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Abstract

Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential
expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches
to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression
of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related
change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks. Here
we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for
differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing
differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples.
The correlation between the two modules, however, differs markedly between the disease and normal samples. We show
that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover,
the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer’s
disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-
expressed, thereby revealing inner structures in disease regulatory networks.
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Introduction

Gene expression analysis has been a central tool in biomedical

research for the last two decades. Microarrays allowed genome-

wide snapshots of the transcription starting from the mid-Nineties

[1] and close to a million microarray profiles are available in the

central databases today [2,3]. Deep sequencing methods allow a

deeper survey of the transcription, using RNA-seq [4,5].

Fundamental methods for analysis of gene expression data use

correlation between genes to infer co-expressed gene sets using

clustering methods [6–9]. Co-expression-based methods assume

that the expression patterns of the discovered gene sets are

correlated in all conditions. Alternatively, biclustering methods

look for gene sets that are co-expressed in a subset of the

conditions [10–12]. Other methods compute the differential

expression (DE) of a gene between two profiles or between two

classes of profiles (e.g., cases and controls) [13,14]. Co-expression

analysis, biclustering and DE analysis have been highly successful

in revealing gene function, and have contributed greatly to the

understanding of gene regulation systems [7,10,13,15–19].

Complex analysis of class-labeled gene-expression data has gone

beyond identification of differentially expressed genes or pathways

to identify differential co-expression (also called differential

correlation, and abbreviated DC) patterns [20]. In DC, the co-

expression of gene pairs differs between the classes. Under the

premise that co-expressed genes are more likely to be co-regulated,

major changes in co-expression patterns between classes may

indicate changes in regulation. DC differs from clustering methods

in that the discovered gene sets are not necessarily correlated

across all conditions. DC methods are different from biclustering

in that they make use of the known partition of the conditions into

classes, and produce sets of genes with significant correlation

differences between the classes, while biclusters reflect co-

expression of the genes across any subset of the conditions. In

addition, advanced DC methods look for pairs of gene sets with

the property that the correlation between them differs between

classes, and the genes in each set are correlated across all

conditions. These methods provide additional information that

cannot be detected by standard co-expression and biclustering

methods.

Several studies have identified differentially co-expressed

transcription factors (TFs) known to be involved in cancer, even

though their mean expression levels had hardly changed [21–23].

Other studies found specific evidence for DC patterns [21–30] (see

[20] for a review). Mentzen et al. [29] identified gene modules that

are enriched with cell-adhesion- and growth-factor-related genes,

and that manifest a significant decrease in co-expression in

mammary gland tumors compared to wild type. In addition,

several discovered gene modules were up-regulated in tumors, but

had decreased co-expression within as compared to the controls.

This demonstrates the complex relationship between DE and DC.

Several computational approaches have been developed for DC

analysis, including detection of differentially correlated gene

clusters and gene-specific analysis [31–34]. Simple approaches
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find co-expression modules using one class in the data and then

test if these modules show different co-expression levels in other

classes. For example, CoXpress [33] uses hierarchical clustering to

find gene modules, then tests the significance of the detected

modules using random sampling. Lai et al. [21] developed a

statistical framework for analyzing a gene of interest, and showed

that genes associated with cancer may manifest DC with many

other genes. Fang et al. [35] proposed a method that looks for gene

sets that are highly correlated in a large fraction of samples from

one class, but in a lower fraction in the other class. Thus, the DC

patterns detected are associated with a subset of the samples. Gene

Set Co-expression Analysis (GSCA) [36] was proposed to test DC

of known pathways. For each pathway, GSCA summarizes the

change in co-expression over all gene pairs in the pathway and

estimates significance using permutation tests. A recently proposed

method called DiffCoEx [34] looks for DC gene modules.

DiffCoEx uses a statistical framework to quantify DC. The DC

measurements are transformed into dissimilarity scores between

genes, and hierarchical clustering is used to detect gene modules.

DiffCoEx can detect gene modules that manifest a marked change

in the correlation and module-to-module changes.

Here we describe DICER (Differential Correlation in Expres-

sion for meta-module Recovery), a new method for DC analysis.

Given a set of gene-expression profiles partitioned into classes,

DICER aims to detect gene sets that manifest enhanced or

reduced correlation in a class of interest as compared to each of

the other classes. DICER addresses two scenarios of DC

(Figure 1). The first is a group of genes that are differentially

correlated in one class as compared to all other classes; we call

such a group a differentially correlated cluster (DC cluster). The second

scenario refers to a pair of gene sets. The genes within each set are

correlated across all the classes. The correlation between the sets,

however, differs between classes. We call such a pair a meta-module,

and each set is called a module. A meta-module might represent two

sets of genes that are involved in a biological process, and the co-

expression between the sets differs between phenotypes because

the regulation of one set of genes is altered in the disease condition.

DICER is freely available for download from http://acgt.cs.tau.

ac.il/dicer/.

We tested the ability of DICER and extant methods to find DC

gene modules in five disease-related gene-expression data sets. We

discovered that DICER can detect a greater number of significant

pathway enrichments, and that the modules discovered by DICER

manifest stronger patterns of correlation changes. In addition,

DICER modules are highly enriched with genes that are targets of

miRNA families. These enrichments identify known miRNA-

disease associations and suggest new candidate miRNAs that affect

the tested disease. In a case study on Alzheimer’s disease, we

demonstrate that DICER can dissect known biological functions

into biologically meaningful subunits that cannot be detected using

standard DE analysis.

Results

Class-specific DC is prevalent
First, we tested if DC is a common phenomenon in real

biological data, by analyzing five categorical disease gene-

expression data sets (Table 1). In order to do this, we introduced

a score that measures the DC of each pair of genes for the class of

interest as compared to all other classes; we call this the T-score

(see Materials and Methods for a more detailed description).

For every data set, we performed random permutations of the

sample labels and calculated the T-scores. If DC is prevalent, the

real data sets will have higher T-scores (in absolute value) than the

randomized data sets. Figure 2a shows the score distributions of

the real and the permuted data sets. The two-class data sets (AD,

NDD and lung cancer) exhibit a clear distinction between the real

and permuted distributions of T-scores: both distributions are

centered on zero, and the variance in the real data sets is larger. In

the multiclass case (IBD, SLE), the vast majority of scores are zero

for both the real and permuted data sets. The graphs that focus on

the upper tails of the distributions show that the real data have

heavier tails for these data sets as well. Figure 2b shows a

comparison of the standard deviations in each data set; in all cases,

the real data set has a larger standard deviation. Taken together,

these results show that the real data sets have a larger fraction of

extreme T-scores (high absolute values) than the permuted data

sets, indicating the prevalence of DC.

