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Abstract

The new technology of protein binding microarrays (PBMs) allows simultaneous measurement of the binding intensities of a
transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key
computational challenge is inferring the binding motif from these data. We present a systematic comparison of four
methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM
data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the
literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and
some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a
dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking
more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in
predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.
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Introduction

Understanding gene regulation is a fundamental problem in

biological research. A principal way to regulate gene expression in

the cell is via transcription, which is governed primarily by

transcription factors (TFs). A TF is a protein that binds to the

promoter region of a gene at specific sequences, called TF binding

sites (TFBSs). The binding of one or several TFs enables or

impedes the transcription of the gene. A TF binds to similar short

nucleotide sequences at different affinities. Finding these cis-

regulatory elements and modeling the affinity of TF binding to

them is a central challenge in understanding gene regulation.

The most common computational model for describing a TFBS

motif is a position weight matrix (PWM) [1]. The TFBS is

represented by a 46k matrix, where k is the motif length. Each

column contains four probabilities, representing the nucleotide

frequencies at that position. This relatively simple model is highly

popular since it is compact, effective and easy to interpret.

New technologies have enabled comprehensive mapping of

protein-DNA binding affinities. The main technology to measure

in vivo protein occupancy is chromatin immunoprecipitation

(ChIP). In the ChIP-chip method, the protein-bound DNA

segments are hybridized to a pre-designed microarray [2], whereas

the ChIP-seq method uses deep sequencing to read the bound

DNA segments [3]. A recent promising technology in this field is

the protein binding microarray (PBM) [4]. This microarray

contains ,41,000 synthesized, 60 bp-long double-stranded DNA

probes, each containing 36 bp of unique sequence, designed so

that every possible 10-mer is contained in exactly one probe

sequence. A single in vitro experiment measures the binding

intensity profile of a specific TF to each probe, thereby providing

complete coverage of the binding affinity of the TF to all possible

10-mers. Often, two experiments with different array designs are

performed with the same TF, providing paired profiles.

Numerous computational methods for finding a motif in a

target set of promoters have been developed over the last two

decades [5–7]. Predicting binding sites based on PBM data is

different: the experimental data are much more comprehensive,

covering all possible 10-mers, but are generated in vitro and in a

high-throughput (and hence noisy) fashion. Therefore, several

methods were recently developed specifically for identifying TFBS

motifs from PBM profiles. Here we compare methods that

represent the motifs as PWMs. We do not include methods that

use more complex models [8], since we choose to focus on simpler,

more compact models.

In this paper we present a systematic comparison of four

algorithms for identifying TFBS motifs from PBM profiles: Seed-

and-Wobble (SW) [4], RankMotif++ (RM) [9], BEEML-PBM

(BE) [10] and the algorithm Amadeus-PBM (AM) introduced here

(see Table 1). In 2005, a systematic comparison of computational

methods for motif discovery in promoters clarified some of the

issues and the difficulties in that domain, and led to progress in

that research area [11]. We hope that our study will have a similar

effect regarding methods for analyzing PBM data.
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Results

Concordance with SELEX-based reference motifs from
the literature

We used each method to find motifs using PBM data, and

compared the results to previously reported motifs for the same

TFs, obtained using independent experiments. Each motif was

learned using the data from two paired experiments performed

with the same TF. For each TF, we measured the distance

between the PBM-based PWM to the PWM of the same TF as

published in JASPAR [12]. For this test we used all mouse PBM

datasets from the SCI09 study [13,14] that had a corresponding

PWM in JASPAR, excluding those for which the JASPAR PWMs

were constructed using PBM data. This set contained 58 PWMs.

Most were constructed based on in vitro SELEX experiments,

which are still the main source of TF motifs.

The AM PWMs were the most similar to JASPAR, with average

Euclidean distance (6 estimated standard deviation) 0.17860.11.

