given in
Section 2. In Section 3 we give a linear time reduction from SRT to a simpler
restricted subproblem. In Section 4 we prove the main theorem and present
the algorithm for the restricted subproblem. In Section 5 we describe an
O(n®?/log(n)) implementation of the algorithm. A preliminary version of
this study was published in the proceedings of CPM 2006 [13].

2 Preliminaries

This section provides a basic background for the analysis of SRT. It follows to
a large extent the nomenclature and notation of [6, 9, 4]. In the model we con-
sider, a genome is a set of chromosomes. A chromosome is a sequence of genes.
A gene is identified by a positive integer. All genes in the genome are distinct.
When it appears in a genome, a gene is assigned a sign of plus or minus. For
example, the following genome consists of 8 genes in two chromosomes:

Ay ={(1,-3,-2,4,-7,8),(6,5)}



The reverse of a sequence of genes I = (xy,...,2;)is =1 = (—xy,...,—x1). A
reversal reverses a segment of genes inside a chromosome. Two chromosomes,
X and Y, are identical if either X = Y or X = —Y. Therefore, flipping
chromosome X into —X does not affect the chromosome it represents. For
example, the following are two equivalent representations of the same genome

{(1,-3,-2,4,-7,8),(6,5)} = {(-8,7,—4,2,3,—1),(6,5)}

Let X = (X1,X3) and Y = (Y1,Y32) be two chromosomes, where X;, Xs,
Y1, Y, are sequences of genes. A translocation cuts X into X; and X, and
Y into Y7 and Y5 and exchanges segments between the chromosomes. It is
called reciprocal if X1,X5, Y7 and Y5 are all non-empty. There are two ways
to perform a translocation on X and Y. A prefiz-suffiz translocation switches
X, with Y5 resulting in:

(&7 XQ); (}/hé) = (_Yév X2>7 (Yi7 _Xl)
A prefiz-prefix translocation switches X; with Y] resulting in:
(&7 XQ)? (ﬁ? }/2) = (ﬁv XZ)? (&, }/2)

The following is an example of prefix-prefix and prefix-suffix translocations
that cut the genome in the same place:

{(1,-3,-2,4,-7,8),(6,5)} = {(6,—7,8),(1,-3,—2,4,5)}

{(1,-3,-2,4,-7,8),(6,5)} = {(=5,-7,8),(6,—4,2,3,—-1)}

Recall that chromosome flips do not affect the genome, but rather move be-
tween different representations of the same genome. Thus we can mimic one
type of translocation by a flip of one of the chromosomes followed by a translo-
cation of the other type.

For a chromosome X = (z1,...,x;) define Tails(X) = {z1, —x1}. Note that
flipping X does not change Tails(X). For a genome A define Tails(A) =
Uxea Tails(X). For example:

Tails(Ay) = Tails({(1,—3,—2,4,-7,8),(6,5)}) = {1, 8,6, —5}.

Two genomes A’ and A” are co-tailed if Tails(A") = Tails(A”). In particular,
two co-tailed genomes have the same number of chromosomes (recall that
all genes in a genome are unique). Note that if A” was obtained from A’ by
performing a reciprocal translocation then Tails(A”) = Tails(A’). Therefore,
SRT is defined only for genomes that are co-tailed. For the rest of this paper
the word “translocation” refers to a reciprocal translocation and we assume
that the given genomes, A and B, are co-tailed.



2.1 The Cycle Graph

In this section we present the cycle graph of genomes A and B, which was
first defined in [6]. Let N be the number of chromosomes in A (equivalently,
B). We shall always assume that both A and B contain the genes {1,...,n}.
The cycle graph of A and B, denoted G(A, B), is an undirected graph defined
as follows. The set of vertices is U, {i°,i'}. The vertices " and ' are called
the two ends of gene i (think of them as the ends of a small arrow directed
from % to i!). For every pair of genes, i and j, where j immediately follows
i in some chromosome of A (respectively, B) add a black (respectively, gray)
(undirected) edge
(i,7) = (out(i), in(7))

where

i) i if 4 has a positive sign in A (respectively, B)
out(i) =
1°  otherwise

and

in(j) = {jo if j has a positive sign in A (respectively, B)

j+  otherwise

An example is given in Fig. 1(a). There are n — N black edges and n — N
gray edges in G(A, B). Since genomes A and B are co-tailed, every vertex
in G(A, B) has degree 2 or 0, where vertices of degree 0 (isolated vertices)
belong to Tuails(A) (equivalently, Tails(B)). Therefore, G(A, B) is uniquely
decomposed into cycles with alternating gray and black edges.

In the following we assume, without loss of generality, that each chromosome
of B is an increasing sequence of consecutive positive numbers. For example,
By ={(1,2,3,4,5),(6,7,8)}. Thus every gray edge in G(A, B) is of the form
(out(i), in(i+1) = (¢', (i+1)°) = (i,i+1). As genomes B and A are co-tailed,

once genome A is given, genome B is fixed. Thus we can define G(A) =
G(A, B).

Let ¢(A) denote the number of cycles in G(A). Note that if A = B then
¢(A) =n — N is maximal. We denote by A - ¢ the genome obtained after the
translocation ¢ is applied to A. For any parameter 1, let At be the increase in
Y after applying ¢, i.e., A = (A- ) —1p(A). The following lemma describes
how c is affected by a translocation.

Lemma 1 ([11]) Let ¢ be a translocation. If ¢ cuts two black edges in differ-
ent cycles then the two cycles are merged into one cycle and Ac = —1. If ¢



acts on black edges belonging two the same cycle then either the cycle is split
into two cycles and Ac = 1, or there is no change in the number of cycles (i.e.
Ac=0).

A translocation is properif Ac =1 (i.e. one cycle splits into two). A gray edge
(i,1+ 1) is external if i and 7 + 1 belong to two different chromosomes, other-
wise it is internal. For example, in Fig. 1(a), (5,6) is external, while (11,12)
is internal. An adjacency is a cycle with two edges. Thus, every adjacency
corresponds to a pair of genes 7,7+ 1, where either (7,7 + 1) or (—i+ 1, —i) is
contained in one of the chromosomes of A.

Observation 1 FEvery external edge (i,i+ 1) defines a (proper) translocation
that creates the adjacency (1,1 + 1).

2.2 The Querlap Graph with Chromosomes

The overlap graph of a signed permutation was introduced in [9]. In this section
we present an extension of this graph for genome A.

A signed permutation m = (mq,...,m,) is a permutation on the integers {1, ...
,n}, where a sign of plus or minus is assigned to each number. Let A be a
genome with the set of genes {1,...,n}. Let m4 be an arbitrary concatenation

of the chromosomes in A, in arbitrary order and orientation. Then 74 is a
signed permutation of size n.

Place the vertices of G(A) along a straight line according to their order in 4.
Now, every gray edge and every chromosome is associated with an interval
of vertices in G(A). Two intervals overlap if their intersection is not empty
but none contains the other. The overlap graph with chromosomes of genome
A w.r.t. mu, denoted OVCH(A,7y), is defined as follows. The set of nodes
is the set of chromosomes in A and gray edges in G(A). Two nodes are con-
nected if their corresponding intervals in G(A) overlap. An example is given in
Fig. 1(b). In order to prevent confusion, we will refer to nodes that correspond
to chromosomes as “chromosomes” and reserve the word “vertex” for nodes
that correspond to gray edges.

Let OV(A, m4) be the subgraph of OVCH(A, m4) induced by the set of nodes
that correspond to gray edges (i.e., excluding the chromosomes’ nodes). This
graph is an extension of the overlap graph of a signed permutation defined
in [9]. We shall use the word “component” for a connected component of
OV(A,7m4). For example, in Fig. 1(b), OV(As, m4,) contains six components:
{Ega%)ia {(1,2),(2,3)},{(7.8),(11,12)}, {(9,10), (10,11)}, {(3,4)}, and {(5,6)



A vertex in OVCH(A,m4) is external if its corresponding edge in G(A) is
external, otherwise it is internal. For example, in Fig. 1(b), the vertex (5,6)
is external while the vertex (6, 7) is internal. Obviously a vertex is external iff
it is connected to a chromosome.

A component is externalif at least one of the vertices in it is external, otherwise
it is internal. A component is trivial if it is composed of one internal vertex,
which corresponds to an adjacency. For example, in Fig. 1, {(8,9)} is a trivial
component, {(7,8), (11,12)} is an internal non-trivial component, and {(3,4)}
is an external component. Note that if A = B then all the components are
trivial. As we shall see later, a genome without non-trivial internal components
can be sorted by a sequence of proper translocations. In case a genome does
have non-trivial internal components, these components can become external
after some non-proper translocations are applied.

The permutation w4 matches to every vertex v of OV(A,m4) an interval of
genes, I(v) C ma. For example, in Fig. 1(b) the vertex (7, 8) is associated with
the interval (7,—11,10,—9, —8). The interval associated with a component
M, I(M) C 74, is the minimal interval of genes for which I(v) C I(M), for
every vertex v € M. For example, consider the components of OV(Ay, 7a,),
shown in Fig. 1(b). Then I({(7,8),(11,12)} = (7,—11,10,—-9,—8,12) and
I1({(5,6),(6,7)}) = (—6,7,—11,10,—-9, —8,12,5). Observe that the interval of
the former component is contained within a chromosome, while the interval
of the latter extends over two chromosomes.

Observation 2 Let M be a component. Then M is internal iff I(M) is con-
tained in one chromosome.

Observation 3 The set of internal components is independent of the specific
concatenation ma. In other words, the set of internal components remains un-
changed with all the concatenations of A.

In [4] the term “component” is defined in a different manner. However, as
we show below, the two definitions are equivalent when the components are
internal. Note that the terms ‘internal’ and ‘external’ correspond to the terms
‘intrachromosomal” and “interchromosomal” in [4]. To make a distinction, we
refer to the term “component” defined in [4] as “BMS-component”. We now
define this term and prove the equivalence.

For a signed permutation 7, we denote by P(m) the signed permutation ob-
tained from 7 by adding the first element 0 and the last element n + 1. For
example, for the permutation in Fig. 1:

P(m4,) = (0,1,-2,3,—6,7,—11,10, -9, —8,12,5,4,13)

We refer to P(m) as a padded signed permutation.



A BMS-component is an interval of P(w), from i to ¢ + j or from —(i + j)
to —i, where j > 0, whose set of (unsigned) elements is {i,...,i + j}, and
that is not the union of smaller such intervals. For example, P(m4,) contains
five BMS-components: (1,-2,3), (3,...,13), (7,...,12), (—=11,10,-9), and
(—9,—8). The interval (—11,10, -9, —8) is not a BMS-component as it is the
union of (—11, 10, —9) and (-9, —8).

The overlap graph of a signed permutation was originally defined for a padded
permutation [9]. The connected components of this graph play a major role in
the analysis of SBR. The analysis for SBR was revised in [3] and an alternative
definition was given for the components of the overlap graph, namely BMS-
components. It is implied in [3] that there is a bijective mapping between the
set of BMS-components of P(m4) and the set of components in OV(P(74)),
the overlap graph of P(74). More specifically, I is a BMS-component of P(my)
iff I = I(M) for some component M in OV(P(mw4)). A BMS-component [ is
internal if I is contained in one of the chromosomes of A.

Observation 4 Let I C mwy. Then I is an internal BMS-component iff I =
I(M) for some internal component M.

PROOF. Let A’ be a uni-chromosomal genome whose single chromosome
equals P(my4), i.e., A" = {P(m4)}. The implied target genome is {(0,1,...,n+
1)}. Following [9], H' = OV(P(w4)) = OV(A’, P(m4)) . Thus H = OV(A, 74)
is a subgraph of H’, where the vertices in H'\ H correspond to element pairs
(i,7+ 1) that are not adjacent in B. (In the example of Fig. 1, those will be
the pairs (0,1), (4,5) and (12,13)). Recall that for every BMS-component [
there exists a component M in H' for which I(M) = I. Clearly if I is internal
then all the vertices in M are internal too, and M is necessarily an internal
component in H.

Observe that the vertices that are in H' \ H cannot be adjacent to internal
vertices in H, since in G(A’) the corresponding gray edges are adjacent to
black edges bridging across chromosome ends. Therefore, if M is an internal
component in H then M is also a component of H’ and hence I(M) is an
internal BMS-component. O

2.8 The Forest of Internal Components

In this section we present the forest of internal components, originally de-
fined in [4]. Let M’ and M” be two internal components. Then, as discussed
in [4], I(M') and I(M") are either disjoint, nested with different endpoints,
or overlapping on one element. We define a chain as a sequence of internal
components (M, ..., M,) in which I(M;) and I(M;;,) overlap in exactly one



gene for j = 1,..,t — 1. For example, in Fig. 1 let M" = ({(9,10), (10,11)} and
M" ={(8,9)}. Then (M', M") is a chain, as I(M’) and I(M") overlap in one
element, which is 9.

For a chain C' = (M, ..., My) define its associated interval as I(C) = U, I(M;).
A chain that cannot be extended to the left or right is called maxzimal. The
forest of internal components, denoted F'(A), is defined by the following;:

1. The vertices of F/(A) are: (i) the non-trivial internal components and (ii)
maximal chains that contain at least one non-trivial component.

2. The children of a chain vertex are the non-trivial (internal)components it
contains.

3. A chain vertex C' is a child of the non-trivial internal component M with
the smallest interval I(M) satisfying I(C) C I(M). If no such component
exists then C'is a root of its tree.

See Fig. 1(c) for an example. Observe that each tree in F'(A) is contained
within one chromosome. For example, the two trees in Fig. 1(c) are contained
in chromosome 1. We will refer to a component that is a leaf in F(A) as
simply a leaf. For example, there are two leaves in Fig. 1(c) corresponding to
the intervals (1,2,3) and (—11,10,—9).

(a) G(Az)
o s e m o o °
1011 2120 3031 6160 7071 111110 100101 9190 120121 5051 4041
Chromosome 1 Chromosome 2
T 1,2) (2,3
(b) OVCH(Az,may) <.> <.> |
@ internal ; (7,8) (11,12) 3
B external (8,9) ® P (3,4) (5,6) (6,7)
@ chromosome ; (9,10) (10,11) |
S &—o | N |l
chromosome 1 chromosome 2
(c) F(A2)

‘D component [l chain

(1 12)

(1 ’2)Y (2’3) ﬁ

Fig. 1. Auxiliary graphs for Ay = -2,3,—6,7,—11,10,-9,—-8,12), (5,4)},
By = {(1,...,4),(5,...,12)}, w4, = (1,—2,3, —6,7,—11,10,—9,—8,12,5,4). (a)
The cycle graph. Black edges are horizontal; gray edges are curved (b) The overlap
graph with chromosomes. The graph induced by the vertices within the dashed rectan-
gle is OV(A3,m4,), the same graph without the chromosome vertices. (c) The forest
of internal components.

Note that if A = B then all the components are trivial and hence F(A) is
empty. In addition, F'(A) is empty if no non-trivial internal component exists.



We say that a non-trivial internal component M is eliminated by a transloca-
tion ¢ if after ¢ is applied the vertices in M belong to external components.
A translocation is called bad if Ac = —1 (i.e. two cycles are merged into one).
The following observation describes how non-trivial internal components can
be eliminated by bad translocations.

Observation 5 ([6, 4]) A leaf M is eliminated by performing a translocation
that cuts one black edge incident to a gray edge in M and one black edge in
another chromosome of A. This translocation is necessarily bad. In addition,
all the ancestor components of M in F(A) are eliminated as well.

An example of a translocation that eliminates two leaf components, with their
ancestors, is shown in Fig. 2

(a) G(As)

M3

[ ]

1011 9190 4041 5150 6Y61 7170 1‘ 80gl 3130 2120 1001011 111110 120121
Chromosome 1 Chromosome 2

(b) G(As - ¢)

[ ] [ TN [ J
1011 9190 4041 5150 6061 7170 101100 2021 3031 glg0 111110 120121
Chromosome 1’ Chromosome 2’
Fig. 2. An example of a bad translocation that eliminates two leaves.
(a) The cycle graph G(A43) = G(As, Bs) where
As = {(1,-9,4,-5,6,-7,8,-3),(—2,10,-11,12)} and

Bs = {(1,2),(3,4,...,12)}). The four internal components are designated by
My, ..., My.

(b) The cycle graph G(As - ¢), where ¢ is a prefix-suffix translocation cutting the two
black edges pointed by the vertical arrows in (a). In A3 - ¢ only one internal component
exists, namely M. The other internal components, My, Ms, and My, were eliminated
by ¢.



2.4 The Translocation Distance

Let T'(A) and L(A) denote the number of trees and leaves in F'(A), respec-
tively. Obviously T'(A) < L(A). Define

2 ifT(A)=1and L(A) is even
f(A) =41 if L(A) is odd
0 otherwise (T'(A) # 1 and L(A) is even)

Theorem 2 ([6, 4] ?) The translocation distance between A and B is d(A) =
n—N —c(A)+ L(A) + f(A)

An optimal move, i.e., a move that is part of a solution to SRT, is called valid.

Lemma 3 ([6, 4]) Ad = A(—c+ L+ f) > —1. A translocation ¢ is valid iff
Ad = —1.

A proper translocations is safe if it does not create new leaves. The analysis in

[6, 4] implies that valid translocations are either: (i) bad, or (ii) proper and
safe. Bad translocations are valid if A(L + f) = —2. As was demonstrated by
Bergeron et al. [4] a safe proper translocation may be invalid. However, if there
are no leaves, which means that there are no non-trivial internal components,
then a safe proper translocation is necessarily valid.

2.5 Analogy to SBR

For the readers familiar with the theory of SBR we now point to the analogy
with the SRT theory. The minimum number of reversals needed to sort a
signed permutation 7 (i.e., transform 7 into the identity permutation) depends
on the number of cycles in the cycle graph G(m), and on the “unoriented”
components in OV(rw) [8, 9]. Unoriented components with minimal intervals
are called “hurdles”. The sorting of 7 requires the elimination of all hurdles
by bad reversals, which decrease the number of cycles by one. If there are no
hurdles, then 7 can be sorted by proper reversals, which increase the number of
cycles by one. Thus there exists an analogy between the two distance formulas,
of SBR and SRT. In particular, the parameter L, which indicates the number
of leaves, is analogous to the parameter h, which indicates the number of
hurdles.

2 The formulas in [4] and [6] are equivalent: a leaf component is equivalent to a
“minimal subpermutation” (minSP in short); the parameter s in [6], which denotes
the number of minSPs, is equivalent to L; the term (o+ 2i) in [6] is equivalent to f.
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The elimination of all hurdle components can be done linear time [9, 1], and
is commonly performed at the beginning of the sorting algorithm. Thus SBR
is linearly reduced to a simpler variant, “SBR-no hurdles”. Most algorithms
for SBR focus on solving this reduced form of SBR.

In the following we show that SRT can be reduced to “SRT-no leaves” in a
similar manner, by eliminating all leaves in linear time. In addition, the al-
gorithm we present in Section 4 for “SRT-no leaves” is an adaptation of an
algorithm for “SBR-no hurdles”. In [14] we show that two additional algo-
rithms for “SBR-no hurdles” can be adapted to solve the “SRT-no leaves”.

3 A Linear Reduction of SRT to SRTNL

A large part of the difficulty in analyzing the translocation distance (Theo-
rem 2) is due to leaves: when there are no leaves f(A) = L(A) = 0 and the
distance formula is much simpler. Motivated by this observation, we define
SRTNL (“SRT-no leaves”) as a special case of SRT when there are no leaves
(i.e. L(A) = T(A) = 0). In this section we present a generic algorithm for
solving SRT, using an algorithm for SRTNL. This algorithm, apart from two
calls for solving an SRTNL instance, can be implemented in linear time.

Let L(X) denote the number of leaves in chromosome X. Let N*(A) denote
the number of chromosomes of A containing at least one leaf. Equivalently,
NY(A) is the number of chromosomes for which L(X) > 0. The sorting of
genome A into B requires the elimination of all leaves. The following lemmas
describe how to eliminate leaves by valid (bad) translocations.

Lemma 4 Suppose NY(A) > 2. Then there exists a valid bad translocation ¢
satisfying: (i) AL = —2, and (ii) if L(A - ¢) > 2 then N¥(A - ¢) > 2.

PROOF. Assume N“(A) > 2. First, we prove that any bad translocation ¢
satisfying (i) and (77) is necessarily valid. The parity of L is the same in A and
in A-¢ and hence Af =0 (f = 11if L is odd, and f = 0 otherwise). Therefore
Ad=A(—c+L+f)=1-240=—1 and ¢ is valid.

We shall now prove that there exists such a bad translocation. Choose X1, X, €
A such that L(X;) 4+ L(X3) is maximal. Suppose L(X;) > L(X3).

Case 1: L(X;) > 2 and L(X3) > 2. Let ¢ be a (bad) prefix-prefix translocation
that eliminates the second leaf from the left in X; and X, (Observation 5).

Then each of the new chromosomes in A - ¢ contains at least one leaf and
hence N*(A - ¢) > 2.

11



Case 2: L(X;) > 2 and L(X3) = 1. Let ¢ be a (bad) prefix-prefix translocation
that eliminates the second leaf from the left in X; and the leaf in X5. Then
at least one of the new chromosomes in A - ¢ contains exactly one leaf. If
L(A - ¢) > 2 then there must be another chromosome in A - ¢ that contains
at least one leaf and hence N“(A - ¢) > 2.

Case 3: L(X;) = L(X3) = 1. Let ¢ be a (bad) translocation that eliminates
the two leaves in X; and X5. Clearly in A - ¢ every chromosome contains at
most one leaf. Hence, if L(A-¢) > 2 then NY(A-¢) >2. O

The following lemma follows from the proof of Theorem 13 in [6], and is proven
here for completion.

Lemma 5 Suppose NU(A) =1, L(A) > 2, and f(A) > 0. Let ¢ be a (prefiz-
prefiz) translocation that eliminates the second leaf from the left in A. Then ¢
is valid. In addition, if L(A-¢) > 2 then N*(A - ¢) > 2.

PROOF. Clearly A(—c+L)=1—-1=0.1f L(A-¢) =1 then L(A) =2 and
T(A) =1 and thus Af = —1 and ¢ is valid.

Suppose L(A - ¢) > 2. Let X’ be the chromosome containing all the leaves
in A, and let X” be the the second chromosome on which ¢ acts. Then in
genome A - ¢: L(X") =1 and L(X’) > 0, thus N*(A - ¢) > 2. In particular
T(A-¢)>1and L(A-¢) =L(A) —1,s0 Af = —1 and ¢ is valid. O

Suppose there are several trees that are all located in one chromosome, i.e.,
N%(A) = 1, but T(A) > 1. To be able to eliminate a pair of leaves by one (bad)
translocation, we first need to perform a sequence of (valid) proper translo-
cations that “separates” the trees (and hence the leaves) into two different
chromosomes. In the following we describe how to find such a sequence. We
say that a sequence of translocations sorts a component M, if after performing
the sequence every gray edge in M becomes an adjacency.

Lemma 6 There is a sequence of safe proper translocations that sorts all
external components (internal components are unchanged).

PROOF. For an interval of genes I = (i1, ...,1) let IN(I) = {ig,... ix_1}.
Let S = {i|i € IN(I), where I is an interval corresponding to a tree}. For ex-
ample, in Fig. 1, S = {2,8,9,10, 11}. Define A" and B’ as the genomes obtained
from A and B respectively after the deletion of the genes in S. Note that after
a gene is deleted from a genome, its two neighbors become adjacent. Thus
any interval corresponding to a tree of A is replaced in A’ by a pair of genes
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forming an adjacency. Therefore G(A’) contains no leaves. Thus there is a se-
quence of safe proper translocations that sorts A’ into B’ (Theorem 2). This
sequence induces a sequence of safe proper translocations on A that sorts all
the external components in G(A). O

We call a translocation ¢ separating if N*(A) = 1 and N“(A - ¢) = 2. The
following lemma shows how to find a sequence of valid proper translocations,
whose last translocation is separating.

Lemma 7 Suppose NU“(A) = 1 and T(A) > 1. Let S = (¢1,..., %) be a
sequence of safe proper translocations that sorts all the external components in
G(A). Then S contains a separating translocation ¢y, 1 € {1,...,k}. Moreover,
S = (¢1,...,¢1) is a sequence of valid translocations.

PROOF. Apply the translocations in S by their order. Let Ag = A and let A;
be the genome obtained after applying (¢4, ..., ¢;) to A. Suppose that S does
not contain a separating translocation. Thus, by our assumption N*(4;) =1
fori =1,..., k. Observe that a chromosome that contains two trees necessarily
contains the endpoint of an external edge. Thus T'(Ax) = 1, since in A there
are no external edges and all the leaves belong to one chromosome. Since
T(A) > 1, there exists ¢, € S such that T'(4;_1) > 1 and T'(A;) = 1. Now,
¢; is a safe proper translocation and hence does not eliminate any internal
component, thus A;_; must contain two trees in two different chromosomes.
Therefore N*(A4,_1) > 1, a contradiction.

Thus there exists i for which N¥(4;) > 1. Let [ be the first index for which
NE(4;) > 1. Then ¢, is a separating translocation. As S; contains only safe
proper translocations L(A;) = L(A) and thus f(A;) = f(A). Hence d(4;) —
d(A) = [ and thus every translocation in S; is valid. O

Lemmas 4-7 motivate Algorithm 1 for SRT. This algorithm focuses on the
efficient and optimal elimination of all leaf components. If all the leaves belong
to one chromosome, then we either use Lemma 5 or Lemma 7 to separate the
leaves into two chromosomes. Then we use Lemma 4 to eliminate pairs of
leaves. At the end, either all leaves have been eliminated, or we are left with
a single leaf, which is eliminated by one (valid) bad translocation.

Lemma 8 Algorithm 1, excluding the two calls to a SRTNL algorithm, can
be implemented in linear time.

PROOF. The computation of all the parameters can be done in linear time,
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Algorithm 1 An algorithm for solving SRT using an algorithm for SRTNL

1:
2:
3:

o

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

if N =1 and L > 2 then
if f > 0 then
Eliminate the second leaf from the left by a prefix-prefix translocation

else
Compute a sequence S of safe proper translocations that sorts all
external components
Iteratively perform the translocations in S until N > 1
end if
end if
Let @1 be the list of chromosomes containing exactly one leaf
Let @2 be the list of chromosomes containing at least two leaves
while L > 0 do
if L =1 then
Eliminate the single leaf by a prefix-prefix translocation
else
for:=1,2 do
if Q; # () then
X; < an element from (). Remove X; from -
l; < the second leaf from the left in chromosome X;
else
X; < an element from @);. Remove X; from ),
l; < the single leaf in X
end if
end for
Eliminate I, and Il by a prefix-prefix translocation
for:=1,2do
if L(X;) > 2 then
add X; to Q9
else if L(X;) =1 then
add X; to Q1
end if
end for
end if
end while
Solve SRTNL on A

in a similar manner to the computation of the translocation distance [4].

Steps 5 and 6 are implemented by calling a procedure for SRTNL. However,
we need to stop this procedure when a separating translocation is applied.
We can locate this separating procedure in linear time by acting as follows.
Suppose that N* =1, T > 1 and S = (¢y,..., ¢) is a sequence of safe proper
translocations that sorts all the external components. By Lemma 7 there exists
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a separating translocation ¢; in S. Let I be the minimum interval of genes
that contains the intervals of all the leaves. We say that a translocation ¢
cuts I if one of the black edges it cuts is contained in /. Note that since [ is
contained in a single chromosome, a translocation cuts at most one black edge
in I. Clearly ¢; cuts I. On the other hand, the first translocation that cuts [
is necessarily separating. For every translocation ¢; in S we can test in O(1)
time whether it cuts 1.

We implement Steps 11-33 in linear time, as follows. For each chromosome
we maintain its genes and the leaves it contains in two ordered linked lists.
We use only prefix-prefix (bad) translocations that do not change the signs of
the translocated genes. Thus the update of the genes and leaves lists of the
chromosomes after a translocation is done in O(1). O

Lemma 8 immediately implies:

Theorem 9 SRT is linearly reducible to SRTNL.

4 An Algorithm for SRTNL

In this section we present an algorithm for SRTNL. We first describe how
the overlap graph is changed after performing a chromosome flip or a proper
translocation defined by an external vertex.

As was demonstrated by Hannenhalli and Pevzner [7], a reversal on 74 simu-
lates a translocation on A:

(o X, Xy Y Y o) = (L, X, Y, =X Y ).
The type of translocation depends on the relative orientation of X and Y in w4
(and not on their order): if the orientation is the same, then the translocation

is prefix-suffix, otherwise it is prefix-prefix. The segment between X, and Y;
may contain additional chromosomes that are flipped and thus unaffected.

4.1 Updating OVCH for chromosome flips and proper translocations

Suppose H; = OVCH(A,m ) and Hy = OVCH(A, m), where m and mo are
two different concatenations and orientations of the chromosomes in A. In this
case we refer to Hy and Hy as equivalent.
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Let H = OVCH(A, m4). Let IN(H) denote the set of vertices that are in non-
trivial internal components. Thus two equivalent graphs, H; and Hs, satisfy
IN(H,) = IN(H) (Observation 3).

Let v be any vertex in H. Denote by CH(v) = CH(v, H) the set of chromo-
somes that are neighbors of v in H. Hence if v is external then |CH(v)| = 2,
otherwise CH(v) = () (compare Fig. 1(b)). For a chromosome X, let ¢(X)
denote a flip of chromosome X in 74. Let H - ¢(X) = OVCH(A, 74 - ¢(X)).
Hence, in particular H - ¢(X) and H are equivalent.

Lemma 10 ([14]) H - ¢(X) is obtained from H by complementing the sub-
graph induced by the set {u : X € CH(u)} and flipping the orientation of every
vertex in it.

Let v be an external vertex in H. Denote by ¢(v) the proper translocation that
the corresponding gray edge defines on A (recall Observation 1). Two external
vertices v; and v, in H are equivalent if they define the same translocation,

Le. ¢(v1) = ¢(v2).

A vertex in the overlap graph is oriented if its corresponding edge connects two
genes with different signs in w4, otherwise it is unoriented. If v is an oriented
external vertex then ¢(v) can be mimicked by a reversal, ¢(v), on m4.

For an external vertex v we define H - ¢(v) in the following way. If v is oriented
then H-¢(v) = OVCH(A-¢(v), wa-d(v)). Otherwise, suppose CH(v) = {X, Y}
and that Y appears after X in m4. Then v is an oriented external vertex in
H' = H - ¢$(X) and thus we define H - ¢p(v) = H' - ¢(v).

Denote by N(v) = N(v,H) the set of vertices that are neighbors of v, in-
cluding v itself (but not including chromosome neighbors). Given two sets S}
and Sy define S; @ Sy = (S1US2) \ (S1NS2). Finally, two chromosomes in
OVCH(A,74) are called consecutive if they are consecutive in 4.

Lemma 11 ([14]) Let v be an oriented external vertex in H and suppose the
chromosomes in CH(v) are consecutive. Then H - ¢(v) is obtained from H by
the following operations. (1) Complement the subgraph induced by N (v) and flip
the orientation of every vertex in N(v). (ii) For every vertex u € N(v) update
the edges between u and CH(u) CH(v) such that CH(u) = CH(u) @ CH(v).
In particular, the external/internal state of a vertex u € N(v) is flipped iff u
is internal or CH(u) = CH(v).

Lemmas 10 and 11 describe the change in OVCH(A,m4) after performing
operations that can be mapped to reversals on m4. Therefore, the described
change in OVCH(A, 4) is similar to the change in OV(x) after performing a
reversal [9, Observation 4.1].
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4.2 The Main Theorem and Algorithm

We now describe the main theorem and algorithm. Our algorithm is formally
very similar to the algorithm for SBR presented in [15]. Instead of perform-
ing reversals on oriented edges in [15], we perform translocations on exter-
nal edges. Despite of the great similarity between the algorithms our validity
proof is completely new. We analyze an overlap graph with chromosomes of
a multi-chromosomal genome, while [15] analyze the overlap graph of a uni-
chromosomal genome. Like [15], we perform operations defined by oriented
vertices (i.e. translocations). However, in our case these vertices must also be
external. If an external vertex is unoriented, we can turn it into an oriented
vertex by a flip of a chromosome. Hence, we consider two types of operations
in our analysis.

A sequence of vertices S = (vq,...,v;) from H is legal if v; is external in
H - ¢(v1)---¢(vj_q) for j = 1,.. k. For a legal sequence S define ¢(S) =
d(v1) - d(vk). A legal sequence S is total if H - ¢(S) contains only trivial
components. For an overlap graph with chromosomes Hy, let EXT(H;) denote
the set of vertices that are in external components. If S is a maximal legal
sequence of vertices in H then EXT(H - ¢(S)) = (). If in addition S is not total
then IN(H - ¢(S)) # 0.

Theorem 12 Let S = (vq,...,v;) be a mazimal legal but not total sequence of
vertices in H. Let IN= IN(H - ¢(S)). Let v; be the first vertex in S satisfying
IN(H - ¢(v,...,v)) = IN, i.e. p(v;) is the last unsafe translocation in ¢(S).
Let S; = (v1,...,u-1) and Sy = (vi,...,vx). Then every mazimal sequence
of vertices S" = (wy,...,wy) in IN that satisfies (i) (S1,S") is legal and (ii)
vy is not an adjacency in H - ¢(S1,S") also satisfies: (iii) S’ is not empty and
(iv) (S1,5',S2) is a mazximal legal sequence. Moreover, all the translocations

in ¢(Ss2) are safe.

PROOF. Let v = vy, Hy = H-¢(Sy) and INy = EXT(Hy)NIN. Then INy # 0
and none of the vertices in INj is equivalent to v in Hy (otherwise it would
be an adjacency in H - ¢(S) and hence not in IN). Hence S’ is not empty. Let
Ay =A-¢(S1) and CH(v) = {X,Y}. We choose m to be a concatenation of
the chromosomes in Ay in which X and Y are the first two chromosomes. We
can assume w.l.o.g. that H = OVCH(A, ), hence Hy = OVCH( Ay, ). For
j=1,.,mlet H; = Hy- ¢(wr,...,w;). Let IN; = EXT(H;)( IN. Then for
j=1,...,m: (i) w; € IN;_y and (%) w; is not equivalent to v in H;_;. Let
EXT = EXT(Hy- ¢(v)). The following conditions hold for H; when j = 0 (see
Fig. 4-(a)):

(1) The subgraphs of H; - ¢(v) and H, - ¢(v) that are induced by EXT are

17



equivalent.
(2) Every w € IN; satisfies: CH(w) = CH(v) = {X,Y}.
(3) If v is oriented then N(v) N IN = IN;.
(4) All the possible edges exist between N(v)( EXT and IN;.
(5) There are no edges between IN\ IN; and vertices outside IN.
(6) There are no edges between EXT\ N(v) and vertices outside EXT.

We shall prove below that in H,,, v is external and that all the above conditions
are satisfied. The first condition ensures that (51, 5’, Ss) is legal. The rest of the
conditions ensure that H,, - ¢(v) satisfies: (i) there are no external vertices in
IN and (i) there are no edges between EXT and vertices outside EXT. Hence
(S1,57,52) is maximal and every translocation in ¢(viy1, ..., vx) is safe. ¢(v;)
is safe in H,, since S’ is maximal. Therefore, all the translocations in ¢(55)
are safe.

Assume that v is external in H; and that all the above conditions hold for a
certain j. Since these conditions are true for every graph that is equivalent
to H; we can assume that v is oriented. We now prove, using induction on 7,
that these conditions are satisfied for every H;, i € {1,...,m} in which v is
external, and that v is external in H,,.

Case 1: w;;; is oriented in H;. Let Hjiy = H; - ¢(wjy1) (see Fig. 4-(b)).
Then IN;1 1 = N(v,H;) @ N(wj+1, H;). INj41 # 0, otherwise v is an isolated
internal vertex in H;, and hence equivalent to w;;; in H;. Hence m > j + 2.

Case l.a: wjio is oriented in Hjyq. Let Hjio = Hjiq - ¢p(wjy2) (see Fig. 4-(c)).
Clearly, v is external in H; 5. Let M = N (v, H;) N EXT. Then N(w;t2, Hjt1)
NEXT = N(w;41, H;) N EXT = M. Hence the subgraphs of H; » and H; that
are induced by M are identical and the first condition is satisfied in H; .

Case 1.b: wjy, is unoriented in Hjyy. Let H} = Hj - ¢(X) (H}yy and Hjy
are equivalent) (see Fig. 4-(d)). Hence wj,, is oriented in H ,. Note that
v is an internal vertex in H}. Let M’ = N(wj1, Hj, ) N EXT. Let Hjo =
H ) - ¢(wjia) (see Fig. 4-(e)). v is an oriented external vertex in Hji, and
N(v,Hj2) NEXT = M'. Therefore, the two subgraphs of Hjis - ¢(v) (see
Fig. 4-(f)) and H},, (see Fig. 4-(d)) that are induced by EXT are identical.
The subgraphs of H;; and H;-¢(v) that are induced by £XT are also identical.

Hence, the first condition is satisfied.

Looking at Figs. 4-(c) and 4-(e) it is easy to verify that the rest of the condi-
tions are also satisfied for Hj .

Case 2: wj,; is unoriented in H;. We define the three subsets of vertices
My, My, M3 C EXT in H; as follows:

(1) M, is the set of neighbors of w;1 (equivalently, v) that are either internal
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or external but does not overlap chromosome X.

