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Abstract 

A great challenge in understanding biological complexity is to reconstruct the 

molecular networks governing the activity within the cell. Recent high throughput 

techniques produce large scale measurements, which probe molecular networks 

from different perspectives. In this thesis, we describe our studies of molecular 

networks. We developed mathematical models for the representation of biological 

networks and provided algorithms for model reconstruction using large scale 

experimental data. Our computational methodologies accommodate information 

from a broad variety of sources and of diverse types, including general biological 

principles, established biological knowledge, and diverse large scale experiments.  

By using computational techniques from combinatorial optimization, probabilistic 

models and statistics, we could handle highly complex systems and large scale 

datasets. We used our methods on yeast, and showed that the integration of large 

scale data with mathematical modeling provides novel insights on the biological 

system and generation of hypotheses for further research. 
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Chapter 1 

 

 

Introduction 
 

1.1 The systems biology approach 

High-throughput biotechnology enables the monitoring of thousands of biological 

molecules simultaneously. This allows a global view on the cellular activity under 

specific cellular conditions. The applications of such technology range from gene 

functional annotation and molecular network reconstruction to diagnosis of disease 

conditions and characterization of effects of medical treatments. Unlike the traditional 

biological approach of studying individual proteins or genes one at a time, the high 

throughput data make it possible to investigate thousands of molecular components 

simultaneously, and facilitate elucidation of global regulatory principles. Thus, for the 

first time in history, it is possible to obtain a comprehensive understanding of the 

tremendous complexity of life. 

Since the generation of high-throughput data has been greatly accelerated, major 

efforts are invested in developing computational methodologies to analyze and extract 

information from the data. The high-throughput data are integrated, visualized, and 

modeled computationally. To date, despite the intensive studies and even in well studied 

organisms, signaling pathways and regulation of gene expression are still far from being 

completely understood, and many proteins are still uncharacterized.  

To improve our understanding, we need to build computational models and analyze 

them. Computational models can provide different kinds of insights: (i) General 

properties - Global analysis of a model may provide understanding of general properties, 

such as the scale free property in network models [10], and common model substructures 

called network motifs [11, 12]. (ii) Functional annotation - Protein function can be 

elucidated by interpretation of the data in the context of a computational model. For 

example, network models are used to propagate functional annotation from one protein to 

another [13]. Alternatively, functional modules are used for annotation based on majority 

rules [14]. (iii) System behavior - mathematical models can generate predictions of 

system state(s) under different conditions [15-17]. In this thesis, we focus on the latter 
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type of questions, aiming to design and analyze predictive models for molecular 

networks.  

 

1.2 Cellular activity can be measured in a genomic scale  

High throughput gene expression measurements [18, 19] are currently the most 

popular kind of functional genomic information. The technology of microarrays (DNA 

chips) allows the measurement of thousands of mRNAs molecules simultaneously. The 

resulting gene expression profiling is now a standard tool in many biological laboratories, 

with applications to functional annotation, tissue classification, and regulatory motif 

identification [20-22]. 

Many other high throughput techniques for probing biological systems are 

constantly emerging. The information obtained from these techniques can be classified 

into three categories: Information about the abundance of molecular components, about 

the function of molecular components, and about interaction between components. The 

abundance is measured for mRNA molecules (as mentioned above), protein molecules 

(Mass spectrometry technology, see [23]) and metabolites (NMR and vibrational 

spectrometry, see [24]). Data concerning the interactions between protein and DNA is 

measured by ChIP-chip technology (using whole genome promoters [25] or tiling arrays 

[26]) and provide information on the location of transcription factors on their target 

promoters. Protein-Protein interactions provide information on signaling cascades and 

protein complexes based on two-hybrid systems [27] or mass spectrometry. Functional 

information is available using various experimental techniques such as synthetic-lethal 

interactions [28], single-gene deletion microarray data [29], and global kinase effects [30, 

31].  

Interpretation of the high-throughput data sets is not easy and straightforward. The 

data sets contain experimental noise, missing information and many technical artefacts 

and biases. Many datasets are immense in size and have no agreed upon, standard 

representation. Most importantly, each experimental technique measures only one type of 

information, which can at best be used as a rough approximation for other types of 

information needed. Despite the many problems with this data, researchers are making 

progress by modeling and integrating together different kinds of genome-wide data sets.  
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1.3 Modeling approaches 

We can distinguish between three different levels of increasing detail in 

computational models: 

(i) Functional groups model - This classical modeling approach dissects the 

molecular components (e.g., genes, proteins) into groups with a common functionality. 

The groups are called functional groups, parts lists, gene/protein sets, clusters, or 

modules. This approach provides a rough understanding of the global architecture of the 

system, and at the same time, aims to derive highly specific predictions on the 

components’ functionality.  

(ii) Topology model (interactions network) - This modeling approach describes the 

structural features of the network. The model is a wiring diagram (graph), where nodes 

represent molecular components and edges represent interactions among them. The 

common models are protein-protein interaction networks and transcriptional gene 

regulatory networks.  

 (iii) Predictive model - The heterogonous high-throughput information makes it 

possible to go beyond modules and topology, and reconstruct a logical model. The model 

describes how the interactions give rise to the function and behaviour of the system, and 

represents either steady state or real-time dynamic behavior of the system. The model 

computes the expected response to various external or internal stimuli, and allows 

simulation of cellular behavior.  

The preparation of computational models requires reliable high throughput data. 

However, the current technology provides noisy and biased information. In addition, 

biological systems are complex and have highly intricate regulatory mechanisms. Such 

complex systems cannot be fully characterized based on a single experimental technique. 

Hence, in order to obtain reliable models, the reconstruction algorithms should integrate 

multiple independent data sets, thereby supporting the conclusions through several 

independent types of information. In the following sections we discuss each of the 

modeling approaches and show how it can be used to integrate multiple data sets.  

 

1.3.1 Clustering algorithms identify functional groups 

A central step in the analysis of whole-genome mRNA (or protein) abundance is the 

identification of groups of genes (proteins) that exhibit similar expression patterns. This 
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translates to the algorithmic problem of clustering. In a clustering problem, the goal is to 

partition the elements into subsets, called clusters, so that two criteria are satisfied: 

Homogeneity- elements in the same cluster are similar to each other, and separation- 

elements from different clusters are dissimilar. Clustering methods are used to partition a 

very large matrix of expression levels to more informative subsets of gene or conditions, 

which are assumed to share functionality or to form some biological modules. Many 

standard clustering algorithms are commonly used, including hierarchical clustering [22], 

k-means, and self organizing maps [32]. Other algorithms are specific and take into 

consideration the special properties of the high throughput biological data [33, 34]. The 

clustering approach was shown to be instrumental in functional annotation, tissue 

classification, motif identification, operon prediction and more [20-22, 35-37]. 

Biclustering methods, which seek a subset of genes that exhibit a similar behavior across 

a subset of conditions, were also proved to be useful in expression data analysis [38-40]. 

Usually, given a gene set of functionally-related genes or proteins, their common 

functionality is identified by a functional enrichment, or enrichment of transcription 

factors binding motifs [14, 41].  

Instead of clustering new genome-wide experiments separately from any other data 

sets, more robust sets can be constructed by integrating multiple datasets together (e.g., 

[42, 43]). Alternatively, recent methods used gene sets as basic building blocks for 

additional analyses [44, 45]. Hence, instead of having to understand the behavior of 

thousands of individual components, one can focus on a much smaller set of clusters. 

Moreover, by considering the joint behavior of a large set, we can detect delicate changes 

that are not significantly identified on individual genes. 

 

1.3.2 Interaction networks represent the backbone of molecular activity 

A. Transcriptional networks 

Although clustering of gene expression data is a useful way to identify groups of 

genes that are involved in a complex coordinated activity, it only tells us which genes are 

co-regulated, without describing the regulatory rules. Discovering these rules requires 

reconstruction of the causal interactions between transcription factors (TFs) and gene 

targets, i.e., the transcriptional network. The most straightforward way to build the 

network is by using DNA-protein binding indicated by ChIP-on-chip results. These data 
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must be integrated with other data sources, since it is still prone to high error rate. The 

prevalent integration paradigms are the following: 

(i) Sequence analysis of a single or multiple genomes - Transcription factor 

binding sites can help in exposing the transcriptional network. The binding sites can be 

revealed based on their abundance in a single genome (for example, the MEME 

algorithm [46]), or based on their pattern of evolution in the genomes of a few closely 

related organisms [47-49]. 

(ii) Combine genome sequence and expression data - In the basic method,  after 

identifying a group of co-regulated genes based on gene expression data, the regulating 

TFs are revealed by overrepresentation of their cis-regulatory motifs [14]. Other methods 

find the motifs without the need for clustering [50, 51]. 

(iii) Combine DNA-protein binding data and expression data - The basic 

approach is to cluster genes that share the same expression pattern and then identify their 

TFs using enrichment of DNA-protein binding data in their promoters. More 

sophisticated approaches revise the clustering solution according to the binding data, in 

order to obtain gene sets to which the same combination of TFs bind (e.g., [52, 53]).  

B. Protein-protein networks 

The modeling of the protein-protein interaction network requires reliable interaction 

data sets, but current data are noisy and may be misleading. Hence, researchers are trying 

to predict interactions using data integration from two or more distinct protein-protein 

interactions assays, as well as from genome sequence, functional knowledge, co-

localization, and homologue interactions in other species [54-56]. 

 Although the current interaction networks are incomplete, they still provide a 

useful framework for extracting biological insights. First, it is possible to generate new 

global hypotheses based on the interaction network [10-12, 57]. Second, it is possible to 

improve the functional annotation by employing “guilt by association” and majority rule 

principles in the context of the network (reviewed in [13]).  

 

1.3.3 Predictive models represent the behavior of the system 

Traditionally, molecular biology was an informal data-poor science, which applied 

a reductionist hypothesis-driven approach. Informal static flowchart-type models of 

specific pathways were used as a basic tool, providing a mental picture of the biological 
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system. The flowcharts conveyed information easily, and enabled researchers to 

understand experimental results and plan experiments. However, given high-throughput 

information, it is impossible to compare the charts to the huge amount of data manually. 

Moreover, the large amount of available knowledge makes it impossible to mentally 

capture and manage biological systems. In this situation, the informal flowcharts should 

be replaced by formal mathematical predictive models, which are analyzed systematically 

by computational algorithms.  

A predictive model is a simplifying formal abstraction of the biological system, 

which generates predictions of the system behavior under different conditions. Typically, 

these models are represented by a network with an underlying logic. The nodes are 

biological components, and the structure (topology) represents regulatory relations 

among components. Each of the   nodes is associated with a regulation function, which 

describes its logic of regulation. Hence, the function represents the content (or production 

rate) of the component given the content of its upstream components. The structure tells 

“who acts on whom” and the functions tell how. In biological context, the mathematical 

models are referred to as cellular networks and molecular networks, and sometimes more 

specifically as signaling network or metabolic network. Standard computational models 

and learning algorithms can be applied to construct predictive mathematical models of 

biological systems.  

A large variety of possible model types are used in the biological and bioinformatics 

communities. Modeling decisions include discrete vs. continuous, static vs. dynamic, 

deterministic vs. probabilistic, and various levels of detail. Perhaps the most basic model 

types are Boolean [58-60], qualitative [61], linear [62], differential equations [63], and 

Bayesian networks [64-66].  

In all levels of resolution, a key obstacle in trying to reconstruct a mathematical 

predictive model from data is a large solution space: There are too many possible 

solutions, and consequently an unrealistic amount of data is needed to identify the right 

one. Due to this inherent complexity of the network, the solution space must be limited 

using prior biological knowledge. The prior information can be classified as qualitative 

vs. quantitative, structural (i.e., information about topology) vs. mechanistic (i.e., 

information about regulation functions), and general vs. specific knowledge on particular 

components. Moreover, the prior knowledge can be used to bias the solution (i.e., used as 

a soft prior) or to impose constraints on the solution. The prior information used in the 

current literature for model reconstruction can be organized in four categories: 
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1. Qualitative constraints on the structure. Several works impose general biological 

constraints based on general knowledge and understanding of biological networks. For 

example, Gardner et al. [67] proposed a linear model of the SOS response in E. coli 

assuming maximum of k regulatory inputs. Segal et al. [68] used a Bayesian network 

model assuming decomposition of the network into modules of co-regulated genes.  

2. Quantitative constraints on the structure. Independent high-throughput datasets are 

commonly used as soft priors. For example, Imoto et al. [69] used protein-protein 

interactions, protein-DNA interactions, and binding site information as priors for 

Bayesian networks reconstruction. Herrgard et al. [70] used ChIP-on-chip results as prior 

for elucidating the set of transcriptional target genes based on gene expression data. 

3. Qualitative knowledge on reaction mechanisms. In most of the cases, even if we 

understand the mechanism quite well, the exact parameters are unknown and the prior is 

only qualitative. The ‘physicochemical approach’ uses the available qualitative physical 

or chemical knowledge to formalize a differential equations model. The missing kinetic 

parameters are filled by a calibration process (reviewed in [15], see for example [71-73]). 

Alternatively, a probabilistic factor graph model [74] has been proposed to model known 

interactions, their directionality and the sign of the immediate effects [75].  

4. Quantitative knowledge on reaction mechanisms. Measured kinetic rate constants 

and stoichiometic coefficients are used as parameters in physicochemical modeling and 

in metabolic engineering [15, 76]. 

 

Mathematical modeling of diseases is an essential step in the development of new 

drugs, medical diagnostics and therapies. Up to now, most medical computational 

research has focused on cluster analysis, statistical tests of hypotheses, and classification 

of diseases subtypes. However, mathematical modeling may contribute to the 

understanding of disease processes, provide quantitatively clinically relevant parameters, 

simulate genetic diseases, and predict drug responses. Hence, mathematical models carry 

the promise to  become an important tool in personalized medicine and pharmacological 

research [77]. 
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1.4 Summary of articles included in this thesis 

 

1. Scoring clustering solutions by their biological relevance 

Irit Gat-Viks, Roded Sharan and Ron Shamir. 

Published in Bioinformatics  [1]. 

A central step in the analysis of gene expression data is the identification of groups 

of genes that exhibit similar expression patterns. Clustering gene expression data into 

homogeneous groups was shown to be instrumental in functional annotation, tissue 

classification, regulatory motif identification, and other applications. Although there is a 

rich literature on clustering algorithms for gene expression analysis, very few works 

addressed the systematic comparison and evaluation of clustering results. Typically, 

different clustering algorithms yield different clustering solutions on the same data, and 

there is no agreed upon guideline for choosing among them. 

We developed a novel statistically based method for assessing a clustering solution 

according to prior biological knowledge. Our method can be used to compare different 

clustering solutions or to optimize the parameters of a clustering algorithm. The method 

is based on projecting vectors of biological attributes of the clustered elements onto the 

real line, such that the ratio of between-groups and within-group variance estimators is 

maximized. The projected data are then scored using a non-parametric analysis of 

variance test, and the score’s confidence is evaluated. We validate our approach using 

simulated data and show that our scoring method outperforms several extant methods, 

including the separation to homogeneity ratio and the silhouette measure. We apply our 

method to evaluate results of several clustering methods on yeast cell-cycle gene 

expression data. 

 

2. Chain functions and scoring functions in genetic networks 

Irit Gat-Viks and Ron Shamir. 

Published in Bioinformatics journal supplement for the proceedings of The 11th Annual 

International Conference on Intelligent Systems for MolecularBiology (ISMB 2003) [2]. 

One of the grand challenges of system biology is to reconstruct the network of 

regulatory control among genes and proteins. High throughput data, particularly from 

expression experiments, may gradually make this possible in the future. Here we address 

two key ingredients in any such ’reverse engineering’ effort: The choice of a biologically 
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relevant, yet restricted, set of potential regulation functions, and the appropriate score to 

evaluate candidate regulatory relations. We propose a set of regulation functions which 

we call chain functions, and argue for their ubiquity in biological networks. We analyze 

their complexity and show that their number is exponentially smaller than all boolean 

functions of the same dimension. We define two new scores: one evaluating the fitness of 

a candidate set of regulators of a particular gene, and the other evaluating a candidate 

function. Both scores use established statistical methods. Finally, we test our methods on 

experimental gene expression data from the yeast galactose pathway. We show the utility 

of using chain functions and the improved inference using our scores in comparison to 

several extant scores. We demonstrate that the combined use of the two scores gives an 

extra advantage. We expect both chain functions and the new scores to be helpful in 

future attempts to infer regulatory networks. 

 

3. Reconstructing chain functions in genetic networks 

Irit Gat-Viks, Roded Sharan, Richard M. Karp and Ron Shamir. 

Published in Proceedings of the Pacific Symposium on Biocomputing (PSB 04) [3]. A 

journal version was published in SIAM journal of discrete mathematics [4].  

This study builds on the chain function paradigm introduced in the previous study. 

In this paper we study the computational problem of reconstructing a chain function 

using a minimum number of experiments, in each of which only few genes are perturbed.  

We address both the question of finding the set of regulators of a chain function, which is 

typically much smaller than the entire set of genes, and the question of reconstructing the 

function given its regulators. We give optimal reconstruction schemes for several 

scenarios and show their application on real data. Our analysis focuses on the theoretical 

complexity of reconstructing regulation relations, assuming that experiments provide 

accurate results and that the target function can be studied in isolation from the rest of the 

genetic network. 

 

4. Modeling and analysis of heterogeneous regulation in biological networks 

Irit Gat-Viks, Amos Tanay and Ron Shamir. 

Published in Proceedings of the First RECOMB Satellite Workshop on Regulatory 

Genomics and in Journal of Computational Biology (JCB)[6].  

In this study, we propose a novel model for the representation of biological 

networks and provide algorithms for learning model parameters from experimental data. 
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Our approach is to build an initial model based on extant biological knowledge and refine 

it to increase the consistency between model predictions and experimental data. Our 

model encompasses networks that contain heterogeneous biological entities (mRNA, 

proteins, metabolites) and aims to capture diverse regulatory circuitry on several levels 

(metabolism, transcription, translation, post-translation and feedback loops, among 

them). Algorithmically, the study raises two basic questions: how to use the model for 

predictions and inference of hidden variables states, and how to extend and rectify model 

components. We show that these problems are hard in the biologically relevant case 

where the network contains cycles. We provide a prediction methodology in the presence 

of cycles and a polynomial time, constant factor approximation for learning the 

regulation of a single entity.  

A key feature of our approach is the ability to utilize both high-throughput 

experimental data, which measure many model entities in a single experiment, as well as 

specific experimental measurements of few entities or even a single one. In particular, we 

use together gene expression, growth phenotypes, and proteomics data. We tested our 

strategy on the lysine biosynthesis pathway in yeast. We constructed a model of more 

than 150 variables based on an extensive literature survey and evaluated it with diverse 

experimental data. We used our learning algorithms to propose novel regulatory 

hypotheses in several cases where the literature-based model was inconsistent with the 

experiments. We showed that our approach has better accuracy than extant methods of 

learning regulation. 

 

5. A probabilistic methodology for integrating knowledge and experiments on 

biological networks 

Irit Gat-Viks, Amos Tanay, Daniella Raijman and Ron Shamir. 

Published in Proceedings of the Ninth Annual International Conference on Research in 

Computational Molecular Biology (RECOMB 05) [7] and in Journal of Computational 

Biology (JCB) [8].  

This study generalizes the model introduced in the previous work from 

combinatorial to probabilistic setting. Here we introduce an extended computational 

framework that combines formalization of existing qualitative models, probabilistic 

modeling, and integration of high-throughput experimental data. Using our methods, it is 

possible to interpret genome-wide measurements in the context of prior knowledge on the 

system, to assign statistical meaning to the accuracy of such knowledge, and to learn 

refined models with improved fit to the experiments. Our model is represented as a 
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probabilistic factor graph, and the framework accommodates partial measurements of 

diverse biological elements. We study the performance of several probabilistic inference 

algorithms and show that hidden model variables can be reliably inferred even in the 

presence of feedback loops and complex logic. We show how to refine prior knowledge 

on combinatorial regulatory relations using hypothesis testing and derive p-values for 

learned model features. We test our methodology and algorithms on a simulated model 

and on two real yeast models. In particular, we use our method to explore uncharacterized 

relations among regulators in the yeast response to hyper-osmotic shock and in the yeast 

lysine biosynthesis system. Our integrative approach to the analysis of biological 

regulation is demonstrated to synergistically combine qualitative and quantitative 

evidence into concrete biological predictions. 

 

6. Refinement and expansion of signaling pathways: the osmotic response network 

in yeast 

Irit Gat-Viks and Ron Shamir. 

Published in Genome Research [9]. 

In this study we continue the development of the modeling and analysis strategy 

introduced in the previous paper. We present algorithms that analyze experimental results 

(e.g., transcription profiles) vis-à-vis the model, and propose improvements to the model 

based on the fit to the experimental data. These algorithms refine the relations between 

model components, as well as expand the model to include new components that are 

regulated by components of the original network.  

Using our methodology, we have modeled together the knowledge on four 

established signaling pathways related to osmotic shock response in S. cerevisiae. Using 

over 100 published transcription profiles, our refinement methodology revealed three 

cross-talks in the network. The expansion procedure identified with high confidence large 

groups of genes that are co-regulated by transcription factors from the original network 

via a common logic. The results reveal novel delicate repressive effect of the HOG 

pathway on many transcriptional target genes, and suggest an unexpected alternative 

functional mode of the MAP kinase Hog1. The analysis also predicts novel feed-forward 

and feedback loops in the regulatory network, which probably support cellular adaptation 

to osmotic stress. These results demonstrate that by integrated analysis of data and of 

well-defined knowledge on signaling pathways, one can generate concrete biological 

hypotheses about signaling cascades and their downstream regulatory programs. 
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ABSTRACT
Motivation: A central step in the analysis of gene expres-
sion data is the identification of groups of genes that exhibit
similar expression patterns. Clustering gene expression data
into homogeneous groups was shown to be instrumental in
functional annotation, tissue classification, regulatory motif
identification, and other applications. Although there is a rich
literature on clustering algorithms for gene expression anal-
ysis, very few works addressed the systematic comparison
and evaluation of clustering results. Typically, different cluster-
ing algorithms yield different clustering solutions on the same
data, and there is no agreed upon guideline for choosing
among them.
Results: We developed a novel statistically based method for
assessing a clustering solution according to prior biological
knowledge. Our method can be used to compare different clus-
tering solutions or to optimize the parameters of a clustering
algorithm. The method is based on projecting vectors of bio-
logical attributes of the clustered elements onto the real line,
such that the ratio of between-groups and within-group vari-
ance estimators is maximized. The projected data are then
scored using a non-parametric analysis of variance test, and
the score’s confidence is evaluated. We validate our approach
using simulated data and show that our scoring method out-
performs several extant methods, including the separation to
homogeneity ratio and the silhouette measure. We apply our
method to evaluate results of several clustering methods on
yeast cell-cycle gene expression data.
Availability: The software is available from the authors upon
request.
Contact: iritg@post.tau.ac.il; rshamir@post.tau.ac.il; roded@
icsi.berkeley.edu

INTRODUCTION
DNA microarray technology enables the monitoring of
expression levels of thousands of genes simultaneously. This
allows a global view on the transcription levels of many genes

∗To whom correspondence should be addressed.
†
These authors contributed equally to this work.

under specific cellular conditions. The applications of such
technology range from gene functional annotation and genetic
network reconstruction to diagnosis of disease conditions and
characterization of effects of medical treatments.

A central step in the analysis of gene expression data is the
identification of groups of genes that exhibit similar expres-
sion patterns. Clustering methods transform a large matrix
of expression levels into a more informative collection of
gene sets (or condition sets) which are assumed to share
biological properties. Clustering gene expression data into
homogeneous groups was shown to be instrumental in func-
tional annotation, tissue classification, motif identification,
and other applications [for a review see Sharan et al. (2002)].

Although there has been extensive research on cluster-
ing algorithms for gene expression analysis (Eisen et al.,
1998; Tamayo et al., 1999; Ben-Dor et al., 1999; Sharan and
Shamir, 2000; Sharan et al., 2003), very few works have been
published on the systematic comparison and evaluation of
clustering results. Typically, different clustering algorithms
yield different clustering solutions on the same data, and
often the same algorithm yields different results for differ-
ent parameter settings, and there is no consensus on choosing
among them.

Different measures for the quality of a clustering solution
are applicable in different situations, depending on the data
and on the availability of the true solution. In case the true
solution is known, and we wish to compare it to another
solution, one can use, e.g. the Minkowski measure (Sokal,
1977) or the Jaccard coefficient [cf. Everitt (1993)]. When the
true solution is not known, there is no agreed-upon approach
for evaluating the quality of a suggested solution. Several
approaches evaluate a clustering solutions based on its intra-
cluster homogeneity or inter-cluster separation (Hansen and
Jaumard, 1997; Sharan et al., 2003; Yeung et al., 2001). How-
ever, the homogeneity and separation criteria are inherently
conflicting, as an improvement in one will usually correspond
to worsening of the other. One way of getting around this
problem is to fix the number of clusters and seek a solution
with maximum homogeneity. This is done, for example, by the
classical K-means algorithm (MacQueen, 1965; Ball and Hall,
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1967). For methods that evaluate the number of clusters see,
e.g. Hartigan (1975); Tibshiraniet al. (2000); Ben-Huret al.
(2002); Pollard and van der Laan (2002); Dudoit and Fridly-
and (2002); McLachlan (1987). Another way to overcome
the problem is by presenting a curve of homogeneity versus
separation (Ben-Dor, private communication). Such a curve
can show that one algorithm dominates another if it provides
better homogeneity for all separation values, but typically dif-
ferent algorithms will dominate in different value range. An
alternative method suggested by Kaufman and Rousseeuw
(1990), evaluates a solution using a numerical measure called
the average silhouette. This method performs well in general,
but fails to detect fine cluster structures (Pollard and van der
Laan, 2002).

Clustering quality can also be visually assessed by
using discriminant analysis [e.g. Stephanopouloset al.
(2002); McLachlan (1992)] or principal component analysis
[e.g. Mendezet al. (2002)], that reduce data dimensional-
ity. Single clusters can be scored based on prior biological
knowledge, e.g. by checking for functional enrichment of
genes in a cluster or searching for common motifs in their
promoter regions (Tavazoieet al., 1999). Clustering solutions
can in some cases be assessed by applying standard statistical
techniques. For high-dimensional data, multivariate analysis
of variance (MANOVA) and discriminant analysis (Huberty,
1994; Mendezet al., 2002) are appropriate if the data are
normally distributed. For the case of non-normal data, there
are several extensions that require the data to be either low-
dimensional (Bishopet al., 1975) or continuous (Katz and
McSweeney, 1980). If attributes are independent one can also
test the significance of the grouping for each dimension separ-
ately, and combine the resulting scores (Pesarin, 2001). None
of these methods apply when wishing to test the significance
of a clustering solution based on high-dimensional vectors of
dependent biological attributes that do not necessarily follow
a normal distribution and may even be discrete.

In this paper we devise a statistically based method for
comparing clustering solutions according to prior biological
knowledge. In our method, solutions are ranked according to
their correspondence to prior knowledge about the clustered
elements. Given a vector of (continuous or discrete) attrib-
utes for each element, our method tests the dependency
between the attributes and the grouping of the elements. The
test is applied simultaneously to all the attributes. In our
application, elements are genes, clustered according to their
expression patterns, and the attributes of a gene are binary
indicators of its membership in specific functional classes.
In this case, the method computes a quality score for the
functional enrichment of these classes among each solution’s
clusters. At the heart of our method is a projection of the high-
dimensional data to one dimension, to avoid the problem of
applying MANOVA to the data. Using the one-dimensional
data, the solutions are compared based on their score in a
non-parametric ANOVA test.

In the rest of the paper, after providing some background,
we describe our method, and give results on its performance
on simulated and real data.

PRELIMINARIES
The input to a clustering problem consists of a set of elements
and a characteristic vector for each element. A measure of
(dis)similarity is defined between pairs of such vectors. (In
gene expression, elements are usually genes, and the vector
of each gene contains its expression levels under each of the
monitored conditions. Dissimilarity between vectors can be
measured, e.g. by their Euclidean distance.) The goal is to
partition the elements into subsets, which are calledclusters,
so that two criteria are satisfied: homogeneity – elements in
the same cluster are similar to each other; and separation –
elements from different clusters are dissimilar.

Let N be a set ofn elements and letC = {C1, . . . ,Cl} be a
partition of these elements intol clusters. We call two elements
from the same clustermates (with respect toC). A common
procedure for evaluating a clustering solution given the true
solution, is to compute itsJaccard coefficient [see, e.g. Everitt
(1993)], which is the proportion of correctly identified mates
out of the sum of the correctly identified mates plus the total
number of disagreements (pairs of elements that are mates in
exactly one of the two solutions). Hence, a perfect solution has
score 1, and the higher the score – the better the solution. When
the true solution is not known, a solution can be evaluated by
its homogeneity and separation. Thehomogeneity of C is the
average distance between mates, and theseparation of C is the
average distance between non-mates (Hansen and Jaumard,
1997; Sharanet al., 2003). Another popular measure is the
average silhouette (Kaufman and Rousseeuw, 1990), which
is computed as follows: define thesilhouette of elementj as
(bj − aj )/ max(aj ,bj ), whereaj is the average distance of
elementj from other elements of its cluster,bjk is the average
distance of elementj from the members of clusterCk, and
bj = min{k:j �∈Ck} bjk. Theaverage silhouette is the mean of
this ratio over all elements.

Our main focus is the evaluation of clustering solutions
using external information. The setup for the problem is as
follows: we are given ann × p attribute matrix A. The rows
of A correspond to elements, and theith row vector is called
theattribute vector of elementi. We are also given a cluster-
ing C = {C1, . . . ,Cl} of the elements, wheresi = |Ci |. For
convenience, we shall also index the attribute vectors by the
clustering, i.e. useaij = (a1

ij , . . . ,ap

ij ) as the vector of ele-
mentj in clusteri. Typically C is obtained without using the
information inA. Our goal is to evaluateC with respect toA.

When p = 1, there are established statistical tests for
the problem. Such tests will serve as building blocks in our
method. In the case that the attribute is normally distrib-
uted, and under the assumption that the variances of thel

population distributions are identical, we can use standard
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analysis of variance (ANOVA) methods to test the significance
of the grouping [see, e.g. Sokal and Rohlf (1995)]: suppose
that the attribute of elementj in clusteri has valueaij . Let
āi denote the mean of the elements in clusteri, and let ā
denote the total mean of alln elements. When ANOVA is
carried out, the null hypothesis is that the groups do not dif-
fer in location, i.e.H0 : µ1 = µ2 = · · · = µl , whereµi is
the expectation of groupi. The test statistic typically used is
the ratio of variance estimator, i.e. the ratio of the hypothesis
(or between-groups) mean square (MSH) to the error mean
square (MSE):

FH = MSH

MSE
= SSH/(l − 1)

SSE/(n − l)
(1)

where the hypothesis sum of squares is SSH= ∑l
i=1 si(āi−

ā)2 and the error sum of squares is SSE= ∑l
i=1

∑si

j=1(aij−
āi )

2. Under certain data conditions theFH statistic has a
(central)F distribution withl−1 andn−l degrees of freedom.

In case the attribute (or some transformation of it) does not
follow a normal distribution, one can use the Kruskal–Wallis
(KW) test [cf. Sokal and Rohlf (1995)] as a non-parametric
ANOVA test. The test assumes that the clusters are independ-
ent and have similar shape. We shall denote byP KW(C,A) the
p-value obtained by the KW test for a clusteringC using the
attributeA : N → R. For the multidimensional case (p > 1),
the MANOVA test [cf. Sokal and Rohlf (1995)] applies the
same objective functionFH, but it applies only if the attribute
matrix is multinormally distributed.

METHOD
Our goal is to evaluate a clustering solution given an attrib-
ute vector for each element, which represents the prior
biological knowledge about the element. To this end, the
MANOVA test is particularly appealing, as the numerator in
Equation (1) (MSH) measures the separation (normalized by
the number of clusters) and the denominator (MSE) measures
the (normalized) homogeneity. However, the distribution of
attribute vectors does not necessarily meet the requirements of
MANOVA test. Such is the case, in particular, when attributes
are binary. Thus, we propose to project the high-dimensional
attribute vectors onto the real line using a linear combina-
tion of the attributes. Then, the solutionC is scored by a
non-parametric one-way ANOVA test on the one-dimensional
data. We refer to the result as theCQS (Clustering Quality
Score) of the clustering. CQS is computed as follows:

1. Computing a linear combination of the attributes. Each
element is assigned a real value, which is a weighted sum
of its attributes. An attribute’sweight is its coefficient in
the linear combination. Intuitively, we would like to weight
the attributes such that they will contribute to the solution
score according to their ‘importance’. Usually, we do not
know in advance the desired weighting of the attributes. In
such cases, we propose to use weights that maximize the

ability to discriminate between the clusters using the one-
dimensional data. Finding the weights will be done in the same
manner as in Linear Discriminant Analysis (LDA) (Huberty,
1994). The procedure for weight finding does not require
any assumptions on the distribution ofA. LDA creates such
a linear combination by maximizing the ratio of between-
groups-variance to within-groups-variance, as follows: letw

be somep-dimensional vector of weights. The statistic being
maximized is the ratio of MSH to MSE:

F(w) =
∑l

i=1 si(w · āi − a · ā)2/(l − 1)
∑l

i=1
∑si

j=1(w · aij − w · āi )2/(n − l)
(2)

where āi is the mean vector of clusteri, and ā is the total
mean vector. When introducing an additional constraint of a
unit denominator, the maximum value ofF(w) is proportional
to the greatest root of the equation|H − λE| = 0. Here,H is
ap × p matrix containing the between-groups sum of square
Hrs = ∑l

i=1 si(ā
r
i − ār )(ās

i − ās), andE is ap ×p matrix of
the sum of squared errorsErs = ∑l

i=1
∑si

j=1(a
r
ij − ār

i )(a
s
ij −

ās
i ), whereār

i is the mean of attributer in clusteri and ār

is the total mean of attributer. Thus, the desired combination
w is the eigenvector corresponding to the greatest root. This
result holds without assuming any prior distribution on the
attributes.

2. Projection. Apply the linear combinationw to the attrib-
ute vectors, thereby projecting these vectors onto the real line.
That is,zij = ∑

t at
ijw

t .

3.Computing CQS using the projected values. We now eval-
uate the clustering vis-á-vis the projected attributes using the
KW test. We define CQS as – logp, wherep = P KW(C,Z),
i.e. thep-value assigned to the clustering by the KW test.
Note thatp is not the probability of observing the original
attributes allocation randomly, since the vector data was first
projected to maximize the variance ratio. Rather, thep-value
is the probability that all values in this particular projection
have been taken from the same population. Hence, CQS favors
clustering solutions whose best discriminating weights enable
significant grouping.

4. Estimating confidence. In order to estimate the accuracy
of the scores and the significance of differences between the
scores of distinct solutions, we evaluate the sensitivity of CQS
to small modifications of the clustering solution. Intuitively,
the larger the influence of small perturbations in the clustering
on the CQS value, the smaller the confidence we have in the
CQS. Specifically, for a given original solution we generate
a group of alternative clustering solutions. Each alternative
solution is obtained by introducingk exchanges of random
pairs of elements from different clusters of the original solu-
tion (k is typically small, such as 2% of the elements). The
CQS confidence is the standard deviation of CQS for the group
of alternative clustering solutions.
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The overall procedure is as follows:

1. Find the eigenvectorw corresponding to the greatest root
of the system of equations|H − λE| = 0.

2. For each attribute vectoraij setzij = ∑
t at

ijw
t .

3. Computep = P KW(C,Z); let CQS(C,A) = −logp.

4. Estimate the statistical confidence of the result by
perturbations onC.

Our scoring scheme can be applied in several ways and for
several purposes. Our focus in this study is the evaluation of
clustering solutions given external biological attributes, that
were not used in the clustering process. Another application of
our score is internal validation of solutions based on the same
attributes that were used in generating the clustering. This
can help in choosing among different clustering algorithms,
as well as in optimizing the parameters of a specific algorithm
(for example, choosing the number of clusters forK-means).

RESULTS
The score calculation was implemented in Perl under linux,
using MATLAB. Running time for a data set of 750 clustered
elements and 80 attributes is about a minute, on a standard
800 MHz PC. Below we report on the performance of our
method on simulated and real data.

Simulations
We validate our method by conducting a series of tests on
simulated data. We tested the effect of the one-dimensional
projection of the attribute vector, the sensitivity of CQS to the
solution accuracy, and the ability of CQS to pinpoint the right
number of clusters and to detect fine clustering structures.

The data were generated as follows: profiles of 80 binary
attributes were generated for five groups ofn = 50 genes each.
(We use the term ‘genes’ for uniformity. The simulations test
the score irrespective of the nature of the clustered elements.)
For each attribute we randomly selected one group in which
its frequency will ber, and in the other four groups its fre-
quency was set tor0. The set ofr (r0) genes with that attribute
was randomly selected from the relevant groups.r0 = 5 was
used throughout. Since we randomly select for each attribute
the single group with frequencyr, the overall density of the
attribute vectors should be about the same for all elements,
and the distinction must be based on individual attributes.
Clearly, the larger the difference betweenr andr0, the easier
the distinction between the groups.

A. The effect of one-dimensional projection. First, we
wished to examine the effect of reducing the attribute dimen-
sion to 1. We simulated data sets withr = 6, 10, 15, 20 and 25.
For each data set we computed the ratio of separation to homo-
geneity of the true clustering on the original data (S/H ) and
on the projected data (S∗/H ∗). This procedure was repeated
10 times. The results are shown in Figure 1B. Clearly, the

Fig. 1. Clustering parameters on simulated data.Y -axis: scores of
five simulation setupsr = 6, 10, 15, 20, 25 in different gray scale
colors. (A) Scores are Homogeneity (H), separation (S) and their ratio
on the original data. (B) Scores are Homogeneity (H ∗), separation
(S∗), their ratio and CQS on the projected (reduced) data. Numbers
are average of 10 runs.

monotonicity of the homogeneity, separation and their ratio
as a function ofr, which is manifested on the original data,
is preserved on the reduced data. The same monotonicity was
observed in each of the 10 repetitions. Also, as expected, CQS
improves monotonically withr.

