
Tel-Aviv University
The Raymond and Beverly Sackler

Faculty of Exact Sciences

Efficient Algorithms for Constructing and
Employing Variable-Length Markov Models

of Language

This thesis is submitted in partial fulfillment
of the requirements for Master degree (M. Sc.)

at Tel-Aviv University
Department of Computer Science

by
Shai Litvak

This thesis has been carried out under the supervision of
Dr. Ron Shamir.

January 1996

Abstract

Statistical models of human language are used as the base for different
computer manipulations of textual data: recognition and correction of
errors, reconstruction of characters sequences which were coded by an
ambiguous code and data compression.
High order Markov models were successfully implemented for
English. In some applications the model size is limited. We are then
interested in the questions of efficiently constructing an optimal model
with a given size, and using it. In this work we give efficient solutions
for these two problems.
1. In order to reduce the model size we eliminate some of the less

informative parameters which describe dependencies of high orders,
and we get a model which has "variable order". We present an
algorithm which gets a training sequence and builds a variable order
Markov model with a desired size. The model is optimal under the
criterion of maximum likelihood with respect to the training sequence
among all models with the same size. The algorithm's complexity is
quadratic in the desired size. Using this algorithm we have built some
models with different sizes for English and demonstrated that they are
significantly more informative than standard Markov models with the
same sizes. We also present some faster heuristic algorithms for
constructing the model and experimental results for using them.

2. We present a dynamic programming algorithm which uses the
variable size Markov model to choose a sequence with maximal
probability among a set of given sequences. The time and size
complexity of the algorithm is linear in the model size and the
sequence length. We implemented this algorithm in two
applications: the first is used to reduce the error rate in the
handwriting recognition system developed by ART company, and
the second one decodes a text which was ambiguously encoded
using the keys on a standard US phone. We present experimental
results for both applications which demonstrate their efficiency as a
practical solutions in a commercial quality.

i

Contents

1 Introduction
1.1 Language-Like Sequences Modeling: Motivation and Applications
1.2 Statistical Approaches to Modeling Language-Like Sequences
1.3 The Problems Studied in This Thesis
1.4 Extant Works and Our Main Results

2 Statistical Models for Language-Like Sequences
2.1 Information Source: The Training Set
2.2 Measuring Model Quality
2.3 Markov Models
2.4 Hidden Markov Models
2.5 Variable Memory Length Markov Models

3 Algorithms for Constructing a Maximum Likelihood Probabilistic
History Tree (PHT)
3.1 Reformulation as Weighted Subtree Maximization Problem
3.2 Algorithms for Weighted Subtree Maximization Problem
3.3 A Hybrid Algorithm for Subtree Maximization problem

4 Constructing PHT models for English: Implementation and
Results
4.1 Implementation Issues
4.2 Test Models for English and Results

ii

5 Algorithms for Using PHT in Recognition Tasks
5.1 Ambiguous Text Resolution (ATR) Problem
5.2 Probabilistic Finite Automaton Description for a PHT
5.3 The Standard Viterbi Algorithm and Shortcuts
5.4 On-line ATR Algorithm Using a PHT
5.5 ATR Algorithm: Features Analysis and Tests Results

6 Results of PHT Building and ATR Algorithms of Two
Applications
6.1 Phone Keypad Interfaced Communication
6.2 Handwriting Recognition

Bibliography

iii

List of Figures

2.1 A simple second order Markov model of "Israel's weather" is
presented as a PFA.

2.2 A Hidden Markov Model with two states.
2.3 A simple binary HT.
2.4 A simple PHT.
3.1 One split of a HT node.
3.2 Scheme of the replacement (in the proof for theorem 3.4).
3.3 A ternary tree is transformed by procedure make_bin to the

binary tree.
3.4 A "nearly monotone" tree.
3.5 Scheme of the replacement (in the proof for theorem 3.7).
4.1 A complete split of a node in an English PHT.
4.2 A partial split of a node in an English PHT.
4.3 Entries of a node in an English PHT.
4.4 The decrease in entropy of the XPHT while it is being grown by

the revised greedy algorithm.
5.1 A PHT and its matching PFA.
5.2 A Trellis description of the ATR Problem using first order

Markov model.
5.3 One iteration of the ATR Algorithm.
5.4 Father-child nodes relation in the active part of the DAG (in the

proof for lemma 5.1).
5.5 An unbounded size DAG.
6.1 Phone Keypad Communication System accuracy with respect to

parameters number.
6.2 Character Recognition System performance using different class

of models and different size.

iv

Acknowledgments

My first gratitude is to my parents which raised me to love learning
and to persist on the way for creation.

I warmly thank Dr. Ron Shamir for guiding me on this work. The
meeting we had were both intriguing and practical, and introduced me
to the practice of the scientific activity. I thank him for his time, for
his personal attitude, and for the empathy and encouragement he gave
me.

I want to thank ART ltd. and Gabi Ilan for the chance I had to combine
the academic and the industrial worlds, and for using the company's
equipment and data in the field of handwriting recognition.

I am grateful to Kobi Goldberger for the fruitful conversations, and his
important remarks.
I want to thank Dr. E. Boros for contributing a key idea in the "pseudo
binary" algorithm, to Dr. S. Skiena, Dr. D. Hochbaum and to Dr.
Naftali Tishby for helpful manuscripts.

Special thanks to Moran, for being a partner to my life, to my activities
and thoughts. And for her love.

v

Chapter 1
Introduction

1.1 Language-Like Sequences Modeling: Motivation
and Applications

A language-like sequence is a sequence of symbols coming from some
natural source and seems to obey some regularity, which is non trivial
for capturing. This definition is vague, but the nature of any human
language, which is the archetype for the class, is well known to each of
us. Other examples for phenomena which exhibits such behavior may
be: DNA sequences, protein sequences, daily stock market closing
rates or the notes sequence of a musical piece.
Modeling a language-like sequence is the attempt to recognize and
formalize patterns and regularities in the phenomena.
The formalization of model for such sequences is meaningful in two
aspects:
• It enlarges our knowledge and understanding (and those are, of

course, very loaded words) of the phenomena.
• It can be used in a computer program for a variety of interesting

applications.
The first aspect can lead to a large variety of works in philosophy,
psychology, or brain research. In this work we are interested in the
computer application aspect.
The interest in computer application divert the work into two major
subjects.
The first one is the model. Some questions rise up immediately: What
are the elements of the model and what are their relations ? What is
the source data which we base the model upon ? How do we build the
model ? How 'good' is the model we get and how can we evaluate it ?
Chapters 2 and 3 of this work are trying to answer those questions for
the specific models family we suggest, while chapters 4 presents
experimental results on test models constructed for English.

The second subject is the use of the model. The range of application is
large and it is growing with relation to technology front as well as
computer science development. However, we can try to generalize the
types of model use in the applications range:
• Using the model for evaluation of phenomena instances. In many

recognition tasks the model can be used to choose the best among
many interpretations of a given instance. Such tasks can be the
recognition of printed or handwritten characters, of sounds or
human voice etc. Other application of similar type is automatic
error correction of data arriving through a noisy channel. The
ambiguity resolution of overloaded symbols transmitted through a
low capacity channel can be also achieved using the same
technique. An example of such application is the decoding of text
which was encoded by a standard ten keys of a phone keypad.

• Using the model as the core of computer representation of
phenomena instances. If the model is efficient it can be used for
compressing instances and thus lowering their storage space and
transmission time.

• Using the model for computer production of new phenomena
instances. An example for such application can be the automatic
generation of 'melody' based on a model of music.

This thesis focus on the first type of applications. Chapter 5 describes
a general technique for evaluation of sequence instance using our
model. Chapter 6 presents experimental results of two applications
which use the general evaluation technique.

1.2 Statistical Approaches to Modeling Language-Like
Sequences

Although human language is probably not generated by a well defined
statistical source it does exhibit some declining autocorrelation
behavior with respect to time. This means that near past is dominant
for future prediction relative to the distant past. The declining function
is even more evident in local letter-to-letter autocorrelation. This

2

suggests that the use of some statistical model for character oriented
language modeling will yield good results.
In the following discussion we will present three models which can be
used for language modeling and show their benefits and
disadvantages:
• Fixed memory length Markov model.
• Hidden Markov model.
• Variable memory length Markov model.
We note that those classical statistical models have been used, not
only for language modeling [Nadas 84] but for modeling other
'language-like' sources with the above described feature. This includes,
for example, biological sequences such as protein and DNA [Krogh
93].
Other statistical techniques for language modeling are:
• Long distances histories and triggers. See, for example [Huang 93].
• Part of speech tagging. See, for example: [Church 88], [Brill 92]

and [Kupiec 92].
• Stochastic context-free grammars. See, for example: [Lari 91],

[Schabes 93] and [Jelinek 91].
These models which use a variety of information sources or specific
features of human language are out of the scope of this work and are
more relevant for word oriented language modeling such that are
needed for voice recognition applications.

1.3 The Problems Studied in This Thesis

Two related problems are studied in this work.
The first problem concerns selecting the model used for language-like
sequence modeling, and the techniques for constructing such model.
We are focusing on a specific family of variable memory length
Markov models. Our interest is in finding an optimal model of a
desired size with respect to a given training sequence. We use a
maximum likelihood approach for defining the optimality criteria of
the model. The model is formulated using a weighted tree structure

3

called 'Probabilistic History Tree' (PHT). We present and discuss the
'Maximum Likelihood PHT' problem in chapter 3.
The second problem concerns using a given variable memory length
Markov model for the evaluation of new sequences which are
generated by the same source described by the model. More
specifically, we are interested in choosing the most likely
interpretation for an ambiguous message with respect to our model.
The 'Ambiguous Text Resolution' (ATR) problem is discussed chapter
5. We seek a general algorithm for this problem, one that can be used
for all the applications which face the same general needs.
A major drive and test for this thesis are the practical applications
which we developed based on our theoretical results. The need to meet
the technological limitations of small, low cost, portable computers
which should run those applications is real-life target for the
theoretical work. The wish to find the best possible model of limited
size and memory demands reflects in the Maximum Likelihood PHT
problem. The limited CPU resources reflects in the Ambiguous Text
Resolution algorithm.

1.4 Extant Works and Our Main Results

The discussion in this section is divided to two parts: the Maximum
Likelihood PHT problem and the Ambiguous Text Resolution
problem. For each problem we present the extant work done and our
results.
The class of hypotheses for the variable memory length Markov
models which we used is a family of trees we call PHT-s (for details
see section 2.5). Each node in the tree represents a state of the Markov
chain. The tree is unbalanced and the distance of each node from the
root is equal to the memory length of the state. Similar trees have been
presented for universal compression purposes by Weinberger, Lempel
and Ziv in [Weinberger 82], Rissanen [Rissanen 83], and developed
by Weinberger, Rissanen and Feder [Weinberger 95].

4

The same class of models was studied by Ron, Singer and Tishby in
[Ron 95] and used for correcting English text. Their aim was learning
a variable memory length Markov model which they represent by a
"probabilistic finite state automaton" (PFSA). They gave a PAC-like
learning algorithm for doing this, with the following features: If both a
bound L on the memory length of the target PFSA, and a bound n on
the number of states of the target PFSA has are known, then for every
given ε>0 and 0<δ<1, their learning algorithm outputs an ε-good PHT
(using the Kullback-Leibler divergence to measure the error with
respect to the target PFSA), with confidence parameter 1-δ , in time
polynomial in L, n, |σ | (the alphabet size), 1 ε and 1 δ . The algorithm
is fed with a long enough training set which was produced by the
target PFSA, and with the parameters L, n, ε and δ . Ron et al also
show how to construct a PHT with N L n= ⋅ nodes which is equivalent
to a given n-state PFSA.
A similar PAC model learnability problem was also studied in
[Höffgen 93].
Our approach to the problem is a bit different from the PAC learning
approach. We measure the likelihood of our hypotheses with respect to
the training set. Our aim is to find a maximum likelihood PHT with a
desired number of nodes. In chapter 3 we show that the maximum
likelihood PHT problem can be reformulated as a rooted maximal
weighted subtree problem. The original tree describes the full L order
Markov model or some subtree which is most likely to contain the
desired maximum likelihood PHT. We analyze the general maximum
weighted subtree problem and give two algorithms for solving it. One
algorithm is greedy and does not give an optimal solution, yet, test
results shows that its solution is near optimal. The other algorithm
finds the optimal solution in not more than c V N⋅ ⋅| | 2 were c is constant,
V is the nodes set of the original tree and N is the number of desired
nodes in the target subtree. After the completion of our work on the
algorithm, we received a preprint by Goldschmidt and Hochbaum
[Goldschmidt 95] which studies the k-edge subgraph problem. They
give an algorithm for the weighted subtree problem which is rather
similar to our algorithm.

5

We present a third algorithm for the weighted subgraph problem
which takes advantage of the inner order which is most likely to be
found among the tree nodes, due to the special weights derived from
the maximum likelihood PHT problem. In the original tree the weight
of the node is almost always higher than the weight of each of its
children. This order is used to speed up the search for the optimal
solution.
We used our three algorithms to build a set of PHT-s of different sizes
for English. We show these PHT-s and compare their features in
chapter 4.
Learning a variable length Markov model is only the first step needed
for successful use of this model in a computerized recognition
application. Given a sequence of ambiguous signs produced by a
known source, where each sign has several possible interpretations, we
can use our knowledge of the source to pick the 'best' interpretation for
each sign. The algorithm presented by Viterbi [Viterbi 67] is very
useful for this task when the source is modeled using a fixed order
Markov model. This simple dynamic programming algorithm was
implemented for a variety of applications such as speech recognition
[Rabiner 86], optical characters recognition [Hull 82] and phone
keypad-based communication [Skiena 94].
Faster algorithms for doing the same task were presented by Fano
[Fano 63] and Jelinek [Jelinek 69]. They are based on scanning only a
portion of all the possible combinations of interpretations with high
probability of finding the best combination. They do not ensure,
however, that the best combination will be found, which is the case in
Viterbi algorithm.
There are some works which extend the Viterbi algorithm for use with
variable length dependencies models. Tao [Tao 92] describes a
generalization of hidden Markov model and of Viterbi algorithm
which uses a building blocks of short, variable length sequences of
characters. His generalized Viterbi algorithm runs in time O(N2) for
interpreting one sign when N is the number of states in the model. Tao
does not give a learning algorithm for constructing the model.
Ron, Singer and Tishby [Ron 95] version of the Viterbi algorithm is
based on the automaton description of the variable length Markov

6

model. This algorithm needs O(| |σ ⋅N) operations per sign when N is
the number of states in the model and σ is the alphabet used.
Our algorithm is basically an expansion of the Viterbi algorithm which
uses a PHT model instead of the fixed order Markov model. The
algorithm has an upper bound of c N⋅ ⋅| |σ operations per sign, however,
the actual work per node is far beneath this bound. The algorithm is
carefully designed for on-line work in a limited platform of small low
cost portable computer. Extra care was taken for speed. We present a
technique which uses a subset of reasonable hypotheses per sign
(which is naturally given in many real life applications) to reduce
processing time. Special care was taken also for minimizing memory
consumption, and for the on-line behavior of the algorithm, that is, the
algorithm is buffering signs on-line and resolves them as-soon-as-
possible while more signs are coming. This algorithm is used in the
commercial handwriting recognition system of ART company which is
running on a limited platform. Another application which was based
on this algorithm is an American phone keypad based communication
system. On the transmitting side the keypad is used to encode English
messages with an ambiguous code of ten digits. On the receiving side
the ambiguous message is being resolved with high accuracy using our
algorithm.

7

Chapter 2
Statistical Models For Language-Like
Sequences

In this chapter we will present three types of statistical models for
language-like sequences and point out their benefits and
disadvantages:
• Fixed memory length Markov model.
• Hidden Markov model.
• Variable memory length Markov model.
Two preliminary issues should be discussed before facing the specific
problem of learning some language-like model: The training set and
the model quality.

2.1 Information Source: The Training Set

When we approach the problem of modeling a language we first need
some stream of characters coming from the relevant source. The
stream is used to set model parameters, and should be a good
representative of the source. This means it should be long enough to
contain the needed statistics and as general as possible in it contents.
The selection of such a stream for English modeling is not a simple
task since any stream has its particularities:
• It may originate from either written text or spoken text.
• It is usually discussing one or some specific subjects which have

their own dominant vocabulary and abbreviations. Specific names
that are repeatedly appearing might insert noise to our model. The
Bible, or Alice in Wonderland, for example, can make some names
too popular in the model, if used as training sets.

• It can represent different layers of English. Clinton speeches, for
example, might be more useful than Shakespeare's tragedies for
today's applications.

• It tends to exhibit some specific format (especially if it is written
and edited somehow). An unformatted text, delivered through
phone keypad, for example, is very different from a written
formatted text of a paper dictionary.

• It is influenced by the specific speaker or writer jargon.
The application for which the model is built can take advantage of the
particularities if it is aimed toward specific user or situation. In this
case, we can consider using some non-typical English training set, one
which was produced under the conditions our model is designed to
work in.
This is not the case, however, when the application is more general-
purpose. In this case some combined training set, built up from some
sources containing a variety of authors, subjects, formats etc. should
be composed.
Another parameter that should be considered when deciding on a
training set is the special psychological situation that is typical to the
man-machine interface of the application which uses the model. In
case of on-line phone keypad based communication, for example, the
users might develop special habits like short words or basic
vocabulary use, or even generating short non-grammatical "sentences"
with no conjunctions. Collecting data from the real situation in which
the application should be used could be helpful for building a good
model. It is not always easy, however, to collect such real data since
phone keypad based communication or on-line character recognition
are not yet world-wide popular.

