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Abstract. In this study we propose a novel model for the representation of bi-
ological networks and provide algorithms for learning model parameters from
experimental data. Our approach is to build an initial model based on extant
biological knowledge, and refine it to increase the consistency between model
predictions and experimental data. Our model encompasses networks which con-
tain heterogeneous biological entities (mRNA, proteins, metabolites) and aims to
capture diverse regulatory circuitry on several levels (metabolism, transcription,
translation, post-translation and feedback loops among them).
Algorithmically, the study raises two basic questions: How to use the model for
predictions and inference of hidden variables states, and how to extend and rec-
tify model components. We show that these problems are hard in the biologi-
cally relevant case where the network contains cycles. We provide a prediction
methodology in the presence of cycles and a polynomial time, constant factor
approximation for learning the regulation of a single entity. A key feature of our
approach is the ability to utilize both high throughput experimental data which
measure many model entities in a single experiment, as well as specific experi-
mental measurements of few entities or even a single one. In particular, we use
together gene expression, growth phenotypes, and proteomics data.
We tested our strategy on the lysine biosynthesis pathway in yeast. We con-
structed a model of over 150 variables based on extensive literature survey, and
evaluated it with diverse experimental data. We used our learning algorithms to
propose novel regulatory hypotheses in several cases where the literature-based
model was inconsistent with the experiments. We showed that our approach has
better accuracy than extant methods of learning regulation.

1 Introduction

Biological systems employ heterogeneous regulatory mechanisms that are frequently
intertwined. For example, the rates of metabolic reactions are strongly coupled to the
concentrations of their catalyzing enzymes, which are themselves subject to complex
genetic regulation. Such regulation is in turn frequently affected by metabolite concen-
trations. Metabolite-mRNA-enzyme-metabolite feedback loops have a central role in
many biological systems and exemplify the importance of an integrative approach to
the modeling and learning of regulation.
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In this work we study steady state behavior of biological systems that are stimu-
lated by changes in the environment (e.g., lack of nutrients) or by internal perturbations
(e.g., gene knockouts). Our model of the system contains variables of several types,
representing diverse biological factors such as mRNAs, proteins and metabolites. In-
teractions among biological factors are formalized as regulation functions which may
involve several types of variables and have complex combinatorial logic. Our model
combines metabolic pathways (cascades of metabolite variables), genetic regulatory
circuits (sub-networks of mRNAs and transcription factors protein variables), protein
networks (cascades of post-translational interactions among protein variables), and the
relations among them (metabolites may regulate transcription, enzymes may regulate
metabolic reactions). We show how such models can be built from the literature and de-
velop computational techniques for their analysis and refinement based on a collection
of heterogeneous high-throughput experiments. We develop algorithms to learn novel
regulation functions in lieu of ones that manifest inconsistency with the experiments.

Most current approaches to the computational analysis of biological regulation fo-
cus on transcriptional control. Both discrete (e.g., [3]) and probabilistic methods (e.g.,
[9]) use gene expression data and attempt to learn a regulatory structure among genes
and to create a predictive model that fits the data. The computational models used in
these studies involve numerous simplifying assumptions on the nature of genetic reg-
ulation. Among the more problematic of these simplifications are a) the use of mRNA
levels to model the activity of transcription factor proteins, b) the lack of consideration
for the state of the medium in which the experiment was done and c) the assumption
of acyclic regulation structure that prevents the adequate modeling of feedback loops.
As a consequence of these limitations, simple genetic networks tools are rarely used in
practical biological settings. A more fruitful approach for learning regulation involves
the coarser notion of regulatory modules, with [14] or without [1, 17] explicit learning
of regulatory functions that define them. Module-based methods are relatively robust to
noise and in some cases can tolerate the gross simplification described above. However,
models generated by these methods are coarse and limited in their level of detail.

Our study aims to overcome some of the limitations of prior art by taking an ap-
proach that is innovative in combining several key aspects:

• We model a variety of variables types, extending beyond gene network studies, that
focus on mRNA, and metabolic pathways methods, that focus on metabolites. Conse-
quently, our model can express the environmental conditions and the effects of transla-
tion regulation and post translational modifications.

• Our approach allows handling feedback loops as part of the inference and learning
process. This is crucial for adequate joint modeling of metabolic reactions and genetic
regulation.