The projected data for two simulations withr = 6 and
r = 25 are visualized in Figure 2. Forr = 6, the clusters look
very similar, even though the data were reduced using the best
separating linear combination. On the other hand, forr = 25,
inter-cluster separation of most clusters is clearly visible.

B. The effect of solution accuracy on CQS. To test the sensit-
ivity of CQS to the clustering solution, we simulated data with
r = 25, and compared CQS of the true partition with that of
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Fig. 2. Box plots for the projection of five simulated clusters with
r = 6 (A) andr = 25 (B) after dimensionality reduction. They-axis
is the real-valued projection of the elements. Each box-plot depicts
the median of the distribution (dot), 0.1 and 0.9 distribution quantiles
(white box), and the maximum and minimum values.

Fig. 3. Effect of the solution accuracy on CQS. The accuracy of
different clustering solutions is measured by the number of inter-
cluster exchanges introduced in the original solution.X-axis: number
of exchanges.Y -axis: CQS (black bars, left scale) and Jaccard
coefficient (gray bars, right scale).

other, similar and remote partitions. Those were produced by
starting with the true solution and repeatedly exchanging a
randomly chosen pair of elements from different clusters. As
evident from the results in Figure 3, CQS is highest for the
true partition and decreases with the number of exchanges
applied (200 exchanges generate an essentially random parti-
tion, so further exchanges have no effect). We also computed
for each intermediate solution its Jaccard score. As expected,
the Jaccard coefficients of these solutions decrease with the
number of exchanges.

C.Sensitivity of CQS to the number of clusters. Our next goal
was to test the sensitivity of CQS with respect to the number
of clusters. A robust score is essential for comparing solu-
tions with different number of clusters. To this end we tested
how CQS changes when splitting or merging clusters. For the
splitting test we simulated data withr = 25. We compared
the true 5-cluster solution with a 25-cluster solution obtained
by randomly splitting each of the 5 clusters into 5 equal-size
sub-clusters. This test was repeated 10 times. The parameters
of the solutions before and after the splitting, averaged over
10 runs, are shown in Figure 4A. In all runs, as well as on
the average, we observe a decrease of the clustering quality
measures. The decrease ofS/H is maintained (and even made
more pronounced) in CQS and on the reduced data (S∗/H ∗).

Fig. 4. Comparison between clustering solutions on simulated data
after splitting clusters (A) or merging clusters (B). Each diagram
shows CQS,S∗/H ∗ andS/H (y-axis) of the true solution (gray) and
the modified solution (black). Numbers are average of 10 runs.

For the merging test, we simulated two 5-cluster data sets
with r = 25 andr = 6 as above, usingn = 25. We then
combined these data sets into a single data set whose true
solution consists of 10 equal size clusters with 25 genes each.
We next merged pairs of clusters, one from each original
data set, to form in total five clusters with 50 genes each.
These five clusters comprised the alternative (merged) solu-
tion. Figure 4B shows the parameters of the resulting partition
before and after the merging, averaged over 10 runs. As in the
splitting test, all the measures decrease due to the merging,
and this is observed in all runs, as well as on the average.
The decrease ofS/H is maintained and enlarged inS∗/H ∗
and CQS.

Next, we tested the agreement of CQS with Jaccard coef-
ficient: we simulated 5-cluster data withr = 25 and applied
K-means (MacQueen, 1965; Ball and Hall, 1967) to the data,
with K = 2, . . . , 15. SinceK-means seeks a clustering solu-
tion withK clusters, we expect the solution’s quality to decline
as the difference|K−5| increases. A good score should mani-
fest such trend. We computed CQS and Jaccard coefficient
for each clustering solution, as well asS/H . The results are
shown in Figure 5. CQS behaves as the Jaccard coefficient
andS/H , with a maximum atK = 5, the true number of
clusters. Moreover, the ranking of all 14 solutions according
to the Jaccard score (which is based on the true solution) and
according to CQS (which is based on the attributes only) are
virtually identical. The ratio score also does quite well, with
a maximum atK = 5. However, the ranking of solutions by
this score does not agree with the Jaccard score.

D. CQS ability to detect fine clustering structures. Our next
goal was to test the ability of CQS to identify fine structures
in the data. Profiles of 30 binary attributes were generated for
four clusters ofn = 50 genes each. For each attribute, its fre-
quencies in clusters 1, 2, 3 and 4 were set to 2,b, 50−b and 48,
respectively. We simulated data sets withb = 3, 5, 10, 15, 20.
For each data set, we scored two clustering solutions: the
original 4-cluster solution, and a 2-cluster solution obtained
by merging cluster 1 with 2 and merging cluster 3 with 4.
Thus, for large values ofb we expect the 4-cluster solution to
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Fig. 5. Comparison of quality measures on solutions of various
accuracies. Scores are plotted for differentK-means’ solutions.
X-axis:K-means’ solutions withK = 2, . . . , 15.Y -axis: CQS (light
gray), Jaccard (black) andS/H (gray) scores. The true number of
clusters is 5.

score higher than the 2-cluster solution. Note that unlike the
previous simulations, where distributions of individual attrib-
utes were designed to differ between clusters, here it is only
the overall attribute density which is directly controlled. This
design is the binary equivalent to the Gaussian clusters with
different means that appears, e.g. in Pollard and van der Laan
(2002). For each data set and each of the two solutions, we
computedS/H , CQS and the average silhouette score.

The ratios of the 4-cluster to 2-cluster scores, averaged over
10 runs, are presented in Figure 6. As expected, the ratios are
increasing withb in all scores. The silhouette for the 2-cluster
solution is always greater than for the corresponding 4-cluster
solution. Similarly, forb = 3, 5, 10, 15,S/H is greater for the
2-cluster solution. In all those cases, the scores would prefer
the incorrect, 2-cluster solution. In contrast, CQS is able to
identify the fine structure in the data: for allb values except
b = 3, CQS rates the 4-cluster solution above the 2-cluster
solution, as desired. Forb = 3, the 2-cluster CQS is higher
than the 4-cluster CQS, since there is almost no difference
between the clusters with 2 or 3 occurrences of attributes, and
between the clusters with 47 or 48 occurrences.

Yeast cell-cycle data
We also tested our approach on clustering solutions computed
on the yeast cell-cycle data set of Spellmanet al. (1998).
The data set contains 72 expression profiles from yeast cul-
tures synchronized by four independent methods:α factor
arrest, arrest of a cdc15 temperature sensitive mutant, arrest
of a cdc28 temperature sensitive mutant and elutriation. [As
in Tamayoet al. (1999), an additional 90 min data point in
the cdc15 experiment was not used.] Spellmanet al. (1998)

Fig. 6. Ability of the different scores to distinguish similar clusters.
We simulated 4-cluster data with attribute frequencies 2,b, 50−b, 48,
and used different values forb. We obtained a 2-cluster solution by
merging cluster 1 with 2 and 3 with 4.X axis: value ofb in the
simulation.Y -axis: the ratio of the scores for the 4-cluster and 2-
cluster solutions. The scores are silhouette (gray),S/H (dark gray)
and CQS (black).

identified in these data 800 genes that are cell-cycle regulated.
We used the expression levels of 698 out of those 800 genes,
which have up to three missing entries, over the 72 condi-
tions. The missing entries in each gene were completed with
the average of its present entries. Each row of the 698× 72
matrix was normalized to have mean 0 and variance 1.

Based on the analysis conducted by Spellmanet al. (1998),
we expect to find in the data five main clusters, each one
corresponding to genes peaking in one of the cell cycle
phases (G1, S, G2, M and M/G1). The 698× 72 data
set was clustered using four clustering methods:K-means
(MacQueen, 1965; Ball and Hall, 1967), SOM (Kohonen,
1997; Tamayoet al., 1999), CAST (Ben-Doret al., 1999)
and CLICK (Sharan and Shamir, 2000; Sharanet al., 2003).
The solutions ofK-means, SOM and CLICK were obtained
using the EXPANDER software (Sharanet al., 2003). CAST’s
solution was produced by the authors of the software and
is the same as reported in (Shamir and Sharan, 2002). The
K-means algorithm was executed withK = 5. The SOM
algorithm was executed on a 2× 3 grid and produced six
clusters. The CAST solution has five clusters. CLICK was
executed with default parameters and generated a solution
with six clusters and 23 singletons. Each singleton was sub-
sequently assigned to its closest cluster in order to produce a
solution with no singletons. The similarity measure used in
all cases was Pearson correlation coefficient. Another solution
that we included in the analysis is the one reported in Spellman
et al. (1998), which was generated by manually dividing the
genes into five groups using their peak of expression, in order
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to approximate the five cell-cycle phases. We shall refer to it
as the ‘true’ solution.

To evaluate the five solutions, we used as gene attributes the
GO classes (The Gene Ontology Consortium, 2000) at level
5 of the ontology, including process, function and component
attributes. In addition, we used the MIPS annotation (Mewes
et al., 2002) at level 4. We removed attributes indicating that
the functional class of the gene is still unknown and used only
attributes that occur in at least four of the genes. Overall we
used 51 GO process attributes, 37 GO function attributes, 27
GO component attributes and 59 MIPS attributes. We applied
the analysis to 370 genes that had at least one attribute. CQS
was computed three times, using the GO process attributes
only, all GO attributes, and the MIPS attributes only. The
results are depicted in Figure 7. For comparison purpose, we
also scored a random clustering of the data into five equal-size
clusters.

The random solution consistently obtained the lowest scores
in all annotation categories. Using the process GO annotation
(Fig. 7A), the CLICK, CAST and SOM solutions achieved
the highest scores. Notably, they are scored higher than the
‘true’, K-mean and random solutions. When using all GO
annotations (Fig. 7B), a similar pattern of scores is observed.
Qualitatively, we got the same results when using GO annota-
tions at level 4 of the hierarchy (data not shown). When
evaluating all solutions based on MIPS level 4 annotations
(Fig. 7C), CAST achieved the highest score. This exemplifies
the fact that different biological attributes lead to different
evaluations of clustering solutions.

In a different test, we ran SOM with 2, 3,. . . , 8 clusters on
the same data set and calculated CQS of each solution. Clear
best results were obtained for 5 and 6 clusters, as expected,
(28± 1, 29± 1 respectively, with all other cluster solutions
scored below 23).

Next, we present an analysis of CQS for the CLICK solu-
tion using all 115 GO attributes. Figure 8A is a scatter plot
of weight versus enrichment for each attribute, using this
solution. Theenrichment of a k-cluster solution for a given
attribute, is defined by−logp wherep is thep-value of the
G-test of independence (Sokal and Rohlf, 1995) with a 2× k

table. It tests independence between element attributes and
the partition into clusters. Note that theG-test enables us to
evaluate functional enrichment for more than a single cluster.
The frequently used hyper-geometric Fisher exact test of inde-
pendence (Sokal and Rohlf, 1995) tests functional enrichment
of a single cluster only.

As expected, the highest ranking attributes (both using the
weights and the enrichment) are related to cell cycle. Notably,
there is a correlation between the enrichment of an attrib-
ute and the absolute value of its assigned weight (Fig. 8B).
This correlation is expected, since more enriched attributes
can contribute more to our ability to discriminate between the
clusters and, thus, they are expected to have higher weights.
However, we do not expect a perfect correlation between the

A

B

C

Fig. 7. CQS of six clustering solutions for the yeast cell cycle data of
Spellmanet al. (1998). CQS is computed using GO level 5 process
attributes only (A), all GO level 5 attributes (B) and MIPS level 4
attributes (C). Y -axis: CQS.X-axis: clustering solutions. CQS for
each clustering solution is presented along with its confidence, by
computing the standard deviation of 10 other solutions achieved by
seven random pair exchanges in the original solution.
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A

B

C

Fig. 8. Attribute weights and enrichment values in the CLICK solu-
tion to the cell cycle data of Spellmanet al. (1998), using all GO
attributes. (A) A scatter plot of enrichment (y-axis) versus weight
(x-axis), for each GO attribute. Attributes with high absolute weights
(>0.15) are marked in black. Attributes with high enrichment (>3)
are circled. (B) The 22 most enriched attributes. High attribute
values in enrichment (>3) or weight (>0.15) are highlighted. Note
that the 14 top weighted attributes are contained in the 22 most
enriched attributes. (C) The distribution and co-occurrence of the
attributes ‘DNA metabolism’, ‘DNA replication’ and ‘Chromo-
some organization and biogenesis’ in the six clusters of the CLICK
solution.

two measures, since the goals of the attributes weighting and
the enrichment measure are different and, more importantly,
because theG-test takes into consideration each attribute
separately, while the weights are computed by considering all
attributes together and, thus, they reflect relations between
attributes. For example, consider the ‘DNA metabolism’
attribute, which deviates significantly from the correlation
(Fig. 8C). The enrichment of ‘DNA metabolism’ in clusters 1
and 2 overlaps to a large extent with that of ‘DNA replication’
and ‘Chromosome organization and biogenesis’, and this is
partially reflected in their weights. Therefore, the weight of
‘DNA metabolism’ is lower than expected.

DISCUSSION
Clustering is a central tool in gene expression analysis. Dif-
ferent clustering methods usually produce different solutions,
of which one has to pick one or few preferred solutions. We
propose here a method called CQS for evaluating a cluster-
ing solution based on its biological relevance. Our method
can be applied to compare the functional enrichment of many
biological attributes simultaneously in different clustering
solutions. In addition, it may be applied to optimize the para-
meters of a clustering algorithm (e.g. to determine the number
of clusters). The method is based on using attributes of the
clustered elements, which are available independently from
the data used to generate the clusters.

We empirically validated CQS using a variety of simula-
tions. Our scoring method was shown to outperform previous
numeric methods for clustering evaluation, including the
separation to homogeneity ratio and the average silhouette
measure. We also applied CQS to compare between differ-
ent clustering solutions of the cell cycle data set of Spellman
et al. (1998) using binary attributes from the GO and MIPS
annotation databases.

According to our results, CQS is sensitive to small modifica-
tion of the clustering solution and to changes in the simulation
setting. In order to evaluate the significance of the difference
in CQS between clustering solutions, we use a CQS confid-
ence measure. For example, the CAST, CLICK and SOM
solutions in Figure 7A and B, cannot be meaningfully ranked
by their scores. We may only conclude that CAST, CLICK
and SOM have higher scores than the ‘True’, Random and
K-means solutions. According to the results, although the
‘True’ solution was hand crafted in order to approximate the
cell cycle phases, the solutions produced by CAST, CLICK
and SOM are more aligned with the biological attributes.
We note that these results should be treated with caution
since the database annotations are incomplete and may be
biased.

The attribute weights were computed using information
about all the attributes together, without assuming that the
attributes are independent. Frequently, the functional enrich-
ment of each attribute in each cluster, is computed separately
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[e.g. Tavazoieet al. (1999)]. In such cases, since the attrib-
utes might be dependent (as we exemplify in Fig. 8B), the
real fraction of functionally enriched attributes might be over
estimated.

CQS can be applied to a wide range of other attribute types.
For example, one can use continuous attributes corresponding
to sequence motifs, that represent the likelihood of having that
motif. CQS has the advantage that it can use such continuous
data without any assumption on the data distribution.

ACKNOWLEDGEMENTS
This study was supported in part by a research grant from
the Ministry of Science and Technology, Israel. I.G.-V. was
supported by the Colton Foundation. R. Sharan was supported
by a Fulbright grant.

REFERENCES
Ball,G. and Hall,D. (1967) A clustering technique for summarizing

multivariate data.Behav. Sci., 12, 153–155.
Ben-Dor,A., Shamir,R. and Yakhini,Z. (1999) Clustering gene

expression patterns.J. Comput. Biol., 6, 281–297.
Ben-Hur,A., Elisseeff,A. and Guyon,I. (2002) A stability based

method for discovering structure in clustered data.Pac. Symp.
Biocomput., 6–17.

Bishop,Y., Fienberg,S. and Holland,P. (1975)Discrete Multivariate
Analysis: Theory and Practice. MIT Press, Cambridge, MA.

Dudoit,S. and Fridlyand,J. (2002) A prediction-based resampling
method for estimating the number of clusters in a dataset.Genome
Biol., 3, 0036.1–0036.21.

Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998)
Cluster analysis and display of genome-wide expression patterns.
PNAS, 95, 14863–14868.

Everitt,B. (1993)Cluster Analysis. 3rd edn. Edward Arnold, London.
Hansen,P. and Jaumard,B. (1997) Cluster analysis and mathematical

programming.Math. Program., 79, 191–215.
Hartigan,J. (1975)Clustering Algorithms. Wiley, New York.
Huberty,C. (1994) Applied Discriminant Analysis. Wiley,

New York.
Katz,B. and McSweeney,M. (1980) A multivariate Kruskal–Wallis

test with post hoc procedures.Multivariate Behavioral Res., 15,
281–297.

Kaufman,L. and Rousseeuw,P. (1990)Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley New York.

Kohonen,T. (1997)Self-Organizing Maps. Springer, Berlin.
MacQueen,J. (1965) Some methods for classification and ana-

lysis of multivariate observations. InProceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability.
pp. 281–297.

McLachlan,G.J. (1987) On bootstrapping the likelihood ratio test
statistic for the number of components in a normal mixture.Appl.
Stat., 36, 318–324.

McLachlan,G.J. (1992)Discriminant Analysis and Statistical
Pattern Recognition. Wiley, New York.

Mendez,M., Hoedar,C., Vulpe,C., Gonzales,M. and Cambiazo,V.
(2002) Discriminant analysis to evaluate clustering of gene
expression data.FEBS Lett., 522, 24–28.

Mewes,H.W., Frishman,D., Guldener,U., Mannhaupt,G., Mayer,K.,
Mokrejs,M., Morgenstern,B., Munsterkotter,M., Rudd,S. and
Weil,B. (2002) MIPS: a database for genomes and protein
sequences.Nucleic Acid Res., 30, 31–4.

Pesarin,F. (2001)Multivariate Permutation Tests. Wiley, New York.
Pollard,K. and van der Laan,M. (2002) A method to identify

significant clusters in gene expression data. InSixth World
Multiconference on Systemics, Cybernetics, and Informatics, to
appear.

Shamir,R. and Sharan,R. (2002) Algorithmic approaches to clus-
tering gene expression data. In Jiang,T., Smith,T., Xu,Y. and
Zhang,M. (eds.),Current Topics in Computational Biology. MIT
Press, Cambridge, MA, pp. 269–299.

Sharan,R., Elkon,R. and Shamir,R. (2002) Cluster analysis and its
applications to gene expression data. In Mewes,H.-W., Seidel,H.
and Weiss,B. (eds.),Bioinformatics and Genome Analysis.
Springer, Berlin, pp. 83–108.

Sharan,R., Maron-Katz,A. and Shamir,R. (2003) Click and expander:
a system for clustering and visualizing gene expression data.
Bioinformatics, in press.

Sharan,R. and Shamir,R. (2000) CLICK: a clustering algorithm
with applications to gene expression analysis. InProceedings of
the Eighth International Conference on Intelligent Systems for
Molecular Biology (ISMB). pp. 307–316.

Sokal,R. and Rohlf,F. (1995)Biometry. Freeman, San Fransisco.
Sokal,R.R. (1977) Clustering and classification: background and

current directions. In Van Ryzin,J. (ed.),Classification and
Clustering. Academic Press, London, pp. 1–15.

Spellman,P.T., Sherlock,G., Zhang,H.Q., Iyer,V.R., Andres,K.,
Eisen,M.B., Brown,P.O., Botstein,D. and Futcher,B. (1998) Com-
prehensive identification of cell cycle-regulated genes of the yeast
Saccharomyces cerevisiae by microarray hybridization.Mol. Biol.
Cell, 9, 3273–3297.

Stephanopoulos,G., Hwang,D., Schmitt,W., Misra,J.
and Stephanopoulos,G. (2002) Mapping physiological
states from microarray expression measurments.Bioinformatics,
18, 1054–1063.

Tamayo,P., Slonim,D., Mesirov,J., Zhu,Q., Kitareewan,S.,
Dmitrovsky,E., Lander,E.S. and Golub,T. (1999) Interpreting pat-
terns of gene expression with self-organizing maps: methods and
application to hematopoietic differentiation.Proc. Natl Acad. Sci.
USA, 96, 2907–2912.

Tavazoie,S., Hughes,J.D., Campbell,M.J., Cho,R.J. and
Church,G.M. (1999) Systematic determination of genetic
network architecture.Nat. Gene., 22, 281–285.

The Gene Ontology Consortium (2000) Gene Ontology: tool for the
unification of biology.Nat. Gene., 25, 25–29.

Tibshirani,R., Walther,G. and Hastie,T. (2000) Estimating the num-
ber of clusters in a dataset via the gap statistics. Technical report,
Stanford University, Stanford.

Yeung,K., Haynor,D. and Ruzzo,W. (2001) Validating clustering for
gene expression data.Bioinformatics, 17, 309–318.

2389



BIOINFORMATICS Vol. 19 Suppl. 1 2003, pages i108–i117
DOI: 10.1093/bioinformatics/btg1014

Chain functions and scoring functions in genetic
networks
I. Gat-Viks ∗ and R. Shamir

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Received on January 6, 2003; accepted on February 20, 2003

ABSTRACT
One of the grand challenges of system biology is to
reconstruct the network of regulatory control among
genes and proteins. High throughput data, particularly
from expression experiments, may gradually make this
possible in the future. Here we address two key ingredients
in any such ‘reverse engineering’ effort: The choice of
a biologically relevant, yet restricted, set of potential
regulation functions, and the appropriate score to evaluate
candidate regulatory relations.

We propose a set of regulation functions which we call
chain functions, and argue for their ubiquity in biological
networks. We analyze their complexity and show that
their number is exponentially smaller than all boolean
functions of the same dimension. We define two new
scores: one evaluating the fitness of a candidate set of
regulators of a particular gene, and the other evaluating a
candidate function. Both scores use established statistical
methods. Finally, we test our methods on experimental
gene expression data from the yeast galactose pathway.
We show the utility of using chain functions and the
improved inference using our scores in comparison to
several extant scores. We demonstrate that the combined
use of the two scores gives an extra advantage. We expect
both chain functions and the new scores to be helpful in
future attempts to infer regulatory networks.
Contact: {iritg,rshamir}@post.tau.ac.il

INTRODUCTION
The regulation of mRNA transcription is critical to cellu-
lar function. Large-scale gene expression (GE) measure-
ments, using, e.g. DNA microarrays (Derisi et al., 1997;
Lockhart et al., 1996), may enable the reconstruction of
the regulatory relations among genes. By the regulatory
relation of a target gene, we mean the set of genes that
together regulate it, and the particular logical function by
which this regulation is determined. This paper focuses on
inference of regulatory relations from GE profiles.

Most current expression analysis tools are based on clus-
tering (e.g. Eisen et al. (1998), Ideker et al. (2001) and

∗To whom correspondence should be addressed.

Sharan et al. (2002)). Such analyses successfully reveal
genes that are co-regulated, but not their regulatory re-
lations. More advanced approaches rely on mathematical
models of the regulation process. Different models at var-
ious levels of detail have been suggested. These include
boolean (Ideker et al., 2000; Akutsu et al., 1999; Liang et
al., 1998), qualitative (Thieffry and Thomas, 1998), lin-
ear (Dhaeseleer et al., 1999), differential equations (Chen
et al., 1999) and detailed biochemical models (Arkin et
al., 1998).

A key obstacle in the inference of regulation relations is
the large number of possible solutions, and consequently
the unrealistically large amount of data needed to identify
the right one. This inherent complexity of genetic network
inference (Akutsu et al., 1998, 1999) led researchers
to seek ways around this problem. Ideker et al. (2000)
studied how to dynamically design experiments so as to
maximize the amount of information extracted. Friedman
et al. (2000) used Bayesian networks to reveal only parts
of the genetic network which are strongly supported by the
data. Hanisch et al. (2002) and Ideker et al. (2002) used
prior knowledge about the metabolic network structure in
order to identify relevant processes in GE data. Another
approach to tackle the complexity issue is to reduce the
set of allowed network models. Tanay and Shamir (2001)
suggested a method of ‘network expansion’, in which one
starts from a partially known network and augments it
according to the GE data. Pe’er et al. (2002) make certain
biologically-motivated assumptions on the local topology
of the network, which reduce the space of possible global
networks. Several other works used restrictive models
of regulation relations (e.g. decision trees (Segal et al.,
2001)).

In this paper, we study two nuclear problems in regula-
tion relation inference, which are at the heart of inferring
transcription networks: (1) determining the set of regula-
tors of a gene (the gene is called regulatee and the set
is called its regulators set), and (2) deducing the precise
mathematical function by which the regulators set deter-
mines the gene’s transcription (the regulation function).
We assume throughout a boolean model, i.e. each of the
candidate regulators and regulatees can be in one of two
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states: expressed (present) or non-expressed (absent). The
inference of regulatory relation of a single gene is a fun-
damental step in the long-term effort to infer regulation
networks.

To study these problems we design two new methods
which evaluate how well a candidate regulatory relation
of a particular regulatee fits experimental data. Such
fitness scores are essential in order to pick the right
relation among many candidates. Our first score evaluates
the specificity of the regulators set. The second score
evaluates how well a particular regulation function (for a
given regulators set) fits the data. Both scoring functions
utilize established statistical methods, and are expressed
as p-values, and thus are not very sensitive to over-
fitting. Moreover, due to the Gaussian shape of these
scoring functions, they always score only a few solutions
at the high end. The two scores are affected differently
by different problem parameters, so using both scores in
combination gives an added advantage.

The second component of this work is the introduction
and study of a novel family of regulation functions called
chain functions. In a chain function, the state of the
regulatee depends on the influence of its direct regulator,
whose activity may in turn depend on the influence of
another regulator, and so on in a chain of dependencies
(we will provide formal definitions later). The class of
chain functions has several important advantages: First, as
we shall argue, these functions reflect common biological
regulation behavior, and often occur in networks, so many
real biological regulatory relations can be elucidated using
them. Second, as we shall show, the number of chain
functions with n control variables is �(n! · (log2 e)n+1).
This number is exponentially smaller than the total
number of boolean functions. Hence, by limiting inference
to chain functions, we reduce exponentially the size of the
candidate solution search space.

We apply our approach to transcription profiles of the
yeast galactose pathway (Ideker et al., 2001). First, we
demonstrate the advantages of using chain functions in-
stead of searching through all boolean functions. Second,
we use the yeast galactose pathway of Ideker et al. (2001)
to compare our scores to several other fitness scores which
were previously proposed for network inference, and show
that on these data, our score outperforms them. Third, we
show that by using in combination our two scores for reg-
ulator set and regulation function, we can obtain very high
ranking of the correct solution.

The paper is organized as follows. We start by providing
a formal framework for the model. We then define the
chain functions, motivate them biologically and present
their analysis. Next, the fitness scores are presented and
analyzed. Finally, results on real transcription profiles are
reported.

THE NETWORK MODEL
In this section we describe the formal model for our
analysis and tools. The formalism follows Tanay and
Shamir (2001) and Liang et al. (1998).

The set of all variables is denoted by U . These may
include genes, mRNAs, proteins and ligands such as
disaccharides and amino acids. The set of states that each
variable in U may attain is denoted by V . A candidate
regulation function for a variable g which is regulated by
n variables Rn ⊆ U , has the form f g : V n → V . In
other words, the state of g is a function of the states of
the variables in Rn . We use the term regulatee for the
regulated variable g, and the term regulator (of g) for
each variable in Rn . The regulator set may actually include
biological regulator, co-regulators, co-factors, etc.

The GE data consist of l conditions, E = {e1, . . . , el}.
Condition j is defined by a vector of levels (typically
expression ratios) for each variable in U , and by a set
of variables that were externally perturbed (knocked-
out or over-expressed) in condition j . These externally
perturbed variables must be indicated, as their levels are
not determined by their regulation functions. We assume
that the data are of steady state, so additional synchrony
assumption is not needed, and the states of the regulators
determine the state of the regulatee in the same condition.
A simple modification of the model applies to time-series
synchronous data, where the state of the regulatee is taken
at one time point later than that of the regulators (cf. Tanay
and Shamir (2001)).

We will narrow the range of network models by adding
constraints as follows: We assume that the states are
discrete, and that the functional relations are deterministic.
Each variable can have only two levels: either on (1) or off
(0), i.e. V := {0, 1}. This can be achieved, for example,
by setting a threshold on the input data values. We shall
use state(x, j) to denote the binary value of variable
x in condition j , and suppress j whenever possible
for readability. Each regulatee is regulated through a
boolean function of at most n arguments. The boolean
model is a drastic simplification of real biology, yet it
captures important features of biological systems. Similar
simplifying choices are frequently made in order to reduce
the number of degrees of freedom, and to avoid over-fitting
(cf. Akutsu et al. (1999) and Kauffman (1974)).

CHAIN FUNCTIONS
We now propose a class of regulation functions, called
chain functions. We argue that this class covers many
common regulation scenarios in biology. We analyze the
chain functions and show that the set of chain functions is
exponentially smaller than the set of all boolean regulation
functions.
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Definitions. We first define some related terms. Recall
that the state of variable in a condition is 1 if that variable
is present and 0 if it is absent. The chain function f g0

on the variables gn, . . . , g1 will determine the value of
the regulatee g0. The order of the variables is important,
as it reflects the order of influence among them, as will
be explained below. For that reason, we shall sometimes
refer to Rn as the ordered set gn, . . . , g1. We call gi
the predecessor of gi−1 and the successor of gi+1. f g0

depends on n auxiliary control bits cn, . . . , c1 that attain
values A or R. The semantic is that ci = A (R)
if gi activates (represses) gi−1. These two options are
exhaustive. Note that the activation or repression by gi is
of gi−1 and not of the regulatee g0. We also call ci = A
and ci = R positive and negative control, respectively.

The control bit ci defines whether a regulator gi is a
repressor or an activator of its successor gi−1. However,
this effect takes place only if the regulator gi is currently
active. Consider, for example, a regulator g2 with control
bit A. g2 will activate g1, but only if g2 is actually active.
Inactivity may be due to its absence, or g2 might be present
and inactive, if it is repressed by its predecessor g3. To
define this situation, we use two concepts: the activity
of a variable a(gi ) and its influence on its successor
in f l(gi ). Activity can be either 0 or 1; influence can
be either positive (P) or negative (N). Their definitions
are recursive. The influence on gn is always positive.
Formally, in f l(gn+1) = P . The activity of gi is 1 iff the
influence on it is positive and its state is 1:

a(gi ) = 1 i f f (in f l(gi+1) = P and state(gi ) = 1)

(1)
The influence of gi on gi−1 is defined by:

in f l(gi ) = P i f f

{
ci = A and a(gi ) = 1, or
ci = R and a(gi ) = 0 (2)

Equivalently, in f l(gi ) = N iff [ci = A XOR a(gi ) = 1].
Finally, the state of the regulatee g0 is simply the influence
of g1: f g0(gn, . . . , g1) = 1 iff in f l(g1) = P .

Even if g0 is regulated by the function f g0 , usually,
due to experimental noise, not all conditions will manifest
f g0 . We say that condition j is consistent with f g0

if state(g0, j) = f g0(gn, . . . , g1), where the states of
gn, . . . , g1 are taken in condition j .

The control pattern of f g0 is the binary vector
cn, . . . , c1. For example, RAARR is the control pat-
tern for a function with c5 = c2 = c1 = R and
c4 = c3 = A. The state pattern of the variables of
f g0 is state(gn), . . . , state(g1). For example, 10100
corresponds to state(g5) = 1, state(g4) = 0 etc.

Biological motivation. We present below several biological
examples that explain the motivation for defining chain
functions. The Trp operon of E. Coli is a classic example

(Neidhardt, 1996). If the promoter of the Trp operon
is bound by a repressor (TrpR), the expression of the
tryptophan-producing enzymes is prevented. The blocking
of expression is regulated in the following way: to bind
to its promoter DNA, TrpR must have two tryptophan
molecules (L-Trp) bound to it. This is an example of
negative control, where removal of the ligand switches
the Trp operon on. This example corresponds to a chain
function with n = 2 (see Figure 1A), where g0, the
regulatee, is the Trp operon, g1 is TrpR, and g2 is L-Trp.
c2, the control bit of the L-Trp, is A, since L-Trp activates
TrpR. c1 = R, since TrpR represses the transcription of
the regulatee. The activity of L-Trp (g2) depends only on
its presence. Thus, if L-Trp and TrpR are present (the state
pattern is 11), then a(g2) = 1 and thus in f l(g2) = P ,
which implies that a(g1) = 1, and so in f l(g1) = N , so
we expect no expression of g0. One can compute similarly
the expression level for any other state pattern.

Another well known example of a generic regulation
switch is galactose utilization in the yeast S. cerevisiae
(Jones et al., 1992). This process occurs in a biochemical
pathway that converts galactose into glucose-6-phosphate.
The transporter gene gal2 encodes a permease that trans-
ports galactose into the cell. A group of enzymatic genes,
gal1, gal7, gal10, gal5 and gal6, encode the proteins re-
sponsible for galactose conversion. The regulators gal4p,
gal3p and gal80p control the transporter, the enzymes,
and to some extent each other (Xp denotes the protein
product of gene X). In the following, we describe the
regulatory mechanism, assuming that glucose is absent in
the medium. gal4p is a DNA binding factor that activates
transcription. In the absence of galactose, gal80p binds
gal4p and inhibits its activity. In the presence of galactose
in the cell, gal80p binds gal3p. This association releases
gal4p, so that gal4p actually activates transcription. This
mechanism can be viewed as a chain function, where
(g4, g3, g2, g1) = (galactose, gal3, gal80, gal4), and
the corresponding control pattern is ARRA. The known
regulatees are gal1, gal7,gal10, gal5, gal6 and gal2 (see
Fig. 1B).

In general, two fundamental mechanisms by which gene
regulatory proteins control gene transcription are negative
regulation via transcriptional repressors, and positive reg-
ulation via transcriptional activators. Inducing ligands can
turn a gene ‘on’ by either activating transcriptional acti-
vator or repressing transcriptional repressor. Likewise, in-
hibitory ligands can turn ‘off’ a gene either by inactivat-
ing an activator or activating a repressor. These mecha-
nisms are simple cases of chain functions. Examples in
Escherichia coli include the lac operon repression by the λ

repressor and lactose, araBAD operon activation by araC
and arabinose, and the CAP activator in the presence of
cAMP (Neidhardt, 1996). More complex regulation func-
tions, such as the signal transduction controlling the SOS
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Fig. 1. Chain functions. (A) Trp operon regulation. (B) galactose pathway regulation.

response in E.coli (Neidhardt, 1996), and genes expres-
sion during the development of the drosophila’s embryo
(Mannervik et al., 1999), might be also viewed as chain
functions.

In more complex situations, one simple chain function
may not be enough. Some systems should be modeled
by several chains combined by boolean operators. (e.g.
the general amino acids control chain, which operates
in conjugation with the arginine specific regulatory
chain (Jones et al., 1992)). Several regulators which have
the same functionality may be modeled as alternative
regulators in a single node along the chain. (e.g. Fus3
and Kss1 in the S. cerevisiae pheromone response). In
addition, we might need more levels of discretization.
The key concept in chain functions is that activity level
of a regulatee is determined by a chain of influences.
This concept is not limited to a boolean model (see also
concluding remarks). The chain functions as defined here
can be used as basic building blocks for modeling more
sophisticated regulation systems.

Direct effectors. Genetic networks are frequently repre-
sented as wiring diagrams, which show ‘who regulates
whom but not how’. The direct effectors of g0 are defined
as the minimal set of variables with the property that given
any combination of their states, the state of g0 is indepen-
dent of any other variable. A wiring diagram is a directed
graph in which the parents of a regulatee are its direct ef-
fectors. It is easy to see that every regulator in a chain
function is a direct effector of the regulatee (a proof ap-
pears in Appendix A), and no variable outside gn, . . . , g1
is a direct effector. An arrow in a chain function diagram
reflects influence between regulators which are both direct
effectors of g0, and should not be confused with arcs in the
wiring diagram, which represent direct transcription effect
of the parent on the child.

Note that direct effectors are not necessarily limited
to cis-regulatory elements (e.g. transcription factors and
ligands) acting directly on the promoter of the regulatee.
In fact, additional molecules with no direct connection or
physical proximity to the promoter may be direct effectors,
as demonstrated in the galactose example. Chain functions
exemplify that very remote effectors can sometimes be
included in the (so called) direct effectors set.

Chain layers. Any control pattern may be separated into
layers, by truncating the control pattern after each R.
For example, the pattern AR R AR AAAA has four layers:
l4 = AR, l3 = R, l2 = AR and l1 = AAAA. The first
layer has two possible layer types A . . . A or A . . . AR,
and all other layers must have the type A . . . AR. For
brevity, the former will be called type A and the latter
type R. Note that the number of As in a type R layer may
be zero. Define a permutation on a chain function as a
reordering of the regulators without changing the control
pattern. For example, there are two different permutations
for the chain function f with R2 = {x, y} and control
pattern RR: (x, y) and (y, x). These two permutations
yield different functions: If the states of x and y are 0 and 1
respectively, then f (x, y) = 0 and f (y, x) = 1. Similarly,
if the control pattern is R A, the two permutations yield
different functions. However, it is easy to verify that if the
control pattern of f is AA or AR, the two permutations
yield the same function. Thus, if x and y belong to the
same layer, they can be permuted without changing the
function, and otherwise their permutation yield different
functions. This can be generalized as follows: Given
a chain function f g0(gn, . . . , g1), define a class as a
consecutive group of regulators out of gn, . . . g1 that can
be arbitrarily permuted while keeping the control pattern,
without changing the function. We can show that the layers
partition the regulators into a minimal number of classes
(see Appendix A). This implies that the order of regulators
inside layers is insignificant. Hence, we may focus on the
interaction between layers. The incoming influence from
the previous layer, and the states of regulators inside the
layer, (in fact, the conjunction of their states), determine
the outgoing influence of a layer on the next one.