2.2 Measuring Model Quality

Measuring model quality is needed whenever one of several models
(or parameters sets for a model) should be chosen for a specific
application. If the model is designed to work in a specific application
then the ultimate measure for the model quality is its overall
contribution to the performance of this application.

9

In practice, this approach is usually quite problematic:
• It is not always easy to measure application performance itself. To

measure the error rate of the application, a large data collected from
a variety of real users is needed. It is usually not handy or easy to
collect.

• Another problem with measuring the application error rate is that it
is not necessarily equivalent to human evaluation of the application.
For example, some phenomena among the errors, although not very
common, might not be tolerated by the users.

• Error rates depend on many parameters of the application. Those
parameters are sometimes combined non-linearly with the model,
and separating the model error from the error in the application
parameters is not always possible. For example, in the case of
handwriting recognition, the language model parameters and the
shape model parameters are combined and influence the application
error rates together.

• Tuning the model for a specific application makes the model non-
general purpose.

Focusing on the model itself and on the way it is being used within the
application to assign probabilities for character sequences is more
practical, and easier to analyze. Optimization of the model will usually
lead to improvement in overall application performance.
In order to build a model we need some training set. Suppose
X=c1...cR is a stream of characters generated by the source that we
wish to learn. Each ci is a character in σ, the source alphabet. If X is
long enough and represents this source's general behavior, then it can
be used as a good training set. A representative training set can also be
used for estimating model quality in the following manner:
Let M be some candidate stochastic model with memory L (see section
2.3). M defines a probability measure P d d dM L(| ..)1 for each
d,d dL1.. ∈σ for the event "d is next to appear given that the last L
characters in X were d dL1.. ". We are interested in evaluating the
quality of M with respect to X. The likelihood L of M with respect to X
is defined:

10

L M P X P c c cX M M i i L i
i L

R

() () (| ..)≡ = − −
= +
∏ 1

1

(For simplicity we will ignore, for now, the first L characters. This will
be further discussed in section 3.1.)
When using the maximal likelihood approach one should pick the
model M for which L MX () is maximal. The intuition behind this
approach is that since X is a typical string from the source, picking a
model which gives high probability to the appearance of X is more
reasonable than picking a model which predicts the appearance of X
with small probability. A mathematical justification for this approach
is by a simple Bayes law argument:

P M X
P X M P M

P X
(|)

(|) ()

()
=

P(X) is fixed for all models. The a-priori probability P(M) is equal for
all models since we have no a-priori preference to any model. This
means that a model M maximizing P X M(|) will also maximize
P M X(|) . The maximum likelihood approach has been widely used for
voice recognition [Bhal 83] and other recognition and compression
tasks.
Let P d dX L(...)1 be the probability measure of the sequence d dL1.. in
X, that is, the proportion of d dL1.. among all L-long strings (L
successive characters) in X.
We can also use the data-to-model cross-entropy H(X;M) measure,
known also as logprob [Jelinek 89], instead of the likelihood
measure:

H X M P d d P d d d
R

L MX L
all d d
d

M L L X
L

i

(;) (...) log((| ...)) ... log(())
...

≡ − ⋅ = = −
+

∈

+∑ 1 1 1
1 1

1

σ

It is clear that minimizing H X M(;) is equivalent to maximizing
L MX () while cross-entropy is sometimes more convenient to analyze
and measure.
Another equivalent measure called perplexity [Jelinek 77] is used as
well in the literature to measure model with respect to the text:

S XM
H X M() (;)= 2

11

2.3 Markov Models

The basic stochastic model which we will describe here is the Markov
model. We also introduce the probabilistic automaton model and its
relation to the Markov model.

Stochastic processes
A stochastic process is an indexed sequence of random variables. The
set of possible values which the random variable may assume is called
the state space of the process. If the index set I of the stochastic
process { }Xi i I∈ is countable then the process is called discrete time
stochastic process.X t is then called the state of the process in time t.
A discrete stochastic process is stationary if:
Pr(, ,... ,) Pr(, ,... ,)X x X x X x X x X x X xn n k k n k n1 1 2 2 1 1 2 2= = = = = = =+ + +

for every k=1,2... and all x x xn1 2, ,..., in the state space of the process.
For the stationary process we use the notation:

p x x x X x X x X xn n n(, ,...,) Pr(, ,...,)1 2 1 1 2 2= = = = .

First order Markov processes
A discrete stochastic process ()Xi is a first order Markov process or a
Markov chain if for all x x xn1 2, ,..., :

p x x x x x p x xn n n n n(| , ,..., ,) (|)1 2 2 1 1− − −=
In this case we can write the chain form:

p x x x p x p x x p x x p x xn n n(, ,...,) () (|) (|), ..., (|)1 2 1 2 1 3 2 1= −

Stationary first order Markov processes
When for the Markov process Pr(|)X x X xn i n j+ = =1 is independent

of n then the process is called time invariant. Note that a stationary
process is time invariant but the converse is not necessarily true. In
this case we can define:

p X x X xi j n i n j, Pr(|)= = =+1 .

Since we can write p x x xn(, ,...,)1 2 in a chain form than any time
invariant first order Markov process is characterized by the set
{ , , },p i j Ii j ∈ and the distribution of the initial state X1.

12

A probability distribution { , , , ...}p jj = 1 2 is called a stationary

distribution for the transition probabilities { },pi j if:
p p pj i i j

i I
=

∈
∑ ,

Theorem 2.1:
If the distribution of the initial state X1 of a first order Markov process
is a stationary distribution then the process is stationary.

Another known theorem in stochastic processes theory states:

Theorem 2.2:
Suppose the first order Markov process satisfies the following
conditions:
• There exist a stationary distribution.
• The process is irreducible, that is, the probability that starting from

state xi the process will eventually get to state x j is non-zero, for

every states xi and x j.

• The process is aperiodic, that is, pi i, > 0 for every state xi .

then the stationary distribution is unique.

This means that a stationary Markov process is characterized merely
by the set { , , },p i j Ii j ∈ which also defines X1's distribution.

The proof for theorems 2.1 and 2.2 can be found in literature (see, for
example [Ross 70] chapter 4).

K-th order Markov processes
We can define Markov processes of higher order. If the process
satisfies the condition:

p x x x x p x x x xn n n n n k n n(| ,..., ,) (| ,..., ,)1 2 1 2 1− − − − −=
then it said to be k-th order Markov process. The order is also called
the memory of process.
A generalization of the theorems describing the stationarity conditions
(2.1 and 2.2) can be also given for the k-th order Markov process.

13

We can view a Markov model from another point as well. It can be
described as a random walk on a probabilistic automaton.

Probabilistic Finite Automaton
A PFA, probabilistic Finite Automaton is characterized by the 5-tuple
(, , , ,)Q P Pσ δ 0 defined as follows:
• Q is a finite set of states.
• σ is a finite alphabet.
• δ:Q Q× →σ is a transition functions.
• The transition probability functions P:Q × →σ [,]0 1 . P(q,c) is the

probability of stepping from state q to state δ(q,c). P must satisfy
the following conditions: for every q∈Q: P q c

c
(,)

∈
∑ =

σ
1.

• The probability distribution P Q0 0 1: [,]→ of the first state. P q0 () is
the probability that the initial state will be q. P0 must satisfy the
following conditions: P c

c
0 1()

∈
∑ =

σ
.

A PFA can be used to simulate a time invariant Markov process of
order k and space state X by defining:
• Q Xk≡
• σ ≡ X
• for every x∈σ , x x xk1 2 ... ∈Q, let δ(x x xk1 2 ... ,x)=x xk2 ... x
• for every x∈σ , x x xk1 2 ... ∈Q, let :

P(x x xk1 2 ... ,x)≡ = = =− −Pr{ | ,..., }X x X x X xn n k n k1 1

• let P x x xk0 1 2(...) be Pr(, ,...,)X x X x X xk k1 1 2 2= = = , the
distribution of the initial k letters, for every x x xk1 2 ... ∈Q.

Notice that if P x x x pk x x xk0 1 2 1 2
(...) ...= is a stationary distribution of the

Markov process, then the process is stationary.

14

Example:
p(RS,R)=0.3

RS

SS

SR

RR

p(RR,R)=0.6p(SS,S)=0.9

p(SS,R)=0.1

p(RR,S)=0.4

p(RS,S)=0.7

p(SR,S)=0.5

p(SR,R)=0.5

Figure 2.1: A simple second order Markov model of Israel's
weather is presented as a PFA. We define P x P SS x0() (,)≡ .
The alphabet is R (Rain) and S (Sun). There are four states
(SS, RR, SR and RS). The model can be used for weather
forecast based on the last two days weather. Rain is rare in
general, especially after two days of sun. The states RS and
SR occur only in the winter, and indeed the chance for
another day of rain increases. Rain is most probable after two
days of rain. In contrast with Hidden Markov Model which
will be defined later, the states have a natural meaning and
they define all the possible histories of length 2.

Several descriptions of English as a Markov process were introduced
by Shannon in his famous paper [Shannon 48]. Although English is
probably not an ergodic stationary process, it seems to be well
approximated by such descriptions. Shannon defined several models
for English which differed by the state space and the model order. He
presented a sequence of letters models with growing order, as well as
single words, word pairs and word triplets models. Here are two
examples from Shannon's paper describing outputs of Markov models
for English with different state space:
• Fourth order letters model:

15

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTH MERG....

• Second order word model:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD OR THE LETTERS...

The examples were generated by simulating the Markov process, that
is, by making a random choice (with appropriate probability) of letters
(or words) preceded by the previous state in the generated sequence.
One major difference between the models is their size, that is, the
number of transition probabilities in the models. The single letter
model is of size 27 (counting all the letters and the space character).
The letter quadruplets model is of size 27 5314414 = , while the word
pairs model size rise up to millions of combinations. As the model size
grows, its resemblance to the English language is more evident. Still,
high order Markov models involve the manipulation of a large set of
parameters. This is not feasible on a small computer running an on-
line application due to limitations of both time and memory. It also
seems that many of the parameters are redundant and most long
history probabilities are actually not informative.

2.4 Hidden Markov Models

We now describe the Hidden Markov Model (HMM). This model is
more general (and thus stronger) than the Markov model.

Definitions:
Let (Xi) be a Markov process. Each state Xi is associated with a new
random variable Yi. The sequence of random variables (Yi) which are
associated with (Xi) respectively is called a hidden Markov process.

16

The transitions between the states of this stochastic process are done
using the underlying Markov model (Xi), but what we observe at each
state is only the associated random variable Yi.
The assumption that the underlying Markov model is stationary is very
common in most practical implementation of this model.
The inherent difference between this model and the simple Markov
model is that in the hidden Markov process the underlying Markov
process is indeed "hidden". That is, the Markov states of the process
are not observed directly.
Many real world processes perform such a behavior and can be
efficiently described by an HMM. The HMM has been widely used in
many applications such as speech recognition [Rabiner 89] and
handwriting recognition [Chen 92].
If the Markov chain ()Xi is stationary so is the corresponding hidden
Markov (Yi) since the transition between the states of the hidden
process is still defined by the underlying Markov process.

Example:

0.1

0.1
0.90.9

p(H)=0.2

p(T)=0.8

p(H)=0.7
p(T)=0.3

X1 X2

Figure 2.2: A Hidden Markov Model with two states. The
process tends to stay at a state when it gets there. X1 is biased
towards H and X2 is biased towards T.

This Hidden Markov Process can describe the following scenario:
A man is hidden behind a curtain and announces the results of his
actions. The results are a sequence of T-s and H-s. The actions that
leads to this results are not visible to us.
Now, what the man actually does is this: At each "round" he first flips
a biased coin C with p(T)=0.9 and p(H)=0.1. He uses the result to
move between two tables X1 and X2. If he gets T then he stays at the

17

table he had been in last round. If he gets H he moves to the other
table. At each table there is another unbalanced coin. Coin C1 at table
X1 is biased toward H, while C2 at table X2 is biased towards T. After
the man decides, based on C result, what is the table for this round he
flips the coin at that table and tells us the result.
Notice that the underlying Markov model that makes him move is not
directly visible to us. Yet, the typical sequence produced by the
described source will contain long consecutive subsequences each of
which is dominated by one results (T or H). This hints that there are
two states in the process and that one is biased towards T and the
other towards H.

The question of learning a HMM from a training set is not simple
since the correlation between the observed training set and the model
states is not direct. The number of states and the structure of the
models are unknown and can't be guessed naturally from the given
training set. There is no known analytic way to solve the maximization
problem of learning the maximum likelihood (see section 2.2) HMM
with respect to the training set. Few answers which involves a
converging scheme were proposed [Rabiner 86]. However, it had been
proved [Abe 92] that there is no polynomial time algorithm (in the
alphabet size) for learning HMM, unless RP=NP. Moreover, even
when the alphabet size is fixed there is no known algorithm for that
task which is polynomial in the size of the target HMM.
When modeling a language for character based applications it seems
that the choice of the last n characters as a meaningful state of the
model is reasonable. A good evidence for this choice is the fact that
Markov models of high order for the language simulate it rather well,
at least when focusing on the local scope of characters in the sentence
(see examples in 2.3). If such a choice is done the sequence of last n
observed characters explicitly determines the state in which the model
is currently, and the use of HMM is unnecessary.

18

2.5 Variable Memory Length Markov Models

For simplicity we shall use a binary alphabet in the following
discussion. However, the results are general and remain valid for any
alphabet size.
In a typical situation which we try to deal with, we are given a stream
X=c1...cR of characters, ci∈(0,1), all generated from a single source.
In general we are looking for a compact model that could have
generated the given stream with high probability. Later we will use
this model to estimate the probability of other strings which are
coming from a source similar to the one that generated X.
We will limit the discussion to a reasonable family of models defined
below.

Definitions:
Let σ=(0,1) be an alphabet and let σ≤L be the set of all strings with
maximal length L over σ.
For a rooted tree T=(V,E) let root(T) be the tree's root. For every node
v∈V let children(v) be the set of v's children and des(v) the set of v's
descendants.
A history tree, HT T=(V,E,S) over σ≤L is a binary tree (V,E) with an
associated 1-1 function S:V→σ≤L. S(root(T))=ε and for every other
v∈V: S(v)=c⋅S(parent(v)), for some c∈σ, c≠ε, and "⋅" stands for
concatenation.
With the notation suf(c ci1 ...)=c ci2 ... , suf(c)=ε and suf(ε)=ε , this
can be written also as: if ′v ∈children(v) then suf(S(′v))=S(v).

19

Example:

ε

0 1

01 11

Figure 2.3: A simple binary HT. In order to find the longest
suffix of the string s=c c1 k... start at the root. If ck =0 then
head left, otherwise turn right. Proceed with ck -1, ck -2 ... until
c1 or a leaf is reached.

A PHT, probabilistic history tree T=(V,E,S,ℜ) is a history tree with a
set ℜ={ }Pv v V∈ of probability functions, ∀ ∈v V, Pv:σ→[0,1].

A PHT can be used as source to generate a character stream in the
following manner:

• Suppose c1...ci−1 is the stream of characters already generated by
the source.

• Let vi∈V be the node such that S(vi) =c ci j i− −... 1 and j is maximal

(for i=1 let v1 be root(T)).
• Choose the value of ci at random according to probability

distribution Pvi
.

We define here a way to use a PHT for assigning probability to any
string s=c1...cr :

P(s)= P cv i
i

r

i
()

=
∏

1

where vi∈V is the node such that S(vi) =c ci j i− −... 1 and j is maximal

(for i=1: v1 is root(T)). If P cv ii
() is chosen to be the probability

P(c S vi i| ()) in the training set X then this value is the best evaluation
we maintain in our model for the precise value P(c c ci i| ...1 1−). Notice

20

that if we knew these precise probabilities P(c c ci i| ...1 1−) for each ci ,
i=1..r, then we could calculate P(s) by:

P s P c P c c P c c cr r() () (|) ... (| ...)= ⋅ ⋅ ⋅ −1 2 1 1 1

In chapter 3 we show how to construct a PHT and a corresponding set
{ }Pv v V∈ which will give us best evaluation for P(s) based on our
training set X.

Example:

ε

0 1

01 11

p(0)=0.4
p(1)=0.6

p(0)=0.1
p(1)=0.9

p(0)=0.2
p(1)=0.8p(0)=0.5

p(1)=0.5

p(0)=0.7
p(1)=0.3

Figure 2.4: A simple PHT. There is a probability function Pv

associated with each node v, describing the probability of
the next character provided that the suffix of the already
seen characters series is S(v).

Probability evaluation for the string 1011 using the above PHT is done
like this:
Define Q(c ci1...) to be the node corresponding to the longest suffix of
c ci1 1... − which appears in T. In our case this makes:

Q(1)=ε, P(1|ε)=0.6
Q(10)=1 P(0|1)=0.1
Q(101)=0 P(1|0)=0.3
Q(1011)=01 P(1|01)=0.5

and the desired probability is:
P(1011)=0 6 0 1 0 3 0 5 0 009.⋅ ⋅ ⋅ = .

Let depth(T)≡
∈

max(| ()|)
v V

S v . Notice that after k=depth(T) characters the

inner nodes of the tree are no longer in use and the source can be

21

viewed as a Markov source of order k, in which some (or many) of the
k-tuple probabilities are not explicitly part of the model.
The probability function of the Markovian state which is associated
with the string c ci1... is Pv when v is the node such that S(v)=c ci j i− ... ,

j≤i and j is maximal.
Since the complete description of a general, order L Markov model is
of size O(| |σ L+1) it is quite impractical to maintain it for growing L-s.
Still, when modeling a language-like source there are cases where the
'deep' past is meaningful. A Markov model using a PHT description
may contain data associated with variable length histories and can
keep a lot of meaningful data with a relatively small number of
parameters. In a PHT description for the Markov model each set of
"uninteresting" long histories is represented by only one node whose
string is the common suffix of all those histories. More interesting
histories get their own nodes. The problem is, of course, to decide
which are the interesting histories.