(2) M, is the set of neighbors of w;;; (equivalently, v) that overlap chromo-
some X. Hence M; UM, = N (v, H;) N EXT.

(3) Ms is the set of vertices that overlap chromosome X but are not neighbors
of wj;1 (equivalently, v).

For an illustration of Hj see Fig. 4-(g). Let H} = H; - ¢(X) (see Fig. 4-(h)).
In Hj: wj;y is an oriented external vertex and is not a neighbor of v. Let
Hjp = Hj - ¢(wjy1) (see Fig. 4-(i)). Obviously, v remains intact in H;, ;. Let
Hj,, = Hjy1 - ¢(X) (see Fig. 4-(j)). Then, the subgraphs of H},, - ¢(v) (see
Fig. 4-(k)) and H; - ¢(v) that are induced by M;, M, and M; are equivalent
(Compare the subgraph induced by EXT in H; in Fig. 4 (g) with the subgraph
induced by EXT in H},, - ¢(v) - ¢(X) in Fig. 4 (1)). Hence the first condition
is satisfied. Looking at Fig. 4-(i), it is easy to verify that conditions (2)-(6)

hold for H;;;. O

The algorithm in Fig. 2 builds a sequence of gray edges in G(A), (S1,S2),
that corresponds to a total legal sequence of vertices from H. The sequence
(S1,52) is built by a repeated application of Theorem 12. It greedily removes
external edges in G(A) from an allowed subset and performs the corresponding
translocations (step (2).(a)). When the allowed subset contains only internal
gray edges, the algorithm repeats the last translocations in a reverse order
(thereby cancelling them) until another vertex in the allowed subset becomes
external (step (2).(b)). Figure 3 describes an example of a run of the algo-
rithm. Every translocation in the algorithm is applied at most twice and so
the algorithm performs at most 2n translocations.

5 An O(n%2,/log(n)) Time Implementation of the Algorithm

The algorithm in Fig. 2 can be implemented in O(n?) time in a relatively simple
manner. We provide below an O(n®2,/log(n)) algorithm. The implementation

follows closely the ideas of [10] and [15].

We identify a gray edge (4,7 + 1) by 7 and refer to (i + 1) as the remote end of
1. The data structure we use for maintaining the genome A is as follows.

(1) A doubly linked list of O(, /logTEn)) blocks. We partition 74 into continuous

blocks such that the size of every block is at least $1/nlog(n) and at most

2,/nlog(n).
(2) A balanced search tree for every block. The tree contains the edges in
the block ordered by the positions of their remote ends. We use balanced
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Algorithm 2 An algorithm for solving SRTNL

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Let V' be the set of gray edges in G(A) that are in non-trivial components
Sl - SQ = (Z)
=10
while V # () do
while there exists an external gray edge v € V' in G(A) do
Remove v from V'
if v is not equivalent to the first element in Sy then
Append v to S
Append ¢(v) to @
A A-g(v)
end if
end while
if V =0 then
return ¢(S;, S2)
end if
while all the gray edges in V' are internal in G(A) do
Let v be the last gray edge in S;. Remove v from S
Prepend v to Sy
Let ¢ be the last translocation in ®. Remove ¢ from &
A—A-¢
end while
end while

(3)

We
(1)
(2)

trees that support split and concatenate operations in logarithmic time,
such as red-black trees or 2-4 trees. We use T[v] to denote the subtree
rooted at v and containing all its descendants.

An n-array of block pointers. The " entry in the array points to the
block containing i.

add the following fields to the above data structure.

For each edge we keep an external-bit. If the external-bit is on then the
edge is external, otherwise it is internal.

For each block we keep the following fields: (i) a counter of external edges
in V, (ii) a counter of chromosomes’ left tails, and (7ii) a reverse-flag. If
the reverse-flag of a block is on then the order and signs of the elements
in the block are reversed.

For every subtree T'[v] of each block’s search tree we keep the following
fields in its root v: (i) counters of external and internal edges in V', (ii)
a direction-flip-flag and (%i1) an external-flip-flag. If the external-flip-flag
of a vertex v is on then in T[v] the external-bits of all the elements
are flipped and the counters of internal and external elements from V
exchange their values. If the direction-flip-flag of a vertex v is on then in
T'[v] the order of the elements is reversed.
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genome A S1 Sy \%4
(—8,-2,7.3),(1,6,5,—4) 0 0 1,2,4,5,6,7
(=8,-2,—-1),(=3,-7,6,5,—4) 1 0 2,4,5,6,7
(=3,—-2,—1),(=8,-7,6,5,—4) 1,2 0 4,5,6,7
(—8,-2,—1),(=3,-7,6,5,—4) 1 2 4,5,6,7
(—8,—2,—1),(=3,-7,6,5,—4) 1 2 4,5,6
(—8,-2,7,3),(1,6,5,—4) 0 1,2 4,5,6
(1,6,7,3),(—=8,—2,5,—4) 6 1,2 4,5
(—8,-2,5,6,7,3),(1,—4) 6,5 1,2 4
(—8,-2,5,6,7,3), (1, —4) 6,5 1,2 0
(=8,—2,—1),(=3,-7,—6,—5,—4)

(—3,-2,—1),(—8,=7,—6,—5,—4)

Fig. 3. An example for a run of the algorithm on genomes
A = {(-8,-2,7,3),(1,6,5,—4)} and B = {(1,2,3),(4,...,8)}. A gray edge
(i, + 1) (vertex of H) is represented by . The underlined segments denote a
translocation the algorithm chose. The algorithm ends when V = (). The top 9 lines
describe the steps of the algorithm. The two bottom lines show the application of
?(S2) = #(1,2) on the final genome produced by the algorithm, producing B.

We can clear the direction-flip-flag of a node by reversing the order of its
children and flipping the direction-flip-flag in each of them. We can clear the
external-flip-flag in a node by exchanging the values of the counters of external
and internal edges in V, flipping the external-flip-flag in each of its children
and flipping the external-bit of the element residing at the node. One can
view this procedure as “pushing down” the flags. An direction-flip-flag and an
external-flip-flag that are on are “pushed down” whenever T'[v] is searched.

We implement the algorithm using the above data structures. A search for an
external edge in V is done as follows. We traverse the list of blocks until we
reach a block that contains external edges from V. We then search the tree of
the block for an external edge i. We locate element ¢ + 1 (the remote end of
edge i) using the n-array and a search of its block.

Let ¢ be a translocation on A operating on the chromosomes X = (X, X3)
and Y = (Y1,Ys). Then ¢ is performed in O(y/nlog(n)) time as follows:

(1) Split at most six blocks so that each of the four segments X;, Xs, ¥} and
Y5 corresponds to a union of blocks. If ¢ is a prefix-prefix translocation
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exchange the blocks of X; and Y;. Otherwise, reverse the order and flip

the reverse-flags of the blocks of X5 and Y; and then exchange the blocks

of X5 and Y;.

(2) We now have to modify the trees of each block to reflect the order and
direction changes. This is done as follows. Traverse all the blocks and for
each block:

(a) Let T be the balanced search tree of the block. If ¢ is a translocation
on an edge ¢ in V and ¢ is contained in the block: decrease by 1 the
counters of external edges in V' of the block and of every node in T
that contains ¢ in its subtree.

(b) Split 7" into at most seven subtrees such that each of the segments
X1, Xo, Y7 and Y; has a corresponding subtree.

(c) If the block corresponds to a segment of X, X5, Y; and Y5 flip the
external-flip-flag at the roots of two subtrees according to Table 1.

(d) If ¢ is a prefix-prefix translocation, exchange the subtrees of X; and
Y;. Otherwise, exchange the subtrees of X5 and Y; and flip the
direction-flip-flags of both.

(e) Concatenate the seven subtrees into 7.

(3) If necessary, concatenate small blocks and split large blocks such that the

size of each block is at least $4/nlog(n) and at most 2y/nlog(n).

Table 1
The subtrees for which the external-flip-flag is flipped as a function of translocation
type and block type.

Block X4 Xo Y; Yo
preﬁx-preﬁx X27}/2 X17)/1 XZa)/Q X17Y1
prefix-suffix Xo, Y1 | X1, Ys | Xp, Y2 | Xooh

Theorem 13 SRTNL can be solved in O(n*?,/log(n)). O
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ABSTRACT

The understanding of genome rearrangements is an important endeavor in comparative
genomics. A major computational problem in this field is finding a shortest sequence of
genome rearrangements that transforms, or sorts, one genome into another. In this paper
we focus on sorting a multi-chromosomal genome by translocations. We reveal new relation-
ships between this problem and the well studied problem of sorting by reversals. Based on
these relationships, we develop two new algorithms for sorting by reciprocal translocations,
which mimic known algorithms for sorting by reversals: a score-based method building on
Bergeron’s algorithm, and a recursive procedure similar to the Berman-Hannenhalli method.
Though their proofs are more involved, our procedures for reciprocal translocations match
the complexities of the original ones for reversals.

Key words: genome rearrangement, sorting by translocations, sorting by reversals.

1. INTRODUCTION

OR OVER A DECADE NOW, much effort has been put into large-scale genome sequencing projects.

Analysis of the sequences that have accumulated so far showed that genome rearrangements play an
important role in the evolution of species. A major computational problem in the research of genome
rearrangements is finding a most parsimonious sequence of rearrangements that transforms one genome
into another. This is called the genomic sorting problem, and the corresponding number of rearrangements
is called the rearrangement distance between the two genomes. Genomic sorting gives rise to a spectrum
of fascinating combinatorial problems, each defined by the set of allowed rearrangement operations and
by the representation of the genomes.

In this paper we focus on the problem of sorting by translocations. We reveal new similarities between
sorting by translocations and the well studied problem of sorting by reversals. The study of the problem
of sorting by translocations is essential for the full comprehension of any genomic sorting problem that
permits translocations. Below we review the relevant previous studies and summarize our results. Formal
definitions are provided on the next section.

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
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Following the pioneering work by Nadeau and Taylor (1984), reversals and translocations are believed
to be very common in the evolution of mammalian species. Reversals (or inversions) reverse the order and
the direction of transcription of the genes in a segment inside a chromosome. Translocations exchange
tails between two chromosomes. A translocation is reciprocal if none of the exchanged tails is empty.
The genomic sorting problem where the allowed rearrangement operations are reversals (respectively,
reciprocal translocations) is referred to as sorting by reversals, hereafter SBR (respectively, sorting by
reciprocal translocations, hereafter SRT).

Both SBR and SRT use restricted models that allow for a single type of genome rearrangement. Clearly,
a model that allows both reversals and translocations is biologically more realistic than each of these two
restricted models. Still, the study of sorting by reversals only or by translocations only is of great importance
to the understanding of more complex models that allow for several types of genome rearrangements. For
example, the problem of sorting by reversals, translocations, fissions, and fusions is reduced to SBR in
polynomial time (Hannenhalli and Pevzner, 1995; Ozery-Flato and Shamir, 2003; Tesler, 2002a). In many
cases, algorithms for restricted models can be integrated into algorithms for complex models (Ozery-Flato
and Shamir, 2006a; Tesler, 2002a).

SBR and SRT were both proven to be polynomial. Hannenhalli and Pevzner (1999) gave the first poly-
nomial algorithm for SBR; since then, other, more efficient algorithms and simplifications of the analysis
have been presented. Berman and Hannenhalli (1996) presented a recursive algorithm for SBR. Kaplan
et al. (2000) simplified the analysis and gave an O(n?) algorithm for SBR. Using a linear time algorithm
by Bader et al. (2001) for computing the reversal distance, the algorithm of Berman and Hannenhalli can
be implemented in O(n?). A score-based algorithm for SBR was presented by Bergeron (2005). Tannier
et al. (2007) presented an elegant algorithm for SBR that can be implemented in O (n3/2./log(n)) using
a clever data structure due to Kaplan and Verbin (2005).

SRT was first introduced by Kececioglu and Ravi (1995) and was given a polynomial time algorithm
by Hannenhalli (1996). Bergeron et al. (2006a) pointed to an error in Hannenhalli’s proof of the re-
ciprocal translocation distance formula and consequently in Hannenhalli’s algorithm. They presented a
new proof and gave an O(n?) algorithm for SRT. Recently, we (Ozery-Flato and Shamir, 2006a) proved
that the algorithm of Tannier et al. (2007) for SBR can be adapted to solve SRT in O(n3/2,/log(n)))
time.

Can the rich theory on SBR be used to solve SRT? It is well known that a translocation on a multi-
chromosomal genome can be simulated by a reversal on a concatenation of the chromosomes (Hannenhalli
and Pevzner, 1995). However, different translocations require different concatenations. In addition, intra-
chromosomal reversals do not have matching translocations. Last but not least, the formulas of the reversal
distance and the reciprocal translocation distance are different. They differ in particular in the parameters
that concern difficult structures for SBR/SRT, which are sometimes referred to as “bad components.”1
Thus, from a first glance the similarity between SRT and SBT is rather superficial.

In Ozery-Flato and Shamir (2006a) we introduced a new auxiliary graph for the analysis of SRT (the
“overlap graph with chromosomes” of two multi-chromosomal genomes, an extension of the “overlap
graph” of two uni-chromosomal genomes) and used it to adapt the fastest extant algorithm for SBR
to SRT (Ozery-Flato and Shamir, 2006a; Tannier et al., 2007). In this paper we reveal new relationships
between SRT and SBR. Based on these relationships we develop two new algorithms for SRT, which mimic
known algorithms for SBR: a score-based method building on Bergeron’s algorithm (2005) and a recursive
procedure similar to the Berman and Hannenhalli (1996) method. Though the proofs of the algorithms
are more involved than those of their counterparts for SBR, our procedures for translocations match the
complexities of the original ones for reversals: the score-based algorithm performs O(n?) operations on
O(n)-long bit vectors; the recursive algorithm runs in O(n?) time.

The paper is organized as follows. Section 2 gives the necessary preliminaries. Section 3 presents the
score-based algorithm and Section 4 presents the recursive algorithm. Related genomic sorting problems,
as well as possible applications of our results and future research problems, are discussed in Section 5.

L Hurdles (Hannenhalli and Pevzner, 1999; Kaplan et al., 2000) for SBR, leaves (Bergeron et al., 2006a) (equivalently,
minimal sub-permutations [Hannenhalli, 1996]), for SRT.
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2. PRELIMINARIES

This section provides a basic background for the analysis of SRT. We follow to a large extent the
nomenclature and notation of Hannenhalli (1996) and Kaplan et al. (2000). In the model we consider, a
genome is a set of chromosomes. A chromosome is a sequence of genes. A gene is identified by a positive
integer. All genes in the genome are distinct. When it appears in a genome, a gene is assigned a sign of
plus or minus. For example, the following genome consists of 8 genes in two chromosomes:

A ={(1,-3,-2,4,-7,8),(6,5)}.

The reverse of a sequence of genes I = (x1,...,x;) is —1 = (—xj,...,—x1). A reversal reverses a
segment of genes inside a chromosome. Two chromosomes, X and Y, are identical if either X = Y or
X = —Y. Therefore, flipping chromosome X into —X does not affect the chromosome it represents.

A signed permutation m = (mq,...,7,) is a permutation on the integers {1,...,n}, where a sign of
plus or minus is assigned to each number. If A is a genome with the set of genes {1,...,n} then any
concatenation w4 of the chromosomes of A is a signed permutation of size 7. In the following, we assume
for simplicity and without loss of generality that there is a concatenation g of the chromosomes in the
target genome B which is the identity permutation. For example,

B=1{(1,2,....5),(6,7.8)}.

Let X = (X1,X2) and Y = (Y7, Y,) be two chromosomes, where X;, X5, Y;, Y, are sequences of
genes. A translocation cuts X into X; and X, and Y into Y; and Y, and exchanges segments between
the chromosomes. It is called reciprocal if X;, X», Y1 and Y, are all non-empty. There are two ways to
perform a translocation on X and Y. A prefix-suffix translocation switches X; with Y, resulting in:

(X1, X2), (Y1, Y2) = (-T2, X2), (Y1, —X1).
A prefix-prefix translocation switches X; with ¥ resulting in:
(X1, X2), (Y1, Y2) = (Y1, X2), (X1, Y2).

Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation by a flip of one of the
chromosomes followed by a prefix-suffix (respectively, prefix-prefix) translocation. As was observed by
Hannenhalli and Pevzner (1995), a translocation on A can be simulated by a reversal on 7 4 in the following
way:

(...,Xl,Xz,...,Yl,Yz,...)=>(...,Xl,—Yl,...,—Xz,Yz,...).

The type of translocation depends on the relative orientation of X and Y in w4 (and not on their order): if
the orientation is the same, then the translocation is prefix-suffix, otherwise it is prefix-prefix. The segment
between X, and Y; may contain additional chromosomes that are flipped and thus unaffected.

For an interval of genes I = (iy,..., i) define Tails(1) = {i;, —ir}. Note that Tails(I) = Tails(—1I).
For a genome A; define Tails(A1) = Uxea, Tails(X). For example:

Tails({(1,-3,-2,4,-7,8),(6,5)}) = {1,-8,6,—5}.

Two genomes A; and A are called co-tailed if Tails(A1) = Tails(A3). In particular, two co-tailed genomes
have the same number of chromosomes. Note that if A, was obtained from A; by performing a reciprocal
translocation then Tails(A,) = Tails(A1). Therefore, SRT is defined only for genomes that are co-tailed.
For the rest of this paper, the word “translocation” refers to a reciprocal translocation, and we assume that
the given genomes, A and B, are co-tailed.
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FIG. 1. The cycle graph G(A1, By), where A1 = {(1,-3,-2,4,-7,8),(6,5)} and By = {(1,...,5),(6,7,8)}.
Dotted lines correspond to gray edges. The gray edge (1, 2) is internal, whereas (4, 5) is external. (2, 3) is an adjacency.

2.1. The cycle graph

Let N be the number of chromosomes in A (equivalently, B). We shall always assume that both A
and B contain genes {1,...,n}. The cycle graph of A and B, denoted G (A, B), is defined as follows.
The set of vertices is U?_ {i 0,i1}. For every pair of adjacent genes in B, i and i + 1, add a gray
edge (i,i +1) = (i',(i + 1)°). For every pair of adjacent genes in A, i and j, add a black edge
(i, j) = (out(i),in(j)), where out(i) = i! if i has a positive sign in A and otherwise out(i) = i°, and
in(j) = jO if j has a positive sign in A and otherwise in(j) = j!. An example is given in Figure 1.
There are n — N black edges and n — N gray edges in G(A, B). A gray edge (i,i + 1) is external if the
genes i and i + 1 belong to different chromosomes of A, otherwise it is internal.

Every vertex in G(A, B) has degree 2 or 0, where vertices of degree 0 (isolated vertices) belong to
Tails(A) (equivalently, Tails(B)). Therefore, G(A, B) is uniquely decomposable into cycles with alternating
gray and black edges. An adjacency is a cycle with two edges.

2.2. The overlap graph with chromosomes

Place the vertices of G(A, B) along a straight line according to their order in w4. Now, every gray
edge can be associated with an interval of vertices of G(A4, B). Two intervals overlap if their intersection
is not empty but neither contains the other. The overlap graph with chromosomes of A and B w.r.t. w4,
denoted $2(A, B, m4), is defined as follows. There are two types of nodes. The first type corresponds to
gray edges in G(A, B). The second type corresponds to chromosomes of A. Two nodes are connected if
their associated intervals overlap (Fig. 2). For the rest of this paper we will refer to overlap graphs with
chromosomes as 2-graphs.

In order to avoid confusion, we will refer to nodes that correspond to chromosomes as “chromosomes”
and reserve the word “vertex” for the nodes that correspond to gray edges of G(A4, B). Observe that
a vertex in Q(A, B, w4) is external iff there is an edge connecting it to a chromosome. Note that the
internal/external state of a vertex in Q2(A, B, m4) does not depend on 74 (the partition of the chromosomes
is known from A). A vertex in Q(A4, B, wy4) is oriented if its corresponding edge connects two genes with
different signs in w4, otherwise it is unoriented.

Let OV(A, B, m4) be the subgraph of Q2(A4, B, w4) induced by the set of nodes that correspond to gray
edges (i.e., excluding the chromosomes’ nodes). We shall use the word “component” for a connected
component of OV(A4, B, w4). A component is external if at least one of the vertices in it is external,
otherwise it is internal. A component is trivial if it is composed of one internal vertex. A trivial component

O unoriented internal

2,3) (1,2) 3.4) 4.,5) 6,7) (7,8)

. oriented internal

D unoriented external

. oriented external

. chromosome

chromosome 1 chromosome 2

FIG. 2. The overlap graph with chromosomes (A1, By, w4, ), where A1 and B are the genomes from Figure 1 and
w4, = (1,-3,-2,4,-7,8,6,5). The graph induced by the vertices within the dashed rectangle is OV (A1, By, m4,).
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corresponds to an adjacency. The span of a component M is the minimal interval of genes /(M) = [i, j] C
74 that contains the interval of every vertex in M. If the spans of two components intersect then either
they overlap by at most gene, or one span contains the other. Clearly, /(M) is independent of w4 iff M is
internal. Thus the set of internal components in (A4, B, m4) is independent of 4. Denote by ZA (A4, B)
the set of non-trivial internal components in (A, B, 7 4). The following lemma follows from the definition
of “sub-permutations” in Hannenhalli (1996):

Lemma 1. Suppose I is the span of an internal component. Then the genes of I form a continuous
interval I’ in one of the chromosomes of B and Tails(I) = Tails(I'").

2.3. The reciprocal translocation distance

Let ¢(A, B) denote the number of cycles in G(A, B).

Theorem 1 (Bergeron et al., 2006a; Hannenhalli, 1996). The reciprocal translocation distance be-
tween A and B is d(A,B) = n— N — c(A, B) + F(A, B), where F(A,B) > 0 and F(A, B) = 0 iff
IN (A, B) = 0.

Let Ac denote the change in the number of cycles after performing a translocation on A. Then Ac €
{—1,0, 1} (Hannenhalli, 1996). A translocation is proper if Ac = 1. A translocation is safe if it does not
create any new non-trivial internal component. A translocation p is valid if d(A -p, B) = d(A,B) — 1. 1t
follows from Theorem 1 that if ZA/ (A4, B) = @, then every safe proper translocation is necessarily valid.

In a previous study (Ozery-Flato and Shamir, 2006a), we presented a generic algorithm for SRT that uses
a sub-procedure for solving SRT when ZN (4, B) = @. The algorithm focuses on the efficient elimination
of the non-trivial internal components. We showed that the work performed by this generic algorithm, not
including the sub-procedure calls, can be implemented in linear time. This led to the following theorem:

Theorem 2 (Ozery-Flato and Shamir, 2006a). SRT is linearly reducible to SRT with TN (A, B) = @.

By the theorem above, it suffices to solve SRT assuming that ZN' (A, B) = @. Both algorithms that we
describe below will make this assumption.

2.4. The effect of a translocation on the overlap graph with chromosomes

Let ncg = mcu (A, m4) be the linear order of the chromosomes in A, as defined by m4. Slightly
abusing terminology, we extend the definition of the €2-graph to include wcy. In other words, an Q2-graph
carries also a permutation of its chromosome nodes defined by 7 4. Two chromosomes in 2(A4, B, w4) are
called consecutive if they are consecutive in wcpy.

Let H = Q(A, B, w4) and let v be any vertex in H. Denote by N(v) = N(v, H) the set of vertices
that are neighbors of v in H, including v itself (but not including chromosome neighbors). Denote by
CH(v) = CH(v, H) the set of chromosomes that are neighbors of v in H. Clearly, if v is external then
|CH(v)| = 2, otherwise CH(v) = @.

Every external gray edge e defines one proper translocation that cuts the black edges incident to e. (Out
of the two possibilities of prefix-prefix or prefix-suffix translocations, exactly one would be proper.) For
an external vertex v denote by p(v) the proper translocation that the corresponding gray edge defines on
A.If v is an oriented external vertex then p(v) can be mimicked by a reversal p(v) on 7 4. For an oriented
external vertex v define H - p(v) = Q(A - p(v), B, w4 - p(v)). The following two lemmas refine claims in
Ozery-Flato and Shamir (2006a).

Lemma 2. Let v be an oriented external vertex in H and suppose the chromosomes in CH(v) are
consecutive. Then H - p(v) is obtained from H by the following operations. (i) Complement the subgraph
induced by N (v) and flip the orientation of every vertex in N(v). (ii) For every vertex u € N(v) complement
the edges between u and CH(u) U CH(v). In particular, the external/internal state of a vertex u € N(v)
is flipped iff u is internal or CH(u) = CH(v).
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Proof. The correctness of (i) follows immediately from Observation 4.1 in Kaplan et al. (2000).
To prove (ii), let u € N(v). Since the chromosomes in CH(v) are consecutive, u is either internal or
|CH(u) N CH(v)| € {1,2}. In each of these cases, CH(u) is complemented w.r.t. CH(u) U CH(v) (for
illustration, see Fig. 3). Suppose w ¢ N(v). Let I, and I, be the intervals associated with v and w
respectively (see Section 2.2). Then there are three possible cases:

Case 1: I, C I, and w is internal. Then [, is contained entirely in one of the exchanged segments.
Thus w remains internal and hence CH(w, H - p(v)) = CH(w, H) = 0.

Case 2: I, C I, and w is external. Then CH(w, H) = CH(v, H) and the two endpoints of I, exchange
their chromosomes after p(v) is performed. Thus CH(w, H - p(v)) = CH(w, H)(= CH(v, H)).

Case 3: I, N I, =@ or I, C I,. In these two cases the endpoints of I, are not affected by p(v) and
hence CH(w, H - p(v)) = CH(w, H). |

We shall sometimes need to change the chromosome order or flip a chromosome. These operations can
be mimicked by reversals on w4 but do not correspond to translocations, and thus are not covered by
Lemma 2. For an interval of chromosomes I C 4, let 5(I) denote the flip, i.e., reversal, of I in 4. Let
H-p(I) = QA B, 74 ().

Lemma 3. For an interval of chromosomes 1 C wy, H - p(1) is obtained from H by the following
operations. (i) Reverse the order of the chromosomes in 1. (ii) Complement the subgraph induced by the
set {v : exactly one of the chromosomes in CH(v) is contained in 1}, and flip the orientation of every
vertex in it. In particular, if I is a single chromosome of A then H - p(1) is obtained by complementing
the subgraph induced by the neighbors of I in H, and flipping the orientation of every vertex in it.

Proof. The vertices affected by p(/) are the ones that overlap /. A vertex v overlaps [ iff exactly
one of its endpoints belong to I (hence it must be external). The rest of the proof follows directly from
Observation 4.1 in Kaplan et al. (2000). |

We refer to two 2-graphs of the same pair of genomes A and B, irrespective of the concatenation 7 4,
as equivalent. Clearly, we can transform an 2-graph to any other equivalent graph by a sequence of flips
of chromosomes intervals, as defined by Lemma 3.

1 1 1 1
: N} X6 : :
1 1 - 1 1
. X2 . . s :
. X H x H H
1 3 L 7 1 1
1 1 1 1
P X . Xs . :
. Voo : :
X1 X X3
p(v)
1 1 1 1
H X4 . X . H
1 1 1 1
. . X2 L Xg :
1 1 1 1
' ' X3 X7 4 '
1 1 1 1
1 1 1 1
1 -X‘l_.x.5 1 1 1
Vv : : :
X X> X3

FIG. 3. The effect of performing a translocation, mimicked by a reversal, on overlapping intervals. X;, X», and
X3 are chromosomes, and the dashed lines denote the borders between them in the concatenation (X7, X2, X3). The
letters x1,...,xg denote the endpoints of the intervals (the endpoints are vertices of the cycle graph). The interval v
corresponds to an (external) edge on which a translocation is performed.
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Observation 1. Let H and H' be two equivalent graphs in which v is an oriented external vertex.
Then the set of internal components is the same for H - p(v) and H' - p(v).

Proof. We can transform H - p(v) into H’ - p(v) by a sequence of flips of chromosomes intervals. By
Lemma 3, a flip of an interval of chromosomes does not change the internal/external state of any vertex,
and does not affect the neighborhood of any internal vertex. Thus H - p(v) and H' - p(v) must have the
same set of internal components. |

Let v be an external vertex in H, and let H' be an equivalent graph to H in which v is oriented,
possibly H = H’ if v is already oriented in H. A key definition that will be crucial throughout the paper
is the following: AIN(H, v) is the set of vertices that belong to external components in H (equivalently,
H’) but are in non-trivial internal components in H' - p(v). By Observation 1, if (i) v is an external vertex
in H, and (ii) H' is equivalent to H, then AIN(H, v) = AIN(H’, v). It follows that in order to compute
AIN(H, v), we can assume without loss of generality that v is oriented and the chromosomes in CH (v)
are consecutive. As we shall see, the additional work required to satisfy this assumption will not change
the overall complexity of the algorithms.

3. A SCORE-BASED ALGORITHM

In this section, we present a score-based algorithm for SRT when ZN (A, B) = @. This algorithm is
similar to an algorithm by Bergeron (2005) for SBR. Denote by Nin(v) and Ngxr(v) the neighbors of
v that are respectively internal and external. It follows that Niy(v) U Ngxr(v) U {v} = N(v). For two
chromosomes X and Y, let Vxy = {v: CH(v) = {X,Y}}.

Lemma 4. Let X and Y be two consecutive chromosomes in H = Q(A, B, mwy4). Suppose v € Vxy
is oriented. Let w € N(v). If w has no external neighbors in H - p(v) then Ngxr(w) S Ngxr(v) and
Nin(v) € Nn(w).

Proof. It follows from Lemma 2 that if u € (Ngxr(w) \ Next(v)) U (Nin(v) \ Nin(w)) then u is an
external neighbor of w in H - p(v). |

For each vertex v in H = Q(A, B, m4) we define the score of v as |Nin(v)| — | Next(v)]|. The following
lemma lays the basis for the score-based approach and is used by the implementation of the recursive
algorithm as well.

Lemma 5. Let X and Y be two consecutive chromosomes in H = Q(A, B, 7w 4) for which Vxy # 0.
Let O C Vxy be a set of oriented (external) vertices and suppose O # @. Let v € O be a vertex with a
maximal score in H. Then O N AIN(H, v) = @.

Proof. Assume u € O N AIN(H,v). Then u € N(v, H), and by Lemma 4 Ngxr(u#) € Ngxr(v)
and Nin(v) € Nin(u). However, since v has the maximal score in O, we get Ngxt(u) = Ngxr(v) and
Nin(v) = Nin(u). Therefore, N(u) = N(v), and by Lemma 2 it follows that u is an isolated internal
vertex in H - p(v), a contradiction to the assumption that u € AIN(H, v). |

Theorem 3. Let X and Y be two consecutive chromosomes in H = Q(A, B, w4). Let O be the set of
all the oriented external vertices in Vyxy and suppose O # @. Let v € O be a vertex that has the maximal
score in H. Let S = S(v) be the set of all the vertices w that satisfy the following conditions in H :

1. w is a neighbor of v,

2. w is an unoriented external vertex and CH(w) = CH(v),
3. Nexr(w) € Next(v),

4. Nn(v) € Nin(w), and

5. ON N() € Nexr(w).
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If S = @ then p(v) is safe. Otherwise, let w € S be a vertex that has a maximal score in H - p(X), where
X € CH(v). Then p(w) is safe.

Proof. Suppose S = @ and assume v is unsafe. Let w € AIN(H,v) be a neighbor of v in H. w
satisfies conditions 3 and 4 by Lemma 4, it is external and CH(w) = CH(v), by Lemma 2. It follows
from Lemma 5 that O N AIN(H, v) = @. Hence w is unoriented in A and the last condition is satisfied
(otherwise w has a neighbor from O in H - p(v), in contradiction to the choice of w € AIN(H,v)).
It follows that w € S, a contradiction.

Suppose S # @. Let H = H - p(X), where X € CH(v). Let w € S be a vertex with maximal score
in H’. We prove below that if AIN(H', w) # @ then AIN(H’, w)N S # @, in contradiction to Lemma 5.

Let Oy = O N N(v) in H. Then in H’ : (i) all the vertices in S are oriented (condition 2), (ii) O,
contains all the unoriented external vertices with CH = CH(v) that are not neighbors of v, and (iii) there
are no edges between S and O; U {v} (condition 5). It follows that each vertex in O; U {v} remains
external after performing a translocation on any vertex in S.

Assume that AIN(H’, w) # @. Let u € AIN(H’, w) be a neighbor of w in H’. We shall prove that
u € S. Clearly, u is an external vertex in H’ and CH(u) = CH(w) = CH(v). Since all the vertices in
01 U {v} are external and there are no edges between them and w in H', u ¢ O; U {v} and there are no
edges between u and O U {v} in H' (Lemma 4). Since all the unoriented vertices that are not neighbors
of v belong to Op, u must be oriented. It follows that in H, u satisfies conditions 1, 2 and 5. We now
prove that u satisfies conditions 3 and 4 in H as well, thus u € S—a contradiction to Lemma 5.

Suppose u does not satisfy condition 4 in H. Let x € Nin(v)\ Nin(#) in H. Since w satisfies condition 4
in H, x € Nin(w) \ Nin(u) in H. Since x is internal, all its edges are the same in H and H’. Hence
x € Nin(w) \ Nin(u) in H'. Tt follows from Lemma 4 that u has an external neighbor (x) in H’ - p(w), a
contradiction to u € AIN(H’, w). Thus u must satisfy condition 4 in H.

Suppose u does not satisfy condition 3 in H. Let z € Nexr(u) \ Nexr(v) in H.

Case 1: X ¢ CH(z). Since w satisfies condition 3, z € Ngxt(u) \ Ngxr(w) in H. Then in H':
z € Negxt(u) \ Negxr(w) (Lemma 3). Then according to Lemma 4, u has an external neighbor (z) in
H' - p(w), a contradiction to u € AIN(H’, w).

Case 2: X € CH(z). In H: since w satisfies condition 3 and z ¢ Next(v) then z ¢ Nexr(w). Thus in
H':z ¢ N(u), z € Nv) N N(w) (Lemma 3). Therefore, in H’ - p(w) the path u, z, v exists (Lemma 2),
a contradiction to u € AIN(H', w) (since v is external in H' - p(w)). |

Theorem 3 immediately implies the following polynomial time algorithm (Algorithm 1) for finding a
safe proper translocation using H = Q(A4, B, w4):

Algorithm 1. Find_Safe_Translocation_Using_Scores ( H )

. Let X and Y be two chromosomes for which there exists a common adjacent (external) vertex u.
. Flip chromosomes, if necessary, to make X and Y consecutive and to make u oriented.
. Let v € Vxy be an oriented (external) vertex with a maximal score.
. Compute the set of vertices S(v) defined by Theorem 3.
. If S(v) = @ then return p(v).
. Otherwise,
a. Flip chromosome X or Y, and recalculate the score of the vertices.
b. Let w € S(v) be a vertex with a maximal score.
c. Return p(w).

AN AW~

The above algorithm can be implemented in O(n?) time using O(n) operations on O(n)-long bit
vectors, in a similar manner to the implementation of the algorithm of Bergeron (2005) for SBR. The
implementation is presented in Figure 4 and uses the following notations. The symbols v, X, ext and
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1. Let u be an external vertex. Suppose CH (u) = {X,Y}. N Vxy #10

2. If X and Y are not consecutive:

(a) Let Xy,..., X} be the chromosomes between X and Y (not including X and V).
LetZ=X:1Pp - PX:PX
(b) for every u satisfying Z[u] = 1:
i. score < score+u
i. u—u@ Z, ofu| = —o[u] // subgraph completion
iii. score < score —u

// Flip X, if needed, so there is at least one oriented vertex in Vy-.
3. f X AY A o =0 then flip chromosome X (repeat step 2.b where Z = X).

4. Choose a vertex v such that X A'Y A o[v] = 1 and score[v] is maximal.

5. Build the vector S: S[w] < 1 if the following conditions hold:

e (X /\ Y /\ v /\ _|O) [w] =1 // conditions 1 and 2
e (wAext)\/v=wv // condition 3
o (VA—ext)\/w=w // condition 4
e VAXAY Ao)Vw=w // condition 5
6. If S #0:

a. Flip X (repeat step 2.b where Z = X).
b. Choose v such that S[v] = 1 and score[v] is maximal.

// Perform p(v)
7. score «— score+ v, v[v] =1

8. For every vertex u adjacent to v: /e vu] =1

a. If ext[u] = 1 then score «— score + u. Otherwise score «— score — u
b. ulu] =1, u — u P v, ofu] = —olu] // subgraph completion
// Update vectors ext, X and 'Y .
c. If X[u] 4+ Y[u] # 1 then ext[u] = —ext|u]
d. Xu] =-Xu], Y[u] =Yy
// Update vector score.

e. If ext[u] = 1 then score «— score — u. Otherwise score «— score + u

FIG. 4. An O(n?) implementation of Algorithm 1 using O(n)-long bit vectors.

o represent bit vectors of size n — N. The vector v corresponds to the vertex v, where v[u] = 1 iff
u is a neighbor of v. The vector X corresponds to chromosome X, where X [v] = 1 iff X € CH(v).
The chromosome vectors are ordered according to their order in 4. The vectors ext and o correspond to
the sets of external vertices and oriented vertices respectively. In other words, ext[u] = 1 iff u is external,
o[u] = 1 iff u is oriented. The score of each vertex is stored in an integer vector score. The symbols A,
V, @ and — respectively denote the bitwise-AND, bitwise-OR, bitwise-XOR and bitwise-NOT operators.
Steps 1-6 in the algorithm in Figure 4 locate a safe proper translocation p(v). Steps 7 and 8 perform p(v)
and update the above vectors.