Layers can be interpreted biologically as follows: In
case the influence on the downstream elements depends
on the cooperation of several factors, this part in the
ordered chain constitutes a layer. Prominent examples are
transcription factor complexes (e.g. Jones et al. (1992))
and the signal activation cascades (e.g. the MAPK cascade
in yeast (Roberts et al., 2000)). As another example, many
arginine biosynthetic genes are regulated by arginine
specific repression of arg80, arg81 and arg82, which
constitute a type R layer (Jones et al., 1992).
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The number of chain functions. A trivial upper bound on
the number of chain functions of n variables is O(2n · n!).
This follows since each control bit can be A or R, and
there are n! possible permutations of the variables. This
bound is exponentially smaller than the total number of n-
variable boolean functions, which is �(22n

), but it ignores
the equivalence classes formed by the layers. In Appendix
A, we study the problem of counting the exact number of
chain functions of n variables, and provide the following
tight asymptotic bound:

THEOREM 1. The number of chain functions with n
control variables is �(n! · (log2 e)n+1).

For example, the total number of boolean functions is 256,
16500, 4.29 · 109 and 1.84 · 1019 for n = 3, 4, 5 and
6, respectively. In contrast, the corresponding numbers of
chain functions are 26, 150, 1082 and 9366. Thus, the
set of chain functions is dramatically smaller than the
set of all possible regulation functions. This allows more
accurate inference of a function from expression data, if it
is assumed to be a chain function.

SCORING FUNCTIONS
Assume the regulatee g0 is fixed. Our goal is to find
the best explanation for the regulation of g0, given the
expression data. This requires a score, or a scoring
function, which evaluates how well a regulation function
fits the data. Several scores, including mutual information,
rSpec and BDE (see Results for more details) were
suggested in previous studies. Here we propose and
analyze two new scores: One evaluates a particular set
of regulators of g0, without attempting to determine the
regulation function itself. The other evaluates a particular
function for a given set of regulators. The scores are
designed to test any regulators set or any candidate
regulation function. In particular, the development and use
of the scores are completely independent from our study
of chain functions.

Regulators specificity. We first wish to evaluate the speci-
ficity of a set of regulators Rn to a certain regulatee g0. We
present here a hypothesis-testing approach to this ques-
tion.

Let M be a matrix summarizing the expression data,
where rows correspond to the r = |V | states of g0, and
columns corresponds to the c ≤ rn state patterns of
Rn which appear in the data. mi j is the number of co-
occurrences of the i th state of g0 with the j th state pattern
of Rn in the same condition.

Consider the null hypothesis H0 that the state of g0 and
the regulators’ state pattern are independent. Rejection of
H0 indicates that the state of g0 depends on the regulators’
state pattern, so there is high correlation of the regulators
and the regulatee. To test the hypothesis, we use the G-test

of independence (Sokal and Rohlf, 1995). The logarithm
of the generalized likelihood ratio statistic λ(M) of the
above hypothesis is ln λ(M) = − ∑r

i=1
∑c

j=1 mi j ·
log

mi j
m + ∑c

j=1 m. j · log
m. j
m + ∑r

i=1 mi. · log mi.
m ,

where m. j = ∑r
i=1 mi j , mi. = ∑c

j=1 mi j and
m = ∑r

i=1
∑c

j=1 mi j . A fundamental property of
likelihood ratio tests in general is that the asymptotic null
distribution of −2 ln λ is χ2

t−t ′ , where the parameter space
of H0 ∪ H1 is t-dimensional and the parameter space of
H0 is t ′-dimensional. This property is known as the Wilks
phenomenon (Wilks, 1938). Accordingly, in our case the
asymptotic null distribution of −2 ln λ(M) is a nearly
χ2

(c−1)·(r−1)-distribution. Therefore, we define regSpec,
the specificity of the set of regulators Rn for g0, as the
p-value that corresponds to the test statistic −2 ln λ(M),
and evaluate it using χ2

(c−1)·(r−1).
ln λ(M) is proportional to the mutual information

between the regulators’ state pattern and the regulatee:
− ln λ(M)

m is precisely I (x : y) = H(x, y) − H(x) − H(y)

(cf. Cover and Thomas (1991)). Mutual information has
been used in several studies of genetic networks (e.g.
Liang et al. (1998), Pe’er et al. (2002) and Friedman et
al. (2000)). regSpec has the advantage of assigning a
probability to the mutual information expression.

regSpec measures the unevenness of the frequencies
mi j for each i . For a fixed number k of conditions,
regSpec evaluates the way k is distributed among the
c × r cells in M . When c is large, most cells will contain
low frequencies and the unevenness will be low. Hence,
regSpec has a bias towards small c values.

The size of matrix M defined above is bounded by 2n+1

for r = 2, so by a naive implementation of regSpec, the
total cost of the computation for a given set of n regulators
and the regulatee is O(l ·n+2n+1). The first part is the cost
of building M and the second, of computing ln λ(M) and
the χ2 approximation. Since typically n < 20, this time is
moderate in practice.

The fitness of a regulation function. We now wish to
evaluate how well a particular regulation function fits
the experimental data. Let S be a state pattern of the
regulators Rn and let f g0 be any regulation function. f g0

determines the expected state of g0 for the state pattern S.
Given a set of conditions E = {e1, . . . el}, the difference
vector � of a particular combination g0, f g0, E, Rn is:
�(S) = |{e j |state(Rn) = S, f g0(S) = state(g0, j)}| −
|{e j |state(Rn) = S, f g0(S) �= state(g0, j)}|. Hence, �

counts the number of agreements (consistent cases) minus
the number of disagreements in the data with f g0 for the
pattern S. We shall refer to � of a particular combination
g0, f g0, E, Rn without explicitly specifying it. The size of
the � vector is c, the number of different state patterns S.

Denote by d0 the number of patterns S in the data with
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�(S) = 0. If e other �(S) values appear, let d1, . . . de
be the number of times each of them appear. Now, rank
the absolute values of the difference vector and to the rank
of each absolute value attach the sign of the difference in
�. In case of a tie, rank by midranks, i.e., tied values are
ranked by their mean rank. Let us denote the ranks whose
signs are negative by R1 < · · · < Ra and those with
positive signs by S1 < · · · < Sk so that c = a + k + d0.

Consider now testing the hypothesis H0 of no difference
between the agreement and disagreement frequencies,
against the alternative that there are more agreements
then disagreements. Thus, rejection of H0 is more likely
if k is large and if the positive signed ranks tend to
be larger than the negative signed ranks. The Wilcoxon
signed rank test (Lehmann and D’abrera, 1975) offers a
simple statistic that combines these criteria in the sum
of the positive signed ranks Vs = S1 + · · · + Sk . H0 is
rejected where Vs is sufficiently large. We define f uncFit
as the p-value that corresponds to the test statistic
Vs . The p-value for Vs is available in the Wilcoxon
standard signed rank table for the null distribution of Vs .
Beyond the range of the table, one can use the normal
approximation, where the expectation and the variance
of Vs are EH0(Vs) = c(c+1)−d0(d0+1)

4 and VarH0(Vs) =
c(c+1)(2c+1)−d0(d0+1)(2d0+1)

24 −
∑e

i=1 di (di +1)(di −1)

48 . Note that
funcFit uses the ranking of the differences only, and
not their actual values. This makes it less sensitive to
inconsistencies or noise.

For a given set of regulators, all possible regulation
functions have the same absolute difference vector. Thus,
for each set of regulators, we may compute once the
absolute differences vector in O(l · |U |) and the midranks,
expectation and variance in O(c log c) (c ≤ min(2n, l)).

When searching the maximum Vs over all boolean
functions, a single computation summing over all ranks
of the non-zeros differences gives the answer in O(c).
However, when the set of functions is restricted, (e.g.
when only chain functions are considered), Vs should be
computed for each regulation function separately, since
each regulation function characterizes a distinct sequence
of ranks (S1, . . . , Sk). There are �(2·n!·(log2 e)n+1) chain
functions, and we need O(c) work in order to sum over
(S1, . . . , Sk) for each one, so the total cost for computing
funcFit for chain functions is O(c · n! · (log2 e)n+1).

The scoring scheme. When we wish to find the best
regulatory relation, we can, in principle, find the best
regulation set using regSpec, and then use funcFit to find
the best function for that set. However, as discussed above,
the two scores have different biases to errors, the amount
of unevenness in each column of M , and c value. Hence,
using the two scores together and seeking regulatory
relations that score high in both is advisable.

RESULTS
To test our methods, we applied them to the yeast
galactose pathway dataset of Ideker et al. (2001). Since
high throughput data of protein levels are currently
unavailable, we use the mRNA expression levels to
model both transcription levels and the abundance of the
proteins, assuming that the amount of mRNA presented
in the cell is indicative of its protein levels. The dataset
contains 23 expression profiles, each corresponding to
some perturbation in the galactose pathway. Guided by
the current galactose system model, wild-type and nine
genetically altered yeast strains were examined, each with
a complete deletion of one of the nine galactose pathway
genes: gal2�, gal1�, gal5�, gal7�, gal10�, gal3�,
gal4�, gal6� and gal80�. Each of the nine strains was
also perturbed environmentally by growth in the presence
of galactose (+gal), and in the absence of galactose (-gal).
Additionally, three double perturbations were performed:
gal80�gal2� -gal, gal80�gal4� -gal and gal10�gal1�

+gal. The reference to all these conditions is the wild-
type, grown in +gal media. Ideker et al. computed for each
gene and condition the mRNA expression ratio relative
to the reference, and assigned to it a confidence value.
We transformed the data into binary states as follows: For
each gene and condition, if the confidence value was high
(above 45 (Ideker et al., 2001)), and the ratio was above
1 (below −1), we set the state value to 1(0). For low
confidence values, we assumed the expression level was
identical to the wild-type expression, and set the state to 1,
since in the reference condition all the galactose system
genes are expected to be expressed (in the presence of
galactose and absence of glucose (Jones et al., 1992)).

We used as the set of potential regulators gal4, gal3,
gal80, gal1, gal2, gal5, gal6, gal7, gal10, gcn1 and
galactose. As regulatees, we checked the genes gal1, gal7,
gal10, gal2, gal5 and gal6, since their regulation has
been well characterized previously (see Figure 1B). For
analyzing a regulatee, we do not use data from strains with
its complete deletion. We used n = 4 throughout.

We compared the performance of funcFit to the fol-
lowing alternative scores: (a) rSpec (Tanay and Shamir,
2001), which is essentially minus the logarithm of the
p-value of the number of conditions for which the regu-
lation function is consistent with the observed expression
of the regulatee. (b) Mutual information (Cover and
Thomas, 1991) between the observed expression level of
the regulatee and the expected expression level generated
by applying the regulation function on Rn . (Note that
it scores a particular regulation function, unlike the
mutual information mentioned in the Scoring Functions
Section). (c) BDE with the following informative priors:

N
′
i jk = N

′ ·0.9
2n for consistencies and N

′
i jk = N

′ ·0.1
2n for in-

consistencies, where N
′ = 10, and with non-informative
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Fig. 2. Comparison of scoring methods. x-axis: The scores of funcFit (A), rSpec (B), BDE (C) and mutual information (D). y-axis: The
number of regulators subsets R4 whose best scored chain function attained that score. The regulatees are: gal7 (gray), gal10 (black) and gal1
(dark gray). The arrows mark the true regulation function solution for each regulatee, according to its color. The number above each arrow is
the number of regulator sets whose scores are at least as high as the score of the real regulation function.

priors where N
′ = 1. See (Heckerman et al., 1995) for

definitions and a description of BDE.
Our test was as follows: For each regulatee, we checked

each possible subset of n = 4 regulators, and for each such
subset, we checked every possible regulation function, and
found the best scoring one. We performed this test twice,
once using all boolean functions, and once using only
chain functions. We repeated this test with the scoring
functions BDE, mutual information, rSpec and funcFit.
In all tests, we did not allow auto-regulation, and each
regulator was allowed to appear only once along the
chain function. Testing was done using a C++ software
implementation written in-house. It can analyze all chain
(boolean) functions with |U | = 11 and n = 4, for a single
regulatee, in 30(15) seconds on a standard 800MHz PC.

In Figure 2, we present the performance of the different
scoring methods. For each candidate regulation set, all
chain functions are scored and the best score is presented.
As can be seen in the figure, mutual information and rSpec
tend to score high a large portion of the regulator sets.
Thus, occasionally they may infer a lot of false positive
regulation functions. Moreover, a small difference in the
consistency level can cause a regulation function to be
ranked very high or very low. In mutual information,
there are 1, 1 and 69 regulator sets whose best chain
functions are in the highest score category, for gal1, gal7
and gal10 respectively. In rSpec, there are 1, 1 and 44
chain functions in the highest scores category, for the
same regulatees. The main reason for this instability is
that both scores take into consideration only the total
number of consistent conditions, without considering their
state patterns at all. Unlike these scores, BDE and funcFit
consider the distribution of inconsistency among the state
patterns. Moreover, funcFit and BDE have a Gaussian-like
distribution of scores, which is preferable, since we always
get only a few top scoring candidates. Nevertheless, BDE

does not always rank the real chain function high: In
BDE, there are 26, 76 and 7 chain functions above
the real solution, for the three regulatees. Since BDE
penalizes state patterns with noise, but does not penalize
for missing state patterns, it has a bias to small c values.
This may explain its poorer performance in comparison
with funcFit. funcFit is the only score which consistently
ranks the real solution high: there are only 7, 8 and 7
chain functions equal to or above the real solution, for
the same three regulatees. Qualitatively similar results
were obtained when repeating the same analysis with all
boolean functions, and with the BDE score using different
N ′ values as well as non-informative priors.

Our next test aimed to see the effect of restricting
inference to chain functions only. In Figure 3 we present
the maximum funcFit scores distribution for the chain
functions set and for all boolean functions. As expected,
when using all boolean functions, the distribution tends
to spread to higher values. Moreover, by using chain
functions only, the real solution is ranked higher: In gal10,
there are 16 boolean functions and only 8 chain functions
with scores equal to or above the real one. In gal1 and gal7,
the corresponding numbers are 16 and 7. Qualitatively
similar results were obtained using the other scoring
methods. In principle, when using all boolean functions,
the distribution may tend to spread much more drastically
to high values. However, the specific dataset that we
analyzed was not large enough to manifest this difference:
Although there are theoretically 65,536 boolean functions
and 150 chain functions, actually only 200 boolean
functions and 40 chain functions are effectively different
(on average), because on average only 7.5 different state
patterns appear in the data (out of 16 possible ones) for
each group of regulators. In larger datasets with more state
patterns, the advantage of the chain functions should be
more pronounced.
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Fig. 3. Comparison of funcFit distribution for all functions and for chain functions only. x-axis: The funcFit score. y-axis: The number of
regulators subsets with n = 4 that attained that maximum funcFit value. Maximum was computed and plotted among all boolean functions
(black) and among chain functions only (gray). Results are reported for the regulatees gal10, gal7 and gal1 (from left to right). Arrows and
numbers are as in Figure 1.

Fig. 4. A scatter plot of regSpec (y-axis) vs. funcFit (x-axis) scores, for each subset of regulators R4. Relevant subsets of regulators
(regSpec > 2) are in darker shade. The true solution is circled. The regulatees are (from left to right) gal10, gal7 and gal1. The broken
lines indicate the quadrant above regSpec = 2 and funcFit equal to the true value.

Our next goal was to examine the advantage of using
regSpec and funcFit together. The test used the same
setup described above. Figure 4 is a scatter plot of
the highest funcFit score (for chain functions) versus
the corresponding regSpec score, for each subset of
regulators. As expected, some subsets get a very high
regSpec score and a low funcFit score, or vice versa. Also,
there is some tradeoff between high specificity and high
funcFit, probably due to their opposite preferences (see
the Scoring Functions Section). Many of the candidate
regulator subsets have a very low regSpec score, and
thus we can reduce significantly the computing time
by foregoing their funcFit computations altogether. By
searching only above regSpec = 2, the true chain
functions are ranked very high in funcFit. For regulatees
gal10, gal7 and gal1, there are only 4, 0 and 1 alternative
chain functions whose funcFit scores are the same or
higher. In tests on the regulatees gal5, gal6 and gal2,
all possible subsets of regulators have regSpec < 2,
and thus we could not analyze their regulation functions.
We suspect that these low regSpec values are due to the
stringent discretization thresholds that we used.

CONCLUDING REMARKS
In this paper, we propose a biologically relevant class of
regulation functions. We also suggest two scoring methods
by which one can evaluate candidate regulatory relations,
and demonstrate their advantage over extant scores. We
tested our method on experimental gene expression data,
in trying to infer gene regulation relations. We showed the
utility of using chain functions, and the advantage of our
scores over several extant methods.

Clearly, more extensive testing of our methods on
additional datasets and pathways is needed. By tests
on large datasets we expect to demonstrate the fuller
advantage of using a restricted set of relevant regulation
functions. We expect to identify more regulation functions
and refine our results by allowing more than two levels
of discretization and assigning a probability distribution
over those levels. In addition, we expect that the special
structure of chain functions can be exploited in the design
of follow-up experiments.

The ability to score and restrict regulatory relations
are fundamental components in the grand challenge of
reconstructing regulatory networks. In order to extend this
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work towards global network reconstruction, the chain
function model should be extended. It should allow several
chain functions combined by a boolean operator. Handling
functions with unknown number of regulators should be
addressed. Cases where there are several regulatees whose
regulation chains have common parts, should also be
considered.
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APPENDIX A: PROPERTIES OF CHAIN
FUNCTIONS
In this section, we prove some properties of chain
functions. We study the problem of counting the exact
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number of chain functions with n variables, and provide
a tight asymptotic bound. We use the same terminology as
in the Chain Functions Section.

LEMMA 1. Every regulator in a chain function is a
direct effector of the regulatee.

PROOF. To show that gi is a direct effector of g0,
consider a combination of states for gn . . . gi+1 which
creates a positive influence on gi (for example, all the
variables with A(R) control bit have the state 1(0)). If the
states of gi−1, . . . , g1 are all 1s, then the state of g0 is
dependent on the state of gi , and thus gi is a direct effector
of g0. �

LEMMA 2. The layers partition the regulators into a
minimal number of classes.

PROOF. We shall show first that the regulators in a layer
form a class. Then, we shall show that a successive pair
of regulators with the control pattern R A or R R must be
in different classes, and thus we must truncate the classes
after each R.

We start with the first claim. A consecutive pair of reg-
ulators inside a layer always has the pattern AA or AR.
Exchanging the order of the two regulators might influ-
ence the state of g0 only if the two regulators have dif-
ferent states: in the AA control pattern, the state patterns
10 and 01 both yield negative influence, irrespective of the
previous influences. Likewise, in the AR control pattern,
the state patterns 10 and 01 both yield positive influence.
Thus, any two consecutive regulators inside a layer are ex-
changeable. Therefore, any permutation of regulators in a
layer might be reached by a series of successive pair ex-
changes without changing the function.

Next, we show the second claim. In the R A control
pattern, the state pattern 10 yields negative influence while
the state pattern 01 yields positive influence. Likewise,
in the R R control pattern, the state pattern 10 yields
positive influence while the state pattern 01 yield negative
influence. Thus, such pairs are unexchangeable. �

In the rest of the appendix, we study the problem of
chain functions counting. Define the composition of a
layer as the subset of regulators out of gn, . . . , g1, which
correspond to the layer.

LEMMA 3. A chain function is uniquely determined by
the sizes, order and composition of its layers, and the type
of pattern in the first layer.

PROOF. To prove the lemma, we show that any change
in the number, order or composition of the layers, or the
type of the first layer, is not function preserving. First,
we prove that different types of the first layers cannot

correspond to the same function: Given the state pattern
000. . . 0 for all regulators, if the first layer is of type A, it
has negative influence and the state of the regulatee is 0.
If it is of type R, that state is 1, so the function value is
changed.

Next we prove that any change in the number, order or
composition of layers is not function preserving. Let f ′g
and f g be two chain functions whose number, order or
composition of layers is different. The layers of f ′g are
denoted by l ′p, . . . , l ′1, and the layers of f g are denoted
by lq , . . . , l1. We denote by lx and l ′x the first (least
indexed) layers whose composition differs, so that the
layers l ′x−1, . . . , l ′1 are identical to the layers lx−1, . . . , l1,
and lx is different from l ′x . Such layers lx and l ′x exist
by our assumptions. Suppose, w.l.o.g, that l ′x contains
a variable v which is not included in lx . Assume that
lx and l ′x have the same type R (The proof for the
other layer type is similar). Consider the following state
pattern: All variables in layers lx , . . . l1 are in state 1 and
all the rest (including variables that appear in only one
of the functions) are in state 0. Thus, lx is positively
influenced by layer lx+1 and is negatively influencing
its successor. However, using the same state pattern, l ′x
contains the variable v which has state 0. Thus, l ′x has
positive influence on l ′x−1. Since layers l ′x−1, . . . , l ′1 have
the same composition as lx−1, . . . , l1 and the state pattern
in both is all 1-s, the final function value is changed. �

We now count the total number of chain functions
with n variables. Let Sn

k be the number of partitions of
n variables into exactly k nonempty sets. Sn

k may be
computed recursively by the formula Sn

k = kSn−1
k + Sn−1

k−1 ,
where Sx

1 = 1, Sx
0 = 0 and Sx

y = 0 for y > x .
In each step we add a variable to one of the k existing
sets, or we put the variable in the new set. Thus, the
number of partitions of n variables into any number of
ordered nonempty sets is b̃(n) = ∑n

k=1 k! · Sn
k . b̃(n) is

known as an ordered Bell number, which is asymptotically
(1 + O(1)) · n!

2 · (log2 e)n+1 (Wilf, 1994, p. 175–176). For
each partition of the variables, there are two possible types
of first layer. Thus we conclude:

THEOREM 4. The number of chain functions with n
control variables is 2 · b̃(n).

Hence the number is �(n! · (log2 e)n+1). For example, for
n = 2, there are 2 · b̃(2) = 6 different functions. Indicating
the chain functions as fc2,c1(g2, g1), these are fR,R(x, y),
fR,R(y, x), fR,A(x, y), fR,A(y, x), f A,A(x, y) (equiva-
lent to f A,A(y, x), since AA is one layer), and f A,R(x, y)

(equivalent to f A,R(y, x), since AR is one layer).
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RECONSTRUCTING CHAIN FUNCTIONS IN
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Abstract. The following problems arise in the analysis of biological networks: We have a
boolean function of n variables, each of which has some default value. An experiment fixes the
values of any subset of the variables, the remaining variables assume their default values, and the
function value is the result of the experiment. How many experiments are needed to determine
(reconstruct) the function? How many experiments that involve fixing at most q values are needed?
What are the answers to these questions when an unknown subset of the variables are actually
involved in the function? In the biological context, the variables are genes and the values are gene
expression intensities. An experiment measures the gene levels under conditions that perturb the
values of a subset of the genes. The goal is to reconstruct the particular logic (regulation function)
by which a subset of the genes together regulate one target gene, using few experiments that involve
minor perturbations. We study these questions under the assumption that all functions belong to a
biologically motivated set of so-called chain functions. We give optimal reconstruction schemes for
several scenarios and show their application in reconstructing the regulation of galactose utilization
in yeast.
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1. Introduction. In this paper we study the problem of function reconstruction.
We have a set of N boolean variables. Each variable has a default value, and an
experiment can change (fix to 0 or 1) its value. The order of an experiment is the
number of variables fixed during the experiment. The value of one variable of interest
(the output) is determined by a boolean function of n other variables. The output
of an experiment is the value of the function, where all fixed variables attain their
respective values and the rest attain their default values. The problem of function
reconstruction is to determine this function using a minimum number of experiments
of the smallest possible order.

The motivation to studying the problem arises in molecular biology: The reg-
ulation of biological entities is key to cellular function. The genes are expressed
(transcribed) into mRNAs, which are translated into proteins. The regulatory fac-
tors which control (regulate) gene expression are themselves protein products of other
genes. The result is a complex network of regulatory relations among genes. A ge-
netic network consists of a set of variables that correspond to genes, attaining real
values, called states. The state of a gene indicates the discretized expression level of
the gene. A gene may be regulated by several other genes, implying that its state
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is a function of the states of its regulating genes, or its regulators. An experiment
involves perturbations such as knocking out certain genes (fixing their states to some
low value) or overexpressing them (fixing their states to some high value) and mea-
suring the expression levels of all other genes. The measurement of gene expression
levels is facilitated by high throughput technologies, such as DNA microarrays (e.g.,
[6]). The order of an experiment is the number of genes that are perturbed. In order
to reconstruct the regulatory relations among genes, we need to infer the set of genes
that cooperate in the regulation of a given gene and the particular logical function
by which this regulation is determined. This paper studies the number and order of
experiments that are needed in order to infer the regulatory function that governs a
specific gene.

A key obstacle in the inference of regulation relations is the large number of
possible solutions and, consequently, the unrealistically large amount of data needed
to identify the right one. A common and simple model for genetic networks is the
boolean model, in which the state of a gene is 0 (off) or 1 (on). The boolean assumption
is a drastic simplification of real biology, yet it captures important features of biological
systems and was frequently used in previous studies [16].

There is a large body of previous work on learning boolean functions from a
random sample of their output values (see [3] for a review). Those studies focus
on devising efficient probably approximately correct (PAC) learning algorithms for
subclasses of boolean functions using a polynomial-size sample. Another body of work
is devoted to exact learning of certain classes of boolean functions using a polynomial
number of queries (see, e.g., [4] and references thereof). For the specific problem of
exact boolean function reconstruction in a genetic network, Akutsu et al. [1] have
shown that the number of experiments (or queries) that are needed for reconstructing
a function of N genes is prohibitive: The lower and upper bounds on the number of
experiments of order N−1 that are needed are Ω(2N−1) and O(N ·2N−1), respectively.
When the function involves only d regulators, the number of required experiments of
order d is still Ω(Nd) and O(N2d), respectively [1].

The inherent complexity of this problem led researchers to seek ways around
this problem. Ideker, Thorson, and Karp [16] studied how to dynamically design
experiments so as to maximize the amount of information extracted. Friedman et al.
[8] used Bayesian networks to reveal parts of the genetic network that are strongly
supported by the data. Tanay and Shamir [24] suggested a method of expanding
a known network core using expression data. Several studies used prior knowledge
about the network structure, or restrictive models of the structure, in order to identify
relevant processes in gene expression data [12, 15, 23, 22].

Recently, a biologically motivated, boolean model of regulation relations based
on chain functions was suggested in order to cope with the problem of function re-
construction in biological context [9]. In a chain function, the state of the regulated
gene depends on the influence of its direct regulator, whose activity may in turn de-
pend on the influence of another regulator, and so on, in a chain of dependencies (we
defer formal definitions to the next section). The class of chain functions has sev-
eral important advantages [9]: These functions reflect common biological regulation
behavior, so many real biological regulatory relations can be elucidated using them
(examples include the SOS response mechanism in E. coli [21] and galactose utilization
in yeast [18]). Moreover, by restricting consideration to chain functions, the number
of candidate functions drops from double exponential to single exponential only.

In this paper we study several computational problems arising when wishing to
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reconstruct chain functions using a minimum number of experiments of the smallest
possible order. We address both the question of finding the set of regulators of a chain
function, which is typically much smaller than the entire set of genes, and the question
of reconstructing the function given its regulators. We give optimal reconstruction
schemes for several scenarios and show their application on real data. Our analysis
focuses on the theoretical complexity of reconstructing regulation relations (number
and order of experiments), assuming that experiments provide accurate results and
that the target function can be studied in isolation from the rest of the genetic network.

The paper is organized as follows: Section 2 contains basic definitions related
to chain functions. In section 3 we give worst-case and average-case analyses of the
number of experiments needed in order to reconstruct a chain function. Both low-
order and high-order experimental settings are considered. In section 4 we study the
reconstruction of composite regulation functions that combine several chains. Finally,
in section 5 we describe a biological application of our analysis to reconstruct the
regulation mechanism of galactose utilization in yeast.

2. Chain functions. Chain functions were introduced by Gat-Viks and Shamir
[9]. In the following we define these functions and describe their main properties.
Our presentation differs from the original one to allow succinct description of the
reconstruction schemes in later sections.

Variables, regulators and states. Let U denote the set of all variables in a
network, where |U | = N + 1. These variables correspond to genes, mRNAs, proteins,
or metabolites. Each variable may attain one of two states: 1 or 0. The state of
gene g, denoted by state(g), indicates the discretized expression level of the gene. A
variable normally attains its wild-type state, but perturbations such as gene knockouts
may change its state. We say that a variable g0 ∈ U is regulated by a set S =
{g1, . . . , gn} ⊂ U if state(g0) = fg0(state(gn), . . . , state(g1)) and S is a minimal set
with that property. In that case we say that S is the regulator set of g0, and g0 is
called the regulatee. Associated with each regulator gi is a binary constant yi which
dictates the control property of gi. If yi = 0 then gi is an activator; otherwise gi is a
repressor. This is an intrinsic property of the regulator and is not subject to change.
The control pattern of fg0 is the binary vector (yn, . . . , y1).

Given a certain order gn, . . . , g1 of the regulators, we call gi a predecessor of gj
for i > j and a successor of gk for i < k. We also say that gi is to the left of gj and
to the right of gk. Each regulator transmits a signal to its immediate successor, and
this chain of events enables a signal to propagate from gn to g0 in a manner defined
by a chain function (see Figure 1, top part).

Chain function definition. The chain function model assumes that the func-
tional relations are deterministic. The chain function fg0 on the regulators gn, . . . , g1

determines the state of the regulatee g0.

The function fg0 can be defined using two n-long boolean vectors attributing
activity and influence to each gi. Let a(gi) denote the activity of gi, and let infl(gi)
denote the influence signal from gi to gi−1. The definitions of activity and influence
on the other regulators are recursive: The influence on gn is always 1. gi is active
(a(gi) = 1) iff it exists (state(gi) = 1) and it receives a positive influence from its
predecessor (infl(gi+1) = 1). The influence infl(gi) transmitted from gi to gi−1 is a
xor (⊕) of a(gi) and yi: infl(gi) is 1 if gi is an activator and is itself activated or if
gi is a repressor and is not activated (so that it fails to repress gi−1). Formally,
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Fig. 1. The chain function model. Top: A chain function model. Bottom: An illustration of
a chain function with five regulators. g1, g2, g4 are repressors, and g3, g5 are activators. The state
of all regulators is 1. Influences are indicated on the horizontal arrows. Regulator types and blocks
are indicated below.

a(gi) = infl(gi+1) ∧ state(gi),(1)

infl(gi) = yi ⊕ a(gi).(2)

Finally, the state of the regulatee g0 is simply the influence of g1. We define the output
of fg0 to be state(g0).

A chain function is uniquely determined by its set of regulators, their order, and
the control pattern. For example, if g0 is regulated by (g3, g2, g1) via a chain function
with control pattern 010, then f(1, 1, 1) = 0 and f(0, 1, 1) = 1.

3. Reconstruction of chain functions. In this section we study the question
of uniquely determining the chain function which operates on a known regulatee, using
a minimum number of experiments. We assume throughout that all variable states
in wild type are known. We further assume that all regulator states in wild type are
1, except possibly gn. The latter assumption is motivated by the observation that in
many biological examples, all regulators are expressed in wild type, and the state of
the regulatee is determined by the presence or absence of a metabolite gn. (Examples
include the Trp, lac, and araBAD operons in E. coli [21], the regulation of galactose
utilization [18] in yeast, and human MAPK cascades [17]).

An experiment is defined by a set of variables that are externally perturbed
(knocked-out or overexpressed). The states of the perturbed variables are thus fixed,
and the states of all nonperturbed regulators are assumed to remain at the wild-type
values. The state of the regulatee is determined by the chain function. The order of
an experiment is the number of externally perturbed variables in it.

Our reconstruction algorithms are based on performing various experiments and
observing their effect on the state of the regulatee. The algorithms implicitly assume
that the regulation function is indeed a chain function and do not explicitly test this
property.

We now devise a simple set of equations that characterize the output of a chain
function as a function of the control pattern and the states of the regulators, both
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in the wild-type state and in states produced by perturbing some regulators. These
equations are the foundation of all the subsequent reconstruction schemes:

Proposition 1. Let f be a chain function on gn, . . . , g1. If state(gi) = 1 for
1 ≤ i < n, then state(g0) = state(gn) ⊕ (⊕n

i=1yi). For any other state vector, if the

least index of a state-0 regulator is j ≤ n, then fg0(gn, . . . , g1) = ⊕j
i=1yi.

Proof. By definition, a(gn) = state(gn). For i < n, state(gi) = 1 implies that
a(gi) = a(gi+1)⊕ yi+1. It follows by induction that state(g0) = state(gn)⊕ (⊕n

i=1yi).
Similarly, if state(gj) = 0 and state(gi) = 1 for all i < j, it follows by induction that

fg0(gn, . . . , g1) = ⊕j
i=1yi.

Under the above assumptions on regulator states, a chain function can be viewed
as a series of inversion and identity gates, whose input is the state of gn. Each identity
gate corresponds to an activator, whose output is equal to its input. Each inversion
gate corresponds to a repressor, whose output is opposite to its input. The output of
the last gate in the chain is the state of the regulatee.

3.1. Types and blocks. A perturbation is an experiment that changes the state
of a variable to the opposite of its state in wild type. By our assumption on the
regulator states in wild type (all regulator states in wild type are 1, except possibly
gn), the perturbation of a regulator in {gn−1, . . . , g1} is a knockout. For S ⊆ U ,
an S-perturbation is an experiment in which the states of all the variables in S are
perturbed.

Let w be state(g0) in wild type. Let w̄ be the opposite state. For the recon-
struction, we first classify the variables in U into two types: W and W̄ (see Figure 1,
bottom part). A variable is in W (W̄ ) if its perturbation produces output w (w̄).
Typically, the majority of the genes have type W , since in particular all the genes
that are not part of the chain function are such. By Proposition 1 we have gn ∈ W̄ ,
and gn−1 ∈ W iff state(gn)⊕yn = 0. We call a gene that belongs to W (W̄ ) a W -gene
(W̄ -gene). Similarly, we call a regulator of type W (W̄ ) a W -regulator (W̄ -regulator).
For a given gene, we call a successor of type W (W̄ ) of that gene a W -successor
(W̄ -successor).

The type of a gene can be determined by a single perturbation of the gene. Such
an experiment will be referred to as a typing experiment throughout.

Corollary 2. Given an ordered set of regulators gn, . . . , g1, their control pattern
can be reconstructed using n− 1 typing experiments.

Proof. Perform typing experiments for g1, . . . , gn−1 (by definition gn ∈ W̄ ). By
Proposition 1, for every 1 < i < n, yi = 1 iff the types of gi and gi−1 differ. Also,
yn = 1 iff either state(gn) = 0 and the types of gn, gn−1 are equal, or state(gn) = 1
and the two types differ. Finally, we can use Proposition 1 to deduce y1.

Any control pattern (yn, . . . , y1) may be separated into blocks of consecutive reg-
ulators by truncating the control pattern after each 1. The first block (rightmost,
ending at g1) has two possible forms: 0 . . . 0 or 0 . . . 01. All other blocks are of the
form 0 . . . 01, so the right boundary of a block corresponds to a regulator gj with
yj = 1, and any other regulator gi in the block has yi = 0.

Lemma 3. Each block contains regulators of a single type, and two adjacent blocks
contain regulators of opposite types.

The proof follows from the fact that the type of gi, i < n differs from the type of
gi−1 iff yi = 1. Thus, we can refer to a block as either a W -block or a W̄ -block, and
the two types of blocks alternate. For convenience, we shall refer to gn as forming a
W̄ -block of its own.
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3.2. Reconstructing the regulator set and the function. Consider a chain
function with control pattern (yn, . . . , y1) and let gj , . . . , gi be a block. Then infl(gi) =

[infl(gj+1) ∧ (
∧j

h=i state(gh))] ⊕ yi. Thus, the effect of the block on the function is
determined by the boolean variable infl(gj+1), by the control pattern, and by the
conjunction of the states of its regulators. Since this conjunction is independent of
the order of occurrence of these genes, no experiment based on perturbing the states
of the genes can determine the order of the genes within the block. In view of this
limitation, we shall aim to find the equivalence class of chain functions as detectable
by perturbation experiments, i.e., our goal is to reconstruct the control pattern, the
set of genes within each block (but not their order), and the ordering of the blocks.
Correspondingly, in the following we will use the term successor of a gene to denote a
regulator that succeeds that gene in the chain and is not a member of its block. For
convenience, we shall refer to gene (in fact, W -genes) that are not regulators of g0 as
predecessors of gn.

The above discussion implies that once we have typed each gene, it remains to
determine, for each pair consisting of a W -gene and a W̄ -gene, which one precedes
the other in the chain. Let kW and kW̄ denote the number of regulators of type W
and W̄ , respectively. Note that kW + kW̄ = n ≤ N , and in fact, typically, n � N as
kW � |W |.

Suppose we perform a {i, k}-perturbation with gi ∈ W and gk ∈ W̄ . If the
result is w, then gk precedes gi. Otherwise, gi precedes gk. A 2-order experiment for
determining the relative order of a W -gene and a W̄ -gene will be called a comparison
throughout.

Proposition 4. Given the set of regulators of a chain function and their types,
kW kW̄ comparisons are necessary and sufficient to reconstruct the function.

Proof. The upper bound follows by comparing every W -regulator with every W̄ -
regulator. The lower bound follows from the fact that, in the special case where every
W̄ -regulator precedes every W -regulator, no set of comparisons can determine the
relative order of a given pair consisting of a W -regulator and a W̄ -regulator, unless it
includes a direct comparison between the pair. Therefore, all such comparisons must
be performed.

