
Tel Aviv University

Sackler Faculty of Exact Sciences

School of Computer Science

Computational Problems in

Modern Human Genetics

THESIS SUBMITTED FOR THE DEGREE OF

“DOCTOR PHYLOSOPHY”

by

Gad Kimmel

The work on this thesis was carried out

under the supervision of Prof. Ron Shamir

Submitted to the Senate of Tel Aviv University

September 2006





Acknowledgments

First and foremost, I want to thank my adviser, Prof. Ron Shamir, for his

support, guidance, encouragement, and constructive criticism throughout the

course of this work. I am indebted to him for giving me the opportunity to enter

into the exciting world of computer science and computational biology. I have

learned from him at all levels, and I hope to carry with me his values of scientific

integrity and persistence.

I want to thank Hilla, my best friend and wife, for walking beside me all these

years, and for her support and encouragement whenever needed. Next, I would

like to thank my parents - Sara and Jacob Kimmel, for their love and for the

hope they gave me, especially in rainy days. Also, I want to thank my brother,

Prof. Ron Kimmel, who assisted me significantly in choosing the right path,

when being in professional decision junctions.

I want to thank Prof. Isaac Meilijson for many helpful discussions and for

broadening my horizons in probability and statistics. Additionally, I want to

thank Irit Gat-Viks, Amos Tanay and Ofir Davidovich, for all our fruitful dialogs.

Last, but not least, I would like to thank all my collaborators: Dr. Roded Sha-

ran (Tel Aviv University); Dr. Eran Halperin (International Computer Science

Institute, Berkeley); Prof. Eitan Friedman, Inbar Gal and Marie Koren (Sheba

Medical Center, Tel-Hashomer); Dr. Arie Levine and Dr. Esther Leshinsky-

Silver (Wolfson Medical Center); Dr. Amir Karban (Rambam Medical Center);

Prof. Jacqui Beckmann (Lausanne); Prof. Doron Lancet and Dr. Edna Ben-

Asher (Weizmann Institute of Science); and Prof. Margret Hoehe (Max Plank

Institute).

i



ii



Preface

This thesis is based on the following collection of seven articles that were pub-

lished throughout the PhD period in scientific journals and in reviewed proceed-

ings of conferences.

1. Computational problems in noisy SNP and haplotype analysis:

block scores, block identification and population stratification.

Gad Kimmel, Roded Sharan and Ron Shamir.

Published in Proceedings of the Workshop on Algorithms in Bioinformatics

(WABI 03) [27] and in INFORMS Journal on Computing [28].

2. The incomplete perfect phylogeny haplotype problem.

Gad Kimmel and Ron Shamir.

Published in Proceedings of the Second RECOMB Satellite Workshop on

Computational Methods for SNPs and Haplotypes [21] and in Journal of

Bioinformatics and Computational Biology (JBCB) [25].

3. Maximum likelihood resolution of multi-block genotypes.

Gad Kimmel and Ron Shamir.

Published in Proceedings of the Eighth Annual International Conference on

Research in Computational Molecular Biology (RECOMB 04) [22].

4. GERBIL: genotype resolution and block identification using like-

lihood.

Gad Kimmel and Ron Shamir.

Published in Proceedings of the National Academy of Sciences of the United

States of America (PNAS) [24].
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An invited oral presentation in The Biology of Genomes meeting, Cold

Spring Harbor Laboratory, 2006. Published in American Journal of Human

Genetics [26].



Abstract

Most of genetic variation among human individuals is due to single nucleotide

polymorphisms (SNPs). The knowledge of genome variation is expected to play

a key role in disease association studies. Hence, the identification and analysis

of SNPs is currently a major goal of the international scientific community. In

this thesis, we studied several of the major computational problems that arise in

the analysis of SNP data. We used computational techniques from graph theory,

probability and statistical theory and integrated them with biological principles

to develop models for these problems. We used our methods to study extensive

human SNP data.

We first studied haplotype block partitioning. Given a set of haplotypes,

our objective was to find a block partitioning minimizing the total number of

distinct haplotypes in blocks. We showed that the problem is NP-hard when there

are errors or missing data, and provided approximation algorithms for several

problem variants. On real data, we generated a more concise block description

than previous approaches.

The next step was to study the phasing problem. Initially, we analyzed

the perfect phylogeny haplotype problem. We proved that this problem is NP-

complete when some of the data entries are missing. We developed an algorithm

that takes an expected polynomial time, under a reasonable probabilistic model

for genotype generation. In tests on simulated data, our algorithm quickly re-

solved the genotypes under high rates of missing entries.

To obtain more accurate phasing, we developed a new algorithm that per-

forms genotype phasing and block partitioning in one process. We defined a

stochastic model for blocks of recombination-poor regions, in which haplotypes

are generated from a small number of core haplotypes, allowing for mutations,

rare recombinations and errors. We developed an EM method for that model,
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which outperformed most of the phasing algorithms when published. Moreover,

our algorithm could handle very large datasets with many hundreds of genotypes,

while the time required by other accurate methods to handle such data sets was

prohibitive. In a subsequent work, we developed an improved model, which of-

fers a compromise between rigid block structure and no structure altogether: It

reflects a general blocky structure of haplotypes, but also allows for “exchange”

of haplotypes at non-boundary SNP sites; it also accommodates rare haplotypes

and mutations. We tested the model on many different data sets of genotypes.

In comparison to three other models, its accuracy was the highest.

Next, we studied the tag SNP selection problem. We defined a new natural

measure for evaluating the prediction accuracy of a set of tag SNPs, and used it

to develop a new method for tag SNPs selection. We compared our method to

two state of the art tag SNP selection algorithms on a large number of different

genotype data sets. Our method consistently found tag SNPs with considerably

better prediction ability than the other methods.

In our last study we developed a faster algorithm for calculating accurate

p-values in case-control association studies. We developed a method based on

importance sampling and exploiting the decay in linkage disequilibrium along the

chromosome. Our algorithm is 3-5 orders of magnitude faster than the standard

permutation test, which is used for evaluating the significance, while preserving

the same accuracy and robustness. The method significantly increases the prob-

lem size range for which accurate, meaningful association results are attainable.
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Chapter 1

Introduction

1.1 General Background

The availability of a nearly complete human genome sequence makes it possible

to look for telltale differences between DNA sequences of different individuals

on a genome-wide scale, and to associate genetic variation with medical condi-

tions. In order to achieve this goal, researchers concentrate on positions along

the DNA sequence, which show variability in their nucleic acid contents across

the population. Such sites are called single nucleotide polymorphisms (SNPs).

Millions of SNPs have already been detected [47, 56], out of an estimated total of

10 millions common SNPs. The sequence of alleles in contiguous SNP positions

along a chromosomal region is called a haplotype. The conflated information of

two haplotypes obtained from a person is called a genotype.

Common diseases such as cancer, stroke, heart disease, diabetes and asthma

usually result from the combined effects of a number of genetic variants and

environmental factors. Several preliminary studies [36, 38, 46] have demonstrated

that the risk of contracting common diseases is influenced by genetic variants

that are relatively common in populations. Not enough data are yet available to

evaluate the generality of this hypothesis, but more and more widely distributed

genetic variants associated with common diseases are being discovered. Therefore,

the identification and analysis of SNPs and haplotypes is currently a major effort

of the international community [60].

1



2 Chapter 1. Introduction

1.2 Blocks of High Linkage Disequilibrium

SNPs that are in close physical proximity to each other are often correlated. This

correlation is measured by the linkage disequilibrium (LD) between the SNPs [44].

There are several different methods to evaluate the LD. If A, a are two possible

alleles of one locus, B, b are two possible alleles of another locus, and p(·) is the

probability, then the LD is usually represented by D,D′ and r2:

D = p(AB) − p(A)p(B),

D′ = D/Dmax,

where

Dmax =

{

min{p(A)p(b), p(a)p(B)} D ≥ 0

max{−p(A)p(B),−p(a)p(b)} D < 0
,

and

r2 =
D2

p(A)p(a)p(B)p(b)
.

LD tends to decay with distance, so that a lower LD value is usually observed

between loci that are farther apart. This is mainly explained by the fact that

the probability for a recombination event along the genealogy of the population

is larger when the distance between the SNPs is larger.

A major recent discovery is that haplotypes tend to be preserved along rela-

tively long genomic stretches, with recombination occurring primarily in narrow

regions called hot spots [10, 42]. The regions between two neighboring hot spots

are called blocks, and the number of distinct haplotypes within each block that

are observed in a population is very limited: typically, some 70-90% of the hap-

lotypes within a block belong to very few (2-5) common haplotypes [42]. The

remaining haplotypes are called rare haplotypes. While the block model is only

an approximation of biological reality, this finding is very important to disease

association studies, since once the blocks and common haplotypes are identified,

one can hopefully obtain a much stronger association between a haplotype and a

disease phenotype.

Several studies have concentrated on the problem of block identification in

a given collection of haplotypes: Zhang et al. [63, 65] sought a block partition-

ing that minimizes the number of tag SNPs (roughly speaking, this is a set of
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sites with the property that the combination of alleles in it uniquely identifies

the alleles at all other sites). Koivisto et al. [30] used a minimum description

length (MDL) criterion for block definition. All these studies used the same ba-

sic dynamic programming approach of [63] to the problem, but differed in the

optimization criterion used within the dynamic programming computation.

1.3 Genotypes and Phasing

The block partitioning problem is intertwined with another problem in diploid

organisms. Such organisms (including humans) have two near-identical copies

of each chromosome. Most techniques for determining SNPs do not provide the

haplotype information separately for each of the two copies. Instead, they gener-

ate for each site genotype information, i.e., an unordered pair of allele readings,

one from each copy [47].

Hence, given the genotype data {A,A} {A,C} {C,G} for three SNP sites in

a certain individual, there are two possible haplotype pair solutions: (ACC and

AAG), or (ACG and AAC). A genotype with two identical bases in a site is called

homozygous in that site, while if it has two different bases it is called heterozygous

in that site. The genotype in the example above is homozygous for the allele A

in the first site, and heterozygous in the second and third sites. The process of

inferring the haplotypes from the genotypes is called phasing or resolving.

In the absence of additional information, each genotype with h heterozygous

sites can be resolved in 2h−1 different ways. Resolving is done simultaneously in

all the available genotypes and is based on some assumptions on how the hap-

lotypes were generated. The first approach to haplotype resolution was Clark’s

parsimony-based algorithm [4]. Likelihood-based Expectation - Maximization

(EM) algorithms [9, 34] gave better results. Stephens et al. [54] and Niu et

al. [40] proposed MCMC-based methods which gave promising results. All of

those methods assumed that the genotype data correspond to a single block with

no recombination events. Hence, for multi-block data the block structure must

be determined separately.

A novel combinatorial model was suggested by Gusfield [14]. According to

this model, the resolution must produce haplotypes that define a perfect phylogeny

tree. Gusfield provided an efficient yet complex algorithm for the problem. Sim-

pler, direct efficient algorithms under this model were later developed [8, 1]. Eskin
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et al. [8] showed good performance with low error rates on real genotypes.

In real genotype data (e.g., refs [42, 10, 7]) some of the data entries are often

missing, due to technical causes. Current phasing algorithms that are based on

perfect phylogeny require complete genotypes. This situation raises the following

algorithmic problem: Complete the missing entries in the genotypes and then

resolve the data, such that the resulting haplotypes define a perfect phylogeny

tree. We call this problem incomplete perfect phylogeny haplotype (IPPH). It was

posed by Halldòrsson et al. [15]. In order to deal with such incomplete data,

Eskin et al.[8] used a heuristic to complete the missing entries, and showed very

good results. However, having an algorithm for optimally handling missing data

entries should allow more accurate resolution.

The IPPH problem has two variants: rooted (or directed) and unrooted (or

general). In the rooted version, one haplotype is given as part of the input. This

haplotype is referred to as the root of the tree, even though it may not be the

real evolutionary root of the tree. This holds, since each of the haplotypes can

be used as a root in the perfect phylogeny tree [13]. The unrooted version is a

more faithful formulation of the practice in biology, since in phasing, the root of

the haplotypes is not given.

While elegant and powerful, the perfect phylogeny approach has certain lim-

itations: first, it assumes that the input data admit a perfect phylogeny tree.

This assumption is often violated in practice, due to data errors and rare hap-

lotypes. In fact, Eskin at al. show that in the real data that they analyzed, a

block does not necessarily admit a perfect phylogeny tree. Second, the model re-

quires partition of data into blocks by other methods. Third, the solution to the

problem may not be unique and there may be several (or many) indistinguishable

solutions. (These limitations were addressed heuristically in [8]).

Another common approach for phasing is to define a stochastic generation

model for the haplotypes, and to resolve its parameters. Many of the studies that

use this approach [9, 34, 54, 40] make the Hardy-Weinberg assumption [17] that

mating is random. In a specific block, for a population of size n, the likelihood

function is:

L =
n

∏

i=1

αi
1α

i
2,

where αi
j is the probability of the j-th haplotype of the i-th individual in the

population (j equals 1 or 2). However, since the haplotypes of an individual are
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unknown, the equation becomes:

L =
n

∏

i=1

∑

h1+h2=gi

αh1
αh2

,

where αx is the probability of haplotype x in the population, gi is the genotype

of the i-th person, and “h1 + h2 = gi” denotes the set of all pairs of haplotypes

possible to generate genotype gi. Note that the above equation applies for a

specific block.

Expanding this idea, several authors suggested methods of performing phasing

and block partitioning as one process. Greenspan and Geiger [12] proposed a new

method and algorithm, called HaploBlock, which performs resolution while taking

into account the block structure. The method is based on a Bayesian network

model. Stephens et al. [52] presented the PHASE algorithm, in which the phasing

process is performed under the assumption of the coalescent model [29] as a prior

in short segments. Very good results were reported.

1.4 Tag SNPs

The total cost of a study grows with the number of SNPs typed. Therefore, to

save resources, one wishes to reduce the number of SNPs typed per individual.

This is usually done by choosing an appropriate small subset of the SNPs, called

tag SNPs, that could predict the rest of the SNPs with a small error. Thus, when

preforming a disease association study, the geneticist would experimentally test

for association by only typing the tag SNPs, thereby considerably saving resources

(or, alternatively, increasing the power of the statistical tests by increasing the

number of individuals). Hence, a key problem is to find a set of tag SNPs of

minimum size that would have a very good prediction ability.

Finding a high-quality set of tag SNPs is a challenging task for several reasons.

One of the main challenges is that the haplotype information is usually not given,

and one has information on genotypes only. As mentioned in Section 1.3 there

are computational tools that use the correlations between neighboring SNPs in

order to predict the phase information. Their accuracy depends on the proximity

and correlation of the SNPs typed. When a set of tag SNPs is chosen and then

typed, the rest of the SNPs are not measured and instead must be predicted from

this information. The accuracy of such prediction is limited, since the correlation
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between the tag SNPs is not necessarily as strong as the correlation between

SNPs that are in close proximity to each other. Most of the extant methods for

tagging SNPs, that aim to explicitly predict individual SNPs, use the haplotypes

of the tag SNPs.

Another issue that is crucial in the search for tag SNPs is the definition of an

adequate measure of the prediction quality. Many of the current tag SNP selection

methods partition the region into blocks of limited diversity (e.g., [63, 65, 64]),

and find a set of tag SNPs that aims to predict the common haplotypes of each

block. The most apparent disadvantages of such an approach are the lack of

cross-block information and the dependency of the tag SNPs choice on the block

definition.

1.5 Association Studies

Linking genetic variation and personal health is one of the major challenges and

opportunities facing scientists today. It was listed as one of the “125 big questions

that face scientific inquiry over the next quarter-century” [5]. The accumulating

information on this variation is making large scale, genome-wide disease asso-

ciation studies possible for the first time. Preliminary studies have shown that

the knowledge on genome variation is expected to play a key role in disease as-

sociation studies [36, 38, 46]. The objective of such studies is to find genetic

factors correlated with complex disease. In these studies, the DNA of individuals

from two populations, healthy individuals and carriers of the disease, is sam-

pled. When differences between the SNP and haplotype structures of the two

populations are revealed, they may lead to identifying the genetic source of the

disease.

The next few years carry the promise of very large association studies that

will use SNPs extensively [49]. There are already reported studies with 400-

800 genotypes [39], and studies with thousands of genotypes are envisioned [39].

High throughput genotyping methods are progressing rapidly [55]. The number

of SNPs typed is also likely to increase with technology improvements: DNA

chips with 500,000 SNPs are already commercially available [58]. Hence, it is

essential to develop computational methods to handle such large data sets. Our

focus in this part of the thesis is on improving a key aspect in the mathematical

analysis of disease association studies.
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There are two major types of association studies: family-based, in which the

control individuals are the parents of the affected individuals, and case-control

or population-based, in which the study samples are collected from unrelated

individuals from a population.

The most widely used test for the family-based case is the transmission dis-

equilibrium test (TDT), introduced by Spielman et al. [51]. This test has been

extended by Spielman et al. [50] to multi-allelic markers. The test statistic is de-

rived from the probability of transmitting alleles from the parents to the affected

child. This statistic is χ2 distributed.

In our research, we focused on population-based association studies, in which

unrelated individual are genotyped. The test for association in this case is usually

based on the difference in allele frequency between case and control individuals.

For a single SNP, a common test, suggested by Olsen et al. [41], is based on

building a contingency table of alleles vs. disease phenotypes (i.e., case - control),

and then calculating a χ2 distributed statistic. When multiple markers in a

chromosomal region are tested, several studies suggested the use of generalized

linear models [61, 48, 33]. Such methods must assume a specific distribution of

the trait given the SNPs, and this assumption does not always hold. Typically, a

Bonferroni correction for the p-value is employed to account for multiple testing.

However, this correction does not take into account the dependence of strongly

linked maker loci, and may lead to over-conservative conclusions. This problem

worsens when the number of tests grows, due to a larger number of sites.

To cope with these difficulties, Zhang et al. [62] suggested a Monte Carlo

procedure to evaluate the overall p-value of the association between the SNPs data

and the disease: The χ2 value of each marker is calculated, and the maximum

value over all markers, denoted CCmax, is chosen as the test statistic. Then,

the same statistic is calculated for many data sets with the same genotypes and

randomly permuted labels of the case and control individuals. The fraction of

times that this value exceeds the original CCmax is used as the p-value. A clear

advantage of this test is that no specific distribution function is assumed, and a

random model is simply generated by permutations of the case / control labels.

Additionally, the test handles multiple-testing directly and avoids the bias of

correction. Consequently, it is widely used, and, for instance, is implemented in

the state of the art software package Haploview [59] developed by the HapMap

project.
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The permutation test can be readily generalized to handle association between

haplotypes and the disease, e.g., by adding artificial loci for block haplotypes [7,

24] with states corresponding to common haplotypes. Similarly, one can add loci

interactions as artificial loci, whose states are the allele combinations.

Running time is a major obstacle in preforming permutation tests. The time

complexity of the algorithm is O(NSnm), where NS is the number of permuta-

tions, n is the number of samples, and m is the number of loci. To search for

p-values as low as α, about 1/α permutations are needed. Hence, in an associa-

tion study that contains 1,000 cases and 1,000 controls, with 10,000 loci, to reach

a p-value of 10−6, over 1013 basic computer operations are required, or over 30

CPU days using a standard computer. Scaling up to larger studies with 100,000

loci or more is completely out of reach.

When SNP interactions are also considered, time complexity is an even greater

concern. There are several possible biological configurations by which two or more

loci can interact. Several statistical studies focus on modeling loci interactions

that have little or no marginal effects at each locus [18, 6, 37]. Recently, Marchini

et al. [35] addressed the question of designing association studies, given the plau-

sibility of interactions between genetic loci with non-negligible marginal effects.

In all of these studies the multiple-testing cost of fitting interaction models is

much larger than that for the single-locus analysis. Moreover, the dependency

among different tests is higher, so the disadvantage of the conservative Bonfer-

roni correction is exacerbated. For example, when testing all possible pairwise

loci interactions, a quadratic number of tests has to be applied, and applying

Bonferroni correction would artificially decrease the test power. In this case the

permutation test is of even higher value. Unfortunately, the running time is lin-

early correlated with the number of tests, which causes this algorithm to become

prohibitively slow even with a few hundred SNPs.

1.6 Summary of Articles Included in this Thesis

1. Computational problems in noisy SNP and haplotype analysis: block

scores, block identification and population stratification.

Gad Kimmel, Roded Sharan and Ron Shamir.

Published in Proceedings of the Workshop on Algorithms in Bioinformatics

(WABI 03) [27] and in INFORMS Journal on Computing [28].
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In this article, we studied several problems arising in haplotype block partition-

ing. Our objective was to find a solution minimizing the total number of distinct

haplotypes in blocks. We showed that the problem is NP-hard when there are er-

rors or missing data, and provided approximation algorithms for several problem

variants. We also gave an algorithm that solves the problem with high probabil-

ity under a probabilistic model that allows noise and missing data. In addition,

we studied the multi-population case, where one has to partition the haplotypes

into populations and seek a different block partition in each one. We provided

a heuristic for that problem and used it to analyze simulated and real data. On

simulated data, our blocks resembled the true partition more than the blocks

generated by the LD-based algorithm. On single-population real data, we gen-

erated a more concise block description than do extant approaches, with better

average LD within blocks. The algorithm also gave promising results on real

two-population genotype data.

2. The incomplete perfect phylogeny haplotype problem.

Gad Kimmel and Ron Shamir.

Published in Proceedings of the Second RECOMB Satellite Workshop on Compu-

tational Methods for SNPs and Haplotypes [21] and in Journal of Bioinformatics

and Computational Biology (JBCB) [25].

In this paper, we proved that the perfect phylogeny haplotype problem is NP-

complete when some of the data entries are missing, even when the phylogeny

is rooted. We defined a biologically motivated probabilistic model for genotype

generation and for the way missing data occur. Under this model, we developed

an algorithm that takes an expected polynomial time. In tests on simulated data,

our algorithm quickly resolved the genotypes under high rates of missing entries.

3. Maximum likelihood resolution of multi-block genotypes.

Gad Kimmel and Ron Shamir.

Published in Proceedings of the Eighth Annual International Conference on Re-

search in Computational Molecular Biology (RECOMB 04) [22].

In this article, we developed a new algorithm to handle genotype phasing and

block partitioning in one process. Our analysis was based on a stochastic model

for blocks, in which haplotypes are generated from a small number of core hap-

lotypes, allowing for mutations, rare recombinations and errors. In our model,
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common haplotypes are redefined in a probabilistic setting. The model allows er-

rors and rare haplotypes, and the algorithm is particularly tailored to the practical

situation in which the number of common haplotypes is small. We formulated

genotype resolution and block partitioning as a maximum likelihood problem,

and solved it by an EM algorithm. We applied our algorithm to several examples

of real biological SNP data, and it outperformed two state of the art phasing

algorithms.

4. GERBIL: genotype resolution and block identification using likeli-

hood.

Gad Kimmel and Ron Shamir.

Published in Proceedings of the National Academy of Sciences of the United States

of America (PNAS) [24].

This work is a direct continuation of the former one. Here, we improved the

methods of the previous paper for genotype phasing. Specifically, we used sev-

eral mathematical techniques for modeling the data more accurately, such as

minimum description length (MDL). The main focus in this paper was to test

the algorithm on a large number of biological data sets from different sources, and

to compare its accuracy and speed to other phasing algorithms. The algorithm

was implemented in a software package called GERBIL (GEnotype Resolution

and Block Identification using Likelihood) which is efficient and simple to use.