Corollary 1. The score-based algorithm solves SRT in O(n3) time.
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4. A RECURSIVE ALGORITHM

In this section, we present a recursive algorithm for SRT when ZN'(A4, B) = @. This algorithm is similar
to the algorithm of Berman and Hannenhalli (1996) for SBR.

4.1. The algorithm

Denote the number of vertices in a graph H by |H|. For two chromosomes, X and Y, let Oxy
(respectively Uxy) be the set of oriented (respectively unoriented) vertices in H for which CH = {X, Y}.
Thus Oxy UUxy = Vxy.

Theorem 4. Let H = Q(A, B, m4). If H contains an external vertex then it contains an external
vertex v for which AIN(H, v) < ”;—l

Proof. Let X and Y be two chromosomes for which Vyy # @. Assume w.l.o.g. that X and Y are
consecutive and Oyy # @. Let v € Oxy be a vertex with maximal score in H. If AIN(H, v) = @ then we
are done since |[AIN(H,v)| =0 < ”;—l Suppose AIN(H, v) # @. By Lemma 5, AIN(H,v) N Oxy = @.
Thus AIN(H,v)NUxy # 0. Let H = H-p(X) and let u € Uxy be a vertex with maximal score in H'.
Let M, = AIN(H, v) and M,, = AIN(H',u) = AIN(H, u). We shall prove that M,, N M, = @, and hence

min{|M,|, | M|} < II;I_I Assume x € My, and let x = xg,..., Xk, Xg+1 = v be a shortest path from x to
v in H. Then by Lemma 2, CH(xy) = CH(v) and Xy, ..., x;(—; are internal. Hence the path x, ..., xx
exists in H'. Moreover, x; ¢ Oxy since the path xo,...,x; exists in H - p(v) and M, N Oxy = 0.
Thus x; € Uxy. If none of the vertices in {xg,...,xg} is in N(u, H’) then the path remains intact in
H'- p(u). Otherwise, let x; be the first vertex in xo, ..., Xg that is in N(u, H’). Thus the path xo, ..., x;
exists in H' - p(v). If x; € {xo, ..., Xg—1} then x; is external in H' - p(u). If x; = xi then by Lemma 5
M, N Uxy = @ and hence x; ¢ M,. Thus in any case x = xg ¢ M,,. [ |

Theorem 5. Let v be an external vertex in H = Q(A, B, m4). Suppose AIN(H,v) # 0. Let w €
AIN(H, v) be an external vertex in H. Then AIN(H, w) C AIN(H, v).

Proof. Assume w.l.o.g. that the chromosomes in CH(v) are consecutive and v is an oriented (external)
vertex in H. By Lemma 2, w is a neighbor of v in H and CH(v) = CH(w) (otherwise it would
remain external in H - p(v)). Let x be a vertex in H such that x ¢ AIN(H, v). It suffices to prove that
x ¢ AIN(H, w). Let x = xo, ..., X = y be a shortest path from x to an external vertex in H - p(v). Then
in H: x; is neighbor of v iff x; is a neighbor of w, for j = 1..k (otherwise there is a path in H - p(v)
from w to the external vertex x; = y).

Case 1: w is oriented in H. Then the subgraphs induced by the vertices {x¢, ..., Xx;} in H - p(w) and
H - p(v) are the same. Hence in H - p(w): y is external and the path in x = xg,...,X; = y exists.

Case 2: w is unoriented in H. In H - p(v) the vertices in {xo, ..., Xx—1} are internal and xg(= y) is
external. Therefore x; € {xo,...,xr—1} satisfies in H: (i) x; is a neighbor of v iff x; is external and
CH(x;) = CH(w), and (ii) x; is not a neighbor of v iff x; is internal. Denote by H’ the graph obtained
from H after flipping one of the chromosomes in CH(w).

Case 2.a: At least one vertex in {xo, ..., Xx—1} is a neighbor of v in H. Choose x; € {xo,...,Xgx—1}
a neighbor of v in H such that {x¢,...,x;_;} are not neighbors of v in H. Then in H the following
conditions are satisfied: (i) xo, ..., X, is a path, (ii) all the vertices in {xo,...,x;_1} are internal and (iii)
x; is external satisfying CH(x;) = CH(v). Therefore in H’ the path xo, ..., x; still exists and none of
the vertices in the path is a neighbor of v (equivalently, w). Hence, the path remains intact in H' - p(w).

Case 2.b: None of the vertices in {xg,...,X;—_1} is a neighbor of v in H. Then the path xo, ..., xg
exists in H'. v is not a neighbor of w in H’ hence v remains external in H' - p(w). If xj is a neighbor
of v (and w) in H' then the path xo, ..., Xz, v exists in H - p(w) and hence x = x¢ ¢ AIN(H, w). If x;
is not a neighbor of v and w in H' then xj is necessarily external in H’ (equivalently, H). In this case
the path x = xg,...,x; = y remains intact in H' - p(w) and x = xo ¢ AIN(H, w). |
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Corollary 2. Let v be an external vertex in H. Suppose M = AIN(H,v) # 0. Let Hpy be the
subgraph of H induced by the nodes in M U CH(v), and let w be an external vertex in Hys. Then
AIN(H, w) € AIN(Hps, w). In particular, if AIN(Hpyp, w) = 0 then AIN(H, w) = 0.

Proof. We assume w.l.o.g. that the chromosomes in CH(w) are consecutive and w is oriented in H.
Then Hps - p(w) is identical to the subgraph induced by M U CH(v) in H - p(w). It follows that every
component in H - p(w) contained in M is also a component of Hys - p(w). By Theorem 5 every internal
component in H - p(w) is contained in M. Thus AIN(H, w) € AIN(Hyps, w). |

The two theorems above are correct for any subgraph H' of (A4, B, w4) that is induced by a set of
vertices and their adjacent chromosomes. By recursive use of Theorem 4 and Corollary 2 we get the
following algorithm for locating a safe proper translocation. Algorithm 2 receives H = Q(A, B, w4) as
an input.

Algorithm 2. Find_Safe_Translocation_Recursive ( H )

1. Choose v from H satisfying AIN(H, v) < % according to the proof of Theorem 4.
2. M < AIN(H,v)
3.If M # 0
a. Hjps < the subgraph of H induced by M U CH(v)
b. p(v) < Find_Safe_Translocation_Recursive(H pr)
4. Return p(v)

4.2. A linear time implementation

We shall now prove that Algorithm Find_Safe_Translocation_Recursive can be implemented in linear
time. We shall use an algorithm of Bader et al. (2001) for the computation of AIN(H, v). We shall use
an algorithm by Kaplan et al. (2000) for locating an external vertex v satisfying |AIN(H,v)| < %
A difficulty in trying to apply these algorithms is that they operate on signed permutations and not on
Q-graphs. To overcome this, the algorithm will be initially called with genomes A and B. Before every
recursive call it will build two appropriate co-tailed genomes Ajs and Bjs and pass them as arguments to
the recursive call instead of Hys.

Assume w.l.0.g. that there are no adjacencies in G(A, B) (otherwise, every maximal run of adjacencies
can be replaced by one element in both A and B). Thus G(A, B) contains no internal components.

4.2.1. Computing AIN(H, v) in linear time. We apply the translocation p(v) on A, and then compute
the set of non-trivial internal components. Suppose we want to compute the set of non-trivial internal
components in (A4, B, 74). We compute the set of components in OV(;r4) in linear time, using an
algorithm by Bader et al. (2001). The output of this algorithm contains the set of components of OV (7 4)
along with the span of each. The graph OV (;r4) contains additional vertices that are not in Q(A4, B, m4).
These additional vertices correspond to edges between tails of B. Since A and B are co-tailed, the neighbors
of these vertices in OV (;r4) are all external. Therefore the removal of these additional vertices does not
affect the set of internal components in this graph. A component is internal iff the two endpoints of its
span belong to the same chromosome of A. An internal component is non-trivial if its span contains more
than two elements.

4.2.2. Finding an external vertex v satisfying |AIN(H, v)| < ‘iz‘ in linear time. Let X and Y be two
chromosomes that contain the endpoints of an external edge v. Build a concatenation 4 in which X and
Y are consecutive. Let H = Q(A, B,m4) and let H' = H - p(X). If Oxy (respectively Uxy) does not
induce a clique in H (respectively H’) then we can use the following lemma:

. |H|
Lemma 6. Let v1,v2 € Oxy. If va &€ N(v1) then min{|AIN(H, v1)|, |AIN(H, v2)|} < 5-.
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Proof. It suffices to prove that AIN(H,v;) N AIN(H,v;) = @. Assume x € AIN(H,vy) and let
X = Xo,...,Xr = v1 be a shortest path from x to vy in H. Since the neighborhood of v, remains intact
in H - p(vy) there is no edge from v, to any vertex in that path. Therefore this path exists in H - p(v3)
and hence u ¢ AIN(H, vy). |

Align the nodes of G(A, B) according to w4. For two nodes in G(A, B), p1 and p,, denote p; < p»
iff py is to the left of p,. For a vertex v in H = Q(A4, B, m4), denote by Left(v) and Right(v) the
left and right endpoints respectively of its gray edge. Suppose Oxy = {vi,..., vk}, where Left(v;) <
Left(vj4+1) for j = 1.k — 1. If there exist two consecutive vertices v; and v;4+; such that Right(v;) >
Right(v;4+1), then we found two edges that do not overlap. Thus vj4; ¢ N(vj, H). By Lemma 6
min{|AIN(H, v;)|, |AIN(H, vj11)|} < “Z—l Otherwise, the vertices in Oyy form a clique in H. We
can find whether Uyy induces a clique in H’ in a similar manner by aligning the nodes of G(A4, B)
according to w4 - p(X).

Suppose Oxy induces a clique in H and Uxy induces a clique in H’ (one of which might be empty).
In this case we use the proof of Theorem 4 in order to find a vertex v satisfying |AIN(H, v)| < % We
calculate the score in H for every vertex in Oxy and the score in H’ for every vertex in Uxy in the
following way. Let {/1, ..., I} be a set of intervals forming a clique. Let U = {Jq, ..., J;} be another set
of intervals. Let U(j) denote the number of intervals in U that overlap with /;. There is an algorithm by
Kaplan et al. (2000) that computes U(1),...,U(k) in O(k 4 [). We use this algorithm twice to compute
| Next(v;)| and |Nin(v;)], for j = 1..k.

4.2.3. Performing a recursive call Suppose the external vertex v chosen in the first step of the algorithm
satisfies M = AIN(H,v) # 0. Let H = Q(A, B, w4). Let Hp be the subgraph of H induced by
M U CH(v). We demonstrate below how to build two co-tailed genomes, Aps and Bjyy, in linear time, for
which there exists an Q-graph Hjy, = Q(Ap . By, wa,,) satistying: (i) Hy C H,,, (i) |Hy, | < |Hp |42,
and (iii) Every u € Hj, \ Hyy is external and p(u) = p(v).

Every internal component in G(A4 - p(v), B) contains in its span one of the new black edges created
by p(v). A component in M is maximal if its span is maximal. Since there are two new black edges in
G(A-p(v), B), there are at most two maximal components in M. Note that for every v € M, its two end-
points belong to the span of a maximal component. Construct genomes Ay and By in the following way.

Case 1: There are two maximal components in M. Let I; and I, be the spans of the two maximal
components in M (after applying p(v)). I; and I, are disjoint since every maximal component belong
to a different chromosome of A - p(v). By Lemma 1, there exist two intervals I and I, in B, where for
i = 1,2 I; and I/ have the same set of elements and Tails(1;) = Tails(I]). Let By = {I{,1;}. Let Ay
be the result of the translocation on {7, I} that cuts the two new black edges in /1 and I, and recreates
the old black edges that were originally cut by p(v) (i.e., the translocation inverse to p(v)).

Case 2: There is exactly one maximal component in M. In this case only one of the chromosomes in
A - p(v) contains components from M. Let I be the span of the maximal component in M. Again, by
Lemma 1 there exists an interval I’ in B with the same elements as I, satisfying Tails(I) = Tails(I’).
Let By = {I’,(i1,i2)}, where (i1, i) is the new black edge in A - p(v) that is not contained in any of the
components in M. Let Ay be the result of the translocation on {I, (i1, i)} that cuts the new black edge
in I and (i1, i2) and recreates the old black edges that were originally cut by p(v) (i.e., the translocation
inverse to p(v)).

Obviously in both cases Aps and By are co-tailed. Each of the two chromosomes in Az (respectively,
Byr) is an interval in A (respectively, B). Moreover, Ays (equivalently, Bjs) contains the endpoints of
each and every gray edge in M. Let H 1/‘,1 = Q(Apm.Bpm.m4,,) where my4,, is a concatenation of the
two chromosomes in Aps in which the elements appear in the same order as in w4. It is not hard to see
that the Hjs is an induced subgraph of Hj,. H), contains one or two additional vertices that do not
belong to Hjys. These additional vertices define the same translocation as v (one of which is indeed v)
and correspond to isolated vertices (i.e., trivial internal components) in H}, - p(v). Thus, the (one or two)
additional vertices in H 1/v1 are external. Since Hjys does not contain adjacencies, so does H 1/u

The above described implementation implies:

Lemma 7. Algorithm Find_Safe_Translocation_Recursive can be implemented in linear time.
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Proof. We have demonstrated how to implement the first two steps of the algorithm in linear time.
Let v be the vertex chosen in step 1 of the algorithm. Suppose M = AIN(H,v) # 0. In this case we
presented a way to construct two co-tailed genomes, Ay and By, whose €2-graph is almost identical to
Hjys (there are one or two additional external vertices in H 1/1/1 that define the same translocation as v).
Obviously this construction can be done in linear time. It is only left to prove that the number of elements
in the genomes decreases by a constant factor in every call.

Let n and nps be the number of genes in A and Ajs, respectively. In every recursive call, the number
of chromosomes involved is 2. Hence |H| = n — N (i.e., gray edges in G(4, B)) and |H),| = ny — 2.
Suppose |Hpy| < “Z—l (step 1), then |Hyps| < % <%Z—1LNowny = |Hy|+2=<|Hy|+4=5+3.
Thus for n > 18, ny < 27” We update the algorithm as follow. At the beginning, we verify that the
number of genes is at least 18. In this case a recursive call (if needed) will be made with genomes with at
most % of the genes in A and B. Otherwise, we simply search for a proper safe translocation by computing
AIN(H, v) for every external vertex v. |

Corollary 3. The recursive algorithm solves SRT in O(n?) time.

S. DISCUSSION

The fundamental observation of Hannenhalli and Pevzner (1995) that translocations can be mimicked by
reversals was made over a decade ago, but until recently the analyses of SRT and SBR had little in common.
Here and in Ozery-Flato and Shamir (2006a), we tighten the connection between the two problems, by
presenting a new framework for the study of SRT that builds directly on ideas and theory developed for
SBR. Using this framework we show here how to transform two central algorithms for SBR, Bergeron’s
score-based algorithm and the Berman-Hannenhalli’s recursive algorithm, into algorithms for SRT. These
new algorithms for SRT maintain the time complexity of the original algorithms for SBR. These results
improve our understanding of the connection between the two problems. Still, deeper investigation into
the relation between SRT and SBR is needed. In particular, providing a reduction from SRT to SBR or
vice versa is an interesting open problem.

Algorithms for SRT can only be applied to a pair of genomes having the same set of chromosome
ends. This requirement is removed if SRT is extended to allow for non-reciprocal translocations, including
fissions and fusions of chromosomes, and the latter can be viewed as translocations involving empty
chromosomes (Hannenhalli and Pevzner, 1995). This more general problem of sorting by translocations
can be reduced in linear time to SRT, as we intend to prove in a future work.

The problem of sorting by reversals, translocations, fissions, and fusions (SBRT) was studied (Han-
nenhalli and Pevzner, 1995; Ozery-Flato and Shamir, 2003; Tesler, 2002a) and proven to be polynomial.
An algorithm solving SBRT is used by the applications GRIMM (Tesler, 2002b) and MGR (Bourque and
Pevzner, 2002), which analyze genome rearrangements in real biological data (Bourque et al., 2004; Mur-
phy et al., 2005; Pevzner and Tesler, 2003). The first step in the current algorithm for SBRT generates two
co-tailed genomes, say A and B, with the same distance as the two input genomes (Tesler, 2002a). In the
following steps, genome A is sorted into genome B using reciprocal translocations and internal reversals
that do not alter the set of chromosome tails. In other words, SBRT is solved by a reduction to a more
constrained problem that allows only for reciprocal translocations and internal reversals. We refer to this
constrained problem as SBRTC. SBRTC is currently solved by a reduction to SBR, where each reversal
simulates either a reciprocal translocation or an internal reversal. We believe that an algorithm for SBRT
that explicitly treats translocations and reversals as distinct operations would be more natural and powerful
than one that does not. In a future work, we intend to prove that each of the algorithms presented here
and in (Ozery-Flato and Shamir, 2006a) can be extended to solve SBRTE, even when reversals are given
priority over translocations (i.e., a “good” reversal move have a higher priority than a “good” translocation
move).

In an optimal solution to SRT, SBR, and SBRT, every move is safe, i.e., it does not create “bad
components.” Thus the algorithms for these problems mainly focus on finding safe moves. Finding safe
moves is conceptually and algorithmically the hardest part in all these algorithms. In a ground-breaking
paper, Yancopoulos et al. (2005) proposed a new formulation that bypasses the need for safe reversals/
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translocations by introducing a new genome rearrangement operation called double-cut-and-join (DCJ).
Translocations, reversals, fissions, and fusions can all be viewed as special cases of the DCJ operation.
Unlike all the above operations, a DCJ operation can “loop out” a circular chromosome, which can be
later reabsorbed by another operation. Thus the problem of sorting by DCJ operations (SDCJ) allows for
the creation of intermediate circular chromosomes. Looping out a circular chromosome followed by its
reabsorption can also simulate a block interchange of two blocks in the same chromosome. The problem
of sorting by block interchanges was studied in Christie (1996) and Lin et al. (2005). The ability of DCJs
to create and reabsorb circular chromosomes yields a powerful rearrangement model, for which no “bad
components” exist. This makes the analysis, distance formula, and algorithms of SDCJ (Bergeron et al.,
2006b; Yancopoulos et al., 2005) much simpler and very elegant, in comparison with SRT, SBR, and SBRT.
While circular chromosomes are quite common in prokaryotes cells, they have been found sporadically
in eukaryotes cells, and with some rare exceptions, they are usually not inherited (Ishikawa and Naito,
1999). Thus for the evolution of eukaryotes species, it is reasonable to assume a minimal use, if any, of
circular chromosomes. In particular, when there are no bad components, any algorithm for SBRT solves
SDCJ without creating circular intermediates.

In the future we intend to study SBRT with additional restrictions that will make its solutions more
biologically acceptable. An example for an additional constraint is the exclusion of translocations that
create acentric chromosomes (i.e., chromosomes that lack a centromere), since these chromosomes are
likely to be lost during subsequent cell divisions (Sullivan et al., 2001). As a first step towards solving
this problem, we recently provided a polynomial time algorithm for the constrained problem where only
reciprocal translocations that do not create acentric chromosomes are allowed (Ozery-Flato and Shamir,
2007). Another interesting variant of SBRT we wish to study considers a model in which one type of
operation is preferable over the other. We believe that the study of SRT and its alignment with SBR theory
will assist in the study of these variants of SBRT.
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ABSTRACT

A centromere is a special region in the chromosome that plays a vital role during cell division.
Every new chromosome created by a genome rearrangement event must have a centromere
in order to survive. This constraint has been ignored in the computational modeling and
analysis of genome rearrangements to date. Unlike genes, the different centromeres are
indistinguishable, they have no orientation, and only their location is known. A prevalent
rearrangement event in the evolution of multi-chromosomal species is translocation (i.e., the
exchange of tails between two chromosomes). A translocation may create a chromosome with
no centromere in it. In this paper, we study for the first time centromeres-aware genome
rearrangements. We present a polynomial time algorithm for computing a shortest sequence
of translocations transforming one genome into the other, where all of the intermediate
chromosomes must contain centromeres. We view this as a first step towards analysis of
more general genome rearrangement models that take centromeres into consideration.

Key words: sorting by translocations, genome rearrangements, comparative genomics, combi-
natorics.

1. INTRODUCTION

ENOMES OF RELATED SPECIES tend to have similar genes that are, however, ordered differently.

The distinct orderings of the genes are the result of genome rearrangements. Inferring the sequence
of genome rearrangements that took place during the course of evolution is an important question in
comparative genomics. The genomes of higher organisms, such as plants and animals, are partitioned into
continuous units called chromosomes. Every chromosome contains a special region called a centromere,
which plays a vital role during cell division. An acentric chromosome (i.e., one that lacks a centromere)
is likely to be lost during subsequent cell divisions (Sullivan et al., 2001). Thus, a rearrangement scenario
that preserves a centromere in each chromosome is more biologically realistic than one that does not.
The computational studies on genome rearrangements to date have ignored the existence and role of
centromeres. Hence, the rearrangement scenarios for multi-chromosomal genomes produced by current
algorithms may include genomes with non-viable chromosomes. In this study, we begin to address the
centromeres in the computational analysis of genome rearrangements.
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FIG. 1. An example of legal and illegal translocations for a certain cut of two chromosomes. The black circles
denote the location of the centromeres; the broken line indicates the positions where the two chromosomes were cut.

Since sequencing a centromere is almost impossible due to the repeated sequences it contains, the only
information we have on a centromere is its location in the genome. Therefore, in the model we define,
centromeres appear as anonymous and orientation-less elements. We say that a genome is legal if each of
its chromosomes contains a single centromere. A legal rearrangement operation results in a legal genome
(Fig. 1). The legal rearrangement sorting problem is defined as follows: given two legal genomes A and
B, find a shortest sequence of legal rearrangement operations that transforms A into B. The length of this
sequence is the legal distance between A and B.

A reciprocal translocation is a rearrangement in which two chromosomes exchange non-empty ends.
A reciprocal translocation results in an illegal genome if exactly one of the exchanged ends contains a
centromere. In this paper, we focus on the problem of legal sorting by reciprocal translocations (LSRT).
This problem is a refinement of the “sorting by reciprocal translocations” problem (SRT), which ignores
centromeres. SRT was studied in Hannenhalli (1996), Bergeron et al. (2006), and Ozery-Flato and Shamir
(2006a,b), and is solvable in polynomial time. Clearly, a solution to SRT may not be a solution to LSRT,
since 50% of the possible reciprocal translocations are illegal (Fig. 1). Indeed, in many cases, more
rearrangements are needed in order to legally sort a genome.

In this study we present a polynomial time algorithm for LSRT. The basic idea is to transform LSRT
into SRT, by replacing pairs of centromeres in the two genomes by new unique oriented elements. Our
algorithm is based on finding a mapping between the centromeres of the two given genomes such that
the solution to the resulting SRT instance is minimum. We show that an optimal mapping can be found
in polynomial time. To the best of our knowledge, this is the first rearrangement algorithm that considers
centromeres. While a model that permits only reciprocal translocations is admittedly quite remote from
the biological reality, we hope that the principles and structure revealed here will be instrumental for
analyzing more realistic models in the future. One additional advantage of centromere-aware models is
that they restrict drastically the allowed sequences of operations, and therefore are less likely to suffer
from high multiplicity of optimal sequences.

The paper is organized as follows. Section 2 gives the necessary preliminaries. In Section 3, we model
LSRT and present some elementary properties of it. Section 4 describes an exponential algorithm for LSRT,
which searches for an optimal mapping between the centromeres of A and B (i.e., one that leads to a
minimum SRT solution). In Section 5, we take a first step towards a polynomial time algorithm for LSRT by
proving a bound that is at most two translocations away from the legal translocation distance. In Section 6,
we present a theorem leading to a polynomial time algorithm for computing the legal translocation distance
and solving LSRT.

A preliminary version of this study appeared in the proceedings of RECOMB 2007 (Ozery-Flato and
Shamir, 2007).

2. PRELIMINARIES

This section provides the needed background for SRT. The definitions follow previous literature on
translocations (Hannenhalli, 1996; Bergeron et al., 2006; Ozery-Flato and Shamir, 2006a, 2006b). In the
model we consider, a genome is a set of chromosomes. A chromosome is a sequence of genes. A gene is
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identified by a positive integer. All genes in the genome are distinct. When it appears in a genome, a gene
is assigned a sign of plus or minus. The following is an example of a genome with two chromosomes and
six genes: {(1,—5), (—4,—3,—-2,6)}.

The reverse of a sequence of genes I = (xy,...,x;) is =1 = (—x;,...,—x1). Two chromosomes, X
and Y, are called identical if either X = Y or X = —Y. Therefore, flipping chromosome X into —X does
not affect the chromosome it represents.

Let X = (X;,X;) and Y = (¥}, Y,) be two chromosomes, where X, X5, Y, Y, are sequences of
genes. A translocation cuts X into X; and X, and Y into Y} and Y, and exchanges segments between
the chromosomes. It is called reciprocal if X;,X,, Y| and Y, are all non-empty. There are two types of
translocations on X and Y. A prefix-suffix translocation switches X; with Y5:

(X1, X2), (Y1, o) = (Y2, X2), (Y1, —X1).
A prefix-prefix translocation switches X; with Y;:
(X1, X2), (Y1, Y2) = (Y1, X2), (X1, Ya).

Note that we can mimic one type of translocation by a flip of one of the chromosomes followed by a
translocation of the other type.

For a chromosome X = (xi,...,xy), define Tails(X) = {x;,—x}. Note that flipping X does not
change Tails(X). For a genome A, define Tails(A) = |y 4 Tails(X). For example:

Tails({(1,—3,-2,4,-7,8), (6,5)}) = {1, -8, 6, —5}.

Two genomes A; and A, are co-tailed if Tails(A;) = Tails(A,). In particular, two co-tailed genomes have
the same number of chromosomes. Note that if A, was obtained from A; by performing a reciprocal
translocation, then Tails(A,) = Tails(A). Therefore, SRT is solvable only for genomes that are co-tailed.
For the rest of this paper, the word “translocation” refers to a reciprocal translocation, and we assume that
the given genomes, A and B, are co-tailed. Denote the set of tails of A and B by Tails.

2.1. Cycle graph

Let n and N be the number of genes and chromosomes in A (equivalently, B), respectively. We shall
always assume that both A and B consist of the genes {1,...,n}. The cycle graph of A and B, denoted
G(A, B), is defined as follows. The set of vertices is | Ji—,{i®,i'}. The vertices i® and i! are called the two
ends of gene i (think of them as ends of a small arrow directed from i° to i!). For every two genes, i and
J, where j immediately follows i in some chromosome of A (respectively, B) add a black (respectively,
gray) edge (i, j) = (out(i),in(j)), where out(i) = i' if i has a positive sign in A (respectively, B)
and otherwise out (i) = i, and in(j) = j° if j has a positive sign in A (respectively, B) and otherwise
in(j) = j'. An example is given in Figure 2a. There are n — N black edges and n — N gray edges
in G(A, B). A gray edge (i, j) is external if the genes i and j belong to different chromosomes of A,
otherwise it is internal. A cycle is external if it contains an external edge, otherwise it is internal.

Every vertex in G(A, B) has degree 2 or 0, where vertices of degree O (isolated vertices) belong to
Tails. Therefore, G(A, B) is uniquely decomposed into cycles with alternating gray and black edges. An
adjacency is a cycle with two edges. A breakpoint is a black edge that is not part of an adjacency.

2.2. Overlap graph with chromosomes

A signed permutation w1 = (my,...,7,) is a permutation on the integers {1,...,n}, where a sign of
plus or minus is assigned to each number. If A is a genome with the set of genes {1,...,n} then any
concatenation 4 of the chromosomes of A is a signed permutation of size n.

Place the vertices of G(A, B) along a straight line according to their order in m4. Now, every gray
edge and every chromosome is associated with an interval of vertices in G (A, B). Two intervals overlap
if their intersection is not empty but none contains the other. The overlap graph with chromosomes of
A and B w.r.t. w4, denoted OVCH(A, B, 4), is defined as follows. The set of nodes is the set of gray
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FIG. 2. Auxiliary graphs for A; = {(1,-2,3,-6,7,—11,10,-9,-8,12),(5,4)}, B = {(1,...,4),(5,...,12)}
(4, = (1,-2,3,-6,7,—11,10,-9, 8,12, 5,4)). (a) The cycle graph. Black edges are horizontal; gray edges are
curved. (b) The overlap graph with chromosomes. The graph induced by the vertices within the dashed rectangle is
OV(A1, B1,14,). (¢) The forest of internal components.

edges and chromosomes in G(A4, B). Two nodes are connected if their corresponding intervals overlap.
An example is given in Figure 2b. This graph is an extension of the overlap graph of a signed permutation
defined in (Kaplan et al., 2000). Let OV(A, B, 4) be the subgraph of OVCH(A, B, 4) induced by the set
of nodes that correspond to gray edges (i.e., excluding the chromosomes’ nodes). We shall use the word
“component” for a connected component of OV(A, B, m4).

In order to prevent confusion, we will refer to nodes that correspond to chromosomes as “‘chromosomes”
and reserve the word “vertex” for nodes that correspond to gray edges. A vertex is external (resp. internal)
if it corresponds to an external (resp. internal) gray edge. Obviously a vertex is external iff it is connected
to a chromosome. A component is external if it contains an external vertex, otherwise it is internal.
A component is trivial if it is composed of one (internal) vertex. A trivial component corresponds to
an adjacency. Note that the internal/external state of a vertex in OVCH(A, B, w4) does not depend on
7 4. Therefore, the set of internal components in OVCH(A, B, w4) is independent of 7 4. The span of a
component M is the minimal interval of genes I(M) = [i, j] C 74 that contains the interval of every
vertex in M. Clearly, /(M) is independent of w4 iff M is internal. The following lemma follows from A
and B being co-tailed and (Corollary 2.2 in Kaplan et al., 2000):

Lemma 1. Every internal component corresponds to the set of gray edges of a union of cycles in
G(A, B).

The set of internal components can be computed in linear time using an algorithm in Bader et al. (2001).

2.3. Forest of internal components

(My,...,M,) is a chain of components if /(M) and I(M,; ) overlap in exactly one gene for j =
1,...,t — 1. The forest of internal components (Bergeron et al., 2006), denoted F (A, B), is defined as
follows. The vertices of F(A, B) are (i) the non-trivial internal components and (ii) every maximal chain
of internal components that contains at least one non-trivial component. Let M and C be two vertices
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in F(A, B) where M corresponds to a component and C to a chain. M — C is an edge of F(4, B) if
M e C.C — M is an edge of F(A, B) if I(C) C I(M) and I(M) is minimal (Fig. 2¢). We will refer
to a component that is a leaf in F(A, B) as simply a leaf.

2.4. Reciprocal translocation distance

The reciprocal translocation distance between A and B is the length of a shortest sequence of reciprocal
translocations that transforms A into B. Let ¢ (A4, B) denote the number of cycles in G(A4, B). Let | F(A, B)|
and /(A, B) denote the number of trees and leaves in F(A, B), respectively. Obviously |F(A4, B)| <
[(A, B). Define

2 if |F(A, B)| =1 and I(A, B) is even
8(A,B) =6(F(A,B)) =41 ifl(A, B) isodd
0 otherwise (|F(A, B)| # 1 and [(A, B) is even)

Theorem 1 (Bergeron et al., 2006; Hannenhalli, 1996). The reciprocal translocation distance between
Aand Bisn— N —c(A,B)+[(A, B) + 8(A, B).

Let Ac denote the change in the number of cycles after performing a translocation on A. Then Ac €
{—1,0, 1} (Hannenhalli, 1996). A translocation is proper if Ac = 1, improper if Ac = 0 and bad if
Ac = —1.

Corollary 1. Every translocation in a shortest sequence of translocations transforming A into B is
either proper or bad.

Proof. An improper translocation cannot decrease the translocation distance since it does not affect
any parameter in its formula. |

3. INCORPORATING CENTROMERES INTO A GENOME

We extend the model described above by adding the requirement that every genome is legal (i.e., every
chromosome contains exactly one centromere). We denote the location of a centromere in a chromosome
by the element e. The element e is unsigned and thus does not change under chromosome flips. The
following is an example of a legal genome: {(1, 2, 3,e,4), (e,5,6)}. The set of tails is defined for regular
elements, thus Tails(e, 5, 6) = {5, —6}. We assume that a cut of a chromosome does not split a centromere.
Clearly, for every cut of two chromosomes one translocation is legal while the other is not (Fig. 1).

3.1. A new precondition

We present here a simple condition for the solvability of LSRT. If this condition is not satisfied then A
cannot be transformed into B by legal translocations. For chromosome X = (x1,...,X;, ®, Xj+1,..., Xk)
define Elements(X) = {xi,...,Xi,—Xi+1,..., —Xi}. Note that Elements(X) = Elements(—X). For
genome A we define Elements(A) = |y 4 Elements(X). For example:

Elements({(1,2,9,3,4),(e,5,6)}) ={1,2,-3,—4,—-5,—6}.

Observation 1. Let A and B be two legal genomes. If A can be transformed into B by a sequence of
legal translocations then Elements(A) = Elements(B).

We will see later that this condition is also sufficient. Thus, for the rest of this paper we assume that
the input to LSRT is co-tailed genomes A and B satisfying Elements(A) = Elements(B) = Elements. The
cycle graph of A and B, G(A, B), ignores the e elements.



798 OZERY-FLATO AND SHAMIR
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FIG. 3. Pericentric edges and peri-cycles. A, = {(1,3,2,,6),(e,5,4)}, B, = {(1,2,3,0,4),(e,5,6)} . (a) The
cycle graph G(A», By). Pericentric edges are denoted by dotted lines. (b) The peri-cycle of the single cycle in
G (A, By). The labels of the edges denote the set of gray edges in the corresponding paths.

3.2. On the gap between the legal distance and the “old” distance

Let d(A, B) denote the legal translocation distance between A and B. Let dyq4(A, B) denote the
translocation distance between A and B when the e elements are ignored. Obviously d(A, B) > do4(A4, B).
Consider the genomes A, and B, in Figure 3. It can be easily verified that dgq(A,, B,) = 3 and
d(A;, By) = 4. This example is easily extendable to two genomes A,; and By, with 2k chromosomes
each, such that dyq(Ask, Box) = 3k and d(Ayk, Byy) = 4k.

3.3. Telocentric chromosomes

A chromosome is felocentric if its centromere is located at one of its endpoints. For example the
chromosome (e, 5, 6) is telocentric.

Lemma 2. Let A and B be co-tailed genomes satisfying Elements(A) = Elements(B). Then A and B
have the same number of telocentric chromosomes. Moreover, the set of genes adjacent to the centromeres
in the telocentric chromosomes is the same.

Proof. Let i be a gene adjacent to the centromere in a telocentric chromosome in A. Thus i is a tail
of A and hence a tail of B (since A and B are co-tailed). Suppose w.l.o.g. that i is the leftmost gene in
its chromosome both in A and in B and that the centromere is located to the left of i in A. In this case,
since genomes A and B are co-tailed, i has the same sign in A and B. Since Elements(A) = Elements(B)
it follows that the centromere is located to the left of i also in B. Thus, i is adjacent to the centromere in
B and its chromosome is telocentric. |

Let n denote the number of non-telocentric chromosomes in A and B. We shall show later how mapping
between centromeres in non-telocentric chromosomes in A and B can help us to solve LSRT.

3.4. Pericentric and paracentric edges

A gray (respectively, black) edge in G(A, B) is said to be pericentric if the two genes it connects flank
a centromere in genome B (respectively, A). Otherwise it is called paracentric (Fig. 3a). For a gene i we
define:

—1 if 7 has a positive sign in Elements,

cent(i®) = cent(i') = —cent(i®)

1 otherwise.

In other words, the sign of the end closer to the centromere (in both A and B) is positive, and the sign of
the remote end is negative. The legality precondition (Section 3.1) implies the following key property:

Lemma 3. Let (u,v) be an edge in G(A, B). If (u,v) is pericentric then cent(u) = cent(v) = 1.
Otherwise cent(u)cent(v) = —1.

Proof. The nodes u and v are the ends of two adjacent genes i and j, respectively, in one of the
genomes. Suppose (u, v) is pericentric. Then i and j flank a centromere in one of the genomes. Thus u is
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the end of i closer to j and hence closer to the centromere (i.e., cent(u) = 1). Using similar arguments,
cent(v) = 1.

Suppose (u, v) is paracentric. Then there is no centromere between i and j. W.l.o.g. assume that 7 is
closer to the centromere than j. Then u is the end of i distant from the centromere and v is the end of j
closer to the centromere. Therefore, cent(u)cent(v) = —1. |

3.5. Peri-cycles

Let C be a cycle in G(A, B). The peri-cycle of C, C*, is defined as follows. The vertices of C are
the pericentric edges in C. A vertex in C” is colored gray (respectively, black) if the corresponding edge
in C is gray (respectively, black). A path between two consecutive pericentric edges in C is translated to
an edge between the two corresponding vertices in C? (Fig. 3). Note that if C contains no pericentric
edges then its peri-cycle is a null cycle (i.e., a cycle with no vertices).