Note that the problem of reconstructing a chain function by comparisons, once
the regulators have been typed, can be viewed as a sorting problem: The input is a
list of n elements of two types, such that the set of elements of each type consists
of several equivalence classes, and there is a linear order of all these classes. The
objective is to find the equivalence classes and their order, using only queries that
compare two elements of distinct types. In the special case that each equivalence
class consists of one element, the problem is related1 to the well-studied problem of
matching nuts and bolts [2] and has an optimal Θ(n log n) deterministic solution [19].

We now turn to the question of reconstructing a chain function without prior
knowledge of the identity of its regulators. The discussion above suggests a way to
solve the problem: First, we find the gene types using N typing experiments. Next,
we reconstruct the block structure by performing all possible comparisons between a
W -gene and a W̄ -gene.

A more efficient reconstruction is possible when gn is known. This is often the case
when the chain function models a signal transduction pathway, where gn represents

1The difference between the problem of matching nuts and bolts and our problem is that in our
case we have strict linear order among all the elements and there is no notion of matching between
W -regulators and W̄ -regulators.



RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 733

a known stimulator of the corresponding biological response. If gn is known, then
since gn ∈ W̄ , all W -regulators can be identified by comparing every W -gene with
gn, using a total of N − kW̄ comparisons. Since every W̄ -gene is a regulator, these
experiments are sufficient to identify all the regulators, and we can apply Proposition
4 to complete the reconstruction in N −kW̄ +kW (kW̄ − 1) comparisons. In summary,
we have the following proposition.

Proposition 5. A chain function can be reconstructed using at most N typing
experiments and kW̄ (N −kW̄ ) comparisons. Given gn, a chain function can be recon-
structed using at most N − 1 typing experiments and N − n + kW kW̄ comparisons.

We can prove a matching lower bound by generalizing the argument in Proposi-
tion 4.

Proposition 6. At least kW̄ (N − kW̄ ) comparisons are necessary to reconstruct
a chain function.

Proof. Consider the case where all W̄ -regulators precede the W -regulators. In this
case, no set of comparisons can determine the relative order of a given pair consisting
of a W -gene and a W̄ -gene unless it includes a direct comparison between the pair.
Therefore, all such comparisons must be performed.

Propositions 4 and 5 provide a worst-case analysis. Next, we describe another
reconstruction algorithm, whose expected number of required experiments is lower.
The analysis of the running time is similar to that of quick-sort (cf. [5]) and assumes
that the chain to be reconstructed has W̄ -blocks of bounded size. Denote by Dg the
set of W -successors of g ∈ W̄ in f .

Proposition 7. A chain function with W̄ -blocks of size bounded by d can be
reconstructed using N typing experiments and an expected number of O(Nd log kW̄ +
kW kW̄ ) comparisons.

Proof.
Algorithm: First, we perform N typing experiments. Next, we apply a random-

ized scheme to reconstruct the chain: Each time we pick a gene g ∈ W̄ at random,
find its successors and their order, and remove g and all its successors from further
consideration. We stop when no W̄ genes are left. In order to find the successors of
g, we first identify the members of Dg using at most N −kW̄ comparisons. Using Dg,
we then reconstruct the part of the chain that spans g and its successors by at most
|Dg|(kW̄ − 1) comparisons, as in Proposition 4.

Complexity: The set of comparisons can be divided into two parts: those that
are required to identify the sets Dg and those required to reconstruct the chain parts
induced by these sets. For the latter, at most kW kW̄ comparisons are needed in total,
since every pair consisting of a W -regulator and a W̄ -regulator is compared at most
once. Thus, it suffices to compute the expectation of the first part. Let T (x) be
this expectation, given that the current W̄ set (i.e., the set of W̄ -genes that were not
removed in previous iterations) contains x elements, where T (0) = 0. For x ≥ 1, with
probability 1

x the qth rightmost element of W̄ is chosen in the current iteration. Hence,
T (x) ≤ 1

x

∑x
q=1(d(N − kW̄ ) + T (x− q)). By induction, T (x) ≤ d(N − kW̄ )(log x+ 1).

Substituting x = kW̄ , we obtain the required bound.
The expected number of experiments improves over the upper bound of Propo-

sition 5 for d < kW̄ , which is the case in many real biological regulations, e.g., the
filamentous-invasion pathway (n = 9, kW̄ = 2, and d = 1, illustrated in [11, Figure
3]), and the HOG signaling pathway (n = 6, kW̄ = 3, and d = 2 [13]) in yeast.

3.3. Using high-order experiments. In this section we show how to improve
the above results when using experiments of order q > 2. The results in this section
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are mainly of theoretical interest, since high-order experiments may not be practical.
Proposition 8. Given the set of n regulators of a chain function, the function

can be reconstructed using O(n
2

q log q) experiments of order at most q ≤ n. This is

optimal up to constant factors for q = Θ(n).
Proof. The number of possible chain functions with n regulators is Θ((log2 e)

n+1n!)
[9]. Since each experiment provides one bit of information, the information lower
bound is Ω(n log n) experiments.

Suppose at first that q = n. Let ni be the number of regulators in block i, where
blocks are indexed in right-to-left order. Our reconstruction algorithm is as follows:
First, we perform n typing experiments. Next, we identify the type of the first block
using one experiment of order n, in which all regulators are perturbed (this way we
perturb also the genes in the first block, and thus its type is identical to the output).
We proceed to reconstruct the blocks one by one, according to their order along the
chain. Note that the type of each block is now known, since the two types alternate.
Suppose we have already reconstructed blocks 1, . . . , i−1. For reconstructing the ith
block we only consider the set of regulators that do not belong to the first i−1 blocks.
Out of this set, let A be the subset of regulators that have the same type as block i,
and let B be the subset of regulators of the opposite type. In order to identify the
members of the ith block we use a binary-search-like procedure: We divide A into
two halves. For each half we perform a perturbation that includes that half and all
regulators in B. If the result is the type of block i, we continue recursively with that
half. Otherwise, we discard it. The search requires O(ni log n) experiments. Thus,
altogether we perform O(n log n) experiments.

When q < n, we use the above algorithm as a component in our reconstruction
scheme, allowing us to reconstruct a subchain of size q within a chain of size n using
O(q log q) experiments of order at most q. Our reconstruction scheme is based on
Proposition 4, which shows that for reconstruction it suffices to compare every W -

regulator with every W̄ -regulator. To this end we form O(n
2

q2 ) regulator subsets, each

of size at most q, such that every pair consisting of a W -regulator and a W̄ -regulator
appears in one of the subsets. To compute these subsets we form a kW × kW̄ matrix,
whose entries are in 1-1 correspondence with (W, W̄ )-regulator pairs. We then cover

this matrix using O(kW kW̄

q2 ) disjoint submatrices of dimension at most 
q/2� × �q/2
,
each identifying a regulator subset of the required size.

Next, we reconstruct the subchain of size q associated with each subset using
O(q log q) experiments of order at most q. After this process, each (W, W̄ )-regulator
pair appears in one of the subchains, and thus its relative order has been determined.
This is sufficient in order to computationally reconstruct the chain (as in Proposition

4). Altogether we use O(kW kW̄

q log q) = O(n
2

q log q) experiments for reconstructing
the chain from its regulators.

We now provide a reconstruction scheme for the case that the set of regulators is
not known. Let f be a chain function. For a gene g ∈ W̄ , denote as before by Dg its
set of W -successors in f . A building block in our reconstruction scheme is a method to
efficiently identify the members of Dg using O(|Dg| log q +N/q) experiments of order
at most q. The process is as follows: We partition the W -genes into � N

q−1
 subsets of
size at most q− 1. For each subset R we test whether it contains some successor of g
using an (R ∪ {g})-perturbation, in which g and the subset members are perturbed.
If as a result of the perturbation the output changes to w, then at least one of the
members in R succeeds g. In this case we use standard binary search to identify all
the m successors in R by performing additional O(m log q) experiments of order at



RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 735

most (
q/2� + 1). Otherwise, all the subset members precede g and we discard R.
Each of the successors of g is discovered exactly once, which gives the required bound.

Proposition 9. For q ≤ n, a chain function can be reconstructed using O(nN/q+
n2 log q/q) experiments of order at most q. For q > n, O(N + n log q) experiments of
order at most q are sufficient.

Proof. The reconstruction is done in three stages. First, we perform N typing
experiments. Second, we discover all W -regulators as follows: For each regulator
b ∈ W̄ we use the scheme described above to identify its successors in W , and re-
move them from further consideration. Each W -regulator is discovered exactly once
and, thus, we need O(kW̄N/q + kW log q) experiments of order at most q altogether.
Last, we reconstruct the chain, given the regulators and their types, in O(n2 log t/t)
experiments, using the method given in Proposition 8, where t = min{q, n}. In total
O(N + kW̄N/q + kW log q + n2 log t/t) experiments are used.

A lower bound on the number of experiments that are required is given in the
following proposition.

Proposition 10. Ω(max{N/q, nN/q2, n logN}) experiments of order at most q
are necessary to reconstruct a chain function.

Proof. We give three different lower bounds, whose union yields the required
result. First, Ω(N/q) experiments are required to identify at least one W̄ -regulator.
Second, Ω(nN/q2) experiments are required to cover every pair of a W - and a W̄ -gene.
Third, the number of possible chain functions is Θ(

(
N
n

)
(log2 e)

n+1n!) [9]. Hence, the
information theoretic lower bound on the reconstruction is Ω(n logN).

Finally, we give an optimal reconstruction scheme when gn is known and q =
�N/2
 + 1.

Proposition 11. In case gn is known, there is an optimal reconstruction scheme
that uses Θ(n logN) experiments of order at most �N/2
 + 1.

Proof. We perform the reconstruction in two stages. In the first stage we discover
the set of regulators and their types. In the second stage we apply Proposition 8
to reconstruct the chain function. To discover the set of regulators we perform a
binary-search-like process as follows: We partition all variables excluding gn and g0

into two halves, H1 and H2. For i = 1, 2 we apply an Hi ∪ {gn}-perturbation. Since
gn is perturbed, all nonregulator effects are masked, and we get the result w iff Hi

contains some W -regulators. Therefore, for each set that gives the results w, we
continue recursively until we reach single genes. In this way we have identified a
subset T of the W -regulators, including all those in the first (rightmost) block. We
now repeat the recursive process on U \ (T ∪ gn ∪ g0), but this time do not include
gn in the perturbations. This process identifies a subset T ′ of the W̄ regulators,
including the first W̄ -block. By repeating these two recursive processes (with and
without including gn in the perturbations) we eventually identify all regulators. The
total effort is O(n logN) since each path that identifies one of the n regulators is a
binary search in N variables and thus takes O(logN) experiments.

4. Combining several chains. In this section we extend the notion of a chain
function to cover common biological examples in which the regulatee state is a boolean
function of several chains. Frequently, a combination of several signals influences the
transcription of a single regulatee via several pathways that carry these signals to the
nucleus, and a regulation function that combines them together. Here, we formalize
this situation by modeling each signal transduction pathway by a chain function, and
letting the outputs of these paths enter a boolean gate.

Define a k-chain function f as a boolean function which is composed of k chain
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functions over disjoint sets of regulators that enter a boolean gate G(f). Let f i be
the ith chain function and let gij denote the jth regulator in f i. The output of the

function is G(infl(g1
1), . . . , infl(gk1 )).

In the following we present several biological examples for k-chain functions that
arise in transcriptional regulation in different organisms: The lac operon [21] codes
for lactose utilization enzymes in E. coli. It is under both negative and positive
transcriptional control. In the absence of lactose, lac-repressor protein binds to the
promoter of the lac operon and inhibits transcription. In the absence of glucose,
the level of cAMP in the cell rises, which leads to the activation of CAP, which in
turn promotes transcription of the lac operon. In our formalism, the lac operon is
controlled by a 2-chain function with an AND gate. The chains are f1(g1

2 , g
1
1) =

f1(lactose, lac-repressor), with control pattern 11, and f2(g2
3 , g

2
2 , g

2
1) = f2(glucose,

cAMP, CAP), with control pattern 100. Other examples of 2-chains with AND gates
are the regulation of arginine metabolism and galactose utilization in yeast [18]. A
2-chain with an OR gate regulates lysine biosynthesis pathway enzymes in yeast [18].

These examples motivate us to restrict attention to gates that are either OR or
AND. We first show that we can distinguish between OR and AND gates. We then
show how to reconstruct k-chain functions in the case of OR and later extend our
method to handle AND gates.

Denote the output of f i by Oi. If Oi = 1 in wild type, we call f i a 1-chain
and, otherwise, a 0-chain. A regulator gij is called a 0-regulator (1-regulator) if its
perturbation produces Oi = 0 (Oi = 1). Let k0 (k1) be the number of 0-regulators
(1-regulators) in f . A block is called a 0-block (1-block), if it consists of 0-regulators
(1-regulators).

Lemma 12. Given a k-chain function f with gate G(f) which is either AND or
OR, k ≥ 2, we can determine, using O(N2) experiments of order at most 2, whether
G(f) is an AND gate or an OR gate.

Proof. We perform N typing experiments. If w = 0 and W̄ = ∅, then G(f) is an
AND gate. If w = 1 and W̄ = ∅, then G(f) is an OR gate. Otherwise, W̄ �= ∅. In
this situation the cases of w = 0 and w = 1 are similarly analyzed. We describe only
the former.

If w = 0, we have to differentiate between the case of an OR gate, whose inputs
are all 0-chains, and the case of an AND gate, whose inputs are one 0-chain and (k−1)
1-chains. To this end we perform all comparisons of a W -gene and a W̄ -gene. Let
T be the set of genes g such that the result of a {g, g′}-perturbation is w for every
g′ ∈ W̄ . Then T �= ∅ iff G(f) is an AND gate.

We now study the reconstruction of an OR gate. Let S be the (possibly empty)
set of regulators that reside in one of the first blocks (i.e., the blocks containing
gi1), that are also 1-blocks. We observe that a perturbation of any regulator in S
results in state(g0) = 1 regardless of any other simultaneous perturbations we may
perform. Hence, determining the specific chain to which an element from S belongs is
not possible. Therefore, our reconstruction will be unique up to the ordering within
blocks and up to the assignment of the regulators in S to their chains. The next
lemma handles the case w = 0. The subsequent lemma treats the case w = 1.

Lemma 13. Given a k-chain function f with an OR gate and assuming that
w = 0, we can reconstruct f using N typing experiments and (N−k1)k1 comparisons.

Proof. We perform N typing experiments. Then, for each 1-regulator b, we
perform all possible comparisons, thereby identifying all 0-regulators that succeed b
in its chain. This completes the reconstruction.
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Lemma 14. Let f be a k-chain function with an OR gate. Assume that w = 1,
and let r be the number of 1-chains entering the OR gate. Then f can be reconstructed
using O(Nr + Nn) experiments of order at most r + 2.

Proof. First, we determine r, the minimum order of an experiment that will
produce output 0 for f . For i = 1, 2, . . . we perform all possible i-order experiments;
r is determined as the smallest i for which we obtain output 0. In total we perform
O(Nr) experiments. We call the set of perturbed genes in an r-order experiment
which results in output 0, a reset combination.

Next, we reconstruct the 1-chains. Fix an arbitrary reset combination R. For
every a ∈ R we perform a set of experiments of order r+1 as follows: For every reset
combination R′ ⊃ R \ {a} with a /∈ R′, we perturb R′ and in addition each other
gene, one at a time, recording those that produce output 1 as 1-regulators. For every
a, the sets of 1-regulators discovered in these experiments form a linear order under
set inclusion. The 1-regulators that are not common to all these sets are exactly the
1-regulators (that are not in S) of the chain that includes a. For each 0-regulator in
R′ \R our experiments determine the 1-regulators that succeed it in this chain. Thus,
we can infer all the 1-chains. The total number of experiments performed is O(Nk0).

Finally, we reconstruct the 0-chains. To this end we perturb the 1-regulators
in R, thereby deactivating the 1-chains and reducing the problem of reconstructing
the 0-chains to that of reconstructing a (k − r)-chain function with an OR gate and
w = 0 (removing the already discovered regulators of the 1-chains from consideration).
This is done by applying the reconstruction method of Lemma 13 using O(Nk1)
experiments of order at most r + 2. The assignment of 1-regulators in S will remain
uncertain.

Note that for k = 1 the above algorithms will reconstruct a single chain. Indeed,
for w = 0 the algorithm of Lemma 13 coincides with that of section 3, and for w = 1,
applying the algorithm of Lemma 14 we shall discover that r = k = 1. Further note
that for every reconstructed chain we can identify whether its first block is a 1-block
(i.e., contains genes in S). This is simply done by computing for that chain the value
of state(gn) ⊕ (⊕iyi) on its known members and comparing it to the chain’s output.
Last, note that if k is known and r = k, then the order of the experiments that are
required to reconstruct the k-chain is at most r + 1, since f contains no 0-chains.

The reconstruction method for the case of an OR gate can be used for the recon-
struction of an AND gate as well, by exchanging the roles of 0 and 1 in the above
description. This gives rise to the following result:

Theorem 15. A k-chain function with an OR or an AND gate can be recon-
structed using O(Nk) experiments of order at most k+1. The reconstruction requires
Ω(

(
N
k

)
/k) experiments of this order.

Proof. The upper bound follows from Lemmas 12, 13, and 14 and the duality
of AND and OR gates. For the lower bound consider a k-chain function with an
OR gate consisting of k 1-chains, each of which contains a single 0-regulator. Such
a function has a single reset combination, which must be identified in the process of
reconstructing the chain. Since each experiment of order k + 1 can test at most k
combinations, Ω(

(
N
k

)
/k) experiments are required for the reconstruction.

5. A biological application. The methods we presented above can be applied
to reconstruct chain functions from biological data. We describe one such application
to the reconstruction of the yeast galactose regulation function, for which some of the
required perturbations have been performed. We show that one additional experiment
suffices to fully reconstruct the regulation function.
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The galactose utilization in the yeast Saccharomyces cerevisiae [18] occurs in a
biochemical pathway that converts galactose into glucose-6-phosphate. The trans-
porter gene gal2 encodes a protein that transports galactose into the cell. A group of
enzymatic genes, gal1, gal7, gal10, gal5, and gal6, encode the proteins responsible for
galactose conversion. The regulators gal4p, gal3p, and gal80p control the transporter,
the enzymes, and to some extent each other (Xp denotes the protein product of gene
X). In the following, we describe the regulatory mechanism. gal4p is a DNA binding
factor that activates transcription. In the absence of galactose, gal80p binds gal4p and
inhibits its activity. In the presence of galactose in the cell, gal80p binds gal3p. This
association releases gal4p, promoting transcription. This mechanism can be viewed
as a chain function, where f1(g1

4 , g
1
3 , g

1
2 , g

1
1) = f1(galactose, gal3, gal80, gal4), and the

corresponding control pattern is 0110 (see also [9]). The gal7, gal10, and gal1 regu-
latees are also negatively controlled by another chain f2(g2

2 , g
2
1) = f2(glucose,mig1)

with control pattern 01. The two chains are combined by an AND gate (see Fig-
ure 2(A)).

Ideker et al. [14] performed several experiments to interrogate the galactose uti-
lization mechanism. In these experiments glucose was absent from the media. Conse-
quently, the output of f2 was always 1, and hence we shall focus on the reconstruction
of f1 using the experimental data of [14]. Using the discretization procedure employed
by Ideker et al. [14], the measured wild-type levels of gal3, gal80, and gal4 were 1, in
accordance with our model assumption. The wild-type level of galactose was also 1.

Assuming we know the group of four regulators, we need, according to Propo-
sition 4, a total of 4 typing experiments and 3 comparisons (since only gal80 is
of type W ) to reconstruct the chain. Notably, all 4 typings and 2 of the 3 com-
parisons2 were performed by Ideker et al. [14] (see Figure 2(B)). Using the same
discretization procedure, the experiments yielded the correct results for all three
regulatees. The results suggest two possible chain functions: f1(g1

4 , g
1
3 , g

1
2 , g

1
1) =

f1(galactose, gal3, gal80, gal4) or f1(g1
4 , g

1
3 , g

1
2 , g

1
1) = f1(galactose, gal80, gal3, gal4),

both with control pattern 0110. The missing experiment is a comparison of gal80 and
gal3. A correct result of this experiment will lead to full and unique reconstruction
of the chain function.

6. Concluding remarks. In this paper we studied the computational problems
arising when wishing to reconstruct regulation relations using a minimum number
of experiments, assuming that the experiments’ results are noiseless. We restricted
attention to common biological relations, called chain functions, and exploited their
special structure in the reconstruction. We also suggested an extension of that model,
which combines several chain functions, and studied some of the same reconstruction
questions for the extended model. On the practical side, we have shown an application
of our reconstruction scheme for inferring the regulation of galactose utilization in
yeast.

The task of designing optimal experimental settings is fundamental in meeting
the great challenge of regulatory network reconstruction. While this task entails
coping with complex interacting regulation functions and noisy biological data, we
chose here to focus on the reconstruction of a single regulation relation of a single
regulatee and assume that the function can be studied in isolation. Hence, upon
any perturbation, none of the other regulators change their states. Another major

2In fact, the gal80Δgal4Δ-gal experiment was of order 3 but allowed the comparison of gal80
and gal4.
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Fig. 2. Galactose pathway regulation. (A) The 2-chain function regulating gal1, gal7, and
gal10 transcription. (B) Typing and comparison experiments performed by Ideker et al. [14].

assumption is that the wild-type state of all regulators (except possibly gn) is 1. This
assumption, which is necessary for the analysis (e.g., Lemma 3) is commonly held in
undelayed biological systems, where all the regulators exist in a certain basal level
and the signal can propagate fast (e.g., MAPK systems in unicellular organisms such
as yeast and multicellular organisms including humans, reviewed in [17]). Regulations
that involve production of absent regulators are typically (slow) temporal processes.
Our analysis should be extended in order to deal with such complex regulations and
temporal processes.

This analysis focuses on theoretical complexity of regulation reconstruction, as-
suming perturbation experiments that measure (accurately) only gene states. It is
clear, however, that other experimental techniques (e.g., interaction measurements [7,
20]) might help to constrain the reconstruction and reduce the solution space. In a
practical approach, diverse data sources should be incorporated, and the experiments
should be designed dynamically and take into consideration the experimental noise.
The theoretical analysis here could hopefully serve as a component in such a practical
experimental design.
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Abstract

In this study we propose a novel model for the representation of biological networks and provide
algorithms for learning model parameters from experimental data. Our approach is to build an initial
model based on extant biological knowledge, and refine it to increase the consistency between model
predictions and experimental data. Our model encompasses networks which contain heterogeneous
biological entities (mRNA, proteins, metabolites) and aims to capture diverse regulatory circuitry
on several levels (metabolism, transcription, translation, post-translation and feedback loops among
them).

Algorithmically, the study raises two basic questions: How to use the model for predictions and
inference of hidden variables states, and how to extend and rectify model components. We show
that these problems are hard in the biologically relevant case where the network contains cycles. We
provide a prediction methodology in the presence of cycles and a polynomial time, constant factor
approximation for learning the regulation of a single entity. A key feature of our approach is the
ability to utilize both high throughput experimental data which measure many model entities in a
single experiment, as well as specific experimental measurements of few entities or even a single one.
In particular, we use together gene expression, growth phenotypes, and proteomics data.

We tested our strategy on the lysine biosynthesis pathway in yeast. We constructed a model of
over 150 variables based on extensive literature survey, and evaluated it with diverse experimental
data. We used our learning algorithms to propose novel regulatory hypotheses in several cases where
the literature-based model was inconsistent with the experiments. We showed that our approach has
better accuracy than extant methods of learning regulation.
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1 Introduction

Biological systems employ heterogeneous regulatory mechanisms that are frequently intertwined.
For example, the rates of metabolic reactions are strongly coupled to the concentrations of their
catalyzing enzymes, which are themselves subject to complex genetic regulation. Such regulation
is in turn frequently affected by metabolite concentrations. Metabolite-mRNA-enzyme-metabolite
feedback loops have a central role in many biological systems and exemplify the importance of an
integrative approach to the modeling and learning of regulation.

In this work we study steady state behavior of biological systems that are stimulated by changes
in the environment (e.g., lack of nutrients) or by internal perturbations (e.g., gene knockouts). Our
model of the system contains variables of several types, representing diverse biological factors such as
mRNAs, proteins and metabolites. Interactions among biological factors are formalized as regulation
functions which may involve several types of variables and have complex combinatorial logic. Our
model combines metabolic pathways (cascades of metabolite variables), genetic regulatory circuits
(sub-networks of mRNAs and transcription factors protein variables), protein networks (cascades of
post-translational interactions among protein variables), and the relations among them (metabolites
may regulate transcription, enzymes may regulate metabolic reactions). We show how such models
can be built from the literature and develop computational techniques for their analysis and refine-
ment based on a collection of heterogeneous high-throughput experiments. We develop algorithms
to learn novel regulation functions in lieu of ones that manifest inconsistency with the experiments.

Most current approaches to the computational analysis of biological regulation focus on transcrip-
tional control. Both discrete (e.g., [3]) and probabilistic methods (e.g., [9]) use gene expression data
and attempt to learn a regulatory structure among genes and to create a predictive model that fits
the data. The computational models used in these studies involve numerous simplifying assumptions
on the nature of genetic regulation. Among the more problematic of these simplifications are a) the
use of mRNA levels to model the activity of transcription factor proteins, b) the lack of consideration
for the state of the medium in which the experiment was done and c) the assumption of acyclic reg-
ulation structure that prevents the adequate modeling of feedback loops. As a consequence of these
limitations, simple genetic networks tools are rarely used in practical biological settings. A more
fruitful approach for learning regulation involves the coarser notion of regulatory modules, with [14]
or without [1, 17] explicit learning of regulatory functions that define them. Module-based methods
are relatively robust to noise and in some cases can tolerate the gross simplification described above.
However, models generated by these methods are coarse and limited in their level of detail.

Our study aims to overcome some of the limitations of prior art by taking an approach that is
innovative in combining several key aspects:
• We model a variety of variables types, extending beyond gene network studies, that focus on
mRNA, and metabolic pathways methods, that focus on metabolites. Consequently, our model can
express the environmental conditions and the effects of translation regulation and post translational
modifications.
• Our approach allows handling feedback loops as part of the inference and learning process. This is
crucial for adequate joint modeling of metabolic reactions and genetic regulation.
•We build an initial model based on prior knowledge, and then aim to improve (expand) this model
based on experimental data. A similar approach was employed in [16] for transcription regulation only.
We show that formal modeling of the prior knowledge allows the interpretation of high throughput
experiments on a new level of detail.
• Our algorithms learn new transcription regulation functions by analyzing together gene expression,
protein expression and growth phenotypes data.
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Our methodologies and ideas were implemented in a new software tool called MetaReg. It facil-
itates evaluation of a model versus diverse experimental data, detection of variables that manifest
inconsistencies between the model and the data, and learning optimized regulation functions for such
variables. We used MetaReg to study the pathway of lysine biosynthesis in yeast. We performed
an extensive literature survey and organized the knowledge on the pathway into a model consisting
of about 150 variables. In the process of model construction, we reviewed the results of many low
throughput experiments and included in the model the most plausible regulation function of each
variable. We assessed the model versus a heterogeneous collection of experimental results, consisting
of gene expression, protein expression and phenotype growth sensitivity profiles. In general, the
model agreed well with the observations, confirming the effectiveness of our strategy. In several im-
portant cases, however, inconsistencies between measurements and model predictions indicated gaps
in the current biological understanding of the system. Using our learning algorithm we generated
novel regulation hypotheses that explain some of these gaps. We also showed that our method attains
improved accuracy in comparison to extant network learning methods.

The paper is organized as follows. In Section 2 we introduce the model and define some notation.
In Section 3 we show how to take feedback loops into account and how to use the model to infer
the system state given an environmental stimulation. In Section 4 we introduce our mathematical
formulation of experimental data and model scoring scheme and in Section 5 we develop optimization
algorithms for the learning of regulation functions. Section 6 presents our results on the lysine
pathway and its regulation. Some proofs and experimental details appear in an appendix.

2 The model

We first define a formal model for biological networks. A model M is a set U of variables, a set
S = {1, . . . , k} of discrete states that the variables may attain, and a set of regulation functions
fv : S|N(v)| → S for each v ∈ U . fv defines the state of a regulated variable v (called a regulatee) as a
function of the states of its regulator variables N(v) = {r1

v, . . . , r
dv
v }. We define the set of stimulators

UI to include all variables with zero indegree. The model graph of M is the digraph GM = (U,A)
representing the direct dependencies among variables, i.e., (u, v) ∈ A iff u ∈ N(v). For convenience
we assume throughout that regulation functions can be computed in constant time.

A model state s is an assignment of states to each of the variables in the model, s : U → S. A
model stimulation is an assignment of states to all the model stimulators, q : UI → S.

In this paper we shall use the model logic primarily for the determination of modes. For a
model M and state s, we say that s agrees with M on v if fv(s(r

1
v), . . . , s(r

dv
v )) = s(v). We call

a model state s of M a mode if s agrees with M on every v ∈ U \ UI . A mode is thus a steady
state of the system. States representing non-steady state behavior of the system, which may be
adequate for the representation of temporal processes, are outside the scope in this work. Since our
biological models represent a combination of diverse regulation mechanisms, operating in different
time scales (metabolic reactions are orders of magnitude faster than transcription regulation), a
realistic temporal model is a considerable challenge that should be carefully dealt with in future
work. The steady state assumption is in wide use (e.g., [3, 9]) and was proved flexible enough in our
empirical studies. Figure 1 illustrates a simple model and its modes.

We now describe the biological semantics of a model. V includes four types of variables: (a)
mRNAs (b) active proteins that serve as enzymes or regulators (c) internal metabolites, which repre-
sent the metabolite derivatives in the pathway under study (d) external metabolites, which represent
different environmental conditions and specify the nutritional concentrations in the medium. The
external metabolites are assumed to be determined by the experimenter, and their level is unaffected
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Figure 1: A simple model. The model includes one stimulator X, regulating a positive feedback
loop of two variables Y and Z. We assume a binary state space (on-dark, off-light). fz is the identity
function and fy = s(x) AND s(z). When the stimulator state is off (A), a unique mode exists. If
the stimulator state is on (B), two different modes are possible, one in which the cycle is on and the
other in which the cycle is off.

by other variables in the model, so they will serve as part of our stimulator set. The levels of the mR-
NAs, proteins and internal metabolites are controlled by other variables via regulation functions that
manifest transcriptional, translational, post-translational and metabolic control mechanisms. The
stimulators determine the ”boundary condition” of the model. For example, in lysine metabolism,
the level of the internal lysine metabolite is influenced by lysine transport into the cell, by the yield of
the lysine biosynthetic pathway, by the rate of lysine degradation, and by the rate of lysine utilization
in proteins biosynthesis. The external lysine level, on the other hand, is assumed to be determined
and kept fixed by the experimenter throughout the experiment.

3 Computing modes

Given a model stimulation q we would like to compute the set of model’s modes whose stimulators
states coincide with those of q. This will be the first step in using a model to infer the state of the
system under a certain condition.

A q-mode of a model M and stimulation q is a mode m such that for each v ∈ UI , q(v) = m(v).
We denote the set of q-modes by Qq,M . A model M with acyclic graph GM is called a simple model.
We note that q-modes are unique and easily computable for simple models: Given a stimulation q and
a topological ordering on the graph’s nodes (which exists, since the graph is acyclic), we can compute
the q-mode by calculating the state of each variable given its regulators’ states. In summary:

Claim 1 Let M be a simple model where GM = (U,A). For any stimulation q, there is a unique
q-mode that can be computed in time O(|U |+ |A|).

In practice, model graphs are not acyclic and feedback loops play a central role in system func-
tionality. In cyclic models, a stimulation q may have no q-modes (in case no steady state is induced
by the stimulation), a unique q-mode, or several q-modes. In order to compute the set of q-modes we
will first transform a cyclic model into a simple one. Recall that a feedback set in a directed graph is
a set of nodes whose removal renders the graph acyclic [6]. A feedback set of a model M is a feedback
set for the graph GM . Given a feedback set F , the auxiliary model MF is obtained by changing the
regulation functions of the variables in F to null. The graph GMF

is updated accordingly and becomes
acyclic, so MF is simple. Given a set F ′ ⊆ F , we say that a mode m′ of MF is (M, F ′)-compatible
if m′ agrees with M on every v ∈ F ′. In particular, a mode of MF which is (M, F )-compatible is
also a mode for M , since the steady state requirements hold for every v ∈ U \ F (by definition of
MF modes) and for all v ∈ F (due to the compatibility). Given a mode for MF , it is easy to check
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if it is (M, F ′)-compatible by calculating fv for each v ∈ F ′. The following algorithm calculates the
q-modes of M by using a feedback set F and a topological ordering of GMF

:

Mode Computation Algorithm
• Generate each possible state assignment to F . For the assignment sF : F → S do the following:
− Generate a stimulation q′ for MF by joining q and sF .
− Use the topological ordering to compute a (unique) q′-mode m′.
− If m′ is (M, F )-compatible, add it to Qq,M .

Hence, we have shown:

Proposition 2 Given a model M , a feedback set F , and a stimulation q, the q-modes can be computed
in O(k|F |(|U |+ |A|)) time.

We note that the minimum feedback set problem is NP-hard [12], but approximation algorithms
are available [15]. The complexity of our algorithm is exponential in the size of the feedback set, but
this is tolerable for the current models we have analyzed. Much larger systems may require heuristics
that avoid the exhaustive enumeration of feedback set states we are currently using.

4 Experimental conditions and their inferred modes

An ultimate test for a model is its ability to predict correctly the outcome of biological experiments.
We formally represent the data of such experiments as conditions. A condition e is a triplet (eq, ep, es).
eq is a model stimulation defining the environment in which the experiment was performed. ep is
a partial assignment of states to variables in U \ UI , and is called a perturbation. A perturbation
defines a set of variables whose regulation was kept as a particular constant during the experiment.
For example, knockout experiments fix the state of mRNAs to zero. es is a set of measurements of the
states of some variables, and is called an observed partial state. We define es(v) = −1 for variables
that were not measured in the experiment. Low throughput experiments (like northern blot or
ELISA) typically measure one or few variables in a given condition. High throughput experiments
(e.g., gene expression arrays or protein expression profiles) may measure the states of all variables of a
particular type. A different type of high throughput experiments are growth sensitivity mutant arrays
[4]. Each such array corresponds to many conditions, all with the same stimulation (representing the
environment of the experiment), but with different perturbations (different knocked-out genes), and
only a single measured variable: the growth level. We will assume that this level corresponds to the
yield of the metabolic pathway under study.

Given a condition e we wish to use a model M to compare the possible modes induced by the
stimulation eq with the observed partial state. If the condition involves a perturbation, we first
have to update our model accordingly. For simplicity assume this is not the case. We then apply
the algorithm from the previous section and compute the set of all eq-modes. In case more than
one exists, we expect the correct one to be most similar to the observed partial state. To assess
this similarity we introduce a score function that equals the sum of squared differences between the
observed partial state es and a eq-mode. Precisely, given a condition e and an eq-mode s, we define
the discrepancy D(s, e) as

∑
v∈U,es(v) 6=−1(s(v) − es(v))2. The mode with smallest discrepancy will

be considered as our inferred mode. Its score is called the model discrepancy on condition e, i.e.,
D(M, e) = mins∈Qeq,M

D(s, e). If no eq-mode exists, D(M, e) is set to a large constant K. Note that
models with loosely defined regulation functions may have a large number of modes per stimulation
and consequently suffer from over-fitting of the inference.
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5 Learning regulation functions

Given a model and experimental conditions, we wish to optimize one particular regulation function
in the model and in this way derive an improved model with lower discrepancy. In this section we
discuss the resulting function optimization problem, and show that this problem is NP-hard. We
translate the function optimization problem to a combinatorial problem on matrices, and provide a
polynomial-time greedy algorithm for it. Finally, we show that the greedy algorithm guarantees a
1/2-approximation for a maximization variant of the function optimization problem.

We focus on one model variable v and fix the set of v’s regulators {r1
v, ...r

dv
v }. Let E = {ei} be

the set of experimental conditions. In order to simplify the presentation, we assume throughout this
section that experimental conditions have empty perturbation sets. Given a function g : Sdv → S we
define M(g, v) to be the model M with the single change that fv = g. The discrepancy score of g is
defined as

∑
i D(M(g, v), ei).

Problem 1 The function optimization problem. The problem is defined with respect to a model
M , a set of conditions E and a variable v ∈ U . The goal is to find a regulation function fv = g with
an optimal discrepancy score. In other words, we wish to compute argming

∑
i D(M(g, v), ei).

In most extant gene networks models [9, 3, 16], an optimal regulation function can be easily
learned given the topology of the network. This is done using the multiplicities (or probabilities) of
different combinations of observed states for the regulators and regulatee. The main difficulty with
our version of the learning problem is that the states of regulators are frequently not observed, and
have to be inferred together with the regulation function. A naive algorithm can test all kkdv

functions
for the best discrepancy, but this strategy is impractical even for modest k and dv (333

> 1012). In
fact, the optimization problem is NP-hard (for a proof, see the appendix).

Proposition 3 The function optimization problem is NP hard.

We shall translate the function optimization problem to a combinatorial problem on matrices and
develop an approximation algorithm to solve it. First, we define an auxiliary matrix and show how to
construct it. We define Qv

q,M as the set of model states s which satisfy for all u ∈ UI , s(u) = q(u) and
agree with M on all u ∈ U\UI , u 6= v. Note that Qv

q,M is a superset of the set of q-modes Qq,M in which
we relax the requirement for agreement on v. Given an instance of the learning problem, we form
a matrix W v with a column for each condition and a row for each assignment of states to v and its
regulators. We define the matrix entry wv

i,((x1,...,xdv ),x) as min{D(s, ei
s)|s ∈ Qv

ei
q ,M , s(r) = x, s(v) = x}

or K if Qv
ei
q ,M = ∅, where K is a large constant, r = (r1

v, . . . r
dv
v ), x = (x1, . . . , xdv). In the following

algorithm, we show how to compute W v by relaxing the requirement for v compatibility in the mode
computation algorithm. Later we shall show how to use W v to compute the discrepancy score.