We tested GERBIL on large-scale sets of genotypes from four sources. It outper-

formed two state-of-the-art phasing algorithms. The PHASE algorithm (version

2.0.2) was slightly more accurate than GERBIL when allowed to run with default

parameters, but required two orders of magnitude more time. When using com-

parable running times, GERBIL was consistently more accurate. For data sets

with hundreds of genotypes, the time required by PHASE becomes prohibitive.

We concluded that GERBIL has a clear advantage for studies that include many

hundreds of genotypes, and in particular for large-scale disease studies.

5. A block-free hidden Markov model for genotypes and its application

to disease association.

Gad Kimmel and Ron Shamir.

Published in Journal of Computational Biology [23].

In this paper, we presented a new stochastic model for genotype generation.
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The model offers a compromise between rigid block structure and no structure

altogether: It reflects a general blocky structure of haplotypes, but also allows for

“exchange” of haplotypes at non-boundary SNP sites; it also accommodates rare

haplotypes and mutations. The model can be viewed as a natural generalization

of the one presented in the two previous works. We inferred the parameters

of the model by an Expectation - Maximization algorithm. The algorithm was

implemented in a software package called HINT (Haplotype INference Tool), and

tested on 58 data sets of genotypes. To evaluate the utility of the model in

association studies, we used biological data to create a simple disease association

search scenario. When comparing HINT to three other models, HINT predicted

association most accurately.

After this work was accepted for publication, a similar model was indepen-

dently published by Rastas et al. [45] and by Stephens et al. [53]. Both of these

works used this model for performing more accurate and fast phasing of geno-

types.

6. Tag SNP selection in genotype data for maximizing SNP prediction

accuracy.

Eran Halperin∗, Gad Kimmel∗ and Ron Shamir (∗ equal contribution).

Published in Bioinformatics journal supplement for the proceedings of The 13th

Annual International Conference on Intelligent Systems for Molecular Biology

(ISMB 2005) [16].

Studies seeking disease association are often limited by the cost of genotyping

SNPs. Therefore, it is essential to find a small subset of informative SNPs (tag

SNPs) that may be used as good representatives of the rest of the SNPs. In this

article, we defined a new natural measure for evaluating the prediction accuracy

of a set of tag SNPs, and used it to develop a new method for tag SNPs selection.

Our method is based on a novel algorithm that predicts the values of the rest of the

SNPs given the tag SNPs. In contrast to most previous methods, our prediction

algorithm uses the genotype information and not the haplotype information of

the tag SNPs. Our method is very efficient, and it does not rely on having a

block partition of the genomic region. We compared our method to two state of

the art tag SNP selection algorithms on 58 different genotype data sets from four

different sources. Our method consistently found tag SNPs with considerably

better prediction ability than the other methods.



12 Chapter 1. Introduction

7. A fast method for computing high significance disease association

in large population-based studies.

Gad Kimmel and Ron Shamir.

An invited oral presentation in The Biology of Genomes meeting, Cold Spring

Harbor Laboratory, 2006. Published in American Journal of Human Genet-

ics [26].

In this paper, we presented a faster algorithm for calculating the accurate p-value

of a case-control association permutation test. Unlike several previous methods,

we do not assume a specific distribution function of the traits given the genotypes.

Our method is based on importance sampling and on accounting for the decay

in linkage disequilibrium along the chromosome. The algorithm is dramatically

faster than the standard permutation test. For example, when testing marker-

trait association in simulations with three thousands SNPs and one thousand of

cases and controls, it was over 5,000 times faster. On 10,000 SNPs from Chromo-

some 1, a speed-up of more than 20,000 was achieved. Our method significantly

increases the problem size range for which accurate, meaningful association re-

sults are attainable.
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1. Introduction
The availability of a nearly complete human genome
sequence makes it possible to look for telltale dif-
ferences between DNA sequences of different indi-
viduals on a genome-wide scale, and to associate
genetic variation with medical conditions. The main
source of such information is single nucleotide poly-
morphisms (SNPs). Millions of SNPs have already
been detected (Sachidanandam et al. 2001, Venter
et al. 2001), out of an estimated total of 10 million
common SNPs (Kruglyak and Nickerson 2001). This
abundance is a blessing, as it provides very dense
markers for association studies. Yet, it is also a curse,
as the cost of typing every individual SNP becomes
prohibitive. Haplotype blocks allow researchers to
use the plethora of SNPs at a substantially reduced
cost.
The sequence of alleles in contiguous SNP posi-

tions along a chromosomal region is called a haplotype.
A major recent discovery is that haplotypes tend to
be preserved along relatively long genomic stretches,
with recombination occurring primarily in narrow

regions called hot spots (Gabriel et al. 2002, Patil et al.
2001). The regions between two neighboring hot spots
are called blocks, and the number of distinct haplo-
types within each block that are observed in a popula-
tion is very limited: typically, some 70% to 90% of the
haplotypes within a block belong to very few (two to
five) common haplotypes (Patil et al. 2001). The remain-
ing haplotypes are called rare haplotypes. This find-
ing is very important to disease-association studies
because once the blocks and common haplotypes are
identified, one can hopefully obtain a much stronger
association between a haplotype and a disease pheno-
type. Moreover, rather than typing every individual
SNP, one can choose few representative SNPs from
each block that suffice to determine the haplotype.
Using such tag SNPs allows a major saving in typing
costs.
Due to their importance, blocks have been studied

quite intensively recently. Daly et al. (2001) and Patil
et al. (2001) used a greedy algorithm to find a par-
tition into blocks that minimizes the total number of

360
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SNPs that distinguish a prescribed fraction of the hap-
lotypes in each block. Zhang et al. (2002) provided
a dynamic-programming algorithm for the same pur-
pose. Koivisto et al. (2003) provided a method based
on minimum description length to find haplotype
blocks. Bafna et al. (2003) proposed a combinato-
rial measure for comparing block partitions and sug-
gested a different approach to find tag SNPs that
avoids the partition into blocks. For an excellent,
recent review on computational aspects of haplotype
analysis, see Halldorsson et al. (2003).
In this paper we address several problems that

arise in haplotype studies. Our starting point is a
very natural optimization criterion: we wish to find
a block partition that minimizes the total number of
distinct haplotypes that are observed in all the blocks.
This criterion for evaluating a block partition fol-
lows naturally from the above-mentioned observa-
tion: within blocks in the human genome, only a few
common haplotypes are observed (Patil et al. 2001,
Daly et al. 2001, Gabriel et al. 2002). The same cri-
terion is used in the pure-parsimony approach for
haplotype inference, where the problem is to resolve
genotypes into haplotypes, using a minimum number
of distinct haplotypes (Gusfield 2003). In this case, the
problem was shown to be NP-hard (Hubbell 2003, cf.
Halldorsson et al. 2003). This criterion was also pro-
posed by Gusfield (2001) as a secondary criterion in
refinements to Clark’s inference method (Clark 1990).
Minimizing the total number of haplotypes in blocks
can be done in polynomial time (if there are no data
errors) using a dynamic-programming algorithm. As
we shall show, the problem becomes hard when errors
are present or some of the data are missing. In fact,
the problem of scoring a single given block turns out
to be the bottleneck. Note that in practice, one has to
account for rare haplotypes and hence minimize the
total number of common haplotypes.
The input to all the problems we address is a hap-

lotype matrix A with columns corresponding to SNPs
in their order along the chromosome and rows corre-
sponding to individual chromosomal segments typed.
Because virtually all SNP sites have two alleles, we
adopt the common assumption that the matrix is
binary after we transform the two distinct alleles at
each site arbitrarily to 0 and 1. Aij is the allele type of
chromosome i in SNP j . The first set of problems that
we study concerns the scoring of a single block in the
presence of errors or missing data. In one problem
variant, we wish to find a minimum number of hap-
lotypes such that by making at most E changes in
the matrix, each row vector is transformed into one
of them. We call this problem total block errors (TBE).
We show that the problem is NP-hard, and provide
a polynomial 2-approximation algorithm to a variant

of TBE, where one wishes to minimize the total num-
ber of errors induced by the solution and the num-
ber of common haplotypes is bounded. In a second
problem, we wish to minimize the number of haplo-
types when the maximum number of errors between a
given row and its (closest) haplotype is bounded by
e. We call this problem local block errors (LBE). This
problem is shown to be NP-hard too, and we pro-
vide a polynomial algorithm (for fixed e) that guar-
antees a logarithmic approximation factor. In a third
variant, some of the data entries are missing (man-
ifested as question marks in the block matrix), and
we wish to complete each of them by zero or one
so that the total number of resulting haplotypes is
minimized. Again, we show that this incomplete haplo-
types (IH) problem is NP-hard. To overcome the hard-
ness we resort to a probabilistic approach. We define
a probabilistic model for generating haplotype data,
including errors, missing data, and rare haplotypes,
and provide an algorithm that scores a block correctly
with high probability under this model.
Another problem that we address is stratifying the

haplotype populations. It has been shown that the
block structure in different populations is different
(Gabriel et al. 2002). When the partition of the sample
haplotypes into subpopulations is unknown, deter-
mining a single block structure for all the haplotypes
can create artificial solutions with far too many haplo-
types. We define the minimum block haplotypes (MBH)
problem, where one has to partition the haplotyped
individuals into subpopulations and provide a block
structure for each one so that the total number of
distinct haplotypes over all subpopulations and their
blocks is minimum. We show that MBH is NP-hard,
but we also provide a heuristic for solving it in
the presence of errors, missing data, and rare haplo-
types. The algorithm uses ideas from the probabilistic
analysis.
We applied our algorithm to several synthetic and

real datasets. We show that the algorithm can iden-
tify the correct number of subpopulations in sim-
ulated data, and that it is robust to noise sources.
On simulated data, when compared to the LD-based
algorithm of Gabriel et al. (2002), we show that our
algorithm forms a partition into blocks that is much
more faithful to the true one. On a real dataset of
Daly et al. (2001) we generate a more concise block
description than do extant approaches, with a better
average value of high LD-confidence fraction within
blocks. As a final test, we applied our MBH algo-
rithm to the two largest subpopulations reported in
Gabriel et al. (2002). As these were genotype data,
we treated heterozygotes as missing data. Neverthe-
less, the algorithm determined that there are two sub-
populations and correctly classified over 95% of the
haplotypes.



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
362 INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS

The paper is organized as follows. In §2 we study
the complexity of scoring a block under various noise
sources and present our probabilistic scoring algo-
rithm. In §3 we study the complexity of the MBH
problem and describe a practical algorithm for solv-
ing it. Section 4 contains our results on simulated and
real data.
A preliminary version of the results of this paper is

to appear in Proceedings of the Third Workshop on
Algorithms in Bioinformatics (WABI) (Kimmel et al.
2003).

2. Scoring Noisy Blocks
In this section we study the problem of minimizing
the number of distinct haplotypes in a single block
under various noise sources. This number will be
called the score of the block. The scoring problem
arises as a key component in block partitioning in
single- and multiple-population situations.
The input is a haplotype matrix A with n rows

(haplotypes) and m columns (SNPs). A may contain
errors (where 0 is replaced by 1 and vice versa), result-
ing from point mutations or measurement errors, and
missing entries, denoted by “?”. Clearly, if there are
no errors or missing data then a block can be scored
in time proportional to its size by a hashing algo-
rithm. Below we define and analyze several versions
of the scoring problem that incorporate errors into the
model. We assume until §2.4 that there are no rare
haplotypes. In the following we denote by vi the ith
row vector (haplotype) of A, and by V = 
v1� � � � � vn
the set of all n row vectors.

2.1. Minimizing the Total Number of Errors
First we study the following problem: We are given
an integer E, and wish to determine the minimum
number of (possibly new) haplotypes, called cen-
troids, such that by changing at most E entries in A,
every row vector is transformed into one of the
centroids. Formally, let h�·� ·� denote the Hamming
distance between two vectors. Define the following
problem:
Problem 1 (Total Block Errors (TBE)). Given a

binary haplotype matrix A and an integer E, find a
minimum number k of centroids v1� � � � � vk, such that∑

u∈V mini h�u�vi� ≤ E.
Determining if k = 1 can be done trivially in O�nm�

time by observing that the minimum number of errors
is obtained when choosing v1 to be the consensus vec-
tor of the rows of A. The general problem, however,
is NP-hard, as shown below:

Theorem 1. TBE is NP-hard.

Proof. We provide a reduction from VERTEX
COVER (Garey and Johnson 1979). Given an instance
�G= �W =
w1�����wm�F =
e1�����en��k� of VERTEX
COVER, where w.l.o.g. k < m−1, we form an instance

�A�k + 1�E� of TBE. A is an �n + mn2� × m matrix,
whose rows are constructed as follows:
(1) For each edge ei = �s� t� ∈ F , we form a binary

vector vei
with 1 in positions s and t, and 0 in all other

positions.
(2) For vertex wi ∈ W define the vertex vector ui as

the vector with 1 in its ith position, and 0 otherwise.
For each wi ∈W we form a set Ui of n2 identical copies
of ui.
Finally, define E = n+n2�m−k�. We shall prove that

G has a vertex cover of size at most k if and only if
there is a solution to TBE on A with at most k + 1
centroids and E errors.

�⇒� Suppose that G has a vertex cover 
w1� � � � �wt
with t ≤ k. Take some cover with t = k. Partition the
rows of A into the following subsets: for 1≤ i ≤ t the
ith subset will contain all vectors corresponding to
edges that are covered by vi (if an edge is covered by
two vertices, choose one arbitrarily), along with the n2

vectors in Ui. Its centroid will be wi. The �t+1�st sub-
set will contain all vectors corresponding to vertices
of G that are not members of the vertex cover, with
its centroid being the all-0 vector. It is easy to verify
that the number of errors induced by this partition is
exactly n+n2�m− k�= E.

�⇐� Suppose that A can be partitioned into at most
t+1 subsets with corresponding centroids (with t ≤ k)
such that the number E∗ of induced errors is at most
E. In particular, examine a partition that induces a
minimum number of errors. W.l.o.g., we can assume
that for each i all vectors in Ui belong to the same
set in the partition. For each vertex i ∈ W , the set Ui

induces at least n2 errors, unless ui is one of the cen-
troids. Let l be the number of centroids that corre-
spond to vertex vectors. Then the number E ′ of errors
induced by the remaining m− l sets of vertex vectors
is at least �m− l�n2. But because E ′ ≤ E∗, it follows that
�m− l�n2 ≤ E = �m− k�n2 + n. Hence, k ≤ l + 1/n and
by integrality k ≤ l. Now, l ≤ t + 1 ≤ k + 1. Suppose
to the contrary that l = k + 1. Because the Hamming
distance of any two distinct vertex vectors is 2, we get
E ′ ≥ 2�m−k−1�n2 > E (because m > k+1), a contradic-
tion. Thus, l = k. We claim that these k vertices form a
vertex cover of G. By the argument above, every other
vertex vector must belong to the �k+ 1�st subset and,
moreover, its centroid must be the all-0 vector. Con-
sider a vector w corresponding to an edge �u�w�. If w
is assigned to the �k+1�st subset, it adds 2 to E∗. Sim-
ilarly, if w is assigned to one of the first k subsets cor-
responding to a vertex v, and u�w �= v, then w adds 2
to E∗. Because there are n edges and the assignment
of vertex vectors induced E ′ = n2�m−k�≥ E−n errors,
each edge can induce at most one error. Hence, each
edge induces exactly one error, implying that every
edge is incident to one of the k vertices. �
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Due to the hardness of TBE, we resort to enu-
merative approaches. We study the optimization ver-
sion where E is to be minimized. A straightforward
approach is to enumerate the centroids in the solu-
tion and assign each row vector of A to its closest
centroid. Suppose there are k centroids in an opti-
mum solution. Then the complexity of this approach
is O�kmn2mk�, which is feasible only for very small
m and k. In the following we present an alternative
approach. We devise a �2− 2/n�-approximation algo-
rithm, which takes O�n2m+ knk+1� time.
To describe the algorithm and prove its correct-

ness we use the following lemma, that focuses on
the problem of seeking a single centroid v ∈ W
for the set of vectors W = 
v1� � � � � vn. Denote ṽb ≡
argminv∈
0�1m

∑n
i=1 h�v�vi�, and let E ≡∑

v∈W h�v� ṽb�.

Lemma 2. Let vb = argminv∈W

∑n
i=1 h�v�vi�. Then∑n

i=1 h�vb�vi�≤ �2− 2/n�E.

Proof. Define s ≡ ∑
1≤i<j≤n h�vi� vj�. We first claim

that s ≤ E�n− 1�. Then,
s = ∑

i<j

h�vi� vj�≤
∑
i<j

 h�vi� ṽb�+h�ṽb� vj�!

= �n− 1�∑
i

h�vi� ṽb�= �n− 1�E�

The first inequality follows because the Hamming dis-
tance satisfies the triangle inequality. The last equality
follows by using ṽb as the centroid. This proves the
claim.
By the definition of vb, for every vc �= vb we have∑

vi∈V

h�vb�vi�≤
∑
vi∈V

h�vc�vi��

Summing the above inequality for all n vectors, not-
ing that h�v�v�= 0, we get
n
∑
vi∈V

h�vb�vi�≤ 2
∑

1≤i<j≤n

h�vi� vj�= 2s ≤ 2E�n− 1�� �

Theorem 3. TBE can be �2 − 2/n�-approximated in
O�n2m+ knk+1� time.

Proof. Algorithm: Our algorithm enumerates all
possible subsets of k rows in A as centroids, assigns
each other row to its closest centroid, and computes
the total number of errors in the resulting solution.

Approximation Factor. Consider two (possibly
equal) partitions of the rows of A: Palg = �A1� � � � �Ak�,
the one returned by our algorithm; and Pbest = � �A1�
� � � � �Ak�, a partition that induces a minimum number
of errors. For 1≤ i ≤ k denote

vi
b = argmin

v∈Ai

∑
vj∈Ai

h�v�vj�� v̂i
b = argmin

v∈ �Ai

∑
vj∈ �Ai

h�v�vj��

The number of errors induced by Palg and Pbest are

Ealg =
k∑

i=1

∑
v∈Ai

h�vi
b� v� and Ebest =

k∑
i=1

∑
v∈ �Ai

h�v̂i
b� v��

respectively. Finally, let ni = � �Ai� and denote by ei the
minimum number of errors induced in subset �Ai, by
the optimal solution. In particular,

∑k
i=1 ni = n and∑k

i=1 ei = E.
Because our algorithm checks all possible solutions

that use k of the original haplotypes as centroids and
chooses a solution that induces a minimal number
of errors, Ealg ≤ Ebest. By Lemma 2,

∑
v∈ �Ai

h�v̂i
b� v� ≤

�2− 2/ni�ei for every 1≤ i ≤ k. Summing this inequal-
ity over all 1≤ i ≤ k we get

Ealg ≤ Ebest =
k∑

i=1

∑
v∈ �Ai

h�v̂i
b� v�≤

k∑
i=1

(
2− 2

ni

)
ei

≤
k∑

i=1

(
2− 2

n

)
ei =

(
2− 2

n

)
E�

Complexity. As a preprocessing step we compute
the Hamming distance between every two rows in
O�n2m� time. There are O�nk� possible sets of cen-
troids. For each centroid set, assigning rows to cen-
troids and computing the total number of errors takes
O�kn� time. The complexity follows. �

We note that Ostrovsky et al. (2002) presented a
probabilistic algorithm for the above problem, with
an approximation ratio of �1+4√$�2, where 1

4 ≥ $ > 0.

2.2. Handling Local Data Errors
In this section we treat the question of scoring a block
when the maximum number of errors between a haplo-
type and its centroid is bounded. Formally, we study
the following problem.
Problem 2 (Local Block Errors (LBE)). Given a

block matrix A and an integer e, find a minimum
number k of centroids v1� � � � � vk and a partition P =
�V1� � � � �Vk� of the rows of A, such that h�u�vi�≤ e for
every i and every u ∈ Vi.

Theorem 4. LBE is NP-hard even when e = 1.
Proof. We use the same construction as in the

proof of Theorem 1. We claim that the VERTEX
COVER instance has a solution of cardinality at most
k if and only if the LBE instance has a solution of
cardinality at most k+ 1, such that at most one error
is allowed in each row. The “only if” part is imme-
diate from the proof of Theorem 1. For the “if” part,
observe that any two vectors corresponding to a pair
of independent edges cannot belong to the same sub-
set in the partition, and so is the case for a vertex
vector and any vector corresponding to an edge that
is not incident on that vertex. This already implies a
vertex cover of size at most k + 1. Because m > k + 1
there must be a subset in the partition that contains
at least two vectors corresponding to distinct vertices.
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But then either it contains no edge vector, or it con-
tains exactly one edge vector and the vectors corre-
sponding to its endpoints. In any case we obtain a
vertex cover of the required size. �

Theorem 5. There is an O�logn� approximation algo-
rithm for LBE that takes O�n2me� time.

Proof. Our approximation algorithm for LBE is
based on a reduction to SET COVER. Let V be the
set of row vectors of A. Define the e-set of a vector v
as the set of vectors of the same length that have
Hamming distance at most e to v. Denote this e-set
by e�v�. Let U be the union of all e-sets of row vectors
of A. We reduce the LBE instance to a SET COVER
instance �V �� �, where � ≡ 
e�v�∩V % v ∈U. Clearly,
there is a 1-1 correspondence between solutions for
the LBE instance and solutions for the SET COVER
instance, and that correspondence preserves the car-
dinality of the solutions. We now apply an O�logn�-
approximation algorithm for SET COVER (see, e.g.,
Cormen et al. 1990) to �V �� � and derive a solution to
the LBE instance, which is within a factor of O�logn�
of optimal. The complexity follows by observing that
�U � =O�nme�. �

2.3. Handling Missing Data
In this section we study the problem of scoring an
incomplete matrix, i.e., a matrix in which some of
the entries may be missing. The problem is formally
stated as follows.
Problem 3 (Incomplete Haplotypes (IH)). Given

an incomplete haplotype matrix A, complete the
missing entries so that the number of haplotypes in
the resulting matrix is minimum.

Theorem 6. IH is NP-hard.