The average for SW was 0.19360.1, for RM was 0.2160.09, and

for BE was 0.22760.1 (Table 2). The difference between AM and

SW was not significant (p = 0.17, Wilcoxon rank-sum test) and

both were significantly better than RM and BE (p = 0.001 and

p = 0.0005 compared to AM, respectively).

We then focused on high-quality predictions of the four

methods. We say that a motif is successfully recovered by a

method if the Euclidean distance of the predicted PWM from the

reference PWM is below a predetermined cutoff. As in [15], we

used three cutoffs for the distance. AM attained a higher success

rate using all cutoffs (Figure 1). A similar comparison of mouse

motifs in TRANSFAC [16] and yeast motifs in ScerTF [17], and a

parallel comparison, using p-value for the significance of the

similarity [18], showed a similar advantage to AM (Figure S1).

Visual inspection suggested that the PWMs produced by AM

and SW are easier to interpret and look distinct in logo format

(Figure 2). To quantify this observation, we calculated the

average information content for each PWM (see Methods S1).

Averaged over the PWMs computed from all 115 available paired

mouse PBM sets, the information scores for the raw PWMs were

1.03, 0.61, 0.42 and 0.53 bits for AM, SW, RM and BE,

respectively, with AM scoring significantly higher (p,10215,

Wilcoxon rank-sum test). After trimming the PWMs to discard

flanking positions with low information, the information averages

were 1.03, 1.09, 0.54 and 0.61 bits, respectively (p = 1.2?1027

when comparing SW to AM and ,10215 when comparing AM

and SW to RM and BE). The full comparison results are available

in Table S1.

Predicting in vitro binding intensities
Next, we tested the prediction of binding intensities by the four

methods on 115 pairs of mouse PBM profiles [13,14] following the

procedure in [9]. Each method learned a PWM according to one

PBM experiment; this PWM was used to rank the probes of its

paired array. The goal was to correctly rank the positive probes,

i.e. those with highest affinity measurements. The set of positive

probes (denoted 4s, see Methods S1) contained an average of

912 probes per array. We also evaluated larger sets of positive

probes using more permissive cutoffs (denoted 3s, 2s and 1s; an

average of 1580, 3215 and 8224 probes per array, respectively).

When testing on 4s top probes set (Table 2 and Figure 3), BE

had significantly best Spearman and AUC scores (p,0.0025,

Wilcoxon rank-sum test), while AM and RM were essentially equal

(p = 0.41 and p = 0.44, respectively), and significantly better than

SW (p,1024). Using the sensitivity measure, BE was again best

Table 1. Properties of the tested methods.

Program Operating principle Reference

Seed-and-Wobble Ranks all 8-mers according to Wilcoxon-Mann-Whitney rank-sum score. The top scoring 8-mer is used
as a seed, its positions are ‘‘wobbled’’ and its length is extended in order to improve match to the data.
http://the_brain.bwh.harvard.edu/PBMAnalysisSuite/index.html

[4]

RankMotif++ Aims to predict the ranking of the probes according to their binding intensity. Maximizes the likelihood of
the ranking function, using the three top 7-mers as seeds. http://morrislab.med.utoronto.ca/software.html

[9]

BEEML-PBM Estimates the position and background biases from the data, then optimizes the parameters of a binding
energy model using BEEML algorithm, explicitly taking the biases into account. http://stormo.wustl.edu/beeml/

[10]

Amadeus-PBM Seeks enriched PWMs in 1000 top ranking 9-mers compared to the background set of all 9-mers, using
Amadeus motif finding algorithm. http://acgt.cs.tau.ac.il/amadeus//

Described here

doi:10.1371/journal.pone.0046145.t001

Table 2. Summary of the comparison. Boldface indicates significantly better performance than the other methods (including
equal top performance).