•We build an initial model based on prior knowledge, and then aim to improve (expand)
this model based on experimental data. A similar approach was employed in [16] for
transcription regulation only. We show that formal modeling of the prior knowledge
allows the interpretation of high throughput experiments on a new level of detail.

• Our algorithms learn new transcription regulation functions by analyzing together
gene expression, protein expression and growth phenotypes data.



100 Irit Gat-Viks, Amos Tanay, and Ron Shamir

Our methodologies and ideas were implemented in a new software tool called
MetaReg. It facilitates evaluation of a model versus diverse experimental data, detec-
tion of variables that manifest inconsistencies between the model and the data, and
learning optimized regulation functions for such variables. We used MetaReg to study
the pathway of lysine biosynthesis in yeast. We performed an extensive literature sur-
vey and organized the knowledge on the pathway into a model consisting of about 150
variables. In the process of model construction, we reviewed the results of many low
throughput experiments and included in the model the most plausible regulation func-
tion of each variable. We assessed the model versus a heterogeneous collection of exper-
imental results, consisting of gene expression, protein expression and phenotype growth
sensitivity profiles. In general, the model agreed well with the observations, confirming
the effectiveness of our strategy. In several important cases, however, inconsistencies
between measurements and model predictions indicated gaps in the current biological
understanding of the system. Using our learning algorithm we generated novel regu-
lation hypotheses that explain some of these gaps. We also showed that our method
attains improved accuracy in comparison to extant network learning methods.

The paper is organized as follows. In Section 2 we introduce the model and define
some notation. In Section 3 we show how to take feedback loops into account and
how to use the model to infer the system state given an environmental stimulation. In
Section 4 we introduce our mathematical formulation of experimental data and model
scoring scheme and in Section 5 we develop optimization algorithms for the learning
of regulation functions. Section 6 presents our results on the lysine pathway and its
regulation.

2 The Model

We first define a formal model for biological networks. A model M is a set U of vari-
ables, a set S = {1, . . . , k} of discrete states that the variables may attain, and a set of
regulation functions fv : S|N(v)| → S for each v ∈ U . fv defines the state of a regu-
lated variable v (called a regulatee) as a function of the states of its regulator variables
N(v) = {r1

v, . . . , rdv
v }. We define the set of stimulators UI to include all variables with

zero indegree. The model graph of M is the digraph GM = (U, A) representing the
direct dependencies among variables, i.e., (u, v) ∈ A iff u ∈ N(v). For convenience
we assume throughout that regulation functions can be computed in constant time.

A model state s is an assignment of states to each of the variables in the model,
s : U → S. A model stimulation is an assignment of states to all the model stimulators,
q : UI → S.

In this paper we shall use the model logic primarily for the determination of modes.
For a model M and state s, we say that s agrees with M on v if fv(s(r1

v), . . . , s(rdv
v )) =

s(v). We call a model state s of M a mode if s agrees with M on every v ∈ U \ UI . A
mode is thus a steady state of the system. States representing non-steady state behavior
of the system, which may be adequate for the representation of temporal processes, are
outside the scope in this work. Since our biological models represent a combination of
diverse regulation mechanisms, operating in different time scales (metabolic reactions
are orders of magnitude faster than transcription regulation), a realistic temporal model
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is a considerable challenge that should be carefully dealt with in future work. The steady
state assumption is in wide use (e.g., [3, 9]) and was proved flexible enough in our
empirical studies. Figure 1 illustrates a simple model and its modes.

Fig. 1. A simple model. The model includes one stimulator X, regulating a positive feedback loop
of two variables Y and Z. We assume a binary state space (on-dark, off-light). fz is the identity
function and fy = s(x) AND s(z). When the stimulator state is off (A), a unique mode exists.
If the stimulator state is on (B), two different modes are possible, one in which the cycle is on
and the other in which the cycle is off.

We now describe the biological semantics of a model. V includes four types of vari-
ables: (a) mRNAs (b) active proteins that serve as enzymes or regulators (c) internal
metabolites, which represent the metabolite derivatives in the pathway under study (d)
external metabolites, which represent different environmental conditions and specify
the nutritional concentrations in the medium. The external metabolites are assumed to
be determined by the experimenter, and their level is unaffected by other variables in the
model, so they will serve as part of our stimulator set. The levels of the mRNAs, proteins
and internal metabolites are controlled by other variables via regulation functions that
manifest transcriptional, translational, post-translational and metabolic control mecha-
nisms. The stimulators determine the ”boundary condition” of the model. For example,
in lysine metabolism, the level of the internal lysine metabolite is influenced by lysine
transport into the cell, by the yield of the lysine biosynthetic pathway, by the rate of
lysine degradation, and by the rate of lysine utilization in proteins biosynthesis. The
external lysine level, on the other hand, is assumed to be determined and kept fixed by
the experimenter throughout the experiment.