Proof. We present a reduction from GRAPH COL-
ORING (Garey and Johnson 1979). Given an instance
�G = �W�E��k� of GRAPH COLORING we build an
instance �A�k� of IH as follows. Let W = 
1� � � � �n.
Each i ∈W is assigned an n-dimensional row vector vi

in A with 1 in the ith position, 0 in the jth position
for every �i� j� ∈ E, and “?” in all other positions.
Given a k-coloring of G, let W1� � � � �Wk be the

corresponding color classes. For each class Wi =

v

�i�
j1

� � � � � v
�i�
ji

 we complete the ?s in the vectors cor-
responding to its vertices as follows. Each ? in one
of the columns v

�i�
j1

� � � � � v
�i�
ji
is completed to 1, and all

the others are completed to 0. The resulting matrix
contains exactly k distinct haplotypes. Each haplotype
corresponds to a color class, and has 1 in position i if
and only if i is a member of the color class.
Conversely, given a solution to IH of cardinality at

most k, each of the solution haplotypes corresponds
to a color class in G. This follows because any two
vectors corresponding to adjacent vertices must have
a column with both 0 and 1 and, thus, represent two
different haplotypes. �

2.4. A Probabilistic Algorithm
In this section we define a probabilistic model for
the generation of haplotype block data. The model is
admittedly naive, in that it assumes equal allele fre-
quencies and independence between different SNPs
and distinct haplotypes. However, as we shall see in
§§3 and 4, it provides useful insights towards an effec-
tive heuristic that performs well on real data. We give
a polynomial algorithm that computes the optimal
score of a block under this model with high proba-
bility (w.h.p.). Our model allows for all three types of
confusing signals mentioned earlier: rare haplotypes,
errors, and missing data.
Denote by T the hidden true haplotype matrix, and

by A the observed one. Let T ′ be a submatrix of T ,
which contains one representative of each haplotype
in T (common and rare). We assume that the entries of
T ′ are drawn independently according to a Bernoulli
distribution with parameter 0.5. T is generated by
duplicating each row in T ′ an arbitrary number of
times. This completes the description of the proba-
bilistic model for T . Note that we do not make any
assumption on the relative frequencies of the haplo-
types. We now introduce errors to T by independently
flipping each entry of T with probability ' < 0�5.
Finally, each entry is independently replaced with a
? with probability p. Let A be the resulting matrix,
and let A′ be the submatrix of A induced by the rows
in T ′. Under these assumptions, the entries of A′ are
independently identically distributed as follows: A′

ij =
0 with probability �1− p�/2, A′

ij = 1 with probability
�1− p�/2 and A′

ij = ? with probability p.
We say that two vectors x and y have a conflict in

position i if one has value 1 and the other has value 0
in that position. Define the dissimilarity d�x�y� of x
and y as the number of their conflicting positions (in
the absence of ?s, this is just the Hamming distance).
We say that x is independent of y and denote it by
x � y, if x and y originate from two different haplo-
types in T . Otherwise, we say that x and y are mates
and denote it by x ≈ y. Intuitively, independent vec-
tors will have higher dissimilarity compared to mates.
In particular, for any i:

pI ≡ Prob�xi = yi �x � y-xi� yi ∈ 
0�1�= 0�5�
pM ≡ Prob�xi = yi �x ≈ y-xi� yi ∈ 
0�1�

= '2+ �1−'�2 > 0�5� (1)

Problem 4 (Probabilistic Model Block Scoring
(PMBS)). Given an incomplete haplotype block
matrix A, find a minimum number k of centroids
v1� � � � � vk, such that under the above probabilistic
model, with high probability, each vector u ∈ A is a
mate of some centroid.
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Score(A):

1. Let V be the set of rows in A.

2. Initialize a heap S.

3. While V �= ∅ do:

(a) Choose some v ∈ V .

(b) H ← {v′ ∈ V | d(v, v′) ≤ t∗}.
(c) V ← V \ H

(d) Insert(S,|H|).
4. Output S.

.

Figure 1 An Algorithm for Scoring a Block Under a Probabilistic Model
of the Data

Note. Procedure insert(S, s) inserts a number s into a heap S.

Our algorithm for scoring a block A under the
above probabilistic model is described in Figure 1. It
uses a threshold t∗ on the dissimilarity between vec-
tors to decide on mate relations. We set t∗ to be the
average of the expected dissimilarity between mates
and of the expected dissimilarity between indepen-
dent vectors (see proof of Theorem 7). The algorithm
produces a partition of the rows into mate classes of
cardinalities s1 ≥ s2 ≥ · · · ≥ sl. Given any lower bound
/ on the fraction of rows that need to be covered
by the common haplotypes, we give A the score h =
argminj

∑j
i=1 si ≥ /n. We prove below that w.h.p. h is

the correct score of A.

Theorem 7. If m=0�logn� then w.h.p. the algorithm
computes the correct score of A.

Proof. We prove that w.h.p. each mate relation
decided by the algorithm is correct. Applying a union
bound over all such decisions will give the required
result. Fix an iteration of the algorithm at which v
is the chosen vertex and let v′ �= v be some row vec-
tor in A. Let Xi be a binary random variable that is
1 if and only if vi and v′

i are in conflict. Clearly, all
Xi are independent identically distributed Bernoulli
random variables. Define X ≡ d�v�v′� = ∑m

i=1Xi and
f ≡ �1− p�2. Using (1) we conclude:

�X �v′ � v� ∼ Binom�m�f �1− pI ���

�X �v′ ≈ v� ∼ Binom�m�f �1− pM���

We now require the following Chernoff bound (cf.
Alon and Spencer 2000). If Y ∼ Binom�n� s� then for
every $ > 0 there exists c$ > 0 that depends only on $,
satisfying:

Prob �Y −ns� ≥ $ns!≤ 2e−c$ns�

Let 4 = mf �1− pM�. Define $ ≡  �1− pI � − �1− pM�!/
�2�1−PM�� and t∗ ≡ $4. Applying the Chernoff bound

and using the assumption that m=0�logn�, we have
that for all c > 0:

Prob�X > t∗ �v′ ≈ v� ≤ 2e−c$m <
1
nc

�

Prob�X ≤ t∗ �v′ � v� <
1
nc

�

Because we check whether d�v�v′� < t∗ a total of
O�n2� times, by applying a union bound we con-
clude that the probability that throughout the algo-
rithm some implied mate relation is incorrect and is
bounded by a polynomial in 1/n. �

When using the algorithm as part of a practical
heuristic (see §3), we do not report the rare haplo-
types. Instead, we report only the smallest number
of the most abundant haplotypes as computed by the
algorithm that together capture a fraction / of all
haplotypes.

3. The Multipopulation Case
Suppose that the matrix A contains haplotypes from
several homogeneous populations. The partitioning
into blocks can differ among populations (Gabriel
et al. 2002). Here, we study the question of recon-
structing the partition of the rows of A into sets
called subpopulations, and the columns in each set into
blocks, such that the sum of the scores of the subma-
trices corresponding to these blocks is minimized.
Problem 5 (Minimum Block Haplotypes (MBH)).

Given a haplotype matrix A, find a partition of its
rows into subpopulations so that the total number of
block haplotypes is minimized.
In practice, we usually have full information on the

population from which each of the haplotypes origi-
nates. However, in certain situations there may be a
hidden stratification of a population that can affect
the conclusions of association studies on it. Problem 5
aims to address such situations.

3.1. Minimum Block Haplotypes
For a haplotype matrix A and a subset S of its rows,
we denote by HA

S the (minimum) total number of
block haplotypes in an optimal partition of S into
blocks. Our goal is to find HA =HA

V . Given a partition
P = �P1� � � � � Pr � of the rows of A into subpopulations,
we let HA�P� =∑r

i=1H
A
Pi
, that is, the (minimum) total

number of block haplotypes in an optimal partition of
each subpopulation into blocks. In the following we
omit the superscript A when it is clear from the con-
text. Given a partition P , H�P� can be polynomially
computed in the noiseless case using a simple adapta-
tion of the dynamic-programming algorithm of Zhang
et al. (2002). However, the general MBH problem is
NP-hard.

Theorem 8. MBH is NP-hard.
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Proof. We provide a reduction from VERTEX
COVER (Garey and Johnson 1979). Let �G= �V �E�� k�
be an instance of VERTEX COVER where �V � = n,
�E� = m, and w.l.o.g. n < m. We build an instance
�A�n�8m+ 4+ 2m2�+ 12m+ 2k� of (the decision ver-
sion of) MBH as follows. We associate with the ver-
tices and edges of G row vectors of dimension c =
�2n+1�m10. These vectors will constitute the matrix A.
Each of the row vectors v is partitioned into segments
where the segment of length m10 between positions
i− ≡ �i − 1�2m10 + 1 and i+ ≡ �i − 1�2m10 + m10 cor-
responds to vertex i. The m10 last positions in v are
called its tail.
The content of each segment will be a periodic

binary sequence. For an integer k let Sk be the
sequence �0� � � � �0�1� of length k where S0 = �0� and
S1 = �1�. For convenience we denote Sk also as S1k , and
use S−1

k to denote the complement of that sequence.
Each of the vector segments consist of repetitions of
some Sk or its complement. We denote by Sk�l� the
sequence formed by concatenating copies of Sk up
to a total length of l where the last copy may be
truncated.
For an ordered sequence of integers 1 = i1 < · · · <

il+1 = c+1, inducing a partition of  1� � � � � c!, we define
the following vector set:

Ui1� ���� il+1�k1� � � � � kl�

≡ ⋃
r1� ���� rl∈
1�−1

(
S

r1
k1

�i2− i1�� � � � � S
rl
kl
�il+1− il�

)
�

In words, Ui1�����il+1�k1� � � � � kl� is a set of 2l vectors of
dimension c, where the sth vector contains in its tth
segment copies of Sr

kt
with r = 1 iff the tth bit of s is 0.

With each vertex vi we associate the set of 2 ·
�2 · 4m� · 2 · 2m2 = 64m3 vectors:

Vi =
⋃

1≤j≤4m� im2≤k<�i+1�m2

U1� i−� i++1� c−m10+m9i� c+1�0� j�0� k��

Thus, each vertex vector has four segments: until
position i− it is all zeros or all ones; between i− and
i+ it has one of 4m possible sequences or their com-
plements; until the beginning of its tail it is again all
zeros or all ones; and then at a unique position, which
depends on the vertex identity, starts one of 2m2 pos-
sible tail sequences for that vertex.
With each edge el% 1 ≤ l ≤ m connecting vertices

i and j , where i < j , we associate a set of 2 ·
�2 · 4� · 2 · �2 · 4� · 2= 512 vectors

El =
4l⋃

p=4l−3
U1� i−� i++1� j−� j++1� c+1�0� p�0� p�0��

Thus, each edge vector contains one of eight possi-
ble sequences in its �i−� i+� and �j−� j+� segments, and
these sequences are unique for each edge.

By construction, HVi
= 2+ 8m+ 2+ 2m2 = 8m+ 4+

2m2 and HEl
= 16+ 6= 22. We now prove that G has

a vertex cover of size at most k if and only if A has a
partition P with H�P�≤ n�8m+ 4+ 2m2�+ 12m+ 2k.
(⇒) W.l.o.g., let 
1� � � � � t be a vertex cover of size

t ≤ k for G. Let Ci be the set of edges covered by ver-
tex i (for an edge covered by two vertices, choose the
one with smaller index) where Ci =� for i > t. Define
Ai ≡ Vi ∪

⋃
j∈Ci

Ej for 1 ≤ i ≤ n. Let P = �A1� � � � �An�.
We shall prove that H�P� is of the required size.
Fix i and let Ci = 
e1� � � � � ep where ej connects i to
sj and, w.l.o.g., i < s1 < · · · < sp. We claim that HAi

=
�8m+ 4+ 2m2�+ 12p+ 29 where 9 is an indicator that
equals 1 if and only if i ≤ t. Consider the partition of
Ai into the following blocks: �1� i−1�� �i−� i+�� �i+ + 1�
s−1 1�� �s−1 � s+1 �� � � � � �s+p−1 + 1� s−p 1�� �s−p � s+p �� �s+p + 1, c −
m10+m9− 1�� �c −m10+m9� c�. Due to Vi, Ai has two
haplotypes in the first block, 8m haplotypes in the
second block (which corresponds to the segment of
vertex i), two haplotypes in the segment before last,
and 2m2 haplotypes in the tail block. In addition, if
we add the sets Ej one by one to the same subpopu-
lation, then every such set, corresponding to the edge
�i� sj �, adds two new blocks and 12 haplotypes (two
haplotypes in ��j − 1�+ + 1� j−1� and 8+ 2 in �j−� j+�).
The only exception is j = 1, for which two more hap-
lotypes are added in the tail segment. Thus, if �Ci� =
p > 0 then HAi

= �8m + 4 + 2m2� + 12p + 2 and if Ai

contains no edge vectors then HAi
= 8m+4+2m2. The

claim follows.
(⇐) Suppose that A has a partition P = �A1� � � � �At�

so that H�P� ≤ n�8m+ 4+ 2m2�+ 12m+ 2k. In partic-
ular, examine the partition P ∗ for which H ≡H�P ∗� is
minimal. W.l.o.g. every one of Vi and Ej is completely
contained in some Ak. We first claim that no set in
the partition contains both Vi and Vj for i �= j . Sup-
pose this is not the case. Define a new partition P ′ in
which Vj is moved into a new set. Then H −H�P ′�≥
�2m2 + 2�− 8m− 4> 0 where the first term is due to
the tail segments of i and j and the second is due
to edge vectors corresponding to edges incident on j
that are possibly present in the same partition set as
Vi and Vj . Thus, we arrive at a contradiction.
Now consider an edge l connecting vertices i and j ,

and let Ar ⊇ El. We claim that Vi ⊂ Ar or Vj ⊂ Ar

(in P ∗). To see that, observe that in the first case l adds
at most 14 haplotypes to H (similar to the argument
in the “only if” part of the proof), while in the second
case it adds at least 16 haplotypes to H because each
of the segments �i−� i+� and �j−� j+� contains eight
unique haplotypes.
Finally, suppose there are t sets in P ∗ that contain

edge vectors. Then H ≥ n�8m + 4 + 2m2� + 12m + 2t,
implying that t ≤ k and G has a vertex cover of size
at most k. �
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3.2. A Polynomial Case
We now give a polynomial algorithm for a restricted
version of MBH in which each subpopulation is
required to be a contiguous set of rows. We call this
variant minimum contiguous block haplotypes (MCBH).
Its solution may be useful for designing heuristics
that permute the matrix rows for local improvement.
For clarity, in the discussion below we shall assume
that there exists an oracle that scores a given block in
O�1� time. Denote the optimal solution of MCBH on
A by HA.

Theorem 9. MCBH can be solved in O�n2m2� time.

Proof. Algorithm: Let A be an input haplotype
matrix. We give a dynamic-programming procedure
to solve MCBH. A key component of the algorithm is
a dynamic-programming algorithm, which computes
the score for a given subpopulation S in a straightfor-
ward manner, similar to Zhang et al. (2002). Let T S

i ,
0 ≤ i ≤ m, be the minimum number of block haplo-
types in the submatrix of A induced on the rows in S
and the columns 1� � � � � i, where T S

0 = 0. For a pair of
columns i� j let BS

ij be the score of the block induced
by the rows in S and the columns in 
i� � � � � j. Then
the following recursive formula can be used to com-
pute T S

m:
T S

i = min
0≤j≤i−1

T S
j +BS

ji�

We now use a second dynamic-programming algo-
rithm to compute HA. Define Pi, 0 ≤ i ≤ n as the
minimum number of block haplotypes in any row
partition of A
1�����i. Clearly, P0 = 0 and Pn = HA.
The computation of Pi uses the following recursive
formula:

Pi =min
1≤j≤i

Pj−1+ T 
j� ���� i
m �

Complexity. Computing T S
m for any S takes O�m2�

time. Hence, computing HA takes O�n2m2� time in
total. �

3.3. A Heuristic
Next, we present an efficient heuristic for MBH. The
algorithm has three components: a block-scoring pro-
cedure, a dynamic-programming algorithm to find the
optimum block structure for a single subpopulation,
and a simulated-annealing algorithm to find an opti-
mum partition into homogeneous subpopulations. We
describe these components below.
The dynamic-programming component is as de-

scribed in the first part of the proof of Theorem 9. For
scoring a block within the dynamic-programming pro-
cedure we use the probabilistic algorithm described
in §2.4 with a small modification: instead of using a
fixed threshold t∗, we compute a different threshold
t∗v�v′ for every two vectors v�v′. This is done by count-
ing the number l of positions in which neither of the

vectors has ?, and setting t∗v�v′ = 1
2 l �1− pM�+ �1− PI �!.

Scoring an n× t block takes O�tnk� time where k is a
bound on the number of common haplotypes. Hence,
the dynamic program takesO�mb2nk) total time where
b is an upper bound on the allowed block size. Addi-
tional saving may be possible by precomputing the
pairwise distances of rows in contiguous matrix seg-
ments of size up to b.
The goal of the annealing process is to optimize

the partition of the haplotypes into subpopulations.
We define a neighboring partition as any partition that
can be obtained from the current one by moving one
haplotype from one group to another. The process
proceeds through a sequence of neighboring parti-
tions depending on their scores and the temperature
parameter in a standard annealing fashion. A cru-
cial factor in obtaining a good solution is the ini-
tialization of the annealing process. We perform the
initialization as follows. We compute pairwise simi-
larities between every two haplotypes. The similar-
ity Suv of vectors u and v is calculated as follows.
Initially we set Suv = 0. We then slide a window of
size w = 20 along u and v (20 is the average size
of a block). For each position i we check whether
d��ui� � � � �ui+w−1�� �vi� � � � � vi+w−1��≤w' (for a param-
eter '). If this is the case, we increment Suv and jump
to i + w for the next iteration. Otherwise, we jump
to i + 1. The intuition is that rows from the same
subpopulation should be more similar in blocks in
which they share the same haplotypes and, thus, have
a better chance to hit good windows and accumu-
late a higher score in the scan. Next we cluster the
haplotypes based on their similarity values using the
K-means algorithm (MacQueen 1965). The resulting
partition is taken as the starting point for the anneal-
ing process. To determine the number of subpopula-
tions K, we try several choices and pick the one that
results in the lowest score.
The running time of the practical algorithm is dom-

inated by the cost of each annealing step. Because this
step changes the haplotypes of two subpopulations
only, it suffices to recompute the scores of these sub-
populations only.

4. Experimental Results
4.1. Simulations
We applied our heuristic algorithm to simulated and
real haplotype data. First we conducted extensive
simulations to check the ability of our algorithm to
detect subpopulations and recognize their block struc-
ture. Our simulation setup is as follows. We generated
simulated haplotype matrices with 100 haplotypes
and 300 SNPs. The number of subpopulations var-
ied in the simulations. Subpopulations were of equal
sizes. For each subpopulation we generated block
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Figure 2 Simulation Results: Determining the Number of
Subpopulations

Note. For each simulated matrix, containing one to four subpopulations, the
score assigned by the algorithm to partitions (y axis) with different numbers
of subpopulations (x axis). Simulations were performed with error level 1%
and no missing entries.

boundaries using a Poisson process with rate 20.
Each block within a subpopulation contained two to
five common haplotypes, covering 90% of the block’s
rows (with the remaining 10% being rare haplotypes).
Within each block of each subpopulation, the haplo-
type matrix was created according to the probabilistic
model described in §2.4. Errors and missing data were
introduced with varying rates of up to 30%.
As a first test we simulated several matrices with

one to four subpopulations and applied our algorithm
with K ranging from 1–8. For each K we computed
the score of the partition obtained (as described in
§3.3). In each of the simulations the correct number
got the lowest score (Figure 2). Next we simulated
several matrices with three subpopulations and differ-
ent levels of errors and missing data. Table 1 summa-
rizes our results in correctly assigning haplotypes to
subpopulations (the set with the largest overlap with
the true subpopulation was declared correct). It can
be seen that the MBH algorithm gives highly accurate
results for missing data and error levels up to 10%.

Table 1 Accuracy of Haplotype Classification by the
MBH Algorithm for Different Noise Levels
(Data Are for Three Subpopulations)

% Correct
% Errors % Missing entries classifications

0 0 99
5 5 98
10 10 95
15 15 84
20 20 71

For comparison, we also implemented the LD-
based algorithm of Gabriel et al. (2002) for finding
blocks. We compared the block structures produced
by our algorithm and by the LD-based algorithm to
the correct one, using an alignment score similar to
the one used in comparison of two DNA restriction
enzyme maps (Waterman 1995, §9.10). The score of
two partitions P1 and P2 of m SNPs is computed as
follows. We form two vectors of size m−1, in which 1
in position i denotes a block boundary between SNPs
i and i+1, and 0 denotes that the two SNPs belong to
the same block. We then compute an alignment score
of these vectors using an affine gap penalty model
with penalties 3, 2, and 0�5 for mismatch, gap open,
and gap extension, respectively, and a match score of
zero.
We simulated one population with 3,000 haplo-

types, computed its block structure with both algo-
rithms, and compared them to the true one. We
repeated this experiment with different error and
missing-data rates. The results are shown in Figure 3.
It can be observed that our algorithm yields partitions
that are closer to the true ones, particularly as the rate
of errors and missing data rises. An example of the
actual block structures produced is shown in Figure 4.

4.2. Real Data
We applied our algorithm to two published datasets.
The first dataset of Daly et al. (2001) consists of 258
haplotypes and 103 SNPs. We applied our block parti-
tioning algorithm with the following parameters: the
maximal allowed error ratio between two vectors to
be considered as resulting from a single haplotype
was 0.02. In addition, we allowed up to 5% rare
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Figure 3 Accuracy in Block Reconstruction by our Algorithm (Solid
Line) and the Algorithm of Gabriel et al. (2002) (Dashed
Line)

Note. y axis: the score of aligning the reconstructed structure with the cor-
rect one. x axis: the noise rate.
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Figure 4 An Example of the Block Structures Produced for an Error
Rate of 1% by Our Algorithm (Bottom), the LD-Based Algo-
rithm of Gabriel et al. (2002) (Top), and the True Solution
(Middle)

Note. Each block boundary is denoted by a vertical line.

haplotypes, i.e., in scoring a block we sought the min-
imum number of different haplotypes that together
cover at least 95% of the rows.
In order to assess our block partitioning and com-

pare it to the one reported by Daly et al. (2001),
we calculated LD-based measures for both partitions.
Specifically, we calculated the LD-confidence values
between every pair of SNPs inside the same block,
using a <2 test, as follows. For a pair i� j of SNPs, let
Pa�b, where a� b ∈ 
0�1, be the frequency of occurrence
of a in position i and b in position j of a haplotype.
Let p0, p1 (q0, q1) denote the frequencies of haplotypes
with 0 and 1 in the ith (jth) SNP, respectively. Define
D ≡ P00P11 − P01P10. D is a measure of linkage dis-
equilibrium, and nD2/�p0p1q0q1� is distributed as <2,
with one degree of freedom.
For each block, we calculated the fraction of

SNP pairs in the block whose LD-confidence value
exceeded 95% (high LD pairs). The average fraction
over all blocks was computed as the ratio of the total
number of high LD pairs inside blocks to the total
number of SNP pairs within blocks.
A comparison between our block partition to the

one obtained by Daly et al. (2001) is presented in
Table 2. Overall, the two block partitions have similar
boundaries and similar scores. The average fraction
of high LD pairs in blocks for our partition was 0.823.
For the partition of Daly et al. (2001) the average frac-
tion was 0.796. Another partition was produced for
these data by Eskin et al. (2003) based on minimizing
the number of representative SNPs. Their partition

Table 2 Comparison Between the Blocks of Daly et al. (2001) and the
Blocks Generated by Our Algorithm

Fraction of high Fraction of high
Daly et al. blocks LD pairs Our blocks LD pairs

1: 1–9 0�78 1: 1–15 0�81
2: 10–15 1
3: 16–24 0�78 2: 16–24 0�78
4: 25–35 0�95 3: 25–36 0�94
5: 36–40 0�70 4: 37–44 0�68
6: 41–45 1
7: 46–77 0�77 5: 45–67 0�84

6: 68–78 0�71
8: 78–85 0�50 7: 79–81 0�33
9: 86–91 0�93 8: 82–90 0�89
10: 92–98 0�95 9: 91–95 1
11: 99–103 1 10: 96–103 0�75

Average 0�796 0�822

Table 3 Separation to Subpopulations and Block Finding on Different
Regions in Part of the Data of Gabriel et al. (2002)

Chromosome: % Correct
region #SNPs Discovered blocks classifications

1: 3a 119 1: 1–35, 36–119 95
2: 1–46, 47–119

2: 8a 73 1: 1–73 99
2: 1–73

6: 24a 121 1: 1–52, 53–121 98
2: 1–44, 45–121

8: 29a 104 1: 1–27, 28–104 100
2: 1–40, 41–104

9: 32a 110 1: 1–25, 26–110 99
2: 1–38, 39–110

14: 41a 141 1: 1–48, 49–63, 64–141 100
2: 1–12, 13–63, 64–141

Note. Includes subpopulations A and D

contained 11 blocks and its average fraction of high
LD pairs was 0.814.
The second dataset we analyzed, of Gabriel et al.