Similarity to
reference motifs

In vitro
binding prediction

In vivo binding
prediction

Running
time

Average Euclidean
distance

Spearman rank
coefficient

Sensitivity
at 1% FP AUC

Spearman rank
coefficient

Sensitivity
at 1% FP AUC Seconds

AM 0.178 0.27 0.342 0.876 0.152 0.089 0.653 30

SW 0.193 0.244 0.305 0.866 0.145 0.118 0.659 7200

RM 0.21 0.264 0.295 0.881 0.158 0.092 0.655 3600

BE 0.227 0.308 0.411 0.891 0.146 0.084 0.665 900

doi:10.1371/journal.pone.0046145.t002

Comparison of Motif Finding Algorithms in PBM Data
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(p,10215), AM second best (p = 3.8?1026 compared to SW), and

RM and SW were roughly the same (p = 0.18). Hence, BE showed

consistently best performance in all three measures, followed by

AM. Interestingly, BE gave the poorest AUC and Spearman

scores on a few samples. On larger probe sets (Figure 4), BE

performed best, followed by RM. The AUC and sensitivity criteria

deteriorated for all methods, as expected due to the increasing

difficulty in ranking lower-affinity probes. The Spearman score

improvement results from its bias to larger sets, so it is more

meaningful for comparison of sets of similar sizes. Full results are

available in Table S2.

Predicting in vivo binding intensities
Since PBM and SELEX are in vitro assays, which may introduce

biases, we also tested the methods’ abilities to predict binding

intensities for in vivo experiments. Our evaluation included ChIP-

chip datasets of 32 yeast TFs (69 experiments) that had also PBM

profiles [19,20]. A PWM learned according to the profiles of both

PBMs (when available) is tested against the data from a ChIP-chip

experiment. To evaluate the prediction on the high intensity

promoters, where binding is expected to be strongest, we used the

positive promoter set as those with reported p-values below 0.001.

All methods performed quite similarly on the AUC and

Spearman rank coefficient criteria (Figure 5). Using the sensitivity

measure, SW was better than the other three (p,0.02), AM and

BE were roughly the same (p = 0.39) and significantly better than

RM (p,0.04). Hence, SW showed consistently best performance

in all three measures, while AM and BE were second best (Table 2
and Figure 4). Full results are available in Table S3.

Running times
We ran each method on the same 10 examples using a single

core of an IntelH XeonH CPU E5410 @ 2.33 GHz, with 6 MB of

cache and 16 GB of memory. On average, AM runs for

30 seconds (including pre-processing), while BE, RM and SW

run for about 15 minutes, one hour and more than two hours,

Figure 1. Similarity to experimentally established PWMs. For 58 TFs, we compared the motifs produced from their PBM profiles by each
method, to the known motif from JASPAR database. Distance was measured using Euclidean distance. Three distance cutoffs were used, and the
fraction of recovered motifs with distance below the cutoff is the success rate. BE: BEEML-PBM, RM: RankMotif++, SW: Seed-and-Wobble, AM:
Amadeus-PBM, JR: JASPAR.
doi:10.1371/journal.pone.0046145.g001

Figure 2. Examples of generated motifs. The figure shows examples of the motifs produced by each method and the corresponding JASPAR
motif. For three proteins, the PWM logos produced by each method and the experimentally and independently established motif in the JASPAR
database are shown. AM was trained on motif length 8, while for BE, RM and SW only the most informative contiguous positions were kept. We chose
TFs whose motifs had information content most similar to the averages of the different methods.
doi:10.1371/journal.pone.0046145.g002

Comparison of Motif Finding Algorithms in PBM Data
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respectively (Table 2). BE currently uses SW results as seeds, thus

SW’s running time should be added to the total running time of

BE. Hence, AM provides a speedup by a factor of 30–200.