3 Computing Modes

Given a model stimulation q we would like to compute the set of model’s modes whose
stimulators states coincide with those of q. This will be the first step in using a model
to infer the state of the system under a certain condition.

A q-mode of a model M and stimulation q is a mode m such that for each v ∈ UI ,
q(v) = m(v). We denote the set of q-modes by Qq,M . A model M with acyclic graph
GM is called a simple model. We note that q-modes are unique and easily computable
for simple models: Given a stimulation q and a topological ordering on the graph’s
nodes (which exists, since the graph is acyclic), we can compute the q-mode by calcu-
lating the state of each variable given its regulators’ states. In summary:
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Claim. Let M be a simple model where GM = (U, A). For any stimulation q, there is
a unique q-mode that can be computed in time O(|U |+ |A|).

In practice, model graphs are not acyclic and feedback loops play a central role in
system functionality. In cyclic models, a stimulation q may have no q-modes (in case
no steady state is induced by the stimulation), a unique q-mode, or several q-modes.
In order to compute the set of q-modes we will first transform a cyclic model into a
simple one. Recall that a feedback set in a directed graph is a set of nodes whose re-
moval renders the graph acyclic [6]. A feedback set of a model M is a feedback set for
the graph GM . Given a feedback set F , the auxiliary model MF is obtained by chang-
ing the regulation functions of the variables in F to null. The graph GMF is updated
accordingly and becomes acyclic, so MF is simple. Given a set F ′ ⊆ F , we say that
a mode m′ of MF is (M, F ′)-compatible if m′ agrees with M on every v ∈ F ′. In
particular, a mode of MF which is (M, F )-compatible is also a mode for M , since the
steady state requirements hold for every v ∈ U \ F (by definition of MF modes) and
for all v ∈ F (due to the compatibility). Given a mode for MF , it is easy to check if it
is (M, F ′)-compatible by calculating fv for each v ∈ F ′. The following algorithm cal-
culates the q-modes of M by using a feedback set F and a topological ordering of GMF :

Mode Computation Algorithm
• Generate each possible state assignment to F . For the assignment sF : F → S
do the following:
− Generate a stimulation q′ for MF by joining q and sF .
− Use the topological ordering to compute a (unique) q′-mode m′.
− If m′ is (M, F )-compatible, add it to Qq,M .

Hence, we have shown:

Proposition 1. Given a model M , a feedback set F , and a stimulation q, the q-modes
can be computed in O(k|F |(|U |+ |A|)) time.

We note that the minimum feedback set problem is NP-hard [12], but approximation
algorithms are available [15]. The complexity of our algorithm is exponential in the size
of the feedback set, but this is tolerable for the current models we have analyzed. Much
larger systems may require heuristics that avoid the exhaustive enumeration of feedback
set states we are currently using.

4 Experimental Conditions and Their Inferred Modes

An ultimate test for a model is its ability to predict correctly the outcome of biological
experiments. We formally represent the data of such experiments as conditions. A con-
dition e is a triplet (eq, ep, es). eq is a model stimulation defining the environment in
which the experiment was performed. ep is a partial assignment of states to variables in
U \UI , and is called a perturbation. A perturbation defines a set of variables whose reg-
ulation was kept as a particular constant during the experiment. For example, knockout
experiments fix the state of mRNAs to zero. es is a set of measurements of the states
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of some variables, and is called an observed partial state. We define es(v) = −1 for
variables that were not measured in the experiment. Low throughput experiments (like
northern blot or ELISA) typically measure one or few variables in a given condition.
High throughput experiments (e.g., gene expression arrays or protein expression pro-
files) may measure the states of all variables of a particular type. A different type of
high throughput experiments are growth sensitivity mutant arrays [4]. Each such array
corresponds to many conditions, all with the same stimulation (representing the en-
vironment of the experiment), but with different perturbations (different knocked-out
genes), and only a single measured variable: the growth level. We will assume that this
level corresponds to the yield of the metabolic pathway under study.