Lemma 4. Every peri-cycle has an even length and its node colors alternate along the cycle.

Proof. Let C be a cycle that contains a black pericentric edge (u;, v1). Suppose uy, vy, ..., U, Vg is a
path between two consecutive black pericentric edges in C. In other words, (1, vy) is a black pericentric
edge (possibly u; = uy and v; = vi) and there are no other black pericentric edges in this path. Then
according to Lemma 3 cent(vy) = cent(u;) = 1. There is an odd number of edges in the path between
v; and uj and thus there must be an odd number of pericentric edges between v; and u; (Lemma 3).
It follows that there must exist at least one gray pericentric edge between any two consecutive black
pericentric edges. The same argument for a pair of consecutive gray pericentric edges implies that between
two such edges there must be at least one black pericentric edge. |

It follows that every vertex/edge in a peri-cycle has an opposite vertex/edge. Removing two opposite
vertices/edges from a peri-cycle results in two paths of equal length. We define the degree of a cycle as the
number of gray (equivalently, black) vertices in its peri-cycle. For example, the single cycle in Figure 3 is
of degree 1.

4. MAPPING THE CENTROMERES

This section demonstrates how mapping between the centromeres of A and B can be used to solve
LSRT. We shall first see that trying all possible mappings and then solving the resulting SRT gives an
exact exponential algorithm for LSRT. Later we shall show how to get an optimal mapping in polynomial
time. Let CEN = {n + 1,...,n + n}. For a genome A, let A be the set of all possible genomes
obtained by the replacement of each e element in the non-telocentric chromosomes by a distinct element
from CEN. Each i € CEN can be added with either positive or negative sign. Thus |A| = 7!27. For
example, if A; = {(1,2,e,3,4),(e,5,6)} then Al consists of the genomes {(1,2,7,3,4), (e,5,6)} and
{(1,2,-7,3,4), (o 5,6)}. Note that every Aeh satisfies Tails(A) = Tails. For each i € CEN we define
cent(lo) = cent(i') = —1. A pair 4 € A and B € B defines a mapping between the centromeres in
non-telocentric chromosomes of 4 and B.

Observation 2. Let A € A and B € B. Then every edge (u,v) in G(A, B) is paracentric and satisfies
cent(u)cent(v) = —

The notion of legality is easily generalized to partially mapped genomes: a genome is legal if each
of its chromosomes contains either a single e element or a single, distinct element from CEN (but not
both). Since A and A € A differ only in their centromeres, there is a trivial bijection between the set
of translocations on A and the set of translocations on A. This bijection also preserves legality: a legal
translocation on A is bijected to a legal translocation on A.

Lemma 5. Let A € A and B € B. Then every proper translocation on A is legal and d(A, B) =
doa(A, B).
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Proof. Let k = dold(A B). If k = 0 then A = B and hence d(A, B) = 0. Suppose k > 0. Let p
be a translocation on A satisfying doa(4 - p, B) = k — 1. Accordmg to Corollary 1, p is either proper or
bad. Suppose p is bad. Then there is another bad translocation p’ that cuts the exact positions as p, thus
satisfying doa(A - p/, B) = k — 1, and either p or p’ is legal. Suppose p is proper. We shall prove that each
of the new chromosomes contains a centromere and hence p is legal. Let X be a new chromosome resulting
from the translocation p and let (u, v) be the new black edge in it. Since p is proper, G(A - p, B) contains
a path between u and v where all the edges existed in G(A, B). This path contains an odd number of

edges. Following Observation 2 for G(A, B), cent(u)cent(v) = —1. X is composed of two old segments,
X, and X, that contain u and v respectively. If cent(u) = —1 then X,, contains an element from CEN,
otherwise X, contains one. In either case X contains an element from CEN. [ |

Theorem 2. Let A € A. Then d(A, B) = min{d,4(A, B)|B € B}.

Proof. By Lemma 5, d(A, B) = dya(A, B) forevery A € A and B € B. Obviously a legal sorting of A
into any B € B induces a legal sorting sequence of the same length, of A to B. Thus, min{dyq(4, B)|B €
IB%} > d(A, B). On the other hand, every sequence of legal translocations that sorts A into B induces a
legal sorting of A into some B € B, thus min{dyq(A, B)|B € B} < d(A, B). |

A pair of genomes,‘A"e A and B € B, define an oprimal mapping between the centromeres of A and
B if d(A, B) = dy4(A, B). Theorem 2 and Lemma 5 imply the following algorithm for LSRT:

Algorithm 1. Sorting by legal translocations

1: Choose A € A arbitrarily.
2: Compute B = argmin{dqu(A, B)|B € B}.
3: Solve SRT on A and B—making sure that every bad translocation in the sorting sequence is legal.

It can be shown, by a minor modification of the algorithm in (Ozery-Flato and Shamir, 2006a),
that solving SRT with the additional condition that every bad translocation is legal can be done in
O3/ /log(n)). Step 2 can be performed by enumerating all possible mappings and computing the SRT
distance for each. This implies:

Lemma 6. LSRT can be solved in O(n!2"n 4+ n’/?,/log(n)).

Our goal in the rest of this paper is to improve this result by speeding up Step 2 (i.e., finding efficiently
an optimal mapping between the centromeres of A and B).

5. CENT-MAPPINGS

Our general strategy will be to iteratively map between two centromeres in A and B and replace them
with a regular element until all centromeres in non-telocentric chromosomes are mapped. The resulting
instance can be solved using SRT, but the increase in the number of elements may have also increased
the solution value. The main effort henceforth will be to guarantee that the overall increase is minimal.
For this, we need to study in detail the effect of each mapping step on the the cycle graph G(A4, B). Our
analysis uses the SRT distance formula (Theorem 1). We shall ignore for now the parameter §, and focus
on the change in the simplified formula n — ¢ + / (N is not changed by mapping operations).

A mapping between two centromeres affects their corresponding black and gray pericentric edges. Let
(i,i) and (j, /') be perlcentrlc black and gray edges in G(A, B) respectively. Suppose cen € CEN is
added between i and i’ in A and between j and j’ in B. In this case, (i,i’) and (J, j/ ) in G(A, B) are
replaced by the four (paracentric) edges (i, cen), (cen,i’), (j, cen) and (cen, j') in G(A, B). (The first two
edges are black, the latter are gray.) We refer to the addition of cen € CEN between (i,i’) and (J, j') as a
cent-mapping since it maps between two centromeres. Note that for each pair of centromeres in A and B
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(a) Proper cent-mapping (b) Improper cent-mapping (c) Bad cent-mapping
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FIG. 4. The effect of a cent-mapping on peri-cycles. Each of the cycles is a peri-cycle with black and gray nodes
corresponding to centromeres (pericentric edges) in A and B, respectively. In all cases, a cent-mapping on b and g in
the top peri-cycles is performed, and the bottom peri-cycles are the result. Dotted lines denote new edges. (a,b) Two
alternative cent-mappings of a pair of pericentric edges in the same cycle. (¢) Each of the two alternatives generates
a single cycle.

there are two possible cent-mappings (corresponding to the relative signs of the added elements). Given
A e A, every B € B defines n disjoint cent-mappings and vice versa. Obviously, every cent-mapping
increases the number of genes by one (An = +1).

Lemma 7. Every cent-mapping satisfies Ac € {—1,0, 1}.

Proof. Let (i,i") and (j, j') be black and gray pericentric edges in G (A4, B), respectively. Let cen €
CEN be the element between i and i’ in A. If (i,i’) and (j, j') belong to the same cycle before the
cent-mapping then Ac € {0, 1}. If (i,i’) and (j, j’) belong to different cycles before the cent-mappings
then Ac = —1. |

In the rest of the paper, we will analyze the effect of a cent-mapping using peri-cycles. A peri-cycle can
be viewed as a compact representation of a cycle focused on pericentric edges, which are the only edges
affected by cent-mappings. A cent-mapping is called proper, improper, bad if Ac = 1,0, —1 respectively.
For illustrations of the three types of cent-mappings, see Figure 4. We say that a cent-mapping operates on
a cycle C if C contains at least one of the mapped pericentric edges. Proper and improper cent-mappings
always operate on one cycle in G(A, B); a bad cent-mapping always operates on two different cycles in
G(A, B).

Observation 3. Every proper cent-mapping satisfies Al € {0, 1}. An improper cent-mapping satisfies
Al = 0. A bad cent-mapping satisfies Al € {0,—1,—=2}.

It follows that a proper cent-mapping satisfies A(n —c + /) = 0 iff Al = 0; An improper cent-mapping
satisfies A(n — ¢ + [) = 1; a bad cent-mapping satisfies A(n —c¢ + 1) = 0 iff Al = —2. A proper
cent-mapping is safe if it satisfies Al = 0. In the following sections we present two classes of cycles,
“annoying” and “evil” for which any set of proper cent-mappings that eliminates all their pericentric edges
is unsafe.

5.1. Annoying cycles

In this section we focus on cycles in leaves. The degree of every cycle in a leaf is at most 1 (otherwise
it must be external). Moreover, a leaf can contain at most one cycle of degree 1 (for the same reason).
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(a) An annoying cycle (b) A cycle in Cyona (c) An evil cycle with only bad edges in its peri-cycle
1 4 3 2 7 6 5 8 1 -3 =2 4 |1 3 2 11 100 127 9 8 5 4 ¢
chromosome 1 chromosome 2

FIG. 5. Examples of cycles in Cypn, Chona, and Ceyi1. In all the figures, the target genome B is a fragmented identity
permutation (i.e., every gray edge is of the form (i,i + 1)); pericentric edges are denoted by dotted lines.

A cycle is called annoying if: (i) it is contained in a leaf, (i) its degree is 1, and (iii) a proper cent-mapping
on its two pericentric edges satisfies Al = 1 (i.e., one leaf is split into two leaves) (Fig. 5a). Thus a proper
cent-mapping on an annoying cycle satisfies A(n —c 4 [) = 1. On the other hand, any bad cent-mapping
on a cycle contained in the span of a leaf (annoying or not) results in the elimination of that leaf. Thus,
a cent-mapping on any two cycles in (two different) leaves satisfies A(n —c +1) =14+ 1—-2 = 0. Let
Cann denote the set of annoying cycles and let ann = |C,py|. Let Cpona be the set of non-annoying cycles
of degree 1 that are contained in the span of a leaf (Fig. 5b). Let nona = |Cyopal.

5.2. Evil cycles

In this section we focus on cycles that are not in leaves. Let C be a cycle of degree at least 1 that is not
in a leaf and let C” be its peri-cycle. Let (b, g) be an edge in C”. Denote by V(b, g) the set of gray edges
in the corresponding path between b and g in C. The edge (b, ) is bad if after a proper cent-mapping
on b and g the edges in V(b, g) belong to a leaf, otherwise it is good. For example, in Figure 3, the edge
(b, g) where V(b, g) = {(1,2),(2,3)} is bad.

Lemma 8. The “badness” of edge (b, g) in a peri-cycle is unchanged by cent-mappings not involving
b and g.

Proof. Clearly the order in which we perform cent-mappings does not affect the final cycle graph. Let
M Dbe the component containing V (b, g) in the cycle graph resulting from a proper cent-mapping on (b, g).
If M does not contain any pericentric edge in its span, then clearly it is not affected by later cent-mappings.
Suppose M contains a pericentric edge in its span. Thus, M must be external since it contains in its span
centromeres of two different chromosomes in A. If M is not split by other cent-mappings, then clearly
V(b, g) remains in an external component. Suppose M is split into two components by a cent-mapping
on pericentric edges b’ and g’. In this case, each of the two new components contains in its span one of
the two new black edges replacing b’. Hence, the component that contains V (b, g) is guaranteed to remain
external, since it contains in its span two different centromeres in A (corresponding to b and b’). |

Lemma 9. Let C be a cycle satisfying: (i) deg(C) > 0, and (ii) C contains a new gray edge, gue, that
was created by a cent-mapping. Let (b, g) be an edge in the peri-cycle of C such that V(b, g) contains
Znew- Then (b, g) is good.

Proof. The edge gnw is adjacent to a vertex of a previously mapped centromere, cen; € CEN. On the
other hand, after a cent-mapping on (b, g), the path V (b, g) will be adjacent to a vertex of a new mapped
centromere, cen, € CEN. These two centromeres belong to different chromosomes of A. Thus V (b, g)
must contain an external edge after any cent-mapping of b and g and hence (b, g) is good. |

A path in a peri-cycle is bad if all the edges in it are bad. For a path P, let len(P) denote the number of
vertices in P. A cycle C is called evil if its peri-cycle contains a bad path P such that len(P) > deg(C).
For example, the single cycle in Figure 3 is evil since it contains a bad edge, which is a bad path of length
2, and its degree is 1. An example of an evil cycle with only bad edges in its peri-cycle is presented in
Figure 5. Let C.y; denote the set of all evil cycles that are not in leaves. Define evil = |Ceyj|.

Lemma 10. Let C be a cycle that does not belong to a leaf. There is a set of safe proper cent-mappings
of all the pericentric edges in C iff C is not evil.
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Proof. Let C* be the peri-cycle of C and let k = deg(C). Suppose C is evil. Then P C contains a bad
path P with k + 1 vertices. There are 2k vertices in C ¥, thus any proper cent-mapping of all the pericentric
edges in C must match two vertices from P. It follows that there must be a proper cent-mapping on the
two ends of an edge in P. Hence, by definition this cent-mapping is unsafe.

Suppose C is not evil. If k = 1 then the two edges in C? are good and the proper cent-mapping of the
two pericentric edges in C is safe. Suppose k > 1. Let C* = Py, P, where P is a longest bad path in C*.
Let u be the first vertex in P; and let v be the last vertex in P,. Then (u, v) is a good edge in C P Let C; and
C, be the two cycles created by the proper cent-mapping on u and v, where C; contains V(u, v). Obviously
this proper cent-mapping is safe, deg(C;) = 0 and deg(C,) = k — 1. It suffices to prove that C, is not evil.
Let CJ be the peri-cycle of C,. Then C{ = P| P, where len(P]) = len(P)—1, len(P;) = len(P,)—1, and
P/ and P, are connected by good edges (Lemma 9). Let p be the length of the longest bad path in C; . Then
(i) p < len(P)) < k (since P is a longest bad path in C), (ii) p < max(len(P)),len(P;)) = len(P,),
and (iii) len(Py) + len(P,) = 2k. It follows that p < k — 1 = deg(C,). Thus by definition C; is not
evil. |

Corollary 2. Every proper cent-mapping satisfies A(l + evil) > 0.

We partition C,,; into three classes:

L (Cévil: Cycles of even degree and only bad edges in their peri-cycle.

® CZ,: Cycles of odd degree and only bad edges in their peri-cycle.
e C2,: Cycles with at least one good edge in their peri-cycle.

Let evil; = |Cévu|, evil, = |(C§Vﬂ| and evil; = |(Cgvﬂ|. If C € Cqy is of degree 1 then C € (szﬂ (since
otherwise it would be in a leaf). Every new evil cycle (i.e., an evil cycle created by a cent-mapping)
contains a good edge (Lemma 9) and hence belongs to C2 . Let C € C2, and let (b, g) be an edge
opposite to a good edge in the peri-cycle of C. A proper cent-mapping on b and g satisfies Al = 1,
Aevil = —1 and hence A(n —c + [ + evil) = 0. Such a cent-mapping can be viewed as a replacement of
an evil cycle with a leaf. On the other hand, every proper cent-mapping on a cycle in (Cévﬂ U (Cgvﬂ satisfies

1

A(n — ¢ + 1 + evil) = A(l + evil) = 1. Thus by applying proper cent-mappings, a cycle in C2, U C.
can be replaced by two leaves, where each leaf belongs to a different chromosome.

Lemma 11. Let C € C,,;. There exists an improper cent-mapping on C for which Aevil = —1 iff
C ¢C!

evil*

Proof. Let C € Cey and let C* be its peri-cycle. Suppose that C ¢ C| ..

Case 1: deg(C) is odd. Let u and v be two opposite vertices in the peri-cycle of C. Thus u and v have
opposite colors. Let C; be the cycle obtained from C after an improper cent-mapping between u and v.
Then the peri-cycle of C; contains two opposite good edges (Lemma 9) and thus C; is not evil.

Case 2: deg(C) is even. Then C € (Cgvil. Let (b, g) be an edge opposite to a good edge in the peri-cycle
of C. Let C; be the cycle obtained from C after performing an improper cent-mapping between b and g.
Then the peri-cycle of C; has two opposite good edges and thus C; is not evil.

Suppose C € Cl .. Then deg(C) = k is even and every edge in its peri-cycle is bad. Let C; be the
result of an improper cent-mapping on C. Then deg(C;) = k — 1 and the peri-cycle of C; must contain a
bad path with at least k vertices. Thus C; is evil. [ |

In other words: for every cycle in CZ;; U C2 | there exists an improper cent-mapping satisfying A(n —
¢ + 1 + evil) = 0; Every improper cent-mapping on a cycle in Cl, satisfies A(n — ¢ + [ + evil) = 1.
It follows that a cent-mapping on C € C . U Cy, satisfies A(n — ¢ + [ + evil) = 0 only if it is bad.

Therefore, Corollary 2 and Lemma 11 imply:
Corollary 3. For every cent-mapping A(n —c + 1 + evil) > 0.

5.3. A polynomial algorithm using at most opt + 2 translocations

In this section we present upper and lower bounds for the legal translocation distance. These bounds
provide an intuition for the rather complicated formula for the legal translocation distance presented in the
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next section. The proof of the upper bound implies an approximation algorithm that sorts 4 into B using
at most d(A, B) + 2 legal translocations.

Lemma 12. Let C|,C; € C,; U Cgpy, where deg(Cy) < deg(Cy). If deg(Cy) = deg(Cy) then every
bad cent-mapping on C; and C, satisfies A(l + evil) = —2. If deg(Cy) < deg(C,) there exists a bad
cent-mapping on Cy and C, satisfying A(l + evil) = =2 iff C; € szil.

Proof. If deg(C;) = deg(C,) then any bad cent-mapping on C; and C; results in a cycle whose peri-
cycle contains two opposite good edges and hence non-evil. Suppose k| = deg(C;) < deg(C,) = k, and
let C[ and C denote the peri-cycles of C; and C, respectively.

Case 1: C, € C2 . Let (b, g) be the opposite edge of a good edge in C5. Let C3 be a result of a
(bad) cent-mapping of the b and a vertex of an opposite color in C,’. Let P’ be a longest bad path in the
peri-cycle of Cs. Then len(P') < max{k,,2k; — 1} <k, + k; — 1 = deg(Cs3).

Case 2: C, ¢ C2 . In this case all the edges in C; are bad. Let C; be the result of a bad cent-
mapping on C; and C,. Then the peri-cycle of C; contains a bad path with 2k, — 1 vertices, while
deg(C3) = k1 + ky — 1 < 2k, — 1. Thus Cj is evil. |

The bad cent-mappings graph, BCM, is defined as follows. It is a bipartite graph whose two parts are
DEG and CYC, where:

DEG = {i : |{C : C € C! ,, U Cypn.deg(C) = i}| is odd} CYC = C U Chona

evil evil

For example, if the degrees of the cycles in (Cévﬂ U Cypy are {1,2,2,2,4,4,6,8} then DEG = {1, 2,6, 8}.
Vertices i € DEG and C € CYC are connected by an edge if deg(C) > i (Fig. 6). Thus an edge (i, C)
represents a bad cent-mapping operating on C and C’ € C! U Cyn, where deg(C’) = i, for which
A(n —c + 1 + evil) = 0 and A|DEG| = —1.

A matching in a graph is a collection of edges no two of which share a common vertex. The size of a
matching M, denoted |M |, is the number of edges in it. Finding a maximum matching in BCM is an easy
task that can be completed in linear time by a greedy algorithm that iteratively matches vertices from CYC
in increasing order of their degrees. Define fbad = |DEG| — |M |, where M is a maximum matching. For
a matching M let F)s be the forest of internal components after performing a bad cent-mapping on every
C € Cynn U M. In other words, Fj, is obtained from F by the deletion of every component containing a
cycle from either C,,, or Cyona MM in its span. In the following we prove that the cent-mappings produced
by Algorithm 2 lead to a sorting scenario of at most d(A, B) + 2 legal translocations.

Observation 4. Every cent-mapping satisfies A[fbad/3] € {—1,0, 1}.
Proof. Every cent-mapping involves at most three cycles (old and new). Hence Afbad € [-3,3]. N
Lemma 13. Every cent-mapping satisfies A(n — ¢ + [ + evil + [fbad/37) > 0.

Proof. Let A = A(n —c + [ + evil + [fbad/3]). By Observation 4, if A(n —c 4+ [ + evil) > 0 then
A > 0. Suppose A(n —c + [ + evil) = 0. We shall prove that Afbad > 0:

1 2 6 8
cYc
Cy C> Cs Cy

@» M@ 3 (6)

FIG. 6. An example for a bad cent-mappings (BCM) graph. DEG = {1,2, 6,8}, CYC = {Cy, C,, C3, C4}. The degree
of each cycle in CYC appears in brackets below the cycle.
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Algorithm 2. Get_Mapping (a 2-additive approximation)

: M < a maximum matching in BCM
2: Perform a bad cent-mapping on every C;, C, € C!

/% Now |CL ., U Cuu| = |DEG| */

: for all (i,C) e M do

4:  Perform a bad cent-mapping on C and C’ € C
—2 (Lemma 12).

5: end for

6: while |DEG| > 3 do

7. C1,Cy, C3 < 3 cycles in (Cev11 U Cann, Where deg(Cy) is minimal.

8

9

U Cann, Where deg(C) = deg(C3).

evil

U)

UCunn, where deg(C’) = i, such that A(l +evil) =

Perform a bad cent-mapping on C, and C; and let C, be the new evil cycle.
. Perform a bad cent-mapping on C; and C4 such that A(l 4 evil) = —2 (Lemma 12).
10: end while
11: if [DEG| = 2 then
12: Perform a bad cent-mapping on C,C’ € C!
13: end if
14: if |DEG| = 1 then

UCun. /*DEG =2 —DEG =1 %

15:  Perform an improper cent-mapping on C € C! ;; U Cypp.

16: end if

/% Now |Cl | = ann = 0 %/

17: Perform an improper cent-mapping on every C € C.y; such that Aevil = —1 (Lemma 11).

/* Now evil =0 */
18: Perform safe proper cent-mappings on every cycle of degree at least 1 (Lemma 10).
19: Perform a proper cent-mapping on every C € Cpopa.

Case 1: A(n —c¢) = 0 (i.e., proper cent-mapping). Then A(/ + evil) = 0 and thus either Al = 1 and
Aevil = —1, or Al = Aevil = 0. Hence DEG is unchanged and A|CYC| < 0. Therefore, Afbad > 0.

Case 2: A(n —c) =1 (i.e., improper cent-mapping). Then Al = 0 and Aevil = —1. Therefore DEG is
unchanged, A|CYC| < 0, and hence Afbad >= 0.

Case 3: A(n —c¢) = 2 (i.e., bad cent-mapping). Then A(/ + evil) = —2. Let C; and C; be the cycles
on which the cent-mapping was performed. If C; and C, belong to the same class (e.g., C,;, C2.;) then
clearly DEG is unchanged and A|CYC| < 0, hence Afbad > 0. If C; and C, belong to different classes,
then w.l.o.g. C; € C! . U Cyn and C, € C2 . U Cyona. Hence, Afbad > 0. [ |

evil evil

Lemma 14. Every cent-mapping performed by Algorithm 2 satisfies A(n—c + 1+ evil+ [fbad/3]) = 0.

Theorem 3. Let d = d(A, B) and let f =n— N —c + 1 + evil + [fbad/3]. Then d € [f, f +2]. In
particular, Algorithm 2 produces Aechand B € Bfor which d(A B) <d+2

Proof. Let A € A. For every B € B, evil(A, B) = fbad(A, B) = 0 and thus by Theorem 1,
doia(A, B) 1 (A, B)+8(A B). By Lemma 13, f(A, B) < min; gt f(A B)}. By Theorem 2, d(A, B) =
mm{f(A B) + 8(A B) B € ]B%} Hence f(A,B) < d(A, B). Let B be the genome defined by the
cent-mappings produced by Algorithm 2. By Lemma 14, f(4,B) = f (A, B) Therefore, d(A, B) <
doa(A. B) = f(A,B) + 8(A, B) < f(A,B) +2. |

6. A POLYNOMIAL ALGORITHM FOR THE LEGAL

TRANSLOCATION DISTANCE

In this section we present an exact formula for the legal translocation distance, which leads to a
polynomial algorithm for the problem. The proof, and subsequently the algorithm, is focused on finding an
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optimal mapping between the centromeres of genomes A and B (Step 2 in Algorithm 1). This requires an
involved case analysis, which is deferred to an appendix. Let M be a maximum matching in the BCM graph.
Denote by /s be the number of leaves in F). Define fgood(M) = |CgVil \ M |. Define mbad = fbadmod 3.

Define §’ € {0, 1, 2} as follows. 8’ = 2 iff all the following conditions are satisfied:

* C,y=Cly=DEG=10
® |Fgl=1

® [ and ann are even. If ann > 0 then nona = 0
If §' # 2 then §’ = 1 iff for every maximum matching M all the following conditions are satisfied:

® feood(M) € {0, 1}

® [yiseven = Fy =1

® (Iy is odd and fgood(M) = 1) = C € C2, \ M cannot be replaced by a leaf such that |Fy| > 1.
® mbad =1 = DEG = {1}, |F| =1, and (/g is odd = evil, = 0)

® mbad =2 = ) is even and fgood(M) = 0

If § # 1,2 then §’ = 0. Note that if 6’ = 1 and mbad € {1, 2} then |Fy| = 1.

Theorem 4. The legal translocation distance between A and B is d(A,B) = n— N —c(4,B) +
[(A, B) + evil(A, B) + [fbad(A, B)/3] + §'(A, B).

The proof of Theorem 4, which appears in the appendix, is by a case analysis of the change in each
of the parameters, n — ¢, [, evil, fbad and &', for each cent-mapping, and hence is quite involved. It leads
to a polynomial time algorithm for finding an optimal mapping between the centromeres of A and B.
This algorithm, which can be viewed as an extension of Algorithm 2, has the same time complexity as
Algorithm 2.

Theorem 5. LSRT can be solved in O(nn + n’/?/log(n)) time.

Proof. Finding an optimal mapping between the centromeres of A and B can be done in O(nn) in
the following manner. The set of peri-cycles can be computed in O(n). For every edge in a peri-cycle we
compute its “badness” in O(n) by simply performing the corresponding proper cent-mapping. Computing
the badness of all the edges thus takes O(nn). Computing CL ., C2..,, C2 .., Cynn, Chonas and DEG requires
a simple traversal of all the edges in every peri-cycle. Hence, it can be done in O(n). Overall the algorithm
performs O(7) operations where each can be implemented in O(n) time. |

7. CONCLUSION

Computational studies in genome rearrangements have overlooked centromeres to date. In this study,
we presented a new model for genomes that accounts for centromeres. Using this model, we defined
the problem of legal sorting by reciprocal translocations (LSRT) and proved that it can be solved in
polynomial time. Unfortunately, the legal translocation distance formula appears to be quite complex and
it is an interesting open problem whether it or its proof can be simplified.

A solvable LSRT instance requires the two input genomes to be co-tailed and with the same set of
elements (see Section 3.1). This requirement is a rather strong and unrealistic. Allowing for reversals,
non-reciprocal translocations, fissions and fusions will cancel these restrictions. Under a centromere-aware
model, fissions and fusions are legal if they are centric (Perry et al., 2004; Searle, 1998). In future work,
we intend to study an extension of LSRT that allows for reversals, (centric) fusions and fissions. We expect
an exact algorithm for this extended problem to bring us nearer to realistic rearrangement scenarios than
can be done today.
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8. APPENDIX

Proof of Theorem 4

The proof follows directly from Lemmas 15 and 16 below: Lemma 15 provides a lower bound for the
legal distance while Lemma 16 proves this bound is tight.

Lemma 15. Let A = A(n —c + [ + evil + [fbad/3| + &'). For every cent-mapping A > 0.

Proof. In the following “before” and “after” are used to define the state before and after the current
cent-mapping respectively. However, unless specified otherwise, every condition refers to the state before
the cent-mapping. For example, “/j; is odd” means “/j; is odd before.” Let Cgo0q be the set of cycles that
are not in Ceyy U Cypp U Cpona. Following Lemma 13, if A§” > 0 then A > 0. Thus it suffices to prove
A > 0 only for §' € {1, 2}.

Case 1: §' = 2. Then Afbad > 0, since DEG = .

Case 1.1: A(n —c) = 0. Let C be the cycle on which the cent-mapping was performed. Since §’ = 2
then C ¢ C3 ., U C?

evil evil®
® C € Cyona- Then no other parameter is affected and A’ = 0.
e C¢e (CéVil U Cann- Then A(l + evil) = 1, Affbad/3] = 1, and hence A > 0.
® C € Cyood. If A(l + evil) = 0 then no other parameter is affected and A = 0. If A(/ +
evil) = 2 then clearly A > 0. Suppose A(/ + evil) = 1. Note that DEG is unchanged (i.e.,
DEG = @ after). Hence mbad = 0 after. If Al = 1 then after: Iy is odd and CYC = @. If

Aevil = 1 then after Iy is even and F|g| = 1 (since F is unchanged). Thus, in either case

A=0.
Case 1.2: A(n —c) =1 (i.e., an improper move). Let C be the cycle on which the cent-mapping was
performed.
e C e (C,ivil U Cunn- Then A(l + evil) = 0, Affbad/3] = 1, and hence A > 0.

® (C € Cyona- Then no other parameter is affected and hence A = 1.
® C € Cgypoa- Then Al =0, Aevil € {0, 1} and in either case A = 1.
Case 1.3: A(n—c) = 2. Let C; and C; be the two peri-cycles on which the cent-mapping was performed.
If deg(C;) = deg(C,) then C; and C, belong to the same class (either (C;Vﬂ or C,nn) and
clearly A8’ = 0. Suppose deg(C)) < deg(Cy).
e C,Cy e (Cgood- Then A = 2.
® () € Cyoods C2 € Clj U Cyun. Then A(l + evil) € {0,—1}. If A(l + evil) = O then
C, € C! , and hence Afbad = 0. If A(l + evil) = —1 then Afbad = 1. Hence, in either
case, A > 0.
® () € Cyoods Cr € Cypp U Cona- Then Al = —1, Aevil = 0 (the new cycle is in Cygoq). If
C, € Cynn then Afbad = 1 and hence A > 0. Suppose C € C,ona. Then Afbad = 0, and
after: mbad = 0, lg is odd, and fgood(¥) = evil; = 0. Hence §’ = 1 after and thus A = 0.
® C, €Cl,, C € CL, UCun (different degrees). Then A(I + evil) = —1, A[fbad/3] =1
and hence A > 0.
® C,eCl ., Cy € Cpona Then Al = —1, and the new resulting cycle, C; satisfies C3 € C2

evil® evil

and deg(C3) = deg(C)). Hence Aevil = 0, Afbad = 0, and A§’ = —1. Hence A = 0.

Case2: 8 = 1. If A(n — ¢ + | + evil + [fbad/3]) > 1 then clearly A > 0. We shall prove that if
A(n —c + [ + evil + [fbad/3]) = 0 then A§’ > 0 and thus A > 0.

Case 2.1: A(n —c) = 0. Then A(Il + evil) > 0 (Corollary 2), A(l 4 evil + [fbad/3]) > 0 (Lemma 13).
If A(l + evil + [fbad/3]) > 0 then clearly A > 0. Suppose A(l + evil + [fbad/3]) = 0.
® Suppose A(/+evil) = 0. Then A[fbad/3] = 0, C; € CgooaUC2,;;UCona. If C € Cgooa then
no parameter is affected and hence A = 0. Suppose C € C2  UCona. Then Afbad € {0, 1}
and mbad € {0, 2}.
—Suppose fbad = 0, Al = 1. Then C € C2; and Aevil = —1. Thus for every maximum
matching M after, there exists a maximum matching M’ before satisfying fgood(M') =
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fgood(M) + 1 and [y, = Ip; — 1. Since §’ = 1 before it follows that mbad = 0 and
A" > 0.

—Suppose fbad = 0, Al = 0. If C € Cyona then every maximum matching after is a
maximum matching before, with the same properties. Suppose C € (Cgvﬂ. Then C is
replaced with an evil cycle C’ of a smaller degree. Hence for every maximum matching
M’ after there exists a maximum matching M before, where C’ is replaced by C, and
which has the same properties as M. Hence in both cases A§’ > 0.

—Suppose fbad = 1. Then mbad = 2 before and mbad = 0 after.

* Suppose C € C2 . If Al = 1 (and hence Aevil = —1) then every maximum matching
M after satisfies [y, is odd and fgood(M) = 0. If Al = 0 then every maximum
matching M after satisfies either (/3; is even and |Fy| = 1) or (Ip is odd and

fgood(M) = 0). Hence, in any case A§’ > 0.
* Suppose C € Cpona. Then every maximum matching M after satisfies /), is odd and
fgood(M) is even. Hance §' = 1 after.
® Suppose A(/ + evil) = 1. Then A[fbad/3] = —1.

—Suppose Afbad = —1. Then mbad = 1 before and thus evils = nona = 0 and C €
Cgooa U (Cgvﬂ. It follows that every maximum matching M after satisfies either (/3 is
even and |Fy| = 1) or (Iy is odd and fgood(M) = 0). (The later happens only if
C e C? , and Al = 1.) Hence A§’ > 0.

evi

—Suppose Afbad = —2. Then mbad = 2 before and C € (Cgvﬂ U (Cévﬂ. Moreover, if
C € Cl, then deg(C) € DEG. Then for every maximum matching M after either (/)
is even and |Fy| = 1) or (I3 is odd and fgood(M’) = 0). (The latter case may happen
only if C € C!;.) Hence A8’ = 0.

—Suppose Afbad = —3. Then C € C!  and for every maximum matching M after there
exists a maximum matching M’ before with the same properties. Hence A’ = 0.

Case 2.2: Suppose A(n—c) = 1. Then Al = 0 and A(evil+ [fbad/3]) > —1. If A(evil+ [fbad/3]) = 0
then clearly A > 0. Suppose A(evil + [fbad/3]) = —1. Let C the cycle on which the cent-
mapping was performed.
® Suppose Aevil = —1. Then A[fbad/3] =0, C € C3 ,UC2 .,

then clearly A§’ > 0. Suppose C € CJ .. Then Afbad € {0, 1}.

—Suppose Afbad = 0. Then for every maximum matching M after there exists a maximum
matching M’ before such that Fyy = Fy and fgood(M) = fgood(M') — 1. Hence
A§' > 0.

—Suppose Afbad = 1. Then before mbad = 2. It follows that after: mbad = 0 and every
maximum matching M satisfies | Fys| = 1 and [, is even. Hence §’ = 1 after.

® Suppose Aevil = 0. Then A[fbad/3] = —1, C € C2, UCL . U Cyp.

—Suppose C € C2;,. Then before mbad = 1 and hence after: mbad = 0 and the single
maximum matching satisfies [, is even and | Fy/| = 1. Hence §’ = 1 after.

—Suppose C € C. ;. Then deg(C) € DEG, F is unchanged, and mbad = 2 before. Hence
after: mbad = 0 and every maximum matching M satisfies /s is even and |Fy/| = 1.
Hence §' = 1 after.

—Suppose C € C,py. Then mbad = 1 before. Therefore after DEG = @ and A8’ > 0.

Case 2.3: A(n—c) = 2. Let C; and C, be the cycles on which the cent-mapping was performed. In this
case A|F| <0, A(l+evil) > =2, A(l +evil+[fbad/3]) > —2.If A(l +evil+[fbad/3]) > —1
then clearly A > 0. Suppose A(/ + evil + [fbad/3]) = —2.
® Suppose A(/ + evil) = —1. Then A[fbad/3] = —1.

—Suppose Afbad = —1. Then mbad = 1 before, C; € Cypp, Co € Cgooa U (Cgvﬂ. Hence
after: mbad = 0, DEG = 0, |Fg| = 1 (Fp is unchanged). If /g is even then clearly
A8’ > 0. Suppose g is odd. Then C € Cyo04 and hence fgood(d) = 0 after. Therefore
A" > 0.

—Suppose Afbad = —2. Then mbad = 2 before and mbad = 0 after. Note that before
Fyy is fixed for every maximum matching M (i.e., Fyy = F’). Let M be a maximum

matching after. Then either Fyy = F’ (i.e., as before), or I3 is odd and fgood(M) = 0.

F is unchanged. If C € C?

evil



SORTING GENOMES WITH CENTROMERES BY TRANSLOCATIONS 809

(The latter may happen only if nona > 0 and C| € Cyyp U Cpona.) In both cases §' = 1

after.

—Suppose Afbad = —3. Then C;,C; € C;V“ U Cann, deg(Cy), deg(C,) € DEG, and for
every maximum matching M after, there exists a maximum matching M’ before, such
that Fyy = Fyy and fgood(M) = fgood(M’), hence §' = 1 after.

® Suppose A(/ +evil) = —2. Then A[fbad/3] = 0 and only the following cases are possible.