Finding phenotype-specific gene modules that are
affected by DC

We developed a novel algorithm called DICER (Differential

Correlation in Expression for meta module Recovery) for

extracting gene modules that manifest DC with respect to a

specific phenotype. DICER is freely available for download from

http://acgt.cs.tau.ac.il/dicer/. The following paragraph gives a

brief overview of the method, which is then described in more

detail in the rest of this section. Full details can be found in the

Materials and Methods section.

Figure 1 shows an overview of the algorithm, which has three

phases. First, it calculates two scores for each gene pair: one score

is the DC for the gene pair between the tested class and all other

classes (the T-score), and the second score identifies gene pairs that

are consistently correlated across all classes. In the second phase,

the DC scores are used to identify DC clusters. This analysis

distinguishes between clusters with higher correlation in the target

class than in all other classes, and clusters with lower correlation.

In the final phase, the differentially co-expressed and consistently

co-expressed gene pairs are used together to find meta-modules: a

pair of modules for which the genes within each set are correlated

across all the classes, but the correlation between the sets differs

Author Summary

The most fundamental and popular gene-expression
experiments measure genome-wide transcription levels
in two populations: perturbed and wild type, or cases and
controls. The genes that show significantly different
expression between the two populations (the differentially
expressed genes) are useful for understanding the biology
underlying the phenotype difference, and can sometimes
also serve as biomarkers for classification. In contrast,
genes that have similar expression to each other across all
profiles (co-expressed genes) can yield clues about the
functional commonality of the two populations. Differen-
tial co-expression has recently been proposed as a way to
combine the benefits of these two approaches: it seeks
gene groups that are co-expressed in one phenotype
much more than in the other. Here we develop a new
method for detecting differential co-expression and test it
on case-control expression profiles of several diseases. Our
algorithm improves upon the state of the art in the
strength of the detected patterns and in agreement with
current biological knowledge. We show that our method
can predict gene regulators that are associated with the
disease of interest and demonstrate that it can dissect
known biological pathways into subcomponents that are
not detected using standard analyses.

Pathway Dissection via Differential Co-expression
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between classes. Because meta-module detection is NP-hard to

approximate (see proof Text S1), DICER uses heuristics for this task.

The first step of DICER calculates two scores that assess the

relation between gene pairs: DC score and consistent correlation

score. The DC score is based on T-scores for a specific class of

interest. The sample labels are randomly shuffled and permuted

T-scores are calculated. The DC score is the log likelihood ratio

(LLR) between the probabilities of observing the value of the pair

under the distributions of T-scores for real and permuted labels.

The consistency score identifies gene pairs that are consistently

correlated in all classes. Our analysis follows the model presented

in [9]. For each class, the correlations of the expression profiles are

calculated and used to partition the gene pairs into those with high

correlation (‘‘mates’’) in the class and those with low correlation

(‘‘non-mates’’). Gene pairs that are highly correlated in all classes

are identified.

In the second step, the DC scores are used to find DC clusters

with increased or decreased correlation in the class of interest, such

Table 1. The data sets used in this study.

Data set Tissue Classes
No.
classes Class of interest

No.
samples GEO ID [ref]

AD Brain Alzheimer’s disease, controls 2 Alzheimer’s disease (AD) 363 GSE15222 [62]

NDD Brain Six neurodegenerative diseases, controls 2 Neuro-degenerative disorders (NDD) 118 GSE26927 [n/a]

IBD Blood Bowel diseases (Crohn’s, ulcerative colitis),
controls

3 Crohn’s disease 128 GSE3365 [63]

Lung cancer Lung Lung cancer, controls 2 Lung cancer 187 GSE4115 [64]

SLE Blood Inflammatory and infectious diseases, controls 6 Systemic lupus erythematosus (SLE) 270 GSE22098 [65]

doi:10.1371/journal.pcbi.1002955.t001

Figure 1. Overview of the class specific differential correlation (DC) analysis. The input (left) is a set of expression profiles from different
classes of samples. In one analysis (top center), T-scores are computed for the class of interest and are normalized using the T-scores calculated on
random data sets, created by shuffling the sample labels. The normalized scores are then used to find gene clusters that manifest DC in the tested
class compared to all other classes (top right, up/down-correlated modules; blue edges indicate class-specific DC). A second similarity analysis
(bottom center) is performed to detect gene pairs that are co-expressed in all classes. In each class, an EM algorithm is used to divide the correlations
to high (‘denoted ‘‘mates,’’ red distribution) and low (denoted ‘‘non-mates,’’ green distribution), and consistent similarities are defined as cases in
which gene pairs are mates in all classes. The two scores are used to find pairs of gene modules in which each module is a group of consistently
correlated genes (red edges), whereas the correlation between the modules is differential (blue edges). These module pairs are denoted as meta-
modules (center right). As a by-product, individual modules are recorded (bottom right).
doi:10.1371/journal.pcbi.1002955.g001

Pathway Dissection via Differential Co-expression

PLOS Computational Biology | www.ploscompbiol.org 3 March 2013 | Volume 9 | Issue 3 | e1002955



that the sum of DC scores in each cluster is positive (Figure 1, top

right). The underlying model, similar to [9], ensures that the each

discovered gene cluster is likely to represent a significant

phenomenon. To focus on large clusters with high DC scores,

only clusters that contain at least 15 genes are accepted (see

Materials and Methods for further explanation).

The third and final step of the algorithm builds meta-modules

(Figure 1, center right). A greedy procedure, akin to [37], builds

one meta-module at a time by considering the DC and consistency

scores of pairs that have not yet been assigned to modules. The

resulting meta-modules are refined by merging meta-modules

when doing so improves the overall score of a solution.

Figure 3 shows two examples of gene sets detected by DICER

in the Alzheimer’s disease (AD) and lung cancer data sets.

Figure 3a shows an up-correlated gene cluster (i.e., a cluster of

genes that are more correlated in AD than in controls) of 242

genes that DICER discovered in the AD data set. The average

correlation of these genes in the AD class and controls is 0.715 and

0.437, respectively. This cluster is significantly enriched with many

functional terms (hypergeometric q,0.05 after FDR correction). It

contains 80 genes related to cerebellum activity (p = 3.7E-10), 13

spliceosome genes (p = 1.29E-6) and genes that belong to protein

complexes related to miRNA processing: large Drosha complex (6

genes, p = 7.53E-6) and DGCR8 multiprotein complex (5 genes,

p = 3.1E-5). Figure 3b shows a down-correlated meta-module in

the lung cancer data set. This meta-module contains two modules

of sizes 39 and 77; the average correlation between them is 20.86

in the lung cancer class and 20.43 in the controls. The average

correlation within each module is greater than 0.75 in each class.