Given a condition e we wish to use a model M to compare the possible modes in-
duced by the stimulation eq with the observed partial state. If the condition involves a
perturbation, we first have to update our model accordingly. For simplicity assume this
is not the case. We then apply the algorithm from the previous section and compute the
set of all eq-modes. In case more than one exists, we expect the correct one to be most
similar to the observed partial state. To assess this similarity we introduce a score func-
tion that equals the sum of squared differences between the observed partial state es

and a eq-mode. Precisely, given a condition e and an eq-mode s, we define the discrep-
ancy D(s, e) as

∑
v∈U,es(v) �=−1(s(v) − es(v))2. The mode with smallest discrepancy

will be considered as our inferred mode. Its score is called the model discrepancy on
condition e, i.e., D(M, e) = mins∈Qeq,M D(s, e). If no eq-mode exists, D(M, e) is set
to a large constant K . Note that models with loosely defined regulation functions may
have a large number of modes per stimulation and consequently suffer from over-fitting
of the inference.

5 Learning Regulation Functions

Given a model and experimental conditions, we wish to optimize one particular reg-
ulation function in the model and in this way derive an improved model with lower
discrepancy. In this section we discuss the resulting function optimization problem, and
show that this problem is NP-hard. We translate the function optimization problem to
a combinatorial problem on matrices, and provide a polynomial-time greedy algorithm
for it. Finally, we show that the greedy algorithm guarantees a 1/2-approximation for a
maximization variant of the function optimization problem.

We focus on one model variable v and fix the set of v’s regulators {r1
v, ...r

dv
v }. Let

E = {ei} be the set of experimental conditions. In order to simplify the presentation, we
assume throughout this section that experimental conditions have empty perturbation
sets. Given a function g : Sdv → S we define M(g, v) to be the model M with the
single change that fv = g. The discrepancy score of g is defined as

∑
i D(M(g, v), ei).

Problem 1. The function optimization problem. The problem is defined with respect
to a model M , a set of conditions E and a variable v ∈ U . The goal is to find a regulation
function fv = g with an optimal discrepancy score. In other words, we wish to compute
argming

∑
i D(M(g, v), ei).

In most extant gene networks models [9, 3, 16], an optimal regulation function can
be easily learned given the topology of the network. This is done using the multiplic-
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ities (or probabilities) of different combinations of observed states for the regulators
and regulatee. The main difficulty with our version of the learning problem is that the
states of regulators are frequently not observed, and have to be inferred together with
the regulation function. A naive algorithm can test all kkdv

functions for the best dis-
crepancy, but this strategy is impractical even for modest k and dv (333

> 1012). In fact,
the optimization problem is NP-hard (we omit the proof here).

Proposition 2. The function optimization problem is NP hard.

We shall translate the function optimization problem to a combinatorial problem
on matrices and develop an approximation algorithm to solve it. First, we define an
auxiliary matrix and show how to construct it. We define Qv

q,M as the set of model
states s which satisfy for all u ∈ UI , s(u) = q(u) and agree with M on all u ∈
U \ UI , u �= v. Note that Qv

q,M is a superset of the set of q-modes Qq,M in which we
relax the requirement for agreement on v. Given an instance of the learning problem,
we form a matrix W v with a column for each condition and a row for each assignment
of states to v and its regulators. Let r = (r1

v , . . . rdv
v ), x = (x1, . . . , xdv ). We define

the matrix entry wv
i,((x1,...,xdv ),x) as min{D(s, ei

s)|s ∈ Qv
ei

q,M , s(r) = x, s(v) = x} or

a large constant K if the minimization set is empty. In the following algorithm, we
show how to compute W v by relaxing the requirement for v compatibility in the mode
computation algorithm. Later we shall show how to use W v to compute the discrepancy
score.

Matrix Construction Algorithm
• Initialize all entries in W v to K .
• Form a feedback set F such that v ∈ F .
• For each condition i and for each assignment sF of states of the feedback set do:
− generate a stimulation q′ for MF by joining ei

q and sF .
− use a topological ordering on GMF to compute a (unique) q′-mode m′ for MF .
− If m′ is (M, F \ v)-compatible, compute its discrepancy x.
− Replace the entry wv

i,((m′(r1
v),...,m′(rdv

v )),m′(v))
by x if the latter is smaller.