—C, € C,, C, € C2,,. Then Afbad € {0,1}. If Afbad = 0 then for every maximum
matching M after there exists a maximum matching M’ before such that Fj; = F) and
fgood(M) = fgood(M') — 1, hence A§’ > 0. Suppose Afbad = 1. Then Ambad = 2
before. Hence after: mbad = 0, and every maximum matching satisfies /), is even and
|Far| = 1, hence A§' = 0.

—C, € (Cgvil’ G, € (Cévil @] (Cann-

* deg(C,) € DEG. Then Afbad € {0, 1}. If Afbad = 0 then clearly A > 0. Suppose
Afbad = 1. Then mbad = 2 before and after: mbad = 0, and either (/); is even and
|Fy| = 1, or (Ipy is odd and fgood(M) = 0). Hence A§’ = 0.

* deg(Cy) ¢ DEG. Then Afbad € {0,1} again. In both cases C; € C,yy, and after
mbad = 0 and every maximum matching M after satisfies (1,C’) € M, where
C’ € Cyonas [y is 0odd and fgood(M) = 0 (since §’ = 1 before). Hence A§’ = 0.

—C € C2;, G € Chona. Then Afbad € {0, 1}.

* Afbad = 0. Then if 1 € DEG then nona > 2. Hence for every maximum matching
M after there exists a maximum matching M’ before such that /; = [ — 1 and
fgood(M) = fgood(M') — 1. Thus before: mbad = 0 and every maximum matching
M’ for which fgood(M’) = 1 satisfied [ is even. Thus A’ > 0.

* Afbad = 1. Then before: mbad = 2 and thus nona = 1. It follows that 1 ¢ DEG
and hence after: mbad = 0, and every maximum matching M satisfies /), is odd and
fgood(M) = 0. Thus §’ = 1 after.

—C1,C € (szﬂ, or C1,Cy € Cl,, or Cy, Cy € Cypp. Then clearly AS' > 0.

—C € Cam, Cy € Cpona. If 1 € DEG then clearly A§’ > 0. Suppose 1 ¢ DEG. Then
Afbad € {0, 1} and for every maximum matching before Fyy = F’ and fgood(M) =
fgood' are fixed (i.e., independent of M).

* nona > 1 before. Then |F’| > 1 and hence mbad = 0, [(F’) is odd and fgood' =
0. Thus after, every maximum matching M satisfies: [y = [(F') — 2 is odd and
fgood(M) = fgood' = 0, and thus §’ = 1.

* nona = 1 before. Then after: nona = 0 and for every maximum matching M, Fy, =
F” (i.e., independent of M) and [(F") = [(F’) — 1. There there are two possible
cases. In the first case fgood' = 0 before, and then Afbad = 1, and hence mbad = 2
before. In the second case fgood = 1, and then Afbad = 0, mbad = 0 and [(F’)
is even (since F’ contains a non-annoying leaf). It follows that in both cases after:
mbad = 0, fgood” = 0 and [(F") is odd. Hence §' = 1 after.

—C},C;y € Cyona. If 1 ¢ DEG or nona > 2 then clearly A8’ > 0. We shall prove that no
other case is not possible. Suppose 1 € DEG and nona = 2. It follows that before for
every maximum matching M, (1, C) € M where C € Cpony, I3 is odd and fgood(M) =
0. Hence mbad = 0 before and Afbad = 1, a contradiction to A[fbad/3] = 0. |

Lemma 16. Let A = A(n—c + 1 + evil + [fbad/3] + &'). There exists a sequence of ) cent-mappings
where each satisfies A = 0.

Proof. Below we present Algorithm 3, which satisfies A = 0 for every cent-mapping. Moreover, after
the run of this algorithm the following conditions are satisfied: (i) DEG = @, (ii) 8 = 0 = [y is even
and Fy # 1, and (iii) 8’ = 1 = Iy is odd. It follows that if we apply Algorithm 2 after Algorithm 3, then
every cent-mapping performed by the latter algorithm satisfies A = 0. (Note that in this case Steps 3—-16
in Algorithm 2 are skipped, since DEG = §.) |



810 OZERY-FLATO AND SHAMIR

Algorithm 3. TImprove &’

1: if mbad = 2 then
2:  Let M be a maximum matching, let C;,C, € (Civil U Caynn, where deg(C), deg(Cy) ¢ M, and

deg(Cy) # deg(C,). Perform a bad cent-mapping on C; and C,

3: else if mbad =1 then

4. i< max{j:j € DEG}

5. ifi > 1 then

6: Let M be a maximum matching where i is not matched. Let C € C!  satisfying deg(C) =i

7 if [ is even then

8 Perform 2 proper cent-mapping on C such that A/ = 2 and Aevil = —1

9: else

10: Perform an improper cent-mapping on C followed by a proper cent-mapping satisfying Al = 1,

Aevil = —1 and A|Fy| > 1 after

11: end if

12:  else

13: if Iz = 0 then

14: Let C € Cyn, let C; # C be any other cycle satisfying deg(C;) > 0.

15: if C, e (Cgood U (Ce2:vi1 then

16: Perform a bad cent-mapping on C and C;

17: else

18: Then C; € Cévu U Camn- Let C; be a cycle of the same class as Cj, different from C and C,
satisfying deg(C,) = deg(C)). Perform a bad cent-mapping on C; and C;. Let C; be new
cycle. Perform a bad cent-mapping on C and Cs

19: end if

20: else if | F| > 1 then

21: Depending on the parity of /g: perform either a proper or an improper cent-mapping on a cycle

from C,,, such that after: /g is even and | Fyg| > 1

22: else if [y is odd then

23: if evil, > 0 then

24: Let C’ € C2 ;. Perform a bad cent-mapping on C and C’

25: else

26: Perform a proper cent-mapping on C

27: end if

28: else

29: Perform an improper cent-mapping on C

30: end if

31:  end if

32: end if

33: call Procedure 4

Procedure 4. Handle mbad = 0
1: if 1 € DEG and nona > 0 then
2:  Let M be a maximum matching in BCM satisfying (1,C;) € M, where C; € Cpona
3 if |Fps| = 1 and nona > 2 then
4: Let M be a maximum matching in BCM satisfying (1, C;) € M where C| # C; € Cpona
5 end if
6: else
7:  Let M be any maximum matching in BCM
8: end if

(continued)
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Procedure 4. (Continued)

9: if /37 is odd, and fgood(M) = 1, and after C € C3 . \ M is replaced by a leaf |Fy;| = 1 then

evil

10:  if there exists i € DEG such that i < deg(C) then

11: Update M such that (i,C) € M

12: end if

13: end if

14: if Ips is odd and there exists C € (Cgvﬂ \ M that can be replaced by a leaf such that | Fjs| > 1 after then

15:  Perform this replacement

16: else if /37 is even and |Fys| = 1 then

17:  if fgood(M) > 2 then

18: Replace two unmatched cycles in (Cgvﬂ by two leaves (each cycle is replaced by one leaf)

19:  else if evil; > 0 then

20: Replace a cycle in (CZVil by two leaves

21:  else if fbad > 0 then

22: Let i1,z i3 € DEG\ M, where iy < iy < i3. Let C1,C5,C3 € Cl U Cypn, where deg(C;j) = j for
j =1,2,3. Perform a bad cent-mapping on C; and C;. Replace C3 by two leaves

23:  elseif |[M| > 0 then

24: Choose C € (Cévil U Camn, C’ € (Cgvil U Chona such that (deg(C),C’) e M

25: if deg(C) =1 then

26: Perform an improper cent-mapping on C

27: if C' € C3, then

28: Replace C by a leaf

29: end if

30: else

31: Replace C by two leaves

32: end if

33:  else if ann > 0 and nona > 0 then

34: Let C1,Cy € Cypp, C3 € Cpopa. Perform a proper cent-mapping on C;. Perform a bad cent-mapping on C,
and C3

35:  elseif C2 > then

36: Replace C € (Cgvil by a leaf

37:  end if

38: end if

39: for all (i,C) € M do

40:  Perform a bad cent-mapping on C and a C’ € CL . U Cyyn, where deg(C’) = i, such that A(/ + evil) = —2

(Lemma 12).
41: end for
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ABSTRACT

Since the discovery of the “Philadelphia chromosome” in chronic myelogenous leukemia in
1960, there has been ongoing intensive research of chromosomal aberrations in cancer.
These aberrations, which result in abnormally structured genomes, became a hallmark of
cancer. Many studies provide evidence for the connection between chromosomal alterations
and aberrant genes involved in the carcinogenesis process. An important problem in the
analysis of cancer genomes is inferring the history of events leading to the observed aber-
rations. Cancer genomes are usually described in the form of karyotypes, which present the
global changes in the genomes’ structure. In this study, we propose a mathematical frame-
work for analyzing chromosomal aberrations in cancer karyotypes. We introduce the prob-
lem of sorting karyotypes by elementary operations, which seeks a shortest sequence of
elementary chromosomal events transforming a normal karyotype into a given (abnormal)
cancerous karyotype. Under certain assumptions, we prove a lower bound for the elemen-
tary distance, and present a polynomial-time 3-approximation algorithm for the problem.
We applied our algorithm to karyotypes from the Mitelman database, which records cancer
karyotypes reported in the scientific literature. Approximately 94 % of the karyotypes in the
database, totaling 58,464 karyotypes, supported our assumptions, and each of them was
subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to
generate a 3-approximation, it produced a sequence whose length matched the lower bound
(and hence optimal) in 99.9% of the tested karyotypes.

Key words: combinatorics, computational molecular biology, gene expression, gene networks,
genetic variation, sequence analysis.

1. INTRODUCTION

ANCER IS A DISEASE caused by genomic mutations leading to the aberrant function of genes. Those

mutations ultimately give cancer cells their proliferative nature. Inferring the evolution of these mu-
tations is an important problem in the research of cancer. Chromosomal mutations that shuffle/delete/
duplicate large genomic fragments are common in cancer. Many methods for detection of chromosomal
mutations use chromosome painting techniques, such as G-banding, to achieve a visualization of cancer cell
genomes. The description of the observed genome organization is called a karyotype (Fig. 1). In a karyotype,
each chromosome is partitioned into continuous genomic regions called bands, and the total number of bands
is the banding resolution. Over the last decades, a large amount of data has been accumulated on cancer
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FIG. 1. A schematic view of two real karyotypes: a normal female karyotype (a) and the karyotype of MCF-7 breast
cancer cell-line (b) (NCI, 2001). In the normal karyotype, all chromosomes, except X and Y, appear in two identical
copies, and each chromosome has a distinct single color. In the cancer karyotype presented here, only chromosomes 11,
14, and 21 show no chromosomal aberrations.
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karyotypes. One of the largest depositories of cancer karyotypes is the Mitelman database of chromosomal
aberrations in cancer (Mitelman et al., 2008), which records cancer karyotypes reported in the scientific
literature. These karyotypes are described using the ISCN nomenclature (Mitelman, 1995) and thus can be
parsed automatically. While novel techniques can provide information at much higher resolution of the
cancer karyotypes (Snijders et al., 2001; Greenman et al., 2007), the Mitelman database still contains data on
a number of karyotypes a few orders of magnitudes larger.

Cancer karyotypes exhibit a wide range of chromosomal aberrations. The common classification of these
aberrations categorizes them into a variety of specific types, such as translocations, and iso-chromosomes.
Inferring the evolution of cancer karyotypes using this wide vocabulary of complex alteration patterns is a
difficult task. Nevertheless, the entire spectrum of chromosomal alterations can essentially be spanned by
four elementary operations: breakage, fusion, duplication, and deletion (Fig. 2). A breakage, formally

[1,6]
A

[1,2] [2,6]

duplication
uoljajap-2

v
[1,61[1,6]

FIG. 2. [Illustrations of elementary operations: breakage, fusion, duplication, and deletion. The inverse elementary
operations are fusion, breakage, c-deletion, and addition, respectively.
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known as a ‘“double-strand break,” cuts a chromosomal fragment into two. A fusion ligates two chromo-
somal fragments into one. Genomic breakages, which occur quite frequently in somatic cells, are normally
repaired by the corresponding inverse fusion. Mis-repair of genomic breakages is believed to be a major
cause of chromosomal aberrations in cancer (Ferguson and Frederick, 2001). Other prevalent chromosomal
alterations in cancer genomes are duplications and deletions of chromosomal fragments. These four ele-
mentary events play a significant role in carcinogenesis: fusions and duplications can activate oncogenes,
while breakages and deletions can eliminate tumor suppressor genes.

In this article, we introduce a new model for analyzing chromosomal aberrations in cancer based on the
four elementary operations presented above. We study the problem of finding a shortest sequence of
operations that transforms a normal karyotype into a given cancer karyotype. We call this problem kar-
yotype sorting by elementary operations (KS), and the length of a shortest sequence is called the elementary
distance between the normal and cancer karyotypes. The elementary distance indicates how far, in terms of
number of operations, a cancer karyotype is from the normal one. Hence, it corresponds to the complexity
of the cancer karyotype, which may give an indication of the tumor phase (Hoglund et al., 2005). The
reconstructed elementary operations can be used to detect common events for a set of cancer karyotypes
and thus point out genomic regions suspect of containing genes associated with carcinogenesis.

Under certain assumptions, which are supported by most cancer karyotypes, the KS problem can be
reduced in linear time to a simpler problem, called RKS. For the latter problem, we prove a lower bound for
the elementary distance, and present a polynomial-time 3-approximation algorithm. We show that approx-
imately 94% of the karyotypes in the Mitelman database (58,464) support our assumptions, and each of
these was subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to
generate a 3-approximation, it produced a sequence whose length matched the lower bound (and hence
optimal) in 99.9% of the tested karyotypes. Manual inspection of the remaining cases reveals that the
computed sequence for each of these cases is also optimal.

This article is organized as follows. In Section 1, we give the combinatorial formulation of the KS
problem and its reduced variant RKS. In the rest of the article, we focus on the RKS problem. In Section 2,
we prove a lower bound for the elementary distance for RKS. Section 3 describes our 3-approximation
algorithm for RKS. Finally, in Section 4, we present the results of the application of our algorithm to the
karyotypes in the Mitelman database.

2. PROBLEM FORMULATION
2.1. The KS problem

The KS problem receives two karyotypes as an input: the normal karyotype, K,ormal, and the cancer
karyotype, Kcancer- We represent each of the two karyotypes by a multi-set of chromosomes. Every
chromosome in K,oma 1S presented as an interval of B integers, where each integer represents a band. For
simplicity, we assume that all the chromosomes in K, ,ma Share the same B, which corresponds to the
banding resolution. Every two chromosomes in the normal karyotype are either identical, i.e., are re-
presented by the same interval, or disjoint. More precisely, we represent every chromosome in K oma by
the interval [(k — 1)B + 1, kB], where £ is an integer that identifies the chromosome. The normal karyotype
usually contains exactly two copies of each chromosomes, with the possible exception of the sex chro-
mosomes. Every chromosome in K, i$ €ither a fragment or a concatenation of several fragments, where
a fragment is a maximal sub-interval, with two bands or more, of a chromosome in the normal karyotype.
More formally, a fragment is a maximal interval of the karyotype of the form [i,j] = [i,i+ 1, ..., j], or
[Li=1jj—1,...,i], where i <j,i,j € {(k—1B+1,...,kB}, and [(k— 1)B+ 1,kB] € Kyorma- Note
that, in particular, a chromosome in K ,ncer can be identical to a chromosome in Kj,orma- We use the symbol
“::” to denote a concatenation of two fragments, e.g., [i,/]::[i’,j']. Every chromosome, in both K orma and
Kcancer» 18 Orientation-less, i.e., reversing the order of the fragments, and the fragments themselves, results
in an equivalent chromosome. For example, X = [i,j1:[i',j']1 = [, i'1:[Jj, il = X.

We refer to the concatenation point of two intervals as an adjacency if the union of their intervals is
equivalent to a larger interval in K ,ma. In other words, two concatenated intervals that form an adjacency
can be replaced by one equivalent interval. For example, the concatenation point in [5, 3]::[3, 1] = [5, 1] is
an adjacency. Typically, a breakage occurs within a band, and each of the resulting fragments contains a
piece of this broken band that can still be viewed and identified by cytogenetic techniques. For example, if
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[5, 1] is broken within band 3, then the resulting fragments are generally denoted the by [5, 3] and [3, 1].
For this reason, we do not consider the concatenation [5, 3]::[2, 1] as an adjacency. A concatenation point
that is not an adjacency, is called a breakpoint.' Additional examples of concatenation points that are
breakpoints are as follows: [1, 3]::[5, 6] and [2, 4]::[4, 3].

We assume that the cancer karyotype, Kcancer, has evolved from the normal karyotype, K, ormal, by the
following four elementary operations (Fig. 2):

1. Fusion: a concatenation of two chromosomes, X; and X5, into one chromosome X;::X5.
II. Breakage: a split of a chromosome into two chromosomes. A split can occur within a fragment, or between two
previously concatenated fragments, i.e., in a breakpoint. In the former case, where the break is in a fragment
[, j1, the fragment is split into two fragments: [i, k] and [k, j], where k € {i+1,i+2, ...,j—1}.
III. Duplication: a whole chromosome is duplicated, resulting in two identical copies of the original chromosome.
IV. Deletion: a complete chromosome is deleted from the karyotype.

Given K,orma and Kcancer, We define the KS problem as finding a shortest sequence of elementary
operations that transforms K, oymar into Keancer- The length of that sequence is called the elementary distance
between the karyotypes, and denoted d(Kormals Kcancer)- An equivalent formulation of the KS problem is
obtained by considering the inverse direction: find a shortest sequence of inverse elementary operations that
transforms Kegpcer iNt0 Kjormar- Clearly, fusion and breakage operations are inverse to each other. The
inverse to a duplication is a constrained deletion (c-deletion), where the deleted chromosome is one of two
or more identical copies. In other words, a c-deletion can delete a chromosome only if there exists another
identical copy of it. The inverse of a deletion is an addition of a chromosome. Note that in general, the
added chromosome need not be a duplicate of an existing chromosome and can contain any number of
fragments. For the rest of the article, we analyze KS by sorting in reverse order, i.e., starting from K ncer
and going back to K, oma. The sorting sequences will also start from K ,,cer-

2.2. Reducing KS to RKS

In this section, we present a basic analysis of KS, which together with two additional assumptions, allows
the reduction of KS to a simpler variant in which no breakpoint exists (RKS). As we shall see, our
assumptions are supported by most analyzed cancer karyotypes.

We start with several definitions. A sequence of inverse elementary operations is sorting, if its appli-
cation to K aneer results in Koma. We shall refer to a shortest sorting sequence as optimal. Since every
fragment contains two or more bands, we can present any band i within it by an ordered pair of its two ends,
io, which is the end closer to the minimal band in the fragment, and i l, the end closer to the maximal band in
the fragment. More formally, we map the fragment [i,/],i # j, to [il,jo] =[G+ 1)0,(i+ 1)', ...,jO] if
i <j, and otherwise to [*,j']1 = [/, i — ', (i —1)°, ...,j']. We say that two fragment-ends, a and ', are
complementing if {a,a’} = {i°,i'}. The notion of viewing bands as ordered pairs is conceptually similar to
considering genes/synteny blocks as oriented, as is standard in the computational studies of genome
rearrangements in species evolution (Bourque and Zhang, 2006). In this study, we consider bands as
ordered pairs to well identify breakpoints: as mentioned previously, a breakage usually occurs within a
band, say i, and the two ends of i, i and i], are separated between the two new resulting fragments. Thus, a
fusion of two fragment-ends forms an adjacency iff these ends are complementing. We identify a break-
point, and a concatenation point in general, by the two corresponding fragment-ends that are fused together.
More formally, the concatenation point in [a, b]::[a@, '] is identified by the (unordered) pair {b, a'}. For
example, the breakpoint in [1,2]::[4,3] = [1',20]::[4%,3'] is identified by {20, 40}. Having defined
breakpoint identities, we refer to a breakpoint as unique if no other breakpoint shares its identity, and
otherwise we call it repeated. In particular, a breakpoint in a non-unique chromosome (i.e., a chromosome
with another identical copy) is repeated. Last, we say that a chromosome X is complex if it contains at least
one breakpoint, and simple otherwise. In other words, chromosome X is simple iff it consists of
one fragment. Analogously, an addition is complex if the chromosome added is complex, and simple
otherwise.

"Formally, since the broken ends of a chromosome are not considered breakpoints here, the term “fusion-point”” may
seem more appropriate. However, we kept the name “breakpoint™ due to its prior use and for brevity.
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Let Knormal = {[1,4] x 2,[5,8] x 2}, and Keancer = {[1, 4], [5, 8], [1, 3], [6, 8], [1, 4]::[5, 8] }. An optimal
sorting scenario contains 5 moves, one of which is always a complex addition. An example for an

optimal sorting scenario:

addition
-

K cancer {[1,4], 58], [1,3],[3,4]:(5,6],[6,8], [1,4]:[5, 8]}

2hstons, (11, 4], [5,8], [1,4]:[5,8] x 2}

cAeetion, (11,4], [5,8], [1,4]:[5,8]}

breakage
—_—

{[174]7 [578]7 [174]7 [578]} = Kiormal

A sorting scenario that does not involve a complex addition contains at least 7 moves, and hence is

non-optimal. An example of such sorting scenario:

breakage
—_—

Kcancer {[14} X 27 [578] X 27 [13} [6*8]}

2 additions
e —

(11,4 x 2, [5,8] x 2, [1,3],[3.4], [5,6],[6,8]}

2 {11, 4] % 3, [5,8] x 3}

2 c-deletions {[174] % 27 [5,8] % 2} _ Knormal

FIG.3. Anexample K acer and Kpormar for which any optimal sorting scenario contains a complex addition. Note that
this scenario involves duplication of the breakpoint in [1,4]::[5,8], while repeated breakpoints are quite rare in the real
data.

Observation 1. Let S be an optimal sorting sequence. Suppose K. ..., contains a breakpoint, p, that is
not involved in a c-deletion in S. Then there exists an optimal sorting sequence S', in which the first
operation is a breakage of p.

Proof. Since K,oma does not contain any breakpoint, p must be eventually eliminated by S. A
breakpoint can be eliminated either by a breakage or by a c-deletion. Since p is not involved in a c-deletion,
p is necessarily eliminated by a breakage. Moreover, this breakage can be moved to the beginning of S
since no other operation preceding it involves p. |

Corollary 1. Let S be an optimal sorting sequence. Suppose S contains an addition of chromosome
X =fi::fou i fx, where fi, f5,..., fi are fragments, and none of the k — 1 breakpoints in X is involved in any
subsequent c-deletion in S. Then the sequence S', obtained from S by replacing the addition of X with the
additions of fi, f>,..., fx (a total of k additions), is an optimal sorting sequence.

Proof. By Observation 1, the breakpoints in X can be immediately broken after its addition. Thus,
replacing the addition of X, and the k — 1 breakages following it, by k additions of fi, f5,..., fr, yields an
optimal sorting sequence. [ |

It appears that complex additions, as opposed to simple additions, make KS very difficult to analyze.
Moreover, based on Corollary 1, complex additions can be truly beneficial only in complex scenarios in
which c-deletions involve repeated breakpoints that were formerly created by complex additions (Fig. 3).
Therefore, we make the following assumption:



1450 OZERY-FLATO AND SHAMIR

Assumption 1. Every addition is simple, i.e., every added chromosome consists of one fragment.
Using the assumption above, the following observation holds:

Observation 2. Let p be a unique breakpoint in K. .,c.,. Then there exists an optimal sorting sequence
in which the first operation is a breakage of p.

Proof. If p is not involved in a c-deletion, then by Observation 1, p can be broken immediately.
Suppose there are k c-deletions involving p or other breakpoints identical to it. If p is on chromosome X that
is c-deleted, then at the time of the c-deletion, another copy X’ of X is present in the karyotype, with an
identical breakpoint p’ in it. Note that following Assumption 1, from the four inverse elementary opera-
tions, only fusion can create a new breakpoint. Thus, we can obtain an optimal sorting sequence, S, from S,
by: (i) first breaking p, (ii) canceling any fusion that creates a breakpoint p’ identical to p, (iii) replacing any
c-deletion involving p, or one of its copies, with two c-deletions of the corresponding 4 unfused chro-
mosomes, and (iv) not having to break the last instance of p (since it was already broken). In summary, we
moved the breakage of p to the beginning of the sorting sequence and replaced k fusions and k c-deletions
(i.e., 2k operations) with 2k c-deletions. [ ]

Observation 3. In an optimal sequence, every fusion creates either an adjacency, or a repeated
breakpoint.

Proof. Let S be an optimal sorting sequence. Suppose S contains a fusion that creates a new unique
breakpoint p. Then, following Observation 2, p can be immediately broken after it was formed, a con-
tradiction to the optimality of S. [ ]

In this work, we choose to focus on karyotypes that do not contain repeated breakpoints. According to
our analysis of the Mitelman database, 94% of the karyotypes satisfy this condition. Thus, we make the
following additional assumption:

Assumption 2. The cancer karyotype, K ..., does not contain any repeated breakpoint.

Assumption 2 implies that we can (i) immediately break all the breakpoints in K ,,cer (due to Observation
2), and (ii) consider fusions only if they create an adjacency (due to Observation 3). Hence, given a cancer
karyotype, for each normal chromosome, its fragments can be separated from all the other fragments and
used to solve a simpler variant of KS: In this variant, (i) Kyorma = {[1, BI X N}, (ii) there are no breakpoints
in K ancer, and (iii) neither fusions, nor additions, form breakpoints. Usually, N=2, with N=1 for the sex
chromosomes. We refer to this reduced problem as restricted KS (abbreviated RKS). For the rest of the
article, we shall limit our analysis to RKS only.

3. A LOWER BOUND FOR THE ELEMENTARY DISTANCE

In this section, we analyze RKS and define several combinatorial parameters that affect the elemen-
tary distance between K orma and Keancer- Based on these parameters, we prove a lower bound on the ele-
mentary distance. Though theoretically our lower bound is not tight, we shall demonstrate in Section 4 that
in practice, for the vast majority (99.9%) of the real cancer karyotypes analyzed, the elementary distance
achieves this bound.

3.1. Extending the karyotypes

For simplicity of later analysis, we extend both K,,ma and Kancer by adding to each karyotype 2N “tail”
intervals:

Anormal :Knormal U {[0’ 1] XN, [B’B+ 1] XN}
Keancer = Keancer U {10, 11X N, [B, B+ 11X N}
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FIG. 4. An example of a cancer karyotype I%cancer and its combinatorial parameters. (a) The (extended) cancer
karyotype is Kcance, = {[0, 11x2,[1,4],[4,51,[5,10]1x2,[10,11]1x2,[2,3]%2,[6, 8]}. Here N=2, B=10. The number
of disjoint pairs of complementing fragment-ends, f; is 5. (b) The histogram H = H (Keancer)- H has walls at 1, 2, 3, 5, 6,
and 8. There are four positive bricks: (2,2), (2,3), (5,2), and (6,3), and four negative bricks: (1,2), (3,3), (3,2), and (8,3).
Hence w=28. Four of the eight bricks are simple: (2,2), (3,2), (6,3), and (8,3), thus s=4. (¢) The weighted bipar-
tite graph of BG. It is not hard to verify that M = { ((2,3),(3,3)), ((6,3),(3,2)), ((2,2),(1,2)), ((5,2),(8,3)) } is a
minimum-weight perfect matching and hence m =2.

For an example, see Figure 4a. These new “‘tail” intervals do not take part in elementary operations:
breakage and fusion are still limited to {2, 3,..., B— 1}, and intervals added/c-deleted are contained in [1, B].
Hence d(Kyormal> Keancer) = d(fcancer, I?mncer). Their only role is to simplify the definitions of parameters
given below.

3.2. The histogram

We define the histogram of Keancer, H = H(Ecancer) Ali-1i]i=12,...,B+1} > NU{0}, as
follows. Let H([i — 1, i]) be the number of fragments in I?mncer that contain the interval [i — 1, i] (Fig. 4b).
From the definition of I?cancer, it follows that H([O, 1]) =H([B,B+ 1]) =N. For simplicity, we refer to
H([i — 1, i]) as H (i). The histogram H has a wall at i € {1, ...,B} if HG@) ZH@{+ 1). f HG+ 1) > H(i)
(respectively, < H(i)) then the wall at i is called a positive wall (respectively, a negative wall). Intuitively, a
wall is a vertical jump of H. We define w to be the total size of walls in H. More formally,

B
w= Y |H(i+1)— HG)|
i=1

Since H(1)=H(B+1)=N, the total s1ze of positive walls is equal to the total size of negative walls, and
hence w is even. Note that if KcanCer = Knormal then w =0. The pair (i, h) = (i,[h — 1, h]), h € N, is a brick in
the wall at i if Hi)+1 < h < H@{+ 1) or Hi+ 1)+ 1 < h < H(i). A brick (i, h) is positive (respectively,
negative) if the wall at i is positive (respectively, negative). Note that the number of bricks in a wall is equal
to its total size. Hence, w corresponds to the total number of bricks in H.

Observation 4. For breakage and fusion, Aw=0; For c-deletion and addition, Aw={—2,0,2}.

3.3. Counting complementing end pairs

Consider the case where w=0. Then there are no gains and no losses of bands, and the number of
fragments in Kcancer is greater or equal to the number of fragments in Knormal Note that each of the four
elementary operations can decrease the total number of fragments by at most one. Hence, when w =0, an
optimal sorting sequence would be to fuse pairs of complementing fragment-ends, not including the tails.
Let us define f = f(i{\c‘incer) as the maximum number of disjoint pairs of complementing fragment-ends.
Note there could be many alternative choices of complementing pairs. Nevertheless, any maximal disjoint
pairing is also maximum. It follows that if w =0, then d(Knormal, Kcancer) =f—2N. Also, when w # 0, a
c-deletion may need to be preceded by some fusions of complementing ends, to form two identical
fragments. In general, the following holds:
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Observation 5.  For breakage Af = 1; For fusion, Af = — 1; For c-deletion, Af € {0, — 1, —2}; For
addition, Af € {0,1,2}.

Lemma 1. For breakage and addition, A(w/2 +f)=1; For fusion and c-deletion, A(w/2+f)= —1.

Proof. For breakage/fusion, Aw =0, and thus the lemma immediately follows from Observation 5. For
addition: (Aw=0)= (Af=1); (Aw=-2)=(Af=2); (Aw=2)= (Af=0). For c-deletion:
Aw=0= (Af=-1); Aw=-2)= (Af=0); (Aw=2)= (Af= —-2). [ |

3.4. Simple bricks

A brick (i, h) is called simple if: (i) (i, h — 1) is not a brick, and (ii) I?C.mcer does not contain a pair of
complementing fragment-ends in i (Fig. 4b). Thus, in particular, a simple brick cannot be eliminated by a
c-deletion. On the other hand, for a non-simple brick, (i, #), there are two fragments ending in the corre-
sponding location (i.e., i). Nevertheless, it may still be impossible to eliminate (i, &) by a c-deletion if these
two fragments are not identical. We define s = s(fcamr) as the number of simple bricks.

Observation 6. For breakage, As € {0, — 1}; For fusion, As € {0,1}; For c-deletion, As=0; For
addition, |As| < 2.

Observation 6 and Lemma 1 imply:
Lemma 2. For every move, Aw/2+f+s)> — 1.

3.5. The weighted bipartite graph of bricks

The last parameter that we define is based upon matching pairs of bricks. Note that in the process of
sorting Keancers the histogram is flattened, i.e., all bricks are eliminated, which can be done only by using
c-deletion/addition operations. If a c-deletion/addition eliminates a pair of bricks, then one of these bricks is
positive and the other is negative. Thus, roughly speaking, every sorting sequence defines a matching
between pairs of positive and negative bricks that are eliminated together.

Given two bricks, v= (i, k) and v/ = (i’, I'), we write v < V' (resp. v=1") if i < i’ (resp. i=1i'). Let V" and
V™~ be the sets of positive and negative bricks, respectively. We say that v and V' have the same sign, if
either v,v' € V', orv,v € V. Two bricks have the same status if they are either both simple, or both non-
simple. Let BG=(V ',V ~,8) be the weighted complete bipartite graph, where § : V' xV~ — {0,1,2} is
an edge-weight function defined as follows. Let vt € VT and v~ € V. Then:

0 v* andv~ are both simple andv- < v+
0 v* andv~ are both non-simple andv* < v~

1 v* andv~ have opposite status

2 otherwise

For an illustration of BG, see Figure 4c. Roughly speaking, 6(v*,v ™) corresponds to the additional cost of
eliminating v and v~ together, either by an addition, when v~ <v*, or by c-deletion, when v© <v™. A
matching is a set of vertex-disjoint edges from V™ x V ~. A matching is perfect if it covers all the vertices in
BG (recall that |[V*|=|V~|). Thus, a perfect matching is in particular a maximum matching. Given a
matching M, we define 6(M) as the total weight of its edges. Let m = m(I% cancer) denote the minimum weight
of a perfect matching in BG. The problem of finding a minimum-weight perfect matching in a bipartite
graph, also known as the assignment problem, can be solved in 0(n3) time (Kuhn, 1955; Munkres, 1957). In
the Appendix, we describe a simple O(n log n) algorithm for computing m, which relies heavily on the
specific weighting scheme, 9.

Below, we prove a lower bound for the elementary distance using the four parameters we have just
defined: w, f, s, and m. First, we prove two technical lemmas.
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Lemma 3. Let M and M’ be two perfect matchings that differ by exactly two edges (i.e., four vertices).
Then [0(M) — 6(M')| < 2.

Proof. Let M\ M' ={ej,e;} and M' \ M ={e3, e4}. Assume w.l.o.g. that A =§(M") — 6(M) > 0. Then
A =6(e3)+ 8(eq) — 6(er) — b(ez) < 4, since for every edge, e, 6(e) € {0,1,2}. If 6(e;)+ 8(ez) > 2 then
clearly A <2. Suppose d(e;) + d(e,) < 2. Now, let e; = (vq, uy) and e, = (v5, us). W.l.o.g. we assume that
e3=(vy, v») and e4 = (uy, up).

e Case 1: d(e;) =d(ey) =0. In this case, e; and e, connect vertices with the same status. If v, has a different status
than v,, then d(e3) = d(e4) = 1. Otherwise, vy, uy, vo, and u, have the same status. In this case it is not hard to verify
by considering the possible orderings of {vi,u1, v, ux} that 6(e3) + 6(es) € {0,2}. Thus, in either case A <2.

e Case 2: d(e;) +0(e) =1. In this case, exactly three vertices in {v,u;,v,,up} have the same status, while the
remaining vertex has the opposite status. Thus, it follows that either d(e3) =1 or d(e;) =1 and thus A<2. W

Let K’ be obtained from K by an elementary operation (a move). For a function F defined on karyotypes,
define A(F)=F(K") — F(K).

Proposition 1. For every move, Aw/2+f+s+m) > —1.

Proof. For a given move, let A =A(w/2+f + s+ m). Let G; and G, be the graphs before and after we
make the move, respectively, and let M, and M, be minimum-weight perfect matchings in G; and G,
respectively, where |M, \ M| is minimal. Thus Am = m, — my, where m; = 5(M) and m, = 6(M,) We shall
prove A > —1 by considering each move type.

* Breakage. We shall prove that |A| <1. Now, Aw/2+f)=1 (Lemma 1), A(s) € {0, — 1} (Observation 6). If
Am=0 then A € {1,0}. Suppose Am # 0. Then a simple brick v became non-simple due to the move and
As=—1. It follows that every edge, e, adjacent to v satisfies A(d(e)) € { —1,1}. Hence, for every perfect
matching M, A(6(M)) € { —1,1}. Then, in G;: m; < 6(Mz) < my+ 1, and in Gy: my < 6(M;) < my + 1. Hence
|Al=]Am| < 1.

e Fusion. Since fusion is the inverse operation to breakage, it follows that |A| <1 for fusion as well.

e C-deletion. By Lemma 1 A(w/2+f)=—1 and by Observation 6, A(s)=0. We shall prove that Am >0 by
analyzing the possible values of Aw.

e Aw=—2.Then two bricks, vt € VT andv~ € V~, were eliminated, where v' < v~, and both v and v~ are non-
simple. Let e=(v",v7). Clearly, d(¢)=0. Thus before we apply the move: my=5(M,)=56M2U {e}) >
6(My) =m;. Hence Am > 0.

o Aw=0. In this case, a non-simple brick, v, was replaced with another non-simple brick, v’ with the same sign. If
v,v' € VT then v <V, otherwise, v >/, Thus, for every vertex u with the same sign to v, d((v, u)) < 5((V, u)).
For every vertex u with the opposite sign, 5((v,u)) = 6((v',u)). Hence, Am > 0.

o Aw =2. In this case, a pair of new non-simple bricks, v~ € V= and v" € V* was added, where v~ < vt Let
e=(",v"). Then clearly d(e)=2. Recall that |M, \ M;| is minimal. We now prove that M, =M; U {e} and
hence m,=m, +2. Suppose e ¢ M. Let u™ € V* and u~ € V™~ be the nodes matched to v~ and v, re-
spectively, in M,. Let M} be a minimal perfect matching in G, that contains ¢’ = (u",u*). Then 6(M}) > m; and
thus it suffices to prove that 6(M,) > 8(M}). We will do so by proving that 5(v™, u™) + (", u™) > (). If
d(e") =0 then this is certainly true. Suppose d(e’) > 0.

—3(e’)=1. Then exactly one of u™ and u~ is simple, hence either 5(v_, u")=1 or S(v", u")=1.