Matrix Construction Algorithm
• Initialize all entries in W v to K.
• Form a feedback set F such that v ∈ F .
• For each condition i and for each assignment sF of states of the feedback set do:
− generate a stimulation q′ for MF by joining ei

q and sF .
− use a topological ordering on GMF

to compute a (unique) q′-mode m′ for MF .
− If m′ is (M, F \ v)-compatible, compute its discrepancy x.
− Replace the entry wv

i,((m′(r1
v),...,m′(rdv

v )),m′(v))
by x if the latter is smaller.

6



Lemma 4 Given a model M , a set of conditions E and a feedback set F such that v ∈ F , the Matrix
Construction Algorithm correctly computes the matrix W v in O(kdv+1|E|+ k|F |(|U |+ |A|)|E|).

Proof: Matrix entries are computed by minimization of discrepancies over all (M, F \v)-compatible
modes that have a given regulator/regulatee states. But (M, F \v)-compatible modes are exactly the
modes in Qv

ei
q ,M which are used in W v’s definition. Therefore, the algorithm correctly computes W v.

The algorithm spends O(kdv+1|E|) (the size of W v) time in initialization and O(k|F |(|U | + |A|)|E|)
time to compute all mode discrepancies.

Lemma 5 The discrepancy score of a regulation function g equals
∑|E|

i=1 minx∈Sdv wv
i,(x,g(x)).

Proof: We will show that for each i, minx∈Sdv wv
i,(x,g(x)) = D(M(g, v), ei).

D(M(g, v), ei) = mins∈Q
ei
q,M(g,v)

[D(s, ei
s)] = minx∈Sdv mins∈Q

ei
q,M(g,v)

,s(r)=x[D(s, ei
s)] =

minx∈Sdv mins∈Qv

ei
q,M(g,v)

,s(r)=x,s(v)=g(x)[D(s, ei
s)] = minx∈Sdv wv

i,(x,g(x)).

By the last lemma, the scores of all possible regulation functions can be derived from the matrix
W v. To find the optimal function we first translate the problem to the following combinatorial
problem:

Problem 2 The Rows Subset Cover Problem. We are given a non-negative integer valued
n × m matrix W and a partition of the rows to disjoint subsets B1, . . . , Bl. A row subset R is a
set of rows bR

1 ∈ B1, b
R
2 ∈ B2, . . . , b

R
l ∈ Bl. Our goal is to find a row subset with maximal score

c(R) =
∑m

j=1 maxl
i=1 wbR

i ,j.

In our settings, rows are pairs (x, x) and columns are conditions. The subsets Bj are the sets of
columns with identical regulator states x. To formulate the function optimization problem as a row
subset cover problem we rewrite wij = K − wv

ij. A selection of bi = (x, x) corresponds to the setting
of fv(x) = x.

The previous discussion implies that for constant value of dv and k, the row subset cover problem
is NP-hard. A Greedy Row Subset Algorithm applies naturally to this problem: We start with an
arbitrary row subset S, and repeatedly substitute a row to improve the score, i.e., setting S ←
(S \ {bS

i }) ∪ {b′i} where b′i ∈ Bi and the new S has improved score. The algorithm terminates in
a local optimum when no single row substitution can improve the score. Since the score increases
at each iteration and all scores are integers bounded by K, the greedy algorithm will terminate
after O(nmK) steps. For the function optimization problem, O(|E||U |k2) is an upper bound on the
maximal score and hence on the number of steps. Each step costs O(|E|kdv+1) in order to find an
improving substitution, and thus the total cost is O(|E|2|U |kdv+3).

Proposition 6 The greedy algorithm guarantees a 1/2-approximation for the Row Subset Cover
Problem.

Proof: Given a row subset R, the score c(R) can be expressed as a sum of terms of the form
cj(R) = maxl

i=1[wbR
i ,j]. We partition the columns according to argmaxi=1,...,l[wbR

i ,j] by defining

PR
i = {j|wbR

i ,j ≥ wbR
k

,j, k 6= i} and transforming PR
1 , ..., PR

l into a partition by arbitrarily breaking

ties. We now have c(R) =
∑l

i=1

∑
j∈P R

i
[cj(R)].

Let A be an optimal row subset, and let D be the output of the greedy algorithm. To prove the
approximation ratio, we will show that c(A) − c(D) ≤ c(D). We first rewrite this inequality using
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two different column partitions,
∑l

i=1

∑
j∈P A

i
[cj(A) − cj(D)] ≤ ∑l

i=1

∑
j∈P D

i
[cj(D)]. In fact, we will

show that the inequality holds separately for each term, i.e.,
∑

j∈P A
i
[cj(A)− cj(D)] ≤ ∑

j∈P D
i

[cj(D)].

If bA
i = bD

i , for each j ∈ PA
i , cj(A) ≤ cj(D) since the maximal value for A in column j is wbA

i ,j,

and solution D can use the same value or a better one. Therefore,
∑

j∈P A
i
[cj(A)− cj(D)] ≤ 0 and the

inequality holds.
Assume now that bA

i 6= bD
i . We define a new row subset Ei, which is the same as D except for

replacing bD
i with bA

i . The replacement decreases the score in certain columns (denoted L−) and
increases it in others (denoted L+). Call the decrease in the set L− the loss and call the increase
in L+ the gain caused by the replacement. The key to the proof will be the fact that the loss must
be equal or larger than the gain, or else the greedy algorithm would have not stopped at D. Since
L− ⊂ PD

i we have ∑
j∈P D

i

[cj(D)] ≥
∑

j∈L−

[cj(D)− cj(Ei)] = loss. (1)

Next look at L+ and PA
i . For j ∈ L+ \PA

i we have cj(Ei)− cj(D) > 0. For j ∈ L+ ∩PA
i we have

cj(Ei)− cj(D) = cj(A)− cj(D). For j ∈ PA
i \ L+ we have cj(A)− cj(D) < 0. Overall we get:

gain =
∑

j∈L+

[cj(Ei)− cj(D)] ≥
∑

j∈P A
i

[cj(A)− cj(D)]. (2)

In summary,
∑

j∈P D
i

[cj(D)] ≥ ∑
j∈L− [cj(D) − cj(Ei)] ≥

∑
j∈L+ [cj(Ei) − cj(D)] ≥ ∑

j∈P A
i
[cj(A) −

cj(D)]. The first and third inequalities follow by (1) and (2), respectively. The second inequality is
the observation that the loss exceeds the gain.

In practice, we find regulation functions by executing the matrix construction algorithm and
applying the greedy algorithm to the obtained matrix. Note that our approximation holds only for the
maximization problem. Developing any constant ratio approximation for the minimization problem
in its current form is NP-hard. This follows from Proposition 3, since the matrix corresponding to
the model in that proof has a minimum score of zero, and thus the decision problem with score zero
is NP-hard.

We note that in order to take condition perturbations into account, we have to consider a slightly
different model in each condition. For example, if a condition was measured in a strain knocked-out
for a specific gene v, we will form a modified model with altered (constant) fv function and compute
its modes and discrepancy as described above. The other algorithms (matrix generation and row
selection) remain unchanged.

6 Results

We applied the MetaReg modeling scheme and algorithms to study lysine biosynthesis in the yeast
S. cerevisiae. This system was selected since a) it is a relatively simple metabolic pathway, b) its
regulatory mechanisms are relatively well understood, and c) several high throughput datasets which
include experimental information pertinent to lysine biosynthesis are available.

6.1 A Model for Lysine Biosynthesis

We have performed an extensive literature survey and constructed a detailed model for lysine biosyn-
thesis and related regulatory mechanisms. Lysine, an essential amino acid, is synthesized in S.
cerevisiae from α-ketoglutarate via homocytrate and α-aminoadipate semialdehyde (αAASA) in a
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linear pathway in which eight catalyzing enzymes are involved. The production of lysine is controlled
by several known mechanisms:

(1) Control of enzymes transcription via the general regulatory pathway of amino acids biosyn-
thesis. Starvation for amino acids, purines and glucose, induce the synthesis of GCN4ap 1 which is
a transcriptional activator of enzymes catalyzing amino acids biosynthesis in several pathways, in-
cluding lysine. GCN4ap is controlled on the translation level by the translation initiation machinery.
Specifically, GCN2ap (a translation initiation factor 2α kinase) is known to mediate the de-repression
of GCN4m translation in nutrient-starved cells. The activity of GCN2ap is induced by high levels of
uncharged tRNA under starvation conditions [5].

(2) Transcription control of several catalyzing enzymes is regulated by αAASA. The control is
mediated by the LYS14ap transcriptional activator in the presence of αAASA, an intermediate of
the pathway acting as a coinducer. αAASA serves as a sensor of lysine production [13].

(3) Feedback inhibition of homocytrate synthase isoenzymes (LYS20ap and LYS21ap) by lysine.
The first step of the lysine biosynthetic pathway is catalyzed by LYS20ap and LYS21ap. At high levels
of lysine, LYS20ap and LYS21ap are inhibited, and thus the production of the pathway intermediates
and of lysine itself is reduced [8].

(4) MKS1ap down-regulates CIT2m expression and hence cytrate-synthase production which is
needed for the synthesis of α-ketoglutarate. The resulting limitation of α-ketoglutarate decreases the
rate of lysine synthesis. MKS1ap is activated in nutrient-starved cells [7, 18].

In Figure 2, we present the model graph of lysine biosynthesis as described above. The graph
includes the lysine biosynthetic pathway, the catalyzing enzymes and their transcription control, and
the translation initiation machinery controlling GCN4ap state. The model includes also external
amino acids and ammonium (NH3). These are needed as stimulators to represent the environmental
conditions enforced on the system. The transport of amino acids and ammonium into the cell is
facilitated via specific permeases, and the level of internal amino acids and ammonium is determined
by the extracellular metabolites and by the activity of these permeases. The state of internal lysine
depends on the lysine transport into the cell and on the yield of the lysine biosynthetic pathway. Note
that in order to study the model in relative isolation from other pathways and regulatory systems,
we had to exclude some of the known relations (e.g., CIT2 and the Kreb cycle in α-ketoglutarate
production, tRNAs in GCN2ap activation). The model graph contains several cycles that correspond
to three distinct feedback cycles: general nitrogen control regulation (e.g. GCN2ap → GCN4ap →
LYS1,9m → LYS1,9ap → ILys → GCN2ap), lysin negative regulation (LYS20ap/LYS21ap → IHo-
moCytrate→ αAASA→ ILys→ LYS20ap/LYS21ap) and αAASA positive regulation (e.g. LYS14ap
→ LYS2m → LYS2ap → αAASA → LYS14ap). We used a feedback set F consisting of GCN2ap
and IαAASA in all the computations reported below. The complete and annotated list of regulation
functions that are part of the model, is available upon request.

We used the state space S = {0, 1, 2}. In our experiments, the definition of compatibility used for
the calculation of q-modes was relaxed a bit to include also cases where m′(v) and fv(m

′(r1
v), . . . ,m

′(rdv
v ))

are both non-zeros (i.e., cases where inferred state was 1 and observation 2 or vice versa are not con-
sidered violation of compatibility). In other words, D(i, j) was (i− j)2 for all states {i, j} 6= {1, 2},
but D(1, 2) and D(2, 1) were set to 0. This was done to allow more flexibility in the model and to
focus more on major discrepancies.

1We use variable affixes to indicate types. m suffix: mRNA, ap suffix: active protein. Metabolites names are
prefixed to indicate their type, I: internal, E: external.
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Figure 2: The model graph of lysine biosynthesis in S. cerevisiae. Variables are represented
by nodes. Arcs lead from each regulator to its regulatees. All arc directions are at any angle to the
right or straight down, unless otherwise indicated. The model includes also a regulation function
for each regulated variable. These functions are not shown here. Node colors indicate the mode
inferred states and the observed states in condition of nitrogen depletion after 2 days. Internal node
color: inferred state. Node boundaries: observed state. Red(dark): state= 2. Dark pink(grey): 1.
Light pink(light grey): 0. The representation enables us to view the disagreements as color contrasts
between the observed and inferred states. For example, LYS9m (bottom right) inferred state is 2
while its observed state is 1.

6.2 Data Preparation

We formed a heterogeneous dataset from five different high-throughput experiments: (a) 10 expression
profiles in nitrogen depletion medium after 0.5h, 1h, 2h, 4h, 8h, 12h, 1d, 2d, 3d, 5d of incubation [10].
(b) 5 expression profiles in amino acid starvation after 0.5h, 1h, 2h, 4h, 6h of incubation [10]. (c) 10
microarray experiments of His and Leu starvations and various GCN4 perturbations [5]. (d) protein
and mRNA profiles of wild type strain in YPD and minimal media [19]. (e) 80 Growth sensitivity
phenotypes [4]. The growth phenotypes were measured for each of a collection of ten gene-deletion
mutant strains in eight conditions: Lys, Trp and Thr starvation, three minimal media and two YPG
conditions.

To incorporate these data into our framework, we generated conditions from each of the exper-
iments. To this end, we identified the stimulation and perturbation that match each experiment
from the respective publication. We then converted the data into a set of observed states. In the
Appendix, we define the conversion process of each data set. Note that some of the experiments
translate directly to observed states (e.g., growth profiles) and some must be manipulated further
(e.g., mRNA ratios of two conditions).
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6.3 Model discrepancy

For each of the high throughput conditions in (a) through (d) we computed inferred modes and
compared them to the observed states. Recall that the environment defined by the condition’s
stimulation gives rise to a set of possible inferred modes, and we choose the inferred mode which
fits the observed states best. Typically, there are only few modes per condition in the lysine model,
confirming the relatively good characterization of the system by the model.

Figure 3A summarizes the comparison between inferred modes and observed states for expression
conditions. Figure 3B does the same for growth sensitivity data. In general, there is good agreement
between the inferred and observed states. The matrix view highlights conditions and variables in
which the observations deviate from the model predictions.

Figure 3: Model Discrepancy (A) Discrepancy matrix for the expression data. Columns cor-
respond to conditions and rows correspond to mRNA variables. Each cell contains two small squares:
observed (left) and inferred (right) states of the row variable in the column condition. State colors: Cyan
(light gray):0, light blue (gray):1, dark blue (black):2. The background color of the cells emphasizes critical
disagreement, where the inferred state is zero and the observed state is not (green or light gray), or vice
versa (red or gray). (B) Discrepancy matrix for the phenotype data. Each cell represents a condition,
which is a combination of certain environmental nutrients and one gene deletion. Columns correspond to
the nutritional environment (i.e., the medium), and rows correspond to the knocked-out variable. Each cell
contain two small squares: observed (left) and inferred (right) state of the internal lysine metabolite (the
ILys variable) in this condition. Colors are as in (A). (C). Distribution of model discrepancy scores
for randomly shuffled data sets. X axis: total model discrepancy. We generated the distribution by
computing model discrepancy for 50 random data sets. The discrepancy of the real data set is 494 (arrow),
much lower than the minimal discrepancy measured in the shuffled sets.
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Before analyzing the deviations, we verified the specificity of the total discrepancy. Since the mode
computation algorithm involves selection of one mode from several possibilities in each condition, we
wanted to verify that this process does not cause over-fitting. To this end, we generated randomly
shuffled data sets in which we swapped the states between variables of the same type. Figure 3C
shows the discrepancy distribution obtained from this experiment, and supports the high specificity
of the lysine model discrepancy.

We next examined the biological implication of two major deviations of the inference from the
experimental data: First, the transcription of the translation initiation machinery (GCD1,2,6,7,11,
GCN1,20, SUI2,3) is repressed in the later phases (8h-5d) of the nitrogen depletion experiment, and
this effect is not predicted by the model. Moreover, the transcription of the ammonium permeases
MEP1 and MEP2 is consistently activated in nitrogen depletion. To the best of our knowledge, the
explanation for these observations is still unclear. However, there is some evidence for involvement
of the TOR signaling pathway in the regulation of this response [2]. Second, the transcription of the
lysine biosynthesis catalyzing enzymes is known to be activated by both LYS14ap and GCN4ap, but
the exact combinatorial regulation function is unknown. Since they are both known to be activators,
we originally modeled the regulation function of the catalyzing enzymes (LYS1,2,9,20,21) simply as
the sum of LYS14ap and GCN4ap. In most catalyzing enzymes, there is a clear inference deviation
in two conditions with GCN4∆ strain (Figure 3A, 3rd and 6th columns from right). In addition,
the growth phenotypes of LYS14 deletion strain (Figure 3B, second row) deviate from their inferred
states in all conditions with nutritional limitation of lysine. Therefore, the regulation function we
originally modeled for the lysine biosynthesis catalyzing enzymes is apparently not optimal.

6.4 Learning improved regulation functions

To refine our understanding of the combinatorial regulation scheme involving LYS14ap and GCN4ap
we applied our learning algorithm to the regulation functions of LYS1,2,4,5,9,12,20,21. For each one,
we computed the discrepancy matrix and selected an optimal regulation function using the learning
algorithm outlined in Section 5. To estimate the confidence of our learned functions we used a
bootstrap procedure as follows. We generated 1000 datasets each containing a random subset of 80%
of the original set of conditions. For each random dataset we recalculated the optimal regulation
functions for each of the enzymes. The confidence of the function entry fv(x1, . . . , xdv) = y was defined
as the fraction of times y was learned as the function value for the regulators values x1, . . . , xdv . In
case of ties (several function outcomes with equal scores), we split the count among the candidate
outcomes. Results are summarized in Figure 4A,B,C.

Based on the optimal functions, we identify two enzyme sets that share a regulatory program.
The expression of genes in the first set (LYS1,9,20 and possibly LYS4 and LYS21) is dependent on
the presence of both LYS14 and GCN4. Both transcription factors seems to drive the transcription
of enzymes in this set linearly. The second set, including LYS5, LYS12 and YJL200C require LYS14
but not GCN4 for basal expression levels. For LYS5 it seems that GCN4 may not be a regulator at
all, possibly since LYS5 is not a catalyzing enzyme in the pathway under study. We note that the
combination of expression and growth phenotype information was crucial for deriving this conclusion.
For example, when using expression data alone, the rows with LYS14p=0 are completely undefined.

6.5 Cross validation

We tested the predictive quality of MetaReg by performing leave-one-out cross validation. For the
test, we used the set of enzymes L = {LYS1,2,4,5,9,12,20,21m} as regulatees and GCN4ap, LYS14ap,
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Figure 4: Learning regulation functions. (A) The optimal transcription regulation function of each
lysine biosynthesis pathway enzyme as a function of the states of the regulators GCN4ap and LYS14ap.
Each cell presents the state of a regulatee given the states of its regulators GCN4ap (column) and LYS14ap
(row). Cell colors indicate the regulatee states. Red (dark gray): state= 2. Dark pink (gray): 1. Light
pink (light gray): 0. We show only entries with over 90% confidence. For combinations of regulators states
that have lower confidence or were never present in the inferred modes, we leave the corresponding entries
of the optimal regulation function undefined. (B). The discrepancy change for each function modification
relative to the optimum regulation function of LYS2. Rows: combination of regulators (GCN4ap,LYS14ap)
states. Columns: regulatee (LYS2) states. The cell ((x, y), z) represents the difference in discrepancy of a
regulation function in which f(x, y) = z and all other values are as in the optimal LYS2m function. All
values are relative to the discrepancy of the optimal regulation function as shown in A. (C) Confidences for
the LYS2 function. Rows and columns are as in (B), values are the percent of times in which the value was
learned out of 1000 bootstrap experiments. (D) The accuracy of the independence, Bayesian and MetaReg
methods on the lysine biosynthesis pathway. The accuracy is computed by cross validation on all expression
conditions and the lysine biosynthesis pathway enzymes.

as regulators. For each variable v ∈ L and each condition c, we optimized the regulation function of v
while fixing the rest of the model and hiding the data of c. We then used the optimized model to infer
the mode in condition c without using the observed value of v. Finally, we compared the inferred
state of the enzyme variable to the observed one, and counted the total number of correct outcomes
(or fractions of outcomes in case the inferred mode was ambiguous and several alternatives existed).
Using mRNA expression data only, the accuracy derived in this procedure was 78.3% (Figure 4D).

We compared the performance of Metareg to the following alternative methods: (a) A Bayesian
networks [9] with a known structure where GCN4m and LYS4m are the parents of each variable in
L. We learned the local probability parameters [11] using non-informative prior. To compute the
accuracy, we ran a cross validation test by learning parameters while hiding one condition at a time.
The overall accuracy obtained in this procedure was 61.4%, much lower than achieved by MetaReg.
(b) An independence model: Each regulatee in L has no regulators. We predict the probability of
each regulatee outcome as the background distribution of its observations. To compute the accuracy,
we ran the same procedure as in (a). The overall accuracy obtained in this procedure was 47.5%. We
conclude that the detailed modeling of interactions among proteins, metabolites and mRNAs gives
an improved accuracy to our model.
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7 Discussion

Models of biological regulation are becoming increasingly complex. The well established biological
methodology of model development and expansion (incremental refinement) is facing major challenges
with the advent of high throughput technologies and the discovery of more and more regulatory
mechanisms. Computational techniques for modeling and learning biological systems are currently
limited in their ability to help biologists to extend their models: De-novo reconstruction methods
ignore available biological knowledge, and module-based methods do not specify concrete regulation
functions. Here we aim at the construction of a computational methodology that combines well with
current biological methodologies. MetaReg models can be built for almost any existing biological
system, they do not assume complete knowledge of the system, and are flexible enough to integrate
diverse regulatory mechanisms. Once built, the model allows easy integration of high throughput
data into the analysis of the existing model. The computational tools introduced here can then be
used to generate testable and easy to understand biological regulation hypotheses.
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8 Appendix 1: Preprocessing the Data

8.1 Microarray data

Gene expression measurements using cDNA microarrays do not provide absolute mRNA levels in
a single condition of interest, but only relative mRNA levels in pairs of conditions. Hence, an
experiment gives for each gene the ratios of its mRNA levels in a test and reference conditions. In
order to use such data in our analysis, we first have to transform experiments into absolute mRNA
levels in single conditions and then use them to evaluate model discrepancy. This can be easily done
if all experiments are using a common reference condition. In this simple case, we may directly use
the relative measurements as the observed states in the test condition, due to the fact that all relative
measurements are comparable.

In practice, not all experiments use the same reference condition. To handle this case we define
the experiments graph, a directed multigraph in which vertices represent conditions and arcs represent
experiments. For each experiment, we add an arc from the reference to the test condition vertex.
Note that condition vertices can be reused. Let l(v, i, j) be the logarithm of the ratio of gene v’s levels
in condition i and condition j. For gene v, the weight of arc (i, j) is precisely l(v, i, j), as obtained
from the microarray in the experiment with test condition j and reference condition i. We wish to
compute a normalized log hybridization level (we will refer to it as level) for each mRNA variable
in each condition. Assume first that the graph is connected. The idea is to fix one vertex in the
graph as a common reference and compute the levels of all other conditions relative to it. We then
discretize the levels to generate the observed states of each condition.

Our normalization procedure works as follows: First, using prior biological knowledge we fix the
levels of the mRNA variables in one condition (the source condition). Second, we use a breadth-first
search algorithm on the underlying undirected experiment graph in order to handle condition vertices
by an ascending distance from the source condition. When reaching a condition i, there must be
at least one neighbor whose levels are already determined. We compute the level of each mRNA
variable v in the condition i as follows: The contribution of an incoming neighbor j is defined as
l(v, j) + l(v, j, i) where l(v, j) is the level of variable v in condition j. For an outgoing neighbor j,
the contribution is defined as l(v, j)− l(v, j, i). We compute the level of v at condition i by averaging
the contributions of all determined neighbors. In case more than one connected component exists,
we must fix a common reference in each component and ensure their levels are comparable. Note
that if we have absolute measurements on more than one condition in a connected component of the
experiment graph, the algorithm can be adapted to take this information into account.

In order to calculate the observed states for datasets (a)-(d) (Section 6.2), we created the experi-
ment graph shown in Figure 5. We used growth of a wild-type strain in standard conditions and YPD
medium as our source condition, and fixed its levels to 1 for all genes. We assigned the computed
levels in the range (−∞,0),[0,2) and [2,∞) to the observed states 0,1 and 2, respectively.

8.2 Protein data

The observed states of proteins in minimal media were obtained by discretizing the concentration
levels reported by [19]. We assigned the values in the range [0,0.5],(0.5,1.5], and (1.5,∞) to the
observed states 0,1 and 2 respectively.
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Figure 5: Experiments graph. The conditions and experiments used in our analysis. Ovals
represent groups of conditions vertices, shown together to simplify graphical representation (the
number of conditions represented by each oval is shown in parentheses). Arcs represent differential
gene expression experiments and are annotated by their respective publication code: a,b:[10]. c:[5].
d:[19]. wt: wild type in standard conditions and YPD medium.

8.3 Phenotype Data

The observed states of the growth phenotypes were obtained by discretizing the sensitivity scores
reported in [4]. Giaever et al. (2002) computed for each strain and environmental condition a
sensitivity score, and assigned the sensitivity scores in each generation time a cutoff of significance.
Following these cutoffs, we discretized the sensitivity scores in the range [0,10],(10,20], and (20,∞)
to observed states 0,1, and 2, respectively for 5 generation phenotypes, and [0,20],(20,100],(100,∞)
for 15 generation phenotypes. The growth phenotype was associated with the level of the internal
lysine variable in the model.

9 Appendix 2

Proposition 7 The function optimization problem is NP hard.

Proof: The decision version of the problem is to determine if there is a function g with
∑

i D(M(g, v), ei)
≤ L. We shall reduce 3SAT to it. The idea is to encode a truth assignment of n variables using a
function on dlog ne regulators, where each assignment of regulators values encodes one variable and
the regulatee value represents the truth value for that variable. For each clause we will add a model
variable and a condition, such that the model discrepancy will be zero iff the function encoding the
truth assignment will set at least one of the clause literals to its required truth value. For an example
of the construction see Figure 6.

We now describe the construction formally. We are given an instance of 3SAT with a set of
m clauses C1, ..., Cm, involving the variables x1, ..., xn. Define first some auxiliary variables: For
the j-th literal of clause i, we let aij equal the index of the variable, and we set bij = 0 if that
variable is negated and bij = 1 otherwise. In our example (Figure 6), C2 = ¬x1 ∨ ¬x2 ∨ x3 and
a20 = 1, a21 = 2, a22 = 3, b20 = 0, b21 = 0, b22 = 1.

We are now ready to construct the model M . All states are Boolean. The model variables include
a) a set of dv = dlog2 ne variable pairs ri, r

′
i that constitute a variable encoding gadget. b) a variable ci

for each clause Ci and c) a truth assignment variable v, to which we will apply function optimization.
The variable encoding gadget is built so that each combination of states of its variables corresponds
to one of the SAT variables. We introduce a positive feedback loop between ri and r′i so that in each
mode both can have either 0 or 1 state. The regulation function of each clause variable ci encodes
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Figure 6: Construction of a reduction model. Top: two variable encoding gadgets. Bottom:
Three clause variables. Middle: The truth assignment variable whose function is optimized.

the logic of that clause. We let N(ci) = (r1, . . . , rdv , v) and set fci
to zero in all but three particular

regulators states, corresponding to each of the clause literals, in which the regulatee value is set to
1. The positive regulators state for the j’th clause is determined by the binary representation of aij

in the variable encoding gadget and by requiring v to attain the corresponding bij value. In other
words, fci

is true only when the variable encoding gadget encodes one of the variables in Ci and v
has a value which is compatible with that variable sign in Ci. v’s regulators are all the ri’s. To finish
the construction, we must specify the set of conditions E. It consists of one condition ei per clause
Ci, in which ci is observed as 1 and all other variables are hidden. Finally, set L = 0.

We claim that there is a function g s.t.
∑

i D(M(g, v), ei) = 0 iff the given instance of 3SAT is sat-
isfiable. We map between truth assignments T = {tj} and functions gT by setting gT (x1, . . . , xdv) ≡ tj
where j is the integer with binary encoding x1, . . . , xdv . We will prove that all clauses are satisfied
by T iff

∑
i D(M(gT , v), ei) = 0.

Let T be a truth assignment that satisfies the 3SAT instance. Then in each clause Ci there is
a variable aij with sign bij that is true. Consider the encoding of the index aij in the variables
r1, . . . , rdv . By the definition of gT , the state of v equals taij

, and hence by construction fci
will equal

one, giving zero discrepancy for the condition i. Hence the overall discrepancy is zero.
Suppose conversely that the total discrepancy is zero for the function gT , and consider the truth

assignment T . As the discrepancy for experiment ei is zero, there is an index aij whose encoding
along with bij correspond to a value 1 of fci

. Hence, clause Ci is satisfied.
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ABSTRACT

Biological systems are traditionally studied by focusing on a specific subsystem, building
an intuitive model for it, and refining the model using results from carefully designed ex-
periments. Modern experimental techniques provide massive data on the global behavior of
biological systems, and systematically using these large datasets for refining existing knowl-
edge is a major challenge. Here we introduce an extended computational framework that
combines formalization of existing qualitative models, probabilistic modeling, and integra-
tion of high-throughput experimental data. Using our methods, it is possible to interpret
genomewide measurements in the context of prior knowledge on the system, to assign statis-
tical meaning to the accuracy of such knowledge, and to learn refined models with improved
fit to the experiments. Our model is represented as a probabilistic factor graph, and the
framework accommodates partial measurements of diverse biological elements. We study
the performance of several probabilistic inference algorithms and show that hidden model
variables can be reliably inferred even in the presence of feedback loops and complex logic.
We show how to refine prior knowledge on combinatorial regulatory relations using hy-
pothesis testing and derive p-values for learned model features. We test our methodology
and algorithms on a simulated model and on two real yeast models. In particular, we use
our method to explore uncharacterized relations among regulators in the yeast response to
hyper-osmotic shock and in the yeast lysine biosynthesis system. Our integrative approach
to the analysis of biological regulation is demonstrated to synergistically combine qualitative
and quantitative evidence into concrete biological predictions.

Key words: biological systems, probabilistic modeling, high throughput data.

1. INTRODUCTION

The integration of biological knowledge, high throughput data, and computer algorithms into a
coherent methodology that generates reliable and testable predictions is one of the major challenges

in today’s biology. The study of biological systems is carried out by characterizing mechanisms of biolog-
ical regulation at all levels, using a wide variety of experimental techniques. Biologists are continuously
refining models for the systems under study, but rarely formalize them mathematically. High-throughput
techniques have revolutionized the way by which biological systems are explored by generating massive
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amounts of information on the genomewide behavior of the system. Genomewide datasets are subject to
extensive computational analysis, but their integration into existing biological models is currently done al-
most exclusively manually. To rigorously integrate biological knowledge and high-throughput experiments,
one must develop computational methodologies that accommodate information from a broad variety of
sources and forms and handle highly complex systems and extensive datasets.

Recent studies on computational models for biological networks have attempted de novo reconstruction
of a network on genes (e.g., Friedman et al. [2000]), used prior knowledge on network topology (e.g.,
Hartemink et al. [2002] and Imoto et al. [2004]), or combined transcription factor location and sequence
data to learn a clustered model for the genomewide behavior of the system (Bar-Joseph et al., 2003; Segal
et al., 2003; Beer and Tavazoie, 2004). Other studies built detailed models manually, utilizing existing
biological knowledge (Chen et al., 2000; Covert et al., 2004) but lacked computational methods for model
reassessment in light of additional evidence.

In this study, we describe a new mathematical framework for representing biological knowledge and
integrating it with experimental data. Our methodology allows biologists to formalize their knowledge on
a system as a coherent model and then to use that model as the basis for computational analysis that
predicts the system’s behavior in various conditions. Most importantly, our framework allows the learning
of a refined model with improved fit to the experimental data.

In previous works (Tanay and Shamir, 2001; Gat-Viks et al., 2004), we have introduced the notions
of model refinement and expansion and studied it when applied to discrete deterministic models. Here
we study these problems in the more general settings of probabilistic models. The probabilistic approach
allows us to model uncertainty in prior biological knowledge and to distinguish between regulatory relations
that are known at a high level of certainty and those that are more speculative. The probabilistic model
also allows us to mix noisy continuous measurements with discrete regulatory logic. Our model expresses
diverse biological entities (e.g., mRNAs, proteins, metabolites) and biological relations (e.g., transcription
and translation regulation, posttranslational modifications). We formalize our model as a probabilistic factor
graph (Kschischang et al., 2001), accommodating undelayed feedback loops which are essential in many
biological systems.

Having established our methodology for probabilistic modeling, we develop algorithms for inferring the
system’s state given partial data. For example, we can infer the activity of proteins given gene expression
data. We use inference algorithms as the basis for learning refined regulatory functions. We develop a
formulation of the learning problem in our network model, which is based on deterministic hypothesis
testing. Our approach to the learning of regulatory models uses regulatory features with clear biological
meaning and allows the derivation of p-values for learned model features.

We tested the performance of our algorithms on simulated models and on two complex pathways in
S. cerevisiae: the regulation of lysine biosynthesis and the response to osmotic stress. In both cases, our
models successfully integrate prior knowledge and high throughput data and demonstrate improved per-
formance compared to extant methods. In particular, our results suggest a novel model for regulation of
genes coding for components of the HOG signaling pathway and robustly learn logical relations among
central transcription factors downstream of the Hog1 kinase. Our results show that integration of prior bio-
logical knowledge with high-throughput data is a key step toward making computational network analysis
a practical part of the toolbox of the molecular biologist.

The paper is organized as follows: In Section 2 we introduce our mathematical formulation for prior
biological knowledge and experimental data. In Section 3, we show how to infer the state of hidden vari-
ables. Sections 4 and 5 present our learning methodologies: Section 4 focuses on our discretization scheme
and how we propose to learn it. Section 5 presents our mathematical formulation for learning regulation
functions and describes a way to assign statistical meaning to the learned functions. Section 6 presents our
results on the lysine and HOG pathways. In Section 7, we discuss the advantages and limitations of our
approach and outline future research directions.

A preliminary version of this study appeared in the proceedings of RECOMB 2005 (Gat-Viks et al., 2005).

2. MODELING PRIOR KNOWLEDGE AND EXPERIMENTAL OBSERVATIONS

In this section, we present our probabilistic model for a biological regulatory network. We start by
defining model variables and formulating prior knowledge on the relations among them. We then incorporate
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experimental evidence into the model and show how to combine prior knowledge and experiments into
one integrated probability distribution.

2.1. Variables, topology and logic

The biological entities in the system under study are formulated as variables representing, e.g., mRNAs,
proteins, metabolites, and various stimulators. We assume that at a given condition, each of the entities
attain a logical state, represented by an integer value of limited cardinality. We wish to study regulatory
relations (or regulation functions) among variables. Such relations, for example, determine the level of an
mRNA variable as a function of the levels of a set of transcription factor protein variables, or the level of
a metabolite variable given the levels of other metabolites and of structural enzymes.

In most studied biological systems, substantial prior knowledge on regulatory relations has accumulated.
Such knowledge includes direct regulatory interactions, qualitative functional roles (activator/repressor),
combinatorial switches, feedback loops, and more. Typically, that information is incomplete and of variable
certainty. In order to optimally exploit it, we must model both the relations and their level of certainty. We
do this by introducing a distribution on the regulation functions for each variable. This distribution may
assign high probability to a single regulation function if our prior knowledge is very strong. At the other
extreme, lack of information is modeled by uniform distribution over all possible regulation functions.

We formalize these notions as follows (see Fig. 1A). Let X = {X1, . . . , Xn} be a collection of biological
variables. Let S = {0, 1, . . . , k−1} be the set of logical states that each variable may attain. A model state
s is an assignment of states to all the variables in X. Each variable Xi is regulated by a set of its regulator
(or parent) variables Pai = {Pai,1, . . . ,Pai,di } ⊆ X. When addressing a particular regulation relation, the
regulated variable is also called the regulatee. Lower case letters will indicate state assignments of the
corresponding upper case variables. For example, given a model state s, xsi is the state of Xi , pasi is the
assignment of the set Pai . The regulatory dependency graph is a digraph GR = (X,A) representing direct
dependencies, i.e., (Xu,Xv) ∈ A iff Xu ∈ Pav (GR is sometimes called the wiring diagram on the
topology of the model). The graph can contain cycles. The regulation function prior for a variable Xi is
formulated as our belief that the variable attains a certain state given an assignment to its parents Pai . It
is represented by the conditional probabilities θi :

θi(Xi,Pai ) = Pr(Xi |Pai ) (1)

2.2. From measurements to logical states

In practice, biological experiments provide noisy observations on a subset of the variables in the system.
The observations are continuous, and we do not know in advance how to translate them into logical states.
We thus introduce a set of real-valued sensor variables Y1, . . . , Yn and discretizer distributions ψi(Xi, Yi)
that specify the joint distribution of a discrete logical state of Xi and the continuous observation on Yi .
In this work, we shall use mixtures of Gaussian (Fig. 1B) to model ψi , but other formulations are also
possible. Note that we chose to formulate the relations between the logical and sensor variables as joint
rather than as conditional probabilities P(Yi |Xi).

In addition to providing partial observations on model variables, experiments are performed in a specific
environment and may possibly perturb some of the regulation functions in the system (for example, by
knocking out or overexpressing some genes). We model these by fixing the values of logical variables that
correspond to the environment and by changing the regulation function priors (the θ factors) to reflect the
perturbations.

2.3. The factor graph network model

Our model is defined by a joint distribution over a set of logical (X) and sensor (Y ) variables. The
distribution is constructed as the product of the factors θi , ψi , such that

PrM(X, Y ) = 1

Z

∏

i

θ i(Xi,Pai )ψ
i(Xi, Yi) (2)

where Z is a normalization constant.
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FIG. 1. An overview of the factor graph network model. (A) Knowledge on the logical regulation functions is
formalized as conditional probabilities. (B) Continuous measurements and logical states are linked by joint discretizer
distributions. (C) A possibly cyclic network structure GR (top) is transformed into a factor graph (bottom), using the
regulation function priors and the discretizers’ distributions. (D) Given an experiment in which gene X3 is knocked
out, the model is modified accordingly by fixing the state of X3 to zero and eliminating the corresponding factors
�3, �3.