Lemma 1. Given a model M , a set of conditions E and a feedback set F such that
v ∈ F , the Matrix Construction Algorithm correctly computes the matrix W v in

O(kdv+1|E|+ k|F |(|U |+ |A|)|E|).
Proof. Matrix entries are computed by minimization of discrepancies over all (M, F \
v)-compatible modes that have a given regulator/regulatee states. But (M, F \ v)-
compatible modes are exactly the modes in Qv

ei
q,M which are used in W v’s definition.

Therefore, the algorithm correctly computes W v. The algorithm spends O(kdv+1|E|)
(the size of W v) time in initialization and O(k|F |(|U | + |A|)|E|) time to compute all
mode discrepancies.

Lemma 2. The discrepancy score of a regulation function g equals

|E|∑

i=1

min
x∈Sdv

wv
i,(x,g(x)).
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By the last lemma, the scores of all possible regulation functions can be derived
from the matrix W v. To find the optimal function we first translate the problem to the
following combinatorial problem:

Problem 2. The Rows Subset Cover Problem. We are given a non-negative integer
valued n ×m matrix W and a partition of the rows to disjoint subsets B1, . . . , Bl. A
row subset R is a set of rows bR

1 ∈ B1, b
R
2 ∈ B2, . . . , b

R
l ∈ Bl. Our goal is to find a

row subset with maximal score c(R) =
∑m

j=1 maxl
i=1 wbR

i ,j .

In our settings, rows are pairs (x, x) and columns are conditions. The subsets Bj are
the sets of rows with identical regulator states x. To formulate the function optimization
problem as a row subset cover problem we rewrite wij = K − wv

ij . A selection of
bi = (x, x) corresponds to the setting of fv(x) = x.

The previous discussion implies that for constant value of dv and k, the row subset
cover problem is NP-hard. A Greedy Row Subset Algorithm applies naturally to this
problem: We start with an arbitrary row subset S, and repeatedly substitute a row to
improve the score, i.e., setting S ← (S \ {bS

i }) ∪ {b′i} where b′i ∈ Bi and the new S
has improved score. The algorithm terminates in a local optimum when no single row
substitution can improve the score. Since the score increases at each iteration and all
scores are integers bounded by K , the greedy algorithm will terminate after O(nmK)
steps. For the function optimization problem, O(|E||U |k2) is an upper bound on the
maximal score and hence on the number of steps. Each step costs O(|E|kdv+1) in order
to find an improving substitution, and thus the total cost is O(|E|2|U |kdv+3).

Proposition 3. The greedy algorithm guarantees a 1/2-approximation for the Row Sub-
set Cover Problem.

We omit the proof here. Note that in practice, we find regulation functions by exe-
cuting the matrix construction algorithm and applying the greedy algorithm to the ob-
tained matrix. In order to take condition perturbations into account, we have to consider
a slightly different model in each condition. For example, if a condition was measured
in a strain knocked-out for a specific gene v, we will form a modified model with altered
(constant) fv function and compute its modes and discrepancy as described above. The
other algorithms (matrix generation and row selection) remain unchanged.

6 Results

We applied the MetaReg modeling scheme and algorithms to study lysine biosynthesis
in the yeast S. cerevisiae. This system was selected since a) it is a relatively simple
metabolic pathway, b) its regulatory mechanisms are relatively well understood, and c)
several high throughput datasets which include experimental information pertinent to
lysine biosynthesis are available.

6.1 A Model for Lysine Biosynthesis

We have performed an extensive literature survey and constructed a detailed model for
lysine biosynthesis and related regulatory mechanisms. Lysine, an essential amino acid,
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is synthesized in S. cerevisiae from α-ketoglutarate via homocytrate and α-aminoad-
ipate semialdehyde (αAASA) in a linear pathway in which eight catalyzing enzymes
are involved. The production of lysine is controlled by several known mechanisms:

(1) Control of enzymes transcription via the general regulatory pathway of amino acids
biosynthesis. Starvation for amino acids, purines and glucose, induce the synthesis
of GCN4ap1 which is a transcriptional activator of enzymes catalyzing amino acids
biosynthesis in several pathways, including lysine. GCN4ap is controlled on the trans-
lation level by the translation initiation machinery. Specifically, GCN2ap (a translation
initiation factor 2α kinase) is known to mediate the de-repression of GCN4m translation
in nutrient-starved cells. The activity of GCN2ap is induced by high levels of uncharged
tRNA under starvation conditions [5].

(2) Transcription control of several catalyzing enzymes is regulated by αAASA. The
control is mediated by the LYS14ap transcriptional activator in the presence of αAASA,
an intermediate of the pathway acting as a coinducer. αAASA serves as a sensor of
lysine production [13].