—0(e’)=2. Then u" and u~ have the same status. If they are both simple then &( v, u®)+
d(v", u")=1+1=2=45(¢'). Otherwise, a simple case analysis reveals that at least one of the edges (v, u™)
and (u", v7) has a weight 2, and thus (v, u™) + (v, u™)>2.

* Addition. Then A(w/2+f)=1 (Lemma 1), As > —2 (Observation 6).

o Aw=—2. In this case, two bricks, v~ € V™ and vt € VT, were eliminated, where v~ <v*'. Lete=(v", v").
Then d(e) =2 + As. Moreover, my = 6(M, U {e}) — 6(¢) > my — 6(e). Thus Am + As > —d(e) + As = —2. Hence
A>—1.

o Aw=0. In this case, one brick, v, was replaced with a new brick with the same sign, v'. Thus As > —1, and
Am > —2, since only the edges adjacent to v, which are now adjacent to v/, are affected. If As >0 then clearly
A > —1. Suppose As = —1. The a simple brick was replaced with a non-simple brick. Let u be a vertex with the
opposite sign to v. Then d((u,v)) — 6((u,v")) > —1, and thus Am > —1. Therefore, A > —1.

o Aw=2. Then two new bricks, v* € V* and v~ € V~, were added, where v <v~. Thus As>0. Also
A(f)=0. It suffices to prove that Am > —2 and hence A > —1. Let e=(v", v"). If e € M, then clearly m, > m;,
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and thus Am>0. Suppose e & M,. Then there exist ej,es € My where e, =", u"), e;=(", u"). Let
M =M, \ {e1,e2} U {e'}, where ¢’ = (u", u™). Then M is a perfect matching in G, and thus §(M}) > m;. Now,
M, =M] U {e} is a perfect matching in G,, which differs from M, by exactly two edges. By Lemma 3,
(M) > 6(Mb) — 2. Since 6(Mb) = 6(M}) + 6(e’) > my, it follows that my >m; —2 and thus Am > —2. [}

Corollary 2. d>w/2+f—2N+s+m>0.

Proof. Since N is constant, Proposition 1 implies AW/2+f—2N+s+m)>—1. For
Ii'cancer = knormal, w/24+f—2N+s+m=0+2N —2N +0+0=0. Thus the left inequality holds, and it
suffices to prove that t=w/2+f—2N+s+m>0. If f> 2N then clearly > 0. Suppose f<2N. We shall
prove that f4s+m >2N. There are at least 2N —f intervals of the form [0, 1] or [B,B+ 1], with no
complementing fragment-ends at 1,B. Each of these unmatched tails corresponds to a brick at 1 or B. Let
us look at an optimal matching and focus on the edges involving these bricks. There are at least
[N —f)/2] such edges. It is easy to verify that each of these edges contributes 2 to s+ m, hence
s+m>2N—f. [ |

4. THE 3-APPROXIMATION ALGORITHM

Algorithm 1 is a polynomial procedure for the RKS problem. We shall prove that it is a 3-approximation,
and then describe a heuristic that aims to improve it.

Lemma 4. Algorithm 1 transforms I%wm.e, into Knormal using at most Iw/2 +f— 2N+ s+ m inverse
elementary operations.

Proof. Let A = A(w/2+f+ s+ m). First, we prove that A= —1 for each move except Step 13, and
for Step 13 moves, A=1.

e Step 3: Aw/2+f)=1,A(s+m)= — 2. Note that if there exists a negative (resp. positive) brick at 1 (resp. B),
then this brick is necessarily eliminated in this step.

e Steps 7,9: A(w/2+f)=1 (by Lemma 1). After Step 3, any brick at 1 (resp. B) is necessarily positive (resp.
negative) and thus not simple. Thus As = —1. Now Am > —1 (by Proposition 1). By using the maximal matching
induced by M, in which v is replaced by 1 (if ve V™) orby B (if v € V), we get Am=—1.

e Step 13: By now, VUV~ contains only non-simple bricks, i.e., s =0 and thus As =0. Moreover, m =0, since the
matching induced by M is optimal (see previous step) and every pair (v7,v") init, where v € V* andv— € V~,
satisfies v < v~. Therefore, Am=0. Aw/2+f)=1 (by Lemma 1).

* Step 18: There are no bricks at p, thus As=Am =0, and A=AWw/2+f)=—1 (by Lemma 1).

e Step 20: By now, all bricks are non-simple and the negative bricks are at B. Thus s =m =0 and As =Am=0. A(w/
2+f)=—1 (by Lemma 1).

Algorithm 1 Elementary Sorting (RKS)

1: M < a minimum-weight perfect matching in BG

2:for all (v~ ,v") e M where v~ <v* do

3: Add the interval [v—,vT].

4: end for /* Now v <v™ for every vt ,v") € M, where vt €Vt v= eV~ x/
5:for all ve V™ UV~ such that v is simple, and v # 1, B do

6: ifve V™ then

7. Add the interval [1,v]

8: else

9: Add the interval [v,B]
10:  end if
11: end for /* Now vt <v™ for every (v*,v™) € M, where vt € V¥ v~ € V™ and

all the bricks are non-simple. In addition, 1 ¢V~ and B¢ V"

12: for all v— € V~ such that v < B do

13:  Add the interval [v ", B]
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14: end for /* Now all the bricks are non-simple, and v— =B,Yv~ € V= */
15: while V" # () do

16: v e—max V'

17: for all p>v*', p<B do

18: Fuse any pair of intervals complementing at p.

19: end for

20: C-delete an interval [v', B]

21: end while

Lett=w/2+f —2N + s+ m. There are at most w/2 additions at Step 13, each of which satisfies A= 1.
For all the other operations we have shown that A = —1. Thus the overall number of operations is less or
equal to w/2+t+w/2=3w/2+f—2N +s+m. [

Theorem 1. Algorithm I is a polynomial-time 3-approximation algorithm for RKS.

Proof. By Lemma 4, the algorithm requires < 3¢ moves. By Corollary 2, that number is at most 34.

Note that the same result applies to multi-chromosomal karyotypes, by summing the bounds for the RKS
problem on each chromosome. Note also that the results above imply also that d € [w/2+f —2N +
s+m,3w/2+f—2N+s+m]

We now present Procedure 2, a heuristic that attempts to improve the performance of Algorithm 1, by
suggesting an alternative to steps 12-21. The procedure assumes that (i) all bricks are non-simple, and (ii)
v <y, for every vt,v7)eM,v- € V- ,vt € V* . In this case, m =0, and the lower bound is reached
only if no additions are made. Thus, Procedure 2 attempts to minimize the number of extra addition
operations performed. For an interval 7, let L(I) and R(J) be the left and right endpoints of I respectively.

5. EXPERIMENTAL RESULTS

In this section, we present the results of sorting real cancer karyotypes, using Algorithm 1, combined
with the improvement heuristic in Procedure 2.

Procedure 2 Heuristic for eliminating non-simple bricks

1: while V' # () do
2 viemax VT
3. forallp>vt,p<BpgV do

4: Fuse any pair of intervals complementing at p.
5: end for
6: if 31,1, where I; =1, and L(I;)=v*, and R(I,) < R(I) € V~ then
7: Let I1,1, be a pair of intervals with minimal length satisfying the above.
8: C-delete I,
9: else if 31,1, where L(I}) =L(,)=v" and R(I;) < R(I;) € V~ then
10: Let 1,1, be a pair of intervals with minimal length satisfying the above.
11: Add the interval [R(I),R(I>)]
12:  else

13: Letu  =min{v- e V- [y~ >v*}
14: Add the interval [u,B]

15: end if

16: end while

5.1. Data preprocessing

For our analysis, we used the Mitelman database (version of November 4, 2008), which contained 57,776
cancer karyotypes, collected from 9,311 published studies. The karyotypes in the Mitelman database
(henceforth, MD) are represented in the ISCN format and can be automatically parsed and analyzed using
the software package CyDAS (Hiller et al., 2005). We refer to a karyotype as valid if it was parsed by
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FIG. 5. The distribution of number of breakpoints (i.e., fusions of non-adjacent bands) per karyotype. ‘‘Sorted
karyotypes” correspond to karyotypes with no repeated breakpoints. “Non-sorted karyotypes™ correspond to karyo-
types with repeated breakpoints. About 35% of all the karyotypes do not contain any breakpoint.

CyDAS without any error. According to our processing, 50,769 (88%) of the records gave valid karyotypes.
Since some of the records contain multiple distinct karyotypes found in the same tissue, the total number of
simple valid karyotypes that we deduced from MD was 62,421.

A karyotype may contain uncertainties, or missing data, both represented by a “?” symbol. We ignored
uncertainties and deleted any chromosomal fragments that were not well defined.

5.2. Sorting the karyotypes

Out of the 62,421 karyotypes analyzed, only 3,957 karyotypes (6%) contained repeated breakpoints. Our
analysis focused on the remaining 58,464 karyotypes. We note that 21,747 (35%) of these karyotypes do
not contain any breakpoint at all. (In these karyotypes, there are no fusions of bands that are not adjacent in
normal chromosomes, but some chromosome tails, as well as full chromosomes, may be missing or
duplicated.) Following our assumptions (see Section 1.2), we broke all the breakpoints in each karyotype.
To avoid over estimation of whole chromosome gains due to events of global changes in the genome
ploidy, we used the ploidy of each karyotype as the normal copy-number (N) of each chromosome. (The
ploidy was computed by the CyDAS parser, based on the the ISCN description of karyotype.) We first
applied Algorithm 1 (without the heuristic), to the fragments of each of the chromosomes in these kar-
yotypes. In 54,903 (94%) of the analyzed karyotypes, this algorithm achieved the lower-bound, and thus
produced optimal sequences. We then applied Algorithm 1, combined with Procedure 2, and the number of
karyotypes that achieved the lower bound increased to 58,434 (99.9%) of the analyzed karyotypes. Each of
the remaining 30 karyotypes contained one or two chromosomes for which the computed sequence was
larger by 2 than the lower-bound. Manual inspection revealed that for each of these cases the elementary
distance was indeed 2 above the lower bound. Hence the computed sequences were found to be optimal in
100% of the analyzed cases.

5.3. Operations statistics

We now present statistics on the elementary operations reconstructed by our algorithm. The 58,464
analyzed karyotypes, contained 86,666 (unique) breakpoints in total. Hence the average number of fusions

TABLE 1. AVERAGE NUMBER OF ELEMENTARY OPERATIONS PER (SORTED) CANCER KARYOTYPE

Breakage Fusion Deletion Duplication All

24 1.5 2.6 1.1 7.6
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(eq. breakpoints) per karyotype is approximately 1.5. The distribution of the number of breakpoints per
karyotype, for all valid karyotypes, including the non-sorted karyotypes (i.e karyotypes with repeated
breakpoints, which are not analyzed by our algorithm), is presented in Figure 5. The most frequent number
of breakpoints after zero is two, which is due to the prevalence of reciprocal translocations in the analyzed
cancer karyotypes. (Indeed, a direct analysis of cancer karyotypes with exactly two breakpoints shows that
75% have a single translocation.) Table 1 summarizes the average number of operations per sorted kar-

yotype.

6. DISCUSSION

In this article, we proposed a new mathematical model for analyzing the evolution of cancer karyotypes,
using four simple operations. Our model was developed following our empirical observation that chro-
mosome gain and loss are dominant events in cancer (Ozery-Flato and Shamir, 2007). That observation
relied on a purely heuristic algorithm that reconstructed for each cancer karyotype a sequence of events
leading to the normal karyotype, using a wide catalog of complex rearrangement events, such as inversions,
tandem-duplications, iso-chromosome creation, etc. Here we attempted to reconstruct rearrangement events
in cancer karyotypes in a rigorous, yet simplified, manner.

The fact that we model and analyze bands and karyotypes may seem out of fashion in an era of CGH
micro arrays and next generation sequencing. While modern techniques today allow in principle detection
of chromosomal aberrations in cancer at an extremely high resolution, the clinical reality is that kar-
yotyping is still commonly used for studying cancer genomes, and to date it is the only abundant data
resource for cancer genomes structure. Moreover, our framework is not limited to cytogenetic banding
resolution, as the “bands” in our model may represent any DNA blocks.

Readers familiar with the wealth of computational works on evolutionary genome rearrange-
ments (Bourque and Zhang, 2006) may wonder why we have not used traditional operations, such as
inversions and translocations, as has been previously done (Raphael et al., 2003). The reason is that
while inversions and translocations are believed to dominate the evolution of species, they form less
than 25% of the rearrangement events in cancer karyotypes Ozery-Flato and Shamir (2007), and 15%
in karyotypes of malignant solid tumors. The extant models for genome rearrangements do not cope
with duplications and losses, which are frequently observed in cancer karyotypes, and thus are not
suitable for cancer genomes evolution. Extending these models to allow duplications results, even for
the simplest models, in computationally hard problems (Radcliffe et al., 2005, Theorem 10). On the
other hand, the elementary operations in our model can easily explain the variety of chromosomal
aberrations viewed in cancer (including inversions and translocations). Moreover, each elementary
operation we consider is strongly supported by a known biological mechanism (Albertson et al., 2003):
breakage corresponds to a double-strand-break (DSB); fusion can be viewed as a non-homologous end-
joining DSB-repair; whole chromosome duplications and deletions are caused by uneven segregation of
chromosomes.

Based on our new model for chromosomal aberrations, we defined a new genome sorting problem. To
further simplify this problem, we made two assumptions that essentially prohibit the occurrence of repeated
breakpoints in cancer karyotypes, and in their intermediates. All the cancer karyotypes we analyzed did not
contain repeated breakpoints. Although we do not have direct evidence about their intermediate karyotypes,
our assumption is supported by the fact that the vast majority (94%) of reported cancer karyotypes do not
contain repeated breakpoints. We presented a lower bound for this simplified problem, and developed a
polynomial 3-approximation algorithm. The application of this algorithm to 58,464 real cancer karyotypes
yielded solutions that achieve the lower bound (and hence an optimal solution) in almost all cases (99.9%).
This is probably due to the relative simplicity of reported karyotypes, especially after removing ones with
repeated breakpoints (Fig. 5).

In the future, we would like to extend this work by weakening our assumptions in a way that will allow
the analysis of the remaining non-analyzed karyotypes. Those karyotypes, due to their complexity, are
likely to correspond to more advanced stages of cancer. Our hope is that this study will lead to further
algorithmic research on chromosomal aberrations, and thus help in gaining more insight on the ways in
which cancer evolves.
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7. APPENDIX: FINDING A MINIMUM-WEIGHT PERFECT MATCHING

In this section, we present an O(n log n) algorithm for finding a minimum-weight perfect matching. For
status 7T (i.e 7= “simple” or T= “non-simple’’) and a set of bricks V, let V;C V denote the set of bricks in
V that are of status 7.

Observation 7. Let v;",v; € V; and v ,v; € V. Suppose v

o If T="“simple” then §(v{ ,v5")) < 8((vy ,vi)) < 8((vs ,vi)).
o If T= “non-simple” then §(v;",vy ) < 8((vi,vi ) < 8((vsF,vi)).

+ — —
<vy and v <v, .

Let v;",v,, € V', and v{ ,v; € V™. Let e;=(v;",v), and ex=(v, ,v; ). We say that e; <e, if
vii <v) and vy <v; .

Lemma 5. Suppose ¢*= min{e € V," xV; |6(e)=0}. Then there is a minimum-weight perfect
matching that contains e*.

Proof. Let M’ be a perfect matching that does not contain e*, with a minimum weight. Let M be a
perfect matching most similar to M’ that does contain ¢*. In other words M differs from M’ by exactly two
edges, one of which is e*. Let e; € M\ M', e, # e*. Suppose ¢* =(v,",v;) and e; = (v, ,v; ), where
v, v,s € VT and vy ,v; € V™. Then M'\ M ={e3,e4}, where e3=(v,",v; ) and es=(v;",v{ ). We
shall prove that Am = 6(M) — 6(M") = 6(e*) + 6(ez) — (6(e3) + 6(eq)) < 0.

If (e;) =0 then clearly Am < 0. Suppose d(e,) > 0. Since 6(¢*) =0,v;" and v, are of the same status,
say T. Let T be the inverse status to 7.

Case 1: v;r and v; have the same status. Then d(e,) =2. If the status of v2+ and v, is T then &(e3) = 6(ey) =1 and thus
Am=0. Suppose the status of v;" and v, is T. It suffices to prove that either d(e3) =2 or d(es) =2. Suppose
d(e3) =0. Recall that ¢* ia a minimal edge in V;© X V; with a zero weight.

e T=“simple”. Then (8(ez)=2)= (v;; <v, ), and 8(e3)=0) = (v; >v, ) and thus vi" <v; and e;=
vy ,viT) < (v ,v[)=¢" Since ¢*,e4 € V7 XV and e* is the minimal edge in V;© x V- satisfying d(e;) =0, it
follows that d(es) =2.

e T=“non-simple”. In this case similar arguments to the case where 7= “‘simple” are used, by simply reversing the
direction of each inequality.

Case 2: v;” and v; have a different status. In this case §(¢*) + 6(e;) =0+ 1 =1, and either d(e3) =1 or d(eq) = 1. Thus

Am <0.

Observation 7 and Lemma 5 immediately imply Algorithm 3, which finds a minimal-weight perfect
matching in BG. It is not hard to verify that this algorithm can be implemented in O(n log n).

Algorithm 3 Finding a minimum-weight perfect matching in the weighted bipartite
graph of bricks

I: M0

2: for all 7= ““simple”,“non-simple” do
3 if 7= “simple” then

4 L, « increasingly ordered V-

5: L, « increasingly ordered V;©

6: else

7 L, « increasingly ordered V"

8: L, « increasingly ordered V-

9:  end if
10:  flag « true
11:  while flag=true and L, # () do
12: vy < the first brick in L;
13: Ll <—L1 \{Vl}
14: while v, is unmatched and L, # 0 do
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15: v, « the first brick in L,
16: Ly — L \ {»:}

17: if vi <v, then

18: M<—MU{(V1,V2)}
19: end if

20: end while

21: if v, is unmatched then
22: flag < false

23: end if

24:  end while

25: end for

26: while 3 unmatched vt € V™ ,v~ € V~ with different status do
27 M—MuU{vt,v)}

28: end while

29: while 3 unmatched vt €¢ VT ,v~ € V- do

300 M—MU{(vT,v7)}

31: end while

32: return M
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Abstract. Chromosomal instability is a hallmark of cancer. The results of this instability can be observed in the
karyotypes of many cancerous genomes, which often contain a variety of aberrations. In this study we introduce
a new approach for analyzing rearrangement events in carcinogenesis. This approach builds on a new effective
heuristic for computing a short sequence of rearrangement events that may have led to a given karyotype. We
applied this heuristic on over 40,000 karyotypes reported in the scientific literature. Our analysis implies that
these karyotypes have evolved predominantly via four principal event types: chromosomes gains and losses,
reciprocal translocations, and terminal deletions. We used the frequencies of the reconstructed rearrangement
events to measure similarity between karyotypes. Using clustering techniques, we demonstrate that in many cases,
rearrangement event frequencies are a meaningful criterion for distinguishing between karyotypes of distinct
tumor classes. Further investigations of this kind can provide insight on the scenarios by which particular cancer
types have evolved.

1 Introduction

It is well known that many cancerous genomes exhibit abnormal karyotypes. The abnormalities found in
these karyotypes include numerical aberrations, i.e. changes in chromosome copy number, and structural
aberrations, i.e. rearrangements within the genome (see Fig. 1). Some of the malignancies, mostly hemato-
logical ones, are associated with specific patterns of aberrations. A classical example of such association is
between the “Philadelphia chromosome” abberation (a specific translocation between chromosomes 22 and
9) and chronic myelogenous leukemia [17,19]. This translocation leads to the formation of the oncogene

BCR-ABL [5].
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Fig.1. A schematic view of an aberrant karyotype (produced by the SKYGRAM converter tool [1]). Chromosomes 1,14, and
18 show structural aberrations, and chromosome 18 shows a numerical aberration. (An ISCN description of this karyotype is
47,XY ,der(1)t(1,18)(p36;921),t(14,18)(q32;921),+der(18)t(12;18)(p11;921),+der(18)t(14;18).)

Over the last few decades, intensive research on chromosomal abberations in cancer has led to the
accumulation of large amount of data on cancerous karyotypes. The largest available public depository of
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such data is the Mitelman database [15], which contains over 50,000 karyotypes collected from over 8,000
publications. In this study we analyze this database. Our goal is to understand the main abberation types
and their frequency in different cancers. Our hope is that such studies will provide insights and better
understanding of the evolution of karyotypes in specific cancer types.

Traditionally, karyotypes have been constructed using chromosome staining methods, mostly G-banding.
SKY [22] and M-FISH [25] are relatively new molecular cytogenetic techniques that permit the simulta-
neous visualization of all the chromosomes in different colors, considerably improving the detection of
material exchange between chromosomes. The Mitelman database contains primarily karyotypes based on
G-banding. The resolution and the detectable level of details in such karyotypes is lower than what can
be observed with SKY and M-FISH or with novel high throughput methods (e.g. array-based CGH [24]
and ESP [26]). Nevertheless, we chose to focus on the Mitelman database since it is the largest collection
of cancerous karyotypes.

Karyotypes are usually described using the ISCN nomenclature [14]. In this system, every aberrant
chromosome is described using specific rearrangement and numerical events, e.g., translocations, inversions,
deletions, and duplications. Although ISCN attempts to describe the correct set of events leading to the
observed karyotypes, it has almost no ability to do so when there are overlapping rearrangements, e.g. a
chromosome involved in two translocations, each at a different position. Moreover, while the inference of
the events is an easy task for many modestly rearranged karyotypes of hematological disorders, it can be
a computationally hard task when the karyotypes are complex, as often happens in solid tumors.

There are many computational studies analyzing large data sets of cancerous genomes. Most of these
analyses consider a cancerous genome as a collection of chromosomal abberations easily computed from
the data. For example, in a series of studies, reviewed in [12], Hogland et al. analyzed cytogenetic data
from individual tumor types, by inspecting various parameters, including the number of gains or losses of
genomic fragments, the number of aberrations, and the frequency at which bands are involved in breaks.
In another study [21], Sankoff et al. compared the distributions of cancer-related breakpoints, derived
from the Mitelman database, and evolutionary breakpoints, derived from a human-mouse comparative
map. Another important branch of computational studies searches for statistical dependencies between
chromosomal aberrations, usually in the form of tree or directed acyclic graph, such as [6,7,12, 11].

Chromosomal aberrations observed in cancer are by and large somatic and thus non-inheritable. When
a rearrangement occurs in a genome of a germ-line cell, it can be inherited by offsprings. Indeed, the
comparison of genomes of related species reveals that genome rearrangements play a significant role during
the evolution of species. In a pioneering paper [20], Sankoff raised the problem of computing a shortest
sequence of rearrangement operations between two given genomes, when genomes are represented by linear
orders of oriented genes. Over the last fifteen years, this problem was intensively studied for many types
of rearrangement events and their combinations, including inversions, translocations, block exchanges,
deletions and insertions (see [4] for a review). All these studies ignored the ploidy in the genomes, i.e., the
number of copies of each chromosome. Since numerical aberrations are prevalent in cancer, every model of
cancer rearrangements must contain both numerical and structural events. This makes the reconstruction
task more complicated and prevents direct use of results from the rich algorithmic literature on germ-line
rearrangements.

The main purpose of this study was to estimate the prevalence of specific types of genome rearrange-
ment events in cancer karyotypes. For this purpose we developed a new efficient heuristic for reconstructing
a sequence of events that best explain the transformation from the normal karyotype into a given cancer
karyotype. We applied this algorithm to over 40,000 karyotypes published in scientific literature, and col-
lected statistics on event frequency across cancer types. The algorithm is deliberately simplistic, mimicking
the process of detecting obvious events and “undoing” them, going back from the given karyotype towards
the normal. As such, it does not guarantee finding the shortest solution or finding any solution. However,
we reasoned that most reported karyotypes are of limited complexity and thus may be amenable to such
approach. Reassuringly, over 98% of the karyotypes were solved by this method. Our study provides for the
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first time a broad picture of event frequency in hematological and solid cancers. Our analysis shows that
chromosome gains and losses, reciprocal translocations, and terminal deletions, dominate the evolution of
cancer karyotypes. By using the event frequencies in each karyotype as its profile, we show that many dif-
ferent cancer types have clearly distinguishable profiles, which can be meaningful for further understanding
of the cancers.

This paper is organized as follows. In Section 2 we provide a short background on chromosome aberra-
tions in cancer. In Section 3 we present some basic statistics regarding the complexity of cancer karyotypes.
In Section 4 we describe our heuristic for reconstructing genome rearrangement events for a given kary-
otype. The analysis of the reconstructed events is reported in Section 5. For lack of space, some details are
deferred to an appendix.

2 Background

2.1 Mechanisms for chromosomal aberrations

Many molecular mechanisms are involved in the formation of chromosomal aberrations. The following
mechanisms are reviewed in [2,9, 16, 18].

A double strand break (DSB) is one of the frequent lesions in DNA. The repair of DSBs in eukaryotic cells
is carried out by two main pathways: non-homologous end joining (NHEJ) and homologous recombination
(HR). NHEJ repairs DSBs by directly re-ligating DNA ends, which may create a deletion if sequences
surrounding the lesion were lost. Another potential risk of NHEJ is the ligation of two non-matching
broken ends, leading to genome rearrangements. HR repairs breaks through interaction of a free DNA end
with an intact homologous sequence, which is used as a template to copy missing information prior to re-
ligation. Because of the ability to fill in gaps by copying information from a sister chromatid or homologous
chromosome, HR runs the risk of generating rearrangements through interaction of similar sequences on
non-homologous chromosomes or regions. In particular, HR may extend to the end of a chromosome,
resulting in a duplication of the whole “tail” of that chromosome.

Another possible lesion to the DNA is the loss of a telomere. The telomeres protect the ends of chromo-
somes from fusion with other ends. Thus a chromosome end that lacks a functioning telomere tends to be
adhesive and may initialize a breakage-fusion-bridge process [13]. Stabilization of the genome occurs only
through the net gain of a telomere, either through duplications of protected chromosome ends, or by direct
telomere addition. Indeed, telomerase activity has been detected in the majority of malignant epithelial
tumors [8].

A direct cleavage through a centromere generates two telocentric (i.e. single-arm) chromosomes, each
containing a portion of the kinetochore (the functional component of an active centromere). Non-disjunction
of sister chromatids of a telocentric chromosome results in the formation of an isochromosome or isoderiva-
tive, i.e. a chromosome with two identical, mirror-image arms.

As elaborated above, DSBs, telomeres dysfunction and centric fissions may lead to structural aberra-
tions. Numerical aberrations may occur when genes involved in chromosome segregation or cytokinesis are
deregulated. In particular, failure in cytokinesis (e.g. endomitosis) and multipolar mitoses may alter the
ploidy of the genome.

2.2 The Mitelman database

The “Mitelman database of chromosome aberrations in cancer” [15] (henceforth abbreviated MD) contains
the description of cancer karyotypes manually culled from the literature over the last twenty years. For our
analysis we used the version of March 27, 2007, which contained 53,573 cancerous karyotypes, collected
from 8748 published studies. The karyotypes in the database are represented in the ISCN format and can
be automatically parsed and analyzed by the software package CyDAS [10]. We shall use here a simplified
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version of ISCN for representing karyotypes (see Appendix A). We refer to a karyotype as wvalid if it can
be parsed by CyDAS without any errors. According to our processing, 47,045 (87.8%) of the records were
valid karyotypes.

2.3 Complex karyotypes

When the cytogeneticist analyzes a sample, several cells are checked. Each abberation described in a
cancerous karyotype must be present in at least two cells in the described sample. In some cases the cell
population may be non-homogeneous, and contain cells with several distinct karyotypes, resulting from
evolution of the cell population during the development of the cancer. A homogeneous cell sample is
described by a simple karyotype, and a non-homogeneous one has a compler karyotype, which consists of
several karyotype species. In this study we derive simple karyotypes from complex karyotypes and analyze
each of them independently.

About 17% of all valid karyotypes in MD are complex. The total number of simple (valid) karyotypes
that we deduced from MD is 57941 (33% of which originate from complex karyotypes). For the rest of this
paper we assume that every analyzed karyotype is simple.

3 Basic statistics on karyotype complexity

In this section we present some simple statistics based on the MD regarding the complexities of cancerous
karyotypes. Human malignancies can be divided into two main categories: hematological disorders and
solid tumors. Our first step was to distinguish between hematological malignancies and solid tumors.
The type of neoplasia can be identified by its morphology, i.e. the cancer classification based on neoplasm
histology, and its topography, i.e. the tumor site (applicable only for solid tumors). Based on the morphology
and topography descriptors of each karyotype, we partitioned the karyotypes in the database into three
categories:

e HEMA: hematological neoplasms, e.g.: leukemia, myeloma, lymphoma.
e BENIGN: solid benign tumors, e.g.: meningioma, leilomyoma, lipoma.
e SOLID: solid malignant tumors, e.g.:adenocarcinoma, Wilms tumor, malignant melanoma.

The HEMA category covers 71.2% of the valid simple karyotypes derived from the MD, while SOLID
and BENIGN cover only 22.9% and 5.9% respectively. In the following, we compare the distributions of
simple variables defined on karyotypes between these categories. We define a chromosome as abnormal if
it does not match any chromosome in the standard normal karyotype. As expected, the distribution of
the number of abnormal chromosomes per karyotype had the longest tail for solid tumors, while benign
and hematological karyotypes seldom have more than five abnormal chromosomes (Fig. 5-a). The number
of fragments (maximal contiguous interval in the normal) per an abnormal chromosome (Fig. 5-b) had a
similar distribution across categories, with less than 1% of the abnormal chromosomes having four or more
fragments. We defined karyotype ploidy level as ”'2"311j, where n is the total number of chromosomes. As
expected, solid tumors tended to have higher ploidy, reflecting their higher complexity (Fig. 5-¢). Multicen-
tric chromosomes (i.e. chromosomes with more than one centromere) are considered non-stable, as each of
the centromeres in these chromosomes may be passed to opposite poles in the mitotic anaphase. Interest-
ingly, all three categories had some 2-4% of karyotypes with multicentric chromosomes (Fig. 5-d). Overall,
the difference between the categories are quite subtle. Karyotypes of solid tumors, in particular malignant
solid tumors, tend to have more complex abnormal chromosomes and ploidy changes, in comparison to
hematological malignancies.

Do the statistics above - as well as those we shall report later - reflect the distributions of properties
in cancer karyotypes “in the real world”? The answer is probably no. For example, although up to 80%
of all human malignancies are solid, most of the karyotypes in MD belong to hematological malignancies.
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One major reason for this bias is the difficulty in cytogenetically analyzing solid tumors. Solid tumor
genomes often demonstrate poor visual quality during metaphase. Moreover, the karyotypes of solid tumors
are often much more complex and thus more difficult to interpret. In addition, the database contains
reported karyotypes from the literature, and there is a bias in this reporting. For example, the hematological
karyotypes in MD are probably of higher complexity than those simple cases seen regularly in the clinic,
which are not deemed publish-worthy as they are too simple or fully understood. While this means that
the statistics we are collecting should be interpreted with caution, we believe they can still be useful
in understanding how to model cancer evolution on the karyotype level and how different classes and
subclasses differ.

4 A sorting algorithm

In this section we describe an algorithm, which we call SKS (Simple Karyotype Sorter), for reconstructing
the sequence of rearrangement events (structural and numerical) that have led from the normal karyotype
to a given cancer karyotype. We call this process sorting the karyotype. The SKS algorithm aims to mimic
the intuitive way a cytogeneticist would perform this task, i.e., starting with the cancer karyotype and
going backwards towards the normal karyotype one event at a time, taking the simplest and most evident
step whenever possible. The SKS algorithm is a heuristic and does not guarantee finding an optimal or
even finding any solution sequence when one exists. In Section 5 we shall report on the performance of this
heuristic on the MD karyotypes.

4.1 An abstract data structure of a karyotype

A chromosome is indefinite if its description includes unknown items. For example, 7—7 and 1pter—1p? are
indefinite chromosomes. Note that a definite chromosome may contain uncertain items, e.g. Ipter—1p712.
Similarly, a karyotype is definite if it contains only definite chromosomes. In what follows we analyze only
definite karyotypes, and ignore any uncertainties, e.g. 1p?12 will be considered as 1p12. As can be expected,
the percentage of indefinite karyotypes in malignant solid tumors (39.6%) is higher than in hematological
neoplasms (28%), and is the lowest for benign tumors (24.2%). Hence, the overall number of karyotypes
we analyze here is 40,298.
We represent a karyotype K by the following abstract data structure:

o Abnormal_Chrs(K): A set of distinct, orientation-less, abnormal chromosomes. For each abnormal chro-
mosome in Abnormal_Chrs(K) we maintain its multiplicity and list of fragments.

e multiplicity: a mapping assigning to each normal chromosome id (i.e. 1, ... ,22, X, Y) its multiplicity
in K.

4.2 Orphan fragments

Denote by Frags(K) the multiset of fragments found in Abnormal_Chrs(K). A fragment in Frags(K) is
orphan if there is no other fragment in Frags(K) from the same normal chromosome. For example, suppose
Abnormal_Chrs(K) = {9pter — 9q32::1p36 — 1pter, ldqter — 14p21::9q32 — 9qter, 14p21 — l4qter}
then Frags(K) = { 9pter — 9932, 9932 — 9qter, 1l4qter — 14p21 x 2, 1p36 — Ipter} and K contains
exactly one orphan fragment: 1p36— 1pter.

The easiest way to explain an occurrence of an orphan fragment is by a translocation event followed
by a loss of one of the two resulting abnormal chromosomes. For an acentric orphan fragment there is
an alternative, less conservative explanation: The orphan fragment resulted from a duplication during a
process of HR DSB-repair (recall Section 2.1). In Section 5.2 we describe some statistics regarding acentric
orphan fragments that suggest the latter explanation is more likely for many cases.
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4.3 Algorithm SKS

The SKS algorithm computes a sequence of events S = pi,...,p: that transforms a normal karyotype
into a given (cancerous) karyotype K. Starting from K and applying the corresponding inverse operations
S =p, Lo ,pl_l generates a normal karyotype. The SKS algorithm works in two phases. First, all the
abnormal chromosomes are sorted. Then, simple numerical operations “correct” the multiplicities of the
normal chromosomes.

We need a few definitions first. A fragment is centric if it contains a centromere, and acentric otherwise.
Let f and g be two fragments from the same normal chromosome. The concatenation f::g is an adjacency
if f and g have exactly one shared band - which is their fused ends. For example, 1pter—1pl1::1pl11—1q22
is an adjacency. In this case, f and g are said to be complementing. Fragments f, g € Frags(K) are uniquely
complementing if no other fragment h € Frags(K) is complementing to f or g. The types of rearrangement
events that we consider will be introduced in the description of algorithm.

Initialization. We first detect simple changes in the karyotype ploidy as follows. Let p and g be the the
median and greatest common divisor of all distinct chromosome multiplicities (both normal and abnormal)
respectively. Clearly, i > g. Suppose g > 1. In this case we divide all chromosome multiplicities by d = g.
A single exception is when y = g and g is even - in this case we divide by d = ¢g/2 (instead of by g). If the
chromosome multiplicities were changed (i.e. d > 1) - we set S = {p}, where p is a corresponding PLOIDY
CHANGE event.

Phase I: Sorting the abnormal chromosomes. The abnormal chromosomes are sorted by repeatedly
detecting and undoing one of the following events. The phase ends successfully if there are no more abnormal
chromosomes, and ends with failure if there are still abnormal chromosomes but no additional event is
detected.

e CHR GAIN: A chromosome gain is a duplication of a complete chromosome. To detect such event, seek
an abnormal chromosome, chr, whose multiplicity, m, is greater than 1. Perform the inverse operation,
i.e., the removal of one copy of chr, decreasing its multiplicity to m — 1.

e ISOCHROMOSOME CREATION: Detect any iso-chromosome or iso-derivative (see Sec. 2). Perform
the inverse operation, by removing one of the identical arms.

e TRANSLOCATION and FISSION: A translocation is the exchange of tails between two chromosomes;
a fission is the split of one chromosome into two contiguous segments. Let f and g be two uniquely
complementing fragments found on different chromosomes. Then there are two possible cases. In the
first case, the complementing ends of both f and ¢ correspond to chromosome ends. In this case, a
FISSION event is detected and the inverse operation is a simple fusion of f and ¢ in their complementing
ends (i.e. chromosome fusion). The latter case is when at least one of the complementing ends of f
and ¢ is fused to another fragment. In this case, a TRANSLOCATION event is detected and the inverse
translocation that fuses the complementing ends of f and g is applied to K.

e INVERSION: An inversion is the reversal of a DNA segment within a chromosome. This event is
detected for a pair of uniquely complementing fragments, f and g, on the same chromosome, that have
different orientation. The inverse operation is an inversion that fuses the complementing ends of f and
g. For example, suppose the chromosome containing f and g is of the form f::hi::—g::hg, where —g
is the inverse of g and f :: g is an adjacency. In this case, the detected INVERSION event inverts the
segment hi::—g.

e TANDEM DUP: A tandem duplication creates two identical consecutive fragments on the same chro-
mosome creating h = f1 = fo i1 fo 1 f3. For example, 1pter—1q44::1q31—1qter is a tandem duplica-
tion since 1pter—1q44 = 1pter—1q31::1q31—1q44 and 1q31—1qter = 1q31—1q44::1q44—1qter. When
identifying such a repetition, simply remove it, forming h = f1 :: fo :: f3.
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e INTERNAL DELETION: An internal deletion of a fragment within a chromosome is discovered as
follows. Detect a non-adjacency pair of concatenated fragments, f::g, for which there exists a fragment
h such that (i) f::h and h:g are adjacencies, and (i) h does not contain in its span any fragment in
Frags(K). Replace f::g by fragment [’ = f::h:g.

e TAIL DELETION: A deletion of a chromosome tail (acentric end fragment) is detected by identifying an
abnormal chromosome end lacking a pter or a qter, and whose complementing fragment, f, is (i) acentric
and (7i) does not contain in its span any fragment in Frags(K). To undo the operation, concatenate f
to the chromosome’s end such that a new adjacency is formed.

e ACENTRIC ORPHAN TAIL: Detect an acentric orphan fragment f that is found on one end of an
abnormal chromosome. Eliminate this aberration by a removal of f.

e CENTRIC ORPHAN FUSION: Detect a multicentric chromosome chr containing a centric orphan f.
To undo the operation, perform a fission of chr near f such that each of the resulting two chromosomes
contains a centromere.