The larger module is significantly enriched with C complex

spliceosome (4 genes, p = 8.4E-3) and protein complexes related to

miRNA processing: large Drosha complex (3 genes, p = 4.4E-3)

and DGCR8 multiprotein complex (3 genes, p = 9.7E-4). Unlike

the AD case, here the miRNA-related complexes are correlated in

all classes. The functional annotation for most genes in the smaller

module is poor: only 2 out of 39 are assigned to GO biological

processes. Thus, this meta-module suggests new candidate genes

that may be related to lung cancer. Figure 3c shows the

expression values of two genes of the meta-module, ALPK1 and

RAD23B. They are negatively correlated in the lung cancer

samples (r = 20.76) but are uncorrelated in the controls

(r = 20.12). Text S2 and Figures S1, S2, S3 describes results

of DICER on simulated data.

Comparison with extant methods
In this section we compare DICER, other DC-based methods,

and standard gene-expression analysis methods. We start with an

explanation of the differences between DICER and extant DC-based

methods, and then compare the ability of the methods to detect DC.

The comparison includes extant DC-based methods, and also a

clustering algorithm that uses co-expression. We show that DC-based

methods are superior in detecting DC between gene sets. We then

show that DICER improves upon extant DC-based methods in

terms of pathway enrichment. Finally, we compare DICER, other

DC-based methods, DE analysis, and co-expression analysis in terms

of enrichment of miRNA targets. We shall show that of the DC-

based methods, DICER is best at detecting gene modules

significantly enriched with miRNA targets, and that DICER is

superior to all other methods in detecting disease-specific miRNAs.

Extant DC-based methods
Extant DC-based methods look for gene modules with altered

correlation patterns between classes. The CoXpress method [33]

Figure 2. T-score distributions in real and permuted data sets. (A) The distributions of the T-scores in the real (blue) and permuted (red) data
sets. The variance of the distributions is larger for the T-scores on the real data, even though the means are similar. Since in the IBD and SLE data sets
most T-scores are close to zero, we also show the upper tails of their distributions. (B) The standard deviation of the T-scores in the real and permuted
data sets. The standard deviation is larger in all real data sets, indicating that high T-scores (in absolute value) are more probable in the real data sets.
Permuted data sets were generated by shuffling sample labels. Results are the average of 50 permutations.
doi:10.1371/journal.pcbi.1002955.g002

Pathway Dissection via Differential Co-expression
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uses hierarchical clustering on the expression patterns of one class

to find gene modules. DiffCoEx [34] hierarchically clusters the

genes after transforming the correlation differences into distances.

Unlike DICER, DiffCoEx outputs modules and not meta-

modules. DiffCoEx then looks for ‘‘module-to-module’’ relation:

a pair of modules with high DC between them. This is equivalent

to a meta-module, but without requiring high correlation within

each module. Pairs of DiffCoEx modules can be tested to find

those that are meta-modules. Another important difference is that

DICER uses statistical normalization of the DC scores to ensure

that the accepted modules are significant.

Unlike GSCA [3], which searches for DC patterns among

known pathways, DICER does not use any prior information.

Therefore, analysis of the meta-modules found by DICER can

reveal differential relations between genes of different biological

processes. Moreover, such analysis can dissect the genes of a single

biological process into subgroups that are differentially correlated,

as we shall show in a case study on AD data.

Extent of DC between gene modules
We applied DICER, CoXpress and DiffCoEx on the five data

sets described in Table 1.The full list of gene sets found by

Figure 3. Examples of differential correlation patterns. (A) An up-correlated 242-gene cluster discovered in the AD data set. The correlation
matrices of the cluster genes in the AD and control classes are shown. The average correlation is 0.72 and 0.44 in the AD and the control classes,
respectively. (B) A down-correlated meta-module discovered in the lung cancer data. It contains two gene modules of sizes 39 and 77. The correlation
matrices of the meta-module genes are shown for the lung cancer and the control classes. The correlation between the two modules is 20.43 in the
control class, whereas the correlation in the lung cancer class drops to 20.86. Each module is a group of genes that are highly correlated in both
classes: the average correlation within each module is .0.75. (C) The correlation between genes RAD23B and ALPK1 in the lung cancer data. The two
genes are marked by arrows in B. Each dot corresponds to an individual and the axes mark the base-2 logarithm of expression values of the two
genes in that individual. The genes are negatively correlated in the lung cancer class (r = 20.76) but are uncorrelated in the controls (r = 20.12). See
Text S2 for additional examples using simulated data.
doi:10.1371/journal.pcbi.1002955.g003

Pathway Dissection via Differential Co-expression
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DICER is available in Text S3. In all cases, CoXpress found no

significant clusters that contain at least 15 genes. DiffCoEx and

DICER detected modules in all data sets. On average, the

DiffCoEx solution contained 4.2 meta-modules that covered 29%

of the genes, whereas DICER found an average of 23 meta-

modules that covered 34% of the genes (see Table S1 for module

statistics). DICER detected DC gene clusters with at least 15 genes

only in the AD and SLE data sets.

We compared DICER, DiffCoEx, and the CLICK unsuper-

vised clustering algorithm [9] in terms of the extent of DC between

modules. We started by testing the extent to which each method

gave nonrandom results. For each method and each pair of

modules, we created 200 random module pairs by randomly

selecting gene sets of the same sizes. The random modules had the

same numbers of genes as the pair of modules being tested. We

calculated the absolute change in correlation between each pair of

modules, and measured the ratio of the change between the real

module pair and the mean of the random module pairs. A similar

procedure was applied to each DiffCoEx module. Many DiffCoEx

modules and module pairs did not manifest a ratio greater than 1.

In order to make the comparison more meaningful, we included

only the DiffCoEx modules with the two highest ratios in each

data set. We also included only DiffCoEx and CLICK module

pairs with ratio greater than 1.1. The results are shown in

Figure 4A. For all data sets, the ratio computed between

DiffCoEx module pairs was higher than the ratio within modules,

and the ratio within DiffCoEx modules was close to or smaller

than 1. The ratios for DICER meta-modules were the highest in

each data set. Thus, both DiffCoEx and DICER can discover

differentially co-expressed module pairs, but those found by

DICER exhibit stronger signals. We also inspected the within- and

between-module absolute change in correlation. Results on the

AD and lung cancer data sets are shown in Figure 4B. Both

DiffCoEx and DICER achieve marked separation between the

within- and between-module correlation changes. The distribution

of between-module correlation changes of DICER modules is

significantly shifted towards higher values compared to DiffCoEx

(Kolmogorov-Smirnov p,1E-20).

KEGG pathway enrichment analysis
We compared the functional enrichment of DICER and

DiffCoEx modules by performing KEGG pathway enrichment

analysis (hyper-geometric q,0.05, see Materials and Methods).