We will use the notation probabilistic history tree machine MT for a
model based on a PHT T used for evaluating probabilities in the
method described above.

To measure the model quality we will use the likelihood of MT with
respect to our training set. Let L be some upper bound to depth(T).
Since X=c1...cR is typically long we can measure the likelihood with
respect to X=c cL R+1... instead and get almost the same model. Giving
up those few characters in the beginning of the set will make our
calculations simpler.
The likelihood of such model MT with respect to X is:

L M P cX T v i
i L

R

i
() ()=

= +
∏

1

where each vi is defined by T.

22

A main problem which we will discuss in the next chapter is:

Problem 2.1 - Maximum Likelihood PHT of Bounded Size:
Given are a sequence of characters X=c1...cR , ci ∈σ , and positive

integers L and N. Find a PHT T with depth(T)≤ L and |V|≤N such that
L MX T() is maximal.

23

Chapter 3
Algorithms for Constructing Maximum
Likelihood Probabilistic History Tree

We ended chapter 2 exhibiting problem 2.1 - PHT Likelihood
Maximization. In this chapter we will describe some attempts to give
exact or near-optimal solutions to this problem.
First we will generalize the problem into a weighted tree maximization
problem. Then we will analyze the general tree problem. At the end of
the chapter we will discuss the special case of the original problem.

3.1 Reformulation as Weighted Subtree Maximization
Problem

Here is a reminder of problem 2.1 from section 2.5.

Problem 2.1 - Maximum Likelihood PHT of Bounded Size:
Given are a sequence of characters X=c1...cR , ci ∈σ , and positive

integers L and N. Find a PHT T with depth(T)≤ L and |V|≤N such that
L MX T() is maximal.

Recall that X=c cL R+1... is almost identical to X, with only the first L
characters missing. Neglecting this relatively small number of
characters (L<<R) simplifies the following calculations without
changing statistics significantly. We will use the notation R R L= − .

Definitions:
Let T=(V,H,S) be a history tree (HT), and let X be the training set.
Defined below are three functions, all named C with different
parameters. They can be easily distinguished by the parameters used
or by context:

1. C s c()⋅ :σ σ≤ ×L |→ N. C s c()⋅ is the number of ci-s in X such that
ci=c, and ci is preceded by s (s∈σ≤L). Note that ci is in X but s
may be in X, so every ci is preceded by at least L characters.

2. C(v,c): V × σ |→ N. It is defined using 1: C v c C S v c(,) (())≡ ⋅ .
3. C(v): V |→ N. It is defined using 2: C v C v c

c
() (,)≡

∈
∑

σ
.

We described in section 2.5 the way MT is used for evaluating the
probability of X, P(X|MT). In view of this process the functions C(v,c)
and C(v) have the following meaning:
• For all leaves of T, C(v,c) is the number of times in the process that

P cv () was used to evaluate c's apostriori probability.
• For all leaves of T, C(v) is the overall number of times Pv () was

used in the process to evaluate any character's apostriori
probability.

We can use C(v,c) and C(v) to define a natural set of probability
functions, one for every node v∈V:

PT v, : σ |→ [0,1]. P c
C v c

C vT v, ()
(,)

()
≡

Another probability function is:

PT: V × σ |→ [0,1]. P v c
C v c

RT (,)
(,)≡ . P v cT (,) is the probability of

the event: "node v was used to evaluate the probability of character c",
which is counted by C(v,c).

The following theorem is well known for Markov models of any fixed
memory length. For the completeness of this chapter we prove it for
the special case of the PHT based model.

Theorem 3.1:
Let (V,E,S) be a history tree, and let X be the training set.
A PHT T=(V,E,S,ℜ) that maximizes L MX T() must satisfy:
Pv(c)=PT v, (c) for all leaves of T.

25

Proof:
We give the proof for the case of binary alphabet σ = { , }0 1 . It can be
generalized for alphabet of any size by following the same proof line.
The inner nodes of the tree are not used at all when calculating
P X MT(|). This is since we are evaluating characters only from the
L+1 position in the set, and each one is preceded by at least L others.
Probabilities are evaluated by the nodes of T with the longest strings,
so, the leaves are always preferred. Hence, we have to optimize only
the probability functions of the leaves. Let v vb1... be the leaves of T.
In the proof we will use the notation pi for Pvi

(0).

In order to maximize L MX T() we write it as a function f of b
parameters:

L M P X M f p p p

p p

X T T b

i
C v

i b
C v

i
C v

i b
C v

i

i

i

i

() (|) (, , ... ,)

()(,)

..
(,)

(,)

..
(,)

= = =

−
=

>
=

>

∏ ∏
1 2

0

1
0 0

1

1
1 0

1

It is equivalent and easier to maximize log(f(...)):
g p p f p p

C v p C v p
b b

i i
i b
C v

i i
i b
C vi i

(, ... ,) log((,...,))

(,) log() (,) log()
..

(,)
..

(,)

1 1

1
0 0

1
1 0

0 1 1

= =
+ −

=
>

=
>

∑ ∑

Since g is a sum of terms, each containing a single parameter, we can
find separately the maximum of each parameter to get the global
maxima. Consider the terms involving the parameter pi:

C v p C v pi i i i(,) log() (,) log()0 1 1+ −
There are four cases:
1. If C vi(,)0 =0 and C vi(,)1 >0 then clearly pi=0 maximizes the sum
since pi appears only in the right term.
2. If C vi(,)0 >0 and C vi(,)1 =0 then clearly pi=1 maximizes the sum
since pi appears only in the left term.
3. If C vi(,)0 >0 and C vi(,)1)>0 then we can assume 0<pi<1. The
assumption is justified since pi=0 implies L MX T()=0 while pi=1
means that Pvi

(1)=0 and again L MX T()=0.

26

d

d

g
p

C v

p

C v

pi

i

i

i

i

= −
−

=(,) (,)0 1

1
0

hence:

P p
C v

C v C v
Pv i

i

i i
T vi i

()
(,)

(,) (,)
(),0

0

0 1
0= =

+
=

it is also easy to check that:
d

d

2g

pi C v

C v C v
i

i i

2
0

0 1

0
| (,)

(,) (,)+

<

and so a maximum solution was found.
4. If both c vi(,)0 =0 and c vi(,)1 =0 the value of pi does not effect the
sum and can be chosen arbitrarily.
Pvi

(1) is defined by: Pvi
(1)=1-pi.♦

We have found that the probability functions of the inner nodes have
no effect of the likelihood maximization process, and we can choose
them arbitrarily. This is since we choose to ignore the beginning of the
sequence which has a minor effect on the global model. However,
when using the model for real life applications, we often face the
beginning of a new short sequence which we cannot ignore. If we want
to evaluate probabilities of characters in the beginning of such
sequence we have to use the inner nodes probabilities. We can choose
those probabilities such that the model will keep its stationary
behavior at the beginning of short strings as well, by defining
Pv(c)=PT v, (c) for the inner nodes as we did for the leaves.

In the following calculation we will use the data-to-model cross-
entropy measure instead of likelihood measure.

H X M
R

L MT X T(;) log(())= − 1

Hence, minimizing H X MT(;) is equivalent to maximizing L MX T() .
This can be expressed also as:

= − = −
= + = +
∏ ∑1 1

1 1R
P c

R
P cv i

i L

R

i L

R

v ii i
log(()) log(())

27

and using the definition of P v cT (,) we can get:
H X M P v c P cT T

v leaves T
c

v(;) (,) log(())
()

= −
∈
∈

∑
σ

Taking any HT T=(V,E,S) we will analyze the change in the minimal
cross-entropy when "splitting" one of T's leaves v into its |σ | children,
producing a new HT ′T .
We have two PHT models: the original MT=(V,E,S,ℜ) and the
expanded MT′=(′V , ′E , ′S , ′ℜ). ℜ and ′ℜ are the maximum likelihood
solutions of the two history trees, respectively.

Example:
ε

0 1

01

001

11

ε

0 1

01

101

11

original HT T T after 01 split

Figure 3.1: One split of a HT node. The leaf "01" is split and
the new PHT has two new leaves: "001" and "101".

The change of cross entropy between the models is:
H X M H X M

P v c P c P v c P c
T T

T T v
v leaves T

c

T T v
v leaves T

c

(;) (;)

(,) log(()) (,) log(()),
()

,
()

− =
− =

′

′ ′
∈ ′

∈
∈

∈

∑ ∑
σ σ

Based on the result of theorem 3.1 the maximum likelihood
probability functions sets ℜ and ′ℜ are be chosen such that
PT v, (c)=PT v, (c) for all nodes T. This means that:

28

H X M H X M

P v c P c P v c P c
T T

T T v
v leaves T

c

T T v
v leaves T

c

(;) (;)

(,) log(()) (,) log(()),
()

,
()

− =
= − =

′

′ ′
∈ ′

∈
∈

∈

∑ ∑
σ σ

= − =′ ′
∈∈
∑∑[(,) log(()) (,) log(())], ,P v c P c P v c P cT j T v
jc

T T vj

σσ

= −
∈∈
∑∑1

R
C v c

C v c

C v
C v c

C v c

C vj
j

jjc
[(,) log

(,)

()
(,) log

(,)

()
]

σσ

Denoting e v c C v c
C v c

C v
(,) (,) log

(,)

()
= we get:

H X M H X M
R

e v c e v cT T j
jc

(;) (;) [(,) (,)]− = −′
∈∈
∑∑1

σσ

This indicates that the cross-entropy change made by the split does not
depend on the whole original HT and is only a local function of the
specific split.

Now we can define:

∆s j
jcR

e v c e v c≡ −
∈∈
∑∑1

[(,) (,)]
σσ

(assuming X is our original given stream), to be the cross-entropy
reduction achieved when splitting properly a leaf v with an associated
string s of any history tree T to its children. Known results from
information theory (see, for example, [Cover 91] chapter 2) imply that
since after the split we have more information in our model then
∆s ≥ 0.

29

Problem 3.1 - Weighted Binary HT Subtree Maximization:
Let T=(V,E,S) be some HT with depth(T)≤L. Let wv=∆ s v() be the

weight of the node v for every v∈V. Find a subtree T of T, rooted at
root(T), with |V(T)|=NW such that the total weight of nodes in T is
maximum.

Theorem 3.2:
Problem 2.1 can be polynomially reduced to problem 3.1.

Proof:
Given an instance of problem 2.1 with integers L and N, construct the
following instance for problem 3.1:
• let L be the same value from the instance of problem 2.1.

• let N
N

W = −1

| |σ
.

• let T is the full HT of order L.
• The weights wv=∆ s v() calculated for the set of probability functions

suggested in theorem 3.1.
A solution to problem 3.1 is translated to solution for problem 2.1 by
taking T and adding all direct children of T leaves. ℜ should be the
corresponding functions set given by theorem 3.1. The maximum
weight of T ensures maximum cross entropy reduction relative to the
empty rooted subtree {ε}, and thus gives the minimum cross entropy
PHT model (with respect to X).
Since the weights are all positive (∆s ≥ 0) we are ensured to get
maximum solution using exactly N nodes.♦

30

3.2 Algorithms for Weighted Subtree Maximization
Problem

We first discuss a more general subtree maximization problem. The
special problem in which the weights correspond to PHT problem will
be discussed in section 3.3 .
We assume that all trees and subtrees are rooted at r (the root node, or
the ε node in the PHT model). The weight of a tree is the sum of
weights of its nodes.

Problem 3.2 - Weighted Subtree Maximization:
Given are a rooted tree T=(V, E), a weight function w(v), w:V→R and
a positive integer N≤|V|. Find a rooted subtree TN of T with N nodes
and maximum weight.

We will first describe a greedy algorithm for solving this problem and
then analyze its solutions.

Greedy subtree maximization algorithm
V1={ε}
i=1
while i < N do:

let C(V,Vi) be the set of all V's nodes that are direct children
 of Vi 's leaves.
v = arg max(())

(,)v C V Vi

w v
∈

V V vi i+ = ∪1 { }
i=i+1

output VN

The output of the algorithm is the tree TN=(VN , EN). TN is the subtree
induced by VN .

Theorem 3.3:
If the degree of T is bounded by D then the greedy algorithm can be

31

implemented to run in time complexity of O(N(logN+D)).

Proof:
Since the 'while' statement repeats N time, it suffices to show that each
iteration can be performed in O(logN+D). This can be achieved by
keeping an updated array A[v] of nodes defined as follows.
After step i, let potential(i,v) be the set of direct children of v∈Vi

which may potentially be added in the step i+1. Now, for every v such
that potential(i,v)≠∅ a single node x satisfying:

x=A[v]= arg max (('))
' (,)v Potential i v

w v
∈

is kept in A. A is kept ordered by decreasing weights of A[v]. At the i-
th step there are i nodes in Vi , and for each one there is at most one
array entry A[v] holding the 'heaviest' child of v not yet in Vi , if such a
child exist. Hence, the array size is | |A i≤ .
Clearly arg max(())

(,)v C V Vi

w v
∈

 is the first node in A, and so, having A ordered

facilitates finding v in O(1) time.
To keep A ordered we need to update it after adding a node v to Vi as
a child of v: First, deleting the old A[v] takes O(1).
Then, we find the new A[v] and A[v] which can be done in O(D).
Finally, we add A[v] and A[v] to A in their correct positions which
takes O(logN) since |A|≤i≤N.♦

Definition:
A weight function on the nodes of the tree is called monotone if along
any path from the root to a leaf, the weights are non-increasing.

Theorem 3.4:
Let T be a tree, and let f be a monotone weight function on its nodes.
Then the greedy algorithm gives an optimal solution to the subtree
maximization problem.

proof:
Let TN=(VN , EN) be a solution generated by the greedy algorithm,
and let TN=(VN , EN) be some optimal solution with N nodes. We will

32

show, by repeating a process of node replacement, how to generate a
new maximal solution which has more nodes in common with TN,
without decreasing its weight. The process ends when we find that our
solution is optimal as well. In each stage we will replace one node in
TN by a node from TN.

vp

v
j

v
j

element of VN

element of Vp

element of N V

Figure 3.2: Scheme of the replacement

Let vp be the first node in VN which does not belong to VN , with

respect to the order of choice of vertices in the greedy algorithm.
Denote by Vp−1 the set of nodes in the greedy subtree after p-1

iterations.
Let v j be any leaf of TN which does not belong to VN . Let v j be the

last node in the path from v j to the root which does not belong to

Vp−1. At step p, vertex vp was chosen by the greedy algorithm and v j

was not, so w(v j) ≤ w(vp). The monotonicity implies w(v j)≤w(v j),

hence w(v j)≤w(vp). By setting V V v vN N j P← ∪\ { } { } we get a new

tree with equal or greater weight which differs from TN by one less
vertex.
We repeat the replacement process until VN =VN , and we conclude
that the greedy algorithm had found an optimal solution.♦

33

The fast greedy algorithm works well for monotone trees. But we need
an algorithm that works for any tree. We will suggest such one. In
order to make the discussion simple we will first deal with simplified
version that works for binary trees, and then expand it to a general
algorithm for any tree.

Problem 3.3 - Weighted Binary Subtree Maximization:
Find a rooted subtree TN

max with N nodes and a maximum total weight
of a given complete weighted binary tree T.

Notation:
Define l(v) and r(v) to be the left and right children of any v in T.
We shall assume the convention that l(v) and r(v) correspond to
extending v's strings by 0 and 1, respectively. Define g(v) to be the
level of v, that is, for all leaves g(v)=1, for all their parents g(v)=2, etc.
Let g(root)=G.

The following algorithm computes the function t(v,i). This function is
defined for each node v in T and for each i which is at most the size of
the complete subtree rooted at v. t(v,i) is the maximal weight of any i
nodes subtree rooted at v.

Dynamic programming algorithm for Weighted Binary Subtree
Maximization problem
Calculate the following function t(v,i):

∀ ∈v T: t v(,)0 0=

∀ ∈v T, if v is a leaf: t v w v(,) ()1 =

∀ ∈ ∀ = −v T if v is not a leaf i g v, , .. :()1 2 1

t v i w v t l v j t r v k
j k
j k i

g v
(,) () max [((),) ((),)]

, { .. }()
= + +

∈ −
+ + =

−0 2 1
1

1

34

The weight of the TN
max is t(root,N). By maintaining for each pair (v,i)

the values j and k which achieve the maximum value t(v,i), the
optimal subtree can subsequently be constructed.

Theorem 3.5:
The algorithm runs in time complexity of O(| |V 2).

Proof:
Once all the values t(v,i) and the maximizing j,k are known, the
construction of the tree takes O(1) per node (of the subtree), hence, a
total of O(N) time. The major effort is calculating the values t(v,i). The
analysis is simple since T is binary:
• Let us compute the total work required to calculate t(v,i) for

i=0.. ()2 1g v − and a single node v with g(v)=g: Every pair j,k
contributes to exactly one i, namely i=j+k+1. Hence, the total
number of sums is the multiplication of the sizes of the left and
right subtrees, i.e. 2 2 21 1 2 2g g g− − −⋅ = .

• The number of nodes at level g is 2G g− . Hence, the total work in
level g is 2 2 22 2 2G g g G g− − + −⋅ = .