We can represent our joint distribution using a probabilistic factor graph (Kschischang et al., 2001) which
explicitly expresses the structure of the joint distribution?s factorization. Factor graphs are widely used
probabilistic graphical models that were originally applied to coding/decoding problems (for a different
application of factor graphs in computational biology, see Yeang et al. [2004]). A factor graph is a
bipartite graph associating variable nodes (in one side of the graph) with factor nodes (in the other side
of the graph). We add an edge between a variable x and a factor fj if the scope of fj contains x. In
our case (Fig. 1C), the factor graph has a variable node for each logical and sensor variable (X, Y ) and
a factor node for each function θi , ψi . A modified factor graph representation, matching a perturbation
experiment, is shown in Fig. 1D. We call this formulation a factor graph network (FGN) model. Note
that our formulation is undirected although part of our model (the sensor variables) represent conditional
probabilities. Although it is in principle possible to use hybrid models (e.g., chain graphs Buntine [1995])
and maintain the directionality information in the model, for our purpose here, the undirected formulation
suffices.

When the dependency graph GR is acyclic, our FGN model is equivalent to a Bayesian network on
the variables Xi and Yi , constructed using the edges of GR and additional edges from each Xi to the
corresponding Yi . This can be easily seen from (2) by noting that in the acyclic case Z = 1 (the proof is as
in Bayesian networks theory, e.g., Pearl [1988]). When the model contains loops, the situation gets more
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complicated. For example, we note that according to the FGN model, PrM(Xi |Pai ) does not necessarily
equal the original beliefs θ(Xi,Pai ).

We note that the semantics of the prior θi distributions is different than that used in previous works
(e.g., Friedman et al. [2000]), where they served as conditional probabilities on the values of the variables
in a probabilistic setting. Instead, we assume that the true model deterministically determines Xi given
its parents, but we are not sure which deterministic rule applies, and therefore what value Xi will attain.
Regulation functions approximate an underlying biochemical reaction whose exact parameters are usually
not known. The regulatory process is stochastic at the single cell level, but the parameters of the reaction
equations governing it are deterministic. When we observe a large ensemble of cells in a high-throughput
experiment, we average millions of stochastic processes and in theory should obtain an almost deterministic
outcome or a superposition of several deterministic modes. Such deterministic outcome is obscured by
significant experimental noise, so a practical modeling approach may assume uncertainties on deterministic
logic and noisy observations. In the future, given measurements at the single cell level, the θ distributions
may be applicable to describe the inherent stochasticity of some biological switches.

3. INFERENCE

In this section, we discuss the inference problem in the FGN model. Each experiment provides partial
information on the value of model variables. Typically, a subset of the sensor real-valued variables are ob-
served in each experiment (for example, mRNA variables are determined in a gene expression experiment),
and the model is modified according to some perturbations at the appropriate condition (compare Fig. 1D).
The inference problem seeks the computation of the distribution of hidden (unmeasured) variables given
the experimental data and the model.

There are two types of inference problems we shall deal with. The first problem (marginal inference)
is to compute posterior distributions for a single hidden variable. For example, given a gene expression
profile D (specifying observations on all mRNA sensor variables), we may wish to compute the marginal
P(Xi |D) of a protein variable or a certain metabolite. The second problem is to compute the likelihood
P(D) of the observed data D. Inference in graphical models is an NP-hard problem (Cooper, 1990) that
was extensively studied. We explored the effects of our model’s specific characteristics on the performance
of three inference algorithms. Specifically, we implemented a Gibbs sampler, the loopy belief propagation
algorithm, and a structure-based instantiation inference algorithm.

The Gibbs sampler is a naive MCMC algorithm (MacKay, 1998) that performs a random walk over the
space of model states, based on sampling from local distributions. To perform Gibbs sampling, we convert
the FGN model to the equivalent Bayesian network as described by Yedidia et al. (2004). In our model,
sampling is done only for the logical variables (unobserved sensors do not affect marginal posteriors of
the logical variables, since they are integrated to 1).

The loopy belief propagation (LBP) algorithm belongs to a popular class of algorithms (Yedidia et al.,
2004) which approximate the posterior distribution assuming certain decomposition over independent vari-
ables or clusters of variables. Algorithms from this class include LBP, mean field, and their generalizations.
The LBP algorithm for the FGN model (implemented as described by Yedidia et al. [2004]) is a message-
passing procedure that is guaranteed to reach an exact solution for acyclic models and was reported to
perform well in some cases of cyclic models.

We also developed an instantiation-based inference algorithm that exploits the known dependency struc-
ture of the model and builds on ideas from the deterministic network model (Gat-Viks et al., 2004). Briefly,
recall that a deterministic (possibly loopy) network model is defined by a set of deterministic regulation
functions (one for each variable) and that such a network may attain a limited number of steady states
(or modes) in which the value of each variable is correctly determined by its regulation function and the
values of its regulators. Also recall that in an acyclic model (or in a loopy model in which the values of
the variables in a feedback set are fixed), the mode is uniquely determined (if one exists). We can therefore
search for modes in a deterministic network by analyzing the underlying topology, identifying a feedback
set, and enumerating over all value assignments for it. The modes instantiation (MI) algorithm first builds
a deterministic network model by taking, for each variable, the maximum likelihood regulation function
(using the prior θi and breaking ties arbitrarily). It then identifies a feedback set in GR and computes
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the appropriate set of modes. The algorithm next computes the likelihoods of each mode in the original
probabilistic model, possibly optimizing it using a greedy algorithm. The results of this procedure are a set
of model states with locally optimal likelihoods. For models that are close to being deterministic in many
of the variables, such set of modes may represent a significant chunk of the total likelihood of the model
given the data. The algorithm therefore approximates the posterior distribution as a mixture of modes,
weighted by their likelihoods. Since the number of modes may be small in practice, the algorithm adds to
the set of locally optimal states an additional small set of states derived using the Gibbs sampler, generating
a more smooth approximation for the posterior. The MI algorithm constructs a tractable estimation of the
joint posterior which can be used both for computation of marginal posteriors and for estimation of the
full probability P(D). There are no guarantees for the quality of this approximation, but our empirical
studies suggest that the algorithm works well in practice, probably due to the nature of models we use
(strong priors on many of the regulation functions).

We tested the three inference algorithms on a simulated model (see Fig. 2). We constructed simulated
FGN models by starting from a deterministic model and randomizing it. We use a prior strength parameter α
to construct θ functions that assign probability α for the anticipated deterministic function outcome and 1−α

k−1
to other values. For a detailed description of the simulation, see our website www.cs.tau.ac.il/∼rshamir/fgn/.

FIG. 2. Performance of different inference algorithms on a simulated model. Performance is measured by the
correlation of the inferred and the exact posterior distribution. (A) The dependency graph GR of the simulated model.
(B) Effect of prior strength on inference accuracy. Y axis: the correlation of the inferred and exact marginal posteriors.
X axis: prior strength (α). For strong priors, LBP and MI give a good approximation for the posterior, while the
accuracy of the Gibbs sampler is low. As priors get weaker, the performance of MI deteriorates, indicating that the
mixture of deterministic states is a poor approximation for the posterior in these cases. (C, D, E) Detailed correlation
of inferred and exact marginal posteriors for α = 0.7 (top) and α = 0.97 (bottom). (F, G) Detailed correlation of
inferred and exact joint posteriors for α = 0.7 (top) and α = 0.97 (bottom). We see that MI outperforms LBP when
comparing the joint posteriors.



A PROBABILISTIC METHODOLOGY FOR BIOLOGICAL NETWORKS 171

We explored the behavior of the different algorithms as a function of the prior strength α using the correct
posterior as the reference. Models with α near 1 represent very good knowledge on the system under study.
Models with α near 1

k
represent complete lack of knowledge. We first tested the accuracy of inferring

marginal posteriors. Figures 2B,C,D,E indicate that for estimating marginal posteriors, LBP outperforms
the other two algorithms (and also the mean field algorithm and a simple clustered variational algorithm
[Jaakkola, 2001], data not shown). When the prior is strong, MI provides comparable accuracy. We also
wished to test the quality of inferring joint posterior distributions. Joint posteriors cannot be computed
directly from LBP, and thus are estimated by multiplying marginal posteriors (assuming independence
among the variables). For the MI algorithm, we applied the approximation of the posterior distribution
using a mixture of locally optimal states. The results (Figs. 2F,G) confirm that for models with loops
and strong prior knowledge, the approximation using the MI algorithm performs better, exemplifying the
limitations of the posterior independence assumptions. Overall, we prefer using LBP to infer marginal
posteriors and MI to approximate the joint posterior distribution.

4. LEARNING DISCRETIZERS

Adequate transformation of continuous measurements into logical states (i.e., discretization) is essential
for the combined analysis of experimental data and a model representing extant biological knowledge.
There are several alternative approaches to discretization. In most previous works on discrete models (e.g.,
Friedman et al. [2000] and Gat-Viks et al. [2004]), discretization was done as a preprocess, using some
heuristic rule to map real-valued measurements into discrete states. In this approach, the rule must be
determined and tuned rather arbitrarily, and typically all variables are discretized using the same rule.
Here we propose a different approach to discretization. As in the FGN model the discretization is an
integral part of the model, the dependencies between the discretization schemes and regulation function
priors are fully accounted for. It is thus possible to (a) define different discretization scheme for different
variables and (b) apply standard learning algorithms to optimize the discretization functions used. Given
a logical function prior and experimental evidence D, we learn the discretization functions ψi using an
EM algorithm. We initialize all ψi using any heuristic discretization scheme. In each EM iteration, we
infer the posterior distributions for each of the variables Xi in each of the conditions and then reesti-
mate the ψi mixtures using these posteriors, by computing the Gaussians sufficient statistics E(Yi |Xi =
j,D), V (Yi |Xi = j,D). The new ψi distributions are used in the next iteration, and the algorithm continues
until convergence.

The FGN model thus provides a very flexible discretization scheme. In practice, this flexibility may lead
to overfitting and may decrease learnability. One can control such undesired effects by using the same or
few discretization schemes on all variables. As we shall see below, on real biological data, variable specific
discretization outperforms global discretization using a single scheme and is clearly more accurate than
the standard preprocessing approach.

5. LEARNING REGULATION FUNCTIONS

Given an FGN model and experimental evidence, we wish to determine the optimal regulation function
for each variable and provide statistical quantification of its robustness. We assume the parameters of the
logical factors in the FGN model represent our prior beliefs on the logical relations between variables
and attempt to learn by confirming beliefs, deciding whether a certain regulator assignment gives rise to a
certain deterministic regulatee assignment.

5.1. Formulating the learning problem

We focus on the regulation of some variable Xi and attempt to learn a single deterministic feature in the
model: the value of Xi given a fixed parents value assignment pasi . Define hj as the FGN model derived
from M by setting θ(j, pasi ) = 1 and θ(j ′, pasi ) = 0 for j ′ �= j and keeping all other model parameters at
their original values. We define the learning problem in our model as selecting the maximum likelihood hj .
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To that end, we shall have to compute the likelihood of the data given each of the hj s, a difficult problem
when we have hidden variables even on an acyclic model.

The likelihood of the data, given a model, is approximated by the inference algorithms described above.
Recall that we can approximate the full probability using a small number of high-probability modes (using,
e.g., the MI algorithm). While this may be a crude approximation, our empirical analysis shows that it is
still adequate (see below). Importantly, the likelihood of each hj takes into account all our prior knowledge
on regulation functions and experimental observations.

We note that our approach can be viewed as standard Bayesian learning, using a prior that assumes that
the only possible regulation functions are the deterministic ones. We have chosen to represent the learning
process as selection of the maximum likelihood discrete hypothesis for two reasons: First, this sharp prior
helps us define the semantic of the features that we learn (e.g., activation/repression). Second, it allows
standard statistical tools (e.g., likelihood ratio testing) to be applied, so that p-values of learned regulation
rules can be derived. In the future, when single cell measurements are available, and when models that
explicitly express the stochasticity of regulatory switches are developed, other types of priors may be more
appropriate.

5.2. Statistical evaluation

To assign statistical meaning to the learning procedure, we use two methods: bootstrap and likelihood
ratio testing. In the bootstrap method, we repeatedly select random subsets of conditions from the original
data D and for each one perform the learning procedure. We count the number of times each hj was
selected as the maximum likelihood model and define the feature robustness as the fraction of times it
was selected. Bootstrap is in widespread use in cases where sampling from the background distribution
is impossible or very difficult. In our case, approximated sampling from Pr(D|hj ) is possible given our
representation of the posterior landscape as a mixture of modes. We can thus try to directly perform a
likelihood ratio test and derive p-values for the learned features.

In a likelihood ratio test, we test the null hypothesis H0 against the alternative hypothesis H1. The

test statistic is the ratio λ = maxhi∈H0∪H1 Pr(D|hi)
maxhi∈H0 Pr(D|hi) . We decide to reject the null hypothesis (and accept H1)

if an observed ratio λ′ is too high and assign this decision a significance level by computing a p-value
pr(λ ≥ λ′|H0). Therefore, the distribution of λ given H0 must be estimated.

In our case, we fix j and define H1 : hj ,H0 : ∪k �=j hk . To estimate the distribution p(λ|H0), we generate
samples from the distribution Pr(D|H0), compute the corresponding λs, and reconstruct the λ distribution.
The main problem is therefore the sampling of datasets D. When sampling, we take into account the

FIG. 3. Accuracy of learning regulation functions. Each figure is a ROC curve (X axis: false positives rate, Y axis: true
positives rate) for learning the functions in a simulated model using bootstrap and likelihood ratio test for determining
the significance of learned features. LR-test (bootstrap) curves were obtained by varying the p-value (robustness)
between 0 and 1 and for each value, averaging over the true positive rates for all variables in the model. Results
are shown for learning from 15 (A) and 80 (B) conditions and represent the average across all model variables. The
accuracy of the likelihood ratio test method is consistently higher.
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model H0 that was modified according to the perturbations in each of the experiments (Fig. 1D). We do
this as follows: for each of the conditions in the original dataset, we form the modified model according
to the experiment. We then apply the MI algorithm to the modified model, without any observation on Y
variables, and compute the set of posterior modes for the X variables. These modes represent logical model
states that are probable given the experimental conditions. We then generate a sample by (a) selecting a
mode from the set of posterior modes, weighted by their likelihood, and (b) generating observations on Y
variables using the model discretizer distributions ψ . Our procedure therefore generates a random sample
of conditions for a true H0 model in which the corresponding experimental perturbations were performed.

We analyzed the performance of the bootstrap and likelihood ratio test methods by learning features in
our simulated model (see Figure 2A and our website www.cs.tau.ac.il/∼rshamir/fgn/ for details). Figure 3
shows ROC curves for learning in the simulated model using 15 and 80 conditions. We see consistently
better accuracy when using the likelihood ratio tests, probably due to better resolution of features that are
nearly ambiguous given the data. While bootstrap has the advantage of not assuming an approximation
to the full probability of the data, the likelihood ratio test is more accurate when the posterior can be
reasonably approximated.

6. RESULTS ON BIOLOGICAL DATA

In order to test the applicability of our methods to real biological systems, we constructed models of two
important yeast pathways, the Hog1 MAPK pathway, which mediates the yeast response to hyperosmotic
stress, and the lysine intake and biosynthesis pathway. For each of the models, we performed an extensive
literature survey in order to construct the initial model of the system (for the lysine system, our previously
developed deterministic model [Gat-Viks et al. [2004] was the main source). We collected published
experimental data on each of the models.

The HOG model is an acyclic model with 50 variables (outlined in Fig. 4). The lysine biosynthesis
model contains 140 variables, 28 of which are involved directly in feedback loops or in the biosynthesis
regulation. Figure 5 illustrates only this part of the model. The full topology of the model appears in

FIG. 4. Topology of the HOG model. The mRNA variable names are capitalized; protein variable names appear with
initial capital letters. Turgor and stress are stimulator variables; cytHog1: cytoplasmic Hog1; nuHog1: nuclear hog1.
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FIG. 5. Partial topology of the lysine biosynthesis model. The mRNA variable names are capitalized; protein variable
names appear with initial capital letters. Metabolites are shown as unoutlined ovals. Amino acids and nitrogen transport
modeling (110 variables) and translation machinery (10 variables) are not shown.

FIG. 6. Learning discretization distributions. Cross validation results for alternative methods for estimating the dis-
cretization functions ψi in the HOG (A, B) and lysine model (C, D). Glob EM: optimized single common discretization
function. Var EM: optimized variable specific discretization. (A, C) Cumulative distribution of log likelihood (ll) ratios
comparing each of the two discretization methods to the global predefined discretization scheme. (B, D) Average ll
ratios for the two methods. Bars indicate the predicted standard deviation of the averages.
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Gat-Viks et al. (2004). The complete description of the models, including the regulation functions, can be
found at our website.

We collected published experimental data on each of the models. The data consisted of 129 conditions
for the HOG model (O’Rourke and Herskowitz, 2004), and 23 conditions (cf. Gat-Viks et al. [2004])
for the lysine model. Differential measurements from cDNA microarrays were transformed into absolute
values as described by Gat-Viks et al. (2004). In both models, we used three-valued logical variables, with
values 0,1,2 corresponding to low, intermediate, and high levels. We used prior strength α = 0.9 for all
regulation functions in both models.

6.1. Learning discretization

The FGN model couples continuous measurements and discrete states via the discretizer distributions ψi .
We tested our ability to learn the functions ψi by performing cross validation using gene expression data
for the HOG and lysine models.

We used cross validation to compare three alternatives: (A) a single common predefined mixture of
Gaussians, (B) using the EM algorithm described in Section 4 to learn a single common maximum
likelihood ψ distribution, and (C) applying an unconstrained EM to learn variable specific ψi-s.

Cross validation was done as follows. For each condition, we used one of the above methods to learn
the ψ distributions, using all data excluding that condition. We then iterated over all the model’s variables.
For each variable v, we hid its observation in the omitted condition and inferred its posterior distribution
using the trained ψ’s. Finally, we computed the likelihood of v’s observation given the posterior.

Figure 6 shows the results of the cross validation on the HOG and lysine models. We present the distri-
bution and the average log likelihood ratio of each of the methods B and C to the predefined discretization
(method A). This comparison allows us to view the results in terms of the generalization capabilities of
the optimized discretizers: negative log likelihood ratios represent cases where the refined discretization
resulted in overfitting. Positive log likelihood ratios represent successful generalizations. We conclude that
in both models, incorporating the variable specific discretization into the model improves performance for
about 80% of the cases and also improves the average log likelihood ratio. In both cases, variable specific
discretization outperforms the optimized single common discretization scheme. Interestingly, in the case
of the lysine model, the common discretization scheme performs worse than the predefined discretization,
as indicated by its negative average log likelihood ratio (Figure 6D).

6.2. Biological analysis of the HOG model

The response of yeast to hyperosmotic stress is mediated through two parallel MAPK upstream signaling
branches, the multitarget MAP kinase Hog1 and an array of transcription factors that coordinate a complex
process of adaptation by transient growth repression and modifications to glycerol metabolism, membrane
structure, and more (Hohmann, 2002). Two key regulators in this response are regulated also by the
general stress response pathway. We have constructed an FGN model that represents known regulatory
relations in the HOG system (Fig. 4) and used it to study the transcriptional program following treatment
by variable levels of KCl (O’Rourke and Herskowitz, 2004). The data we used contained observations of
all the mRNA variables in the model and assignments of fixed values for the logical variables describing
experimental conditions (general stress and turgor pressure). To test the prediction accuracy of the prior
model, we applied the LBP inference algorithm to estimate the marginal posteriors of all logical variables.
We summarize the model predictions in the discrepancy matrix shown in Fig. 7. The discrepancy matrix
shows the correspondence between model predictions and experimental observations for each single variable
under each condition. Essentially, the discrepancy matrix is the result of a leave-one-out cross validation
procedure. To generate it, we examine each sensor variable Yi in each condition. We infer the marginal
posterior distribution of Yi given the observations on all other variables (except Yi) and compute the
expected value and the probability of Yi observation. We present the difference between the expected
values and the observations in a color-coded matrix.

The discrepancy matrix reveals several important discrepancies between the current model for osmo-
regulation and the microarray experiments we analyzed. We discuss here briefly two major trends. The
first trend affects a group of genes coding for proteins participating in the MAPK signaling cascade
(SSK1, SHO1, STE20, PBS2, CDC42, HOG1, and more). These genes are repressed during the peak of
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FIG. 7. Discrepancy matrix for the HOG model on data from O’Rourke et al. Rows correspond to mRNA variables
and columns to experimental conditions from O’Rourke and Herskowitz (2004). Top bars indicate conditions in variable
levels of osmotic shock. Bottom colored bars indicate groups of experiments with the same wild type or knockouts
at different time points. In treatments of 0.0625 M, 0.125 M and 0.25 M KCL, each group is spanning five time
points over 15, 30, and 40 minutes, respectively. In 0.5 M and 1 M, short (long) bars indicate 5 (10) experiments over
40–180 minutes. Dark cells indicate observations that are lower or higher than the expected prediction. Color intensity
is proportional to minus the log likelihood of the observation.

the osmo-regulation program (10–30 minutes after treatment with 0.5 M KCl, around 60 minutes in the
1 M KCl treatment). This repression is not reported in the current literature. We hypothesize that as part of
the adaptation to high levels of osmotic pressure, yeasts may reduce the sensitivity of the Hog1 signaling
cascade, by slowing down the production of some central components in it.

A second group of discrepancies involves genes that are targets of the Hog1 downstream transcription
factors. These genes include Sko1, Hot1, and Msn1 (Proft and Serrano, 1999; Rep et al., 1999; Rep et al.,
2000) (Fig. 4). In many cases, the literature does not specify the logical relations among the regulators
and each of their regulatees, and this lack of knowledge is manifested as discrepancies.

We used our model learning machinery to refine the regulatory logic for several model variables that
are known to be affected by Hog1-downstream regulators. Figure 8 shows examples of logical relations

FIG. 8. Learning in the HOG model. Examples of model features learned by the FGN methodology. We show
logical relations that were learned with significant p-values. Each graph depicts the regulation of one regulatee given
the particular states of its regulators. Variable states are indicated by node colors: white—0, light gray—1, dark
gray—2.
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learned. First, we were able to learn the known repressive role of Sko1 in the regulation of GRE2 and
ENA1 (Proft and Serrano, 1999). We learned three model features that associated high levels of the mRNA
variables of these two genes with low state of the inferred Sko1 regulator state, and vice versa. The
expression of the SKO1 gene during osmotic stress is static, and the correct regulation function could
only be learned given the inferred Sko1 protein activities. These inferred activities take into account, in
addition to the mRNA measurements, the entire model and its regulatory functions. We also learned the
regulation of STL1. That regulation is reported to be completely dependent on Hot1 and Msn1 (Rep et al.,
2000), but the literature does not clarify the logical relations among them. Our results show that although
these two regulators have a positive effect on STL1 expression, the gene can be induced even when both
regulators lack any activity. We can thus hypothesize that a third factor is involved in STL1 regulation.
A third, more complex regulation function associates the Hog1 specific regulators Hot1, Msn1 and the
general stress factor Msn2/4 into a single program controlling several genes. Our model contains only four
representatives of a larger regulon: GPP2, GPD1, HSP12, and CTT1 (Rep et al., 1999). Similar results as
for CTT1 (Fig. 8) were obtained also for the other three regulatees (data not shown). Our results indicate
that the two signaling pathways (the HOG cascade and the general stress pathway) act in parallel, and
each of the pathways can induce the regulon in the absence of activity from the other.

6.3. Biological analysis of the lysine biosynthesis model

Figure 5 shows the core of the lysine biosynthesis system in the yeast S. cerevisiae. It includes a
linear metabolic pathway from α-ketoglutarate through αAASA to lysine, the catalyzing enzymes of the
metabolic reactions (Lys1,2,9,12,20,21, and YJL200C) and their transcription control via the transcription
factors Gcn4 and Lys14. Gcn4 activity is regulated during transcription, and Lys14 is influenced by the
αASSA positive feedback loop, sensing the lysine biosynthesis flux. Additional feedback loops are the
general nitrogen control regulation mediated by Gcn2 and the lysin negative regulation on Lys20 and
Lys21. The full model includes also amino acids and ammonium (NH3), which represent the environmental
conditions enforced on the system, and their transport into the cell by specific permeases (see Fig. 5 and
www.cs.tau.ac.il/∼rshamir/fgn/ for a full topology and logic).

We now wish to demonstrate the power of the feedback modeling and test the advantage of our method
over former methods. The performance of the method is measured here by the capability to learn real
regulation functions from real data. We thus apply cross validation in the lysine model and compare the
performance of our approach to the deterministic model approach and to a naive Bayesian approach.
The deterministic model approach (Gat-Viks et al., 2004) learns a deterministic regulation function by
optimizing a least squares score. It assumes a prior model that is 100% certain and solves the deterministic
analog of the inference problem to enable the learning of a regulation function from partial observations.
To allow comparison of the deterministic model with the current one, we transformed its discrete predictions
into continuous distributions using predefined Gaussians. The same discretizers were used in the other two
models, in order to ensure that differences in model performance were not due to the discretization. In
the naive Bayesian approach, we assume that the topology of a Bayesian network over the observed
variables (the mRNAs in our case) is given, and we learn the conditional probabilities of each variable
separately given its regulators using complete data. The learning problem in this case is trivially solved
by building a frequency table. Learning in the FGN model was done given the probabilistic function
priors θi . We used the hypothesis testing procedure described above to repeatedly attempt the learning of
regulation function features. For a variable with m regulators, we have km such features corresponding to
each assignment of states to the regulators. For each feature, and given a p-value threshold (we used 0.01),
our learning algorithm may or may not be able to decide on the correct regulatee outcome. We update
the regulation function to reflect a strong θ for the feature (α = 0.99) where a decision was made and
a uniform distribution for θ where no decision could be made. We iterate the learning process until no
further improvement is possible and report a regulation function in which only a fraction of the features
are determined.

To perform the cross validation we repeatedly selected a variable and set its prior θi to the uniform
distribution. We removed one condition from the dataset, learned the variable’s regulation function, and used
it to compute the posterior of the variable, given the omitted condition without the observation for the test
variable. Figure 9 depicts the log likelihood ratio distribution for the three methods (compared to a uniform



178 GAT-VIKS ET AL.

FIG. 9. Performance of different methods for learning regulation functions on the lysine model. Cumulative distribu-
tions (A) and averages (B) of the log likelihood (ll) ratio for cross validation in the lysine model using three methods
for learning regulation functions: A naive Bayesian method, assuming the network topology, a deterministic learning
scheme as in Gat-Viks et al. (2004), and learning using the FGN model. Bars indicate the predicted standard deviation
of the averages.

prior model). We see that the FGN model improves over the other two methods. Detailed examination of
the distribution reveals that the probabilistic model makes half as many erroneous predictions (negative
log likelihood ratios) as its deterministic counterpart, probably due to its ability to evaluate statistically
the learning predictions and thus avoid false positive predictions. Both the deterministic and probabilistic
methods make good use of the additional knowledge, formalized into the model logic, to obtain better
results than the naive Bayesian approach.

Figure 10 shows an example of how the formalized biological knowledge might improve the learning
performance. In order to learn the regulation of the biosynthesys enzymes (e.g., LYS1,9,20) by their
regulators Gcn4 and Lys14, our model infers the protein levels of the regulators and uses it as the basis
for the learning process. Lys14 and Gcn4 are subject to a major posttranscriptional control, and thus using

FIG. 10. States of lysine model variables in nitrogen depletion experiments. X axis: time points of the nitrogen
depletion experiments of Gasch et al. (2000). Y axis: solid lines are measured mRNA levels; broken lines are inferred
protein levels. (The mRNA levels are as explained in Gat-Viks et al. [2004]; protein levels are computed using a
predefined discretization scheme with the arbitrary averages −1, 1, and 3). We plot the observed levels of the mRNAs
of the TFs GCN4 and LYS14 in gray empty shapes, and regulatees LYS1, LYS20, and LYS9 in light gray. We also
plot expected levels of the proteins Gcn4 and Lys14 as inferred by the model. Note that the mRNA levels of the TFs
are roughly constant throughout the experiment, while the model-based inference highlights possible changes in the
protein levels, by exploiting the connection between the protein levels and their regulators levels.
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the mRNA levels to approximate the protein levels might lead to learning mistakes. We used our learning
method to refine the model for the lysine biosynthetic enzymes and were able to learn the known inductive
role of each of their regulators. In addition, Lys14 can activate transcription in the absence of Gcn4 activity
(see www.cs.tau.ac.il for details). The features obtained are similar to the results of Gat-Viks et al. (2004),
but now we can use the p-values to pinpoint the highly significant features learned.

7. DISCUSSION

In this study, we have introduced a computational framework for the study of biological systems using
a combination of prior knowledge on the regulation of system’s components with data from diverse high-
throughput experiments. We developed a practical approach for exploiting as much of the available in-
formation on the system as possible in an integrative fashion. The goals were to systematically test the
correctness of prior assumptions on the regulation of the system, by comparing predicted and observed
experimental behavior, and to refine our regulation models so that possible model discrepancies are allevi-
ated. Our mathematical formulation offers flexibility that can be used to express knowledge at all levels:
In terms of the model, extant knowledge can range from confirmed and quantified regulatory relations to
hypotheses and beliefs on poorly characterized parts of the system. In terms of experimental data, these
can range from controlled high-throughput experiments, testing the behavior of the system from many
possible angles, to high- and low-throughput experiments indicating the activity of only a small fraction
of the system’s factors. We believe that such a flexible and data-absorbing approach to the learning of
models for biological systems is pertinent to making computational tools helpful when addressing concrete
biological problems.

In developing the current framework, we have used many simplifications and limiting assumptions,
trying to strike the right balance between our wish to construct a faithful description of the biological
system and the scarcity of accurate experimental information at very high resolution. In the future, with
the anticipated advent of refined understanding of regulatory switches, truly quantitative experiments on
more aspects of biological regulation (e.g., protein abundance and states) and measurements at the single
cell level, our framework could be extended in several major directions.

In its current form, our model describes the steady state behavior of the system. Biological processes
are inherently temporal, but when the sampling rate (the number and time resolution of experiments)
is slow relative to the rate of the regulatory mechanisms, the steady state assumption is more practical
than other assumptions. We note that different regulatory processes operate on different time scales: In
the typical high-throughput experimental sampling rate, the steady state assumption is highly adequate
for metabolic pathways and posttranslational regulation and reasonable for transcriptional programs. The
models considered in this work included variables of many types, and we validated empirically (using,
e.g., cross validation) that the steady state assumption still enables biologically meaningful results with
each of them. The model is already capable of handling steady state (or fast) feedback loops, and it will
be natural to extend it to handle slower temporal processes in a way analogous to the construction of
dynamic Bayesian networks (DBN) (Friedman et al., 1998; Smith et al., 2002) from steady state Bayesian
networks. As in DBNs, the algorithms for inference and learning can be naturally generalized from the
steady state model to the dynamic model.

Another major simplification we have applied in this work is with the modeling of logical relations using
discrete functions (or distributions over discrete functions). We have used this assumption primarily since
most of the current prior knowledge on transcriptional switches and other regulatory relations is essentially
qualitative. It is clear however that using more biologically justifiable classes of regulation functions (e.g.,
Tanay and Shamir [2004], Ronen et al. [2002], Imoto et al. [2004], and Nachman et al. [2004]) can help
to constrain the learning process toward more significant results.

A final word of caution should be added with respect to topology learning. In the current work, we as-
sumed a fixed topology for the regulatory network. The learning of regulation functions could be performed
based on that topology, with reasonable statistical power. In order to enable true topology learning in our
framework, much more data or other types of restrictions (e.g., a small repertoire of model variables) would
be required. The tools we developed here could be readily applied, however, in settings where structure
learning is reasonable (e.g., as in Sachs et al. [2005]).
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Refinement and expansion of signaling pathways:
The osmotic response network in yeast
Irit Gat-Viks1 and Ron Shamir
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

The analysis of large-scale genome-wide experiments carries the promise of dramatically broadening our
understanding on biological networks. The challenge of systematic integration of experimental results with
established biological knowledge on a pathway is still unanswered. Here we present a methodology that attempts to
answer this challenge when investigating signaling pathways. We formalize existing qualitative knowledge as a
probabilistic model that depicts known interactions between molecules (genes, proteins, etc.) as a network and
known regulatory relations as logics. We present algorithms that analyze experimental results (e.g., transcription
profiles) vis-à-vis the model and propose improvements to the model based on the fit to the experimental data. These
algorithms refine the relations between model components, as well as expand the model to include new components
that are regulated by components of the original network. Using our methodology, we have modeled together the
knowledge on four established signaling pathways related to osmotic shock response in Saccharomyces cerevisiae. Using
over 100 published transcription profiles, our refinement methodology revealed three cross talks in the network. The
expansion procedure identified with high confidence large groups of genes that are coregulated by transcription
factors from the original network via a common logic. The results reveal a novel delicate repressive effect of the
HOG pathway on many transcriptional target genes and suggest an unexpected alternative functional mode of the
MAP kinase Hog1. These results demonstrate that, by integrated analysis of data and of well-defined knowledge, one
can generate concrete biological hypotheses about signaling cascades and their downstream regulatory programs.

[Supplemental material is available online at www.genome.org.]

Genome-wide expression profiles (Gasch et al. 2000; Hughes et
al. 2000) have paved the way to systems biology approaches that
aim to elucidate system architecture by large-scale data analysis.
A variety of sophisticated computational methods have been de-
veloped toward this goal (Eisen et al. 1998; Ihmels et al. 2002;
Beer and Tavazoie 2004; Friedman 2004). An essential and im-
portant part of these analyses is the biological interpretation of
the computational results based on knowledge available in the
literature. The common practice is to first perform the computa-
tional analysis and then to explain the results using prior knowl-
edge (Tavazoie et al. 1999). However, several studies have shown
the advantage of integrating the existing knowledge as part of
the analysis (Ideker et al. 2001; Gardner et al. 2003; Covert et al.
2004; Gat-Viks et al. 2004). In this study we propose a new
method that aims to achieve a better understanding of a signal-
ing pathway by integrated analysis of genome-wide datasets and
prior knowledge, in a way that improves that knowledge system-
atically. The method suggests new hypotheses which can be vali-
dated by additional focused experiments.

We formalize the current information on the studied bio-
logical system in a mathematical model. Cellular signaling net-
works are characterized by signal transduction pathways that are
triggered by environmental stimulation and control the cellular
response. For such biological systems, a large body of qualitative
knowledge is available today, both on the structural and on the

logical relations between the components. In many cases, the
information is still informal and thus not amenable to math-
ematical manipulation. For example, many transcription factors
have been established as activators or repressors, but their stoi-
chiometric coefficients are unknown. To properly formalize such
qualitative knowledge, we use Bayesian networks, a probabilistic
framework for modeling complex systems such as signaling cas-
cades (Sachs et al. 2002; Friedman 2004). Our model formalizes
the current knowledge about the structure (“topology”) of the
network, i.e., which system components interact, and its logic,
which dictates the level of each component based on the level of
its upstream effectors (Gat-Viks et al. 2006). The topology tells
“which component acts on which other components” and the
logic tells “how that action takes place.”

The model predicts the levels of the system’s variables
(genes, proteins, etc.) under each condition and is improved sys-
tematically in a process that seeks structural and logical changes
that increase the fit between predicted and observed variable lev-
els. In particular, we propose two methods for model improve-
ment (Fig. 1): The first refines the model by adding interactions
and modifying logics, without adding variables. The second ex-
pands the model to include additional variables beyond the origi-
nal model. We focus on the identification of regulatory modules,
i.e., sets of coregulated genes that are regulated by the same
model components via a common logic. In the standard cluster-
ing approach, after identifying a group of coregulated genes, the
regulating transcription factors are revealed by overrepresenta-
tion of their DNA binding motifs, or by enrichment in chip-ChIP
data (Beer and Tavazoie 2004). In contrast, using our methodol-
ogy, the newly discovered modules are added to the model, and
thus their regulators and the logic of their regulation are deter-
mined as part of the analysis. Consequently, the expression of
the modules is directly explained by the model.

The information in this document is provided as-is, and no guarantee or war-
ranty is given by the European Commission that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.
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We have chosen to apply our methodology in the analysis of
the cellular response of Saccharomyces cerevisiae to hyper-osmotic
and calcium stresses. This response is mediated by a signaling
network that involves the PKA signaling pathway, the HOG and
mating/pseudohyphal growth MAPK cascades, and the calcineu-
rin pathway. Based on 106 transcription profiles (Gasch et al.
2000; Harris et al. 2001; Yoshimoto et al. 2002; O’Rourke and
Herskowitz 2004), the refinement procedure suggests three miss-
ing cross-talk connections in the network, which all have inde-
pendent support in the literature. The expansion procedure was
applied to six known regulatory modules and 78 putative sets of
regulators and yielded 10 statistically significant modules. We
discover both HOG pathway-dependent induced and repressed
novel modules, and show that these modules are distinct from
the known HOG pathway-dependent response. Remarkably, our
analysis indicates that Hog1 MAP kinase acts in several distinct
functional modes. The expanded network contains many tran-
scriptional regulatory feedback and feedforward loops. This rich
circuitry is probably part of the osmotic adaptation and provides
rapid and transient response to osmotic changes.

Several features distinguish our computational methodol-
ogy from extant network reconstruction methods. Recently, a
few advanced methods sought to improve system models system-
atically, both for quantitative metabolic networks (Klipp et al.
2005; Herrgard et al. 2006) and for physical interaction networks
(Calvano et al. 2005; Yeang et al. 2005). Our approach differs in
that it uses informal qualitative knowledge, including regulatory

logics, which is crucial for modeling of the activation and down-
regulation of signaling cascades. Bayesian networks were used for
de novo reconstruction of system models (Friedman 2004). In
contrast, here the Bayesian network represents the existing well-
characterized system model, and the analysis seeks its improve-
ment. In addition, we use a discriminative improvement score,
rather than a classical Bayesian score, in order to identify signifi-
cant and specific model changes. Concerning modules identifi-
cation, extant methods approximate the regulator’s protein ac-
tivity by its mRNA expression (Bar-Joseph et al. 2003; Segal et al.
2003; Tamada et al. 2003). A key advantage of our methodology
is that we use the model to predict the activity of the regulators,
and then use these levels to identify the modules. Since the tran-
scription factor activity levels are more directly related to their
targets’ expression, better module identification is possible.