Similarity between the algorithms
We evaluated the similarity between the PWMs produced by

the four algorithms (Figure 6A). In terms of PWM distance, the

pairs AM/SW and RM/BE were more similar than others. Note

that the comparison is not symmetrical, since it uses the eight most

informative contiguous positions in the first PWM (corresponding

to a column in the table). Large asymmetries (e.g., SW-RM and

RM-SW) reflect the fact that these positions are not clearly

detectable in RM and BE PWMs (see also Figure 2). On average,

the distance between PWMs from different methods is similar to

the distance between these and the reference PWMs (Table 2).

We also compared the probe ranking that the PWMs of the

different algorithms induce (Figure 6B–D). We used a PWM

inferred by one algorithm on a PBM to rank the probe set of the

paired PBM, and measured sensitivity and AUC for these probes

ranking produced by another algorithm. Results tended to show

more symmetry, with pairs involving BE obtaining best scores, in

agreement with the good performance of BE in ranking (Figure 3
and Table 2). Additionally, we focused on rankings of the 4s
probe set and compared them using Spearman rank coefficient.

PWMs inferred by two algorithms on a PBM to rank the 4s probe

set of the paired PBM, and compared the two rankings using

Spearman score. Again pairs with BE got the highest scores, and

remarkably, all pair scores were much higher than their similarity

scores to original binding intensities (Spearman rank coefficient,

0.5–0.6 compared to 0.24–0.31, respectively).

Discussion

We have described an assessment of four tools for extracting

binding site motifs from PBM data. All four methods report their

results in the form of a positional weight matrix (PWM). Table 2
summarizes the comparison. All tools were run with their

recommended default parameters; tuning the parameters could

improve the results of some methods and affect the relative

ranking in our test criteria.

The reference motifs stored in databases are strongly dependent

on experimental sources. Most TRANSFAC and JASPAR motifs

that we used were created based on SELEX, an in vitro assay of

limited accuracy and throughput. Still, the relative performance of

the methods was essentially the same when tested on three

different databases of two species, which indicates robustness of

our conclusions.

The best results in similarity of reference mouse motifs to

predicted motifs from PBMs (Figure 1) were comparable to the

similarity of reference metazoan motifs to predicted motifs

obtained using a state-of-the-art motif finder that uses promoter

sequences [15]. On one hand, PBM profiles cover the spectrum of

possible sequences more comprehensively. On the other hand,

they include only relatively short motifs. To conclude, no clear

winner has yet emerged between PBM technology and traditional

motif finding methods in finding PWMs that are closest to

reference motifs.

Figure 3. Success rates in probe ranking of a paired PBM. For each TF and method, the PWM was learned using one array and used to infer
probe intensity ranking in its paired array. Ranking was gauged on a set of top positive probes (4s set) according to three measures: Spearman rank
coefficient, sensitivity at 1% false positive and AUC (see Methods S1 for all mathematical terms). For each quality measure, three distance cutoffs
were used, and the fraction of TFs with score equal or better to the cutoff is the success rate. The results show the success rate over 230 samples (115
paired arrays).
doi:10.1371/journal.pone.0046145.g003

Figure 4. Quality of binding prediction for in vivo and in vitro data of different sizes. For each of the four algorithms, the quality of the
motifs inferred from PBMs in ranking the top binding probes as measured in vivo (by ChIP-chip experiments) and in vitro (by PBMs) was evaluated.
The in vivo test included 69 yeast ChIP-chip experiments data (with an average of 61 promoters per experiment). The in vitro test included 230 mouse
PBMs covering 115 TFs, and used several definitions for the sets of top binding promoter sequences (4s to 1s, with averages of 912, 1580, 3215 and
8224 top probes, respectively, see text). Ranking quality was measured by the Spearman rank coefficient, the sensitivity at 1% false positive (FP) and
the area under the ROC curve (AUC) (see Methods S1). The average ranking quality is reported in each case.
doi:10.1371/journal.pone.0046145.g004

Comparison of Motif Finding Algorithms in PBM Data
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When using binding intensities of one PBM as input and

predicting the ranking of probe intensities of another array for the

same TF, BE showed best performance. When using PBM binding

intensities to predict ranking of promoter intensities in a ChIP-chip

experiment for the same TF, SW performed best. We note that

there is still only a modest number of TFs with data from both

ChIP-chip and PBM; a larger benchmark for in vivo prediction,

containing also TF binding in metazoans, is needed.