• The total work in the tree is therefore

 2 2 2 1 2 22

1

1 2 1 1G g

g

G
G G G G+ −

=

− − −∑ = ⋅ − = −() .

Since |V|=2 1G − the total time complexity of finding the maximum
weighted subtree is O(| |V 2). ♦

A glance over the algorithm shows that there might be some
unnecessary work done. Take the case N=2, with only 2 possible
subtrees, or N=|V|-1 with at most |V| possible subtrees. These
examples show how N imposes restrictions on the requested subtree
structure and hence on the number of calculations needed. We will
show that those restrictions can be used in the algorithm and reduce
the work for extreme values of N. However, the worst case complexity
does not change.

35

The following version of the algorithm has two additional features
over the previous version:
• It is designed for any tree T.
• It uses N to control unnecessary calculations of t(v,i).

Notation:
size(v) is the number of vertices in the subtree rooted at v.
children(v) is the set of children of v.
D = max(| ()|)

v V
children v

∈
.

The algorithm below computes t(v,i), the same function as in the
binary tree problem. least(v) and most(v) are two new functions which
we use to limit the calculations of t(v,i) only to the necessary
arguments. least(v) is a lower bound on the size of the subtree rooted
at v in the solution to the maximization problem with size N. most(v)
is the maximum possible size of this subtree.

Dynamic programming algorithm for General Weighted Subtree
Maximization problem
Calculate the following functions:

least(v),most(v):

least(root)=most(root)=N

∀v ∈T, if v is not the root:
least(v)=max{ , () (()) (())}0 size v least father v size father v+ −
most(v)=min{ (), (()) }size v most father v − 1

 t(v,i) :

∀ ∈v T: t v(,)0 0=

∀ ∈v T, if v is a leaf: t v w v(,) ()1 =

36

∀ ∈ ∀ =v T if v is not a leaf i least v most v, , max((),)... ():1

t v i t v j w v
least v j most v

j i

v
v children vv

v
v children v

(,) max [(,)] ()
() () ()

()

= +
≤ ≤

∑ = − ∈
∈

∑
1

The maximum weighted subtree is constructed in the same way as in
the binary tree algorithm. That is, by maintaining the jv -s found for
the maximum t(v,i).

Theorem 3.6:
If there is a node u∈T whose distance from the root is k such that
∀ ∈v children(u): least(v)=0 and most(v)=N-k-1, then the time
complexity W for calculating t(root,N) is bounded:

c D
N D k

D

D

1

12

1

+ − −
−

−

≤ W ≤c2 |V|ND

Proof:
lower bound:
t(u,N-k) is the maximum sum in a set of sums. Each sum is computed
in O(D) time. The number of sums in the set is the number of
possibilities of dividing N-k-1 equal elements among D cells since
each of the D children can have from 0 to N-k-1 nodes. The number of
combinations is:

N k D

N k

− − + −
− −

1 1

1
Hence, the total time for computing t(u,N-k) (when N-k is large with

respect to D) is at least: c D
N D k

D

D

1

12

1

+ − −
−

−

.

upper bound:
The maximum work for calculating all needed t(′v ,i) for one node ′v
is proportional to the total number of subtrees combinations tested.

37

Since min(())
v T

least v
∈

= 0 and max (())
v T

most v N
∈

≤ then the maximum

total number of subtrees combinations per node is bounded by ND and
the total work for all nodes is bounded by c2 |V|ND .♦

Conclusion (for English HT model):
The conditions in theorem 3.6 hold in the typical case of the optimal
PHT model problem. In this case D=27 and the size of the original tree
can be 103 to 105 (depending on the model order) from which we
might want to prune 90-99% in order to get a PHT which holds most
of the model information and is still feasible for use on a small,
relatively slow machine. The useful range of N is usually few hundreds
to few thousands of nodes. The root node usually satisfies the
condition in theorem 3.6 for these typical sizes. This means that for
the English model the maximal likelihood subtree PHT is not
computable in reasonable time using the dynamic programming
algorithm.

'Pseudo Binary' Algorithm for the General Weighted Subtree
Maximization problem
Since in practice N≥1000, the use of the algorithm with D=27 is
impractical. However, for D=2 the time complexity is bounded by
c2 |V|N2 operations which is much more practical. If we could avoid
the exponential effect of D on the time complexity then our algorithm
would become feasible for any general tree.
Here is a general scheme of the way to do this:
• Transform the general tree to an equivalent binary tree which is not

much larger.
• Apply the dynamic programming algorithm on the binary tree, and

transform the solution into a solution for the original problem.

The 'pseudo binary' algorithm is composed of two procedures.
The following recursive procedure make_bin(v) is called with the root
of the original general tree. It creates a new binary tree composed of
the original nodes plus new 'pseudo' nodes. The new tree structure is

38

presented by the attributes l(v) and r(v) which are set by the procedure
for all the inner nodes of the binary tree (which may be original or
pseudo nodes). The weights of the original nodes are kept unchanged
and the weights of all pseudo nodes are defined to be zero.

procedure make_bin(v)
begin

if v is a leaf then return.

let r(v)← the rightmost child of v.
make_bin(r(v)).

if v has just one child then
begin

let l(v) ← null.
return

end

if v has exactly two children then let l(v)← the left child of v.
else begin

create a new 'pseudo' node u and set w(u)← 0.
delete all subtrees rooted at each child of v but r(v).
hang all these subtrees on u.
let l(v) ← u.

end

make_bin(l(v))
end

39

Here is a simple example of an original tree and the corresponding
binary tree generated by make_bin.

Example:

Figure 3.3: The ternary tree on the left is transformed by
make_bin to the binary tree on the right. The round nodes
are original nodes and the square ones are new 'pseudo'
nodes. Notice that the new tree is deeper but not much
larger the original tree.

The number of nodes in the new tree is not more than twice the
number in the original tree. The argument is simple. At each time
make_bin is entered (without immediately exiting in the first line) we
can mark one previously unmarked node, r(v), in the original tree.
Since only one new pseudo node can be created during one make_bin
call it is clear that the overall number of pseudo nodes is not larger
than the number of the original nodes.
The procedure takes O(size(T)) steps. This is since the number of
recursive calls is not more than size(T) while each call can be
implemented in O(1).

The second step in the algorithm is finding solution to the binary tree
maximization problem and translating the solution back to the original
tree problem. These two actions can be combined in one algorithm
which is almost identical to the original dynamic programming
algorithm for binary trees presented earlier in this section.
The algorithm computes the function t(v,i), which has a bit different
meaning from the original algorithm. t(v,i) is the maximal weight of

40

any subtree rooted at v and containing exactly i original (not pseudo)
nodes.
A new function orig(v) is computed. It describes the number of
original nodes which are descendants of v (including v itself). orig(v)
is only an assisting function in the computation of t(v,i).

Calculate the following functions t(v,i) and orig(v):

∀ ∈v T:

t v(,)0 0=

∀ ∈v T if v is a leaf, :

t v w v

orig v

(,) ()

()

1

1

=
=

∀v∈T, if v is not a leaf, and v is an original node:

orig(v)=orig(l(v))+orig(r(v))+1

∀ =i orig v1.. ():
t v i w v t l v j t r v k

j orig l v
k orig r v
j k i

(,) () max [((),) ((),)]
{ .. (())}
{ .. (())}

= + +
∈
∈
+ + =

0
0

1

∀v∈T, if v is not a leaf, and v is a pseudo node:

orig(v)=orig(l(v))+orig(r(v))

∀ =i orig v1.. (): t v i t l v j t r v k
j orig l v
k orig r v
j k i

(,) max [((),) ((),)]
{ .. (())}
{ .. (())}

= +
∈
∈
+ =

0
0

The weight of the TN
max is t(root,N). By maintaining the values j and k

which achieve the maximum value t(v,i) for each pair (v,i), the
optimal binary subtree containing N original nodes can subsequently
be constructed. All that is left to be done now is choose the same

41

nodes in the original tree, ignoring all the pseudo node in the binary
tree which are zero weighted anyway, and do not influence the
maximization. Comparing the original and the binary tree clears the
fact that all possible combinations of 'original subtrees' have actually
been tested while maximizing the binary tree, giving the optimal result
for the general tree problem.
Since the binary tree size is not more than twice the size of the original
tree we found the desired solution in not more than c3|V|N2

operations.

3.3 A Hybrid Algorithm for Subtree Maximization
Problem

We have seen two types of algorithms for weighted subtree
maximization problem. One is the basic dynamic programming
algorithm with time complexity of about O(|V|ND) and its "pseudo
binary" version running at O(|V|N2). The other is a greedy algorithm
which finds the solution for monotone trees only, but with time
complexity of only O(N(logN+D)). The inner order in monotone trees
lets us speed up the solution finding dramatically.
Now, suppose we have a non-monotone tree T with some incomplete
but meaningful inner order.

42

Example:

10

9

2

7

6

4

8

7

6

3 5 44 3 5

**

*

Figure 3.4: A "nearly monotone" tree. Changing the
weights in only two nodes (those marked with * and **)
can make this tree monotone.

Is it possible to exploit the 'almost' monotonicity features of the tree to
get a fast solution to the problem ?
The answer is yes. The following hybrid algorithm is a careful mixture
of the greedy and dynamic programming algorithms introduced before.
It correctly solves the maximization problem for any tree. Trees with
no inner order at all are treated in dynamic programming approach,
while trees with 'islands' of order are treated more like monotone trees
with a greedy method.

Hybrid algorithm for Weighted Subtree Maximization Problem
Calculate the following functions starting from the root and
progressing recursively to each of the subtrees hanged on the root:

least(v),most(v):
least(root)=most(root)=N

∀v ∈T, if v is not the root:
least(v)=max{ , () (()) (())}0 size v least fater v size father v+ −
most(v)=min{ (), (()) }size v most father v − 1

43

Calculate the two parameters function t(v,i) starting from the leaves
and stepping up recursively toward the root:

t(v,i):
∀ ∈v T: t v(,)0 0=

∀ ∈v T, if v is a leaf: t v w v(,) ()1 =

∀ ∈v T if v is not a leaf, :

Perform the following preprocessing step, that speeds up t(v,i)
maximization in the next step:
• Let v vm1... be the children of v.
• For every k=1..m, j=1..size(vk): Let d t v j t v jk j k k, (,) (,)= − −1 .

• From each sequence d dk k size vk, , ()...1 take out a minimum number

nk of elements d dk r k rk k nk
, ,, ,

...
1

 such that the sequence of the

remaining elements is monotone non-increasing.
Let rk ,0 0= ∀k=1..m.

• Let Φ = × × ×(...) (...) ... (...), , , , , ,r r r r r rn n m m nm1 0 1 2 0 2 01 2
.

• For each R r r rm= ∈(, ,...,)1 2 Φ perform the following greedy
algorithm with the respective arrays SR[] and IR[]:

a. Define next r ri i j() ,= +1 if r r j ni i j i= <, , and next r size vi i() ()=
 if r ri i ni

= , .

b. For every k=1..m let Front[k]=rk+1
c. item=1

1
+

=
∑ rk

k m..

d. While there exist k such that Front[k]< next rk() do
1. i d

k m and
Front k next r

k Front k

k

=
≤ ≤

<

arg max ()
[] ()

, []
1

2. S item dR i Front i[] , []= .

3. I item iR[] =
 4. item=item+1

5. Front[i]=Front[i]+1

44

∀ =i least v most vmax((),)... ():1
t v i t v r S j w v

all r r R
such that

r i next r

k k R
j r ik mm

k k

k

(,) max [(,) []] ()
(...)

:
()

()...()..
= + +

= ∈

≤ − ≤
= + −=

∑∑
1

1

1 11Φ

Σ Σ
Σ

After each t(v,i) maximization, use the chosen R to calculate the two
parameters function best(vk ,i):

∀k=1..m, ∀ =i least v most vmax((),)... ():1

best(vk ,i)=rk+| { | () , } |j I j k r j iR u
r Ru

= + ≤ ≤ −
∈
∑1 1

The maximum weighted subtree itself is found at the end of process by
recursively calculating the following function use() starting from the
root:
• use(root)=N
• For every node v which is not a leaf:

Let v vm1... be the children of v, define -
use(vk)=best(vk ,use(v)).

The solution subtree contains all nodes v such that use(v)≠0.

Theorem 3.7:
The Hybrid algorithm finds a maximum weighted subtree of T.

Proof:
This algorithm is similar to the general dynamic programming
algorithm and the logic of the dynamic programming scheme is
identical. The only new part which needs to be proved is the special
maximization stage used in the calculations of t v i(,) for one node.
Let v vm1... be the children of v. For simplicity we will assume that for
all k=1..m all the values t v t v size vk k k(,) . . . (, ())0 are known (while
in practice the unneeded values are not calculated.)

45

We will prove that:
given

t v t v size v

t v t v size vm m m

(,) . . . (, ())

.

.

.

(,) . . . (, ())

1 1 10

0
the maximum sum of m items t v r t v rm m(,),..., (,)1 1 , one from each
line, such that rk

k m=
∑
1..

= i-1, is t(v,i)-w(v) as calculated by the algorithm.

Let us assume that the maximum sum t v i(,) is a total of the following
m items:

t v j t v jm m(,) . . . (,)1 1 where j ik
k m=
∑ = −
1

1
..

.

In terms of the preprocessing stage in the algorithm, this is also the
sum of:

d d

d d

j

m m jm

1 1 1

1

1
, ,

, ,

. . .

.

.

.

. . .

since we defined d t v j t v jk j k k, (,) (,)= − − 1 .

We will show that the above algorithm finds a sum t v i(,) such that
t v i(,)≤t v i(,).
Let r r r j h nk k h k h k k= ≤ ≤ ≤max{ | , }, , 0 for every k=1...m.

The rk h, -s and the nk-s are those defined in the preprocessing stage.

Let R r rn= (...)1 be the corresponding vector from the preprocessing
stage.
Let SR be the associated array. The vector R with the array SR were
checked (along with other vectors) by the algorithm in the process of
calculating t(v,i).

46

Define: f rk
k m

= +
=
∑1
1..

G = {S f S iR R[] . . . []− 1 }
G = {d k m r j jk j k k, | ,1 1≤ ≤ + ≤ ≤ }

G is a set of dk j, -s tested by our algorithm while maximizing t(v,i). G

is the respective set from the optimal solution.
Using definition of S f S iR R[] . . . []− 1 from the algorithm we can
define the set of indexes j jm1... by viewing G as follows:

 G = {d k m r j and jk j k, | ,1 1≤ ≤ + ≤ ≤ jk }

Since G and G must have the same size it derives that
j jk k

k mk m
=

==
∑∑
11

.

Notice also that for each k=1..m the rk-s were chosen such that
d d dk r k r k jk k k

, , ,. . .+ +≤ ≤ ≤1 2 .

Consider two solutions: Let t v i(,) be an optimal solution, and let
t v i*(,) be the value of the term corresponding to vector R in
computing t(v,i) by the algorithm. That value is considered in the
maximization process. Each value is a sum of some dk j, -s.

These solutions t v i(,) and t v i*(,) might differ only in the d k j, - s

indexed r jk + ≤1 . We will show, by repeating a process of local
replacement of G's elements by others of G, that our solution is a
maximal one as well.

dk,j

dk,j
element of G.

 Glow values of

 Ghigh values of

Gelement of

element of G p

S[q]

47

Figure 3.5: Scheme of the replacement

Let S[q] be the first element in the sequence S f S iR R[] . . . []− 1 which
does not belong to G. If there is no such element then G=G and we
have nothing to prove.
Otherwise, define G S f S qp R R= { [] . . . []}.

Take any d k j, ∈G\G with maximal index j.

Take d k j, ∈G\Gp (same k) with minimal index j .

S[q]≥d k j, since step 1 in the preprocessing stage chooses the maximal

d possible at each stage.
d k j, ≥d k j, by the monotonicity among G's elements for every k.

So, S[q]≥d k j, , but then we could replace d k j, with S[q], and get a new

optimal solution which has more d-s in common with G.
We repeat the replacement process until G=G. Hence our algorithm
indeed tests and finds an optimal solution when maximizing t v i(,).♦

computational complexity of hybrid algorithm
The evaluation of the computational complexity of the algorithm in the
general case is not simple. However, it is possible to analyze it for
extreme cases: The monotone tree and the completely unordered tree.
The common part of algorithm which is identical in all cases is the
search for the non-monotone elements. For each node vk ∈V we have
to find the longest monotone decreasing subsequence for the sequence
d dk k size vk, , ()...1 . An algorithm for doing this was given by Orlowski and

Pachter in 1989 [Orlowski 89]. The computational complexity of the
algorithm is O m n(log())⋅ where m is the size of the original sequence
and n is the size of the subsequence. This means that the total work for
all the nodes is limited by:

c size v size v c V size v
v V v V

1 1⋅ ≤ ⋅
∈ ∈
∑ ∑() log(()) log(| |) ()

Since we can ignore all items indexed more than N in the original
sequences by using most(v) this work is limited by:

48

c N size v
v V

1 ⋅
∈
∑log() ()

When summing up size(v) for all nodes in V we can use the fact that
each node is counted once by each of its ancestors. This gives us an
upper bound:

size v depth T V
v V

() ()| |≤
∈
∑

In summary, the total work invested in calculating all the longest
subsequences is bounded by:
 c depth(T) |V| log(N)1 ⋅ ⋅ ⋅

We can evaluate the total work of the algorithm in three cases:
1. If for each node v there is just one vector R in the maximization

stage then the greedy algorithm works just once per node and the
time is O(size(v) D)⋅ . Using the above argument this sums up to
O(depth(T) |V| D)⋅ ⋅ over all nodes of T. The total work for the
complete algorithm is then: O(depth(T) |V| log(N) + D])⋅ ⋅[.
Notice that this is not much larger than the computational
complexity of the greedy algorithm from chapter 3.2 which is
O(N log(N) + D])⋅[.