Phase II: Gain/loss events and ploidy changes. If this phase is reached the current karyotype K
satisfies Abnormal_Chrs(K) = (). Define u(K) as the median multiplicity of all chromosomes in K (for
gain/loss computations we consider the sex chromosomes as homologs). For any chromosome chr whose
multiplicity differs from p(K), adjust its ploidy to u(K) by CHR LOSS or CHR GAIN events. Then, when
the ploidy of all chromosomes is p(K), adjust the ploidy globally to 2 by prepending a corresponding
PLOIDY CHANGE event to S.

5 Experimental results

We ran algorithm SKS on each of the 40,298 definite simple karyotypes derived from MD. We say that
a karyotype is sortable if SKS transforms it successfully to the normal karyotype. Table 1 shows that the
vast majority (>98%) of the karyotypes are sortable. Hence, our rather naive heuristic, which makes only
straightforward moves, performs very well on the MD karyotypes.

Table 1. Sortability of MD karyotypes. Numbers are percent out of the karyotypes in each category.

HEMA | BENIGN|SOLID| ALL
Sortable - numerical aberration only | 21.8% | 41.1% | 43.8% |27.4%
Sortable - with structural aberrations| 76.7% 56.7% 54.3% |71.0%
Not sortable 1.5% 2.2% 1.9% | 1.7%

5.1 Event rates

Figure 2-a presents the average number of each type of event per karyotype in our reconstruction. The
most prevalent reconstructed events in all categories are chromosome gains and losses, tail deletions and
translocations. In contrast, most other events are relatively rare, occurring in a tenth of the karyotypes or
even less. For example, the translocation rate is 0.54 per karyotype, while inversion rate is only 0.06'. Note
that while the events of chromosome gain and loss and tail deletion are dominant in the arrangement of
malignant solid tumor karyotypes, translocations are relatively more frequent in hematological karyotypes.

Translocations are called reciprocal of both of the exchanged fragments are non-empty. Our analysis
shows that most (>96%) reconstructed translocations are reciprocal (Fig. 2-b). Additional support to this
observation is obtained by analyzing the breakpoint graphs of karyotypes (Appendix B). Interestingly, non-
reciprocal translocations are more than twice as common in solid tumors than in hematological karyotypes.

! The surprisingly low inversion rate should be taken with caution: clearly, only relatively long inversions covering several
bands are detectable in G-banded karyotypes in MD.
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Fig. 2. Frequencies of each rearrangement event. Numbers are based on applying the sorting algorithm to all valid simple karyotypes
in the database. (a) The average number of events per karyotype. (b) Average number of reciprocal and non-reciprocal translocations.

5.2 The origin of ACENTRIC ORPHAN TAILS

For a fragment f € Frags(K), let chr(f) be the normal chromosome of f. Figure 3 presents the distributions
multiplicity(chr(f)), for centric orphan fragments and for acentric orphan tail fragments. For comparison,
we include the distribution of chr(i), i € {1,...,22}, after all abnormal chromosomes have been sorted
(i.e. at the completion of Phase I of SKS algorithm). As can be expected, the ploidy of normal autosomal
chromosomes is mostly 2. The ploidy of the normal chromosome of centric orphan fragments is usually
1. Thus the most reasonable explanation is that centric fragments evolved from normal chromosomes by
translocations or tail deletions. Surprisingly, the ploidy of the normal chromosomes of acentric tail orphans
is mostly 2. Since most (98%) of these acentric orphan fragments have one complete end (i.e. pter or gter),
this suggests that many of these acentric orphan fragments are the result of a tail duplication event, caused
by the HR DSB repair mechanism (see Section 2.1). The alternative scenario is a translocation event, and
an additional event of chromosome gain. The latter explanation is more complex and hence less likely.

HEMA BENIGN SOLID
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Fig. 3. Orphans and their parent chromosomes. The plots show the distributions of the multiplicity of normal chromosomes corre-
sponding to acentric orphan tail fragments, and to centric orphan fragments. For comparison, each plot also includes the multiplicity
of normal (autosomal) chromosomes, after all abnormal chromosomes have been sorted. The distributions are computed separately
for categories HEMA, BENIGN and SOLID.
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5.3 Rearrangement events as characteristics of cancer classes

Are the events that constitute the history of karyotypes, as reconstructed by the SKS algorithm, meaningful
to understanding and distinguishing the different cancer types? To answer this question, we defined several
similarity measures between distinct karyotypes, using the event rates reconstructed by the algorithm, and
used them to compare cancer classes. Our analysis focused on karyotypes from 14 cancer classes, containing
60-885 karyotypes each (See Tables 2 and 3 for the class descriptions and detailed results). In our tests
below we called a test significant if it attained p-value < .0001, after Bonferroni correction for multiple
testing.

Clustering cancer classes by their event profiles. For a karyotype K we define its event profile,
9(K), as a vector whose entries are the frequencies of each event in K (event order is as in Fig. 2a, bottom
to top). For example, v(K) = (2,0,2,1,0,1,0,0,0,0,0,0) for the karyotype K in Fig. 6. Given a set of
karyotypes we define the average event profile as the coordinate-wise average of the event profiles of the
karyotypes. Using Pearson correlation as a similarity measure, we applied an average linkage hierarchical
clustering algorithm [23] on the average profiles of the 14 classes. As can be seen in Fig. 7, related cancers
tend to cluster close to each other, implying they have similar average event profiles.

Partitioning karyotypes by event profiles. Let C'; and C5 be two distinct cancer classes, and let
{2 = C1 U (5. Can the karyotypes in {2 be distinguished, as to which belongs to C; and which belongs to
C3, by their event profiles? We partitioned (2 into two clusters, D; and Dy (£2 = Dy U Ds), by applying k-
means clustering [23], with & = 2, on the event profiles in (2, and using Pearson correlation as the similarity
measure. We measured the p-value of the correspondence between the new partition, {D1, D2}, and the
original one, {C1, C2}, using the hypergeometric distribution (see Appendix C for details). We performed
this test for all (124) = 91 pairs of classes. 26 (28.6%) of the tested pairs were significant.

Partitioning karyotypes by total event frequency. We define NEvents as the total number of re-
constructed events for the karyotype (i.e., the sum of the entries in 9(K)). Given 2 = C; U Cy as before
and an integer ¢, let Dgt) = {K € 2 : NEvents(K) < t} and Dét) = {K : NEvents(K) > t}. We com-
puted the p-value of the match between {Dgt), Dét)} and the original partition, for ¢t = 0,...,9. 45 of the
91 pairs (49.5%) had a significant NEvents-based partition. We repeated the same test with the NAPT
score [12], which is the number of aberrations in the karyotype’s ISCN description?. NEvents and NAPT
are different indicators of a karyotype’s complexity. Interestingly, although NAPT is much less exact than
NEvents, 53.8% of the tested pairs had a significant NAPT-based partition. A possible explanation is that
the relatively large differences between the classes are captured better by a cruder measure. On the other
hand, there is meaningful additional information in individual events. For example, 76.9% of the significant
partitions based on event profiles had p-values lower than the corresponding partitions based on NEvents
and NAPT, and 6 (14.3%) of the non-significant NAPT-based partitions had corresponding significant
partitions based on event profiles.

Partitioning karyotypes using a single type of event. For each type of event, e, let SEvent(e) be the
number of reconstructed events from type e. For example, SEvent(CHR GAIN) is the number of CHR GAINSs
(i.e. the first entry in the event profile). Our last test was to partition {2 using SEvent(e), for each type
of event e, in the same fashion as above. Due to the relatively low values, we checked only five thresholds
(t =0...4) for each type of event. Surprisingly, 81.3% of the tested pairs had a significant SEvent-based
partition. The lowest p-values were achieved for partitions based on TRANSLOCATIONs (35.6%), CHR
LOSSes (27.4%), and CHR GAINs (16.9%).

2 The NAPT score is calculated by simply counting the number of comma-separated tokens in the ISCN description, disre-

garding the first two tokens that correspond to the total number of chromosomes and the sex chromosomes description. For
example, the NAPT score for the karyotype in Fig. 1 is 5.
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6 Conclusion

In this paper we presented novel methods for analyzing and comparing aberrant karyotypes observed in
hematological malignancies and in solid tumors cells. We presented a simple yet effective heuristic (the
SKS algorithm) for sorting aberrant karyotypes. On over 40,000 karyotypes of the Mitleman database, the
algorithm attained a very high success rate (98%) in sorting the karyotypes. We believe that this shows
that on such karyotypes of moderate complexity, the set of rearrangement events reconstructed by our
algorithm (though not necessarily their order) is a close approximation of the actual gross chromosomal
rearrangements that occurred in their evolution. Our analysis implies that the evolution of aberrant kary-
otypes in somatic cells is dominated by four events: chromosome gains and losses, reciprocal translocations
and terminal deletions. The prevalence of chromosome gains and losses is expected, since these events
are more easily detected than other more local events, e.g. inversions. Nevertheless, these results empha-
size that duplication and deletion events must play a key role in any computational modeling of genome
rearrangements in cancer.

By using clustering techniques, we demonstrated that karyotypes belonging to the same cancer class
have characteristic event rates, since they often have more similar event frequencies than karyotypes belong-
ing to different classes. Moreover, this suggests that carcinogenesis involves different pathways of gaining
chromosomal aberrations for different cancer classes, and further analysis may shed light on the events
characterizing different pathways.

One of the goals of this study was to lay the factual foundations for proposing a mathematical model of
somatic genome rearrangements that will allow an accurate, non-heuristic systematic analysis of aberrant
karyotypes. The simplest model that can generate the spectrum of the aberrations observed in cancerous
karyotypes includes four types of events: chromosome gain and loss, breakage, and fusion. For example,
a reciprocal translocation can be mimicked by two breaks followed by two fusions. While this simplistic
model favors non-reciprocal translocations over reciprocal ones, our study observed the opposite preference
in the MD karyotypes. Thus, a more realistic model should consider reciprocal translocations as atomic
operations, to reflect the increased probability of their occurrence. Another operation that is worth con-
sidering is the duplication of a segment in an existing chromosome (see Section 5.2). Our hope is that a
computational investigation of many reconstructed rearrangement sequences will help in pointing out the
dominant scenarios through which chromosomal aberrations evolve in specific types of cancer.
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Appendices
A Formal representation of karyotypes

A chromosome is divided by its centromere into two arms: a short arm, denoted p, and a long arm,
denoted ¢. Every chromosome arm is partitioned into bands. The bands in each arm are numbered, starting
from the centromere, whose assigned to the number 10. The symbol ter indicates the (normal) end of a
chromosome arm. A position in the chromosome is identified by three fields: (i) chromosome, (i) arm, and
(7ii) band designation (either a number or ter). For example, 1p11 corresponds to band 11 in the long arm
of chromosome 1; 2p10 and 2q10 both refer to the centromere of chromosome 2; 3pter is the (normal) end
of the short arm of chromosome 3.

We refer to a chromosome as abnormal if its structure is abnormal. Abnormal chromosomes are defined
by their band composition. In the following, we describe abnormal chromosomes in a similar (but not
identical) manner to the detailed system of ISCN [14]. The term fragment refers to a continuous interval of
a normal chromosome, identified by the positions of its two ends. When a fragment appears in a chromosome
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it has an orientation, denoted by an arrow symbol — between its two ends. For example, 2p12—2qter is a
fragment of chromosome 2 that starts in band 2p12 and ends in band 2qter. Two fragments are identical
if the corresponding chromosome intervals are identical (disregarding orientation). A double colon (::)
indicates a concatenation of two fragments. For example, a concatenation of 1p36—1pter to the end of
Ipter—9q32 is denoted as 9pter—9q32::1p36—1pter. An abnormal chromosome is presented as a list a
concatenation of fragments?.

The description of a karyotype may contain question marks (7) to indicate uncertainties or unknown
items. A question mark may be placed either before an uncertain item, or it may replace an unknown
chromosome, arm, or band designation. For example, 1p?12 indicates a questionable identification of band
number; 5p7? represents an unknown band designation.

B Using cycles and paths for analyzing translocation types

For a cancerous karyotype K we define its breakpoint graph, G(K), similarly to [3], as follows. The vertices
of G(K) are the ends of the fragments in Frags(K). The edges in G(K) are colored either black or gray.
Black edges correspond to fused ends in K. Grey edges correspond to complementing ends. For an example,
see Fig. 6-c-1.

Let S be a sequence of events reconstructed for K by SKS. Each of the inverse operations for INVER-
SION, TRANSLOCATION, and FISSION events, forms one or two new adjacencies by fusing complementing
ends. Let G(K, S) be the subgraph of G(K) induced by (i) the set of black edges, and (i) the grey edges
corresponding to pairs of fused complementing ends during the reconstruction of INVERSION, TRANSLO-
CATION, and FISSION events in S. See Fig. 6-¢c-2 for an example. It follows that G(K,S) is composed of
simple cycles and paths. The length of a cycle or path in G(K,.S) is the number of grey edges in it. Note
that while a path of size [ corresponds to [ reconstructed events, a cycle of the same length corresponds
only to I — 1 events. We define the caliber of a path or cycle to be the number of corresponding events.
A path or a cycle with caliber greater than 1 imply a breakpoint reuse, i.e. a break of a formerly created
fusion. Figure 4 depicts the average numbers of cycles and paths in a karyotype, for each caliber. It is quite
clear that cycles are much more prevalent than paths, even in solid tumors, which indicates that reciprocal
translocations are indeed more favored than non-reciprocal ones. Moreover, both structures, cycles and
paths, usually have a small caliber.

C Measuring the significance of a partition

In this section we describe the standard hypergeometric score that was used for evaluating the match of
two partitions. Let {C1,Cs} and {D1, D2} be two partitions of 2. Let n = [2], ny = |Cy|, m = |Dy|,
and k = |C1 N Dq|. Hence k < min{n;,m}. The significance of the correspondence between {D, D2} and
{C1,Cs} can be evaluated by the probability of having |C’ N D1| > k where C’ C {2 is randomly chosen
and |C’| = ny. This probability is given by:

min{ni,m} (m) (n—m)

p(n7m7n17k) = Z %
= W)

ni

The smaller p(n,m,ny, k), the more significant the correspondence between D; and C;. To compare D
with Cy, we compute p(n, m,n —ny,m — k). The final p-value for the partition {D;, D2} is thus

p-value({D1, Do}, {C1, C2}) = 2min{p(n, m,n1, k), p(n, m,n —ni,m — k)}.
(The multiplier 2 is due to Bonferroni correction for multiple testing.)

3 The exception for this are homogenously staining regions (HSRs), which are regions that contain multiple copies of small
DNA fragments. Thus a stained HSR is uniform in appearance (no bands) and its content cannot be identified by cytogenetic
methods.
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Fig. 4. The distributions of the average numbers of cycles and paths in a karyotype.
Table 2. Cancer classes.
class ID|class name #karyotypes
27 |HEMA-Acute monoblastic leukemia without differentiation (FAB type Mb5a) 332
28 |HEMA-Refractory anemia with excess of blasts 885
31 |HEMA-Refractory anemia 875
34 |HEMA-Refractory anemia with ringed sideroblasts 230
36 |HEMA-Acute myeloblastic leukemia with minimal differentiation (FAB type MO) 286
43  |SOLID-Adenocarcinoma-Breast 590
52 |HEMA-Acute monoblastic leukemia with differentiation (FAB type M5b) 196
58 |HEMA-Refractory anemia with excess of blasts in transformation 424
70  |SOLID-Adenocarcinoma-Kidney 859
111 |BENIGN-Benign epithelial tumor special type-Breast 97
112 |SOLID-Adenocarcinoma-Large intestine 208
118 |BENIGN-Adenoma-Large intestine 149
143 [SOLID-Adenocarcinoma-Ovary 119
577 |BENIGN-Benign epithelial tumor NOS-Breast 60
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Table 3. Partition p-values for pairs of cancer classes in Table 2. The p-values presented are after the Bonferroni correction for
multiple testing.

Class 1|Class 2|event profile] NEvents | NAPT SEvent
27 28 1.00E+00 | 3.11E-03 | 7.11E-03 | 3.32E-69
27 34 1.13E-04 | 7.99E-03 | 5.15E-03 | 1.85E-46
27 43 4.50E-13 | 4.52E-03 | 2.05E-05 | 8.04E-37
27 58 1.18E-06 |1.00E4-00|1.00E+00| 3.49E-30
27 111 2.82E-01 |3.38E-01 | 5.89E-02 | 1.01E-10
27 118 1.48E-31 | 5.12E-05 | 8.54E-05 | 4.73E-43
27 577 8.92E-23 | 1.02E-14 | 5.15E-18 | 1.02E-24
28 34 1.00E+00 (1.00E+00{1.00E+00{1.00E+00
28 43 | 1.00E+00 | 3.33E-06 | 1.07E-02 | 3.41E-16
28 58 | 1.00E+00 |4.17E-01 | 7.66E-01 | 1.97E-03
28 111 | 1.00E+400 |1.00E4-00]| 3.35E-02 | 6.97E-03
28 118 | 1.36E-01 |3.33E-07|9.73E-08 | 1.58E-23
28 577 | 1.00E+00 | 4.47E-18 | 8.04E-25 | 5.11E-19
31 36 2.57TE-02 | 1.49E-04 | 2.84E-06 | 8.75E-21
31 52 | 1.00E+00 | 2.48E-01 |1.00E+00| 1.72E-50
31 70 1.56E-15 | 7.16E-74 | 1.05E-92 | 1.96E-92
31 112 1.06E-08 | 2.49E-22 | 5.80E-22 | 8.68E-22
31 143 1.00E-13 | 6.67E-22 | 7.74E-27 | 1.92E-20
34 36 2.59E-01 | 6.59E-01 |{1.00E4-00| 7.52E-08
34 52 1.00E+00 | 3.78E-01 [1.00E+00]| 2.48E-26
34 70 1.90E-01 |1.21E-25]|2.68E-25 | 1.76E-29
34 112 8.69E-04 | 8.19E-07 | 8.94E-07 | 1.31E-08
34 143 | 1.93E-03 | 1.13E-09 | 2.63E-10 | 6.71E-09
36 43 | 1.00E+00 | 3.29E-02 | 5.67E-01 | 5.60E-01
36 58 | 1.00E400 |[1.00E+400(1.00E+00| 2.54E-02
36 111 | 3.60E-01 |1.00E+00]|3.15E-01 |1.00E+00
36 118 6.02E-09 |1.24E-04 | 1.69E-04 | 2.70E-10
36 577 | 1.00E400 |4.91E-14 | 6.17E-17 | 4.32E-17
43 58 1.17E-01 | 7.66E-01 | 1.26E-01 | 3.42E-10
43 111 | 1.00E4-00 |{1.00E4-00{1.00E+00{1.00E+00
43 118 | 1.00E4-00 | 2.17E-02 | 1.32E-04 | 4.09E-14
43 577 3.10E-10 |2.27E-10|5.85E-16 | 1.36E-15
52 70 2.39E-63 | 9.88E-31 | 1.96E-31 | 1.46E-53
52 112 7.15E-40 |8.01E-10 | 1.61E-08 | 1.10E-30
52 143 1.01E-19 | 1.02E-13 | 7.03E-13 | 7.22E-15
58 70 1.00E+00 | 1.82E-28 | 2.61E-30 | 1.15E-31
58 112 | 1.00E400 | 6.64E-05 | 1.45E-04 | 6.24E-08
58 143 | 1.00E+00 | 3.72E-07 | 2.73E-08 | 5.12E-09
70 111 | 1.00E400 | 9.84E-10|1.01E-10| 5.51E-14
70 118 6.20E-11 |4.41E-09 | 2.25E-05 | 2.97E-21
70 577 | 2.46E-02 |5.29E-02 | 3.37E-06 | 2.78E-08
111 118 1.00E-06 |2.51E-01 | 2.38E-02 | 1.09E-12
111 577 | 1.00E400 | 7.50E-08 | 1.02E-10 | 9.46E-09
112 143 | 1.00E4+00 | 1.59E-01 | 8.58E-01 |1.00E+00
118 143 | 3.01E-01 |2.80E-01 |1.00E+00| 8.93E-02
143 577 1.85E-04 | 1.79E-02 | 5.83E-04 | 7.26E-04

Class 1|Class 2|event profile]| NEvents | NAPT SEvent
27 31 1.00E+00 |2.63E-09 | 1.78E-10 | 1.45E-98
27 36 2.69E-09 |1.00E+00{1.00E400| 4.50E-17
27 52 1.00E+400 | 7.68E-02 | 1.10E-02 |1.00E4-00
27 70 1.00E+00 | 1.18E-25 | 2.95E-27 | 3.21E-83
27 112 3.42E-17 | 1.12E-07 | 4.47E-07 | 3.93E-51
27 143 6.47E-31 |6.05E-10 | 1.42E-09 | 7.13E-26
28 31 1.00E+00 | 1.47E-02 | 1.78E-06 | 1.60E-10
28 36 1.00E+00 [1.00E+00{1.00E+00| 2.68E-07
28 52 1.00E4-00 | 4.78E-02 | 5.89E-02 | 6.32E-32
28 70 1.00E4-00 | 1.36E-55 | 1.33E-55 | 2.83E-45
28 112 | 1.00E4-00 | 2.06E-12 | 2.36E-11 | 8.86E-11
28 143 9.20E-01 |1.97E-13 | 3.61E-13 | 4.90E-11
31 34 | 1.00E400 | 7.67E-01 | 1.67E-01 | 1.90E-01
31 43 9.10E-03 | 1.55E-14 | 1.17E-12 | 2.06E-38
31 58 4.16E-01 |4.92E-07 | 5.52E-08 | 6.22E-15
31 111 | 1.00E+4-00 | 1.23E-03 | 6.85E-07 | 2.26E-09
31 118 1.88E-22 |5.32E-14 | 3.94E-17 | 1.31E-33
31 577 | 1.00E4+00 |1.52E-26 | 7.82E-34 | 6.39E-30
34 43 1.00E4-00 | 9.69E-03 | 3.03E-01 | 6.82E-09
34 58 1.00E+00 [1.00E+00|1.00E+4-00| 1.17E-04
34 111 | 1.00E+00 |1.00E+00] 9.73E-02 | 2.77E-03
34 118 2.80E-15 | 3.86E-05 | 5.25E-05 | 1.23E-18
34 577 | 1.00E400 |2.19E-14 | 3.24E-17 | 8.09E-13
36 52 2.22E-06 |9.93E-02 | 6.79E-03 | 6.37E-06
36 70 1.00E+00 | 8.34E-23 | 3.47E-24 | 3.47E-39
36 112 4.51E-01 |8.74E-07 | 2.73E-06 | 2.37E-11
36 143 3.13E-05 | 2.72E-09 | 5.01E-09 | 1.26E-08
43 52 1.61E-03 | 5.65E-06 | 6.87E-03 | 6.59E-15
43 70 1.00E4-00 | 1.13E-33 | 1.36E-39 | 4.04E-66
43 112 1.41E-03 | 1.05E-02 | 3.59E-04 | 5.87E-12
43 143 | 1.00E+00 | 1.08E-04 | 1.69E-07 | 7.25E-06
52 58 1.30E-13 |9.73E-04 | 3.28E-02 | 2.68E-12
52 111 | 1.00E4-00 | 3.56E-02 | 1.08E-02 | 1.40E-04
52 118 | 4.17E-33 |4.07E-08 | 2.86E-07 | 5.38E-27
52 577 5.81E-20 |2.43E-17|3.39E-18 | 2.11E-23
58 111 | 1.00E4-00 |1.00E4-00| 6.47E-01 | 2.08E-02
58 118 | 2.52E-03 |9.20E-03 | 4.91E-03 | 3.66E-15
58 577 | 1.00E400 |6.84E-12|2.43E-15 | 4.37E-15
70 112 5.15E-01 |5.92E-12 | 3.21E-07 | 3.82E-16
70 143 2.90E-01 |3.03E-01 | 2.42E-01 | 1.62E-13
111 112 5.61E-01 |4.46E-01 | 6.85E-01 | 8.46E-05
111 143 | 1.00E+00 | 4.56E-03 | 2.72E-02 | 1.33E-04
112 118 | 2.77E-03 |1.00E4-00{1.00E4-00| 6.93E-05
112 577 | 5.07TE-05 |4.23E-07|2.92E-07 | 4.15E-05
118 577 4.25E-12 | 8.22E-04 | 7.80E-05 | 1.43E-10
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Fig. 5. Basic statistics on karyotype complexity in the Mitelman database. (a) The distribution of the number of abnormal chro-
mosomes per karyotype. (b) The number of fragments per abnormal chromosome. (c) The distribution of karyotype ploidy. (d)
The distribution of number of multicentric chromosomes per karyotype. More than 97% of all the karyotypes have no multicentric
chromosomes.
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(a) An abstract data structure for a karyotype K:

Abnormal_Chrs =

18pter — 18q21::12p11 — 12pter,
lqter — 1p36::18q21 — 18qter,
l4pter — 14q32::18q21 — 18qter,

18pter — 18q21::14q32 — l4qter x2

Technical Report, September 2007

multiplicity[1] = multiplicity[14] = multiplicity[18] = 1, multiplicity[i] = 2 for i ¢ {1,14, 18}

(b) A sequence of reconstructed events S:

1. ACENTRIC ORPHAN TAIL: 12p11—12pter,

2. CHR GAIN: 18pter—18q21::14q32—14qter,
3. TRANSLOCATION(reciprocal): 14pter—14q32, 14q32—14qter,
4. TRANSLOCATION (non-reciprocal): 18pter—18q21, 18q21—18qter,
5. TAIL DELETION: 1p36—1pter

6. CHR GAIN: 18

(C) The breakpoint graph G(K) (1) and its induced subgraph G(K, S)

(1) G(K)

1gter 180278 L 12p 12.pter
1gter  1p36 3 ,_ "f.8q21 18qter
14.pter 1:3.25? o _%321 18.qter
18pter 18921 14932 14qter

(2) G(K5)

18pter  18qg21 ™ - 12pm
1gter  1p36 18921
lapter 14q32 ™ 1821
18pter 18qé1 h .‘1’qSZ

12pter
18qter

18qter

14qter

HEMA-Acute manaoblastic leukemia with differentiation FAB type kst
HEMmMA-ACUte monoblastic leukemia without differentiation (FAB type ks

Fig. 6. An analysis of the karyotype in Fig. 1.

BEMIGH-Benign epithelial tumor KOS-Breast
BEMIGM-Adenoma-Large intestine

HEMA-Acute myelablastic leukemia with minimal differentiation FAB type Moy

BEMIGH-Benign epithelial tumor special type-Breast

SOLID-Adenocarcinoma-Breast

SOLID-Adenocarcinoma-Large intestine
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SOLID-Adenocarcinoma-kidney
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HEMA-Refractory anemia
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HEMA-Fefractony anemia with excess of hlasts

Fig. 7. An hierarchical clustering of different cancer classes based on their average event profiles, using Pearson correlation as

similarity function. Each cancer is identified by its category, morphology, and topography (if it is a solid tumor).
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INTRODUCTION 2

ABSTRACT

Chromosomal aberrations are a hallmark of cancer. Certain ones are known to be strongly
connected with specific cancers, while many others appear to be nonspecific and arbitrary. We
report on a systematic study of the characteristics of chromosomal aberrations in cancers, using
the largest repository of reported karyotypes, the Mitelman database. We compared cancer
types by their manifested aberrations and drew an aberration-similarity map of them. In
addition to being highly concordant with the histological classification of cancers, the map also
revealed novel similarities, such as between three embryonic tumors— Wilms’ tumor, Ewing’s
sarcoma, and Hepatoblastoma. In another analysis we discovered that chromosome gains
tended to co-occur with other chromosome gains, and losses with losses. This discovery was
confirmed on an independent comparative genomic hybridization dataset of cancer samples. It
suggests that aneuploid cancer cells may use extra chromosome gain / loss events to restore a

balance in their altered proteins ratios.

Our results assign solid statistical foundations to many findings reported in the literature, and
reveal novel observations that merit further research. An accompanying website summarizes all
the discovered associations and allows easy search, filtering and sifting through the results, as

well as direct viewing of the relevant karyotypes in the Mitelman database.



INTRODUCTION 3

INTRODUCTION

Most cancer genomes undergo large scale alterations that dramatically alter their content and
structure (1). This phenomenon of genomic instability is responsible for the wide repertoire of
chromosomal aberrations observed in cancer genomes. While the role of most aberrations in the
carcinogenesis process remains to be determined, the common perception (2) is that some of
these aberrations are functionally important to the initiation and growth of cancer (drivers),
while others merely represent random somatic changes that carry no selective advantage to the
cancer cell (passengers). The identification of strong associations among aberrations, i.e.
associations that are observed significantly more than expected by chance, may help in the
detection of driver aberrations or point to mechanisms that promote the selection of certain
aberrations. As data on chromosomal aberrations in cancer accumulate, the detection of such

strong associations can become more accurate and powerful.

Following the four-step model for colorectal cancer evolution suggested by Vogelstein et al.(3,
4), several computational methods were developed for reconstructing common evolutionary
paths of chromosomal aberrations in specific cancers. Some of these methods used tree models
(5-7), later extended to acyclic networks (8-10). These evolutionary models enable recognition
of aberrations that occur at early stages of cancer; often referred to as "primary", they are
suspected of being cancer drivers. More recently, a statistical method named GISTIC (11) was
developed for identifying copy-number aberrations whose frequency and amplitude are higher
than expected. As all the methods described above were designed to analyze samples from the
same cancer type, they were applied to relatively small datasets, each containing a few hundred

samples.

The Mitelman database (12) is the largest depository of chromosomal aberrations in cancer.
Although the aberrations are described using karyotypes of low resolution, these methods are
widely used, notably in hospital labs where the database is the leading source of information for
clinicians who diagnose and treat cancer. The large number of samples in the database makes it
ideal for statistical analyses, which are capable of overcoming random errors. In this study we
present the results of large-scale analysis of chromosomal aberrations from over 15,000
karyotypes of the Mitelman database. By exploiting the huge number of karyotypes,

reconstructing the aberrations in them, and developing appropriate statistical tests, we were able

" http://cgap.nci.nih.gov/Chromosomes/Mitelman.
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to recognize significant cross-cancer associations among aberrations and to identify correlations

among tumor types.

Most observed alterations include chromosome gains / losses and translocations. As
translocations directly affect a small number of genes, the role of many translocations in cancer
causation has become much clearer over the years (13). Chromosome gains and losses, on the
other hand, are broad alterations affecting numerous genes whose significance to the
carcinogenesis process is much less understood. In this study we demonstrate strong
associations involving chromosome gain and loss aberrations, suggesting selection preferences

for aneuploid cells.

The results of our analysis, mainly the computed associations, are publicly available via our

website for further investigation.

RESULTS

Figure 1 summarizes our karyotype analysis. Starting from 59,579 karyotypes in the Mitelman
database (November 2009 version), we used only 34,107 karyotypes that were annotated as
unselected in order to avoid over- or under-estimation of aberration frequencies due to biases in
sample selection (14). We then filtered out any partially characterized or possibly redundant
karyotypes, as well as karyotypes that were not near diploid. Tumor classes were defined
according to tissue morphology and organ. Karyotypes belonging to classes with small
representation (<50 karyotypes) in the remaining dataset were omitted from analysis, resulting
in a total of 62 classes and 15,495 karyotypes (Table 1).

Each class was assigned to one of four sets: lymphoid disorders, non-lymphoid hematological
disorders, benign solid tumors, and malignant solid tumors (Table 1). Due to its higher rate of
successful karyotypic analyses, the group of hematological disorders dominated our dataset,
with 11,324 (73%) karyotypes, of which 6,913 (45%) belong to non-lymphoid hematological
disorders. We computed for each karyotype a set of most likely aberrations involved in its
formation using 11 types of chromosomal rearrangement, deletion, and duplication events
(Methods, supporting information (SI) Table S1). Of those events, chromosome gain / loss and
translocation were most frequent (Fig. S1). An aberration was identified by its causing event
and the chromosomal locations it involved. For example, the translocation involving bands
9934 and 22q11 was identified by t(9;22)(q34;q11), following the ISCN terminology (15)
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Cancer similarity by observed aberrations

The karyotypes in our dataset contained 5,179 distinct aberrations, including all possible
chromosome gains and losses. We computed the significance of the correlation of each
aberration-class pair using the hypergeometric test. Out of 9,208 distinct observed aberration-
class pairs, 1705 were found to be significantly correlated at false discovery rate (FDR) of 5%
(website). These correlations encompassed all 62 tumor classes in our dataset, involving 1,360
distinct aberrations, where more than half of these correlations (907, 53%) involved
translocations. Many of these strong correlations, notably the ones involving translocations,
have been well documented in the literature: for example, t(9;22) in chronic myelogenous
leukemia (16) and t(11;22) in Ewing sarcoma (17). This supports the use of our dataset as a

valid sample of karyotypes from the considered classes, as well as the soundness of our results.

Which tumor classes have highly similar aberrations? Using the set of significant (FDR 5%)
aberration-class correlations, we assessed the statistical significance of the overlap in
aberrations for every pair of tumor classes. Of all 1891 possible class pairs, 56 pairs were found
to significantly share common aberrations at an FDR of 5% (Fig. S2a). Considering benign and
malignant solid tumors as one category, all but three (53, 95%) of these pairs belong to the
same category, with two of the three exceptions linking between lymphoid disorders and
(malignant) solid tumors. We repeated the analysis, expanding the set of correlative aberrations
by considering also weaker correlations with (uncorrected) P-value <0.05. The results show a
remarkably similar partition, with 86 significant class pairs (FDR 5%), forming three distinct
clusters, with only six links between the sets of lymphoid disorders and solid tumors (Fig S1b).
The fact that the categories were very well separated serves as confirmation of the data and of
our methodology.

For more in-depth study of similarity among classes, we defined a similarity measure between
classes based on the significance of their common aberrations (Methods) and used it to
hierarchically cluster the classes (Fig. 2). As before, classes of the three sets — non-lymphoid-
hematological disorders, lymphoid disorders and solid tumors — clustered separately. A deeper
look into each cluster (Fig. 2) revealed that many closely clustered classes were histologically
related. For example: diffuse large B-cell lymphoma, follicular lymphoma, and mature B-cell
neoplasm (B-cell lymphomas); adenoma and adenocarcinoma in the large intestine; and AML
MS5 and AML M5a. The correlated aberrations shared by two similar classes can be viewed
through our website. One of the interesting results was the close proximity of three embryonic

cancers: Wilms’ tumor (kidney), Ewing sarcoma (skeleton) and Hepatoblastoma (liver).
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Significant co-occurrence of aberrations

Many of the specific associations we found between chromosomal aberrations and tumor
classes are known, and serve here primarily as confirmation of the validity of our approach. We
now address a question that can be answered only by more complex analysis of a large
database: which aberration pairs tend to co-occur significantly more than expected by chance?
Such associations may reveal either cooperation between different oncogenic events or
common mechanisms creating chromosomal aberrations. To answer this question we tested the
significance of co-occurrence for 7,202 aberration pairs in our dataset that satisfied the
following two conditions: each aberration appeared in at least 10 karyotypes, and the pair
appeared together in at least one karyotype. We first filtered pairs with hypergeometric P-value
>0.001, leaving 623 pairs whose significance was further evaluated by a permutation test. Our
analysis yielded 218 significantly co-occurring aberration pairs (P<0.05, after Bonferroni
correction), of which 154 (71%) were chromosome gain pairs, and 47 (22%) were chromosome
loss pairs. The induced network split clearly into two disjoint parts: one dominated by
chromosome gains and one by chromosome losses (Fig. 3a). We carried out the same analysis
separately for lymphoid disorders, non-lymphoid hematological disorders, solid tumors, and
carcinomas (Fig. S3-S6). Each of these groups showed the same clear strong co-occurrence of
specific gain-gain and loss-loss pairs, with almost no cases of significant co-occurrence for any
mixed gain-loss pairs. We also detected the trisomy of 1q (18), which appeared in all tumor

categories in the associations involving gain of chromosome 1 (Fig. 3a, Fig. S3-S6).