Overall, the results show that, by formalizing the qualitative
knowledge available and analyzing the system model jointly
with relevant large-scale data, it is possible to extend the current
understanding on biological systems and to analyze regulatory
mechanisms in a new level of detail.

Results

We selected for our analysis 106 gene expression profiles from
four large-scale microarray studies in yeast (Gasch et al. 2000;
Harris et al. 2001; Yoshimoto et al. 2002; O’Rourke and Hersko-
witz 2004). The profiles measure the yeast response to osmotic
and calcium stresses and the effect of genetic perturbations in the
osmotic response pathways. Originally, these studies applied
clustering algorithms on the data. The following results show
that, by integrated analysis of the data and the model, we find
regulatory relations and mechanisms that could not be revealed
using the data alone.

The computational approach

We formalize the biological knowledge in a Bayesian network
model (Gat-Viks et al. 2006), which represents dependencies
among interacting components. The components, or variables,
are mRNAs, proteins, external inputs, etc. The model provides a
structure and a logic for each variable. The structure (or topology)
is represented by a graph diagram, where the nodes represent the
variables, and arcs represent influence among variables (e.g.,
transcription factor binding to a gene promoter, phosphoryla-
tion by a kinase, etc.). For each graph node, the nodes that have
arcs directed into it are its regulators, or its regulatory unit. Each
variable can be in one of several discrete states, indicating, for
example, the activity of a protein variable, or the expression level
of a mRNA variable. In the logic component of the model, a
variable’s state is determined by the combination of states of its
regulators according to its specified discrete function, which
might represent a complex relationship among multiple regula-
tors. The logic is formulated probabilistically in order to allow for
uncertainty about the available biological knowledge (Fig. 2A).

In order to allow formulation of the available qualitative
knowledge, we have chosen to model the logics as discrete func-
tions using discrete states. However, the actual cellular concen-
trations are continuous levels, and hence our model must trans-
form continuous levels into discrete logical states. The observed
level (or observation) is the result of a measurement in a biological
experiment, e.g., the measured concentration of mRNAs or a me-
tabolite, or the measured phosphorylation of a protein which

Figure 1. Overview of the model improvement methodology. Model
formalization: The current qualitative knowledge on the studied biologi-
cal system is formalized as a Bayesian network (top right; see also Fig. 2).
The illustrated model contains several molecular types: environmental
stimulations (dark gray), signaling proteins and transcription factors (light
gray), and mRNAs (white). The refinement and expansion procedures
take as input the network model and high throughput measurements on
network’s components (top left), and search systematically for model
improvements that maximize a probabilistic improvement score. The
score measures the increase of fit between the model predictions and the
observed data. The model refinement procedure (middle left) seeks struc-
tural and logical changes in existing model components, which attain the
best score. Structural refinements are marked by dashed connections.
The model expansion procedure (middle right) assigns systematically new
target genes to regulatory modules, based on their fit to the predicted
expression of the module. In the illustration, three regulatory modules
were formed. They contain known and novel target genes (white circles).
All genes in the same module share the same logic (black diamonds).
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indicates its activity. The predicted level is the probabilistic expec-
tation of the variable given the model and the experimental pro-
cedure applied (i.e., the genetic perturbations and the environ-
mental stimulation performed in the experiment). Hence, the
predicted levels of protein activities (predicted activities) constitute
additional information that is not available from microarray ex-
periments. The predicted levels of mRNA variables (predicted ex-
pression) are compared to the observed expression, and reveal
important information on the quality of the model. In particular,
points of disagreement between observed and predicted expres-
sion levels indicate where our understanding of the biological
system is lacking. Mathematically, the quality of the model is
evaluated by a Bayesian score, which measures the closeness of the
observations to the predicted levels (see Methods).

Naively, the model can be improved by searching in the
space of all possible model improvements (i.e., either refine-
ments or expansions) for the model with the best Bayesian score.
However, in order to propose only trustable hypotheses, we in-
troduce here a new improvement score, which measures the differ-
ence between the Bayesian scores of the modified and the origi-
nal model. Hence, we seek model improvements with signifi-
cantly high improvement scores. In the case of model
refinement, the improvement score compares the Bayesian score
before and after introducing the logical or structural changes
(Fig. 2B). In the more complicated case of model expansion,
among all genes that respond to the environmental changes, we
wish to identify specifically the model-dependent genes, which are
affected by model components. We wish to exclude other re-

sponding genes (model-independent genes), such as ribosomal pro-
teins, which respond to the environmental stimuli, but probably
independently of our model and through another signaling
pathway. Both types respond to the environmental changes, but
only the model-dependent responding genes are influenced by
genetic perturbations in model components. Hence, the expan-
sion improvement score compares the scores of adding a gene in
a model-dependent and in a model-independent fashion (Fig.
2B). A gene with a significant improvement score is considered a
model-dependent gene and is assigned to the module (i.e., regu-
latory unit and logic) that obtained the highest improvement
score (see Methods).

The osmotic response network model in yeast

Building on literature reports, we modeled the response of yeast
cells to calcium and hyper-osmotic stresses. The model formal-
izes the HOG, mating/pseudohyphae growth, calcineurin, and
the PKA signaling pathways. The signaling cascades act together
to affect the activity of many regulators (Hog1, Sko1, Msn1,
Hot1, Msn2/4, Crz1, Ste12) that govern the complex expression
of target genes by diverse combinatorial logics. For each pathway,
our model includes the environmental stresses, the signaling cas-
cades, the transcription factors, and their known targets (Fig. 3).
Each variable has three to five possible states. Supplement A cata-
logs all variables, connections, and logics in the model, along
with their source in the literature. All the literature sources used
for the modeling do not rely, directly or indirectly, on the 106
profiles that we use here. Note that the mating and pseudohy-
phal growth pathways are modeled together. Since they share
most of their components (up to the Kss1/Fus3 MAPKs and their
upstream activators; O’Rourke and Herskowitz 1998), and our
dataset does not include any experiment that can distinguish
between them, a separate modeling of the pathways will not
improve our results. In practice, our joint modeling of mating/

Figure 2. The computational approach. (A) Modeling the current
knowledge. Nodes represent the variables of the model and arcs are
known regulatory relations. Here, the state of variable C depends on the
states of its regulators A and B according to a specific logic. In the com-
binatorial logic of C (left), the state of C is 1 if, and only if, at least one of
its regulators has state 1. In the probabilistic modeling (right), each pos-
sible state of C is assigned a probability depending on our confidence in
the current biological knowledge (here, 90% confidence). (B) Improving
the model. The model refinement and expansion procedures look for
model changes that improve the model significantly. The improvement
score compares between the fit of a possible modified model and that of
the null (original) model. The plots are a schematic representation of
these two models in cases of refinement (top) and expansion (bottom). In
expansion, when adding a new gene, the null model assumes that the
gene expression can be explained sufficiently by the environmental
stimulation. The alternative hypothesis is a model-dependent gene, i.e.,
the gene is regulated by our signaling network. We expand the model
only if the improvement score is significant, i.e., the signaling network
explains the expression much better than the environmental stimulation
only.

Figure 3. A model of the yeast response to osmotic and calcium stress.
The model contains (left to right) the calcineurin pathway, PKA signaling
pathway, the HOG MAPK pathway, including its Sln1–Ssk1 and Sho1–
Ste11 upstream branches, and the mating/pseudohyphal growth path-
ways. The network, constructed based on literature reports, contains en-
vironmental conditions (dark gray), signaling components (light gray
ovals), transcription factors (double ovals) and their transcriptional tar-
gets (white ovals). Targets sharing the same regulatory logics (i.e., in the
same module) are indicated by black diamonds. Arrows are well-
established relations (solid lines) or relations predicted by the refinement
procedure (dashed lines). The logic by which each component is gov-
erned by its regulators is described in Supplement A. The dual role of the
MAPKKK Ste11 in the HOG and mating pathways is formalized by refin-
ing two different model variables called Ste11 and Ste11M, respectively.
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pseudohyphae pathways reduces model size and thus increases
efficiency and accuracy.

Network refinements

Given the dataset of 106 transcription profiles and the osmotic
response model, the refinement procedure looks for structure
and logic modifications with high improvement scores. Three
new connections providing the most significant improvement
(marked as dashed arcs in Fig. 3) indicate cross talk in the model.
The three predicted connections are not well-established, and
thus were not included in the original model, but each has an
independent support in the literature (Supplemental Table S1).
First, the model predicts a down-regulation of the HOG pathway
by the calcineurin pathway (Crz1�Pbs2/Hog1, improvement
score P-value < 0.0005, see Methods). Indeed, Shitamukai et al.
(2004) support this claim by showing that calcium ions induce
Hog1 hyperphosphorylation in crz1 mutants. Calcium ions acti-
vate Crz1 through the calcineurin pathway and activate Hog1
through the HOG pathway. Crz1 down-regulates Hog1 and thus
there is hyperphosphorylation of Hog1 in a strain lacking Crz1.
Second, Hog1 prevents osmolarity-induced activation of the mat-
ing/pseudohyphae pathway. The predicted inhibitory connec-
tion is directed from Hog1 to the mating MAPKKK Ste11 or to its
downstream mating components, but not to the osmosensor
Sho1 (P-value < 0.005). Indeed, the data show strong inhibition
of the mating/pseudohyphae targets in sho1 mutant (Supplemen-
tal Fig. S1A), and thus the refinement procedure could not pre-
dict that the inhibition is directed to Sho1, but only to its down-
stream components. O’Rourke and Herskowitz (1998) suggested
this cross talk based on measurements of morphological changes
and mating phenotypes.

Third, an alternative mechanism is proposed for HOG
pathway activation in severe osmotic shock. Significant im-
provements (P-value < 0.0005) were obtained for the connec-
tions: Osmotic Stress → Ssk2/22 and Osmotic Stress → Pbs2. The
HOG pathway is still active in ssk1sho1, ssk1ste11 mutants,
but not in pbs2 or hog1 mutants (Supplemental Fig. S1B), and
thus a third input to Ssk2/22 or Pbs2 was added by the refine-
ment procedure. Van Wuytswinkel et al. (2000) provide an inde-
pendent support for the existence of such additional input to
Pbs2. Note that O’Rourke and Herskowitz (2004) already ob-
served this effect in their dataset, but here we succeed to identify
it automatically.

The model expansion process

A regulatory module is a set of genes that are regulated by the
same regulatory unit via the same logic. To expand the network
model, we focused on identifying such modules whose regula-
tory units are part of the original model. In principle, the space of
possible modules is huge: All subsets of variables in the model
may participate in a regulatory unit with any possible logic. In
practice, we tested putative regulatory units of one or two vari-
ables, including the six known units depicted in Figure 3. Alto-
gether, the number of tested units was 78, among them 72 pu-
tative units, each with up to 39 = 19,683 possible discrete logics,
and six known units, each with its known logic (see details in
Supplemental Fig. S2). All 5700 measured yeast genes were con-
sidered as possible targets, each with three possible states.

For each target gene, the expansion procedure searches heu-
ristically for the unit and logic that best predict its expression as
a function of the predicted activity of the regulators. The pre-

dicted activities represent the post-transcriptional effects that are
formalized in our model, such as the regulator’s phosphorylation
(and hence activation) by the MAPK Hog1. An alternative ap-
proach is to approximate activity with expression levels (Fried-
man et al. 2000; Tamada et al. 2003), but this approach cannot
handle the major post-translational regulation events in the os-
motic signaling cascade (Supplemental Fig. S3).

As described above, in order to avoid inclusion of nonspe-
cific targets, the expansion procedure computes the improve-
ment score and thus discriminates between model-dependent re-
sponding genes and model-independent responding genes (see
Methods and Fig. 2B). According to this analysis, while about
71% of the yeast genes respond to the osmotic stress, only 15%
are specifically dependent on the model. On the other hand, the
fact that a fifth of the stress response is characterized as model-
dependent highlights the important role of the osmotic-specific
stress mechanisms in the general cellular machinery of response
to stress.

Since small modules could have been generated at random
given the large space of regulatory units and logics searched, we
focused further analysis on novel modules containing at least 20
genes, and known modules of at least 10 genes. Five novel mod-
ules and five known ones passed this filter. When performing
expansion using randomly shuffled condition labels (experimen-
tal procedures), no module with more than three genes was
found (Supplemental Fig. S5), indicating that it is unlikely to
obtain our large modules at random.

Transcriptional modules discovered

The known regulatory units of Msn2/4, Ste12, Hot1/Msn1, Crz1,
and Sko1 attained modules containing 52, 32, 15, 13, and 12
genes, respectively (Fig. 4; Supplement C). The Crz1–Sko1 unit
was assigned only its known ENA1 target gene. We discovered
three novel modules regulated by Hog1 with different logics (re-
ferred to as Hog1A, B, and C), one module controlled by both
Hog1 and calmodulin (called Hog1/Ca), and one module regu-
lated by Ssk2/22 or Ssk1, called Ssk2/22 (Supplement C).

The predicted regulatory units do not necessarily control
their target genes directly. For example, the Msn2/4-module con-
tains YAP4, (currently known as CIN5), GCY1, and DCS2, but,
actually, Msn2 regulates the YAP4 gene, which encodes a tran-
scription factor; the up-regulation leads to increased activity of
Yap4, which in turn up-regulates transcription of GCY1 and
DCS2 (Nevitt et al. 2004). Calmodulin and Ssk2/22 probably af-
fect their targets indirectly, since they are cytoplasmatic kinases
and have no DNA binding domain. The prediction that their
regulatory effect does not involve downstream elements in the
model has some support in the literature (Ohya et al. 1991;
Yuzyuk et al. 2002).

A key advantage of our methodology is that the activity of
the modules can be predicted by the model and compared with
the observed levels. Cases of disagreement between the predicted
and observed levels are of particular interest, since they highlight
spots of incomplete understanding in the biological system. For
example, the Ste12 module shows inconsistency in the case of
ssk1sho1 mutants exposed to 0.5 M KCl and the ssk1 mutants
exposed to 0.125 M KCl (marked in Fig. 4; an extended version of
this module appears in Supplement C). An increase in transcrip-
tion is observed, in contrast to the predicted reduction. The in-
accurate modeling is probably due to incomplete understanding
of the inhibitory effect of Hog1 on the mating/pseudohyphal
growth pathway.
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Transcriptional modules evaluation

A unique feature of our methodology is that a module and its
regulators are identified together in the same process. In order to
evaluate the methodology, we excluded all known transcrip-
tional targets from the model and then constructed the modules.
We then tested the accuracy of assigning known targets to mod-
ules. An extended collection of 126 known targets and their lit-
erature sources is available in Supplement C. Among them, 37
genes were assigned to modules, and 17 additional genes were
assigned to very small modules which were filtered from in our
analysis. Out of the 37 genes assigned to modules, 30 genes were
assigned correctly to their known regulators, and one gene was
assigned incorrectly (marked in Fig. 4). Six additional Msn2/4
targets were assigned to the Hog1A novel module, which is also
hypothesized to be regulated by Msn2/4 (see below). Hence, we
obtain 97% specificity (correct/assigned = 36/37; see Supplemen-
tal Table S2). To get such high specificity, we pay the cost of low
(29%) sensitivity (correct/known = 36/126).

In another evaluation of the predicted modules and their
regulators, we tested each module for enrichment in transcrip-
tion factor (TF) binding using TF-DNA binding profiles (Harbison
et al. 2004). For each TF whose binding profile in relevant con-
ditions is available, the enrichment test supports the predicted
regulatory unit (Supplemental Fig. S6A): The Ste12 module is
bound by Ste12, Dig1, Mcm1, and Tec1 in mating/PH growth
induction (pheromone and Butanol treatment); the Msn2/4
module is bound by the Msn2/4 in stress conditions (acidic and
H2O2 treatment); and the Sko1 module is bound by Sko1 in YPD
medium. Indeed, Sko1-dependent repression is constitutively ac-
tive (bound) under normal conditions and derepressed under

osmotic shock. In addition, for the modules of Ste12 and Msn2/
4, sequence analysis shows that the known TF binding site motifs
are highly enriched in the promoters of the genes in the pre-
dicted module (Supplement D).

To validate the biological significance of the predicted gene
sets, we tested the functional coherence and separation of gene
sets. We used 87 gene expression profiles of 10 stress conditions
from Gasch et al. (2000) that were not included in the set of 106
profiles used for constructing the modules (stationary phase,
heat shock, Diamide, Menadione, H2O2, amino acid starvation,
nitrogen depletion, hypo-osmotic shock, DTT, and various car-
bon sources). We found significant coregulation of the genes in
each module and significant separation between modules
(Supplemental Fig. S6B,C). The module predicted to be regulated
by Msn2/4 shows strong coregulated response in all stress con-
ditions, in agreement with the known general stress functional-
ity of the Msn2/4 transcription factors.

Separating gene sets that differ only in a few experiments
using standard clustering algorithms is a hard task, since the
minor expression differences might be the result of noise. A
unique feature of our approach is the ability to separate genes
using both data and prior model, rather than data only. Hence, if
the model can predict two modules with slight differences,
these differences become significant, and the targets will be parti-
tioned into two modules. For example, the targets of Hog1B
module and Ssk2/22 module were separated by the model,
even though they are very similar according to our data (Supple-
mental Fig. S6D). The separation is corroborated using indepen-
dent data of heat shock stress (Gasch et al. 2000), in which the
expression patterns of these two gene sets are significantly dif-
ferent (KS-test P-value < 10�3; Supplemental Fig. S6E). Another

Figure 4. Expansion of the osmotic network model. The expansion algorithm assigns known and novel target genes to known modules (black
diamonds). Each module is represented by a matrix showing the expression of its target genes (rows) across the 106 conditions (columns). Known target
genes that were assigned to their module correctly/incorrectly are marked with white/black circles to the right of the corresponding row (known targets
were excluded from the model before expansion, to allow validation and to avoid circularity). The predicted expression levels in each condition appear
as a separate row above the matrix. The logic of each module, obtained by the refinement procedure, appears near the matrix. We show in color only
logic entries with significant improvement score. In general, there is high agreement between model predictions and observed levels. The few cases of
disagreement (e.g., columns marked by blue arrows in the Ste12 module) highlight our incomplete understanding (and hence modeling) of the
biological system. The full details on each module appear in Supplement C, including lists of correct/incorrect target genes, and their sources in the
literature.
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example for separation of two similar Msn2/4 modules is given
below.

The transcription factors Msn2/4 regulate two distinct
modules

In our analysis, we identified the known Msn2/4 module (Fig.
5A). In addition, several indications suggest that Hog1A, one of
the novel modules (Fig. 5B), is also regulated through Msn2/4.
First, Hog1A is enriched in Msn2/4 targets: Among 24 module
genes known to be Msn2/4 targets (based on expression experi-
ments in Msn2/4 knockout mutants from Rep et al. 2000), 11 are
in the Msn2/4 module, and seven are targets of the Hog1A mod-
ule (Fig. 5A,B, hyper geometric enrichment P-value < 10�17,
10�12, respectively), and the rest were assigned to various other

logics. Second, a significant enrichment in binding of Msn4 to
the promoters of Hog1A module genes was observed in ChIP
experiments (Harbison et al. 2004) (P < 10�7; Supplemental Fig.
S6A). Third, the Hog1A module is highly expressed in strains
overexpressing Msn4 (Gasch et al. 2000) (two right columns in
Fig. 5A; KS-test P-value < 10�12). Fourth, Hog1A exhibits highly
significant response in all stress conditions (Supplemental Fig.
S6B), in agreement with the central role of Msn2/4 in general
stress response. Finally, the Msn2/4 STRE binding motif was
highly enriched in the Hog1A module (P-value < 10�5; Fig. 5D).

To provide additional evidence that the two transcriptional
modules are distinct, we performed promoter sequence analysis.
Remarkably, a new motif was discovered to be highly enriched
only in the novel module (KMCTWGAA, enrichment P-
value < 10�14) and it may contribute to the unique behavior of
the module (Fig. 5C,D). This novel motif exhibits a very strong
bias in orientation and distance from the transcription start site
of the regulated genes (hyper geometric P-value < 2 � 10�4).

HOG pathway-dependent repression of genes

It was previously demonstrated that Hog1-dependent genes are
either induced or repressed in hog1 mutants. The prevalent view
in the literature is that the genes induced by hog1 mutants are
associated with pheromone response and pseudohyphal growth
(O’Rourke and Herskowitz 2004). Indeed, among nineteen genes
that are specifically up-regulated in hog1 mutants (Rep et al.
2000), all 11 genes with high score (improvement score > 0.05)
were assigned to the module of the mating/pseudohyphae TF
Ste12. Surprisingly, our results revealed four additional modules
that increase specifically in the hog1 mutant (Fig. 6A; Supplement
C). In contrast with the Ste12 targets (Fig. 6B), the novel modules
respond neither to pheromone nor to perturbation in the mat-
ing/pseudohyphal growth pathway (Supplemental Fig. S7) and
are not bound by the TFs Ste12, Tec1, or Dig1/2 (Supplemental
Fig. S6A). Taken together, these observations suggest that Hog1
plays an additional role in inhibiting expression that is not re-
lated to the cross talk between the HOG and mating/
pseudohyphae pathways.

Multiple functional modes of Hog1

The refinement procedure suggested the existence of an alterna-
tive third mechanism that activates the HOG pathway in severe
osmotic stress, in addition to the two known upstream branches
of the pathway (Sho1–Ste11 and Sln1–Ssk1; Fig. 3). This refine-
ment was suggested since the transcription of some of the clas-
sical HOG pathway targets (regulated by Hot1, Msn1, and Sko1)
does not depend on the two upstream branches in 0.5 M KCl (Fig.
6B). However, the transcription level of the known Msn2/4 tar-
gets does depend on the two branches (Fig. 6B). This suggests that
Hog1 has two different activity modes, and that one of the modes
is only functional while interacting with Msn2/4. To test this
prediction computationally, we added to the model, in addition
to a Hog1 variable that is controlled by three inputs (the two
HOG pathway upstream branches, and a third uncharacterized
input), an additional variable called Hog1(2), which is controlled
solely by the two HOG pathway upstream branches (Supplemen-
tal Fig. S2). We applied the module identification process on this
extended model.

Remarkably, although the classical HOG pathway targets
seem to be activated by a third input, four novel modules
(Hog1A, Hog1B, Hog1C, and Hog1/Ca) are predicted to be regu-

Figure 5. Expression profiles of two modules associated with Msn2/4.
(A) The known Msn2/4 module. (B) The novel Hog1A module. The con-
ditions are time series measurements in response to 0.5 M KCl osmotic
shock. Below the predicted expression vector and the observed expres-
sion matrix (the same presentation as in Fig. 4), the average fold induc-
tion of the module is shown. Both modules are hypothesized to be regu-
lated by Msn2/4 and include many known Msn2/4 targets (marked with
circles). However, their expression patterns are clearly distinct: The
Hog1A module depends much more strongly on the presence of Hog1 in
severe osmotic shock. In wild type (WT), the expression level in both
modules is ∼3, but in hog1, pbs2, ssk1ste11, and ssk1sho1 the expression
levels differ significantly: ∼0.5 in Hog1A and ∼2 in Msn2/4 module (KS-
test P-value < 10�4). The two rightmost columns in A and B show the
expression level of the modules in Msn2 and Msn4 overexpression mu-
tants. Although the predicted expression in these conditions is low in the
Hog1A module, the observed level in both modules is high, indicating
that both modules are regulated by Msn2/4. (C,D) Promoter analysis.
Each line represents the 500-bp sequence upstream of the transcription
start site for the gene in that row. Green boxes represent occurrences of
the STRE motif (a known Msn2/4 binding site); blue arrows represent the
new motif KMCTWGAA discovered in this analysis. This motif exhibits a
non-uniform distribution along the promoter in terms of location and
orientation. The novel motif supports the separation of the Msn2/4 tar-
gets into two distinct modules.
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lated by Hog1(2) and indeed seem to be dependent on the two
upstream branches, similarly to Msn2/4 (Fig. 6; Supplement C).
Several indications suggest that one of these modules, Hog1A, is
actually regulated through Msn2/4 (as detailed above; Fig. 5). But
surprisingly, the Hog1B, Hog1C, and Hog1/Ca modules are not
enriched according to any of these criteria, and thus it seems that
their regulation does not involve Msn2/4. Therefore, there is a
strong indication that Hog1 has multiple functional modes that
probably go beyond its functionality in particular combinatorial
regulation with Msn2/4. Supporting this new hypothesis, some
of these functional modes have opposite effects (there are both
repressed and induced Hog1(2)-dependent modules). The Hog1
functional modes can be explained in many ways, such as dis-
tinct Hog1 activity as a TF (in the nucleus) and as a kinase (in the
cytoplasm), or differences in activity of other mediators, e.g.,
nuclear translocators or phosphatases.

Transcriptional feedback in the osmotic response network

Many components of the osmotic and mating MAPK pathways
were included in modules, thereby forming both feedback and

feedforward loops (Fig. 7). The algo-
rithm predicts that the expression of
SHO1 is down-regulated by the MAPK
Hog1, suggesting down-regulation of
one arm of the HOG pathway upon os-
motic shock. In the nucleus, active Hog1
interacts with the Msn1 transcription ac-
tivator, the Rpd3 histone deacetylase,
and the Tup1 transcriptional cofactor,
all important for activation of the re-
sponse to osmotic shock (Proft and
Struhl 2002; De Nadal et al. 2004). The
feedforward loop predicted between
Hog1 and each of these factors (exempli-
fied in Fig. 7B on MSN1) may encourage
transient activation signals, allowing rapid
system shutdown (Shen-Orr et al. 2002).

From the refinement results de-
scribed above, we concluded that Hog1
somehow prevents cross talk with the
mating/pseudohyphae pathway. Consis-
tent with this observation, the STE7,
STE12, and SHO1 genes, which are trans-
lated into components of that pathway,
are down-regulated by Hog1. On the
other hand, the phosphatase Ptp3 inac-
tivates the mating kinase Fus3, and its
gene PTP3 is up-regulated by Hog1.
These predictions suggest that transcrip-
tion regulation is part of the mechanism
by which Hog1 prevents cross talk be-
tween the MAP kinase pathways.

Ste12 up-regulates the FUS3 and
KSS1 genes, forming a positive feedback
loop (exemplified in Fig. 7B on FUS3)
that can increase stability and reduce re-
sponse time to environmental stimuli
(Shen-Orr et al. 2002). We also identified
a negative feedback loop via Ste12 up-
regulation of MSG5, indicating that the
pathway has also an autoregulatory de-
activation mode. Note that, upon os-

motic shock, all the predicted targets that are components of the
mating/pseudohyphae pathway (SHO1, CDC24, STE7, KSS1,
FUS3, MSG5, PTP3, STE12, and TEC1) behave similarly: They are
expressed only in the absence of active Hog1. Yet, the expansion
procedure identifies SHO1, STE7, PTP3, and STE12 as Hog1-
dependent, while CDC24, KSS1, FUS3, MSG5, and TEC1 are iden-
tified as Ste12-dependent. Indeed, experimental results not used
in the computational process support these predictions: Only the
predicted Ste12-dependent genes are up-regulated by pheromone
that specifically activates the mating pathway (Supplemental Fig.
S8). Several mechanisms for the adaptive regulation of the osmo-
larity pathway have been described (Hohmann 2002). The results
here provide additional insight on the way transcriptional regu-
lation might take part in the osmotic adaptation.

Discussion
Signaling and transcriptional networks are intertwined and in-
fluence each other in a complex manner. In this study, focusing
on the osmotic response system in S. cerevisiae, we show that, by

Figure 6. HOG pathway-dependent repression of genes, and multiple functional modes of Hog1.
Each plot shows the average fold induction (in log2 scale) of novel gene modules (A) or known targets
of TFs (B) in wild type (WT) and seven HOG pathway mutants exposed to 0.5 M KCl. Black/white
coloring indicates average fold induction above/below 0.1. (A) The novel modules Hog1A, Hog1B, and
Hog1/Ca (the Hog1C and Ssk2/22 modules [data not shown] are similar to Hog1B in this view). (B) The
known target genes of Ste12 (KSS1, TEC1, FUS1, FUS3, MSG5, KAR4, CLN1, PGU1), Hog1 (HOR2, GRE2,
STL1, ENA1, GLR1, GPD1, HAL1, CHA1, AHP1, YGR043C, YGR052W (reserved name FMP48), YML131W;
Hohmann 2002), and Msn2/4 (Rep et al. 2000). Expression of the novel modules Hog1B and Hog1/Ca
(A, middle and bottom) increases in the absence of Hog1. Although the whole Hog1-dependent
inhibition response is known to be regulated by Ste12, one can clearly see that these novel modules
differ significantly from the Ste12 targets (B, top), indicating existence of Hog1-dependent in spite of
Ste12-independent inhibition. The known Hog1/Msn1/Sko1 and Msn2/4 targets (B, middle and bot-
tom) have distinct expression pattern (KS-test P-value < 10�5): The Msn1/Hot1/Sko1 targets have
higher expression in the ssk1ste11 and ssk1sho1 mutants compared to hog1 and pbs2 mutants, indi-
cating that Hog1 can be activated also by a third additional input. In contrast, the Msn2/4 targets have
a similar expression pattern in all four of these mutants, indicating that Hog1 is dependent on the two
upstream branches of the HOG pathway. Surprisingly, the novel modules’ expression pattern (A) also
suggests dependency on the two HOG branches. One can clearly see that two of these modules
(Hog1B and Hog1/Ca) differ significantly from the known Msn2/4 targets (the distinction between
Msn2/4 and the third module Hog1A is discussed in Fig. 5). Taken together, this suggests that Hog1
has two distinct functional modes that involve a different combination of transcription factors. An
extended version of the novel modules appears in Supplement C.
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modeling together the available knowledge on signaling cascades
and transcriptional regulation, we could improve our under-
standing of both systems in two important ways: The signaling
pathways are refined based on known transcriptional regulation
effects, and transcriptional regulatory modules are generated us-
ing known cascades of events along signaling pathways.

A large amount of curated qualitative knowledge on biologi-
cal systems is available today. The formulation of such knowl-
edge is shown here to be surprisingly instrumental in improving
our biological understanding. Our computational framework en-
ables modeling of the existing knowledge in the presence of feed-
back loops in the network, formalization of the uncertainty in
this knowledge, and integration of high throughput data. In ad-
dition, the model can accommodate partial noisy measurements
of diverse biological entities (Gat-Viks et al. 2006). We make ma-
jor modeling simplifications: The regulatory relations are discrete
logical functions, and the model describes the steady state of the
system. As expected, the prediction and improvement processes
that we propose here also have limitations: They are sensitive to
the size and complexity of the model (e.g., number of variables,
interactions, and feedback loops), the certainty in the logics, and
the amount of data available. The robustness of our methods to
these parameters still needs further exploration. We do have
strong positive indication for the robustness of the prediction
process and logical refinement procedure on small networks
(Gat-Viks et al. 2006; www.cs.tau.ac.il/∼rshamir/metareg). The

robustness of the expansion procedure is yet needed to be system-
atically explored, although the biological validations in this study
are highly promising. In the future, we hope this study will lead
to creation of more sophisticated mathematical models and robust
improvement algorithms for the analysis of genome-wide datasets.

A key advantage of our module identification approach is
that we use a discriminative scoring scheme which specifically
identifies modules along with their model regulators. Conse-
quently, we can detect modules on a finer level than was previ-
ously possible (for example, novel HOG pathway-dependent re-
pressed modules). Our method outperforms extant methods
mainly because it exploits prior knowledge on the signaling path-
ways and on the experimental procedure. This prior knowledge
helps to detect minute expression differences that are the result
of distinct regulatory mechanisms, and thus the method can dis-
card better differences that are due to noise. The main limitation
in our module identification approach is that it requires high
quality of prior knowledge on the signaling pathways, whereas
many biological systems are only partially known. To overcome
this obstacle, the model should be corrected by applying a re-
finement procedure before elucidating the modules. In the cur-
rent study, we did not allow refinement steps that cause global
effects, such as novel feedbacks or disconnected networks. We
hope that, within the formalism of our model, it will be possible
to develop techniques to handle those cases as well.

Although there is much to be developed both in the mod-
eling and the algorithmic parts, by extending the concepts de-
rived here, it is clear that simultaneous analysis of qualitative
knowledge with high throughput data is a useful approach. The
approach is applicable to other types of perturbations, such as
siRNA, to other environmental conditions, such as pharmaceu-
tical agents, and to other molecular data, such as protein activity
levels measured by microarrays. High throughput phosphoryla-
tion measurements might allow an automated construction of
kinase signaling modules using known signaling pathways. As
new databases of curated knowledge on signaling pathway are
developed (such as BioModels [Le Novere et al. 2006], Reactome
[Joshi-Tope et al. 2005], and SPIKE [www.cs.tau.ac.il/∼spike]), it
will be easier to obtain the prior information on many biological
systems and apply the methodology to them.

Methods

Model formalization
Our model consists of variables and relations among them, for-
mulating prior knowledge. The model variables X1. . .Xn express
diverse biological entities (e.g., mRNAs, proteins, metabolites,
and phenotypes), and arcs between variables represent biological
regulations (e.g., transcription and translation regulation, post-
translational modifications). Each variable Xi is regulated by a
regulatory unit Pai, i.e., the set of variables that have arcs into Xi.
Each variable in Pai is called a regulator of Xi. Each variable can
be in one of several (typically three) discrete states, and its state
in any condition is assumed to be determined by its logic, i.e., a
discrete function of its regulators’ states in that condition. Note
that this assumption implies that the relevant conditions are in
steady state. In order to model our uncertainty about the prior
knowledge, the logic of a variable Xi is formulated probabilisti-
cally as our belief that the variable attains a certain state given
the state of its regulatory unit. It is represented by the conditional
probability �i(Xi | Pai). This approach allows us to model uncer-
tainty in prior biological knowledge and to distinguish between

Figure 7. Complex transcriptional feedback in the yeast osmotic net-
work model. (A) We highlight in color model variables whose correspond-
ing genes were included in a module. Regulatory units are shown as
diamonds, where the incoming arcs indicate the regulators they contain,
and outcoming dashed arcs indicate their (direct or indirect) targets. For
each regulatory unit, we use a different color for its target genes and the
relevant edges. For example, the unit of Ste12 (orange) has TEC1, FUS3,
KSS1, and MSG5 among its targets. Unlike previous maps, the same dia-
mond might represent several different regulatory logics, and the arcs
distinguish between positive (→) and negative (�) feedback. The rich
circuitry observed is probably part of the cellular adaptation and provides
rapid and transient response to osmotic stress. (B) A few network motifs
discovered in A. Rectangles indicate target genes, and ovals are proteins.
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regulatory logics that are known at high level of certainty and
those that are more speculative. In practice, biological experi-
ments provide continuous observations and we do not know in
advance how to translate them into discrete states. Hence, each
logical variable Xi is associated with an observed real-valued vari-
able Yi, and the conditional distribution �i (Xi | Yi) specifies the
probability of the variable Xi to attain a certain state given its
observed real value. In this work, we discretize the observed val-
ues using a mixture of Gaussians model.

Our probabilistic model defines a Bayesian score, which
evaluates the fit of the model predictions to the data, measured as
the log likelihood of the data given the model:

log Pr�X, Y |Model� = log�1
z �

i
�i�Xi |Pai� � �i�Xi |Yi��

where Z is a normalization constant. The conditional probabili-
ties �i are known from our prior knowledge on the biological
system, and � is determined by maximizing a likelihood score
using an EM-procedure. The �i parameters depend strongly on
the particular model, and thus we reoptimize them during each
step of the improvement procedures. Given the probabilistic
model, we predict the levels of variables (e.g., the activity level of
proteins, the expression levels of mRNAs) using a standard proba-
bilistic inference method called Loopy Belief Propagation
(Kschischang and Loeliger 2001). As described in Gat-Viks et al.
(2006), the above model is represented by a Bayesian network in
case of acyclic dependencies, or by factor graph (Kschischang and
Loeliger 2001), in the more general case where feedback loops,
that are essential in many biological systems, are present.

Expression profiles
We compiled a dataset of 106 relevant transcription profiles se-
lected from four large-scale studies (Gasch et al. 2000; Harris et al.
2001; Yoshimoto et al. 2002; O’Rourke and Herskowitz 2004). In
addition to gene expression measurements, for each profile the
experimental procedure is recorded, i.e., the environmental con-
ditions and the genetic perturbations in the experiment. This
information is used for generating model predictions. The com-
plete list of conditions and their experimental procedures are
available in Supplement B. The analysis was applied on 5700
genes that were measured in at least 100 of the conditions.

Model refinements
The refinement procedure searches for a structure modification
(an added arc in the network with an accompanying logic) that
improves the model significantly. Each such modified model is
evaluated by the fit of its predictions to the data, measured by the
Bayesian score. The score is computed by an EM-algorithm that
locally maximizes the free parameters of the model: the discreti-
zation parameters �i and the logic of the new regulation (Gat-
Viks et al. 2006). To evaluate the significance of the improve-
ment achieved by a particular modification to the model, we
compared the likelihood scores distributions (across the 106 pro-
files) of the original and the modified model. The null hypothesis
assumes that both models provide equal scores in each condi-
tion. The alternative hypothesis suggests higher scores for the
modified model. The improvement score is the P-value generated
using non-parametric paired Wilcoxon test. All P-values pre-
sented are Bonferroni corrected. The same improvement score was
used for learning the regulatory logics of the six known modules.