2. If for each node v there is no order found for all the sequences
d dk k size vk, , ()...1 then the maximization process always evaluates all

the combinations of dividing i-1 among the node's children. Notice
that when there is complete disorder next r rk k() = +1. Since the
preprocessing stage stops when for every k=1..m
Front[k]≥ next rk() then the loop is never entered and the
computational complexity for each vector R is O(1). We find that in
this case the hybrid algorithm works similar to the simple dynamic
programming algorithm and its overall computational complexity is
equal to that of the dynamic programming algorithm.

3. If we have a bound parameter φ for the size of Φ we can evaluate
the amount of work in the general case. For each R in Φ the
preprocessing stage takes no more than O(size(v) D)⋅ . This will
make the overall work be no more than:

 O(depth(T) |V| log(N) + D])⋅ ⋅ ⋅[φ .

49

In the typical case of using the algorithm for creating an English PHT
the parameters in the last formula are more specific:
• |V| is usually in the range 10 103 5to , and the tree is more or less

balanced.
• N is a small fraction of |V| (e.g. 10%)
• D is very small relative to |V| and N. It is 27 if we choose to use

only lower case character set and the space.
• depth(T) is very small, usually not more than 10.
The typical value of φ and the attempts to control it will be discussed
in 4.1 and 4.2.

50

Chapter 4:
Constructing PHT Models for English:
Implementation and Results

4.1 Implementation Issues

Four algorithms for PHT construction were presented in sections 3.1-
3.3: The greedy algorithm, the simple dynamic programming, the
pseudo-binary tree variation and the hybrid algorithm. The
implementation of those algorithms for the construction of small and
informative PHT involves considerations of some other practical
issues.
The actual numerical values we used for the parameters that are
described in these sections appear later in section 4.2.
The algorithms were programmed in C language, using the Borland
C++ compiler. The overall code size for all four algorithms, which
where compiled together in one program, is about 3500 lines. We used
486DX2 Intel machine with 16M bytes memory for testing the
algorithms and constructing the PHT models for English.

Redundant information in the model
Our general goal is building a small, yet informative, model for
English. The model is used for string probability evaluations within a
character oriented applications. The size of the model has a major
effect on the application speed and total size, and so removing non
informative elements from the model is an important goal. There are
two kinds of redundant information in the PHT we should consider:
1. Non informative PHT nodes.
2. Non informative probabilities within a node.

The algorithms that we presented are based on the selection of a
'heavy' subtree from a given weighted tree. Each selection of a node
from the weighted tree indicates that a node in the PHT should be

"split", that is, |σ | nodes should be added to the PHT. Each node in the
weighted subtree (which we maximized in sections 3.1-3.3) is
practically presented in the target PHT by the corresponding node plus
the set of all its |σ | children (see section 3.2).

Example:

PHT After c split

ε

a c... ... z

ε

a c

ac zc

... ... z

...

PHT After splitε
Figure 4.1: A complete split of a node in an English PHT.
The node associated with the string "c" is fully "spliced" into
| |σ node. Note that some of these new nodes may contain
redundant information.

Although we search for the most informative splits, the information
gain might mostly come from only part of the new nodes in the PHT,
while others may be almost non informative and redundant. This is
especially true when we split nodes that match long histories.
In order to overcome this redundancy we make two changes in our
problem definition:
• We enlarge the family of accepted models. We include PHT-s with

non equal number of children per node. If we have a node v
which is partially spliced (that is, 0 < <| ()| | |children v σ), then we add
an extra child. This child is a compound node which keeps the
probabilities for all the "missing" children.

• We change the weight function of the nodes. We define the node
weight to be the cross entropy gain of adding this single node to
a tree. This replaces the entropy gain achieved while splitting the
node to all its |σ | children. The reduction scheme from theorem 3.2

52

should be respectively changed: one node in the weighted tree
represents now one node in the target PHT, instead of |σ | children.

Example:

Original PHT

vcomp

ε

a c

ec

... ... z

ac-dc,
fc-zc

PHT with new node: ic

ε

a c

ec

... ... z

jc-zc

ic ac-dc,
fc-hc,

vnew
vnewcomp

Figure 4.2: A partial split of a node in an English PHT. On the
left: the node associated with the string "c" is partially spliced.
It has two children. One is associated with the string "ec". The
other is a compound node which is associated with all other
"*c" strings.
On the right: a new child "ic" is added under "c" node. Notice
that this action also changes the strings associated with the
compound node and its entries probabilities.
The limited number of children and the gradual addition of
nodes to the tree reduce the number of redundant nodes.

The new weight function is not well defined since the entropy gain of
adding one node to a tree depends on the brothers of the new node.
When we use the revised greedy algorithm (described hereafter) to
create a PHT the nodes are added to the tree one at a time. We used
the temporary tree (which exist at the moment a new node is added by
the algorithm) to define the weight for the new node. The weight is
defined precisely to be the cross entropy gain for the insertion of the
new node to this tree.
In order to simplify the mathematical expression of the weight
function we first have to expand the definition of C(v,c) from the
beginning of section 3.1 to the new type of compound node v:

53

C v c C S father v c C S u cT T
u brothers vT

(,) ((())) (())
()

= ⋅ − ⋅
∈

∑

we also expand the definitions for the compound node:

C v C v cT T
c

() (,)≡
∈
∑

σ
, P c

C v c
C vT v
T

T
, ()

(,)
()

≡ and P v c
C v c

RT
T(,)

(,)≡

using the new expansion for C(v,c).
Notice that the expansion for C(v,c) follows the original meaning.
C(v,c) is the number of times P cv () was used in the process of
evaluating P X MT(|) (see section 3.1).
We also keep the definition of the probability functions set ℜ:

P c P c
C v c
C vv T v
T

T

() ()
(,)
(),= =

which is the distribution being used for evaluations of strings using
the compound node v.
Let vnew be a new node which is currently added to the tree T, as a
child of v . Assume there exist an original compound child vcomp of v ,

and a compound node vnewcomp after the insertion of vnew. We follow

the calculations from section 3.1 and we calculate the cross entropy
gain for adding the new node vnew to T:

H X M H X M

P v c P c P v c P c
T T

T T v
v leaves T

c

T T v
v leaves T

c

(;) (;)

(,) log(()) (,) log(()),
()

,
()

− =
− =

′

′ ′
∈ ′

∈
∈

∈

∑ ∑
σ σ

[(,) log(()) (,) log(()), ,
c

T new T v T newcomp T vP v c P c P v c P c
new newcomp

∈
′ ′ ′ ′∑ + −

σ
P v c P cT comp T vcomp

(,) log(())],

Denoting e v c C v c
C v c
C vT T
T

T

(,) (,) log
(,)
()

= we get:

∆H T new T newcomp T comp
cR

e v c e v c e v c= + −′ ′
∈
∑1

[(,) (,) (,)]
σ

54

If vnew is the first child of v then there is no original compound node
and we get:

∆H T new T newcomp T
cR

e v c e v c e v c= + −′ ′
∈
∑1

[(,) (,) (,)]
σ

If the insertion of vnew completes the split of v to all | |σ characters
then there is no compound node after the insertion and we get:

∆H T new T comp
cR

e v c e v c= − =′
∈
∑1

0[(,) (,)]
σ

This is since the information left in the compound node is exactly the
information of vnew. This insertion practically never happens, and so
the maximum number of children is | |σ .

The choice of the new weight function is heuristic and it shows good
results. It can be justified by the fact that the greedy algorithm gives
very good results, and hence, the brothers of the new node (when it is
added) are quite sure to be part of the optimized subtree as well.
The only reason for the expansion of the models family and the change
in the weight function is the attempt to reduce redundant nodes in the
target PHT. If one is willing to use only PHT-s with exactly zero or |σ |
children per node then the original weight function is correct and
precise.

Another aspect influencing the 'size to information-content' ratio is the
redundancy within a PHT node. Each node in the PHT normally holds
a list of |σ | values describing the probability of each next character
provided that the suffix of the given sequence is the string associated
with the node.

55

Example:

ε

a z

p(a|z)

p(b|z)

p(z|z)

.

.

.

p(a|a)

p(b|a)

p(z|a)
.

aa za. . . .

.

p(a|aa)

p(b|aa)

p(z|aa)
.

.

p(a|za)

p(b|za)

p(z|za)
.

p(a)

.

.

p(b)

p(z)

Figure 4.3: Entries of a node in an English PHT.
Each node contains | |σ entries. Some of these
entries may contain zero or near zero probabilities.

The next character probability is not always important. Some of the
conditional probabilities are zero or very small and represent strings
which do not (or rarely) appear in the language. These probabilities
can be removed from PHT, indicating their zero value by their
absence.
We use a cutoff parameter λλ to remove these redundant small values
from the PHT. When using the model in an application for evaluating
strings probability we assigned the constant µµprob, some small positive

probability for all the missing entries in the nodes (i.e. for all
entrieswith probability 0 ≤ ≤P λ). This has a smoothing effect and
helps us to avoid the immediate rejection of rare strings.

CPU and memory needs for PHT construction
Although the construction of the PHT is done just once, cpu time and
memory consumption of the algorithms should be reasonable. The
algorithms were implemented such that they will run for not more than
a few hours on a 486DX2 Intel machine with 16M bytes memory.

56

In order to overcome the above redundancies, and to control the speed
and memory limitations we implemented and tested two slightly
modified versions of the algorithms presented in sections 3.2 and 3.3:

Revised greedy algorithm
The implemented version for the greedy algorithm from section 3.2
does not make a complete split of a PHT node to all its children.
Instead, each child is added separately as described above. At each
step the algorithm looks for the most informative single child to be
added using the new expanded definition of the weight function.
When the child is added the cutoff parameter λ is used to remove
redundant low probabilities from the child's entries. The child's weight
is set to be the information gain achieved by its insertion to the tree.
The compound brother of the new node is being updated.
In order to speed up the algorithm it was implemented using the array
A[v], as suggested in the proof for the algorithm's computational
complexity (for more details see section 3.2).
The original tree from which the greedy algorithm extracts the PHT is
the full Markov tree of order L. Since this tree might be huge we
practically never build all of it. Instead, when a new node is added, the
algorithm scans the training set for the probabilities of all its children,
and so the potentially needed nodes are always available. The simple
scanning can be replaced with some hashing or indexing algorithms
which will speed it up.

'Best-PHT' algorithm
We have implemented a very fast optimizing algorithm for PHT
maximization. The algorithm Best-PHT uses a mixed technique from
the Pseudo- Binary algorithm and the hybrid algorithm. It has four
steps:
• step 1 - A large PHT is created using the revised greedy

algorithm. This PHT substitutes the full Markov tree from which
we are going to prune our target PHT. The size of this PHT should
be large enough to promise that the optimal target PHT of the
desired size will be contained in it. Since this large PHT is much
smaller than the huge full tree, the optimization stages are faster,

57

and memory needs are limited. The revised greedy algorithm is
used also to define the weight for each node.

• step 2 - The large PHT is converted by the function make_bin to the
corresponding pseudo-binary tree.

• step 3 - The hybrid technique is used to search for a binary
subtree with the desired number of nodes.

• step 4 - A general subtree is constructed from the binary subtree.

Controlling the duration of Step 3
In step 3 of Best-PHT algorithm we are using the hybrid algorithm. At
the end of section 3.3 we saw that φ, the upper bound on the size of
Φ, is a key parameter in the computational complexity bound for the
algorithm. The hybrid algorithm tends toward exhaustive optimization
when the number of 'non monotone elements' in the sequences
d dk k size vk, , ()...1 is large. In many cases the next item in the list may

deviate just slightly from the monotone sequence. In order to speed up
the algorithm we allow an element to slightly deviate from the
monotone sequence and still be treated as part of it. This decreases φ
but gives a solution which is not guarantied to be optimal. The
deviation is controlled by a parameter εεdev . As will be described in
section 4.2, we found that even a very small value reduces the running
time of the algorithm dramatically with almost no loss in the final
subtree weight.

4.2 Test Models for English and Results

In order to test both PHT size and PHT construction method we
constructed and tested a set of models. There are some common
parameters to these models:
• They are all constructed from the same training set which is a large

(1.5M characters) collection of texts from a variety of modern
English sources, such as a some items from a general encyclopedia,
some New York Times articles and a set of American jokes.

58

• They are all based on the same 30 characters alphabet containing
26 letters and 4 other characters: space, comma, dot, and tag ('). All
upper case letters in the training set are converted to lower case. All
other characters are ignored.

• Each node can contain up to 30 entries for the 'next character'
distribution information. However, we use the cutoff parameter
λλ =0.002 to remove from the XPHT-s all entries with conditional
probabilities lower than λ. We used the parameter µµprob=0.0001 for

all probabilities of removed entries.
• All the PHT-s (although their source and construction may differ)

were transformed into the same data structure. This structure
(called XPHT) will be described in section 5.2. The files describing
the trees contain the additional data for the XPHT format, that is,
an extra pointer associated with each probability.

We constructed three types of models:
• A set of PHT-s for the full Markov models of different orders. We

have 3 models named f1, f2, and f3. f1 is the zero-order Markov
model describing the simple distribution of English letters (and
other alphabet characters which we used). f2 is the first order
Markov model. It contains all probabilities of the type p c c(|)1 2 and
f1 probabilities as well. f3 is the second order Markov model and
contains all probabilities of the type p c c c(|)1 2 3 ('trigrams') plus f1
and f2 probabilities.

• A set of PHT-s constructed by the revised greedy algorithm
presented in section 4.1. This algorithm adds one node per iteration
to the PHT. We build four models with growing sizes. The first two
are called n1 and n2 have roughly the sizes of f2 and f3
respectively. n3 and n4 are larger. The maximum depth L of the
PHT-s is 10.

• Three PHT-s called h1, h2, and h3 constructed with the Best-PHT
algorithm from section 4.1. h1, h2 and h3 have roughly the sizes of
n1, n2 and n3 respectively. The size of the original PHT built by the
first greedy step of the Best-PHT algorithm is 4300 nodes (40010
entries). We found out that using a deviation parameter εdev=0 for

59

constructing the PHT-s is computationally feasible, since the
pseudo-binary technique is only quadratic in the tree size. This
means that all h* PHT-s are optimal with respect to the weight
function, with the exception of redundant entries which were
removed using λ.

Following is a table of all test models. For each model we give the
number of nodes, the number of entries (probabilities), the file size in
bytes, and the entropy of the model. The size of XPHT file is the
number of model entries multiplied by the size of one entry plus the
size of a small header in the beginning of file. We used a fixed number
of four bytes per XPHT entry: one byte for the next character, one byte
for the minus log of the probability and two bytes for the edge
information. This file should be present in memory when the
application is resolving ambiguous text (see section 5.1 and 5.4), and
its size is a key parameter for a small computer implementation.

model type nodes entries file size entropy
f1 full Markov 1 30 132 4.213
f2 full Markov 31 760 3116 3.456
f3 full Markov 776 7594 30388 2.841
n1 r. greedy alg. 41 753 3024 3.342
n2 r. greedy alg. 570 7603 30424 2.665
n3 r. greedy alg. 1792 19744 78988 2.337
n4 r. greedy alg. 4300 40010 160052 2.117
h1 Best PHT alg. 42 753 3024 3.341
h2 Best PHT alg. 568 7606 30436 2.664
h3 Best PHT alg. 1802 19743 78984 2.334

Table 4.1: PHT based models of different size and class. f1-f3 are full
Markov models of the 0 to 2 order. n1-n4 are n-gram models with
variable memory length built by the greedy algorithm. h1-h3 are n-
gram models which were built using the Best-PHT algorithm.

Observing these models we can derive some conclusions:

60

• The information content of the models (expressed in a logarithmic
entropy scale) is decreasing when the entries number increase. This
is also shown in the next graph, which plots the entropy versus the
number of entries for the greedy algorithm. It is clear that most of
the information is achieved using a small number of entries, while
reducing the entropy becomes harder when the size of XPHT
increases:

number of XPHT entries

E
n
t
r
o
p
y

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000 30000 35000 40000

Figure 4.4: The decrease in entropy of the XPHT while it is
being grown by the revised greedy algorithm.

• The models that were created using the revised greedy or Best-PHT
algorithms are much more informative than the full Markov models
with the same size.

• The Best-PHT algorithm showed no significant superiority over the
revised greedy algorithm. Nevertheless, this mild entropy difference
is not so easy to achieve when the XPHT-s are already rather large.
We found out, for example, that an XPHT with the same entropy of
h3 can be built using the revised greedy algorithm, but will be
larger by about 200 entries (about 1% of the original size).

In addition we tested the timing for our algorithms. We based all our
tests on a 4300 nodes PHT which was built using the greedy
algorithm. This PHT construction took few hours but could be easily
accelerated using a simple hashing or indexing techniques. Our main
interest was the optimization algorithm feasibility and speed.
We tested inferior versions of Best-PHT in order to find the
contribution of each component in the algorithm to the overall speed.

61

We measured the overall time needed to select the 1000 best nodes
from a 4300 nodes PHT by some versions of the algorithm. The test
was performed on a 486DX2 Intel machine with 16M bytes memory.
• Using Best-PHT (that is, combining the hybrid technique and the

pseudo-binary technique) takes 04:20 minutes.
• Using Best-PHT without the hybrid technique in step 3. This

means that only the pseudo-binary technique was used, and all
combination at each binary node were tested. It takes 11:05 minutes
to complete the nodes selection using this version. Comparing this
result to the previous one justifies the use of the hybrid technique.
Although the pseudo-binary algorithm is quadratic (in the PHT
size) we can speed up the optimization combining it with the
hybrid technique.