(3) Feedback inhibition of homocytrate synthase isoenzymes (LYS20ap and LYS21ap)
by lysine. The first step of the lysine biosynthetic pathway is catalyzed by LYS20ap and
LYS21ap. At high levels of lysine, LYS20ap and LYS21ap are inhibited, and thus the
production of the pathway intermediates and of lysine itself is reduced [8].

(4) MKS1ap down-regulates CIT2m expression and hence cytrate-synthase production
which is needed for the synthesis of α-ketoglutarate. The resulting limitation of α-
ketoglutarate decreases the rate of lysine synthesis. MKS1ap is activated in nutrient-
starved cells [7, 18].

In Figure 2, we present the model graph of lysine biosynthesis as described above.
The graph includes the lysine biosynthetic pathway, the catalyzing enzymes and their
transcription control, and the translation initiation machinery controlling GCN4ap state.
The model includes also external amino acids and ammonium (NH3). These are needed
as stimulators to represent the environmental conditions enforced on the system. The
transport of amino acids and ammonium into the cell is facilitated via specific perme-
ases, and the level of internal amino acids and ammonium is determined by the extra-
cellular metabolites and by the activity of these permeases. The state of internal lysine
depends on the lysine transport into the cell and on the yield of the lysine biosynthetic
pathway. Note that in order to study the model in relative isolation from other pathways
and regulatory systems, we had to exclude some of the known relations (e.g., CIT2 and
the Kreb cycle in α-ketoglutarate production, tRNAs in GCN2ap activation). The model
graph contains several cycles that correspond to three distinct feedback cycles: general
nitrogen control regulation (e.g. GCN2ap → GCN4ap → LYS1,9m → LYS1,9ap →
ILys→ GCN2ap), lysin negative regulation (LYS20ap/LYS21ap→ IHomoCytrate→
αAASA→ ILys→ LYS20ap/LYS21ap) and αAASA positive regulation (e.g. LYS14ap
→ LYS2m → LYS2ap → αAASA → LYS14ap). We used a feedback set F consist-
ing of GCN2ap and IαAASA in all the computations reported below. The complete

1 We use variable affixes to indicate types. m suffix: mRNA, ap suffix: active protein. Metabo-
lites names are prefixed to indicate their type, I: internal, E: external.
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Fig. 2. The model graph of lysine biosynthesis in S. cerevisiae. Variables are represented by
nodes. Arcs lead from each regulator to its regulatees. All arc directions are at any angle to the
right or straight down, unless otherwise indicated. The model includes also a regulation func-
tion for each regulated variable. These functions are not shown here. Node colors indicate the
mode inferred states and the observed states in condition of nitrogen depletion after 2 days. In-
ternal node color: inferred state. Node boundaries: observed state. Red(dark): state= 2. Dark
pink(grey): 1. Light pink(light grey): 0. The representation enables us to view the disagreements
as color contrasts between the observed and inferred states. For example, LYS9m (bottom right)
inferred state is 2 while its observed state is 1.

and annotated list of regulation functions that are part of the model, is available upon
request.

We used the state space S = {0, 1, 2}. In our experiments, the definition of compat-
ibility used for the calculation of q-modes was relaxed a bit to include also cases where
m′(v) and fv(m′(r1

v), . . . , m′(rdv
v )) are both non-zeros (i.e., cases where inferred state

was 1 and observation 2 or vice versa are not considered violation of compatibility). In
other words, D(i, j) was (i− j)2 for all states {i, j} �= {1, 2}, but D(1, 2) and D(2, 1)
were set to 0. This was done to allow more flexibility in the model and to focus more
on major discrepancies.

6.2 Data Preparation

We formed a heterogeneous dataset from five different high-throughput experiments:
(a) 10 expression profiles in nitrogen depletion medium after 0.5h, 1h, 2h, 4h, 8h, 12h,
1d, 2d, 3d, 5d of incubation [10]. (b) 5 expression profiles in amino acid starvation after
0.5h, 1h, 2h, 4h, 6h of incubation [10]. (c) 10 microarray experiments of His and Leu
starvations and various GCN4 perturbations [5]. (d) protein and mRNA profiles of wild
type strain in YPD and minimal media [19]. (e) 80 Growth sensitivity phenotypes [4].
The growth phenotypes were measured for each of a collection of ten gene-deletion
mutant strains in eight conditions: Lys, Trp and Thr starvation, three minimal media
and two YPG conditions.
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Fig. 3. Caption on page 109
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To incorporate these data into our framework, we generated conditions from each of
the experiments. To this end, we identified the stimulation and perturbation that match
each experiment from the respective publication. We then converted the data into a set
of observed states.