The enrichment factor of a pathway in a module is the ratio

between the fraction of the pathway genes in the tested set and the

fraction of the pathway genes in the data set. The results are

shown in Figure 5A. Neither method achieved significant

enrichment on the IBD data set. In the AD and lung cancer

data sets, DiffCoEx did not achieve significant enrichment, while

DICER gave 14 and 24 enriched pathways, respectively. In the

NDD and SLE data sets, both methods reported similar numbers

of pathways. In addition, for the pathways counted in Figure 5A,

we calculated the pathway-enrichment factor for each method on

each data set. The mean of the enrichment factors found by each

method are reported in Figure 5B. In all cases, DICER had an

average enrichment factor that is at least 50% higher than

DiffCoEx.

microRNA analysis
Since co-expression may result from co-regulation, changes in

co-expression may be the result of changes in regulatory patterns.

Therefore, we tested if gene sets of different kinds, modules (i.e.,

parts of discovered meta-modules), meta-modules, or DC clusters,

are significantly enriched with genes that are targets of specific

miRNA families. We used the FAME algorithm for miRNA-target

enrichment analysis [38]. The significance threshold was set to

q = 0.05. Except for the modules in the lung cancer data, for every

combination of data set and gene set type, DICER revealed at

least two significant miRNAs. The different gene set types provide

complementary insights. The results are shown in Figure S4 (see

Tables S2, S3, S4, S5, S6 for the full list of families in each

case). Notably, some miRNA families were found in multiple gene

sets. For example, miRNA family mir-124/506 was detected in

two meta-modules in the AD data set. In each data set, some

miRNA families were detected only in the meta-modules or only

in the gene clusters. In contrast, DiffCoEx obtained very few

significant miRNA enrichment results: none in IBD, SLE and lung

cancer, and one each in AD and NDD. Standard DE analysis (i.e.,

using a t-test with q,0.05 for identifying up- and down-regulated

genes) and the CLICK algorithm achieved a comparable number

of miRNA enrichments to DICER. CLICK achieved at least 15

enrichments in each data set, while the t-test found two and three

enrichments in the lung cancer and NDD data sets respectively, no

enrichments in the SLE data, and more than 15 enrichments in

the AD and IBD data sets.

To test if the discovered miRNA families are known to be

associated with the disease, we used the mir2disease database [39]

and tested the significance of the overlap between the detected

miRNA families and the annotations in mir2disease (see Materials

and Methods). Mir2disease contains miRNA-disease associations

for AD, NDD, and lung cancer. In AD, significant overlaps were

obtained with clusters (six known AD-related miRNA families,

p = 0.0023), and borderline overlaps were detected with modules

(six miRNA families, p = 0.068). In NDD, significant overlap was

obtained with modules (all five miRNAs detected in the modules

are associated with NDD, p = 0.0016). In lung cancer, seven of

twelve enriched miRNA families detected in meta-modules are

associated with the disease (p = 0.037). DiffCoEx obtained no

significant enrichment with any of these diseases. Overall, DICER

detected 18 correct miRNA-disease associations. The CLICK

algorithm discovered only five, and DiffCoEx and t-test of DE

discovered only two. We conclude that DICER is much better at

detecting disease-specific miRNAs, both in terms of the number of

miRNAs and in terms of the significance of miRNA target

enrichment.

Case study: Alzheimer’s disease
Neurodegenerative disorders are characterized by a progressive

loss of neurons. Excitotoxicity and apoptosis are two main causes

of neuronal death [40], and related pathways such as oxidative

stress and mitochondria impairment have been shown to play a

key role in these processes [41]. For example, many apoptotic

signals emerge from mitochondria [42]. The specific causes of

most of these disorders are still unknown [43]. Alzheimer’s disease

(AD) is the most common progressive neurodegenerative brain

disorder in humans. AD is a complex progressive condition that

involves sequentially interacting pathological cascades, including

the interaction of amyloid-b (Ab, APP gene) aggregation with

plaque development, and the hyperphosphorylation and aggrega-

tion of tau protein as well as the formation of tangles. Together

with associated processes, such as inflammation and oxidative

stress, these pathological cascades contribute to loss of synaptic

integrity and progressive neurodegeneration [44].

We compared the enriched miRNA families that were detected

by DICER to the mir2disease database. These miRNA families

cover 10 (24%) of the miRNAs that are known to be associated

with AD: mir-101, mir-106, mir-124a, mir-125, mir-26b, mir-29a,

mir-29b-1, mir-363, mir-9, and mir-93. Furthermore, three of

Pathway Dissection via Differential Co-expression
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these miRNAs are annotated as causal for AD: mir-106, mir29a,

and mir-29b-1. The FAME analysis of the DICER meta-modules

suggests additional candidate miRNAs that are relevant to AD.

For example, mir-216, which was enriched in an up-correlated

meta-module (q = 0.001), is predicted by Targetscan [45] to target

the solute-carrier gene SLC1A2, which is important in excitatory

glutamate clearance in the central nervous system. This miRNA

was shown to be expressed in glioblastoma and astroblastoma cell

lines [46]. Together with mir-203, which was enriched in an up-

correlated cluster (q = 5E-4), mir-216 was validated as targeting

Figure 4. Comparison of absolute difference in correlations in gene sets found by different algorithms. (A) The extent of DC compared
to random gene sets. For each discovered module and module pair we created 200 random gene sets of the same size and calculated their absolute
DC. We then calculated the ratio between the scores of the discovered modules and the mean of the random gene sets. The green bars show the
mean of the top two DiffCoEx modules in each data set. For testing DiffCoEx and CLICK module pairs (purple and blue bars respectively), we took into
account only module pairs with fold change greater than 1.1. CoXpress found no significant clusters of §15 genes. For DICER (red bars), the top ten
up-correlated and the top ten down-correlated module pairs were taken into account. (B) The distribution of within- and between-module absolute
change in correlation for DICER and DiffCoEx in the AD and lung cancer data sets.
doi:10.1371/journal.pcbi.1002955.g004
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the GABA receptor a1 subunit [47]. GABA receptors are known

as the inhibitory receptors in the central nervous system [48].

Taken together, this shows that DICER detects well-established

disease-related regulatory factors, and can also point out new

candidates that may affect the disease.