(2002) contains unresolved genotype data. In order to
apply our algorithm to these data, we transformed
them into haplotypes by treating heterozygous SNPs
as missing data. Notably, the fraction of heterozygous
sites was relatively small, so the loss in information
was moderate. We considered the two largest popu-
lations in the data, A (Europeans) and D (individuals
from Yoruba), consisting of 93 and 90 samples, respec-
tively. Each population was genotyped in ∼60 differ-
ent regions in the genome. We analyzed six of those
regions that contained over 70 SNPs. In all cases we
were able to detect two different populations in the
data and classify correctly over 95% of the haplotypes.
The results are shown in Table 3. The results with
three populations were poorer, due to the smaller size
of the third population.

5. Concluding Remarks
We have introduced a simple and intuitive mea-
sure for scoring and detecting blocks in a haplotype
matrix: the total number of distinct haplotypes in
blocks. Using this measure along with several error
models, we have studied the computational prob-
lems of scoring of a block, and of finding an optimal
block structure. Most versions of the scoring problem
that address imperfect data are shown to be NP-hard.
A similar situation occurred with the f score function
of Zhang et al. (2002). We devised several algorithms
for different variants of the problem. In particular, we
gave a simple algorithm, which, under an appropriate
probabilistic model, scores a block correctly with high
probability in the presence of errors, missing data,
and rare haplotypes.
Note that our measure is adequate only when the

ratio of the number n of typed individuals to the
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number m of SNPs is not too extreme. When n is very
small and m is large, our measure might be optimized
by the trivial solution of a single block.
In simulations, our score leads to more accurate

block detection than does the LD-based method of
Gabriel et al. (2002). While the simulation setup is
quite naive, it seems to act just as favorably for the
LD-based methods. The latter methods apparently
tend to over-partition the data into blocks, as they
demand a very stringent criterion between every pair
of SNPs in the same block. This criterion is very hard
to satisfy as block size increases, and the number
of pairwise comparisons grows quadratically. On the
data of Daly et al. (2001) we generated a slightly more
concise block description than do extant approaches,
with a somewhat better fraction of high-LD pairs.
We also treated the question of partitioning a set of

haplotypes into subpopulations based on their differ-
ent block structures, and devised a practical heuris-
tic for the problem. On a genotype dataset of Gabriel
et al. (2002) we were able to identify two subpopu-
lations correctly, in spite of ignoring all heterozygous
types. A principled method of dealing with geno-
type data remains a computational challenge. While
in some studies the partition into subpopulations is
known, others may not have this information, or fur-
ther, finer partition may be detectable using our algo-
rithm. In our model we implicitly assumed that block
boundaries in different subpopulations are indepen-
dent. In practice, some boundaries may be common
due to the common lineage of the subpopulations.
A more detailed treatment of the block boundaries
in subpopulations should be considered when addi-
tional haplotype data reveal the correct way to model
this situation.

Acknowledgments
R. Sharan was supported by a Fullbright grant. R. Shamir
was supported by a grant from the Israel Science Founda-
tion (Grant 309/02). The authors thank Chaim Linhart and
Dekel Tsur for their comments on the manuscript.

References
Alon, N., J. H. Spencer. 2000. The Probabilistic Method. John Wiley

and Sons, Inc., New York.
Bafna, V., B. V. Halldorsson, R. Schwartz, A. Clark, S. Istrail. 2003.

Haplotyles and informative SNP selection algorithms: Don’t
block out information. Proc. Seventh Annual Internat. Conf. Res.
Comput. Molecular Biol. (RECOMB). The Association for Com-
puting Machinery. New York, 19–27.

Clark, A. 1990. Inference of haplotypes from PCR-amplified sam-
ples of diploid populations. Molecular Biol. Evolution 7 111–122.

Cormen, T. H., C. E. Leiserson, R. L. Rivest. 1990. Introduction to
Algorithms. MIT Press, Cambridge, MA.

Daly, M. J., J. D. Rioux, S. F. Schaffner, T. J. Hudson, E. S.
Lander. 2001. High-resolution haplotype structure in the
human genome. Nature Genetics 29(2) 229–232.

Eskin, E., E. Halperin, R. M. Karp. 2003. Large scale reconstruction
of haplotypes from genotype data. Proc. Seventh Annual Inter-

nat. Conf. Res. Comput. Molecular Biol. (RECOMB). The Associ-
ation for Computing Machinery. New York, 104–113.

Gabriel, S. B., S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy,
B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart,
S. N. Liu-Cordero, C. Rotimi, A. Adeyemo, R. Cooper, R. Ward,
E. S. Lander, M. J. Daly, D. Altshuler. 2002. The structure
of haplotype blocks in the human genome. Science 296
2225–2229.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Co., San Francisco, CA.

Gusfield, D. 2001. Inference of haplotypes in samples of diploid
populations: Complexity and algorithms. J. Comput. Biol. 8(3)
305–323.

Gusfield, D. 2003. Haplotype by pure parsimony. Proc. Four-
teenth Annual Sympos. Combin. Pattern Matching (CPM), Morelia,
Mexico. Springer, Berlin, 144–155.

Halldorsson, B. V., V. Bafna, N. Edwards, R. Lippert, S. Yooseph,
S. Istrail. 2003. Combinatorial problems arising in SNP. Discrete
Math. Theoret. Comput. Sci. Lecture Notes in Computer Science,
No. 2731. Springer-Verlag, Heidelberg, Germany, 26–47.

Hubbell, E. 2003. Finding a parsimony solution to haplotype phase
is NP-hard. Unpublished manuscript, Affymetrix Inc., Santa
Clara, CA.

Kimmel, G., R. Sharan, R. Shamir. 2003. Identifying blocks and sub-
populations in noisy SNP data. Proc. Third Workshop Algorithms
in Bioinformatics (WABI). Springer-Verlag, Berlin, 303–319.

Koivisto, M., M. Perola, T. Varilo, W. Hennah, J. Ekelund, M. Lukk,
L. Peltonen, E. Ukkonen, H. Mannila. 2003. An MDL method
for finding haplotype blocks and for estimating the strength
of haplotype block boundaries. Proc. Pacific Sympos. Biocomput-
ing (PSB), Big Island of Hawaii, Hawaii, Vol. 8. World Scientific,
Singapore, 502–513.

Kruglyak, L., D. A. Nickerson. 2001. Variation is the spice of life.
Nature Genetics 27 234–236.

MacQueen, J. 1965. Some methods for classification and analysis
of multivariate observations. Proc. Fifth Berkeley Sympos. Math.
Statist. Probab., University of California Press, Berkeley, CA,
281–297.

Ostrovsky, R., Y. Rabani. 2002. Polynomial time approximation
schemes for geometric k-clustering. J. Assoc. Comput. Mach. 49
139–156.

Patil, N., A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi,
C. R. Hacker, C. R. Kautzer, D. H. Lee, C. Marjoribanks,
D. P. McDonough, B. T. Nguyen, M. C. Norris, J. B. Sheehan,
N. Shen, D. Stern, R. P. Stokowski, D. J. Thomas, M. O. Trulson,
K. R. Vyas, K. A. Frazer, S. P. Fodor, D. R. Cox. 2001. Blocks of
limited haplotype diversity revealed by high-resolution scan-
ning of human chromosome 21. Science 294 1719–1723.

Sachidanandam, R., D. Weissman, S. C. Schmidt, J. M. Kakol, L. D.
Stein, G. Marth, S. Sherry, J. C. Mullikin, B. J. Mortimore,
D. L. Willey, S. E. Hunt, C. G. Cole, P. C. Coggill, C. M. Rice,
Z. Ning, J. Rogers, D. R. Bentley, P. Y. Kwok, E. R. Mardis, R. T.
Yeh, B. Schultz, L. Cook, R. Davenport, M. Dante, L. Fulton,
L. Hillier, R. H. Waterston, J. D. McPherson, B. Gilman,
S. Schaffner, W. J. Van Etten, D. Reich, J. Higgins, M. J.
Daly, B. Blumenstiel, J. Baldwin, N. Stange-Thomann, M. C.
Zody, L. Linton, E. S. Lander, D. Altshuler. 2001. A map of
human genome sequence variation containing 1.42 million sin-
gle nucleotide polymorphisms. Nature 291 1298–2302.

Venter, J. Craig, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural,
G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt,
J. D. Gocayne et al. 2001. The sequence of the human genome.
Science 291 1304–1351.

Waterman, M. S. 1995. Introduction to Computational Biology: Maps,
Sequences and Genomes. Chapman and Hall.

Zhang, K., M. Deng, T. Chen, M. S. Waterman, F. Sun. 2002.
A dynamic programming algorithm for haplotype block parti-
tioning. Proc. National Acad. Sci. USA 99 7335–7339.





April 6, 2005 8:24 WSPC/185-JBCB 00109

Journal of Bioinformatics and Computational Biology
Vol. 3, No. 2 (2005) 359–384
c© Imperial College Press

THE INCOMPLETE PERFECT PHYLOGENY
HAPLOTYPE PROBLEM

GAD KIMMEL

School of Computer Science, Tel Aviv University
Tel Aviv 69978, Israel

kgad@tau.ac.il

RON SHAMIR

School of Computer Science, Tel Aviv University
Tel Aviv 69978, Israel

rshamir@tau.ac.il

Received 11 May 2004
Revised 21 August 2004
Accepted 30 August 2004

The problem of resolving genotypes into haplotypes, under the perfect phylogeny model,
has been under intensive study recently. All studies so far handled missing data entries
in a heuristic manner. We prove that the perfect phylogeny haplotype problem is
NP-complete when some of the data entries are missing, even when the phylogeny is
rooted. We define a biologically motivated probabilistic model for genotype generation
and for the way missing data occur. Under this model, we provide an algorithm, which
takes an expected polynomial time. In tests on simulated data, our algorithm quickly
resolves the genotypes under high rates of missing entries.

Keywords: Haplotype; haplotype block; genotype; SNP; algorithm; complexity; genotype
phasing; haplotype resolution; perfect phylogeny.

1. Introduction

A central current challenge in human genome research is to learn about DNA differ-
ences among individuals. This knowledge will hopefully lead to finding the genetic
causes of complex and multi-factorial diseases. The distinct single-base sites along
the DNA sequence that show variability in their nucleic acids contents across the
population, are called single nucleotide polymorphisms (SNPs). Millions of SNPs
have already been detected,22 and it is estimated that the total number of common
SNPs is 10 million.18

In diploid organisms (e.g. humans), there are two nearly-identical copies of each
chromosome. Most techniques for determining SNPs provide a pair of readings, one
from each copy. However, they cannot identify which of the two chromosomes each
reading came from.14 The goal of phasing (or resolving) is to infer that missing

359
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information. The original conflated data from both chromosomes are called the
genotype of the individual, and is represented by a set of two nucleotide readings for
each site. The two separated sequences corresponding to the two chromosomes of an
individual are called his/her haplotypes. If the two bases in a site are identical (resp.,
different), the site is called homozygous (resp., heterozygous). For recent reviews on
biological and computational aspects of haplotype analysis, see Halldorsson et al.11

and Hoehe et al.14

Resolving the genotypes is a central problem in haplotyping. It has been
argued that more accurate association studies can be performed once the geno-
types are resolved.4,15 In the absence of additional information, each genotype
can be resolved in 2h−1 different ways, where h is the number of heterozygous
sites in the genotype. To find the correct way, resolution is done simultaneously
on all the available genotypes, and according to a model. A pioneering approach
to haplotype resolution was Clark’s parsimony-based algorithm.3 A likelihood-
based EM algorithm6,19 gave better results. Stephens et al.24 and Niu et al.20

proposed MCMC-based methods which gave promising results. All of these meth-
ods assumed that the genotype data correspond to a single block with no recombi-
nation events. Hence, for multi-block data the block structure must be determined
separately.

Recently, a new combinatorial formulation of the phasing problem was sug-
gested by Gusfield.10 According to this model, phasing must be done so that the
resulting haplotypes define a perfect phylogeny tree. This model assumes that in the
studied region along the chromosome, recombination did not occur, and the infinite
site assumption holds.10 Gusfield showed how to solve the problem efficiently, and
simpler algorithms were subsequently developed by Bafna et al.2 and Eskin et al.5

Eskin et al.5 showed good resolving results with small error rates on real genotypes.
They also reported that their algorithm was faster and more accurate in practical
settings than the method by Stephens et al.24

In real genotype data (e.g., Daly et al.,4 Gabriel et al.7 and Patil et al.21) some
of the data entries are often missing, due to technical causes. Current phasing
algorithms that are based on perfect phylogeny require complete genotypes. This
situation raises the following algorithmic problem: Complete the missing entries in
the genotypes and then resolve the data, such that the resulting haplotypes define a
perfect phylogeny tree. We call this problem incomplete perfect phylogeny haplotype
(IPPH). It was posed by Halldorsson et al.11 In order to deal with such incomplete
data, Eskin et al.5 used a heuristic to complete the missing entries, and showed
very good results. However, having an algorithm for optimally handling missing
data entries should allow more accurate resolution. In this paper we address the
IPPH problem.

A special case of IPPH was studied in phylogeny by Pe’er et al.16 In the incom-
plete directed perfect phylogeny problem, the input is an n × m species-characters
matrix. The characters are binary and directed, i.e., a species can only gain charac-
ters, and certain characters are missing in some species. The question is whether one
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can complete the missing states in a way admitting a perfect phylogeny. Pe’er et al.
provided a near optimal Õ(nm) time algorithm for the problem.a This problem is
a special case of IPPH in which all the sites in all genotypes are homozygous, and
the root is known.

The IPPH problem has two variants: rooted (or directed) and unrooted (or gen-
eral). In the rooted version, one haplotype is given as part of the input. This hap-
lotype is referred to as the root of the tree, even though it may not be the real
evolutionary root of the tree. This holds since each of the haplotypes can be used
as a root in the perfect phylogeny tree.9 The unrooted version is a more direct for-
mulation of the practice in biology, since in phasing, the root of the haplotypes is
not given. However, we argue that the more restricted rooted version is of practical
importance: Though theoretically finding a root might take an exponential time, in
practice, there is often one genotype that is both complete and homozygous in all
sites, which can be used as a root. As we shall demonstrate in Sec. 5 on simulated
and real biological data, virtually always at least one such genotype exists. If there
is no such genotype, one can use a genotype with few undetermined sites and enu-
merate the values in these sites. In the rare cases that this too is not feasible, one
can physically separate the two chromosomes of a single individual and sequence
one haplotype, as was done in Patil et al.21 This procedure is considerably more
expensive than standard genotyping techniques, but it will be performed only for
one individual, so the price is small. Thus, both variants of IPPH are biologically
important.

In this paper, we show that rooted IPPH is NP-complete. The hardness of
unrooted IPPH follows immediately from the hardness of determining the compat-
ibility of unrooted partial binary characters (incomplete haplotype matrix).23 This
was observed first by R. Sharan (private communication). However, this result does
not imply the hardness of rooted version. In fact, our proof for rooted IPPH is quite
involved.

To cope with the theoretical hardness of IPPH, we invoke a probabilistic
approach. We define a stochastic model for generating the haplotypes and for the
way missing entries occur in them. The model assumptions are mild and seem to
hold for biological data. In addition, we assume that the number of sites m grows
much more slowly than the number of genotypes n. Specifically, we assume that
m = O(n5). As m is bounded by the block size which in practice is not more than a
modest constant (10–30), this condition also holds in practice. We design an algo-
rithm that always finds the correct solution, and under the assumptions above takes
an expected time of Õ(m2n). A similar probabilistic approach leading to comparable
results was developed simultaneously and independently by Halperin and Karp.12

To test our algorithm, we applied it to simulated data using biologically realistic
values of the parameters, and calculated an upper bound Γ on the main factor in the

aWe use Õ notation to suppress polylogarithmic factors in presenting complexity bounds. Formally,
Õ(g(n)) := {f(n) | ∃n0 > 0, ∃c > 0, ∃d > 0,∀n ≥ n0 : 0 ≤ f(n) ≤ c[log n]dg(n)}.



April 6, 2005 8:24 WSPC/185-JBCB 00109

362 G. Kimmel & R. Shamir

running time. Γm gives a bound on the number of times the polynomial algorithm by
Pe‘er et al.16 would be invoked to complete the calculation. Γ may be exponential,
but under the model assumptions it was shown to have an expected polynomial
time. On data with 200 genotypes and 30 sites, we show that on average Γ < 4000
even when only two haplotypes are present and the rate of missing entries is 50%.
For a more realistic case of five haplotypes and 20% missing entries, E[Γ] < 100.
Hence, the algorithm runs in modest time even far beyond the range of its provable
performance.

The paper is organized as follows: Sec. 2 presents definitions and preliminaries.
Section 3 shows the hardness result. Section 4 presents the algorithm and the prob-
abilistic analysis, and finally Sec. 5 summarizes our experimental results.

A preliminary version of this study was published in the Proceedings of the
Second RECOMB Satellite Meeting on SNPs and Haplotypes.17

2. Preliminaries

In this section we provide basic definitions, lemmas and observations that are needed
for our analysis. Figure 1 demonstrates the main definitions.

Given n genotypes, the haplotype inference problem is to find n pairs of hap-
lotypes vectors that could have generated the genotypes vectors. Formally, the
input is an n× m genotype matrix M , with M [i, j] ∈ {0, 1, 2}. The ith row M [i, ∗]
describes the ith genotype. The jth column describes the alleles in the jth loca-
tion: 0 or 1 for two homozygous alleles, and 2 for a heterozygous site. A 2n × m

binary matrix M ′ is an expansion of the genotype matrix M if each row M [i, ∗]
expands to two rows denoted by M ′[i, ∗] and M ′[i′, ∗], with i′ = n + i, satisfying
the following: for every i, if M [i, j] ∈ {0, 1}, then M [i, j] = M ′[i, j] = M ′[i′, j];
if M [i, j] = 2, then M ′[i, j] �= M ′[i′, j]. M ′ is also called a haplotype matrix
corresponding to M .

matrix
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Fig. 1. Genotypes, haplotypes and trees. A genotype matrix M , a haplotype matrix M ′ that is
an expansion of M , the perfect phylogeny tree of M ′, and the corresponding perfect phylogeny
forest.
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Definition 1. Perfect Phylogeny Tree for a Matrix
A perfect phylogeny for a k × m haplotype matrix M ′ is a tree T with a root r,
exactly k leaves and integer edge labels, and a binary label vector (lv(1) · · · lv(m))
for each node v, that obeys the following properties:

1. Each of the rows in M ′ is the label of exactly one leaf of T .
2. Each of the columns labels exactly one edge of T .
3. Every edge of T is labeled by one column.
4. For any node v, lv(i) �= lr(i) if and only if i labels an edge on the unique path

from the root to v. Hence, given the root label, the root-node paths provide a
compact representation of all node labels.

An equivalent definition appeared in Bafna et al.2 Note that we disallow edges
with multiple labels, and replace them by paths with a single label per edge.

Problem 1. The Perfect Phylogeny Haplotype Problem (PPH)10

Given a matrix M , find an expansion M ′ of M which admits a perfect phylogeny.
We now define a generalization of PPH that allows missing data entries. The

input to our problem is an incomplete genotype matrix, i.e., a matrix M with
M [i, j] ∈ {0, 1, 2, ?}, where “?” indicates a missing data entry. The process of replac-
ing each “?” by 0,1 or 2 is called completing the matrix M .

Problem 2. Incomplete Perfect Phylogeny Haplotype Problem (IPPH)
Given an incomplete genotype matrix M , can one complete M , so that there exists
an expansion M ′ of M , which admits a perfect phylogeny?

The following definitions are implicit in Bafna et al.2 and Eskin et al.5

Definition 2. Perfect Phylogeny Forest
Let M be a haplotype matrix, and let P = (VP , EP ) be a perfect phylogeny tree
corresponding to M . The perfect phylogeny forest of P is a directed forest F =
(VF , EF ) whose vertices are the edges of P , and for u, v ∈ VF , u is a parent of v in F

if and only if the edge corresponding to u in P is a parent of the edge corresponding
to v in P .

Hence, the vertices of perfect phylogeny forest correspond to M ′’s columns,
and reflect the order of mutations in the phylogeny tree. Clearly, every perfect
phylogeny tree can be converted into a perfect phylogeny forest and vice versa.
Thus, M ′ admits a perfect phylogeny tree iff it admits a perfect phylogeny forest.
For a column j ∈ {1, 2, . . . , m} of M ′, we denote by uj its corresponding vertex in
the perfect phylogeny forest.

For a perfect phylogeny forest F , we say that two vertices are in parenthood
relation if one is an ancestor of the other. Otherwise, we say that they are in broth-
erhood relation. Note that brothers can either be in different connected components,
or be in the same component and have the root on the path connecting them.

The following special case of IPPH will be a main subject of our investigation.
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Problem 3. Incomplete Perfect Phylogeny Haplotype, rooted version (rooted-

IPPH)
Given an incomplete genotype matrix M and a haplotype r, can one complete M ,
such that there exists an expansion M ′ of M , which admits an perfect phylogeny,
with r as a root?

In this problem, we can assume w.l.o.g. that the input root haplotype is r0 =
(0, . . . , 0).9 The following lemma explains the connection between F and M ′, and
is key for our construction:

Lemma 1. (Bafna et al.,2 Eskin et al.5) Let M ′ be a haplotype matrix, and let
F = (VF , EF ) be a perfect phylogeny forest, corresponding to a perfect phylogeny
tree with the root r0 = (0, 0, . . . , 0). F is a perfect phylogeny forest of M ′ iff for all
ua, ub ∈ VF and for every haplotypei :

(1) If ua is an ancestor of ub then M ′[i, a] = 1 or M ′[i, b] = 0.
(2) If ua and vb are in brotherhood relation, then M ′[i, a] = 0 or M ′[i, b] = 0.

In the rest of this section, we provide our own definitions, building on those
introduced above, and prove several lemmas which will be needed for our analysis.

Definition 3. Constrained Mixed Graph
A constrained mixed graph (CMG) is a triplet Gc = (V, E, X), where G = (V, E)
is a graph and X = {X1, X2, . . . , Xp}, where for each i: Xi ⊆ V . The sets Xi are
called XOR relations. G has four types of edges: undirected, dashed undirected,
directed and dashed directed.

Definition 4. Parenthood Connected Components
Two vertices u and v in a constrained mixed graph are in the same parenthood
connected component if there exists a path between u and v consisting only of
undirected or directed edges (a parenthood relation). Note that edge directions are
not important in this definition.