6.3 Model Discrepancy

For each of the high throughput conditions in (a) through (d) we computed inferred
modes and compared them to the observed states. Recall that the environment defined
by the condition’s stimulation gives rise to a set of possible inferred modes, and we
choose the inferred mode which fits the observed states best. Typically, there are only
few modes per condition in the lysine model, confirming the relatively good character-
ization of the system by the model.

Figure 3A summarizes the comparison between inferred modes and observed states
for expression conditions. Figure 3B does the same for growth sensitivity data. In gen-
eral, there is good agreement between the inferred and observed states. The matrix view
highlights conditions and variables in which the observations deviate from the model
predictions.

Before analyzing the deviations, we verified the specificity of the total discrepancy.
Since the mode computation algorithm involves selection of one mode from several
possibilities in each condition, we wanted to verify that this process does not cause over-
fitting. To this end, we generated randomly shuffled data sets in which we swapped the
states between variables of the same type. Figure 3C shows the discrepancy distribution
obtained from this experiment, and supports the high specificity of the lysine model
discrepancy.

We next examined the biological implication of two major deviations of the infer-
ence from the experimental data: First, the transcription of the translation initiation ma-
chinery (GCD1,2,6,7,11, GCN1,20, SUI2,3) is repressed in the later phases (8h-5d) of
the nitrogen depletion experiment, and this effect is not predicted by the model. More-
over, the transcription of the ammonium permeases MEP1 and MEP2 is consistently

Fig. 3. Model Discrepancy (A) Discrepancy matrix for the expression data. Columns correspond
to conditions and rows correspond to mRNA variables. Each cell contains two small squares:
observed (left) and inferred (right) states of the row variable in the column condition. State col-
ors: Cyan (light gray):0, light blue (gray):1, dark blue (black):2. The background color of the
cells emphasizes critical disagreement, where the inferred state is zero and the observed state is
not (green or light gray), or vice versa (red or gray). (B) Discrepancy matrix for the phenotype
data. Each cell represents a condition, which is a combination of certain environmental nutrients
and one gene deletion. Columns correspond to the nutritional environment (i.e., the medium),
and rows correspond to the knocked-out variable. Each cell contain two small squares: observed
(left) and inferred (right) state of the internal lysine metabolite (the ILys variable) in this condi-
tion. Colors are as in (A). (C). Distribution of model discrepancy scores for randomly shuffled
data sets. X axis: total model discrepancy. We generated the distribution by computing model
discrepancy for 50 random data sets. The discrepancy of the real data set is 494 (arrow), much
lower than the minimal discrepancy measured in the shuffled sets.
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activated in nitrogen depletion. To the best of our knowledge, the explanation for these
observations is still unclear. However, there is some evidence for involvement of the
TOR signaling pathway in the regulation of this response [2]. Second, the transcrip-
tion of the lysine biosynthesis catalyzing enzymes is known to be activated by both
LYS14ap and GCN4ap, but the exact combinatorial regulation function is unknown.
Since they are both known to be activators, we originally modeled the regulation func-
tion of the catalyzing enzymes (LYS1,2,9,20,21) simply as the sum of LYS14ap and
GCN4ap. In most catalyzing enzymes, there is a clear inference deviation in two condi-
tions with GCN4∆ strain (Figure 3A, 3rd and 6th columns from right). In addition, the
growth phenotypes of LYS14 deletion strain (Figure 3B, second row) deviate from their
inferred states in all conditions with nutritional limitation of lysine. Therefore, the reg-
ulation function we originally modeled for the lysine biosynthesis catalyzing enzymes
is apparently not optimal.

6.4 Learning Improved Regulation Functions

To refine our understanding of the combinatorial regulation scheme involving LYS14ap
and GCN4ap we applied our learning algorithm to the regulation functions of LYS1,2,4,
5,9,12,20,21. For each one, we computed the discrepancy matrix and selected an opti-
mal regulation function using the learning algorithm outlined in Section 5. To estimate
the confidence of our learned functions we used a bootstrap procedure as follows. We
generated 1000 datasets each containing a random subset of 80% of the original set of
conditions. For each random dataset we recalculated the optimal regulation functions
for each of the enzymes. The confidence of the function entry fv(x1, . . . , xdv ) = y was
defined as the fraction of times y was learned as the function value for the regulators
values x1, . . . , xdv . In case of ties (several function outcomes with equal scores), we
split the count among the candidate outcomes. Results are summarized in Figure 4A,B.