Figure 6A shows a DC map of DICER modules that are

enriched with KEGG pathways (q,0.05 followed by redundancy

filter, see Materials and Methods). For example, a module

enriched with cell adhesion molecules (CAMs) was found to be

up-correlated with a module enriched with genes related to

Parkinson’s disease (PD). The latter module was down-correlated

with a module enriched with pathways that are directly related to

NDD (oxidative phosphorylation, PD, AD, and HD). Figure 6B
shows the meta-module of PD (module 1) and NDD (module 2) in

detail. GENEMANIA analysis [49–51] reveals that known

interactions are found mainly between the modules (co-expression

and predicted interactions were excluded). Although the genes in

the two modules share similar functionality, the DICER analysis

identified a meta-module structure, in which each module is highly

homogeneous (correlation above 0.7 in both cases and controls),

whereas the correlation between them is lower in AD samples

(correlation of 0 in AD and 0.23 in controls; class-specific co-

expression networks are shown). Both groups contain genes related

to PD (all genes in module 1, and the circled genes in module 2),

oxidoreductase activity (rectangular nodes: module 1 contains

COX4l1 COX5B, and NDUFA13; module 2 contains COX7-

A2L, SOD1, and UQCRFS1), and apoptosis (NDUFA13 in

module 1 and VDAC2 in module 2 [52]). Decreased co-expression

within the oxidative phosphorylation process may be associated

with mitochondrial dysfunction, which is well established in

neurodegenerative disorders [53]. Specifically, it was shown that

nuclear-encoded COX subunits 4 and 5B fail to enter the

mitochondria in AD [54,55]. DICER points out to a distinct role

of these two subunits by separating them from the other COX

genes and placing them on the other side of the meta-module. In

addition, only module 2 contains genes that are directly related to

phosphate metabolic process (hexagonal nodes: genes UQCRC2,

ATP6AP1, SOD1, ATP5G3, and PPA1 This example demon-

strates that disease-specific DICER analysis can detect substruc-

tures corresponding to distinct functionality within pathways

without using any prior knowledge.

Figure 7A shows the DC map of modules enriched with

protein complexes (q,0.05) in the AD data. Here again DICER

detects DC between different protein complexes, for example,

decreased correlation between the spliceosome and ribosome

genes. In Figure 7A, two up-correlated gene modules that are

enriched with ribosomal genes are marked. The first module is

enriched with cytoplasmatic ribosomal genes (seven genes,

p = 0.002), whereas the second is enriched with both 60S

ribosomal unit genes (seven genes, p = 1.68E-7, enrichment factor

21.3) and genes that belong to the Nop56p-associated pre-rRNA

complex (six genes, p = 5.09E-6, enrichment factor 12.2). We note

that these two complexes overlap: four of the six Nop56 genes are

annotated as members of the 60S complex. In addition, only the

first module contains 40S ribosomal unit genes (four genes).

Figure 7B focuses on these two modules. GENEMANIA analysis

of the modules indicates that all ribosomal genes, from both

modules, are highly connected in all three types of interactions: co-

localization, physical interaction, and pathway (co-expression and

predicted interactions were excluded). However, by comparing the

co-expression in controls and AD we observe that the modules are

highly correlated only in AD. In addition, 40S complex genes are

up-regulated in AD, whereas 60S genes show only mild DE. Thus,

we observe increased coordination of the ribosome subcomplexes

and increased activity of 40S, indicating major transcriptomic

changes in AD.

Discussion

Differential co-expression (DC) analysis can provide comple-

mentary information to standard differential expression (DE)

analyses. In this study we aimed to learn meaningful DC patterns

without using external biological information as part of the pattern

recognition process. We developed a method called DICER,

which extracts differential gene clusters and meta-modules by

analyzing only a labeled gene-expression matrix. Only after this

process do we use additional data to understand the biological

significance of the discovered gene groups.

In this study we developed a new statistical measure of DC,

which can be naturally incorporated in the analysis of a class of

interest in multiclass data sets. We have demonstrated that the new

measure is more likely to achieve high scores in real biological data

sets as compared to shuffled data sets. This has two consequences:

first, it allows us to investigate if DC is abundant in biological

systems; second, it motivates normalizing the scores of real

biological data sets according to the distribution of the shuffled

data, using the log-likelihood ratio score. DICER’s final score for a

gene pair is positive only if the DC of the gene pair is high and is

therefore more likely to represent a real change. This score can be

naturally incorporated in graph algorithms that detect gene

modules.

We compared DICER to two state-of-the-art algorithms:

CoXpress, which looks for DC clusters, and DiffCoEx, which

can detect both DC clusters and module-to-module relations (i.e.,

meta-modules). In our experiments we observed that DC occurs

more often between modules than within clusters. That is, in most

cases, none of the tested algorithms found DC clusters (a group of

genes that are collectively more–or less—correlated in the class of

interest compared to the other classes). In contrast, in all data sets,

both DICER and DiffCoEx detected meta-modules with signifi-

cant co-expression changes between the modules. As our tests

indicate, DICER is more sensitive.

Under the premise that co-expressed genes are likely to be co-

regulated, we speculated that major changes in co-expression may

be caused by gene regulators with altered activity in the disease of

Figure 5. KEGG pathway enrichment analysis. The modules found
by DiffCoEx and DICER were tested for KEGG pathway enrichment using
the hypergeometric test with 0.05 FDR correction. Neither method
reported significant enrichment on the IBD data set. (A) The number of
enriched pathways. (B) Average enrichment factors of the enriched sets.
The enrichment factor is the ratio between the fraction of the pathway
genes in the tested set and the fraction of the pathway genes in the
data set.
doi:10.1371/journal.pcbi.1002955.g005
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interest. To test this, we adopted a reverse-engineering paradigm

in which we identified miRNA families whose targets are enriched

in the gene groups detected by DICER, and tested if these miRNA

families are associated with the relevant diseases. In all the

experiments, targets of miRNAs associated with the disease were

significantly over-represented in the gene groups. Furthermore, we

discovered that in all three diseases for which associated miRNAs

were reported in the mir2disease database, the identified miRNAs

were significantly enriched. Thus, we demonstrated that DICER

analysis can be used to pick out disease-specific miRNA families.

Using standard functional enrichment tests on the modules

detected by DICER, we were able to draw a ‘‘meta-graph’’ of

functional terms, in which edges represent DC between biological

entities. We performed this analysis using two types of annotations:

biological processes and protein complexes. In most cases, DC is

observed between different pathways or protein complexes. In

Figure 6. DC map of modules enriched with KEGG pathways discovered in the Alzheimer’s disease data. (A) DC map of modules
enriched with KEGG pathways. Nodes represent gene modules and edges correspond to DC (blue for increased correlation in AD, red for decreased
correlation). Node size is proportional to the size of the module. The enriched pathways are noted on the module. NDD pathways refer to Parkinson’s
disease (PD), Huntington’s disease, Alzheimer’s disease and oxidative phosphorylation. CAMs refer to the cell adhesion molecules pathway. (B)
Analysis of DC between the PD and the NDD modules (the circled sub-graph in A). Left: the known interactions involving the genes of the two
modules according to GENEMANIA. Most known interactions are between the modules. Right: co-expression networks of the same genes for AD
patients and controls. Rectangular nodes are genes related to oxidoreductase activity, hexagons indicate genes related to phosphate metabolic
process. An edge between two genes indicates correlation .0.3 in the tested class. The average correlation between the modules was 0.3 in the
controls and 0 in the AD class. Node colors indicate the DE between case and control, measured by the base-10 logarithm of the p-value (t-test) of the
tested gene. The genes circled in the NDD pathway module are also part of the PD pathway. These genes are also down-correlated in AD, whereas all
other genes show only mild DE.
doi:10.1371/journal.pcbi.1002955.g006
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specific cases, however, DC is found between genes in the same