Definition 5. Constrained Mixed Completion Graph
For a constrained mixed graph Gc = (V, E, X), we define its constrained mixed
completion graph G′ = (V, E′) to be a complete graph (with a single edge for
each pair u, v ∈ E), where E′ contains two types of edges: directed and dashed
undirected. The edge types induce a labeling L: E′ → {0, 1}, where a directed edge
is labeled with 0, and dashed undirected edge is labeled with 1. G′ must maintain
all the following properties:

(1) All G′ edges maintain the following properties:

(a) If e : (u, v) ∈ E is an undirected edge then E′ must contain a directed edge
from u to v or from v to u.

(b) Directed edges and dashed undirected edges in G are unchanged in G′.
(c) If e : (u, v) ∈ E is a dashed directed edge from u to v then the corresponding

e′ : (u, v) ∈ E′ must be a dashed undirected edge or a directed edge from
u to v.
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(2) G′ contains a spanning forest F = (V, EF ⊆ E′), consisting of directed edges
only, such that:

(a) If node u ∈ V is an ancestor of v ∈ V in F , then there is a directed edge
from u to v in G′.

(b) For any two nodes in V , if neither node is an ancestor of the other in F ,
then they are connected by a dashed undirected edge in G′.

(3) For each XOR relation Xi, for every three vertices: xi,a, xi,b, xi,c ∈ Xi, the
following holds: L(xi,a, xi,b) ⊕ L(xi,b, xi,c) ⊕ L(xi,a, xi,c) = 0.b

Problem 4. Constrained Mixed Graph Completion Problem (CMGC)
Given a constrained mixed graph G, provide a constrained mixed completion graph
of G, if such a graph exists.

An example of the CMGC problem is presented in Fig. 2. The decision version
of the CMGC problem is to decide whether there exists a constrained mixed com-
pletion graph G′ for G. An important property of the constrained mixed comple-
tion graph, is that it can be viewed as a directed spanning forest F , with additional
edges between nodes, according to the relation of those nodes in the forest: a dashed
undirected edge for a brotherhood relation, and a directed edge for a parenthood
relation.

The following notation is adopted from Eskin et al.:5 c(M, x) is defined as the
set of rows of M containing the value x in column c. Let c, c′ be columns and let
x, y be elements of {0, 1}. The pair c, c′ induces (x, y) in M if ((c(M, x)∩c′(M, y))∪
(c(M, x) ∩ c′(M, 2)) ∪ (c(M, 2) ∩ c′(M, y)) �= ∅. Let R(M, c, c′) be the set of pairs
(x, y) such that (c, c′) induces (x, y) in M . Note that R(M, c, c′) does not contain
pairs with “?”, but only “0” and “1”. Observe that from our assumption that the
root is (0, . . . , 0), it follows that R(M, c, c′) contains (0,0) for every c, c′.

a

b c

d e

A B

XOR relations: {b,c,e}, {a,b,d}

a

cb

d e

Fig. 2. Example of CMGC problem. A: an instance of a graph for CMGC with XOR relations.
B: a possible solution for this instance. The edges of the forest appear in bold.

bThe operator ⊕ denotes the boolean xor operator.
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Let c, c′ be two columns such that c(M, 2) ∩ c′(M, 2) �= ∅. Let M ′ be an
expansion of the M , after completing the missing entries, which admits a per-
fect phylogeny. We say that M ′ resolves the pair of columns (c, c′) unequally if
{(0, 0), (0, 1), (1, 0)} = R(M ′, c, c′) and equally if {(0, 0), (1, 1)} = R(M ′, c, c′).
According to Lemma 1, M ′ must resolve the pair (c, c′) either equally or unequally,
and can not resolve the pair in both ways.

For an incomplete genotype matrix M , we build a constrained mixed graph
Gc(M), where each column in M has a corresponding vertex in Gc. The edges
represent the possible relations of the columns in the perfect phylogeny forest, and
are determined according to lemma 1: For each two vertices ua, ub:

(1) If R(M, a, b)\{(0, 0)} = {(1, 1), (1, 0)} then ua is an ancestor of ub in F . The
edge (ua, ub) is set as a directed edge from ua to ub.

(2) If R(M, a, b)\{(0, 0)} = {(1, 1)} then ua, ub are in parenthood relation in F ,
but it is unknown which of the vertices is the ancestor. The edge (ua, ub) is set
as an undirected edge.

(3) If R(M, a, b)\{(0, 0)} = {(1, 0), (0, 1)} then ua, ub are in brotherhood relation
in F . The edge (ua, ub) is set as a dashed undirected edge.

(4) If R(M, a, b)\{(0, 0)} = {(1, 0)} then either ua is an ancestor of ub in F , or
ua, ub are in brotherhood relation in F . The edge (ua, ub) is set as a dashed
directed edge from ua to ub.

(5) If R(M, a, b)\{(0, 0)} = ∅ then the relation of ua, ub in F is unknown. In that
case: (ua, ub) /∈ E. The labeling of unlabeled edges corresponds to selecting
the type of edge in the completion of Gc for solid undirected and for dashed
directed edges.

In addition, for each row i, the set of columns a1, . . . , at, such that
M [i, a1] = · · · = M [i, at] = 2, imply a XOR relation on the corresponding vertices
ua1 , . . . , uat . Each pair of vertices of Gc is labeled with L : (ua, ub) → {0, 1, ?} as
follows: A solid (directed or undirected) edge, i.e., a parenthood relation, is labeled
with 0; dashed undirected edge, i.e., a brotherhood relation, is labeled with 1; and
all other cases, i.e., an unknown relation, are labeled with“?”. The last set is called
unlabeled pairs.

Step 1: Primary Label Completion
A primary label completion of Gc(M) is an assignment of a label s to unlabeled pairs
of vertices, by performing the following step as long as possible: Find three vertices
xi,a, xi,b, xi,c ∈ Xi, such that L(xi,a, xi,b) and L(xi,b, xi,c) are set and L(xi,a, xi,c)
is not, and assign: L(xi,a, xi,c) = L(xi,a, xi,b) ⊕ L(xi,b, xi,c).

Define UGc to be the set of unlabeled pairs after primary label completion was
performed. UGc is independent of the order of choosing the triplets.2

Step 2: Secondary Label Completion A secondary label completion of a
constrained mixed graph Gc(M) is an assignment of a label in {0,1} to pairs
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(ua, ub) ∈ UGc , such that for each XOR relation Xi, for every three vertices
xi,a, xi,b, xi,c ∈ Xi, the condition: L(xi,a, xi,b) ⊕ L(xi,b, xi,c) ⊕ L(xi,a, xi,c) = 0 is
satisfied.

After the secondary label completion, we can perform a label resolution using
the incomplete genotype matrix, which is defined as follows: Given an incomplete
genotype matrix M , an expansion for M is in an incomplete haplotype matrix M ′

which satisfies the expansion rules for complete matrices, and also preserves all
“?” values. Formally, each row M [i, ∗] expands to two rows denoted by M ′[i, ∗]
and M ′[i′, ∗], such that for every i, if M [i, j] ∈ {0, 1, ?}, then M [i, j] = M ′[i, j] =
M ′[i′, j]; if M [i, j] = 2, then either M ′[i, j] = 0 and M ′[i′, j] = 1, or M ′[i, j] = 1
and M ′[i′, j] = 0.

Step 3: Label Resolution
A label resolution of a genotype matrix M is an expansion of M to an incomplete
haplotype matrix M ′, according to the label function L: For every two columns
a, b, if there exists i, such that M [i, a] = M [i, b] = 2, if L(ua, ub) = 0 resolve (a, b)
equally and if L(ua, ub) = 1 resolve (a, b) unequally. The output of this process is
an incomplete haplotype

Label resolution of an incomplete genotype matrix can be done by algorithm
E2M proposed by Bafna et al.2 Observe that any submatrix M [i, (a, b)], where
M [i, a] and M [i, b] are not both equal to 2, has a unique expansion in any incomplete
haplotype matrix. Hence, for such a submatrix, the resolution is not influenced by
the label function.

Primary label completion was suggested by Bafna et al.2 as part of an algo-
rithm for complete genotype matrix phasing. Interestingly, Bafna et al. proved that
once primary label completion is performed, for any possible (legal) secondary label
completion of UGc , label resolution of the genotype matrix results in a haplotype
matrix, which admits a perfect phylogeny. This is true for a complete genotype
matrix (with no missing entries), but not for the incomplete case. A simple example
for that is an incomplete haplotype matrix that does not admit a perfect phylogeny
(see e.g., Pe’er et al.,16 Fig. 2). Now consider such a matrix to be the input geno-
type matrix, by duplicating each haplotype to form a fully homozygous genotype.
Here, no primary and secondary resolution is needed, since there are no heterozy-
gous sites in the matrix. Thus, every secondary resolution results in an incomplete
haplotype matrix (namely, the same input matrix), which does not admit a perfect
phylogeny. The following lemma describes a weaker connection between secondary
label completion and the solution of IPPH.

Lemma 2. Suppose M is an incomplete genotype matrix that has a completion to
a genotype matrix M∗. Suppose further that M∗ has an expansion M ′ that admits a
perfect phylogeny. Then there exists some secondary label completion of UGc , such
that a label resolution of the incomplete genotype matrix M gives an incomplete
haplotype matrix, that can be completed to M ′.
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Proof. Let C be the set of columns of M . The perfect phylogeny implies some label
function fL on the pairs of the vertices of Gc(M), i.e., ∀i, j ∈ C: fL(ui, uj) ∈ {0, 1}.
This complete label function can not contradict the XOR relations of Gc(M) (for
proof, see Bafna et al.2). Next, primary label completion of Gc(M), for the known
pairs, must match the labels in fL, as there is only one possible primary label
completion. Then, we can chose the following secondary label completion: (ui, uj) ∈
UGc : L(ui, uj) = fL(ui, uj), which obviously gives an equivalent label function to
fL. Thus, using this secondary label completion of M , a label resolution of the
incomplete genotype matrix M gives an incomplete haplotype matrix, that can be
completed to M ′.

3. The Hardness Result

In this section, we show that rooted-IPPH is NP-complete. Clearly, the prob-
lem belongs to NP. To prove NP-hardness, we will show the following polynomial
reductions: 3-SAT ∝ CMGC ∝ rooted-IPPH.

We note that this also implies an alternative proof of the hardness of unrooted
IPPH: to form the reduction rooted-IPPH ∝ IPPH, given an instance (M, r) of
rooted-IPPH, we simply add the genotype row r to M . The resulting matrix M∗

is the input to IPPH. In a solution to the latter, there will be a leaf labeled with
r, and thus it solves the former problem. Conversely, if M has a solution with root r

then it is also a solution for M∗. The same idea was used for another purpose by
Bafna et al.2

We first prove the reduction from CMGC:

Theorem 1. CMGC ∝ rooted-IPPH

Proof. Given a constrained mixed graph Gc = (V, E, X) for the CMGC prob-
lem, we build a matrix M , and set r = (0, 0, . . . , 0). (M, r) will serve as input for
rooted-IPPH. Let |X | = p. M has dimensions (2|E|+p)×|V |. For each e ∈ E there
are two corresponding rows, and their indices are denoted by N0

e and N1
e . For each

Xi ∈ {Xi}1≤i≤p there is one row with index NXi . The column i ∈ {1, 2, . . . , |V |}
corresponds to vertex ui in Gc.

The construction of M is as follows:

(1) For each e = (ua, ub) ∈ E, we add two rows M [N0
e , ∗] and M [N1

e , ∗], such that
∀uc ∈ V \{ua, ub}, M [N0

e , c] = M [N1
e , c] =?, and:

(a) If e is an undirected edge then M [N0
e , a] = 0, M [N0

e , b] = 0, M [N1
e , a] = 1,

M [N1
e , b] = 1.

(b) If e is a dashed undirected edge then M [N0
e , a] = 0, M [N0

e , b] = 1,

M [N1
e , a] = 1, M [N1

e , b] = 0.
(c) If e is a directed edge from ua to ub then M [N0

e , a] = 1, M [N0
e , b] = 0,

M [N1
e , a] = 1, M [N1

e , b] = 1.
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(d) If e is a dashed directed edge from ua to ub then M [N0
e , a] = 0, M [N0

e , b] = 0,

M [N1
e , a] = 1, M [N1

e , b] = 0.

(2) For each {Xi}1≤i≤p, we add one row M [NXi , ∗], such that ∀uj ∈ Xi:
M [NXi , j] = 2 and ∀uk ∈ V \Xi: M [NXi , k] =?.

This completes the description of the reduction. Clearly the reduction is
polynomial.
(⇒)

Suppose that rooted-IPPH(M ,r) = TRUE, i.e., M has an expansion M ′ that
admits a perfect phylogeny tree, with r0 as a root. Thus, M ′ has a directed perfect
phylogeny forest F = (VF , EF ). Let F̂ = (VF , ÊF ) be a complete graph, where for
each u, v ∈ VF , we add a directed edge from u to v if u is an ancestor of v in F , or
a dashed undirected edge if neither node is an ancestor of the other.

We claim that F̂ is a constrained mixed completion graph of Gc. This is proven
by checking that all three properties of F̂ as a constrained mixed completion graph
of graph Gc hold (compare Definition 5). Property 2 holds since by the construction
of F̂ , F is a rooted spanning forest of F̂ as required. In order to prove property 3, we
use Lemma 2 in Bafna et al.2: the structure of the rows {M [NXi , ∗]}1≤i≤p forces that
for each of the XOR relations, for every three vertices xi,a, xi,b, xi,c ∈ (Xi ⊆ VF ),
the equation L(xi,a, xi,b) ⊕ L(xi,b, xi,c) ⊕ L(xi,a, xi,c) = 0 holds. Finally, prop-
erty 1 holds, since for an edge e ∈ E, the values in the two corresponding rows
{M [N j

e , ∗]}j∈{0,1} are determined in step 1 of the construction of M : The edge
(u, v) in graph Gc determines the possible relations of u and v in F . Since, by the
assumption, M has an expansion M ′, that admits a perfect phylogeny forest F , it
follows that for each u, v ∈ F , the edge e′ = (u, v) ∈ EF must be set according to
e = (u, v) ∈ E in Gc: If e is an undirected edge then e′ must be a directed edge;
if e is a dashed undirected edge then e′ must be a dashed undirected edge; if e is
a directed edge from u to v then e′ must be a directed edge from u to v; and if e

is a dashed directed edge from u to v then e′ must be a dashed undirected edge
or a directed edge from u to v. This proves property 1. Thus, F̂ is the constrained
mixed completion graph of Gc, and CMGC(Gc) = TRUE.

(⇐)
Suppose that CMGC (Gc) = TRUE, i.e., there exists a constrained mixed com-

pletion graph G′ for Gc. According to the second property of G′, there exists a
directed forest F = (EF , V ), which spans V . Due to the third property, the com-
pletion of edges in Gc, does not violate the XOR relations. We create an expansion
M ′ of M as follows: resolve the “2” of the genotypes in those rows, according to
G′: for two vertices {ua, ub ∈ Xi}1≤i≤p, in case M [NXi , a] =M [NXi , b] = 2, if there
is an undirected dashed edge between ua, ub ∈ V , then resolve the pair of columns
(a, b) unequally, and if there is an directed edge between ua, ub ∈ V , then resolve the
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submatrix equally. Since those edges are completed in G′ according to XOR rela-
tions (see Definition 5, property 3), each of the “2”s in these rows can be resolved
accordingly.

We denote the remaining 2|E|×|V | matrix by M∗. Note that M∗[i, j] ∈ {0, 1, ?}.
We call the {0, 1} entries “constants”, and the “?” entries “variables”. We denote
the set of column indices of constants in row i by Ci, and the set of column indices
of variables in this row by Vi. Complete the variables entries in the matrix M∗ to
create a matrix M∗∗ as follows:

M∗∗[i, j]j∈Vi =
{

1 if ∃c ∈ Ci s.t. M∗[i, c] = 1 ∧ uj is an ancestor of uc

0 otherwise

M∗∗ is a binary matrix and an expansion of M . We claim that M∗∗ admits a
perfect phylogeny forest. Moreover, this forest is F . This will be proven by showing
that the relation of each two columns in M∗∗ does not contradict the relation of their
corresponding nodes in F . Thus, according to Lemma 1, F is a perfect phylogeny
forest of M∗∗.

Consider two vertices ua, ub ∈ V and their corresponding columns a, b in M∗∗.
For each row i, we examine the three possible cases for M∗∗:

(1) ua, ub ∈ Ci

M(i, a) and M(i, b) were set according to the edge (ua, ub) ∈ E, which by
definition of G′, does not contradict F .

(2) ua ∈ Ci, ub ∈ Vi

First, suppose M∗∗[i, a] = 0: If M∗∗[i, b] is set to 0, then there is no con-
tradiction for any relations of ua and ub in F . Otherwise, if M∗∗[i, b] is set to
1, then there exists c ∈ Ci such that M ′[i, c] = 1 and ub is an ancestor of uc.
Suppose, on the contrary, that ua, ub contradict F in row i. This means, that
there are two rows j, k such that M∗[j, a] = 1, M∗[j, b] = 0, M∗[k, a] = 1,
M∗[k, b] = 1, i.e., according to these rows, ua is an ancestor of ub in F . Since
ub is an ancestor of uc, ua must be an ancestor of uc. However, according to
the construction of M , ua cannot be an ancestor of uc, since M∗∗[i, a] = 0 and
M∗∗[i, c] = 1 and a, c ∈ Ci.

Second, suppose M∗∗[i, a] = 1: If M∗∗[i, b] is set to 0, clearly ub is not an
ancestor of ua, so M∗∗ does not contradict F . Otherwise, if M∗∗[i, b] is set to 1,
then there exists c ∈ Ci, such that M∗∗[i, c] = 1 and ub is an ancestor of uc. In
case c = a, ua and ub can not be in a brotherhood relation. In case c �= a, ua

and uc are in parenthood relation, and since ub is an ancestor of uc, it follows
that ua and ub cannot be in a brotherhood relation.

It follows that, in this case, M∗∗ does not contradict F .
(3) ua, ub ∈ Vi

First, suppose that M ′[i, a] and M ′[i, b] are both set to 0. Obviously, the
submatrix does not contradict F .

Second, suppose w.l.o.g. that M ′[i, a] is set to 0 and M ′[i, b] is set to 1.
There exists c ∈ Ci, c �= a such that M ′[i, c] = 1 and ub is an ancestor of uc.
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Suppose, on the contrary, that ua, ub contradict F in row i. This means, that
there are two rows j, k such that M∗[j, a] = 1, M∗[j, b] = 0, M∗[k, a] = 1,
M∗[k, b] = 1, i.e., according to these rows, ua is an ancestor of ub in F . Since
ub is an ancestor of uc, ua must be an ancestor of uc. However, in that case,
M ′[i, a] should have been set to 1.

Third, suppose that M ′[i, a] and M ′[i, b] are both set to 1. There exist
ca, cb ∈ Ci such that M ′[i, ca] = 1, M ′[i, cb] = 1 and ua is an ancestor of uca

and ub is an ancestor of ucb
. Clearly, uca and ucb

are in parenthood relation,
so w.l.o.g. suppose that uca is an ancestor of ucb

. Thus, both ua and ub are
ancestors of ucb

, and it follows that ua and ub cannot be in brotherhood relation.
It follows that, in this case, M∗∗ does not contradict F .

Theorem 2. 3-SAT ∝ CMGC.

Proof. For a 3-SAT instance Φ we build a CMGC graph Gc. Denote the variables
of Φ by {Yi}1≤i≤t and the clauses by {Cj}1≤j≤s. Our construction will be formed
from four types of CMG sub-instances. First we define these four graph structures:

Variable base graph contains two vertices denoted by xi
0 and xi

1, with no edge
between them. This graph is denoted by V ari.

Clause base graph (see Fig. 3) contains 6 vertices denoted by {cj
t}0≤t≤5. The

edges are indicated in Fig. 3. This graph is denoted by Clj .
Positive variable connector (see Fig. 3) contains 12 vertices denoted by

{ai,j
t }0≤t≤5, and {bi,j

t }0≤t≤5. The edges are indicated in Fig. 3. This graph
is denoted by Pos.

Negative variable connector (see Fig. 3) contains 8 vertices denoted by
{di,j

t }0≤t≤3 and {ei,j
t }0≤t≤3. The edges are indicated in Fig. 3. This graph is

denoted by Neg.

The XOR relations constrain the ways to complete the variable connectors. In
fact, that there are two possible ways to complete the positive variable connector
and the negative variable connector with undirected edges. Both of the ways for both
types of connectors are presented in Fig. 4. An important key to understanding the
reduction, is that in the positive connector, the type (dashed or non-dashed) of edge
(ai,j

0 , bi,j
0 ) is the same as the type of the edge (ai,j

5 , bi,j
5 ). In the negative connector,

the type of edge (di,j
0 , ei,j

0 ) is the opposite from the edge (di,j
3 , ei,j

3 ). These two types
will play the role of True and False in the reduction.

The construction of Gc is done as follows:

1. For each variable {Yi}1≤i≤t create a copy of a variable base graph V ari.
2. For each clause {Cj}1≤j≤s create a copy of a clause base graph Clj .
3. For all 1 ≤ j ≤ s, for all 1 ≤ k ≤ 3 do:
4. if Yi is the kth literal in clause Cj then do:

create a copy of positive variable connector with superscripts i, j.
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Fig. 3. The building blocks of the reduction. Clause base graph (left), positive variable connector
(middle), and negative variable connector (right). In each case, the circled vertex sets represent
XOR relations. Edge types (directed, undirected, solid, dashed) are as shown in the graphs.

identify ai,j
0 with xi

0 and bi,j
0 with xi

1.
identify ai,j

5 with ci
k and bi,j

5 with ci
k+1.

5. if ¬Yi is the kth literal in clause Cj then do:
create a copy of negative variable connector with superscripts i, j.
identify di,j

0 with xi
0 and ei,j

0 with xi
1.

identify di,j
3 with ci

k and ei,j
3 with ci

k+1.

This concludes the reduction which is clearly polynomial. For convenience, we also
call an undirected dashed edge a positive edge, and a directed or undirected (solid)
edge a negative edge.
(⇒)

Suppose that 3-SAT(Φ) = TRUE. There exists a satisfying truth assignment
τ : (Yi) → {T, F} for Φ. For each variable graph {V ari}1≤i≤t complete the edge
according to the assignment, in the following way: For every 1 ≤ i ≤ t: (xi

0, x
i
1)

is determined to be a positive edge if τ(Yi) = T , or a negative edge, otherwise.
Now, resolve the XOR relations in all the variable connectors. In each of the clause
base graphs Clj , at least one of the three edges (cj

1, c
j
2), (cj

2, c
j
3), and (cj

3, c
j
4), is

a positive edge. It follows that in each clause base graph there is more than one
parenthood connectivity component. Each such component has only solid edges
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Fig. 4. Completion of variable positive and negative connectors. Note that in Pos (left) the com-
pletion propagates the type of the edge from the bottom to the top. In Neg (right) the types at
the top and the bottom are reversed.

between members, and there is a directed edge between vertices cj
a and cj

b, only if
a = b + 1. It follows that a directed tree can be built in each of the components of
a clause base graph, under the constrains of Gc.