• Using Best-PHT without the pseudo-binary technique. This was
done by skipping steps 2 and 4 in the algorithm (see section 4.1)
keeping only the hybrid technique in step 3. As expected, the
performance degrades dramatically. We found out that for εdev=0
the algorithm takes about 30 hours. However, for error parameter as
small as εdev=0.000005, the algorithm takes about 5 hours.

• Using the simple dynamic programming without both the hybrid
technique and the pseudo-binary technique was found completely
non feasible.

62

Chapter 5:
Algorithms for Using PHT in Recognition
Tasks

In the previous chapter we discussed the construction of a PHT model
for English of a desired size. In this chapter we will show how this
model can be used in an algorithm which receives an ambiguous
English text and resolves this ambiguity in an optimal way with
respect to the PHT. This algorithm was implemented and used
successfully in two practical applications which run on a personal
computer with limited resources. We will analyze the algorithm's
features and present test results for its performance.

5.1 Ambiguous Text Resolution (ATR) Problem

'Recognition task' is a general name for a large set of problems. What
characterizes these problems is the attempt to translate (under some
correctness criteria) original representation of given data to a different,
new, more 'meaningful' representation. This could be the translation of
a human face photo to the person name, the translation of handwritten
characters to their ASCII codes or the translation of spoken words to a
text format.
In this work we are focusing on one type of recognition task. We are
interested in translating sequential data which consist of basic
elements presented one after the other (e.g., handwritten characters, or
human voice which is built of syllables). Moreover, we are interested
in recognition methods which use a statistical approach. This kind of
methods usually involves the evaluation of two kind of probabilities:
• Probabilities which are related to the translation process of a single

element. These probabilities usually describe the distance (in a
relevant metric) between the given data and some prototype of the
data which is part of the recognition mechanism. This prototype is
associated to some element in the new representation language. For
each element x in the original sequence we evaluate the probability
p(x|y). This describes the chance that element x is associated with y
(from the new representation). A common hypothesis (which is

convenient but not always true) is that this probability p(x|y) does
not depend on the other elements in the sequence.

• Probabilities which describe the conditional relationship among the
elements in the new representation. This relation usually depends
on the relative positions of the elements in the sequence.

The general description of the problem is this:

Problem 5.1 - Ambiguous Text Resolution (ATR):
Let σ and σ be two alphabets. Given are:
• A sequence of n signs x x xn1 2, ,..., , xi∈σ .
• A set of probability distributions p x ci j(|) for every i=1..n, x ∈σ

and c j∈σ . p x ci j(|) is the probability that x in the i-th position

stands for c j .

• A set of probability distributions p(| ...)c c cj j1 1− for every j≤n,

c c j1,..., ∈σ .

Find c cn1,..., such that p c c x xn n(... | ...)1 1 is maximal.

In order to distinguish the input from the output we will call the
elements of σ (the input sequence) 'signs' and the elements of σ (the
output sequence) 'characters'.
In fact, the signs are not essential part of the input to the problem.
What we actually get is just the set of probability distributions
p x ci j(|).

A common assumption is that p x ci j(|) is independent of i and that x

depends only on c j. If we use this assumption then the problem can be

solved simply by maximizing p c c x xn n(... | ...)1 1 :
arg max((... | ...))

arg max((... | ...) (...))

...

...

c c
n n

c c
n n n

n
n

n
n

p c c x x

p x x c c p c c
1

1

1 1

1 1 1

∈

∈

=
σ

σ

using the fact that each xi depends only on ci we can write:
=

∈ −
=
∏arg max((|) (| ...))

... ..c c
i i i i

i nn
n

p x c p c c c
1

1 1
1σ

which takes o(n n⋅| |σ) operations when done in the straight-forward
way.
Since the general problem can involve a very large set of parameters it
is often the case that further conditions are assumed. For example, we

64

can use the limited parameters set of the first order Markov model for
σ 's language by assuming: p c c c p c cj j j j(| ...) (|)1 1 1− −= for each j=1..n.

Another assumption can be that for each i only some small number of
probabilities p x ci(|) are non zero. This will limit the overall number
of candidate strings in the maximization.

5.2 A Probabilistic Finite Automaton Description for a
PHT
Resolving ambiguous text is done by assigning probabilities to the
different interpretation of the text, and selecting the one with the
highest probability. The PHT can be used directly for probability
assignment by the method presented in section 2.5. This means that
for each character in the text we should repeat the process of finding
the relevant node in the PHT which will give us the best possible
estimation of the model for the character appearance after its
preceding characters.
There is a way to make the process of nodes finding more efficient. It
is based on the representation of a Markov model by a PFA
(Probabilistic Finite Automaton) discussed in section 2.3. There is of
course the question the target PFA size. Since the parameters set of the
PHT is much smaller than the parameters set of the complete Markov
model, we are not interested in the naive PFA representation of the
complete model, but rather in a representation which keeps the small
size of PHT.
Ron, Singer and Tishby have shown that any PHT T=(V,E,S,ℜ) can be
represented by PFA with at most depth(T)⋅| |V nodes such that for
every history longer than depth(T)-1 the next character probabilities
assigned by the PHT and the PFA are equal [Ron 95].
The construction of such PFA from a given PHT is quite intuitive. The
full details are presented in their paper [Ron 95] and we avoid
repeating them. The construction can be done using a naive algorithm
in time quadratic in the number of the nodes of the PHT, which is
usually not too large in the practical cases. Here is a simple example of
a PHT and its matching PFA taken from Ron's paper:

65

0 1

p(0)=5/11
p(1)=6/11

p(0)=0.5
p(1)=0.5

p(0)=0.4
p(1)=0.6

00 10 p(0)=0.5
p(1)=0.5

p(0)=0.25
p(1)=0.75

010 110
p(0)=0.8
p(1)=0.2

p(0)=0.2
p(1)=0.8

11

0.5
0.5

0.25

0.75

010

01

110

0.8

0.2

0.2

0.8

00

0.5

0.5

Original PHT Matching PFA

Example taken from [RON 95]

ε

Figure 5.1: A PHT (on the left) and its matching PFA (on the
right). The bold edges of the PFA represent walk with
character "1" while the dotted edges represent walk with
"0". Notice that the leaf "1" in the PHT has been replaced by
two nodes "01" and "11" in the PFA. On the other hand, the
inner node "0" in the PHT has been removed in the PFA.

The actual representation for the PHT model which we have used for
the ATR algorithm (see section 5.4) is a variation on the PFA
representation. It is called XPHT (short for Extended PHT) and it has
the following features:
• The inner nodes are kept in the XPHT although they are removed in

the PFA. In real life applications the possibility to assign
probabilities for short strings is important. Since we are interested
in maintaining the model ability to assign probabilities for strings
which are shorter than depth(T) we need the inner nodes of the tree.

• No new nodes are added to the XPHT. When building a PFA from a
PHT many nodes might be added to the model. These additional
nodes are not guaranteed of the optimization process, and are not
promised to be very informative, yet they take place in the model as
the original informative nodes. The additional nodes are chosen
such that the PFA becomes a full prefix graph, that is, if c c c ci i1 2 1... −
is a string associated to some node v1 then there exist a node v2

such that S(v2)=c c ci1 2 1... − (Note that the original PHT is a full
suffix graph). However, our tests results showed that only about 5%
of the nodes do not already have prefix nodes in the original PHT.

66

This minor incompleteness in the XPHT prefix quality hardly
effects the model.

• A set of pointers which connect nodes in the XPHT is added in the
following way - Let suffmaxT (s) be a function defined for every

string s in σ*. suffmaxT(s) is the maximal suffix of s which has an
associated node in T. Let δ(v,c) be a function defined for every
node v∈V and character c∈σ. δ(v,c) is the node associated to the
string suffmaxT (())S v c⋅ . For every node v∈V and character c∈σ
with probability ≥ λ (see discussion on redundant probabilities in
section 4.2) include a pointer from v to δ(v,c). All near zero
probabilities which do not appear in the original PHT are associated
with a default pointer to the root node. This default pointer is used
after the near zero default probability µprob has been assigned to a

character during the evaluation of string probability. Although the
next character probability will be evaluated using zero memory
node (the root) the global string probability will hardly be effected
since it is already dominated by the near zero value, and is most
likely not the desired solution for the ATR problem.
This set of pointers does not change the order of the PHT size. This
size is counted in entries. An XPHT entry contains a character,
its corresponding probability and a pointer to the next node.
When using an XPHT for assigning string probability the first
depth(T)-1 characters are evaluated by the original PHT inner
nodes. All subsequent assignments are done by a walk along
pointers. Since the pointers to the next node are precalculated, just
one step is needed for each character, and no search is performed.

The change from PHT structure to XPHT structure is only done in
order to speed up the ATR algorithm. The original PHT structure
represents the data accurately, but it slows down the applications. In
section 5.4 we will show how the XPHT is used efficiently for
assigning probabilities of interpretations for an ambiguous text.

67

5.3 The Standard Viterbi Algorithm and Shortcuts

In section 5.1 we described the general ATR Problem. In this section
we will discuss the simple case of solving the problem using a first
order Markov model.
We are trying to find:

arg max((... | ...))
...c c

n n
n

n
p c c x x

1

1 1∈σ

 which is estimated by:
arg max[(|) () (|) (|)]

... ..c c
i i i i

i nn
n

p x c p c p x c p c c
1

1 1 1 1
2∈ −

=
∏

σ

using the Markov model, where p c ci i(|)−1 is the transition probability
and p ci() is the stationary probability.

This takes o(n n⋅| |σ) operations when done in the straightforward way.
In this section we will show that the problem can be solved, or can be
approximately solved, using a much faster algorithms.

Define m=|σ | and c cm1... to be the alphabet for the rest of this section.
A better view on the problem can achieved by using a trellis
description. The trellis is a directed graph in which every directed path
with n+1 vertices (including the 'start' vertex) describe one unique
possible set of c c

nα α1
... in the maximization problem:

68

.

.

.

V1,1

.

.

.

.

.

.

.

.

.

.

.

.

Start

. . .

. . .

. . .

.

V2,1

Vm,1

V1,2
V1,3 V1,n

Vm,n

past layers present
layer

Trellis direction: all arcs are directed from left to right
.

Figure 5.2: A Trellis description of the ATR Problem using
first order Markov model. All edges are naturally directed
from left to right, although practically it is sometimes more
convenient to keep pointers directing from right to left
instead. Each layer contains m vertices, and each vertex has
m in-edges and m out-edges. Each vertex Vi j, is assigned

with the character ci and the probability p x cj i(|). Each edge

from Vi j, to Vk j, +1 is assigned with the probability p c ck i(|)

taken from the Markov model. Each edge from 'Start' to Vk,1

is assigned with the probability p ck(). In order to calculate
the probability of the string c c

nα α1
... follow the path starting

at 'start', proceeding to Vα1 1, , then to Vα2 2, etc. proceed until

the n+1 vertex V
n nα , in the path. Multiply the probabilities

assigned to all the vertices and the edges along the path.

The trellis description leads to a dynamic programming algorithm
based on the following scheme:
• Start by solving the maximization problem associated with the

single layer (the 'start' and one full layer). That is, for every vertex
Vi,1 compute the probability of the two vertices path starting from

69

'start' and ending at Vi,1 by multiplying the probabilities on that

path: p c p x ci i() (|)⋅ 1 .
• Assume that the maximization problem up to the k-1 (k≤n) layer in

the trellis is already solved and use this solution to compute the
solution for the k layer maximization. That is, for every vertex Vi k,

find a k+1 vertices path starting from 'start' and ending at Vi k,

which has the highest probability.
• Repeat this process up to the n layer. Choose the n+1 vertices path

starting from 'start' which has the highest probability. The
characters along this path form an optimal solution to the full
problem.

This algorithm is known also as Viterbi algorithm [Viterbi 67]:

Viterbi algorithm
Initialization:
∀j=1..m let prob[1,j]←p c p x cj j() (|)⋅ 1

Recursion:
for i=2..n do

for j=1..m do
prob[i, j]← max([,] (|) (|))

..k m
j k i jprob i k p c c p x c

=
− ⋅ ⋅

1
1

path[i, j]←arg max([,] (|))
..k m

j kprob i k p c c
=

− ⋅
1

1

Termination and best path reconstruction:
best_prob←max([,])

..j m
prob n j

=1

α[n]←arg max([,])
..j m

prob n j
=1

i←n
while i>1 do

α[i-1]←path[i, α[i]]
i←i-1

The set of characters c c nα α[] []...1 is the solution for our problem.

The computational complexity of the Viterby algorithm is dominated
by the main recursion which takes O(n m⋅ 2).

70

The Viterby algorithm can be adapted to an important special case of
the ATR problem. This is when only a small number of the
probabilities p x ci j(|) j=1..m are non zero among all i=1..n. In this case

only the nodes with non zero probabilities should appear in the trellis.
If there exist a bound m m< =| |σ for the number of non zero
probabilities per layer then the computational complexity of the
Viterby algorithm goes down to O(n m⋅ 2).
An important generalization is when we want to use the k-th order
Markov model rather than the first order model. This can be
implemented using the same algorithm with mild changes. The
corresponding trellis becomes much larger. At each layer the total
number of vertices rises up to mk. For each combination
d d dk

k
1 2 ... ∈σ there exist one unique vertex in every layer. This vertex

in layer j is assigned with the probability p x dj k(|). The number of

edges between two successive layers becomes mk+1. For every two
vertices Vi j, and Vh j, +1 such that Vi j, is associated with the string

d d dk1 2 ... and Vh j, +1 is associated with the string d dk2 1... + there exist

an edge from Vi j, to Vh j, +1. This edge is assigned with the probability

p d d dk k(| ...)+1 1 . The total work of the Viterbi algorithm using this

model becomes O(n k⋅ +| |σ 1).

There are some algorithms in literature (see [Fano 63], [Jelinek 69])
which suggest a maximization method for solving the ATR problem
which does not guarantee best solution. The general idea is to stop
evaluating the probability of short paths whose chance to develop into
the high probability long paths is small. This can reduce the resolving
time, and if done carefully, there is not much loss in the quality of the
result.
In section 5.4 we will present a variation on the Viterbi algorithm
which uses an XPHT model and optimally solves the ATR problem.

5.4 On-Line ATR Algorithm Using a PHT

A batch based application running on a large computer is quite
different from a real life, on-line application running on a personal

71

computer. Some special adaptation and careful design should be done
if we want to implement the algorithm for applications like
handwriting-based word processor or phone keypad-based
communication.
We have to consider some limitations and needs:
• Memory: we are short of memory in general. Contributing to

limitation is the total small memory of the computer and the fact
that the recognition process is only one component of the main
program such as the word processor itself.

• Memory management: we have to take care of memory
management, and unused memory should be available instantly for
reuse.

• Speed: time is a major factor since the program is part of an on-line
interface, and the user is waiting for immediate response.

• On-line behavior: results of the algorithm should be presented to
the user as soon as possible. That is, we do not want to wait until all
the noisy message is delivered to the application, then let the
algorithm analyze it, and just at the end of the process return the
algorithm's choice. Rather, we want ambiguity resolution to be done
while the message is being delivered. We want the gap between
arrival of one input sign and recognition of the corresponding
character to be as short as possible.

Following is a simplified version of the implemented algorithm which
we have built using the dynamic programming scheme of the Viterbi
algorithm (see section 5.3). We focus here on the way the main data
structure of the algorithm is built up from the ambiguous input with
the assistance of the language model. The full implementation is
complex and involves many details, some more technical and others
specific for an application.

Main data structure
The implementation is based on a rooted DAG (directed acyclic graph)
structure. The DAG is built up layer by layer where each layer
represents a set of the XPHT nodes (states). Processing each new
character from the input sequence generates a new layer at the 'front'
of the DAG. However, as opposed to the Trellis described in section
5.3 the 'tail' ('old' layers) of the DAG is gradually disappearing while
the front develops. Most of the tail's nodes which describe paths

72

(strings) with low probabilities are removed, while the rest, which
describe the most likely path are collected to form the interpretation of
the ambiguous message.

Each node v in the DAG has the following attributes:
char - the character associated with the node.
state - a pointer to the state (node) in the XPHT corresponding to the
node (this pointer may change during the algorithm).
prob - minus the logarithm of the probability of the path (possible
string) ended by the substring associated with the state.
active - a flag which is true if and only if a state is still informative for
the next iteration. A state is still informative if it may be used to
evaluate probabilities in the next iteration. Nodes whose active flag is
true are called active while nodes marked false are inactive. The set of
active nodes will always form a rooted directed subtree in the front of
the DAG (lemma 5.1).
best - a pointer to the previous node on the most probable path ending
in v. This pointer is initialized to 'nil' and changes its content during
the algorithm's progress. It assumes its final value only when all v's
children become inactive.

Each node in the DAG is pointing to all of his children. The active
part of the DAG is a tree, where the familiar terms of father and child
holds. The ε node is always the ancestor of all the nodes in the DAG.

The input format
Each sign x in the input is represented by a vector of suggestions and
their probabilities. Each entry of the vectors has the form (char, prob)
where char is a character and prob=p(x|c). We assume that the
probabilities in the vector sum up to one.

The language model
The language model used is a XPHT of English. The XPHT was built
from a PHT as described in section 5.1.
δ(state, character) is the XPHT pointer function.
p(state, character) is the conditional probability associated with the
pointer δ(state, character) in the XPHT.