biological group; this represents DC between subcomponents of a

biological process. We focused on two such cases in Alzheimer’s

disease (AD) and showed that the subcomponents detected by

DICER are consistent with previous biological knowledge. First,

DICER found two groups of ribosomal genes, one enriched with

40S genes and the other with 60S genes, even though DICER did

not use any prior knowledge about these categories. We showed

that all ribosomal genes are correlated in AD, whereas the

correlation between the 40S and 60S genes is significantly lower in

Figure 7. Ribosomal sub-complexes discovered in the Alzheimer’s disease (AD) data. (A) A DC map of modules enriched with protein
complexes. Node size is proportional to the size of the module. The enriched pathway names are noted on the module. 40S: 40S cytoplasmatic
Ribosome complex, 60S: 60S cytoplasmatic Ribosome complex, Nop56: Nop56p-associated pre-rRNA complex. Blue and red edges mark increased
and decreased correlation in AD, respectively. (B) Analysis of DC in the Ribosome and 60S-Nop56 meta-module circled in A. Left: the known
interactions involving the genes of the two modules according to GENEMANIA. Right: co-expression networks of the same genes for AD patients and
controls. An edge between two genes indicates correlation .0.5 in the tested class. The average correlation between modules was 0.4 and 0.75 in the
controls and AD class, respectively. Node colors show DE between AD and control, measured as the base-10 logarithm of the p-value (t-test) of the
tested gene. Circled subgroups: proteins belonging to 40S cytoplasmatic Ribosome and Nop56 complex. 40S complex genes are up-regulated in AD,
whereas 60S genes show only mild DE.
doi:10.1371/journal.pcbi.1002955.g007
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control samples. Second, DICER dissected NDD related pathways

into subunits that show DC patterns in AD. Notably, these

subunits were identified in both cases based solely on expression

data.

DICER also calculates the consistency in correlation of gene

pairs. Although not the focus of this study, we note that this score

can be used to extract gene modules that are highly correlated

across different classes. Many graph clustering algorithms can do

this as well; DICER, however, normalizes the co-expression

measurements of each class separately, and so can find modules

from different data sets in an integrated manner.

The statistical assumptions assumed by our model are quite

strong, and may not hold for all data sets. However, they provide a

theoretical basis on which rigorous scores can be computed, and

their utility is eventually tested experimentally. Moreover, DICER

can be generalized to handle relaxed assumptions, e.g., by

replacing the normal distribution by other theoretical or empirical

distributions.

In summary, we presented a threefold contribution to the

analysis of gene-expression data. First, we developed a statistical

measure of DC and consistent correlation across different classes.

Our statistical analyses demonstrated that DC is abundant in real

biological data sets. Second, we developed an algorithm to detect

DC clusters and meta-modules. We showed that our algorithm

improves upon state-of-the-art algorithms. Finally, we demon-

strated how new biological insights can be obtained using our

analysis. This comprised discovering disease-specific miRNA

families and dissecting biological process into functional subcom-

ponents with disease-specific co-expression.

Materials and Methods

In this section we provide the statistical basis for and algorithmic

description of DICER. We first define a new DC score and a

likelihood framework for using it. We then describe how to

perform class-specific DC analysis and how to find DC clusters

and meta-modules.

A normalized score for DC
We first define a new normalized score for DC; it will be the

basis of our analysis. For genes u,v and a class D of profiles, define

Ru,v
D to be the Pearson correlation between u and v in class D.

Given two classes Di and Dj and a pair of genes u and v, we

assume that the correlations within each class are normally

distributed with class-specific parameters:

Ru,v
Di
*N(mi,si)

Ru,v
Dj
*N(mj ,sj)

We also assume that the correlations are independent. Hence, the

expected distribution of the difference satisfies:

Ru,v
Di

{Ru,v
Dj
*N(mi{mj ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i zs2
j

q
)

These assumptions are very strong and do not necessarily hold for

our data. In particular, dependencies of correlations are expected,

since the same gene is involved in multiple correlations. Still, they

provide a basis for our scores, which were tested experimentally

and shown to work well in practice. We note that similar

assumptions were used previously for other types of analysis of

gene expression, with some theoretical and empirical justification,

leading to good results [9]. In the discussion we address relaxation

of the assumptions.

All class-specific parameters (mi,si,mj,sj) are estimated directly

from the input data. They are used to calculate the normalized score,

which we call the T-score (or the pairwise DC score) of u and v:

Tu,v
Di ,Dj

~
(Ru,v

Di
{Ru,v

Dj
){(mi{mj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i zs2

j

q

Multiclass data sets are evaluated using ‘‘one vs. all’’ analysis to

assign T-scores. For each pair of genes u and v and class Dk, the T-

scores Tu,v
Dk ,Di

between Dk and each other class Di are checked to see

if they have the same sign. If the sign is consistent for all classes i=k

then the aggregated T-score is defined as:

TOVA(u,v)~signi=k(Tu,v
Dk ,Di

)mini=k DTu,v
Dk ,Di

D

If the signs are inconsistent, however, the score is set to zero. Under

this definition, positive aggregated scores mark the cases in which the

correlation within Dk is higher than within all other classes; we call

this situation ‘‘up correlation.’’ Negative aggregated scores indicate

lower correlation of the pair within Dk. We call this situation ‘‘down

correlation.’’ A score of zero is obtained when the DC of u and v is

not consistent when Dk is compared to the other classes.

The probabilistic framework
We adopted the framework of [9]. In the following sections we

use this framework to compare TOVA(u,v) values on real and

random data sets, and to compare high and low correlation values

within each class. Therefore, we first describe this framework in a

general manner. We assume that T-scores belong to one of two

distributions with density functions f1 and f0, where the probability

of belonging to the first distribution is p, and define the log-

likelihood ratio score of a score s as:

LLR(s)~
pf1(s)

(1{p)f0(s)

Our analyses assume, for simplicity, that f1 and f0 are normal

distributions with different means m1,m0 and standard deviations

s1,s0. The value p is the prior probability that a score is sampled

from f1. Hence a score x can be transformed into an LLR score:

LLR1,0(x)~log
pf (xjm1,s1)

(1{p)f (xjm0,s0)

~log
ps0

(1{p)s1

z
(x{m0)2

2s2
0

{
(x{m1)2

2s2
1

Other distributions can be used as well.

Define G~(V ,E) to be a weighted, undirected graph in which

the nodes correspond to genes and edge weights correspond to

LLR scores. Given a set of edge scores C, we would like to test the

following two hypotheses:

HC
0 : C is a group of scores sampled from f0

HC
1 : C is a group of scores sampled from f1
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Let P(HC
i DC) be the posterior probability of HC

i , for i~0,1.