Comparative genomic hybridization (CGH) is a laboratory method to measure gains and losses
in the copy number of chromosomal regions in tumor cells. To verify our findings, we analyzed
an independent dataset of 1084 samples obtained by CGH, downloaded from the NCI and
NCBI's SKY/M-FISH and CGH database (March 16, 2009 version). This database contains
CGH records contributed by molecular cytogeneticists for open investigation. Each sample was
assigned a corresponding set of whole chromosome gain/loss aberrations, yielding 648 (60%)
samples with non-empty aberration sets. Using a permutation test similar to the one used for
karyotypes data (Methods), we computed a P-value for the co-occurrences of specific
aberration pairs in the CGH dataset. Out of 856 distinct co-occurring aberrations pairs, 47 were
significantly co-occurring at FDR of 5%. The picture obtained by these pairs (Fig. 3b) is
strikingly similar to the one produced by the karyotype data. This reaffirms our observation that
the progression of aneuploidy in cancer is driven by either multiple chromosomal gains or

multiple chromosomal losses.
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The website

All the associations described above can be viewed via the website http://acgt.cs.tau.ac.il/stack/,
which contains summary tables for the different types of associations: aberration-class, class-
class, and aberration-aberrations. Table rows can be filtered textually and numerically, allowing
investigations of associations for a specific group of cancer types, a set of aberrations of
interest, or both. For example, the user can view all aberrations whose correlation with a
certain tumor class is below some specified P-value. Alternatively, all aberrations significantly
co-occurring with a specified aberration can be examined, with their P-values. For aberration-
class and aberration-aberration associations, researchers can examine the karyotypes that led to
these associations, where each karyotype is linked to its corresponding record in the Mitelman

database website.

To demonstrate the utility of the website, we focused on hyperdiploid multiple myeloma (H-
MM), a subtype of multiple myeloma (MM) with better prognosis, characterized by having 48-
74 chromosomes (19-21). There were 385 MM karyotypes in the database, and 110 (29%) of
which were hyperdiploid. H-MM is associated with recurrent gains of chromosomes 3, 5, 7, 9,
11, 15 and 19 (19). Indeed, the website’s class-aberration table, filtered for MM associations,
confirmed this observation: +3, +5, +9, +11, +15, and +19 were the aberrations most associated
with MM, and the 142 karyotypes involved in these associations spanned all H-MM karyotypes
(hyper-geometric P < 1E-76). Chng et al. (22) suggested a FISH-based trisomy index for
identifying H-MM, employing probes for chromosomes 9, 11 and 15, and designating a tested
MM cell as H-MM if it contains two or more trisomies in these chromosomes. They reported
specificity of 0.98 and sensitivity of 0.69 for that index. The corresponding F-Score (a measure
combining sensitivity and specificity, see Methods) was 0.8. We analyzed the 385 MM
karyotypes in the same fashion as (22); the criterion of any two trisomies in 9, 15, 19 was best
with specificity 0.996 and sensitivity 0.88 [F-Score 0.93]. In fact, the same combination has the
highest F-Score on the data of (22) as well (0.83). Thus, the criterion of two or more trisomies

of chromosomes 9, 15, 19 should be considered for identifying H-MM.

DISCUSSION

In this study we computationally analyzed a large number of cancer karyotypes from the
Mitelman database, the largest available compendium of cancer karyotypes. Based on statistical
analysis of more than 15,000 karyotypes, our results provide strong additional evidence for the

non-randomness of many chromosomal aberrations in cancer. Our approach is validated by the
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demonstration of known relationships, including associations between specific aberrations and
specific tumor types, and similarities among certain tumors (e.g. adenoma and adenocarcinoma
of the large intestines). More importantly, the analysis led to new discoveries, most notably that
chromosomal aneuploidy tends to consist of either a pattern of chromosomal gains or a pattern
of chromosomal losses. This novel discovery was verified by similar analysis of a separate

molecular database.

To avoid ambiguities and reduce potential biases in the results, we excluded from our dataset
karyotypes that were not random samples (i.e., reported because of a specific/unusual
karyotypic feature), and those with missing information. Inclusion of partially-characterized
karyotypes (omitting non-characterized fragments) increased the number of karyotypes to
22,425 (45% increase). The results on that set closely matched those reported here (Fig. S7,

S8), indicating the robustness of both the results and our statistical methods.

Chromosome gains/losses and translocations were the most abundant aberrations in our dataset.
While many translocations were shown to contribute to carcinogenesis, the role of
chromosomal aneuploidy in cancer has been debated for almost a century. We report for the
first time a striking dichotomy of aneuploidy across numerous tumor classes, discovered in an
analysis of two independent datasets: significantly co-occurring aberration pairs are almost
exclusively either both chromosome gains or both chromosome losses. A similar tendency was
observed by Hoglund et al. (9) for several specific solid cancers. The karyotypic evolution
models of (9) contained two converging paths, one dominated by gains of chromosomal

fragments and the other by losses.

The observed chromosome gain/loss dichotomy suggests a partial explanation for the following
conundrum: A single chromosome gain/loss in the germline is usually hazardous, both at the
cellular and the organism levels, while the abundance of chromosome gains/losses in cancer
cells implies that aneuploidy is beneficial, or at least not harmful, to their vitality (23-26). As
most chromosomes contain dosage-sensitive genes, the strong gain-gain and loss-loss
correlations may imply a mechanism for balancing the ratios of proteins that function in
complexes. Such balancing may be required to protect the cancer cell from the detrimental
effects of partially assembled protein complexes or free subunits by molecular chaperones
caused by prior chromosome gain / loss events. This novel hypothesis is testable by large-scale
quantitative proteomics. An alternative explanation for these observations is that chromosomal

gains and losses are caused by different mechanisms of genomic instability.
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One limitation of the use of the Mitelman database is its inherent bias towards hematological
cancers. However, the number of solid karyotypes in the database is still substantial, and
allowed us to obtain results on class similarity among solid cancers (Fig. 2). Moreover, the
results on aberration co-occurrence tendency were similar using the full data (Fig. 3) and the

solid karyotypes only (Fig. S5).

The methodologies developed in this study can be used on other large datasets describing
genetic events. As high resolution genetic information on tumors accumulates, similar analysis
can be applied to it — using for instance Next-Generation Sequencing. Moreover, our website
can be useful both for additional global investigations like those reported here and for in-depth

analysis of individual associations.

MATERIALS AND METHODS

Karyotypes selection and analysis. We evaluated all 34,107 karyotypes marked as unselected
(i.e. chosen in a non-biased manner) in the Mitelman database on November 17, 2009.
Karyotypes were parsed using the CyDAS ISCN parser (27), and any karyotype detected as
invalid during the parsing was excluded, leaving 29,911 (88%) valid karyotypes. We refer to a
karyotype as well-defined if it is complete and does not contain any of the following: 1) double
minutes, 2) marker chromosomes, 3) ring chromosomes, 4) chromosomes with homogeneous
staining regions (HSRs), 5) chromosomes with additional material of unknown origin, 6)
approximated breakpoints, e.g. del(1)(q21~q24), or 7) alternative interpretations of an
aberration (designated by "or" symbol). Question marks (?) indicating questionable
identification of a chromosome or chromosome structure (e.g. del(1)(q?23)) were ignored. We
refer to a karyotype as multiclonal if it is composed of several distinct karyotypes (separated by
a dash “/” representing different subclones in the sample). Given a multiclonal karyotype, we
avoided dependency between its karyotypes by choosing only the first well-defined karyotype it
contained. In case of multiple karyotypes from the same patient (‘“case” in the Mitelman
database), only one karyotype was taken into account. To avoid potential biases in chromosome
gain/loss aberrations, we excluded any karyotype that was not near-diploid (i.e., we omitted
karyotypes whose total chromosome number was less than 35 or more than 57). Altogether,

18,813 karyotypes were selected for analysis.

Aberrations reconstruction. We previously identified 11 frequent chromosomal events in
tumor karyotypes (chromosome gain/loss, translocation, deletion, duplication and more, see

Table S1), and developed an algorithm for reconstructing a most plausible set of events leading
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to a given karyotype (28). We applied the algorithm to all relevant karyotypes from the
Mitelman database, obtaining unambiguous reconstruction in 99% (18,600) of the karyotypes.
We recorded each such karyotype’s set of aberrations, where an aberration is defined by an
event and the chromosomal locations involved. For example, +1 is the aberration resulting from
a chromosome gain event on chromosome 1, and t(9;22)(q34;q11) is a translocation involving

bands q34 and q11 on chromosomes 9 and 22, respectively.

Karyotypes classification. We classified karyotypes by their tissue morphology and
topography as specified in the Mitelman database. To permit robust statistical analysis, we
omitted all karyotypes whose class had less than 50 karyotypes. Our final dataset contained
15,445 karyotypes.

CGH data. We used the NCBI’s SKY/M-FISH and CGH database” (version March 16, 2009),
consisting of 1084 records. Every record has a list of chromosomal segments with abnormal
copy number, each classified as a gain or a loss; and the header of the record contains
information on the cancer tissue. As most tumor classes in this dataset were relatively small, we
ignored the histological classification. For each record we derived chromosome gain / loss
aberrations in the following manner: every gained (lost) chromosomal fragment that spanned

the centromere was considered a whole chromosome gain (loss).

Computing P-values for aberration-class correlations. For an aberration Ab and a class C,
we calculated the significance of the enrichment of karyotypes with Ab in C using the

hypergeometric test.

Computing P-values for classes sharing common aberrations. We developed the following
method for evaluating the significance of shared aberrations between tumor classes. We
constructed a binary matrix M, whose rows and columns correspond to aberrations and classes,
respectively. We set M{[Ab,C]=1 if the correlation between aberration Ab and class C had a
hypergeometric P-value < t (in that case we say that Ab is t-correlative to C), and otherwise
M,[Ab,C]=0. For t=0.05, the maximal t used in our analysis, the matrix M; was already quite
sparse, less than 2% 1’s. For two classes, C and C', we computed a P-value for their number of
shared events as follows. Let n;cc be the number of t-correlative aberrations that C and C’
shared. More formally, nicc = Zap M{Ab,C]-M{[Ab,C"]. For every pair of classes, C and C’,

that shared at least one t-correlative aberration, we estimated the probability of having at least

"http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi.
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n,c, ¢ t-correlative aberrations by chance when the marginal distributions of the rows
(aberrations) and columns (classes) of M, are fixed. We did this by randomly sampling N=10’
permutations of M; that preserve row and column sums. Therefore, the minimal P-value we
could achieve was lower bounded by 1/N =107

Hierarchical clustering of classes. We performed average-linkage hierarchical clustering of
the classes using the Expander software package (29). The similarity measure between classes
was defined as follows. We first built a symmetric matrix, S, satisfying S[C;,C;] = -log(p),
where p is the P-value described above for the significance of the number of t-correlative
aberrations that C; and C, share. For each class C, we set S[C,C]=log(N), where N=10" as
above. The similarity between classes was now defined as the Pearson correlation between their

rows of S.

Computing P-values for co-occurring aberration pairs. Let QO denote the entire dataset of
karyotypes. For two aberrations, Ab and Ab’, let n(Ab, Ab') be the number of karyotypes in QQ
that contain both aberrations. We estimated the significance of n(Ab, Ab') for all pairs of
distinct aberrations using a permutation test as follows. We constructed a binary matrix, M/,
whose rows correspond to aberrations that occur in at least 10 karyotypes, and columns to the
karyotypes in ). Aberrations that did not co-occur with any other aberration in M were
excluded. For an aberration Ab and karyotype K, we set M'[Ab,K]=1 if K contained Ab, and
M'[Ab,K]=0 otherwise. We randomly sampled permutations of M' that preserved row and
column sums. Moreover, to account for the different distributions of aberrations within each
tumor class, the sampled permutations were also required to preserve (sub-)row sum for each
class. We enhanced the performance of this test by filtering aberration pairs whose
hypergeometric test P-value was above 0.001, and removing from M’ any aberration that did
not appear in the remaining pairs.

We performed a similar test for the CGH dataset, but since it was smaller in size we used all
aberrations (i.e. irrespective of the number of samples in which they were found), and without

the step of filtering pairs by the hypergeometric test.

Trisomy index test. Sensitivity (respectively, specificity) was calculated as the percentage of
H-MM (respectively, non-H-MM) karyotypes that are correctly identified as such by the
trisomy index test (TTI). The positive predictive value (PPV) was calculated as the percentage
of H-MM karyotypes among all karyotypes identified as H-MM by TTI. The F-score was
calculated as the harmonic mean of sensitivity and PPV: F =
2xPPVxsensitivity/(PPV+sensitivity).
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URLSs. More details on our results can be found on our website (http://acgt.cs.tau.ac.il/stack).

Supporting information is found on http://acgt.cs.tau.ac.il/stack/suppl.
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Figure 1: Overview of karyotypes analysis and the STACK website. A large fraction of the
karyotypes in the Mitelman database was removed to avoid potential bias in the analysis. These
included partially characterized karyotypes, multiple karyotypes from the same individual, and
karyotypes that were not randomly selected in the original report. Tumor type and location were
used to classify karyotypes into tumor classes, and classes with small representation (< 50
karyotypes) were removed from the dataset. An algorithm was used to reconstruct the set of
aberrations leading to each remaining karyotype. Three types of statistical correlations were
computed: aberration co-occurrence, association between class and aberration, and class
similarity (based on their common aberrations). All computed correlations, with their P-values,
are available for further investigation via our website and are directly linked to the full
description of the relevant karyotypes in the Mitelman database. Repeating the analysis without

filtering ambiguities (yielding 22,425 karyotypes) led to essentially the same conclusions.
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Figure 2: Hierarchical clustering of classes based on class similarity in sharing common
aberrations. The square at the intersection of each two diagonals shows the similarity of their
classes, as measured by the aberrations associated with them (Methods). (An aberration was
associated with a tumor class if their correlation had (uncorrected) P-value < 0.05.) Names of
cancer classes are colored as follows: orange: lymphoid disorders; red: non-lymphoid

hematological disorders; light green: benign solid tumors; dark green: malignant solid tumors.
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Figure 3: Highly co-occurring aberration pairs. Highly co-occurring aberrations in the entire
karyotype dataset are connected by lines. Aberrations that are involved only in expected links
(e.g. a link between a translocation and a gain /loss of one of its derivative chromosomes; a link
between two (two-break) translocations originating from one three-break (15) rearrangement)
are not shown. For explanation on aberration names, see Table S1. (a) Highly co-occurring
pairs in the Mitelman Database karyotypes (links are significant at P<0.05, after Bonferroni
correction). (b) Highly co-occurring pairs in the CGH dataset (links are significant at FDR 5%).
The only gain-loss link is (+1, -16), which has the second worst (i.e. highest) P-value among

the 47 pairs that passed the FDR 5% criterion. The figure was drawn using Cytoscape (30).

+der(18)t(1418)(432;021)

r

(b)

oM, SRR

. Chr. gain

@ other




TABLES AND FIGURES

17

Table 1: Tumor classes and categories in the dataset. The table contains tumor classes used

in our study, arranged by categories. The Details column contains class description as given in

the Mitelman database.

No. of
Class Details classes
benign solid tumors 1567
Ad-Large intestine Adenoma-Large intestine 100
Ad-Salivary gland Adenoma-Salivary gland 191
Ad-Thyroid Adenoma-Thyroid 66
Benign-Breast Benign epithelial tumor special type-Breast 69
Ch hamartoma-Lung Chondroid hamartoma-Lung 99
Leiomyoma-Uterus Leiomyoma-Uterus corpus 214
Lipoma-ST Lipoma-Soft tissue 269
Mnng-Brain Meningioma-Brain 508
Oncocytoma-Kidney 51
non-lymphoid hematological
disorders 6913
AML Acute myeloid leukemia NOS 1026
AML MO Acute myeloblastic leukemia with minimal differentiation (FAB type MO) 144
AML M1 Acute myeloblastic leukemia without maturation (FAB type M1) 315
AML M2 Acute myeloblastic leukemia with maturation (FAB type M2) 776
AML M3 Acute promyelocytic leukemia (FAB type M3) 525
AML M4 Acute myelomonocytic leukemia (FAB type M4) 621
AML M5 Acute monoblastic leukemia (FAB type M5) 266
AML M5a Acute monoblastic leukemia without differentiation (FAB type M5a) 52
AML M6 Acute erythroleukemia (FAB type M6) 133
AML M7 Acute megakaryoblastic leukemia (FAB type M7) 168
BBL Bilineage or biphenotypic leukemia 137
CMD Chronic myeloproliferative disorder NOS 69
CML at Chronic myeloid leukemia aberrant translocation 409
CML 1(9;22) Chronic myeloid leukemia 1(9;22) 808
CMML Chronic myelomonocytic leukemia 147
Id myelofibrosis Idiopathic myelofibrosis 115
JML Juvenile myelomonocytic leukemia 50
MDS Myelodysplastic syndrome NOS 187
Polycythemia Vera Polycythemia vera 166
Rf anemia Refractory anemia 374
Rf anemia EB Refractory anemia with excess of blasts (FAB) 344
Rf anemia RS Refractory anemia with ringed sideroblasts 81
lymphoid disorders 4411
ALL Acute lymphoblastic leukemia/lymphoblastic lymphoma 1817
Adult T-Cell lymphoma Adult T-cell lymphoma/leukemia (HTLV-1+) 64
Ang T-Cell lymphoma Angioimmunoblastic T-cell ymphoma 71
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Burkitt lymphoma Burkitt lymphoma/leukemia 248
CLL Chronic lymphocytic leukemia 884
DL B-Cell lymphoma Diffuse large B-cell ymphoma 197
Follicular lymphoma 274
HCL Hairy cell leukemia 57
M B-Cell neoplasm Mature B-cell neoplasm NOS 166
MCL Mantle cell ymphoma 78
Multiple myeloma 385
Per T-Cell lymphoma Peripheral T-cell lymphoma unspecified 62
SMZ B-Cell lymphoma Splenic marginal zone B-cell lymphoma 108

malignant solid tumors 2554
AdC-Breast Adenocarcinoma-Breast 323
AdC-Kidney Adenocarcinoma-Kidney 610
AdC-Large intestine Adenocarcinoma-Large intestine 125
AdC-Ovary Adenocarcinoma-Ovary 56
AdC-Prostate Adenocarcinoma-Prostate 124
AdC-Thyroid Adenocarcinoma-Thyroid 84
AdC-Uterus Adenocarcinoma-Uterus corpus 62
Astrocytoma-Brain Astrocytoma grade llI-1V-Brain 234
BCC-Skin Basal cell carcinoma-Skin 87
Ewing-Skeleton Ewing tumor/peripheral primitive neuroectodermal tumor-Skeleton 181
Giant cell-Skeleton Giant cell tumor of the bome-Skeleton 60
Hpblastoma-Liver Hepatoblastoma-Liver 65
Liposarcoma M-ST Liposarcoma myxoid/round cell-Soft tissue 59
Melanoma-Eye Malignant melanoma-Eye 72
SqCC-Larynx Squamous cell carcinoma-Larynx 58
SqCC-Lung Squamous cell carcinoma-Lung 64
Synovial sarcoma-ST Synovial sarcoma-Soft tissue 58
Wilms-Kidney Wilms tumor-Kidney 232







Chapter 8

Discussion

In this thesis we described our study on genome rearrangements occurring in the
evolution of species and in cancer cells. Considering different models for evolution
and cancer, we focused on finding a shortest sequence of rearrangement events ex-
plaining large-scale differences between two genomes (Chapters 2-5). We built on
extant mathematical theory and generalized it (Chapter 2-4). We presented a new
set of simpler and more efficient algorithms for a previously analyzed model (Chap-
ters 2,3). We extended this model by adding new biological constraints and pre-
sented an accurate polynomial time solution for the corresponding problem (Chap-
ter 4). We proposed an original model suited for cancer karyotypes and provided
a 3-approximation polynomial time algorithm for computing a shortest sequence of
rearrangements transforming a normal genome into a given cancer genome, under
certain assumptions supported by most real data (Chapter 5). The last part of this
thesis was dedicated to a statistical analysis of rearrangements, reconstructed by an
effective heuristic, in a large public database of cancer karyotypes (Chapter 6,7). In
this chapter we briefly review the results introduced in this thesis and discuss their
importance and relevance to other works. In addition, we raise open problems that

stem from the analysis and from the results in this thesis.

8.1 Sorting by Translocations

From a bird’s-eye view, genomes of related species are built from essentially the

same set of large (synteny) blocks of DNA. The different ordering of these blocks
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in the genomes inspired the computational problem of inferring a shortest sequence
of rearrangement events between related genomes. Reversals (aka inversions) and
translocations are common miotic rearrangements in mammals. While transloca-
tions mix the content of two chromosomes, the effect of inversions is localized to a
single chromosome. Sorting uni-chromosomal genomes by reversals (SBR) became
one of the most analyzed problems in the computational study of genome rearrange-
ments and hence there is a rich theory on it [41, 15, 49, 7, 12, 103]. The problem
of sorting by translocations (SBT) was analyzed in the context of SBR by the same
authors [39, 14|, and was shown to share a similar combinatorial formulation with
SBR. Nevertheless, the extant algorithms for solving SBT had little in common with
the algorithms for solving SBR. In Chapters 2 and 3 we described a new combina-
torial framework for analyzing SBT, which built on extant framework for analyzing
SBR. This new framework allowed us to exploit the wealth of theory on SBR and
provide analogous results for SBT. In particular, we managed to adapt three most
efficient algorithms for solving SBR to solve SBT, while preserving the original time
complexities. One of these new algorithms, which runs in sub-quadratic rime, is cur-
rently the fastest algorithm for solving SBT. Testing whether the latest improvement
in the time complexity of SBR, achieved by Swenson et al. [101], can be applied to

SBT remains as a task for future work.

By developing a combinatorial representation of SBT akin to the extant one
for SBR, we revealed novel similarities between the two problems. Moreover, this
implied that the problem of sorting by reversals and translocations (SBRT) can be
analyzed in a similar manner, without having to reduce it to SBR as the current
algorithm does [40, 105, 68]. Despite the common properties we revealed for SBR
and SBT, we did not prove an equivalence between the problems, nor did we prove
that one is reducible to the other. Proving whether there exists such stronger relation

between the two problems remains an open problem.

Reversals and translocations are two special cases of the double-cut-and-join
(DCJ) operations introduced by Yancopoulos et al. [114]. The DCJ operation is
equivalent to the 2-break operation studied by Alekseyev and Pevzner [5]. The
distance formula and the algorithms for sorting by DCJs (SDCJ) were shown to be
much simpler, in comparison with SBR, SBT, and SBRT [114, 13, 5]. The major
reason for the relative simplicity of SDCJ is its powerful ability to create intermediate
circular chromosomes, which are later reabsorbed. This ability facilitates an elegant

bypass to the difficulty of avoiding the creation of “bad components”, which is
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the source of complication for SBR, SBT, and SBRT. We note that the version of
SDCJ in which circular chromosome creation is not allowed is equivalent to SBRT.
An intriguing question if whether there exists an alternative generalization of the

overlap graph in which all DCJ operations are modeled on the same manner.

8.2 Sorting by Translocations with Centromeres

In this thesis we made the first attempt to take into account centromeres in rear-
rangement scenarios (Chapter 4). As no mapping (“ortholog assignment”) is given
between centromeres of related genomes, we treated all centromeres as equivalent
anonymous elements whose location is the only information given for them. As
a chromosome must have a centromere in order to survive the subsequent cell di-
visions, we regarded translocations creating acentric chromosomes as illegal and
forbade their use. We studied the problem of sorting by legal translocations (SBLT)
and provided an accurate polynomial-time solution for it using a reduction to SBT

that mapped the centromeres in the two genomes.

Using our definition for legality, exactly half of all possible translocations are
illegal. In contrast, every reversal is legal, as reversals do not alter the number
of centromeres in a chromosome. Allowing for legal translocations only, as we did,
imposed an additional constraint on the signs of the genes in the input genomes (Ob-
servation 1, Chapter 4). We note that disallowing reversals and considering (legal)
translocations only, severely limits the practicality of our algorithm in analyzing real
data. Extending SBLT to allow for reversals eliminates this “artificial” constraint
and results in a new interesting open problem, which is also biologically more rea-
sonable. Another research direction is to extend SDCJ, which is much simpler than

SBRT, to account for centromeres and legal sorting.

SBR, SBT, and SBRT, are all based on simplistic models for genome rearrange-
ments. Apart from the constraint we considered for centromere-aware operations,
there are many other biologically motivated constraints and requirements that can
be integrated into these problems. These include different weights/probabilities for
different rearrangement events, depending on the rearrangement type, location (e.g.
considering breakpoint “hotspots”), and overall effect (e.g. length of inverted seg-
ment - for reversals [10]). Amajor difficulty in using SBR / SBT / SBRT algorithms

for analyzing real genomes is the non-uniqueness of their solutions. Several ways
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have been proposed to tackle this problem, such as enumerating all optimal solutions
[95, 24], finding a compact representation of the solution space [23, 22], sampling
the solution space [60], and reconstruction of partial “reliable” solutions [115, 116].
We believe that the addition of biologically plausible constraints on SBR / SBT /
SBRT, such as our exclusion of illegal translocations, will help to reduce the num-
ber of optimal scenarios, and thus may bring us closer to the true rearrangement

scenarios that took place.

Although scenarios involving acentric chromosomes are less favorable, they are
not absolutely impossible. In a major discovery in 1993, it was shown that a newly
formed chromosome that lacks a centromere can be rescued by the emergence of
a new centromere in a seemingly random location [110]. Since this initial discov-
ery, over ninety cases of neocentromere formation in humans have been described
in the literature, among which are five cases of centromere repositioning (i.e. neo-
centromere formation accompanies by an inactivation of an existing centromere)
[59]. This discovery supports a new model for rearrangements that considers two
extra operations: forming neocentromere and inactivation of an existing centromere.
Nevertheless, as translocations are far more common than neocentromere formation,
and the mechanisms underlying neocentromeres are not well understood, the use of
neocentromeres in sorting scenarios should be done in moderation. An interesting
question is thus to find a shortest sequence of translocations requiring k centromere
formations / repositioning events, where k is a parameter. Whether there exists a

fixed-parameter-tractable algorithm to this parametric problem is an open problem.

8.3 Sorting Cancer Karyotypes

Cancer karyotypes display a wide variety of chromosomal aberrations caused by re-
arrangement events. In Chapter 5 we made a first attempt to rigorously reconstruct
a sequence of plausible rearrangement events that led to a given cancer karyotype.
We presented an original model of rearrangements in cancer genomes using four
biologically-motivated elementary operations. We used this model to define the
problem of karyotypes sorting (KS), which seeks for a shortest sequence of these
elementary operations that transforms a normal karyotype into a given abnormal
(cancer) karyotype. Under the simplifying assumption that no breakpoint is dupli-
cated, which is supported by the vast majority (94%) of cancer karyotypes in the
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Mitelman database, we reduced KS to a simpler variant RKS, in which no break-
point exists. We proved lower and upper bounds for the length of a solution to
RKS, which yielded a 3-approximation polynomial-time algorithm. We applied this
algorithm on 58,464 karyotypes with no recurrent breakpoints. For 99.9% of those
karyotypes our algorithm produced a solution that achieved the lower bound and
hence was optimal. Manual inspection of the remaining cases revealed that the so-
lutions produced by algorithm were optimal (i.e shortest) for all the remaining (30)

cases as well.

The complexity of KS problem, and its reduced form, RKS, remained an open
theoretical problem for future research. Another requested future extension of this
work is to weaken the assumption that prohibits breakpoint duplication in a way
that allows the analysis of the remaining 6% of the karyotypes, which are likely to
correspond to more advanced stages of cancer. Our hope is that this study will
lead to further algorithmic research on the evolution of chromosomal aberrations in

cancer.

The model we proposed for the evolution of cancer karyotypes allowed for dupli-
cation and deletion events, which were shown to be most common in cancer kary-
otypes (Chapter 6) and hence must not be neglected. Rearrangement models that do
not allow duplications and deletions, such as the ones used by SBR/SBT/SBRT, are
inadequate for modeling the evolution of chromosomal aberrations in cancer. More-
over, karyotypes exhibit complex structural aberrations that are difficult to explain
by mere reversals and translocations. Conversely, the consideration of breakage
and fusion as two independent events, added much more power and flexibility in
the generation of complex aberrations, albeit at the cost of using less conventional
events. We note that most of the statistical studies of rearrangement events in cancer
that we are aware of, analyze elementary events: duplications/deletions of segments
(commonly CGH data), and breakages (commonly referred as “breakpoints”). We
also note that a similar model, which considers breakage and fusion as independent
events but with no deletions/duplications, was previously used by Levy et al. [54]

to analyze chromosomal aberrations caused by ionizing radiation in M-FISH data.

A solution for karyotype sorting, i.e. a shortest sequence of events that led to
a given abnormal karyotype, is usually non-unique. In particular, if two homolog
broken ends exist - then there may be two alternative fusion events for the solution.

Moreover, different solutions may differ only by the order of their events. Therefore,
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in many cases it is preferable to consider the reconstructed events as a set rather
than as a sequence. As we already argued above, imposing further preferences / lim-
itations on the reconstructed sequence of events is likely to decrease the number of
possible solutions and is an important direction for future work. A potential prefer-
ence is to favor solutions that induce translocations (i.e., two consecutive breakages
immediately followed by two fusions between the corresponding four broken ends),

and other complex rearrangements that are frequent in real data (Chapter 6).

Finally, the association of cancer karyotypes with a plausible set of rearrange-
ments can be viewed as the first step in their analysis. Later steps may include
various statistical analyses, such as identifying rearrangements that are likely to
be of importance to the carcinogenesis process (e.g. [16]), reconstructing common
evolutionary pathways (e.g. [32, 33, 109, 85, 44, 43]), or discovering interesting prop-
erties and associations among rearrangements (e.g. Chapters 6 and 7). We note that
most of the statistical studies of rearrangement events in cancer, at the least the ones
that we are aware of, analyze elementary events: duplications/deletions of segments

(commonly CGH data), and fusions.

8.4 Analyzing Rearrangements in Cancer Karyotypes

In chapter 6 we analyzed and compared rearrangement frequencies in different can-
cers. The analyzed rearrangements were reconstructed by a heuristic algorithm that
given a cancer karyotype iteratively detects a most probable event and undoes it. We
ignored the order of the reconstructed events, as many of the events commute. The
algorithm fails if it cannot reconstruct a unique set of events. The algorithm was
shown to succeed on more than 98% of the data, totalling 40,298 well-characterized
karyotypes derived from the Mitelman database [62]. We note that the high effec-
tiveness of the algorithm may be due to the relative simplicity of the karyotypes in
the data. For example, the average number of reconstructed events per karyotype

is less than 3 (see Fig. 2.(a) for average event rates).

The classification into cancer classes was based on the histological data provided
for each karyotype. We showed that the vast majority (98%) of cancer karyotypes
can be explained using 12 types of rearrangement events, among which the most
common were: chromosome gains and losses, translocations, and terminal deletions.

One goal of this study was to set a basis for modeling rearrangements in cancer.
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Our results showed that unlike the modeling of rearrangement in species evolution, a
realistic model for cancer cannot ignore the dominance of duplications and deletions

in cancer genomes.

We used the reconstructed rearrangement frequencies to compare distinct can-
cers. More specifically, the question we asked was: Are there significant differences
in the frequencies of rearrangement events between distinct cancers? To answer this
question we designed several methods to compare event frequencies in different can-
cers. We applied these methods to cancer classes with a sufficient number of samples
(i.e. more than 60 karyotypes). The results showed that for most compared can-
cer pairs, the observed distributions of rearrangement frequencies were significantly
distinguishable.

To the best of our knowledge, this study presented the first large-scale analysis
of the frequencies of rearrangement events in different cancers. Previous comparable
studies were either applied to very small datasets (such as the NCI-60 [86]) or focused
on the behavior of a single parameter of karyotypic complexity, such as the total
number of aberrations [37, 26]. We note that the distinct distributions of event rates
observed for different cancers may result from different recurrent aberrations, such
as the Philadelphia translocation in CML. Our results imply that the mechanisms

underlying chromosome instability vary for cancers of different histological origins.

Our next step was to analyze rearrangement events with their specific chromo-
somal locations (Chapter 7). We used the term aberration to refer to the result of a
rearrangement event on a specific chromosomal location(s), and used an ISCN-like
notation to identify it. For example, the aberration “t(9;22)(q34;ql11)” referred to
the result of a translocation event on the chromosomal locations 9q34 and 22ql11.
We employed our heuristic for rearrangement reconstruction on a set of over 15,000
karyotypes from the Mitelman database, and assigned each karyotype with its set of
reconstructed aberrations. The remaining karyotypes in the Mitelman database were
excluded from our analysis to avoid potential biases in the reconstructed aberrations.
This study was comprised of two complementing parts. In the first, we computed
a P-value for the correlation of each aberration-class pair. Reassuringly, the lowest
P-values matched well-known strong correlations. These P-values were then used to
compare distinct tumor classes by their aberrations. Our results proved that class
similarity based on manifested chromosomal aberrations is remarkably concordant

with histological similarity. In addition, we revealed a novel significant similarity
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among three childhood cancers, Wilms tumor, Ewing sarcoma, and hepetoblastoma.
Very recently, Liu et al. presented an evolutionary tree of cancers based on copy
number alterations derived from CGH data [57]. As the cancers in the tree of Liu
et al. are different from the ones we analyzed, it is almost impossible to compare
between the results. Nevertheless, despite using different data and methods, the tree
constructed by Liu et al. was also highly concordant with histological classification,

supporting our conclusion.

In the second part of our study, we detected aberration pairs that showed signif-
icant co-occurrence rates, regardless of the cancer class they were found in. Inter-
estingly, there was a clear dichotomy in the significantly co-occurring aberrations:
almost all strong couples involved either two chromosome gain or two chromosome
loss aberrations, but not both. In other words, while there were many strong chromo-
some gain couples and chromosome loss couples, any co-occurrence of chromosome
gain and chromosome loss aberrations appeared to be random. We repeated this
test in an independent CGH dataset. Strikingly, we found that the CGH dataset
showed the same chromosome gain/loss co-occurrence dichotomy. A similar result
was obtained in the study of karyotypic evolution models of several specific solid
cancers by Hoglund et al. [44]. The models developed in [44] contain two converg-
ing karyotype evolution paths, one dominated by gains of chromosomal fragments
and the other by losses. Since the analysis methods in [44] were completely different
from ours, this result lends further support to our observation of whole chromosome
gains and losses dichotomy in aneuploid karyotypes. The strong gain-gain and loss-
loss correlations we found suggests that these links are required for balancing the
ratios of proteins that function in complexes. As chromosome gain and loss events
may result in partially assembled protein complexes or free subunits, which put sig-
nificant stress on the cell [113], such balancing can be crucial for the survival of the

aneuploid cell.

8.5 Concluding Remarks

Our research of genome rearrangements initially focused on genomic sorting under
different models. Genomic sorting has been the source of many intriguing problems
that caught the attention of many computer scientists and mathematicians over

the past two decades. Despite its over-simplification of biology, genomic sorting
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turned out to be computationally very complicated, and often NP-hard, for most
considered models. Looking at the history of SBR, the most studied genomic sorting
problem, we can conclude that the research of genomic sorting has been fruitful, both
computationally and biologically. The mathematical theory underlying SBR has
been greatly extended and simplified since the problem was introduced by Kececioglu
and Sankoff, leading to faster and simpler algorithms for solving it. Computational
knowledge on simplistic genomic sorting problems can be used for devising clever
heuristics for computing parsimonious rearrangement scenarios involving more than

two species, as was done in [19].

In this thesis we extended and simplified the theory of an existing problem,
namely SBT, by developing a combinatorial framework akin to the framework of
SBR. Later on, we presented two new models for genome rearrangements. The first
built on the model of SBT, while the second used a novel set of rearrangements suited
for cancer. For the first model we succeeded in providing an accurate polynomial
time solution, but the computational analysis was very complicated. For the second
model, we managed to provide a 3-approximation polynomial time solution, under
certain assumptions, while the overall complexity of the problem remained unknown.
We hope that further investigations of these models will simplify and improve our

results.

Finally, we developed an effective heuristic to sort cancer karyotypes using 12
common rearrangement events and used the reconstructed rearrangements to carry
out statistical analyses. We conducted large-scale robust statistical investigations
of the rearrangements reconstructed from thousands of karyotypes, searching for
differences / relationships between distinct cancers and identifying significant co-
occurring aberrations. Our results revealed new characteristics of chromosomal re-
arrangements in cancer, which may shed light on aberration development mecha-
nisms in cancer. We believe that the wealth of cancer karyotypes merits additional
investigations of these data which will hopefully provide more insights on the role

and importance of chromosomal aberrations in cancer.






Acronyms

Array-CGH - Array-based Comparative Genomic Hybridization
CML - Chronic Myelogenous Leukemia

DCJ - Double-Cut-and-Join

DSB - Double Strand Break

ESP - End Sequence Profiling

FISH - Fluorescence In Situ Hybridization

ISCN - International System for human Cytogenetic Nomenclature
KS - Karyotype Sorting

M-FISH - Multiplex Fluorescence In Situ Hybridization

RKS - Reduced Karyotype Sorting

SBLT - Sorting By Legal Translocations

SBR - Sorting By Reversals

SBRT - Sorting By Reversals and Translocations

SBT - Sorting By Translocations

SDCJ - Sorting By Double-Cut-and-Join operations

SKY - Spectral Karyotyping
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