Based on the optimal functions, we identify two enzyme sets that share a regula-
tory program. The expression of genes in the first set (LYS1,9,20 and possibly LYS4
and LYS21) is dependent on the presence of both LYS14 and GCN4. Both transcription
factors seems to drive the transcription of enzymes in this set linearly. The second set,
including LYS5, LYS12 and YJL200C require LYS14 but not GCN4 for basal expres-
sion levels. For LYS5 it seems that GCN4 may not be a regulator at all, possibly since
LYS5 is not a catalyzing enzyme in the pathway under study. We note that the com-
bination of expression and growth phenotype information was crucial for deriving this
conclusion. For example, when using expression data alone, the rows with LYS14p=0
are completely undefined.

6.5 Cross Validation

We tested the predictive quality of MetaReg by performing leave-one-out cross vali-
dation. For the test, we used the set of enzymes L = {LYS1,2,4,5,9,12,20,21m} as
regulatees and GCN4ap, LYS14ap, as regulators. For each variable v ∈ L and each
condition c, we optimized the regulation function of v while fixing the rest of the model
and hiding the data of c. We then used the optimized model to infer the mode in condi-
tion c without using the observed value of v. Finally, we compared the inferred state of
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the enzyme variable to the observed one, and counted the total number of correct out-
comes (or fractions of outcomes in case the inferred mode was ambiguous and several
alternatives existed). Using mRNA expression data only, the accuracy derived in this
procedure was 78.3% (Figure 4C).

We compared the performance of Metareg to the following alternative methods: (a)
A Bayesian networks [9] with a known structure where GCN4m and LYS4m are the
parents of each variable in L. We learned the local probability parameters [11] using
non-informative prior. To compute the accuracy, we ran a cross validation test by learn-
ing parameters while hiding one condition at a time. The overall accuracy obtained in
this procedure was 61.4%, much lower than achieved by MetaReg. (b) An indepen-
dence model: Each regulatee in L has no regulators. We predict the probability of each
regulatee outcome as the background distribution of its observations. To compute the
accuracy, we ran the same procedure as in (a). The overall accuracy obtained in this

Fig. 4. Learning regulation functions. (A) The optimal transcription regulation function of each
lysine biosynthesis pathway enzyme as a function of the states of the regulators GCN4ap and
LYS14ap. Each cell presents the state of a regulatee given the states of its regulators GCN4ap
(column) and LYS14ap (row). Cell colors indicate the regulatee states. Red (dark gray): state= 2.
Dark pink (gray): 1. Light pink (light gray): 0. We show only entries with over 90% confidence.
For combinations of regulators states that have lower confidence or were never present in the
inferred modes, we leave the corresponding entries of the optimal regulation function undefined.
(B) Confidences for the LYS2 function. Rows and columns are as in (B), values are the percent of
times in which the value was learned out of 1000 bootstrap experiments. (C) The accuracy of the
independence, Bayesian and MetaReg methods on the lysine biosynthesis pathway. The accuracy
is computed by cross validation on all expression conditions and the lysine biosynthesis pathway
enzymes.
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procedure was 47.5%. We conclude that the detailed modeling of interactions among
proteins, metabolites and mRNAs gives an improved accuracy to our model.

7 Discussion

Models of biological regulation are becoming increasingly complex. The well estab-
lished biological methodology of model development and expansion (incremental re-
finement) is facing major challenges with the advent of high throughput technologies
and the discovery of more and more regulatory mechanisms. Computational techniques
for modeling and learning biological systems are currently limited in their ability to
help biologists to extend their models: De-novo reconstruction methods ignore avail-
able biological knowledge, and module-based methods do not specify concrete regula-
tion functions. Here we aim at the construction of a computational methodology that
combines well with current biological methodologies. MetaReg models can be built
for almost any existing biological system, they do not assume complete knowledge of
the system, and are flexible enough to integrate diverse regulatory mechanisms. Once
built, the model allows easy integration of high throughput data into the analysis of the
existing model. The computational tools introduced here can then be used to generate
testable and easy to understand biological regulation hypotheses.
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