The performance results can be explained by the different goals

of the algorithms. RM was designed to optimally rank all probes,

so it tries to capture both high-affinity and low-affinity binding

information. This explains why it performs less accurately when

analyzing the top-binding probes but performs better on very large

Figure 5. Test data and evaluation criteria. The table lists the data and evaluation criteria used in each benchmark.
doi:10.1371/journal.pone.0046145.g005

Figure 6. Similarity between methods. (A) For each pair of methods, the Euclidean distance between the PWMs of the two methods is reported.
Before the comparison, the column method’s PWM is trimmed to eight most informative contiguous positions. (B–D) ranking based comparisons. For
each pair of methods, the probe ranking defined according to the column’s method is used as reference, and the ranking of the row’s method is
evaluated using AUC (B) and sensitivity at 1% false positive (C). In (D), for each pair of methods, the 4s positive sets of the paired PBM are first ranked
by each method, and the Spearman rank coefficient of those rankings is computed. In all tables, the average over 230 PBM experiments is reported.
Red colour corresponds to greater similarity.
doi:10.1371/journal.pone.0046145.g006

Comparison of Motif Finding Algorithms in PBM Data
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positive sets (Figure 4). The same applies to BE. The inclusion of

information from low-intensity binding yields better ranking of

low-affinity binding probes, but creates PWMs with lower

information content (Figure 2). In contrast, AM was designed

to identify specific binding motifs; it trains only on the 1000 top-

binding 9-mers, and so it only uses information on the specific

binding of the protein. Interestingly, SW is best for in vivo binding,

hinting that longer motifs with a stringent core might be better for

this data.

The comparison of the prediction results for in vitro and in vivo

data (Figure 4) is striking: The quality of the results is much

poorer on in vivo data, according to all evaluation criteria (similar

results were reported in [21]). This is in spite of the fact that the in

vivo data consisted of yeast motifs, which are easier to find than

mice motifs [5,15]. There can be several explanations of this

finding:

1. The length of the probes on the PBM (36 bp) is much shorter

than the whole yeast promoters targeted by ChIP-chip (an

average of 474 bp). As a result, scoring and ranking yeast

promoters is harder.

2. Biases caused by the PBM technology lead to systematic

distortion in the reconstructed motifs, compared to in vivo

motifs. If this is the case, revealing and correcting these biases is

essential for using the motifs for in vivo analysis.

3. The methods tailored specifically for PBMs may overfit this

type of data.

4. The complexity of in vivo assays distorts the raw binding signals,

which look more like the PBM-based motifs in a cleaner in vitro

environment.

One interesting phenomenon we encountered was secondary

motifs: For some PBMs, SW and AM identified a second,

completely different motif in addition to the primary one (Figure
S2). This phenomenon was first reported in [14]. Agius et al.

suggested that the secondary binding motifs arise as an artefact of

the PBM experiment [8]. Zhao and Stormo suggested that

secondary motifs are a result of a biased analysis of the PBM data

[10], but Morris et al. challenge this conclusion [22]. We tested the

benefit of using primary and secondary motifs discovered by SW

for in vitro binding prediction. While there was a significant

improvement in performance, it was still worse than BE (data not

shown). Jauch et al. recently obtained a crystal structure of the TF

Sox4 domain bound to DNA and concluded that two positions in

the binding motif are dependent [23]. Such dependency can be

manifested by two PWM motifs. Indeed, SW and to some extent

AM recover two motifs that reflect this dependence (Figure S3).

We agree with the conclusion in [21] that more matching PBM

and in vivo datasets are needed in order to shed more light on this

phenomenon.