Under a simplifying assumption that the random variables within

Care independent, the probability can be rewritten as:

P(HC
i DC)~ P

c[C
pi(1{p)1{ifi(cDmi,si)

Thus:

log
P(HC

1 DC)

P(HC
0 DC)

~
X

c[C
LLR1,0(c)

For a set of scores C, we accept HC
1 if and only if

P(HC
1 DC)wP(HC

0 DC). We therefore accept HC
1 if and only ifP

c[C LLR1,0(c)w0.

Finding DC clusters
DICER compares a class of interest Dk to all other classes by

calculating the TOVA score for each gene pair. We denote the

resulting scores as Treal
OVA. Next, shuffled data sets are created by

permuting class labels and are used to calculate TOVA scores. The

process is repeated 20 times and the resulting scores are denoted

Trandom
OVA . The Treal

OVA scores are transformed to LLR scores as

described above using the distributions of Treal
OVA and Trandom

OVA . An

important parameter in this process is the prior p assigned for

Treal
OVA. By decreasing this parameter, DICER can control the

number of positive LLR scores. Setting a low prior means that

fewer pairs of genes will get a positive LLR score. Because this

parameter depends on the tested data set we set it as follows:

p~Pr
Treal

OVA
(x§m

Trandom
OVA

zks
Trandom

OVA
)

For k§0 if the distributions of Treal
OVA and Trandom

OVA are equal, then

by using this prior, almost all LLR scores will be negative.

Note that the TOVA scores do not necessarily follow a normal

distribution. Moreover, in multiclass data sets, a large proportion

of the gene pairs are scored zero and the distribution is not

continuous. Nevertheless, as our experiments show (Figure 2), the

variance of Treal
OVA is consistently higher than the variance of

Trandom
OVA , and therefore high T-scores of the real data sets would be

assigned with a positive LLR score. In addition, by changing the

value of k we can control the threshold from which T-scores would

be assigned a positive score. Taken together, our LLR score is a

flexible approximation of the real LLR score of the underlying

data. In our experiments we set a stringent value of k~2.

The gene pairs can be partitioned into those with: (1) non-

significant DC (negative LLR score), (2) significant up-correlation

(positive T-score, positive LLR), and (3) significant down-

correlation (negative T-score, positive LLR). Using these classes

we define two weighted, undirected graphs, Gup and Gdown, which

contain a node for each gene and an edge between each pair of

genes. In Gup, edge weights are defined by keeping the LLR scores

(1) and (2), and inverting the sign of the scores in group (3). The

idea is that only gene pairs that were significantly up-correlated in

Dk will be assigned positive scores and down-correlated pairs will

be penalized. Similarly, in Gdown, edge weights are defined by

keeping the LLR scores (1) and (3), and inverting the sign of the

scores in group (2).

DICER uses average-linkage hierarchical clustering [6,56] to

find subgraphs in Gdown and Gup. Going from the leaves up, two

gene sets are merged as long as the sum of edge scores between

them is positive. Sets of size §15 are defined as clusters. The

rationale is that these sets correspond to gene clusters that are

differentially correlated, as they are more likely to represent a real

correlation change than is expected by chance. Setting a size

threshold is standard in gene module detection (e.g., a threshold of

15 was used in [9]). In addition, in most cases functionally

enriched clusters contained more than 20 genes (66% of the

enriched clusters).

Since this part of the algorithm uses sampling, DICER is a non-

deterministic algorithm. Hence, different runs might produce

different results. We observed that when k is lower DICER tends

to be more stable. For example, for k~1, average Jaccard score

between repeated runs was larger than 0.85, for all datasets. In this

study we have selected a relatively large value of k in order to focus

on high DC. The stability decreased, but Jaccard score between

repeated runs was still above 0.5. Nevertheless, we observed that

pathway enrichment analysis was quite stable. For example,

ribosome and NDD-related pathways appeared in all different

runs in the AD dataset.

The consistent correlation graph
In this analysis we calculate all gene-pair correlations in every

class. We then partition the correlation scores into those with high

correlations (denoted ‘‘mates’’) and those with low correlations

(denoted ‘‘non-mates’’) within each class using the method in [9].

We assume that the distributions of mate and non-mate scores are

normal, and use the expectation maximization (EM) algorithm to

represent the data as a mixture of two Gaussians. EM evaluates

the parameters of the distributions and the prior probability that

two randomly chosen elements are mates. Because the distribu-

tions may vary between classes, we perform EM for each class

separately. We use these parameters to calculate the LLR scores as

in the previous section. Denote the LLR score of the gene pair i,j

in class c by S(i,j,c). Gene pairs that are co-expressed in all classes

will induce a positive LLR score in each class; therefore, to ensure

that only gene pairs that are consistently co-expressed in all classes

will be assigned a positive score, we integrate all EM runs by

assigning to each gene pair the minimal LLR value, namely,

S(i.j) = mincS(i,j,c). DICER uses these scores as weights of edges in

the undirected graph of consistent correlations, denoted as CG.

Finding meta-modules
In the final phase of the algorithm, DICER uses the graphs CG

and either Gdown or Gup to find meta-modules. We describe the

analysis using CG and Gup; the analysis using Gdown is analogous.

We define two disjoint gene sets U and V as friends if the sum of

edge weights between U and V in Gup is positive. Based on the

probabilistic framework, two modules that are friends are more

likely to represent a real correlation change than expected by

chance. We define an up-correlated meta-module MM as a pair of

non-overlapping gene modules (Mi,Mj) that satisfy: (1) each

module Mi is a sub-graph of CG with a positive sum of edge

weights, and (2) Mi and Mj are friends.

Finding the largest meta-module is computationally hard. We

proved that there exists no polynomial constant-factor approxi-

mation algorithm for finding a maximum size meta-module unless

P = NP (See Text S1). We therefore developed a heuristic

algorithm for meta-module detection. It works in three phases:

(1) initial detection of module pairs, (2) greedy merge of pairs, and

(3) addition of single genes to a module in a pair. In the next

section we describe each phase of the algorithm. See Figure S5
for an outline.

Phase 1: Initial detection of module-pairs. We use a

simple local greedy heuristic, akin to [37], to find pairs of initial

modules, which we call seeds. Using the definition of Gup, we
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assume that only a small fraction of the edges will be assigned

positive scores. Let E0 be the set of edges in Gup with positive

scores, and let G0~(V ,E0) be the unweighted graph induced by

E0. We iteratively select the edge (u,v) in G0 such that u and v

together have a maximal number of neighbors. Let C1 be the set of

nodes that are neighbors of u and not neighbors of v, and let C2 be

the set of nodes that are neighbors of v and not neighbors of u. We

repeatedly remove nodes from Ci whose sum of edge weights with

other nodes in Ci in CG is non positive, or have a non-positive

sum of edge weights Cj ,j=i, in Gup.