In addition, any of the two possible completions of each of the variable con-
nectors, for any assignment, provides parenthood connectivity components in the
variable connectors as follows: each component is a connected component in the
subgraph of the solid edges only. These components can be directed in a transi-
tive fashion (see Fig. 4). Thus, in each variable connector, one can form a directed
sub-tree in each component, according to Gc constrains. Note that subgraphs of
two different variable connectors Con1 and Con2 may be in the same parenthood
connectivity component. This may happen only when two variable connectors are
connected to the same clause base graph, to edges (cj

1, c
j
2) and (cj

3, c
j
4) respectively,

and when (cj
2, c

j
3) is a directed solid edge and (cj

1, c
j
2) and (cj

3, c
j
4) are undirected

dashed edges. In this case, there is only one directed edge that connects Con1 and
Con2, so trees T1 and T2 can be built on Con1 and Con2 separately and directed
using the common edge, and then T1 and T2 can be united to a spanning directed
tree on Con1 ∪ Con2.

It follows that the graph can be divided into h parenthood connectivity com-
ponents {Ri}1≤i≤h, where a directed spanning tree Ti can be built in each of this
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components, under the constrains of Gc. Since each of the trees is in a different
parenthood connectivity component,

⋃h
i=1 Ti is a directed forest spanning on Gc

vertices. The constrained mixed completion graph can now be accomplished simply
by completing the rest of the missing edges in each parenthood connectivity com-
ponent according to its spanning tree, and between the components, by undirected
dashed edges. It follows that CMGC (Gc)=TRUE.
(⇐)

Suppose that 3-SAT(Φ) = FALSE. Then for each truth assignment to the vari-
ables at least one of the clauses has all literals assigned to be FALSE. This implies
that in any completion of Gc, there will be always one clause base graph Clj ,
such that all the three edges: (cj

1, c
j
2), (cj

2, c
j
3) and (cj

3, c
j
4), are negative, i.e., solid

directed edges. Thus cj
5 must be an ancestor of cj

0 in the forest. But this contradicts
the undirected dashed edge between cj

0 and cj
5, so a spanning forest which satisfied

Gc constraints does not exist. Thus, CMGC (Gc)= FALSE.

4. An Algorithmic Solution for IPPH

In spite of the negative results of Sec. 3, we provide an efficient algorithmic approach
to IPPH. We propose a probabilistic model for data generation and argue that the
model holds for biological data. Under this model, we provide an algorithm that
takes an expected polynomial time for both the rooted and the unrooted versions of
IPPH. A similar probabilistic approach leading to comparable results was developed
simultaneously and independently by Halperin and Karp.12

Pe’er et al.16 suggested an algorithm that requires Õ(mn) time for solving the
rooted version of perfect phylogeny with missing data on an n × m haplotype
matrix. Let the input incomplete haplotype matrix be M̃ , with M̃ [i, j] ∈ {0, 1, ?},
and let the root be r. We denote by IDP(M̃ , r) the completed matrix obtained by
performing this algorithm on M̃ . We also use IDP(M̃) to denote IDP(M̃ , r0). We
use h(·, ·) to denote the Hamming distance between two binary vectors. We use
σ0(j) and σ1(j) for the numbers of 0s and 1s in the jth column of M , respectively.

Suppose the root r0 is known. Given an incomplete matrix M, we build a con-
strained mixed graph, as described in Sec. 2. We then perform primary label com-
pletion. According to Lemma 2, if M can be completed to M∗ so that there exists
an expansion M ′ of M∗ that admits a perfect phylogeny, then there exists some
secondary label completion of UGc , that can form the basis of completion of M∗.
Thus, the computational challenge is to find such a secondary label completion.
Suppose we were able to guess the correct secondary label completion. In that
case, let M̃ be the resulting incomplete haplotype matrix, generated by perform-
ing label resolution accordingly. A completion of M̃ can be done in polynomial
time by computing IDP(M̃). Hence, the bottleneck step is finding a secondary label
completion.

Due to the hardness result in Sec. 3, a polynomial time algorithm for finding
the correct secondary label completion does not exist, unless P = NP. However,
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by making several assumptions on the properties of the genotype data, this can
be performed by a polynomial expected time algorithm. We now describe these
assumptions, and for each one, we provide its biological motivation:

(1) Each entry value in the original genotype matrix is replaced by “?” with prob-
ability p̃, independently of the other values. This assumption makes sense as
missing data entries are caused by technical problems in the biological experi-
ment, that tend to generate independent “misses” (“?”s).

The same value p̃ may be used for all entries. One may claim that occa-
sionally different SNPs may have different probability for a missing entry, due
to distinct difficulties in sequencing different regions in the human genome. In
that case, we denote by p̃i the probability for a missing entry in the ith SNP
and set p̃ to be: p̃ ≡ maxi{p̃i}.

(2) Each haplotype hi, which is a node in a perfect phylogeny tree, is chosen to
be in a genotype with probability of αi, independently. This assumption is also
made in the Hardy–Weinberg equilibrium model.13 Moreover, we assume that
these probabilities do not depend on n or m.

(3) The number of columns m grows much more slowly than the number of rows n.
Specifically, we use m = o(n.5). This assumption applies in all biological sce-
narios: In future experiments, the number of genotypes is expected to be even
larger than today, while m is not expected to grow substantially, since m is
the size of a “block”, i.e., a region in the chromosome where the number of
recombination events in the sampled population is small. A constant bound
on m is thus plausible, but for our analysis, a much weaker assumption than
that is required.

Our algorithm was designed to solve IPPH under the assumptions above. Infor-
mally, algorithm Prob-IPPH(M) ignores the missing data entries in order to decide
the relation between each two columns in the matrix. As we shall prove, if it is
impossible to conclude the relation deterministically from the matrix, with high
probability, a correct relation is obtained just by guessing.

Fig. 5. An algorithm for IPPH.
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Theorem 3. Under the assumptions of the model, algorithm Prob-IPPH(M) solves
IPPH correctly within expected time of Õ(m2n).

Proof. Correctness: Algorithm Prob-IPPH(M) enumerates all possible roots and
all possible relations between every pair of columns (parenthood or brotherhood).
Thus, correctness trivially follows.
Complexity: Steps 1–3 can all be performed in O(m2n) time. The time bottleneck
is step 4. The algorithm can stop for any 0 ≤ i ≤ (

m
2

)
, 0 ≤ j ≤ m. We denote by S0,

an upper bound on the running time of the algorithm, when it stops for i = 0, j = 0,
and by ES0 the event that the algorithm stops for i = 0, j = 0. Similarly, we denote
by S̄0, an upper bound to the running time of the algorithm, when it does not
stop for i = 0, j = 0 and by ES̄0

the event that the algorithm does not stop for
i = 0, j = 0. Trivial upper bounds for S0 and S̄0 are:

S0 = Õ(m2n),

S̄0 = Õ(m2n2m2
). (1)

Let Fi,j be the set of rows a such that M [a, i] = M [a, j] = 1, or M [a, i] = 1 and
M [a, j] = 2, or M [a, i] = 2 and M [a, j] = 1. Clearly, if Fi,j �= ∅ then the columns
i, j are in parenthood relation.

Definition 6. Informative and Enigmatic Pairs of Columns
A pair of columns i, j in an incomplete genotype matrix is called an informative pair
if there is at least one row a, such that a ∈ Fi,j in the original complete genotype
matrix, i.e., the two corresponding vertices of the columns in the perfect phylogeny
forest are in parenthood relation. The row a is called an informative row w.r.t.
columns i, j.

A pair of columns i, j in an incomplete genotype matrix is called an enigmatic
pair if the relation between i, j cannot be concluded directly from these columns,
and there exists at least one row a, such that M [a, i] =? or M [a, j] =?. Such a row
a is called an enigmatic row w.r.t. columns i, j.

Let Ii,j be the event that the pair of columns i, j is an informative pair, and let
Ei,j be the event that the pair of columns i, j is an enigmatic pair. Let I

(a)
i,j , denote

the event that row a ∈ Fi,j . We denote the set of all pairs of haplotypes, which create
a genotype which belongs to Fi,j by HFi,j . Now, according to assumption (2), the
probability that row a belongs to Fi,j is Pr[I(a)

i,j ] =
∑

ha,hb∈HFi,j
αaαb. We denote

Pr
[
I
(a)
i,j

]
by qi,j .

Let E
(a)
i,j denote the event that the row a is enigmatic w.r.t. the columns i, j.

The probability of E
(a)
i,j , for all a, i, j is p = 2p̃(1 − p̃) + p̃2.

We now investigate the event that both Ii,j and Ei,j occur. In other words,
the columns i, j are both informative and enigmatic. In order for the columns i, j

to be informative, for at least one row a the event I
(a)
i,j must occur. In order for

the columns i, j to be enigmatic, we require that for every row a, if the relation
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(parenthood or brotherhood) between i, j can be concluded directly using this row,
then E

(a)
i,j occurs. Observe that since the event Ii,j occurs, the relation of i, j must

be parenthood. To conclude, in order that both events Ii,j and Ei,j take place, two
conditions must hold:

(1) At least for one row a the event I
(a)
i,j occurs.

(2) For every row a, if the event I
(a)
i,j occurs, then the event E

(a)
i,j also occurs.

Let A be the event
[∀a:

{
I
(a)
i,j → E

(a)
i,j

}]
, and let B be the event

[∀a :
{¬I

(a)
i,j

}]
.

First, observe that if event B occurs, i.e., the event I
(a)
i,j does not occur for all

rows a, then for each row a, the event
[
I
(a)
i,j → E

(a)
i,j

]
occurs. In other words, if event

B occurs then event A also occurs. Thus: B ⊆ A. Second, note that event A is
actually condition (2), and the complement of B, denoted by B̄, is condition (1).

Hence, we can write:

[Ii,j and Ei,j ] ≡ A ∩ B̄ ≡ A \ B.

Since B ⊆ A then Pr[A \ B] = Pr[A] − Pr[B], and we can now calculate the joint
probability Pr[Ii,j , Ei,j ]:

Pr[Ii,j , Ei,j ] = Pr[∀a : {I(a)
i,j → E

(a)
i,j }] − Pr[∀a : {¬I

(a)
i,j }]

= Pr[∀a : {¬I
(a)
i,j ∨ E

(a)
i,j }] − Pr[∀a : {¬I

(a)
i,j }]

= Pr[∀a : {¬(I(a)
i,j ∧ ¬E

(a)
i,j )}] − Pr[∀a : {¬I

(a)
i,j }]

= [1 − qi,j(1 − p)]n − (1 − qi,j)n.

Next, we calculate the conditional probability of a pair of columns to be an
informative pair, when the pair is known to be enigmatic:

Pr[Ii,j |Ei,j ] =
Pr[Ii,j , Ei,j ]

Pr[Ei,j ]

=
[1 − qi,j(1 − p)]n − (1 − qi,j)n

1 − (1 − p)n

≤ [1 − qi,j(1 − p)]n

1 − (1 − p)n
.

The probability for a pair to be not informative, when it is known to be enig-
matic, is:

Pr[¬Ii,j |Ei,j ] ≥ 1 − [1 − qi,j(1 − p)]n

1 − (1 − p)n

=
1 − (1 − p)n − [1 − qi,j(1 − p)]n

1 − (1 − p)n

≥ 1 − (1 − p)n − [1 − qi,j(1 − p)]n. (2)

Note that Pr[¬Ii,j |Ei,j ] is the probability for a “success” with respect to columns
i, j: Given that the pair i, j is enigmatic (i.e., we can not conclude its relation), the
pair is not informative, which means that the relation must be brotherhood.
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We use the following definitions:

u = max
i,j

{1 − p, 1 − qi,j(1 − p)}.

Due to assumption (2), 0 < u < 1 , and does not depend on n or m. When
substituting (3) into inequality (2), we get:

Pr[Ii,j |Ei,j ] ≤ 2un.

Since there are
“

m
2

”
pairs of columns, the probability that at least one of the

enigmatic pairs is an informative pair, can be bounded using a union bound:

Pr[∃i, j : Ii,j |Ei,j ] = Pr

[ ⋃
i<j

(Ii,j |Ei,j)

]

≤
∑
i<j

Pr[Ii,j |Ei,j ]

≤
(

m
2

)
2un.

Thus, the complementary event, which represents “success”, can be bounded by:

Pr[∀i, j : ¬Ii,j |Ei,j ] ≥ 1 −
(

m
2

)
2un.

If the relation between two columns cannot be concluded, then the algorithm starts
with a guess of a brotherhood relation. Thus, an error might occur when i = 0,
only if a pair is an informative pair. Since m = o(n.5), we replace n with c1m

2,
where c1 is a constant. There exists m0, such that ∀m ≥ m0 the probability that
the algorithm finds the correct solution when i = 0, and when the root is known to
be r̃, is:

Pr[ES0 | root is r̃] ≥ 1 − m2uc1m2
. (3)

We now calculate the probability for an error in deciding the root, when i = 0.
Denote by r the root calculated by the algorithm when i = 0. Let P 0

i , P 1
i be the

probabilities for 0 and 1 in the ith row, respectively. Hence P 0
i +P 1

i = 1− p̄, where
p̄ is the probability for “?” in a haplotype. A specific site in the genotype is missing
if at least one out of the two corresponding sites in the haplotypes is missing. Thus,
p̃ = 1− (1− p̄)2 or, equivalently, p̄ = 1−√

1 − p̃. Let n0
i , n1

i be the number of 0 and
1 in the ith row, respectively. Without loss of generality, suppose that P 0

i < P 1
i ,

then the root can be determined to be “1” in the ith component, according to
the majority rule in determination of the root in perfect phylogeny (see Gusfield9).
The probability for an error in the ith component can be bounded using Chernoff
bound:1

Pr[ri �= r̃i] = Pr[n0
i > n1

i |P 0
i < P 1

i ]

= Pr[n0
i >

1 − p̄

2
|P 0

i < P 1
i ]
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= Pr[n0
i > nP 0

i + nP 0
i

(
1 − p̄

2P 0
i

− 1
)
|P 0

i < P 1
i ]

≤ e−
nP0

i

(
1−p̄

2P0
i

−1

)2

4

= e−bn,

where b = P 0
i

4 (1−p̄
2P 0

i
− 1)2 is a constant. Using the union bound again, there exists

m0, such that ∀m ≥ m0 the probability for the root to be correct, when i = 0

Pr[r = r̃] ≥ 1 − me−bc2m2
,

where c2 is a constant. Now, we can bound the probability that the algorithm stops
when i = 0:

Pr[ES0 ] ≥ Pr[ES0 , r = r̃]

= Pr[ES0 | r = r̃] Pr[r = r̃]

≥ (1 − m2uc1m2
)(1 − me−bc2m2

)

≥ 1 − e−c3m2
, (4)

where c3 is a constant. Using inequality (1), we are now able to bound the expected
running time of the algorithm:

E[running time] ≤ Pr[ES0 ]S0 + (1 − Pr[ES0 ])S̄0

≤ Õ(m2n) + e−c3m2
Õ(m2n2m2

), (5)

Since m = o(n.5) we can choose c1 large enough (c3 is larger when c1 increases),
such that the second summand vanishes for n → ∞, and thus:

E[running time] = Õ(m2n).

Observe that in addition to proving that the expected running time is polyno-
mial, we also showed that the running time is polynomial with high probability.

Note that the above analysis applies also when the root is known. In that case,
obviously, we need not enumerate all possible roots, so the worst case running time
can only improve. Asymptotically, the expected running time is the same.

5. Experimental Results

In order to assess our algorithm, we applied it on simulated data. The simulations
used parameters which were adopted from several large scale biological studies.4,7,12

By Theorem 3, the algorithm always outputs a correct solution. Although we
proved that under our model assumptions the expected running time is Õ(m2n),
we wanted to estimate the actual running time, under realistic biological param-
eters and beyond the range of the model assumptions. Specifically, we wanted to
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calculate the expected number of different phylogenetic tree solutions for a given
data set. The proof of Theorem 3 implies that Γ = 2|UGc | is an upper bound on the
number of different phylogeny solutions, and the dominant factor in the complexity
of the algorithm, in the rooted version of the problem.

In each different experiment, we randomly generated N = 105 perfect phy-
logeny trees. We used the following procedure to generate a perfect phylogeny
tree of haplotypes: We start with a binary root vector with m = 30 sites. Ini-
tially, no site is marked. In each step, we randomly pick a node from the cur-
rent tree and an unmarked site, add a new child haplotype to that node in which
only the state of that site is changed, and mark the site. For each tree, we ran-
domly chose k haplotypes for reconstructing the genotypes, where k = 2, 3, . . . , 9.
We assigned frequencies, denoted by α1, α2, . . . , αk, to the k chosen haplotypes,
such that

∑k
i=1 αi = 1 and ∀i : αi ≥ 0.05. For each tree, different frequencies

were assigned. Next, we generated 200 genotypes according to the chosen haplo-
types and their assigned frequencies. Introducing missing data entries to the geno-
types was performed as follows: Each site in the genotypes data was flipped into
a missing entry independently with probability p. Since we observed in real data
p ≈ 0.1,4,7 we checked a wider range: p = 0, 0.05, . . . , 0.5. Thus, for each sampled
tree Tj : j = 1, 2, . . . , N , we sampled one incomplete genotype matrix Mj of size
200 × 30. We applied our algorithm on each Mj. We denote UGc(Mj) by Uj . After
performing steps 1–3 of the algorithm, we stopped at i = 0 and calculated 2|Uj|. As
was shown in Sec. 4, if the secondary label completion is known, it is possible in
Õ(m2n) time to output the solution to IPPH. Hence, completion of the algorithm,
for each Mj , should take less than 2|Uj |Õ(m2n) time. The dominating factor in the
running time is the random variable 2|Uj|, whose expectation is approximated by:
E[Γ] = E[2|Uj |] ≈ 1

N

∑N
j=1 2|Uj|.

The results are presented in Fig. 6. In all experiments, E[Γ] was below 3500
(compared to a theoretical upper bound of 2(m

2 ) = 2435). When the missing data
rate is below 20%, E[Γ] was smaller than 100. Another observation, is that the
larger the number of chosen haplotypes, the smaller the value of E[Γ]. Notably, in
all cases we found a correct root: either by finding at least one haplotype, which
is homozygous with no missing entries in all sites, or by using the majority rule
described in the algorithm.

To demonstrate that in real biological data, a root is readily available, we
chose the genotype data of Daly et al.4 This data set consists of 103 SNPs
and 129 genotypes. We checked all possible

(
103
2

)
= 5253 blocks. In all the

blocks of size 65 or smaller, there was always at least one genotype that was
homozygous in all alleles and without any missing entries. This genotype is
actually a haplotype, since it can be resolved in only one possible way, and
hence, it can be used as a root. Since the size of a block is almost always
smaller than 30, this naive simple method can be used for finding a root in
biological data.
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Fig. 6. Simulation results: both figures show the average of 2|Uj | (y-axis), which represents the
dominating factor in the running time of the algorithm for different missing data rates (x-axis).
Each different line in the figures corresponds to a different number of haplotypes chosen from the
tree (see legend).

6. Concluding Remarks

We investigated the incomplete perfect phylogeny haplotype problem. The goal is
phasing of genotypes into haplotypes, under the perfect phylogeny model, where
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some of the data are missing. We proved that the problem in its rooted version
is NP-complete. We also provided a practical expected polynomial-time algorithm,
under a biologically motivated probabilistic model of the problem. We applied our
algorithm on simulated data, and concluded that the running time and the number
of distinct candidate phylogeny solutions are relatively small, under a broad range
of biological conditions and parameters, even when the missing data rate is 50%. An
accurate treatment for phasing of genotypes with missing entries can therefore be
obtained in practice. In addition, due to the small number of phylogenetic solutions
observed in simulations, incorporation of additional statistical and combinatorial
criteria with our algorithm is feasible.

After the completion of this study, Gramm et al.8 reported on another inves-
tigation of the rooted-IPPH problem. They proved that this problem is NP-
complete even when the phylogeny is a path and only one allele of every polymorphic
site is present in the population in its homozygous state. This provides an alter-
native proof that the rooted-IPPH problem is NP-complete. They also give a
linear-time algorithm for the problem for the special case, in which the phylogeny
is a path.
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ABSTRACT
We present a new algorithm for the problems of genotype
phasing and block partitioning. Our algorithm is based on
a new stochastic model, and on the novel concept of prob-
abilistic common haplotypes. We formulate the goals of
genotype resolving and block partitioning as a maximum
likelihood problem, and solve it by an EM algorithm. When
applied to real biological SNP data, our algorithm outper-
forms two state of the art phasing algorithms. Our algo-
rithm is also considerably more sensitive and accurate than
a previous method in predicting and identifying disease as-
sociation.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics; G.3 [Probability and Statistics]:
Probabilistic algorithms

General Terms
algorithms, haplotyping

Keywords
haplotype, haplotype block, genotype, SNP, algorithm, max-
imum likelihood, genotype phasing, haplotype resolution,
disease association

1. INTRODUCTION
A major challenge after the completion of the human

genome project is to learn about DNA differences among
individuals. This knowledge can lead to better understand-
ing of human genetics, and to finding the genetic causes
for complex and multi-factorial diseases. Most DNA differ-
ences among individuals are single base sites, in which more
than one nucleic acid can be observed across the population.
Such differences and their sites are called single nucleotide
polymorphisms (SNPs) [19, 7]. Usually only two alternative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’04,March 27–31, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-755-9/04/0003 ...$5.00.

bases occur at a SNP site. Millions of SNPs have already
been detected [20, 22], out of an estimated total of 10 mil-
lions common SNPs [13].

When studying polymorphism in the population, one looks
only at SNP sites and disregards the long stretches of bases
between them that are the same in the population. The
sequence variants at each site are called the alleles at that
site. The sequence of alleles in contiguous SNP sites along a
chromosomal region is called a haplotype. Recent evidence
indicates that haplotypes tend to be preserved along rela-
tively long genomic stretches, with recombination occurring
primarily in narrow regions called hot spots [7, 19]. The
regions between two neighboring hot spots are called blocks.
The number of distinct haplotypes within each block that
are observed in a population is very limited: typically, some
70-90% of the haplotypes within a block are identical (or
almost identical) to very few (2-5) distinct common haplo-
types [19]. This finding is very important for disease asso-
ciation studies, since once the blocks and the common hap-
lotypes are identified, one can, in principle, obtain a much
stronger association between a haplotype and a disease phe-
notype.

Several studies have concentrated on the problem of block
identification in a given collection of haplotypes: Zhang
et al. [27, 28] sought a block partitioning that minimizes
the number of tag SNPs (roughly speaking, this is a set of
sites with the property that the combination of alleles in
it uniquely identifies the alleles at all other sites, or a pre-
scribed fraction of the haplotypes in that block). Koivisto
et al. [12] used a minimum description length (MDL) crite-
rion for block definition. Kimmel et al. [11] minimized the
total number of common haplotypes, while allowing errors
and missing data. All these studies used the same basic dy-
namic programming approach of [27] to the problem, but
differed in the optimization criterion used within the dy-
namic programming computation.

The block partitioning problem is intertwined with an-
other problem in diploid organisms. Such organisms (includ-
ing humans) have two near-identical copies of each chromo-
some. Most techniques for determining SNPs do not pro-
vide the haplotype information separately for each of the
two copies. Instead, they generate for each site genotype
information, i.e., an unordered pair of allele readings, one
from each copy [20].