An interesting insight arises from the comparison of the

methods (Figure 6D). In terms of the Spearman score of probe

ranking, all methods are much more similar to each other than to

the true binding intensities. This suggests that all methods capture

similar information, while missing other pertinent effects (e.g.,

background or technological biases). On the other hand,

predicting the top probes of another method was harder than

finding true positive probes (Figure 6D). Overall, BE had highest

pairwise ranking-based scores, concordant with our conclusion

that it predicts true binding best (Table 2). In terms of distance

between PWMs, higher similarities between AM and SW, and

between BE and RM, reflect the observation that the former pair

produce clear, stringent motifs, while the latter generate more

variable, ranking-oriented motifs.

Protein-DNA interactions can occur in a broad range of

intensities, and involve both specific and low-affinity (less specific)

binding. PBM data enable analysis of the full spectrum of DNA

binding affinities of a TF. The binding specificity of a protein can

be represented using various models, which differ in expressive-

ness, compactness, redundancy and interpretability. Our analysis

suggests that a PWM models the specific in vitro binding quite

accurately, obtaining an average AUC of 0.9 on the top probes.

The fact that results of all methods tend to deteriorate as the

positive sets grow (Figure 4), and the success of more complex

models in ranking [8] suggest that less specific binding may be

better captured by other models. The lower success of all methods

in predicting in vivo binding questions the transformability of PBM-

based results to the in vivo domain. Deeper analyses using more

data are required on this point.

Our study gauged performance using three criteria: similarity to

reference literature motifs, and ability to rank in vitro and in vivo

bindings. The tested methods show a tradeoff between ranking

quality and motif similarity. Degenerate motifs are better at in vitro

binding prediction at the cost of lower information content and

similarity to literature motifs. Potential improvement may be

achieved by novel methods that strive to optimize both criteria

simultaneously.

Materials and Methods

Algorithms
We compared four algorithms: Seed-and-Wobble (SW) [4],

RankMotif++ (RM) [9], BEEML-PBM (BE) [10] and Amadeus-

PBM (AM), a new algorithm presented here (see Methods S1).

The computational approaches of the algorithms are summarized

in Table 1. Software for BE, RM and SW was downloaded from

the authors’ websites and run using the default parameters. The

full details are in Methods S1.

PBM data
We downloaded PBM data from UniPROBE [13]. This

database contains, for each TF, paired probe intensity profiles

measured on two different arrays. We used the SCI09 dataset,

which contains paired profiles of 115 mouse proteins [13,14], and

the GR09 dataset, which contains profiles of 89 yeast TFs [20]

(Figure 5).

Reference PWM data
To compare predicted PWMs to experimentally obtained

PWMs, we used three databases of reference PWMs: JASPAR

[12] and TRANSFAC [16] for mouse motifs and the new yeast

motif database ScerTF [17] (Figure 5). We included in the

comparison only reference PWMs that were produced without

using PBM data.

ChIP-chip data
We downloaded the ChIP-chip data for yeast TFs from

Harbison et al. [19]. These data provide large-scale in vivo binding

for many TFs. Our test used 69 experiments (32 TFs) that had

PBM profiles in UniPROBE as well as ChIP-chip measurements.

Comparison and evaluation
We tested the quality of PWMs produced by each method in

three ways: by comparison to reference PWMs from the literature

(mostly SELEX-based), by their accuracy in predicting in vitro

binding in PBMs, and by their accuracy in predicting in vivo

binding as measured by ChIP-chip. In addition, we evaluated how

Comparison of Motif Finding Algorithms in PBM Data
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similar the methods are in a pairwise comparison using the same

criteria.

To compare a predicted PWM to a reference one, the

Euclidean distance between the two PWMs was calculated, as in

[15] (for a description of all evaluation criteria see Methods S1).

The information content of each matrix was also measured in

order to evaluate its degeneracy. Each algorithm was trained using

the data from both arrays for the same TF. PWMs were also

compared using the Tomtom algorithm [24].