Identification of transcriptional modules
We consider all possible regulatory units of one or two regulators
out of twelve candidate regulators. These regulators include two

environmental stimuli variables (Calcium stress and Turgor pres-
sure) and 10 signaling network variables (Supplement Fig. S2).
Note that the regulatory units are of two types: Variables gov-
erned by units that consist only of environmental stimuli are not
affected by genetic perturbations in the model, and thus will be
called model-independent modules (and their genes will be
called model-independent genes). In contrast, the model-
dependent modules (which contain model-dependent genes) are
controlled by at least one signaling network regulator and thus
influenced by genetic perturbations of model components (Fig. 2B).

Our expansion procedure seeks for each candidate gene the
unit that governs it based on an improvement score. In particu-
lar, given a target gene and its candidate regulatory unit, the
procedure applies a greedy search in the space of regulatory logics
and discretization parameters using an EM-like procedure in or-
der to achieve a locally maximum Bayesian score. When assign-
ing genes to regulatory units, one should take caution about
model dependence decision. Many of the reactions observed in
stress and perturbation conditions can be attributed to general
stress response, even if they match model predictions (Supple-
mental Fig. S4). To specifically discriminate model-dependent
genes from model-independent genes, we require that they
should be predicted significantly better by some model-
dependent module than using model-independent ones. Math-
ematically, we define the improvement score obtained by a gene
assignment to a regulatory unit as the difference between its
original Bayesian score and the best model-independent
Bayesian score obtained for the same gene. This approach can be
viewed as hypothesis testing, where the null hypothesis is a
model-independent response, and we reject it only if the alter-
native model-dependent hypothesis is much more convincing.

In practice, 71% of the genome (4051 genes) attained sig-
nificant Bayesian score in either a model-dependent fashion
(68.2%, 3887 genes) or a model-independent one (51.5%, 2935
genes) (we used a cutoff of 0.1 computed based on the shuffled
data, see Supplemental Fig. S4); 876 genes (15.3%) that obtained
improvement score �10 were used to construct model-
dependent modules.

Our analysis is focused on model-dependent modules, but
the expansion algorithm outputs also model-independent mod-
ules. Supplemental Figure S9 exemplifies one such module,
which is strongly repressed by hyper-osmotic stress and enriched
with ribosomal proteins. Indeed, the expression of the module
genes appears by and large unaffected by the genetic perturba-
tions in our dataset.

Module significance
To evaluate modules’ significance, we tested for enrichment
(hyper-geometric P-value) of each module’s genes in each of the
sets of TF targets (identified at P < 0.01) reported in Harbison et
al. (2004) (Supplemental Fig. S6A). In addition, enrichment was
computed on up-regulated and down-regulated gene sets in in-
dependent expression profiles from Gasch et al. (2000) (exclud-
ing the conditions included in the training data, and all other
hyper-osmotic conditions and genetic perturbations in model
variables, Supplemental Fig. S6B). Separation between modules
was computed by KS-test for the difference in the expression
profile distributions of each module across the same independent
conditions (Supplemental Fig. S6C). All P-values presented are
Bonferroni corrected.

Promoter analysis
We performed promoter analysis on the set of target genes in
each module, aiming to find regulatory signals and putative tran-
scription factor binding sites. For each set we searched the 500 bp
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upstream of the transcription start site in each gene using Ama-
deus motif finder (Halperin et al. 2006). Amadeus performs de novo
search for enriched motifs and also compares the motifs found to
the known ones in the TRANSFAC version 8.3 database (Matys et
al. 2003). The discovered motifs are listed in Supplement D.
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Chapter 3 
 

Discussion 

 
In this thesis we describe our study on molecular networks: their mathematical 

modeling, and the algorithmic aspects of learning them from data. We specifically 

focused on mathematical models for transcriptional programs,   signaling cascades and 

metabolic pathways. We built understanding of specific cellular systems using results 

from high throughput measurements (mainly gene expression profiles from microarrays). 

The research in this thesis integrates concepts from biology, computer science, and 

statistics. We approached the problems from the computer science perspective, and then 

analyzed real biological data to demonstrate the biological implications of our methods. 

Moreover, we demonstrated the advantages of our methodology over extant methods. In 

the future, we hope that this study will lead to creation of more sophisticated and 

practical analysis tools of genome-wide datasets. 

Computational models should provide a comprehensive description of the cellular 

response to intra-cellular and extra-cellular changes. In this thesis, we developed 

mathematical models for biological molecular networks and provided algorithms for 

model reconstruction from large scale experimental data. We aimed to develop a 

predictive model - one that can predict the effect of genetic perturbation and 

environmental cues correctly. In most of our works, we applied four steps of model 

reconstruction, each of which raises critical questions:  

(i) Define the class of models and obtain a solution space. (How does one choose 

the most appropriate level of detail of the model?)  

(ii) Score a candidate model. (How well does the model fit the data?) 

(iii) Reconstruct the network by searching the solution space for the model with the 

best score.  

(iv) Test the statistical validity of the results.  

In Sections 3.1-3.4 below we describe the contributions of this thesis to each of 

these four steps. Practically, molecular networks are constructed in several iterations of 

laboratory experimentation and computational analyses. In Section 3.5 we describe our 

iterative approach to reconstruct and test a molecular network.  
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3.1. Scope and level of detail of the mathematical model  

There are many challenges in modeling biological systems. How do we abstract the 

problem? What level of detail is necessary to understand a given phenomenon? Which 

prior knowledge should be used and how to incorporate it into the model? There is no 

unique answer to any of these questions.  

Many mathematical predictive models have been proposed at various levels of 

granularity, ranging from discrete models to differential equations models. In all levels of 

resolution, a key obstacle in trying to reconstruct a predictive model from data is the large 

solution space. Thus, the solution space is often limited using prior biological knowledge 

(see Section 1.3.3 for details). In our research, we developed two modeling approaches: 

chain functions (Chapters 2.2 and 2.3), and the Metareg methodology (Chapters 2.4, 2.5, 

2.6). Both models integrate various types of qualitative prior knowledge about 

mechanism of regulation. The chain functions model is dramatically constrained by 

involving a general logic and structure observed in many real biological regulation 

functions. In contrast, the MetaReg model utilizes knowledge about the logic and 

topology of specific reaction mechanisms.  

The chain function model (Chapter 2.2) is a deterministic Boolean model. In this model, 

the state of the target gene depends on the influence of its direct regulator, whose activity 

may in turn depend on the influence of another regulator, and so on in a chain of 

dependencies. This model assumes that each target genes is learned independently of 

other genes. In a subsequent study (Chapter 2.3), we further improved the model to 

reflect regulation functions that combine several chains. We showed that these functions 

reflect common biological regulation behavior, and often occur in networks. We proved 

that the number of chain functions with n control variables is exponentially smaller than 

the total number of Boolean functions. Hence, the size of the search space is reduced 

exponentially. We applied our approach to transcription profiles of the yeast galactose 

pathway and demonstrated the improved accuracy obtained by using chain functions 

instead of searching through all Boolean functions. 

Next, we proposed the Metareg model for formalizing of prior qualitative 

knowledge on biological networks. Most regulatory models in the literature include only 

one type of regulatory components (e.g., genes in [52], proteins in [65, 66]). Instead, our 

model can contain heterogeneous biological components (such as mRNA, proteins, and 

metabolites). Each of the components is associated with a discrete regulation function. 

Consequently, our model can express the environmental conditions and can capture 
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diverse logical relations on several regulatory levels (metabolism, transcription, 

translation, post-translation, and feedback loops among them). We developed a 

deterministic model formulation (Chapter 2.4) and generalized it to a probabilistic 

formulation (Chapters 2.5 and 2.6). Our probabilistic approach allows us to model 

uncertainty in prior biological knowledge, and to distinguish between regulatory relations 

that are known at high level of certainty and those that are only hypothesized. The 

probabilistic model also allows us to mix noisy continuous measurements with discrete 

regulatory logic. Unlike the commonly used Bayesian network model, our model (which 

is a factor graph [74]) can directly accommodate steady state (undelayed) feedback loops.  

The MetaReg model is predictive and as such it computes the expected level of 

each component in each condition. In the deterministic formulation, we proved that 

computing model predictions is hard in the biologically relevant case where the network 

contains cycles. Hence, we provided a practical methodology for prediction based on 

approximations for the minimum feedback set problem (Chapter 2.4). In the probabilistic 

setting, the predictions were computed by inference algorithms. Inference in graphical 

models is an NP-hard problem that was extensively studied. We developed an 

instantiation-based inference algorithm that exploits the special characteristics of the 

biological network and achieves a dramatic reduction of the time complexity. Using 

simulations, we studied the performance of our inference algorithm and of several other 

algorithms on the Metareg model and showed that we obtain a reliable inference even in 

the presence of feedback loops and complex logic (Chapter 2.5). 

 

3.2. Evaluation of a candidate network in accordance to data  

 In order to perform network reconstruction, or any other kind of comparison of 

putative solutions, one has to examine numerous candidate networks and determine the 

most appropriate one. This requires a way to score a specific network vis-à-vis the 

available data. The standard scoring technique is to compare model predictions with 

measurements, and assess how well do the network fits the data. If model predictions are 

consistent with data, the network is adequately characterized. If there are discepancies, 

the model should be refined to fit the data. Most scoring approaches evaluate the 

consistency score, for example the percentage of agreement [76], the p-value of 

maximum agreement [78], or the mutual information between predictions and 

observations. In probabilistic models, the likelihood of the model given the data serves as 

a direct measure of consistency, without the need to produce model predictions [64]. 
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In our deterministic discrete frameworks (Chapters 2.2 and 2.4), we used a 

discrepancy score, a measurement of inconsistency instead of the standard consistency 

measures. We defined discrepancy as the difference (or squared difference) between 

model predictions and data measurements. Initially we developed the Funcfit score, 

which calculates the discrepancy p-value. We used the chain functions model to show the 

advantages of this score over extant scores (Chapter 2.2). Next, the discrepancy score was 

applied also for the evaluation of cyclic deterministic models (Chapter 2.4). 

For our probabilistic graphical model, we used a likelihood-based fitness score 

(Chapters 2.5). We started with an initial model and tried to improve it by searching for 

the modified model with the best likelihood score. The likelihood was computed by a 

probabilistic inference algorithm (see Section 3.1). In a subsequent work (Chapter 2.6), 

we argued that high likelihood score does not necessarily represent robust reconstruction. 

Instead, we proposed a discriminative likelihood ratio score called improvement score, 

which compares the likelihood of a candidate model vs. a null hypothesis model. By 

using this score, we were able to identify significant and robust model improvements. 

In order to evaluate only the structure of the model, without attempting to evaluate 

the regulation functions, the scoring scheme is substantially different from the approach 

described above. The common measure is the mutual information between the 

observations of the parents and observations of the target  (e.g., [60, 64, 79]). However, 

the mutual information is very sensitive to over-fitting. To address this problem, we 

developed the regSpec score (Chapter 2.2), which is essentially an approximate p-value 

of the mutual information.  

 

3.3. Reconstruction of the network  

Learning the network model is often cast as an optimization problem, where the 

computational task is to search in the solution space and find a solution of maximum 

score. This optimization problem is often addressed using standard heuristic search 

techniques (e.g., [64, 71]). Due to lack of comprehensive data, most of the practical 

applications focus on particular sub-networks, particular modules or pathways (e.g., [65, 

77, 80, 81]). 

A relatively simple reconstruction goal is to optimize only single regulation 

function. We showed that this function optimization problem is NP-hard in the discrete 

framework of Metareg. Hence, we translated the problem to a combinatorial problem on 

matrices, and provided a polynomial-time, constant factor approximation for learning the 
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regulation of a single entity. The strategy was tested on the lysine biosynthesis pathway 

in yeast (Chapter 2.4). A similar approximation was used for learning regulation 

functions in the probabilistic framework (Chapters 2.5). 

The more complicated reconstruction goal is to compute both structure and logic 

together. The thesis research was started by analyzing the yeast galactose pathway, 

assuming that its regulatory mechanism belongs to the chain functions model (Chapter 

2.2). Due to the reduced size of the search space, it was possible to perform an exhaustive 

search through all the solution space to find the solution with the best score. Next, in the 

probabilistic Metareg model, we searched exhaustively for single-edge structural 

modifications, but for each possible candidate edge, we had to re-optimize the regulation 

functions and the missing parameters using an EM-procedure. This approach was tested 

on the osmotic response network in yeast (Chapter 2.5 and 2.6). 

 

3.4. Statistical significance of the results 

A major challenge is to infer robust computational models and to be able to 

evaluate the significance of the conclusions. Models with overabundance of potential 

structures and parameters are at the risk of over-fitting and of non-specific predictions. 

Moreover, learning algorithms might generate high rate of false positive results due to 

multiple comparisons. Clustering and network reconstruction algorithms are commonly 

used in bioinformatics analysis, but there are no agreed upon guidelines for statistical 

evaluation of their results. In this thesis, we developed statistical methods for the 

assessment of clustering models (Chapter 2.1) and evaluation of network features 

(Chapters 2.5 and 2.6). 

In Chapter 2.1, we devised a statistically-based method for the evaluation of a 

clustering model according to prior qualitative biological knowledge. Given a vector of 

(continuous or discrete) functional attributes for each gene (e.g., taken from the Gene 

Ontology database [82]), our method tests the dependency between the attributes and the 

grouping of the genes. The test can be applied simultaneously to all the attributes. We 

validated our approach using simulated data and showed that our scoring method 

outperforms several extant methods. 

In Chapters 2.5 and 2.6, we assigned statistical meaning to learned features in our 

network model. We derived p-values for the features using the standard bootstrap 

method. In addition, we developed method for sampling from the network model, and 

used it to compute p-values using a direct likelihood ratio test. We evaluated the accuracy 
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of our approach using ROC analysis on simulated data and via cross validation tests on 

empirical data. Finally, the biological conclusions were supported by several independent 

experimental data sets.  

 

3.5. An iterative reconstruction of molecular networks. 

In real life science settings, reconstruction of molecular networks is an iterative 

process that involves both computational analysis and laboratory experimentation [36, 

83-85]. In chapter 2.3, we developed an experimental design approach for the 

reconstruction of molecular networks in an iterative manner. Our algorithms perform de-

novo reconstruction of the model using a minimal number of experiments and genetic 

perturbations, assuming accurate experimental results and the chain functions model. We 

developed optimal iterative reconstruction schemes for several scenarios.  

In chapters 2.4, 2.5, 2.6 our approach was different: We started with an initial 

mathematical model of the system based on well-established available knowledge. The 

model produces predictions (usually by simulations) on the behavior of the system, which 

are compared with the experimental measurements. The mismatches between predictions 

and observations were used in order to correct the model computationally. The 

computational hypotheses should be validated in the laboratory, and the process can 

iterate until an adequate model is obtained. We programmed a visual software application 

that performs all these computational steps from model construction to generation of 

hypotheses [86]. This work is not included in this thesis.  
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  תמצית

אחד האתגרים המרכזיים  שולטות בפעילות התאית  ולכן שחזורן הוא מולקולאריותרשתות 

 טכנולוגיות חדישות . מערכות ביולוגיות מורכבותןבדרכה של הביולוגיה המודרנית להבי

 וניטור של הרשת המולקולארית, מאפשרות מדידה של אלפי נתונים מולקולאריים בו זמנית

 מודלים חפיתו, ריותא ברשתות מולקולהמחקר המתואר בתזה זו עוסק. מנקודות מבט שונות

. אלו ממדידות ביולוגיותבניית אלגוריתמים להסקת מודלים ו, מתמטיים לתיאור פעילותן

 הכולל עקרונות , מקורות מידעהשיטות שפיתחנו מאפשרות הסקה מתוך מגוון רחב של

בקנה ומדידות ביולוגיות , קציות ביולוגיותריאהבנה יסודית ומעמיקה של , ביולוגיים כלליים

שמר האופים אנו מראים  מדידות ביולוגיות בבאמצעות שימוש בשיטות אלו על .מידה גדול

גות המערכת שניתוח משולב של מודלים מתמטיים ונתונים ביולוגיים מאפשר חיזוי של התנה

ת הביולוגית  ובניית  אודות המערכ הסקת תובנות חדשותתיכולת חיזוי זאת מאפשר .התאית

  .השערות שיהוו בסיס למחקר עתידי

  



 תקציר

  

  רקע כללי

 נתונים אלו. זמניות- מאפשרות מדידה של אלפי מולקולות ביולוגיות בותטכנולוגיו-שיטות ביו

היישומים של טכנולוגיה זו הם רבים . תחת תנאים שונים ההתנהגות התאית משקפים את

בניית רשתות של יחסים בין ,  התפקוד של מולקולות ביולוגיותוכוללים בתוכם הבנת, ומגוונים

בניגוד  .ואפיון ההשפעות של טיפולים רפואיים, דיאגנוזה של מחלות, מולקולות ביולוגיות

כנולוגיות החדשות מאפשרות הט,  בודדחלבון או גןבמחקר  התמקדו לשיטות מסורתיות ש

. בנה של עקרונות ותהליכים גלובלייםוה, בו זמניתשונים בתא רבים ורכיבים   שלחקרמ

ניתן יהיה להשיג הבנה מעמיקה , בפעם הראשונה בהיסטוריה, בעזרת טכנולוגיות אלו

  .וכוללת של עולם החי

 מאמצים רבים כעת מופנים, בשנים האחרונות טכנולוגיות-השיטות הביוהתפתחות  לאור

מידע רב .  החדשיםנתוניםהידע מ והפקת ניתוחשמטרתן חישוביות לפיתוח מתודולוגיות 

נכון . הרשת המולקולארית של השיג הבנה טובה יותר לעל מנתממקורות שונים משולב יחדיו 

רשתות ביולוגיות ,  ואפילו באורגניזמים נחקרים ביותר,מתבצעלמרות המחקר הרב ה, להיום

  .ספורות בלבד פוענחו במלואן

של  מתמטי מודל בנותליש , ותרהכיר את הרשתות הביולוגיות בצורה טובה יעל מנת ל

 עקרונות זיהוי )1: (מסוגים שונים להעניק תובנות  עשויהמודל המתמטי .המערכת הביולוגית

  ברשת שכיחים  מוטיביםגון תכונות כלליות כאיר יכול להמודל  ניתוח כולל של ה-  יםכללי

  על בסיסתכול להיעשויניבוי הפונקציה הביולוגית   - ותתפקודי תכונות אפיון ) 2. (]11,12[

 מודל -  הביולוגיתמערכתההתנהגות ניתוח ) 3 ().]13,14 [ראה לדוגמא(המודל החישובי 

המחקר  .)]15-17[ דוגמאלראה  (המערכת תחת תנאים שוניםמצב חישובי יכול לצפות את 

 .רשת המולקולאריתההתנהגות לניתוח מתמקד בשאלות הנוגעות המתואר בתזה זו 

  .ריותא עבור רשתות מולקול מצבים בעלי יכולת ניבוי מודליםשחזרול לתכנן תנומטר

הינן הפופולאריות ] 18,19[ מדידות רחבות היקף של ביטוי גנים, מבין הטכנולוגיות החדישות

-  מדידה בותמאפשרהטכנולוגיה של שבבים ביולוגיים מדידות אלו נעשות באמצעות .  ביותר

למדידות רחבות היקף   נוספות  רבותטכניקות קיימות  .א שליח"זמנית של אלפי מולקולות רנ

 הוא  זהמידע רחב היקף. מגוון סוגי מולקולות ופעילויות בתא  עלמידע שנותנות ]23-31[

  .  פשוט וישירו מאפשר ניתוחאינלכן ו,  חסרחלקווב,  מוטה,מורעש

י של תהליכים  ביולוגניצוחים המיועדים ל חישוביה סוגים ראשיים של מודליםשלושקיימים 

 ,פונקציונאלישל מולקולות ביולוגיות עם מכנה משותף ) צבירים(קבוצות חלוקה ל) 1: (תאיים

 מודלים המייצגים )3 (וכן, רייםאהמרכיבים המולקול בין תמודלים המתארים אינטראקציו )2(

 ניתוח תאפשר מגישות משלוש התכל אח .המרכיבים המולקולארייםאת יחסי השליטה בין 

 האלגוריתמים והשיטות בהן . רבים ושוניםסוגי אינפורמציה בעזרת שילובנים ביולוגיים נתו

  .להלן מפורטות משתמשים עבור בניית כל אחד מן המודלים



  

  ים פונקציונאליחלוקת המערכת הביולוגית לצבירים

 כגון(שלב מרכזי בניתוח מדידות ביולוגיות בהיקף נרחב הוא חלוקת המרכיבים הביולוגיים 

 חלוקה זו מושגת באמצעות .לקבוצות עם תבנית התנהגות משותפת) א שליח"רנ, חלבונים

 צבירים יםייצרמאלגוריתמים אלו .  לצביריםמיטבית חלוקההמיועדים למצוא אלגוריתמים 

ובהפרדה )  בכל צביר דומים אחד לשנייבריםהא(המאופיינים בהומוגניות בתוך הצבירים 

שיטות חלוקה  ).נבדלת בעלי התנהגות  הינם מצבירים שוניםיבריםא(טובה בין הצבירים 

. תאינפורמטיביולצבירים מופעלות על מטריצות גדולות של ביטוי גנטי ומייצרות קבוצות גנים 

, ]22 [ על חלוקה היררכית לצביריםיםהמתבסס, חלוקה לצביריםל ם רבים אלגוריתמיפותחו

קבוצות בעלות התנהגות משותפת (צבירים -חלוקה לדוו , ]32-34[ חלוקה ישירה לקבוצות

קיימות שיטות המשלבות מספר סוגי מידע , כמו כן. ]38-40[) רק בתת קבוצה של הניסויים

על מנת להבין את המהות הפונקציונאלית . ]42,43 [על מנת לבנות חלוקה נאותה לצבירים

גורמי של תרי קישור וזיהוי א מפעילים שיטות לאיתור העשרה פונקציונאלית, של צבירי גנים

     .]14,41 [שעתוק

 

  ת המערכת הביולוגית כרשת אינטראקציוייצוג

הגרף מכיל .  באופן אבסטרקטי באמצעות גרף מיוצגתבשיטה זו המערכת הביולוגית

 בין תמייצגות אינטראקציו הגרף וקשתות , קודקודים המייצגים  מרכיבים מולקולאריים

- חלבוןתרשת אינטראקציוהמודל הראשון הינו . וציםקיימים שני מודלים נפ. המרכיבים

 רשת זו משוחזרת . הם חלבוניםם בקדקודי המיוצגיםםבה המרכיבים המולקולאריי, חלבון

בשילוב עם סוגי מידע ,  בין חלבוניםתבעזרת מדידות ביולוגיות רחבות היקף של אינטראקציו

על בסיס .  ]54-56 [רגניזמים אחרים לאוהוהשווא, מיקום בתא, ינוספים כגון ידע פונקציונאל

) ]13 [ראה סקירה (חלבונים הביולוגי של תפקודםניתן לשפר את רמת ההבנה לגבי , הרשת

  . ]10-12,57 [ולגבי עקרונות גלובליים

רשת זו מאפשרת ייצוג של גורמי השעתוק . חלבון-א" רשת אינטראקציות דנהואמודל נוסף 

 בקרהרשת האו , רשת שעתוקולכן קרויה גם , ד מהםבתא והגנים הנשלטים על ידי כל אח

 שעתוק לאתרי הכרה גורמית על מדידות קישור סס באופן עקרוני הרשת מבו.על שעתוק

כגון רצפים ,  ממקורות מידע נוספיםמידעאולם בשל רעש המדידות נהוג לשלב , א"בדנ

  . ]14,50-53 [ומידע על ביטוי גנים, ]46-49 [גנומיים

  

   ניבוימולקולארית כמודל מתמטי בעל יכולת הרשת הייצוג 

 המתארות מערכות ת נרחב בדיאגראמושבביולוגיה מולקולארית מסורתית נעשה שימו

ותכנון , הבנת  תוצאות ניסויים,  לארגון האינפורמציהתשמשומ אלו תדיאגראמו. ביולוגיות

נעשה בלתי ,  רחב היקףתודות לטכנולוגיות החדישות המייצרות מידע, בימינו. ניסויים נוספים

גדל , לפיכך.  לאור הידע הקיים על המערכת רחבות היקף מדידות באופן ידניאפשרי לפרש



כמודל המסוגל לצפות את התנהגות , חישוביהצורך לבטא את המערכת הביולוגית באופן 

כמו . ניתן לאמוד את טיב המודל, בעזרת השוואת ניבויי המודל למדידות במעבדה. המערכת

על מנת להשיג התאמה ,  ניתן להפעיל אלגוריתמים לשיפור המודל באופן שיטתי ויעיל,כן

 מודלים מתמטיים בעלי יכולת ניבוי עבור רשתות בניית .טובה יותר בין המודל לניסויים

, ות מחלניהוא צעד חשוב והכרחי על מנת להבין מנגנו, ביולוגיות הקשורות במחלות האדם

  . רפואיתלתכנון תרופות ודיאגנוזה יכרת נועשוי להיות בעל תרומה 

לחשב את ההתנהגות שממנה ניתן , המציאותשל  הינו הפשטה בעל כושר ניבוימודל מתמטי 

, בדרך כלל על ידי רשתמיוצג המודל . הצפויה של כל אחד ממרכיבי המערכת בכל תנאי

י שליטה בין  הקשתות מייצג את יחסמבנהו, כאשר הקודקודים מייצגים רכיבים ביולוגיים

 המתארת את הלוגיקה של )רגולציה(בקרה פונקצית לכל קודקוד מיוחסת . המרכיבים

. רשתות תאיות או רשתות מולקולאריות רשתות אלו קרויות לעיתים .ההשפעה המכניסטית

לעיתים הרשת מכונה בשם המעיד על הרכיבים בתוכה או התהליכים אותם היא  ,כמו כן

 הרשת יכולה להיות מיוצגת בעזרת ). רשתות מטבוליותאו אותותרשתות , לדוגמא(מייצגת 

, םסטטיים או דינאמיי, דטרמיניסטיים או הסתברותיים,  או רציפיםבדידיםמודלים מתמטיים 

 רציפות, ]58-60 [בדידותרשתות פותחו מודלים ל, לדוגמא .וברמות פירוט מתמטי שונות

 ומודלים הסתברותיים המיוצגים , ]63 [ליותמשוואות דיפרנציאכאלה המבוססים על , ]61,62[

 . ]64-66 [רשתות בייזיאניותעל ידי 

קיימים יותר מידי פתרונות . הבעיה העיקרית בשחזור המודל היא גודל מרחב הפתרונות

 את הרשת ןהשגה של נתונים על מנת לזהות בביטחו ברת כמות לא נדרשת ו, אפשריים

מגבילים את מרחב החיפוש לפתרונות , של הרשתעל מנת לאפשר שיחזור . תהמולקולארי

ניתן לסווג את הידע הביולוגי המוקדם שבו נהוג . סבירים ביולוגית על בסיס ידע מוקדם

 - ידע איכותי על מבנה הרשת) 1(: על בסיס סוג האינפורמציה, להשתמש לארבע קטגוריות

הבנה כללית של רשתות ביולוגיות שמקורן בשימוש בהגבלות כלליות על מבנה הרשת 

 הגבלות על לוגיקות הבקרהאו , ד מספר הקשתות הנכנסות לקדקות הגבל,לדוגמא(

על ידי הטיה של מבנה הרשת המשוחזרת  -  ידע כמותי על מבנה הרשת) 2(. )]67,68[

 ראה לדוגמא(א "דנ- חלבון וחלבון- חלבוןתמדידות ביולוגיות רחבות היקף של אינטראקציו

זהו ידע על מהות  - ת מולקולאריותידע איכותי על מנגנוני ריאקציו) 3( ).]69,70[

ללא אינפורמציה כמותית על פרמטרים קינטיים , התהליכים וההשפעות המולקולאריות

ידע  ). 4( .]15,71-75 [קיימים מספר מודלים המשלבים ידע מסוג זה. וקבועי ריאקציות

  אודות כיום הידע הכמותי הקיים הוא בעיקר-  תיו מולקולארתמנגנוני ריאקציו כמותי על

  בשחזור רשתות מטבוליות בעיקרואינפורמציה זו משולבת, קבועי ריאקציות מטבוליות

]15,76[ .  



 תקציר המאמרים הכלולים בתזה

אשר פורסמו בכתבי עת מדעיים והוצגו בכנסים , ת על שבעה מאמריםססעבודה זו מבו

  :המאמריםלהלן פירוט תקציר . מדעיים

1. Scoring clustering solutions by their biological relevance. 

Irit Gat-Viks, Roded Sharan and Ron Shamir. 

Published in Bioinformatics [1]. 

.  ביטוי גנים הוא זיהוי צבירי גנים בעלי תבנית ביטוי דומהמדידותשלב מרכזי באנליזה של 

טיסטית להערכת חלוקה נתונה לצבירים על בסיס ידע ביולוגי בעבודה זו פיתחנו שיטה סט

או לברור את הפרמטרים , ניתן להשוות פתרונות חלוקה שונים, בעזרת השיטה. קודם

השיטה מבוססת על הטלה למימד יחיד של .  אלגוריתמי חלוקה לצביריםעבורהמיטביים 

מקסם את היחס בין השונות במטרה ל, וקטור הנתונים הביולוגיים אודות כל אחד מן הגנים

 על ידי ,הציון מחושב על המידע לאחר שהועבר למימד יחיד. בין הצבירים ובתוך הצבירים

הראינו שהשיטה נותנת ציון ,  שערכנובבדיקות סימולציה. פרמטרי של השונות- אניתוח

השתמשנו בשיטה שפיתחנו להערכת מספר . מדויק יותר מציונים הניתנים בשיטות אחרות

  .    גוריתמי חלוקה לצבירים על בסיס נתונים אודות מחזור התא בשמריםאל

 

2. Chain functions and scoring functions in genetic networks. 

Irit Gat-Viks and Ron Shamir.  

Published in Bioinformatics journal supplement for the proceedings of The 

11th Annual International Conference on Intelligent Systems for 

MolecularBiology (ISMB 2003) [2].  

מודלים מתמטיים  בנייתבעבודה זו פיתחנו שיטות בכדי להתמודד עם שתי בעיות בסיסיות ב

הבעיה הראשונה היא בחירת קבוצה רלוונטית אך . בעלי יכולת ניבוי עבור רשתות שעתוק

 הינה בחירת פונקצית הי השניסוגיהה.  שעתוק אפשריותמצומצמת של פונקציות בקרת

הצענו מחלקה מצומצמת . שעתוקההערכה הולמת על מנת לאמוד את טיב פונקציות בקרת 

ניתחנו את . הקרויות פונקציות שרשרת,  שכיחות במערכות ביולוגיותבקרהשל פונקציות 

 קרהפר פונקציות הבמספר הפונקציות במחלקה והראינו שהוא קטן אקספוננציאלית ממס

י פונקציות הערכה חדשות תהגדרנו ש. עם אותו מספר של גורמי שעתוקהבוליאניות 

 אחת אומדת את ההתאמה בין קבוצת גורמי :המבוססות על שיטות סטטיסטיות מוכרות

. והשנייה מטרתה הערכה של פונקציה ספציפית לשליטה בשעתוק, מטרהההשעתוק וגן 

הראינו את ,  הגלקטוז בשמריםייצורונים ביולוגיים ממערכת בבדיקת האלגוריתם על נת

ואת הדיוק , היתרונות  שיש לשימוש בפונקציות השרשרת ובשיטות ההערכה שפיתחנו

  . שעתוקבקרת  בבניית רשתות ששיטתנו מקנה



3. Reconstructing chain functions in genetic networks. 

Irit Gat-Viks, Roded Sharan, Richard M. Karp and Ron Shamir.  

Published in Proceedings of the Pacific Symposium on Biocomputng (PSB 

04)  [3] and in SIAM Journal of Discrete Mathematics  [4]. 

במאמר זה . מאמר זה מבוסס על הפרדיגמה של פונקציות שרשרת שפותחה במאמר הקודם

 של זערישחזור פונקציות שרשרת תוך שימוש במספר מחקרנו את הבעיה החישובית של 

 עם נותמודדה. כשבכל אחד מהם יש צורך במספר מועט של התערבויות גנטיות, ניסויים

שחזור בעיית ועם ,  של פונקציות השרשרתםהבעיות של מציאת קבוצת הרגולאטורי

זור פונקציות  לשחמיטביותהצענו תכניות .  בהינתן קבוצת הרגולאטורים הבקרהפונקציות

המחקר התמקד .  על נתונים ביולוגייםןוהדגמנו אות, השרשרת עבור מספר מצבים אפשריים

מדויקות ושניתן לשחזר את הינן תחת הנחה שהמדידות , בסבוכיות התיאורטית של השחזור

  .הפונקציות באופן נפרד משאר הרשת

 

4. Modeling and analysis of heterogeneous regulation in biological 

networks. 

Irit Gat-Viks, Amos Tanay and Ron Shamir. 

Published in Proceedings of the First RECOMB Satellite Workshop on 

Regulatory Genomics [5] and in Journal of Computational Biology (JCB) [6]. 

הצענו אלגוריתמים לתיקון והשלמת ו, מולקולאריות מודל לייצוג רשתות פיתחנובעבודה זו 

גישתנו הייתה לבנות מודל התחלתי על בסיס . מודל על בסיס מדידות ביולוגיותבפרמטרים 

המודל והמדידות   ההתאמה בין ניבוייהגדלתידי  על שפר את הידעואז ל, ידע מוקדם

רכיבים השיטה מאפשרת שימוש בנתונים מניסויים רחבי היקף שמודדים הרבה מ. הניסיוניות

בד בבד עם שימוש במדידות מניסויים המודדים ישויות ,  בניסוי אחדםמולקולאריי

חלבונים , א שליח"כגון רנ (םהמודל מייצג מגוון מרכיבים מולקולאריי.  ספציפיותתמולקולאריו

תרגום , בקרת שעתוק, כגון בקרת מטבוליזם (בקרהיחסי ורמות שונות של ) ומטבוליטים

מחקר זה מציב שתי . זרת פונקציות בקרה דיסקרטיות ודטרמיניסטיותבעומבוטא  ,)ועוד

על מנת לחזות את מצבם של משתנים זה כיצד להשתמש במודל : בעיות אלגוריתמיות

 הראינו. וכיצד לעדן ולהרחיב את המודל, ) בניסוי שלא נמדדוםמרכיבים מולקולאריי(חבויים 

פתרון  לשיטותוהצענו , וזרים במערכתמים היזונים חשבעיות אלו הן קשות במקרה שקיי

 ל בסיסע,  מסלול הביוסינטזה של ליזין בשמרעל מודלגיה הופעלה והמתודול .הבעיות

לימוד פונקציות ל אלגוריתםהבבדיקת  .כמויות חלבונים וקצבי גידול,  ביטוי גניםמדידות של

מאמרים אלגוריתמים אחרים שפורסמו בנצפה שיפור משמעותי בדיוק לעומת  ,הבקרה

   . קודמים

 

 

 



5. A probabilistic methodology for integrating knowledge and 

experiments on biological networks. 

Irit Gat-Viks, Amos Tanay, Daniella Raijman and Ron Shamir. 

Published in Proceedings of the Ninth Annual International Conference on 

Research in Computational Molecular Biology (RECOMB 05) [7] and in 

Journal of Computational Biology (JCB) [8]. 

 במודל הקומבינטורי מודל ההמחליף את, קודםהמאמר ה  הוא למעשה הכללה שלמאמר זה

,  בעבודה זו פיתחנו מסגרת חישובית רחבה הכוללת פורמליזציה של ידע איכותי.הסתברותי

 אתפרש לשיטותינו מאפשרות . ומיזוג של נתונים ניסיוניים בהיקף נרחב, מידול הסתברותי

לייחס משמעות סטטיסטית , המדידות בהקשר של הידע האיכותי המוקדם על המערכת

. וללמוד מודלים משופרים עם התאמה טובה יותר לניסויים,  בידע המוקדםןלמידת הביטחו

תברותי המאפשר ניתוח של מדידות חלקיות והכללת היזונים מודל גרפי הסהייצוג הוא על 

בדקנו את ביצועיהם של מספר אלגוריתמי חיזוי והראינו שניתן לחזות בדיוק גבוה . חוזרים

על סטטיסטית אלגוריתמים המבוססים על בחינת השערות פיתחנו , בנוסף. משתנים חבויים

השתמשנו בשיטות אלו ללמוד . הנלמדותמנת לאמוד את המשמעות של פונקציות הבקרה 

  .את פונקציות בקרה שלא אופיינו עד כה בתגובה של שמרים ללחץ אוסמוטי

 

6. Refinement and expansion of signaling pathways: the osmotic 

response network in yeast. 

Irit Gat-Viks and Ron Shamir. 

To be published in Genome Research [9]. 

אנו .  שהוצגה במאמר הקודםניתוח המידול והמתודולוגיתמר זה המשכנו לפתח את במא

ומציעים שיפורים על בסיס ,  המייצג את הידע הקיים על המערכת מודלמשתמשים באותו

מציעים כאן אנו , בנוסף לשינויים הלוגיים שהוצעו במאמר הקודם. ההתאמה לניסויים

הרחבה של לו,  המודלרכיבייחסים בין ה שיפורל תמיםפיתחנו אלגורי.  למודלמבנייםשיפורים 

בעזרת . המודל כך שיכלול רכיבים נוספים המבוקרים על ידי רכיבים מהמודל המקורי

ייצגנו את הידע הקיים על ארבעה מסלולי הולכת סיגנל ,  שבידינו המידולמתודולוגית

פרופילי רמות  100על בסיס ניתוח של מעל . הקשורים בתגובה ללחץ אוסמוטי בשמר

 קבוצות ניבאהאלגוריתם , כמו כן . שלושה יחסים חדשים ברשתזיהההאלגוריתם , שעתוק

 .מרחיבות את הרשת המקוריתה, תו משותפת שעתוק בקרתופונקצי יגדולות של גנים בעל

 שעתוק ואנזימי גורמימספר שגילינו , מניתוח קבוצות הגנים ופונקציות הבקרה שהתקבלו

שלא היו חדשים  באופנים  ככל הנראהמשפיעים, תם נחקרה רבות בעברמפתח שדרך פעול

   .ידועים עד כה

  

  

  