73

All probabilities are transformed to minus logarithm scale and are
added by the algorithm (instead of multiplying the probabilities). This
means that the winning string is the lowest scored one.

74

Simplified version of the on-line, PHT based ATR Algorithm
Initialization:

Create a DAG D with a single node v.
Set v.char←ε, v.state←ε ,v.prob←1, v.active←true, v.best←nil

Iteration:
Get suggestions vector g for the next sign.

Let DA be the active subgraph in the front of D.
For every suggestion g in g do
begin

Let c ← g.char. Let Dc be a copy of DA .
For every node v in Dc do
begin

v.prob ← v.prob+p(v.state,c)+g.prob
v.state ← δ(v.state,c)

end
For r, the root of Dc, let r.char ← c

end
Create a node v and set:
v.char←ε, v.state←ε ,v.prob←1, v.active←true, v.best←nil.
Update D by adding arcs from v to the roots of each Dc and

removing DA . Note that the new D still contains all the original
inactive nodes, with pointers from nodes in each of the Dc-s.

Perform a postorder DFS on the active tree in D. While 'DFSing',
for every node v but the root, if v.state=father(v).state then
begin

v.active ← false
if v.prob<father(v).prob or father(v).best=nil then
begin

father v prob v prob(). .←
father v best v(). ←

end
end
remove all inactive nodes which are not connected to some
active node by a path of 'best' pointers.
output all characters of the nodes which are inactive and
single at their layer. Remove those nodes from D.

75

Following is an example of one iteration of the algorithm. Empty
nodes are 'active' and the crossed nodes are 'inactive'. Dotted arcs are
possible paths from the node back to pervious nodes, while full arcs
are 'best' pointers which were set to their final value. Notice that the
arcs are directed 'backwards' as opposed to the trellis in section 5.3.
Step 1. Original DAG (result
of previous iteration of the
algorithm).

Step 2. A two characters vector
('v','u') is processed. The original
active subgraph is duplicated.

ε

v

u

present
layerlayers

past "future"
layer

ε

present
layerlayers

past

fronttail

Step 3. During the DFS some
nodes become non-active and
'best' edges are updated.

Step 4. The DAG at the end of
the iteration. Notice that the
dark node is left single at its
layer. Its character is output.

ε

v

u

ε

v

u

tail
front

Figure 5.3: One iteration of the ATR Algorithm.

76

The details of the memory management and DAG structure control are
rather tedious and are not presented as part of the algorithm. In
general, the DAG structure is kept by updating an edge list for each
node. The memory management is done by updating a counter field for
each node with the total number of arcs pointing to it. When the count
is zeroed the node's memory is freed for reuse.

Lemma 5.1:
1. At the beginning and the end of each iteration of the algorithm the

active part of D is isomorphic to a rooted subtree of the XPHT.
2. The size of the active part of D at any time during the iteration is

bounded by N g⋅| | (g is the suggestions vector for the new sign).

Proof:
At the beginning of the first iteration there is only one node in the
DAG. Since the end structure of the DAG at each iteration is the
opening structure in the next iteration, it suffices to prove 1 for the end
of each iteration.
At the first stage of the iteration, the active part of D is being
duplicated for each character of in the vector.
After all duplications D reaches its largest size in the iteration, so, if 1
is proven then 2 follows immediately.
Take some active node v of D, and let v' be a child of v in the active
tree. The fields 'state' contain the corresponding nodes in the XPHT:
w and w'. We shall prove by induction that w is the father of w'.
Assume that w is a father of w' at some stage of the algorithm. This
means that S(w')=hS(w) where h is some character and S is the
function mapping each node of the XPHT to a string.
Now, v and v' are duplicated for Dc. The state fields of v and v' are
updated using δ, that is:
v.state← δ(v.state,c)=δ(w,c)=u, v'.state← δ(v'.state,c)=δ(w',c)=u'.
Since δ is defined such that S(u)=suffmax(S(w)c) and

S(u')=suffmax(S(w')c)=suffmax(hS(w)c)
two situations might occur:

77

S(w)

v' v

ww'

Original

XPHT

dS(w)

Active DAG

v'
v

wu

Duplicated DAG
for char c

XPHT

case 2: suffmax(dS(w)c)=suffmax(S(w)c)

Duplicated DAG
for char c v' v

uu'XPHT

case 1: suffmax(dS(w)c) suffmax(S(w)c) ≠

.

Figure 5.4: father-child relation (solid arrows) in the
original active DAG (top) are correlated (dotted arrows) by
the field 'state' to the corresponding nodes in the XPHT.
After the next character c is added, two cases may occur: In
case 1 (bottom right) the correlation still holds, and both
nodes remain active. In case 2 (bottom left), the father and
the child point to the same node in the XPHT, and the child
becomes inactive.

1. If u≠u' then S(u')=hS(u') and u is the father of u' in the XPHT.
Hence, the isomorphism is kept in the active part of Dc.

2. If u=u' then the second stage of the algorithm marks v' to be
inactive. Moreover, if

S(u)=suffmax(S(w)c)=suffmax(hS(w)c)=S(u')
it is clear that for every character k and every string s:

suffmax(shS(w)c)=suffmax(kshS(w)c).
This means that all descendants of v' will also be marked inactive
and will not be included in the active part of the DAG at the end of
the iteration.

78

It remains to prove the induction claim when v is the new root, r, of D.
r is pointing to all the roots of the duplicated Dc-s. Let v be the root of
some Dc. r.state:=ε and v.state:=δ(ε,c).
If δ(ε,c)≠ε then surly S(v.state)=c and v.state is the child of r.state.
If, on the other hand, δ(ε,c)=ε then v.state=r.state and v becomes
inactive.
Since the XPHT is a tree, and every father-child relation in DA is
maintained by the state pointers, it follows that DA is isomorphic to a
subgraph of the XPHT. Adding the root ensures connectivity.♦

5.5 ATR Algorithm: Features Analysis and Tests
Results

In the previous section we presented the dynamic programming
algorithm which uses a given XPHT to solve the ATR problem from
section 5.1.
A tight analysis of the algorithm's memory consumption and
computational complexity depends on the features of the signs
generating source and on the dependencies between the signs and the
characters. These parameters are particular to the specific application
which the algorithm serves, and even to the specific user behavior
(type of handwriting, for example). However, general bounds can be
derived using lemma 5.1.
In the following subsections we will analyze three main features of the
algorithm: memory consumption, speed and on-line behavior. For each
feature we will also report a representative experimental test which
will show the typical behavior of the algorithm in real applications.
Following first is a brief description of the test components.

Algorithms implementation, applications and representative test
The complete PHT based ATR algorithm was programmed on a PC
platform in C language, compiled with a Borland C++ compiler. The
code size for the on-line algorithm is about 2000 lines and it is
optimized carefully for small code size and high speed.
The algorithm was tested in two applications: An on-line handwriting
recognition system and a phone keypad-based communication system.

79

The applications were tested on a 386, 33Mhz Intel processor based
board with 4M bytes memory which is currently considered a
relatively low cost and slow machine. The on-line handwriting
recognition system is a commercial product and our algorithm is only
a small portion of it. The keypad-based system is an artificially
designed system where the keys of the standard US telephone are used
to send alphabetic text over the phone lines. The full description of the
applications and their accuracy test results is presented in chapter 6.
The input vectors of suggestions constraints and the test set were
specific for each application:
• Handwriting recognition system - The input for the algorithm was a

variable size suggestions vectors of at most 6 characters each (2.12
characters on the evarage). Each vector was produced by comparing
one sign to a set of prototypes. If the prototype's distance from the
sign (measured using a special norm) was small enough then the
character associated with the prototype was added to the vector.
The handwriting recognition system was tested on a variety of
writers and texts (about 24000 characters which were written by 24
writers).

• Phone keypad-based communication application - Each vector
contained 3 suggestions which are the letters associated with one
key in the standard US phone keypad. We used the same coding
conventions for the keypad used by Skiena (see more details in
section 6.1 and [Skiena 94]). The results given below are based on
testing 1.1M character file containing a selection of Clinton
speeches from 1993-94. The Speeches can be found in the Library
of Congress, and are available through Internet.

For both applications we used the same 4300 states XPHT, with
about 40000 entries (an entry in the XPHT is a pointer and a
corresponding transition probability. For more details on the test
XPHT see the description of model f4 in section 4.2). Following is an
analysis of the algorithm's main features together with experimental
results which represent the real behavior of the algorithm for the two
application.

Memory consumption
Several general observations concerning the memory consumption of
the algorithm can be made independently of the specific application in
which the algorithm was used:

80

• The size of each active node in the DAG depends only on the
alphabet size for it holds a list of edges pointing to other nodes. If
the vector size is a smaller value limited by m, as in the case of the
phone keypad coding, then the list size is at most m. The winning
string is built by "walking back" on the DAG and there is no need
to keep more than one character per node.

• The number of active nodes is bounded by N times the maximal
size of the suggestion vector. This is stated in part 2 of lemma 5.1.

• The size of each inactive node is O(1) and does not deepened on
the alphabet size or vector size. This is since the node contains one
character and points backwards to only one possible path (older
node).

• The number of inactive nodes is theoretically not bounded. This is
an inherent result of their task - to keep the strings which their
destiny as chosen or non chosen might still be changed by the new
signs. A simple example is:

tail ε

u

v

u

v

u

v

u

v

u

v

front

Figure 5.5: An unbounded size DAG.

The same sign is observed over and over again with the ambiguity
of being either 'u' or 'v' with the same a-priori probability. The
XPHT of the example uses only one character history, and the 'uu'
and 'vv' nodes always win. The double path DAG does not return
any result since even the oldest (leftmost) 'u' and 'v' are not sure yet.
One definitely observed 'u' (or 'v') will collapse the double path
leaving only the 'uu...uuu' string as a sure result.
This theoretical lack of bound does not seems to effect the
functioning of the algorithm within the tested applications. This is
since the problematic situations, like the one described above, are
rare in human language. When the space available for active and
non active nodes is filled the algorithm can make some heuristic
choices for the "old" characters, and cut off the long DAG's tail.
This will not effect the average accuracy of ambiguity resolving
since it happens rarely.

81

Experimental results:
We have tested both applications for their memory consumption (the
portion of memory that was devoted to our algorithm) measured in
DAG nodes. We count the active and non active nodes together.
The phone keypad decoding application used an average number of 70
nodes. Our test shows a maximal use of about 150 nodes.
The handwriting recognition was more demanding in the maximal
nodes used. We found a DAG of about 1200 nodes in one case. This is
probably since the vector size can grow up to 6 and a sequence of
some large vectors can enlarge the DAG. However, the average use of
nodes was about 70, the same as in the phone keypad decoding case.

Speed
The overall number of operations per iteration of the algorithm will be
evaluated separately for handling the nodes which are active and
inactive at the beginning of the iteration:
• Active nodes - The number of operations per iteration performed

by the algorithm while handling the active nodes is proportional to
the maximal number of active nodes that appear in the DAG
during the iteration. This number is bounded according to lemma
5.1 by the size of the XPHT times the maximal size of vector. The
portion of DAG which is active in the beginning of the iteration is
duplicated for each suggested character in the vector, and then the
new active structure is searched again to mark new inactive nodes.
So, each node in the duplicated structure is reached twice, once
when it is being created and once when it is being tested for
inactivation. This is true since the duplicated structure is a tree and
the DFS reaches each node just once.

• Inactive nodes - In order to analyze the work for the inactive
nodes in the DAG we should consider the overall work for these
nodes during a large set of iterations. When a node becomes
inactive it is not reached any more during the two DFS-s of the
main iteration. It is actually handled just once more - when the
time comes to erase it from the DAG. We assume that the DAG's
size stabilized after some iterations and it does not grow endlessly.
This can not be proved, however, it was found true in the cases we
tested. If the size of the DAG is more or less stable after some
iterations then the average number of nodes added to the DAG is

82

equal to the average number of inactive nodes removed from it.
This means that on the average the number of operations per
iteration for handling the inactive nodes is proportional to the
number of the new nodes. The number of new nodes is bounded by
the size of the XPHT times the maximal size of vector. This
follows from lemma 5.1 since all the new nodes are copies of nodes
which were active at the beginning of the iteration.
The conclusion of this disscussion is that if the size of the DAG is
stable during the resolution process then the work for the inactive
nodes is, on the average, bounded by the size of the XPHT times
the maximal size of the input vector.

Experimental results:
We tested both applications for their speed. Our measure is the
number of signs resolved by the algorithm per second.
In the phone keypad decoding application the algorithm is the main
time consumer (some insignificant portion of time is devoted to files
input/output and user interface). The algorithm decoding rate was
about 30 decoded characters per second.
The handwriting recognition application devotes only a small portion
(less than 13%) of the overall recognition time to the ATR algorithm.
The rest of the time is devoted to the 'visual' analysis of the signs, to
the creation of the suggestions vectors, and to input and output
procedures. The average decoding speed of the algorithm itself was
about 33 decoded characters per second (this number is the cumulative
time spent in the ATR procedure divided by the number of recognized
signs). This means that with the tested XPHT, the algorithm is suitable
for on-line handwriting recognition performed on a small computer,
since the user writing rate is normally slower than the recognition.

On-line behavior
The number of signs that are inserted to the algorithm before the first
sign is resolved has a major impact on the usefulness of the algorithm
in an on-line application. This parameter is bounded by the maximal
number of layers (both active and non active) in the DAG during the
period between the sign insertion and resolution. The tail of the DAG
is being used to give a most likely result when there is no ambiguity
left there, that is, when a tail's layer is made of only one inactive node.

83

When this happens the sign is resolved and the tail is being cut off
from the DAG.

Experimental results:
An average of 10 layers DAG was measured in the phone keypad text
decoding test. This means that an average delay of about 2 English
words exist between character encoding and decoding. As mentioned
before, the number of layers can grow indefinitely in the worst case.
However, the maximum number of layers reached in the test was 30.
The handwriting recognition application used 11 layers DAG on the
average. A maximum number of 34 layers in the DAG was reached
during the test.

The following table summarizes all the parameters that were discussed
above for both the phone keypad text decoding and handwriting
recognition:

phone keypad
text decoding

handwriting
recognition

Tree size (entries) 40000 40000
Test sequence size (signs) 1.1M 24000
Input Vector Size (chars/sign) Average 3 2.12

Max 3 6
Memory: DAG size (nodes) Average 70 69

Max 150 1200
Resolving Speed (signs/sec) Average 30 32
Resolving Delay (signs) Average 10 11

Max 30 34
Table 5.1: Features of on-line, PHT based, ATR Algorithm -
applications test results.

The accuracy in resolving signs by both application is highly
effected by the size and features of the XPHT being used by the
algorithm. Test results of the accuracy with respect to a set of
different XPHT-s are given at chapter 6.

84

Chapter 6:
Results of PHT Building and ATR
Algorithms: Two Applications

Chapter 3 presented methods for constructing an informative model of
language with a desired size. We have used those methods for
constructing a set of models with growing sizes (chapter 4). Chapter 5
described an efficient procedure that uses such a model for resolving
ambiguity of noisy or ambiguous text. In this chapter we will present
two working applications that use this procedure. We will describe
each application and list test results which demonstrate the correlation
between model size and application error rates.

6.1 Phone Keypad Interfaced Communication

Lately there is growing interest in applications which use the
combination of computer and telecommunication. While duplex
telecommunication had already reached virtually every home in the
western world this is not the case, yet, with computers. The lake of
computer or some terminal device in most houses which do have a
telephone line limits the number of users for such applications
dramatically. An interesting attempt has been done by some systems
aiming to use standard telephone keypad as a simple terminal. This is
implemented trivially for limited multiple choice situation but is much
harder for complex data coding. On the keypad of most U.S. telephone
sets we find three characters written near each of the 2-9 keys. An
intuitive user interface for sending a textual massage by a phone
keypad can be typing it, characters by character, using the overloaded
keys. The entropy of English was estimated by Shannon [Shannon 51]
to be between 0.6 to 1.3 bits per symbol. The maximum information
rate that can be transmitted using 10 phone dial of phone keypad
characters 0-9 is log () .2 10 3 32≈ bits per symbol. The standard
assignment of the letters on the keys is not optimal so the actual

transmission rate when coding an English massage is less then 3.32.
Still, it seem that a good model for English can be sufficient to resolve
the overloaded digits received through this channel.
A reliable system which can convert the keypad digits back to English
text can be used for a variety of applications, mainly when combined
with some voice responding system or text-to-speech system. Such a
combination can be use for:
• Direct communication with a far computer for information retrieval,

goods order, etc. without human intervention on the computer side.
• E-mail sending and receiving through telephone. The far side reads

the incoming mail to the user using a text to speech synthesizer.
• Communication with hearing-impaired. The far side must have a

computer that resolves the massage ambiguity and uses a text to
speech system for responding.

Some works and patents which attempt to solve the problem using
statistical methods and dictionaries can be found in literature. An
impressive work in this field was done by Rau and Skiena [Skiena 94].
Their system is computationally very heavy and ambiguity resolving is
a complex process involving some layers:
1. Blanks recognition using third order Markov model for English.
2. Words match: this is done in two ways - hashing for words in

English dictionary, or (for unknown words) scoring candidate
words using a trigram model (second order Markov model).

3. Sentence disambiguation resolving which is done by using word-
pair frequencies in English and grammatical constraints.