Hence, given the genotype data {A,A} {A,C} {C,G} for
three SNP sites in a certain individual, there are two pos-
sible haplotype pair solutions: (ACC and AAG), or (ACG
and AAC). A genotype with two identical bases in a site is
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called homozygote, while a genotype with two different bases
is called heterozygote in that site. The genotype in the ex-
ample above is homozygote for the allele A in the first site,
and heterozygote in the second and third sites. The pro-
cess of inferring the haplotypes from the genotypes is called
phasing or resolving.

In the absence of additional information, each genotype
with h heterozygote sites can be resolved in 2h−1 different
ways. Resolving is done simultaneously in all the available
genotypes and is based on some assumptions on how the
haplotypes were generated. The first approach to haplo-
type resolution was Clark’s parsimony-based algorithm [3].
Likelihood-based EM algorithms [6, 15] gave better results.
Stephens et al. [21] and Niu et al. [18] proposed MCMC-
based methods which gave promising results. All of those
methods assumed that the genotype data correspond to a
single block with no recombination events. Hence, for multi-
block data the block structure must be determined sepa-
rately.

A novel combinatorial model was suggested by Gusfield [9].
According to this model, the resolution must produce haplo-
types that define a perfect phylogeny tree. Gusfield provided
an efficient yet complex algorithm for the problem. Simpler,
direct efficient algorithms under this model were recently de-
veloped [5, 1]. Eskin et al. [5] showed good performance with
low error rates on real genotypes.

While elegant and powerful, the perfect phylogeny ap-
proach has certain limitations: first, it assumes that the
input data admit a perfect phylogeny tree. This assump-
tion is often violated in practice, due to data errors and
rare haplotypes. In fact, Eskin at al. show that in the real
data that they analyzed, a block does not necessarily ad-
mit a perfect phylogeny tree. Second, the model requires
partition of data into blocks by other methods. Third, the
solution to the problem may not be unique and there may
be several (or many) indistinguishable solutions. (These
limitations were addressed heuristically in [5]). Recently,
Greenspan and Geiger [8] proposed a new method and algo-
rithm, called HaploBlock, which performs resolution while
taking into account the blocks structure. The method is
based on a Bayesian network model. Very good results were
reported.

In this study we provide a new algorithm for block par-
titioning and phasing. Our algorithm is based on a new
model for genotype generation. Our model is based on a
haplotype generation model, parts of which were suggested
by Koivisto et al. [12]. In our model, common haplotypes are
redefined in a probabilistic setting, and we seek a solution
that has maximum likelihood, using an EM algorithm. The
model allows errors and rare haplotypes, and the algorithm
is particularly tailored to the practical situation in which the
number of common haplotypes is very small. We applied
our algorithm to two genotype data sets: on the data set
of Daly et al. [4] our algorithm performed better than Hap-
loBlock [8] and Eskin et al. [5]. On genotype and phenotype
data for the µ opioid receptor gene, due to Hoehe et al. [10],
our algorithm revealed strong association for disease, by us-
ing blocks partitioning and resolving, and improved sharply
over the original analysis in [10].

Unlike most former probabilistic approaches [6, 15, 21,
18], our algorithm reconstructs the block partitioning and
resolves the haplotypes simultaneously, and assigns a like-
lihood value to the complete solution. Consequently, it is

considerably faster and more accurate. While our approach
has some resemblance to HaploBlock, there are also signif-
icant differences. First, our approach is not based on a
Bayesian network, but rather computes the maximum likeli-
hood directly. Second, our algorithm actually computes the
likelihood function of each block, and thus the real maxi-
mum likelihood partitioning is optimized, while HaploBlock
uses an MDL criterion for block partitioning. Third, once
the model parameters are found, we solve the phasing prob-
lem directly to optimality, such that the likelihood function
is maximized. In constrast, HaploBlock applies a heuristic
to find the block partitioning, even though this partition-
ing is part of the model parameters. Fourth, our stochas-
tic model allows a continuous spectrum of probabilities for
each component in each common haplotype, while the Hap-
loBlock software allows only two common probability values
for all mutations. HaploBlock has the theoretical advantage
of allowing a larger number of common haplotypes, but this
is apparently less relevant in practice [7, 4]. HaploBlock’s
model also incorporates inter-block transitions, while we
handle them separately after the main optimization process.

This paper is organized as follows: In Section 2 we present
our stochastic model, in Section 3 we show how block par-
titioning and resolution of haplotypes are performed under
our model. Section 4 contains our results on the two real
data sets.

2. THE STOCHASTIC MODEL
Consider first the problem of resolving a single block. The

input to the problem is presented by a n×m genotype matrix
M , in which the rows correspond to samples (individuals
genotyped), and columns correspond to SNP sites. Hence,
the ith row M [i, ∗] describes the ith genotype (the vector
of readings for all the SNP sites), which is also denoted by
gigigi. We assume that all sites are bi-allelic, and that the two
alleles were renamed arbitrarily to 0 and 1. The genotype
readings are denoted by M [i, j] ∈ {0, 1, 2}. 0 and 1 stand for
the two homozygote types {0,0} and {1,1}, respectively, and
2 stands for a heterozygote. A 2n×m binary matrix M ′ is
an expansion of the genotype matrix M if each row M [i, ∗]
expands to two rows denoted by M ′[i, ∗] and M ′[i′, ∗], with
i′ = n + i, satisfying the following: for every i, if M [j, i] ∈
{0, 1}, then M [i, j] = M ′[i, j] = M ′[i′, j]; if M [i, j] = 2, then
M ′[i, j] 6= M ′[i′, j]. M ′ is also called a haplotype matrix
corresponding to M . Given a genotype matrix, the phasing
problem is to find its best expansion, i.e., the best n pairs of
haplotype vectors that could have generated the genotype
vectors. “Best” must be defined with respect to the data
model used.

We now describe our stochastic model for how the hap-
lotype matrix of a single block is generated. The model
aims to reflect the fact that only few distinct common hap-
lotypes are usually observed in each block [7, 4], and the
variability between observed haplotypes originating from the
same common haplotype. The model assumes a set of com-
mon haplotypes that occur in the population with certain
probabilities. Each genotype is created by selecting inde-
pendently two of the common haplotypes according to their
probabilities and forming their confluence. The two (pos-
sibly identical) common haplotypes are called the creators
of that genotype. The key property of our model is the
probabilistic formulation of the common haplotypes: For-
mally, a probabilistic common haplotype is a vector, whose
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components are the probabilities of having the allele ’1’ in
each site of a haplotype created by it. Hence, a vector of
only zeroes and ones corresponds to a standard (consensus)
common haplotype, and a vector with fractional values al-
lows for deviations from the consensus with certain (small)
probabilities, independently for each site. In this way, a
common haplotype may appear in different genotypes in dis-
tinct forms. A similar model was used in [12] in the context
of block partitioning of haplotype (phased) data.

A precise definition of the stochastic model is as follows.
Assume that the genotype matrix M contains only one block.
Let k be the number of common haplotypes in that block.
Let {θiθiθi}1≤i≤k be the probability vectors of the common hap-
lotypes, where θiθiθi = (θi,1, . . . , θi,m) and θi,j is the probability
to observe ’1’ in the jth site of the ith common haplotype.
(Consequently, 1 − θi,j is the probability to observe ’0’ in
that site.) Let αi > 0 be the probability of the ith common

haplotype in the population, with
Pk

i=1 αi = 1. Each row
in the matrix M is generated as follows:

• Choose a number i between 1 and k according to the
probability distribution {α1, . . . , αk}. i is the index of
the first common haplotype.

• The haplotype (x1, . . . , xm) is generated by setting, for
each site j independently, xj = 1 with probability θi,j .

• Repeat the steps above for the second haplotype and
form their confluence. The result is the genotype in
that row.

For generating a matrix with several blocks, the process is
repeated for each block independently. Our main task will
be to show how to infer the parameters and the haplotypes
from genotype data of a single block. This inference also
gives a likelihood for the block. Given a multi-block ma-
trix, a dynamic programming algorithm is used to find the
maximum likelihood block partitioning.

3. INFERRING THE MODEL PARAMETERS
For a single genotype gjgjgj , assuming its creators θaθaθa and θbθbθb

are known, the probability of obtaining gjgjgj is:

f(gjgjgj ;θaθaθa, θbθbθb) =

mY
i=1

8<: (1− θa,i)(1− θb,i) gj,i = 0
θa,iθb,i gj,i = 1
θa,i(1− θb,i) + θb,i(1− θa,i) gj,i = 2

.

We denote by Ii and Ji the index of the first and second
creator of genotype gi, respectively. The complete likelihood
of all genotypes is:

L(M) =

nY
i=1

αIiαJif(gigigi;θIi
θIiθIi , θJi

θJiθJi).

Let the random variable A
(i)
j be the number of times the

vector θjθjθj appears as a creator of genotype gigigi. Clearly, A
(i)
j

can be 0, 1, or 2. The log likelihood can be written as:

l(M) =

nX
i=1

[log αIi + log αJi + log f(gigigi;θIi
θIiθIi , θJi

θJiθJi)]

=

nX
i=1

[

kX
a=1

A(i)
a log αa +

X
1≤a<b≤k

A(i)
a A

(i)
b log f(gigigi;θaθaθa, θbθbθb)

+
X

a: A
(i)
a =2

log f(gigigi;θaθaθa, θaθaθa)].

Let I{A
(i)
a =2} be an indicator random variable for the event

A
(i)
a = 2. Then we can replace the last sum in l(M) byPk
a=1 I{A

(i)
a =2} log f(gigigi;θaθaθa, θaθaθa). Since Ii and Ji, for 1 ≤ i ≤

n, are unknown, we use the EM approach (see, e.g., [17]).
We denote the set of parameters by ϑ ≡ {αi, θiθiθi: 1 ≤ i ≤
k}. Given an initial set of parameters ϑ0, we want to find
another set of parameters ϑ of higher likelihood. This can
be done by maximizing the conditional expectation:

QM,ϑ0(ϑ) = Eϑ0 [l|M ] =

nX
i=1

[

kX
a=1

Eϑ0 [A
(i)
a |gigigi] log αa

+
X

1≤a<b≤k

Eϑ0 [A
(i)
a A

(i)
b |gigigi] log f(gigigi;θaθaθa, θbθbθb)

+

kX
a=1

Eϑ0 [I{A
(i)
a =2}|gigigi] log f(gigigi;θaθaθa, θaθaθa)].

In order to find arg maxϑ QM,ϑ0(ϑ), we need that ∀i, j : 1 ≤
i ≤ k; 1 ≤ j ≤ m, ∂Q

∂αi
= 0 and ∂Q

∂θi,j
= 0.

Expectation:
The first step is to find ααα, such that Q is maximized. The
conditional probabilities are:

Pϑ0 [A
(i)
j = 1|gigigi] =

P
1≤x≤k, x6=j 2αxαjf(gigigi;θxθxθx, θjθjθj)Pk
x=1

Pk
y=1 αxαyf(gigigi;θxθxθx, θyθyθy)

,

Pϑ0 [A
(i)
j = 2|gigigi] =

αjαjf(gigigi;θjθjθj , θjθjθj)Pk
x=1

Pk
y=1 αxαyf(gigigi;θxθxθx, θyθyθy)

.

(1)

We use Equations (1) to calculate the conditional expecta-
tion:

Eϑ0 [A
(i)
j |gigigi] = Pϑ0 [A

(i)
j = 1|gigigi] + 2Pϑ0 [A

(i)
j = 2|gigigi].

The requested αj can then be written as follows:

αj =
1

2n

nX
i=1

Eϑ0 [A
(i)
j |gigigi].

In order to calculate the vectors θiθiθi for 1 ≤ i ≤ k, we first
need to get the conditional expectations:

Eϑ0 [A
(i)
a A

(i)
b |gigigi] = Pϑ0 [A

(i)
a = 1, A

(i)
b = 1|gigigi]

=
2αaαbf(gigigi;θaθaθa, θbθbθb)Pk

x=1

Pk
y=1 αxαyf(gigigi;θxθxθx, θyθyθy)

,

Eϑ0 [I{A
(i)
a =2}|gigigi] = Pϑ0 [A

(i)
a = 2|gigigi].

(2)

Maximization:
Now ∂Q

∂θi,j
can be calculated, using Equations (2):

∂Q

∂θi,j
=

nX
s=1

� X
1≤a≤k, a6=i

Eϑ0 [A
(s)
a A

(s)
i |gsgsgs] ·

8><>:
1

θi,j−1
gs,j = 0

1
θi,j

gs,j = 1
1−2θa,j

θa,j+θi,j−2θa,jθi,j
gs,j = 2

+

+ Eϑ0 [I{A
(s)
a =2}|gsgsgs] ·

8><>:
2

θi,j−1
gs,j = 0

2
θi,j

gs,j = 1
1−2θi,j

θi,j−θ2
i,j

gs,j = 2

�
.

An inspection of the system of equations ∂Q
∂θi,j

= 0 for all

θi,j reveals that for each j, the set of equations for {θi,j : 1 ≤
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i ≤ k} can be solved separately. In other words, for each j
we have k polynomials with k variables: {θi,j |1 ≤ i ≤ k}.
These equations can be solved numerically in practice, since
k is assumed to be small.

Using this approach, we iteratively recalculate the param-
eters of the model, until convergence of the likelihood to a
local maximum. Once the parameters are found, resolv-
ing is performed as follows: for each genotype gigigi, we find

Pϑ[A
(i)
a = 1, A

(i)
b = 1|gigigi] and Pϑ[A

(i)
a = 2|gigigi], for each a and

b. The indices of the creators of gigigi are then determined by

arg max{maxa6=b Pϑ[A
(i)
a = 1, A

(i)
b = 1|gigigi],maxa Pϑ[A

(i)
a =

2|gigigi]}. Once the creators θaθaθa and θbθbθb of genotype gigigi are known,
its alleles at each heterozygote read j are ha

i,j = 1, hb
i,j = 0

if θa,j > θb,j , and ha
i,j = 0, hb

i,j = 1, otherwise.
Each of the common haplotypes is represented by a vec-

tor of probabilities θiθiθi. The corresponding binary common

haplotype vector bθi
bθi
bθi is obtained by rounding: bθi,j = 0 if

θi,j ≤ 0.5 and bθi,j = 1 otherwise.

3.1 Finding the Number of Common Haplo-
types in Each Block

The calculations of the maximum likelihood solution as-
sume that k is known. In real biological data, we know that k
is small, but its value is unknown. To overcome this obstacle,
we calculate the likelihood L(M, k) of a block with k com-
mon haplotypes, for k = 1, . . . , u, where u is a small number
(usually 5). It is easy to see that L(M, i) is monotone non-
decreasing in i. Let ∆(M, k) := L(M, k + 1) − L(M, k).
In practice, when k exceeds the correct number of common
haplotypes, ∆(M, k) becomes small. Thus, we choose the
first k such that ∆(M, k) ≤ ε, where ε is a parameter of the
algorithm.

3.2 Finding the Blocks
To find the optimal block partition, we seek one that max-

imizes the overall likelihood of the data. The procedure is
straightforward dynamic programming as in [27]. We first
calculate for each j and for each i > j the value lji, the log
likelihood of the best solution forming a single block span-
ning columns i through j, as described above. Let Ti be the
maximum log likelihood of a multi-block solution on the sub-
matrix of M induced on the columns 1, . . . , i, where T0 = 0.
Then the following recursive formula is used to compute Ti:

Ti = max
0≤j≤i−1

{Tj + lji} .

Tm gives the total log likelihood of the complete multi-block
solution.

3.3 Matching Pairs of Blocks
So far, we have shown how to find the haplotypes of each

individual within each block. This determines which alleles
within the block appear together on the same chromosome.
Our next challenge is to perform a similar task on the inter-
block level, i.e., to determine for each individual which of the
two haplotypes in each block occur on the same chromosome,
and in this way to determine its complete chromosome pair.
We call this problem matching pairs of blocks. If there are
b blocks and the two haplotypes within each of them are
distinct, then there are 2b−1 possible matchings. We seek a
simultaneous solution for all individuals which will be “best”
in a precise sense. This problem was presented in [5], where
a combinatorial algorithm was proposed for solving it.

Our solution for the problem will be based on the observa-
tion that common haplotypes tend to pair unevenly across
block boundaries [4]. Specifically, a common haplotype in
one block may tend to appear on the same chromosome
with another common haplotype in the next one, forming
stretches that join together common haplotypes in several
blocks.

The problem is solved in the following way: Let t and
t + 1 be the indices of two consecutive blocks. Let {at

i, b
t
i}

and {at+1
i , bt+1

i } be the common haplotypes in blocks t and
t + 1 respectively, for genotype gigigi. These can be matched
as {(at

i, a
t+1
i ), (bt

i, b
t+1
i )} or {(at

i, b
t+1
i ), (bt

i, a
t+1
i )}. In block t

there are up to k different common haplotypes, denoted by
{at

s}1≤s≤k. Recall, that the probability that the common
haplotype a appears in a genotype is αa. Let Ptrans(a, b)
be the transition probability from common haplotype a in
block t to common haplotype b in block t+1, i.e., the prob-
ability that if common haplotype a appears in block t, then
common haplotype b appears in block t + 1 on the same
chromosome. Denote by At

i an indicator random variable
that has value 1 iff the matching for the ith genotype is
{(at

i, a
t+1
i ), (bt

i, b
t+1
i )}, and let Āt

i = 1 − At
i. Over all, with

respect to blocks t and t + 1, the log likelihood function is:

l =

nX
i=1

[ln αat
i
+ ln αbt

i
+ At

i ln(Ptrans(a
t
i, a

t+1
i )Ptrans(b

t
i, b

t+1
i ))

+ Āt
i ln(Ptrans(a

t
i, b

t+1
i )Ptrans(b

t
i, a

t+1
i ))].

Here too we find the parameters {Ptrans(ai, bj)} using
maximum likelihood estimation by an EM approach: The
transition probabilities can be obtained from {E[At

i]}1≤i≤n

and vise versa by closed formulas, so calculating {E[At
i]}1≤i≤n

and the transition probabilities can be performed iteratively,
until convergence of the likelihood. Once the transition
probabilities are known, the decision which of the two possi-
ble pairs matching to choose can be done for each 1 ≤ i ≤ n,
according to:

arg max{Ptrans(a
t
i, a

t+1
i )Ptrans(b

t
i, b

t+1
i ),

Ptrans(a
t
i, b

t+1
i )Ptrans(b

t
i, a

t+1
i )}.

If in some block the two common haplotypes of a certain
genotype originate from the same common haplotype, then
the two possible matchings are identical. In that case, we
preform the procedure on the haplotypes in the closest flank-
ing blocks that have distinct common haplotypes (using all
the haplotypes in theses blocks). This heuristic procedure
aims to reveal longer range dependency between blocks.

4. RESULTS
Our algorithm was implemented in a C++ program called

GERBIL (GEnotype Resolution and Block Identification us-
ing Likelihood). In the implementation, all initial parame-
ters are chosen at random, the complete procedure is re-
peated 100 times and the maximal likelihood solution is
selected. Running times on 2 GHz Pentium PC were less
than 1 minute for resolving one block of 20 SNPs with 150
genotypes. Partitioning into blocks and phasing for a few
hundred SNPs took several hours. GERBIL will be available
in the future at www.cs.tau.ac.il\∼rshamir.

We applied GERBIL to two published data sets, and com-
pared the results to prior analysis of the same data. We
describe how we dealt with missing data entries and outline
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the methods that we used to evaluate the results, and then
present the results on each data set.

Missing entries in the genotype matrix were completed
in the original data, before the algorithm is performed, by
the following heuristic. For each missing entry, we look at
the window that spans 15 sites before and 15 sites after this
site, and seek the closest other genotype within this window,
where closeness is measured by the number of matching en-
tries. The missing entry is then completed as the site value
in that closest genotype. For an alternative approach to
complete missing entries see [5].

4.1 Measures for Comparing Solutions
The data set of Daly et al. [4], on which we tested GER-

BIL, could be resolved to a large extent using pedigrees.
The pedigree-based solution was assumed to be correct, and
we used three methods for comparing different phasing so-
lutions to it:

1. Block Error Rate - This test measures the error
rate in a solution of a specific single block, w.r.t. the
true solution. Let the two true haplotypes for geno-
type gigigi be ti

1t
i
1t
i
1, t

i
2t
i
2t
i
2 and let the two inferred haplotypes be

hi
1hi
1hi
1,h

i
2hi
2hi
2. Define the number of errors in genotype gi as

ei = 1
2

min{[d(ti
1t
i
1t
i
1,h

i
1hi
1hi
1) + d(ti

2t
i
2t
i
2,h

i
2hi
2hi
2)], [d(ti

1t
i
1t
i
1,h

i
2hi
2hi
2) + d(ti

2t
i
2t
i
2,h

i
1hi
1hi
1)],

where d is the Hamming distance. If the number of
heterozygote sites in genotype gigigi is ri, then the error

rate is
Pn

i=1 eiPn
i=1 ri

.

2. Average Block Error Rate - This test measures the
error rate in a multi-block solution with respect to the
true solution. Let ej be the total number of errors
in block j (the numerator in the expression above),
and let rj be the total number of heterozygote sites in
the the genotypes in block j (the denominator in the
expression above), and let B be the number of blocks

in the matrix. The measure is
PB

j=1 ejPB
j=1 rj .

3. Switch Test [14] - This test assumes matching of
block pairs has been performed. It compares two solu-
tions, h = (h1, h2), t = (t1, t2) each of which is a pair of
complete haplotype rows of sister chromosomes. De-
fine the number of switches between h and t as the
minimum number of times one has to ’jump’ from one
haplotype in h to the other in order to obtain t, when
scanning the haplotypes from end to end. An example
of switch test is shown in Table 1. This test is ar-
guably more adequate than just counting the number
of errors as above, since a whole group of errors can
be corrected by changing the single decision to switch
the group with that on the other haplotype. The to-
tal number of switches divided by the total number of
heterozygote sites is called the switch rate.

4.2 Chromosome 5p31 Genotypes
The data set of Daly et al. [4] contains 129 pedigrees of

father, mother and child, each genotyped at 103 SNP sites in
chromosome 5p31. The original children data contain 13287
typed sites, of which 3873 (29%) are heterozygote alleles
and 1334 (10%) are missing. After pedigree resolving, only
4315 (16%) of the 26574 single SNPs remained unknown
(unresolved or missing data). Following [5], we used only

t h
1: 11110001111 1: 00000000000
2: 00001110000 2: 11111111111

Table 1: Example of switch test. The number of
switches that has to be done on h in order to obtain t
is 2. Viewed as a single block, the minimum number
of errors between the solutions is 3.

the genotypes of the children and compared our solution to
the pedigree-based solution from [4].

As a first step we applied GERBIL separately on each of
the original blocks reported by Daly et al. The differences
between the common haplotypes calculated by us and the
true ones (which were constructed using the pedigrees) are
minor: only in 4 common haplotypes there is a difference.
In total, 10 bases out of 344 (2.9%) differed.

The results of GERBIL for resolving and block partition-
ing are presented in Table 2. We identified 8 blocks with to-
tal log likelihood of -4112.45, compared with log likelihood
of -4647.36 of the solution of Daly et al., using the optimal
model parameters for that solution. In each block 4-5 com-
mon haplotypes were found. The total number of switches
in the haplotype matrix was 115 (3%). The average block
error rate was 0.7%.