To determine the order of node removal, we score each node by

the sum of scores in CG with its set plus the sum of scores with the

other set in Gup. When deciding which node to remove, we

consider three candidates: (1) the node that has the minimal score,

(2) the node that has the minimal score with the other set in Gup,

and (3) the node that has the minimal score with its own set in CG.

If all three candidates have positive scores we stop and accept the

meta-module. We found that in many cases, candidate (1)

manifests negative scores both within its group (in CG) and with

the other group (in Gup). Therefore, in these cases we remove this

gene. However, we observed cases in which node (1) has a positive

score within its group (in CG) or with the other group (in Gup),

while having a negative score. In these cases we use node (1) as a

‘‘guide’’ for the removal stage: if it has a negative score in Gup (with

the other set) then the edges between the two seeds in Gup are not

heavy enough, and we remove node (2); otherwise we remove

node (3). Once a meta-module is detected, its genes are removed

and the process is repeated.

Phase 2: Greedy merge of module pairs. In the second

phase we improve the solution by merging meta-modules. Let

MM1,MM2,:::, MMM be the current set of meta-modules discovered

in phase 1, where each meta-module MM is a pair of non-overlapping

gene modules. A pair of meta-modules MMi~fM1
i ,M2

i g and

MMj~fM1
j ,M2

j g can be merged if one of the merging options

fM1
i |M1

j ,M2
i |M2

j g or fM1
i |M2

j ,M2
i |M1

j g leads to a gain in

the scores both within the modules and between them. We iteratively

merge the best gain meta-module pair until the gain is negative.

Phase 3: Adding single genes to meta-modules. In the

third phase we improve the solution by adding to meta-modules single

genes that do not belong to any module. A gene g can be added to a

meta-module MMi~fM1
i ,M2

i g if one of the merging options

fM1
i |g,M2

i g or fM1
i ,M2

i |gg leads to a gain in the scores within

the modules and between them. We iteratively look for the best gene

and meta-module gain, and add the gene to the appropriate module.

We stop this process when the best gain is negative.

Data sets and preprocessing
Gene-expression profiles from five studies were obtained from

GEO [2] using the series matrix of each data set; see Table 1 for

details. To reduce noise and focus on genes that vary across the

study, in each data set we used the 3000 probes showing maximum

variation and then merged probes by mapping them to Entrez IDs.

Finding DC gene modules using DiffCoEx
We used the R implementation of DiffCoEx with default

parameters.

Enrichment analysis of pathways and protein complexes
We performed KEGG [57] and protein complex enrichment

analysis of gene sets by calculating hypergeometric p-values and

false discovery rate (FDR) correction for multiple testing [58]. The

background set for the hypergeometric test was the filtered set of

genes in the data set. Human protein complex annotations were

extracted using BioMart [59,60]. In total, 237 KEGG pathways

and 964 complexes were used.

Because many KEGG pathways have large overlaps with other

pathways, after performing the initial enrichment analysis, we

filtered the results to remove redundancies. For every cluster, we

checked every pair of enriched terms; if the Jaccard coefficient

between the gene sets of these terms in the tested cluster was above

0.5, we kept the term with the lower p-value.

Enrichment analysis of miRNA families
We used the FAME algorithm [38] to test for enrichment of

miRNA families in gene sets. We used 2000 sampling steps for

evaluating enrichment p-values and use the FDR method to

correct for multiple testing (q,0.05).

Enrichment analysis of known disease and miRNA
associations

Having detected a set of miRNA families using the data set of a

disease, we tested its enrichment for miRNAs known to be associated

with the disease, as recorded in mir2disease [39]. We first converted

the associations in mir2disease from MirBase IDs [61] to miRNA

families. We then calculated the hypergeometric p-value for the

overlap between the detected set and the set of miRNA families

associated with the disease. The background set for this test was all

miRNA families that had at least one gene target in the data set.

Supporting Information

Figure S1 The class specific correlation matrices of the first

simulated data set. One DC cluster and one meta-module are

indicated by blue rectangles.

(TIF)

Figure S2 The class specific correlation matrices of the second

simulated data set. The DC cluster and the meta-module are

indicated by blue rectangles.

(TIF)

Figure S3 One of the two false DC clusters identified on the

second dataset.

(TIF)

Figure S4 miRNA target enrichment in gene sets detected by

DICER. For every dataset we used the FAME algorithm to test for

enrichment of targets of miRNA families in the gene sets generated

by DICER. These included gene clusters, meta-modules and

modules (the subgroups of meta-modules). P-values were corrected

for multiple testing (0.05 FDR). Because the modules are

subgroups of meta-modules, we also calculated the intersection

between enriched miRNA families in meta-modules and modules.

Note that all data sets except AD are on the same scale.

(TIF)

Figure S5 Overview of the steps of the meta-module discovery

algorithm. The seeds that will form the basis for modules of a

meta-module are encircled with dashed lines in a-c. Black edges

correspond to differentially correlated gene pairs. Red edges

correspond to consistently correlated gene pairs. (A) The

construction starts from the edge between the yellow nodes. A

seed is formed around each of them, containing a set of

consistently correlated genes, whereas edges between the two

seeds correspond to differentially correlated genes. Genes that are

consistently correlated with one of the seeds but are not

differentially correlated with the other are excluded. Genes that

are differentially correlated with one seed but are not consistently
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correlated with the other are removed as well. (B) Merging two

meta-modules. The resulting meta-module has high differential

correlation between the two sides and high consistent correlation

within each side. (C) Addition of a single gene to a meta-module.

The gene colored green is added to seed2 because it is

differentially correlated with seed1 and consistently correlated

with seed2. (D) The final meta-module. The two sub-groups of the

meta-module are denoted as modules.

(TIF)

Table S1 DiffCoEx and DICER meta-module statistics.

(DOCX)

Table S2 miRNA enrichment analysis results on DICER gene

sets discovered in the AD dataset.

(XLSX)

Table S3 miRNA enrichment analysis results on DICER gene

sets discovered in the NDD dataset.

(XLSX)

Table S4 miRNA enrichment analysis results on DICER gene

sets discovered in the lung cancer dataset.

(XLSX)

Table S5 miRNA enrichment analysis results on DICER gene

sets discovered in the SLE dataset.

(XLSX)

Table S6 miRNA enrichment analysis results on DICER gene

sets discovered in the IBD dataset.

(XLSX)

Text S1 A proof of the hardness of approximation for the

problem of finding a maximal meta-module.

(DOCX)

Text S2 DICER performance on simulated data.

(DOCX)

Text S3 Gene sets discovered in this study.

(ZIP)
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