For testing the quality of in vitro binding prediction, we followed

the method of [9]. Since two (paired) binding profiles were

available for each TF, a PWM was trained on one profile (the

‘‘training array’’) and used to rank the probes in the other profile

(the ‘‘test array’’). Given a PWM, the probes of the test array were

ranked using the sum occupancy score (see Methods S1). This

ranking was compared to the measured ranking of the probes in

the test array according to three criteria: Spearman rank

coefficient, sensitivity at 1% false positive rate and area under

the ROC curve (AUC) (see Methods S1 for all definitions). The

comparison was done on the probes that showed high binding

intensity in the test array (the positive probe set [9]).

To test the quality of in vivo binding predictions, we used similar

criteria. For each TF, we trained each method using both paired

binding profiles (when available) and tested how well the method

predicts the ranking of the strongest bound yeast promoters (see

Methods S1). Predicted and experimental rankings were

compared using the same three criteria.

In computing similarity between different methods, we used

four criteria. First, we measured the distance between the PWMs

inferred by each method. Second, for each method, using the

PWM learned on one array, we ranked the set of positive probes in

the paired array, and then measured the Spearman rank

coefficient between the rankings of each two methods. Third

and fourth, we used one method to rank the probes of the paired

array, and tested the prediction of the other method using

sensitivity at 1% false positive and AUC (see Methods S1 for

computational details).

Statistical significance of the comparison
For each comparison we evaluated its significance using the

Wilcoxon rank-sum test [25]. Since the gauged measurements do

not distribute normally, we used a non-parametric statistical test.

Supporting Information

Figure S1 Similarity to experimentally established
PWMs. (A) TRANSFAC motifs. For 80 proteins available in

TRANSFAC we compared the motifs produced from their PBM

data by each of the tested methods to the motif available in

TRANSFAC. Distance was measured using Euclidean distance.

Three distance cutoffs were used, 0.12, 0.18 and 0.24, and the

fraction of recovered motifs with distance below the cutoff is the

success rate. (B): ScerTF motifs. The same tests on 51 motifs from

the ScerTF database. AM: Amadeus-PBM; SW: Seed&Wobble;

RM: Rankmotif++; BE: BEEML-PBM.

(TIF)

Figure S2 Shadow motifs. Examples of the primary and

secondary motifs found by Amadeus for Pou2f3 (A) and Sox1 (B).

p-values for the motif enrichment (hypergeometric score) are

indicated above each motif. Note that even the second ranked

motifs obtain extremely high significance.

(TIF)

Figure S3 Sox4 primary and secondary motifs as found
by Seed-and-Wobble (SW) and Amadeus-PBM (AM).
Jauch et al. reported two motifs: CTTTGTT and AATTGTT

(23). (A) The two top motifs recovered by AM. The first motif of

Jauch et al. was recovered correctly; the second was partially

recovered. (B) The two top motifs recovered by SW. Both motifs

from Jauch et al. were inferred correctly. Logos taken from

UniPROBE database (13).

(TIF)

Table S1 Results of each of the four methods on
different reference motifs from the literature. Each line

gives the Euclidean distance between a PWM learned on PBM

data and a PWM from another source. On the right-hand side,

TOMTOM results are reported, giving the statistical significance

of PWM similarity.

(XLS)

Table S2 Results of each of the four methods on SCI09
PBM dataset for different positive probe set sizes
(4sigma to 1sigma). Each 2 consecutive lines refer to the

paired PBM version of the same TF. The one listed under ‘‘PBM

training data’’ is used for training, and the scores reported are for

testing on the other one.

(XLS)

Table S3 Results of each of the four methods on
Harbison et al. dataset. Each line gives the result of in vivo

binding prediction on data taken from on experiment.

(XLS)

Methods S1 Supplementary methods and results.

(DOC)
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