Their system has the following features:
• Complex algorithm combining a set of different mechanisms.
• The model is based on a very large set of parameters.
• The resolving is not on-line, that is, it is done after each complete

sentence ends.
• The results are very accurate in general (99.04% correct characters

for the test set of Clinton speeches, 95.20% for another test set of
Shakespeare works). The accuracy in correctly decoding unknown
words (which is done using the Viterbi algorithm with a second

87

order full Markov model) is only 87.28% of the total number of
characters in the Clinton speeches test set.

We have addressed the same problem using the variable memory
length PHT model of chapters 2.5-4 and the resolving ATR algorithm
suggested in section 5.4. We used the same coding conventions used
by Skiena:
• The digits 2-9 represent the characters a-y, three characters per

digit, with the 'q' missing from the sequence (this is the standard
phone keypad convention).

• The '*' sign is used for the blank, 'q' and 'z'.

Our system has the following features:
• The model is based on a small set of parameters. For any desired

model size an optimal (or near optimal) usage of parameters space
is achieved.

• The system can be implemented on a small, slow and limited-
memory computer and works fast enough for convenient on-line
application.

• The resolving algorithm has a desirable on-line behavior. There is a
relatively small gap between encoded and resolved character (about
two words).

• The results are accurate with respect to the model size (95.5% for
the set of Clinton speeches, 91.2% for Shakespeare, using the n4
PHT model).

The following table presents system accuracy with respect to model
size. The system was tested using the Clinton speeches file of about
1.1M characters, and a portion of Shakespeare works of the same size.
The file was first converted to lower case characters only, when all
separators (commas, dots etc.) converted to blanks and all other
special characters removed. The result file was converted to the digits
2-8 and '*' character as describe above. This file was decoded using
our system and the result was compared to the original lower case file.

88

model nodes entries entropy accuracy
(%)

uniform distribution 0 0 4.906 33.3%
f1 1 30 4.213 64.6%
f2 31 760 3.456 76.3%
f3 776 7594 2.841 88.0%
n1 41 753 3.342 80.0%
n2 570 7600 2.665 90.4%
n3 1792 19744 2.337 94.2%
n4 4300 40010 2.117 95.5%
h1 42 753 3.341 80.0%
h2 568 7606 2.664 90.6%
h3 1802 19743 2.334 94.2%

Table 6.1: The accuracy of PHT based telephone code
reconstruction system with respect to parameters number and
model construction technique. (Test set: Clinton Speeches)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

0

10

20

30

40

50

60

70

80

90

100

0 30 760 7600 20000 40000

random full Markov ���
��� greedy alg. 	�	

	�	
	�	

optimal alg.

Figure 6.1: System accuracy with respect to parameters
number. The four types of bars represent the four different
algorithms used for PHT construction. Each set of attached
bars represent some XPHT-s with same sizes.

89

Here is an example from the Clinton speeches file decoded by the
phone keypad conventions and encoded by our system using the n4
PHT with 40000 parameters. All mistakes are followed with the
correct word in parenthesis:
"...in this kind of entironment [environment] it is
understandable that change would become the watchword of
this time what is the actalypt [catalyst] that will
bring about the change we are all talking about i say
that actalypt [catalyst] is the democratic party and our
nomined [nominee] for president we are not strangers to
change twenty years ago we changed the whole tone of the
nation after wateriate causes [watergate abuses] we did
that years ago we know how to change we have been the
instrumental change in the part [past] we know what
needs to be food [done] and how to do it we know we can
impact policies in education human rights civil rights
economic and social opportunity and the entironment
[environment] there [these] are policies which are
hoceeded [imbedded] in the soul of our party and
inceeded [imbedded] in our soul they will not disappear
easily..."

The results analysis leads to the following conclusions:
• The accuracy reached using n4 model is high enough to make the

system practical for use. This is correct especially when the
decoded massage is eventually viewed by a person which can guess
what are the mistakes and what is the correct decoding using the
meaning and the context of the sentence. The 4.5% mistakes can be
more problematic when the far side is a machine which responds to
the message without human intervention.

• A model with more parameters is, as expected, more accurate than
a smaller one.

• The improvement in both model entropy and system accuracy
seems to be asymptotic with respect to model size. That is, the
impact of enlarging a large model is minor. The small improvement
from h3 to h4 might indicate that the size of 40000 parameters
reached is not much far from the maximum accuracy rate possible
with a PHT based model. On the other hand however, the
examination of the example shows that some of the mistakes

90

involves a choice of non English words. This indicates that the
correct words are probably not included in the PHT as complete
strings. Hence, further enlarging of the model might add those
words to the PHT and remove the resulting mistakes.

• The variable memory models are demonstrated to be considerably
more accurate than the fixed memory models with the same size.

• The variable memory model h2 that was built using the hybrid
algorithm is slightly more accurate than n2, the model that was
created using the greedy algorithm. h3 and n3 gave the same results
for the application although h3 is a bit superior in its information
content with respect to n3.

6.2 Handwriting Recognition

Several models of portable pen-supported computers with or without
keyboard were introduced lately and can be purchased at a cost only
slightly higher than other portables. Although many of them still seem
to suffer from disappointing handwriting recognition capabilities they
do hint to the power and convenience of pen based interface combined
with good handwriting recognition systems. The natural 'feel' of such
interface is a promising factor in the forecast of this kind of
computers. Many groups around the world in both academic institutes
and commercial companies are working on developing good
handwriting recognition systems.
The intended host for a handwriting recognition system is, in many
cases, a small portable computer. This fact presents a set of limitations
and demands from the system. These limitations might be quite
extreme since the handwriting recognition is only an 'assistant task' to
the main running application (word processor, database application
etc.). It may consume only small portion of the computer resources
which are not wide to begin with. Our system has been built to give
answer to those demands:

91

• Memory limitation - the implementation is small and needs small
runtime space (see section 5.5). It gives good results (see below)
with a limited set of parameters.

• Model size flexibility - The model size is flexible and it can be set
to a desired size without any change in the algorithm that uses it.
This makes the same algorithm portable between platforms without
losing the benefits of a large model on the stronger machine.

• Speed - The algorithm is fast (see section 5.5).
• On-line behavior - There is only small 'wait to result' gap (see

section 5.5).
The two last points are especially important since the handwriting
recognition should be 'transparent' to the user. An unexpected 'idle'
time between the moment a sign is written and the moment it is being
resolved and echoed (as a character) to screen is not acceptable by the
users who are used to the zero delay of keyboards.
A version of our system using a PHT-based model and the ATR
algorithm described in section 5.4 was implemented in the commercial
handwriting recognition system of ART ltd. The description of the
complete recognition system is out of the scope of this work. However,
this system was built up of several layers. Our algorithm constitutes
the final layer which chooses one possible interpretation of a written
character out of several options, using the language statistical
knowledge combined with other information from previous layers.
ART's non-cursive handwriting recognition system is a user dependent
trainable system. The tested version of the system achieved a
performance of 95.2% correctly recognized characters without any
statistical language information. This number was raised by our
system to 97.0%. This is a reduction of 37.5% of the original 4.8%
error rate.
The test was performed on a set of about 24000 signs which were
written by 24 different users on a portable computer screen using an
electronic pen. The recognition accuracy was measured for a full
character set which includes upper and lower case letters, digit, and all
other standard keyboard characters. Some of the texts in the test set
were not well formed English text. This includes, for example,

92

sequences like "aBcDeF...", "2 4 6 8 0" or "! @ # $ % ^", mathematics
expressions such as "2+3=5" etc.

Following is a table reporting the overall accuracy of the recognition
system using different PHT models in the 'linguistic' filter layer (the
ATR algorithm). Although the differences seem minor when looking
at the percentage of correct characters they are very meaningful when
observing the error rate. The low error rate is very important for a
usable portable system with no attached keyboard. The error reduction
column presents the reduction of error (in percentage) achieved from
the original 4.8% error.

model nodes entries entropy error
reduction

accuracy
(%)

no linguistic model 0 0 4.906 0.0% 95.2%
f1 1 30 4.213 12.5% 95.8%
f2 31 760 3.456 20.8% 96.2%
f3 776 7594 2.841 25.0% 96.4%
n1 41 753 3.342 18.8% 96.1%
n2 570 7600 2.665 27.1% 96.5%
n3 1792 19744 2.337 35.4% 96.9%
n4 4300 40010 2.117 37.5% 97.0%
h1 42 753 3.341 18.8% 96.1%
h2 568 7606 2.664 27.1% 96.5%
h3 1802 19743 2.334 35.4% 96.9%

Table 6.2: Application results of PHT-based ATR algorithm in the
handwriting recognition system of ART Ltd. The table shows the
overall recognition accuracy of the system and the error reduction
achieved by the ATR algorithm using different model sizes and types.
The n4 base model reduces error by 37.5%. Error reduction is
measured in all cases compared to the 4.8% error of ART system
without the "linguistic layer".

93

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

0

1

2

3

4

5

6

7

0 30 760 7600 20000 40000

no linguistic model full Markov ���
���
���

greedy alg. 	�	
	�	
	�	

optimal alg.

Figure 6.2: Overall character recognition accuracy of the system
using different classes of models and different sizes. The y axis is the
accuracy of the system in percentage starting from 90% and ending in
97%. The x axis is the size of the model. Attached bars represent
models with same sizes but different types.

Some conclusions rise from the analysis of the results:
• Linguistic-based filtering is helpful for handwriting recognition

application. This is not trivial since each layer which is added to a
system inserts some noise to the overall performance. Since we
started up with a relatively good system with no linguistic-based
layer (95.2% accuracy) we were not granted to get any
improvement in recognition. We want to emphasize that some
linguistic knowledge is already used in the non filtered system. This
means that the filter and the layers beneath are partly using the
same information. Achieving error reduction by the filter is even
harder in such situation.
The linguistic-based layer does not have the potential to correct all
the 4.8% recognition errors. This is since is serves as a filter which
chooses one character of each input vector. These vectors are the
output of the layers beneath, and are not guarantied to contain the
correct character. We found out that the correct character appears in
99.6% of the vectors.

94

• The overall performance of the system with the filter (97%) is quite
satisfactory. A short message, such as an announcement, a memo or
an information query can be entered using an electronic pen with
none or nearly no mistakes in recognition. If the system supports
good user interface for easy mistake fixing then our experience
indicates it can be practically used for many application without
any keyboard usage at all.

• The larger models gave better performance, as expected, than the
smaller ones. The improvement in performance with respect to size
seem to be, as in the case of the phone keypad encoding system,
asymptotic. The variable memory models are again more accurate
than the fixed length memory models with the same size.

• The variable memory models that were built using the hybrid
algorithm showed no superiority in performance over the greedy
model with the same size. This can be caused by inaccuracy in the
results measurements or simply by the mild difference in
information content between the two types of models.

Our system proved to be successful in the commercial handwriting
recognition system. However, we believe it can obtain even higher
accuracy if combined in the recognition process not just as a last filter
but rather as one source of information for a general decision
procedure which combines some sources for an overall recognition of
a text.

95

Bibliography

[Abe 92] N. Abe and M. Warmuth.
"On the computational complexity of approximating
distributions by probabilistic automata",
Machine learning, volume 9, pages 205-260, 1992.

[Bhal 83] Lalit R. Bhal, Frederick Jelinek and Robert L. Mercer.
"A maximum likelihood approach to continuous speech
recognition",
IEEE Trans. Pattern Analysis and Machine Intelligence,
volume PAMI-5, number 2, pages 179-190, March 1983.

[Brill 92] Eric Brill.
"A simple rule-based part of speech tagger",
Second Conference on Applied Natural Language Processing,
Trento, Italy, 1992.

[Chen 92] M. Chen, A. Kundu and J. Zhou.
"Off-line handwritten word recognition (HWR) using a single
contextual hidden Markov model" Proceedings of the IEEE
1992 Computer Society Conference on Computer Vision and
Pattern Recognition, Pages 669-672, Champaign, IL, USA,
1992.

[Church 88] Kenneth W. Church.
"A stochastic part program and noun phrase parser for
unrestricted text",
Second Conference on Applied Natural Language Processing,
Austin, Texas, 1988.

[Cover 91] Thomas M. Cover and Joy A. Thomas.
"Elements of information theory",
Wiley series in telecommunications, New York, 1991.

[Fano 63] R. M. Fano.
"A Heuristic Introduction to Probabilistic Decoding", IEEE
Trans. Information Theory, volume IT-9, page 64, 1963.

[Goldschmidt 95] O. Goldschmidt and Dorit S. Hochbaum.
"K-edge Subgraph Problems",
Technical report, IEOR Department, University of California,
Berkeley, 1995.

[Höffgen 93] K.-U. Höffgen.
"Learning and robust learning of product distributions",
Proceedings of the Sixth Annual Workshop on Computational
Learning Theory, pages 97-106, 1993.

[Huang 93] Xuedong Huang, Fileno Alleva, Hsiao-wuen Hon, Mei-Yuh
Hwang, Kai-Fu Lee and Ronald Rosenfeld.
"The SPHINX-II speech recognition system: an overview.",
Computer, Speech and Language, volume 2, pages 137-148,
1993.

[Hull 82] J. J. Hull and S. N. Srihari.
"Experiments in Text Recognition with Binary n-Gram and
Viterbi Algorithm",
IEEE Trans. Pattern Analysis and Machine Intelligence,
volume PAMI-4, number 5, pages 520-530, September 1982.

[Jelinek 69] Frederick Jelinek.
"Fast sequential decoding algorithm using a stack",
IBM J. Res. Develop. , volume 13, pages 675-685, 1969.

97

[Jelinek 77] Frederick Jelinek, Robert L. Mercer, Lalit R. Bhal, and James
K. Baker.
"Perplexity - a measure of difficulty of speech recognition
tasks",
94th meeting of the Acoustic Society of America, Miami
Beach, Florida, USA, December 1977.

[Jelinek 91] Frederick Jelinek and John Laferty.
"Computation of the probability of initial substrings generation
by stochastic context-free grammars",
Computational Linguistics, volume 16 part 3, pages: 315-323,
September 1991.

[Krogh 93] A. Krogh, S. I. Mian and D. Haussler.
"A hidden Markov model that finds genes in E. Coli DNA",
Technical Report UCSC-CRL-93-16, University of California at
Santa-Cruz, 1993.

[Kupiec 92] J. M. Kupiec.
"Robust part-of-speech tagging using a hidden Markov model",
Computer Speech And Language, volume 6, pages 225-242,
1992.

[Lari 91] K. Lari and S. J. Young.
"Applications of stochastic context-free grammars using the
Inside-Outside algorithm",
Computer Speech And Language, volume 5, pages 237-257,
1991.

[Nadas 84] Arthur Nadas.
"Estimation of probabilities in the language model of the IBM
speech recognition system",
IEEE Trans. on Acoustics, Speech, and Signal processing,
volume ASSP-32, number 4, pages 859-861, August 1984.

98

[Orlowski 89] M. Orlowski and M. Pachter.
"An algorithm for the determination of the longest increasing
subsequence in a sequence",
An International Journal: Computers & Mathematics, with
Applications, Volume 17, Pages 1073-1075, 1989.

[Rabiner 86] L. R. Rabiner and B. H. Huang.
"An introduction to hidden Markov models",
IEEE ASSP Magazine, pages 4-16, January 1986.

[Rabiner 89] L. R. Rabiner.
"A tutorial on hidden Markov models and selected applications
in speech recognition."
Proceedings of the IEEE, 1989.

[Rissanen 83]Jorma Rissanen.
"A universal data compression system",
IEEE Trans. Information Theory, volume IT-29, number 5,
pages 656-664, 1983.

[Rissanen 86]Jorma Rissanen.
"Complexity of Strings in the Class of Markov Sources",
IEEE Trans. Information Theory, volume IT-32, number 4,
pages 526-532, July 1986.

[Ron 95] Dana Ron, Yoram Singer and Naftali Tishby
"The power of amnesia: learning probabilistic automata with
variable memory length",
Machine Learning, volume 1, pages 1-26, 1995.

[Ross 70] S.M. Ross,
"Applied Probability Models with Optimization Applications",
Holden-Day, San Francisco, 1970.

99

[Schabes 93] Yves Schabes, Michael Roth, and Randy Osborne.
"Parsing the Wall Street Journal with the inside-outside
algorithm",
Sixth Conference of the European Chapter of the Association
for Computational Linguistics (EACL '93), Utrecht, the
Netherlands, April 1993.

[Shannon 48] C. E. Shannon.
"A mathematical theory of communication",
Bell Sys. Tech. Journal, volume 27, pages 379-423, 623-656,
1948.

[Shannon 51] C. E. Shannon.
"Prediction and entropy of printed English",
Bell Sys. Tech. Journal, volume 30, pages 50-64, 1951.

[Skiena 94] Steven S. Skiena and Harald Rau.
"Dialing for document: an experiment in information theory",
Seventh ACM SIGGRAPH Symposium on User Interface
Software and Technology (UIST '94), Marina Del Rey,
California, November 1994.

[Tao 92] Chongguang Tao.
"A Generalization Of Discrete Hidden Markov Model And Of
Viterbi Algorithm" ,
Pattern Recognition, Volume 25, number 11, pages 1381-1387,
1992.

[Viterbi 67] A. J. Viterbi.
"Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm",
IEEE Trans. Information Theory, volume IT-13, pages 260-
269, 1967.

100

[Weinberger 82] M. J. Weinberger, A. Lempel and J. Ziv.
"A sequential algorithm for universal coding of finite-memory
sources",
IEEE Trans. Information Theory, volume IT-38, pages 1002-
1014, May 1982.

[Weinberger 95] M. J. Weinberger, J. Rissanen and M. Feder.
"A universal finite memory source",
Technical report, Department of Electronics and Systems
Engineering, Tel-Aviv University, Israel, 1995.

101