We compared the performance of our algorithm to two
previously published phasing algorithms: the algorithm of
Eskin et al. [5], which uses the perfect phylogeny criterion
(see also [1]), and HaploBlock of Greenspan and Geiger [8],
which resolves the genotypes by constructing a Bayesian net-
work. The solution of [5] was taken from [25], and the solu-
tion of [8] was obtained by running HaploBlock [26] on the
raw data. Table 3 compares the results of the three algo-
rithms using the different error measures. In the switch test
criterion, GERBIL made 29% less errors than Eskin et al.,
and 8% fewer errors than HaploBlock. With respect to av-
erage block error, GERBIL made 43% less errors than Eskin
et al., and 62% less errors than HaploBlock.

Since HaploBlock partitioned the data into four blocks
only, one could argue that the better results that we ob-
tained were due to the increased number of blocks. To test
it, we ran GERBIL on the blocks of HaploBlock, applying
only the resolving procedure on the given partition, and the
number of common haplotypes was assigned to be k = 5.
The results are presented in Table 4. Our average block
error rate was 30% less than HaploBlock.

4.3 OPRM1 Genotypes and Phenotypes
The data set of Hoehe et al. [10] consists of 172 genotypes

and 25 SNPs. The SNPs are from the human µ opioid recep-
tor gene (OPRM1) on chromosome 6, which is known to be
related to morphine tolerance and dependence [16]. For each
individual, its disease phenotype to substance (heroine and
cocaine) dependence is available (case / control). No pedi-
gree information is available and thus the true haplotypes
are not known. Instead, we ran GERBIL on the data, with
and without block partitioning, and tried to find association
with the disease phenotype using the resolved haplotypes.

We first used GERBIL to resolve the data as a single block
(Table 5). In all GERBIL runs we allowed four common
haplotypes. In order to check for association between the
resolved haplotypes and disease phenotype, we calculated
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SNPs Common Haplotypes of GERBIL αi Number of Errors Number of Heterozygotes Error Rate

1 - 14 GGACAACCGTTACG 0.83 0 450 0
AATTCGTGGCCCAA 0.13
AATTCGTGGTTACG 0.02
GGACAACCGCCCAA 0.01

15 - 28 CCGGAGACGACGCG 0.55 6 583 0.0103
TGACTGGTCGCTGC 0.24
CCGCAGACGACTGC 0.19
TGGCAGGTCGCTGC 0.02

29 - 38 CCCGGATCCA 0.72 1 393 0.0025
TATAACCGCG 0.17
CCCAACCCCA 0.06
CCCAACCCAA 0.05

39 - 44 GCCCGA 0.54 4 210 0.0190
CCCTGA 0.19
CTCTGA 0.14
CCATAC 0.13

45 - 72 TCCCTGCTTACGGTGCAGTGGCACGTAT 0.7 2 942 0.0021
CTCCCATCCATCATGGTCGAATGCGTAC 0.24
CCATCACTCCCCAGACTGTGATGTTAGT 0.05

73 - 91 TGCACCGTTTAGCACAACA 0.59 9 711 0.0127
ATTAGTGTTTGACGCGGTG 0.16
ATCAGTGATTAGCACGGTG 0.13
ATCAGTGATTAGCACGGTG 0.07
ATCTCTAATTGGCGTGACG 0.05

92 - 98 GTTCTGA 0.57 4 294 0.0136
TGTGTAA 0.28
TGTGCGG 0.15

99 - 103 CGGCG 0.45 0 290 0
TATAG 0.42
TATCA 0.14

total 26 3873 0.0067

Table 2: Results of GERBIL in phasing and block partitioning on the data of Daly et al.

χ2 scores, for each common haplotypes vs. the rest, and
also for all the haplotypes together. The results of the asso-
ciation tests are summarized in Table 7. For all the common
haplotypes together, the p-value was 0.02378; for the third
common haplotype, the p-value was 0.0234.

Next, we ran GERBIL with blocks partitioning. We dis-
covered two blocks (Table 6). We checked disease association
in the same fashion. The first block was clearly associated to
the disease with p-value of 0.0031. In the second block, only
the second haplotype was associated with p-value of 0.0385.
It is quite clear that association is much more prominent in
the first block.

Hoehe et al. resolved the genotypes using the MULTI-
HAP [24] software, which is based on [6]. Then, the hap-
lotypes were hierarchically clustered into a tree using an
agglomerative nearest neighbor approach. The p-values of
comparisons of haplotype frequencies and of cases and con-
trols were calculated between the clusters calculated at each
level of the hierarchical clustering. The lowest p-value which
was achieved was 0.017.

In order to compare the significane of the two solutions,
one has to correct for multiple testing. Since we performed
eight different tests for two blocks (four tests in each block),
after Bonferroni correction our p-value, for common haplo-
type number 4 in block number 1 was 0.0360. Hoehe et al.
performed n different tests, where n is the number of haplo-
types. To correct Hoehe et al. score for multiple testing, we
multiplied their score by the number of distinct groups of
haplotypes in their dendrogram, which was 5. Notably, this
correction is much less strict than ours. Thus, after multiple
testing correction, Hoehe et al. p-value was 0.0850, which
is 2.3-times larger than ours. Hence, our solution achieves a
much better statistical significance.

5. CONCLUDING REMARKS
We have introduced a new stochastic model for genotype

generation, based on the biological finding that genotypes
can be partitioned into blocks, and in each block, a small
number of common haplotypes is found. Our model de-
fined the notion of a probabilistic common haplotype, which
might have different forms in different genotypes, thereby
accommodating errors and rare mutations. We were able
to define a likelihood function for this model. Finding the
optimal parameters of the model was achieved using an EM
algorithm, according to the maximum likelihood approach.

In tests on real data, our algorithm gave more accurate
results than two recently published phasing algorithms [5,
8]. The haplotypes and blocks identified by the algorithm
on case/control genotype data of the OPRM1 gene [10] led
to finding more significant association with substance abuse
phenotype.

Although our model finds a block partitioning that maxi-
mizes the overall likelihood, it performs resolving and block
partitioning first, and then matches pairs of blocks along
the chromosome as a postprocessing step. We plan to unite
those two steps into a complete, single model. An additional
open problem is to treat the missing data as a part of the
model. We believe that solving these problems will lead to
additional improvement in performance. Finally, the block
patterns are sometimes unclear, and it has been argued that
less restrictive models of haplotypes generation are needed
(e.g., [23, 2]). We intend to generalize our approach in this
spirit.
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Algorithm GERBIL Eskin et al. HaploBlock

Total Number of Errors 26 46 69
Average Block Error Rate 0.0067 0.0119 0.0178
Switch Test 115 163 125
Switch Rate 0.0297 0.0421 0.0323

Table 3: Performance of three algorithms for phasing and block partitioning. The error measures evaluate
the solutions by GERBIL, by Eskin et al. and by Greenspan and Geiger, on the data of Daly et al., compared
to the true solution.

Algorithm Block: 1-24 25-36 37-91 92-103 total
Number of Heterozygotes 846 537 1906 584 3873

GERBIL Number of Errors 13 0 29 6 48
Block Error Rate 0.0154 0 0.0152 0.0103 0.0124

HaploBlock Number of Errors 28 3 31 7 69
Block Error Rate 0.0331 0.0056 0.0163 0.0120 0.0178

Table 4: Resolving performance: Comparison of GERBIL and HaploBlock on the data of Daly et al. Here
GERBIL used the blocks produced by HaploBlock and performed genotypes resolving only.

Common Common Haplotype αi

Haplotype
Number

1 0000000000000000000000100 0.817
2 1010100000001010000000100 0.077
3 1010110000001010000001100 0.054
4 0000000000000010000010101 0.053

Haplotype Number 1 2 3 4 Total

Cases 218 24 19 13 274
Controls 62 2 0 6 70
Total 280 26 19 19 344

A B

Table 5: GERBIL results on the OPRM1 data, without block partitioning. A: the common haplotypes
identified. B: frequencies of cases and controls for the resolved common haplotypes.

Block 1: SNPs 1-17 Block 2: SNPs 18-25
Common Common αi Common αi

Haplotype Haplotype Haplotype
Number
1 00000000000000000 0.50 00000100 0.85
2 00000000000000100 0.21 10000000 0.097
3 00000000001000000 0.15 00010101 0.035
4 10101000000010100 0.13 00010001 0.017

A

Haplotype Number 1 2 3 4 Total

Cases 137 54 40 43 274
Controls 30 24 14 2 70
Total 167 78 54 45 344

Haplotype Number 1 2 3 4 Total

cases 239 21 10 4 274
controls 55 11 2 2 70
total 294 32 12 6 344

B C

Table 6: Results of GERBIL on the OPRM1 data, with block partitioning. A: common haplotypes identified
by GERBIL. B, C: frequencies of common haplotypes in the resolved data in cases and controls. B: first
block; C: second block.

Haplotype Checked One Block Two Blocks: First Block Two Blocks: Second Block

1 vs. rest 0.0839 0.2859 0.0667
2 vs. rest 0.0955 0.0093 0.0385
3 vs. rest 0.0234 0.2676 0.747
4 vs. rest 0.211 0.0045 0.4255
all vs. all 0.02378 0.0031 0.1648

Table 7: Association test results on the OPRM1 data: P-value χ2 test results on the haplotypes resolved by
GERBIL, with and without block partitioning.
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The abundance of genotype data generated by individual and
international efforts carries the promise of revolutionizing disease
studies and the association of phenotypes with individual poly-
morphisms. A key challenge is providing an accurate resolution
(phasing) of the genotypes into haplotypes. We present here
results on a method for genotype phasing in the presence of
recombination. Our analysis is based on a stochastic model for
recombination-poor regions (‘‘blocks’’), in which haplotypes are
generated from a small number of core haplotypes, allowing for
mutations, rare recombinations, and errors. We formulate geno-
type resolution and block partitioning as a maximum-likelihood
problem and solve it by an expectation-maximization algorithm.
The algorithm was implemented in a software package called GERBIL

(genotype resolution and block identification using likelihood),
which is efficient and simple to use. We tested GERBIL on four
large-scale sets of genotypes. It outperformed two state-of-the-art
phasing algorithms. The PHASE algorithm was slightly more accurate
than GERBIL when allowed to run with default parameters, but
required two orders of magnitude more time. When using com-
parable running times, GERBIL was consistently more accurate. For
data sets with hundreds of genotypes, the time required by PHASE

becomes prohibitive. We conclude that GERBIL has a clear advantage
for studies that include many hundreds of genotypes and, in
particular, for large-scale disease studies.

haplotype � algorithm � phasing � single-nucleotide polymorphism �
expectation maximization

Most variations in the DNA sequence among individuals are
at single-base sites, in which more than one nucleic acid

can be observed across the population. Such differences and
their sites are called SNPs (1, 2). In most cases only two
alternative bases (alleles) occur at a SNP site. The total number
of common human SNPs is estimated to be �10 million (3). The
sequence of alleles in contiguous SNP sites along a chromosomal
region is called a haplotype. Identification of haplotypes is
a central challenge of the International HapMap Project
(www.hapmap.org), because of their expected importance in
disease associations (4, 5).

Recent evidence suggests that haplotypes tend to be pre-
served along relatively long genomic stretches, with recombi-
nation occurring mostly in narrow regions (1, 2). The stretch
of SNP sites between two neighboring recombination regions
is called a block. The number of different haplotypes within
each block that are observed in a population is very small:
typically, some 70–90% of the haplotypes within a block are
identical (or almost identical) to very few (two to five) distinct
common haplotypes (1).

Several studies have concentrated on the problem of block
identification and partitioning in a given data set of haplotypes:
Zhang et al. (6, 7) defined a block to be an interval of SNPs that
minimizes the number of tag SNPs. Koivisto et al. (8) used a
minimum description length criterion for block definition. Kim-
mel et al. (9) minimized the total number of common haplotypes
when errors and missing data are allowed. The same dynamic
programming approach (6) was used in all of these studies, and

the main difference is in the optimization criterion used within
the dynamic programming computation.

Diploid organisms, like human, have two near-identical copies
of each chromosome. Most experimental techniques for deter-
mining SNPs do not provide the haplotype information sepa-
rately for each of the two chromosomes. Instead, they generate
for each site an unordered pair of allele readings, one from each
copy of the chromosome (10). The sequence of these pairs is
called a genotype. A homozygous site in the genotype of an
individual has two identical bases, whereas a heterozygous site
has different bases on the two chromosomal copies at that site.
The process of inferring the haplotypes from the genotypes is
called phasing or resolving.

In the absence of additional information, each genotype in a
population can be resolved in 2h�1 different ways, where h is the
number of heterozygous sites in this genotype. Thus, one must
use some model of how the haplotypes are generated to perform
genotype resolving. Clark (11) proposed the first approach to
haplotype resolution, which was parsimony-based. Likelihood-
based expectation-maximization (EM) algorithms (12, 13) gave
more accurate results. Stephens and coworkers (14, 15) and Niu
et al. (16) proposed Markov chain Monte Carlo-based methods.
A combinatorial model based on the perfect phylogeny tree
assumption was suggested by Gusfield (17). By using this model,
Eskin et al. (18) showed good performance on real genotypes
with low error rates. Recently, Greenspan and Geiger (19)
proposed an algorithm that performs resolution while taking
into account the block structure. The method is based on a
Bayesian network model.

In this study we provide an algorithm that solves block
partitioning and phasing simultaneously. Our algorithm is based
on a model for genotype generation. The model and preliminary
analysis on its performance were reported in ref. 20. The model
is based on a haplotype generation model, parts of which were
suggested by Koivisto et al. (8). Within each block, we redefine
common haplotypes in a probabilistic setting and seek a solution
that has maximum likelihood, by using an EM algorithm. The
model accounts for errors and rare haplotypes.

The algorithm was implemented in a software package called
GERBIL (genotype resolution and block identification using
likelihood). We applied GERBIL to three genotype data sets: on
a data set from chromosome 5 (21) it outperformed HAPLO-
BLOCK (19) and HAP (18) and gave similar results to PHASE (14),
with much shorter run times. On the data set of Gabriel et al.
(2) and on data from the International HapMap Project (www.
hapmap.org), the PHASE algorithm was slightly more accurate
than GERBIL when allowed to run with default parameters, but
required two orders of magnitude more time. We also simulated
data with larger numbers of genotypes (500 to 1,000) based on
real haplotypes. In such a scenario, when the number of geno-
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types increased, GERBIL had a clear advantage over PHASE,
because the latter required a prohibitively long time (and was, in
fact, unable to solve the larger data sets). The GERBIL software
can be downloaded at www.cs.tau.ac.il��rshamir�gerbil.

Unlike most former probabilistic approaches (12–14, 16), our
algorithm reconstructs block partitioning and resolves the hap-
lotypes simultaneously. As in refs. 14 and 19 haplotype similarity
is taken into account. Although our approach has some resem-
blance to HAPLOBLOCK, there are significant differences. First,
our approach computes the maximum likelihood directly and is
not based on a Bayesian network. Second, once the model
parameters are found, we solve the phasing problem directly to
optimality, so that the likelihood function is maximized. In
contrast, HAPLOBLOCK applies a heuristic to find the block
partitioning, even though this partitioning is part of the model
parameters. Third, our stochastic model allows a continuous
spectrum of probabilities for each component in each common
haplotype, whereas the HAPLOBLOCK software allows only two
common probability values for all mutations. HAPLOBLOCK’s
model has the advantage of incorporating interblock transitions,
whereas we handle them separately after the main optimization
process.

Methods
We first concentrate on modeling and analysis of a single block. The
input to the problem is n genotypes g1, . . . , gn, each of which is an
m-long vector of readings gi(1), . . . , gi(m) corresponding to the SNP
sites. We assume that all sites have at most two different alleles and
rename the two alleles arbitrarily as 0 and 1. The genotype readings
are denoted by gi(j) � {0, 1, 2}. 0 and 1 stand for the two
homozygous types {0, 0} and {1, 1}, respectively, and 2 stands for
a heterozygous type. A resolution of gi is two m-long binary vectors
gi

1, gi
2 satisfying gi

1(j) � gi
2(j) � gi(j) if gi(j) � 0 or 1, and gi

1(j) � gi
2(j)

if gi(j) � 2.

The Probabilistic Model. Our stochastic model for the genotypes
generation is based on the observation that within each block the
variability of haplotypes is limited (2, 21). The model assumes a
set of common haplotypes that occur in the population with
certain probabilities. The generation of a genotype is as follows:
First, two of the common haplotypes are chosen. Second, the
alleles at each site of the haplotypes are determined. Third, their
confluence is formed. In our model, these common haplotypes
are not deterministic. Instead, we use the notion of probabilistic
common haplotype that has specific allele probabilities at each
site. Such a haplotype is a vector, whose components are the
probabilities of having the allele 1 in each site of a realization of
that haplotype. Hence, a vector of only zeroes and ones corre-
sponds to a standard (consensus) common haplotype, and a
vector with fractional values allows for deviations from the
consensus with certain (small) probabilities, independently for
each site. In this way, a common haplotype may appear differ-
ently in different genotypes. A similar model was used in ref. 8
in the block partitioning of phased data. Note that the model
makes the Hardy–Weinberg (22) assumption that mating is
random. An illustration of the model appears in Fig. 1.

A more formal definition of the stochastic model is as follows.
Assume that the genotype data contain only one block. Let k be
the number of common haplotypes in that block. Let �i1�i�k be
the probability vectors of the common haplotypes, where �i �
(�i,1, . . . , �i,m) and �i,j is the probability to observe 1 in the jth
site of the ith common haplotype. (Consequently, 1 � �i,j is the
probability to observe 0 in that site.) Let �i � 0 be the probability
of the ith common haplotype in the population, with �i�1

k �i � 1.
Each genotype gt is generated as follows:

Y Choose a number i between 1 and k according to the proba-
bility distribution {�1, . . . , �k}. i is the index of the first
common haplotype.

Y The haplotype (x1, . . . , xm) is generated by setting, for each
site j independently, xj � 1 with probability �i,j.

Y Repeat the steps above for the second haplotype and form
their confluence. The result is the genotype gt.

For generating genotypes with several blocks, the process is
repeated for each block independently.

EM. The two common haplotypes that were used to create a
genotype are called its creators (the two may be identical). For
a single genotype gj, assuming its creators �a and �b are known,
the probability of obtaining gj is

f�gj; �a, �b	 � �
i�1

m � �1 � �a,i	�1 � �b,i	 g j,i � 0
�a,i�b,i g j,i � 1
�a,i�1 � �b,i	 � �b,i�1 � �a,i	 g j,i � 2

.

We denote by Ii and Ji the index of the first and second creator
of genotype gi, respectively. The complete likelihood of all
genotypes is

L�M	 � �
i�1

n

� Ii
�Ji

f�gi; �Ii
, �Ji

	 .

Because Ii and Ji, for 1 � i � n, are unknown, we use the EM
approach (see, e.g., ref. 23) for iteratively increasing the likeli-
hood. We get closed-form equations for the updating of �i in
each iteration, and we use numerical methods for updating the
�i vectors. Thus, we iteratively recalculate the parameters of the
model, until convergence of the likelihood to a local maximum.

Fig. 1. An illustration of the probabilistic model. This model has three
common haplotypes covering four SNPs. In the first step, pairs of the common
haplotypes are chosen according to their probabilities �i. In this example 1,2
and 1,3 are chosen. In the second step, the alleles at each site of the haplotypes
are determined according to the probabilities �i,j. In the third step, each
genotype is formed by a confluence of two haplotypes created at the former
step.
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For a detailed mathematical development of the solution for the
optimization problem see ref. 20.

Block Partitioning and Finding the Parameter k. A simple approach
that assumes independence between blocks would be to multiply
the block likelihoods. However, as the parameter k is unknown,
we use a minimal description length approach for finding the
block partitioning and finding the parameter k for each of the
blocks, in a similar fashion to ref. 8. For each pair of SNPs i,j, and
for each possible k, we solve the problem as described above on
the sites i through j, assuming they span a single block that
contains k common haplotypes, and obtain the log likelihood
score Li,j

(k). We also compute the description length Di,j
(k) of the

model parameters. Note that when k is larger, the likelihood
increases, but so does the description length of the model. The
minimum description length of such a block is Mi,j

(k) � Di,j
(k) � Li,j

(k).
Let k(i, j) � arg mink Mi,j

(k). A partition P of the SNPs into b blocks
is defined by 1 � i1 
 i2 
 � � � 
 ib � n, where the tth block is
[it,it�1 � 1]. The score of such a partition according to the
minimum description length criterion is �s�1

b M is,is�1�1
k(is,is�1�1). Finding

the optimal partition is solved by dynamic programming (cf. refs.
6 and 8).

Speedup. Instead of checking all possible k values, we first resolve
the genotype data into a preliminary haplotype matrix HP, by
using a procedure that is based on our single block resolving
algorithm (see Appendix). Now, for each candidate block [i, j] the
number of distinct haplotypes that appears in HP more than once
is used as an approximation for k(i, j). Also, to save time, only
candidate blocks of up to 30 SNPs are considered.

Pairing Haplotypes Across Block Boundaries. To construct a full
chromosome sequence, one has to determine which alleles
within the block appear together with alleles in the consecutive
block, on the same haplotype. We call this problem matching
pairs of blocks (cf. refs. 15 and 18). Our solution is based on the
fact that specific common haplotypes in neighboring blocks tend
to appear together on the same chromosome (21). For each pair
of neighboring blocks and for each genotype, we simply choose
the pairing that occurred more often in HP.

Initialization. When applied to a block, the EM provides only a
local optimum, and starting from good initial parameter values
is critical both for the solution quality and the speed of the
procedure. We generate such an initial solution as follows. We
randomly permute the order of the genotypes and use Clark’s
inference algorithm (11) to resolve as many of the genotypes as
possible. In case there is still some unresolved genotype, (either
because of heterozygous sites or missing data entries), we resolve
that genotype arbitrarily and reapply Clark’s algorithm. This
procedure ends when all genotypes are resolved. The next stage
is to cluster the haplotypes around k common haplotypes (where
k was already determined as described above). This requires
finding a set C of k haplotypes such that �i�1

n minh��C(d(hi, h�))
is minimized, where d(. . .) denotes the Hamming distance. This
subproblem is already hard (9), and we use the following
heuristic procedure to solve it: We repeatedly select a random
subset C� of k haplotypes h1, . . . , hk, and each time calculate
�i�1

n minh��C�(d(hi, h�)). This is repeated T times and the subset
C that attains the minimum score is chosen. (T � 100 was used
in practice.) We use the set C to construct the initial probabilistic
common haplotypes for the EM procedure, in the following way:
if hi has value 1 in SNP j, we set �i,j � 0.999, otherwise �i,j � 0.001.
The �i value is proportional to the size of the cluster containing
hi. We also use HP as an additional potential starting point.

Implementation. Our algorithm was implemented in a C��
program called GERBIL. Running time on a 2-GHz Pentium
computer with 500 MB of memory is �1 min for resolving data
with 100 SNPs and 150 genotypes. GERBIL is available for
academic use at www.cs.tau.ac.il��rshamir�gerbil.

Evaluating and Comparing Solutions. Let the true haplotypes for
genotype gi be t � (t1, t2), and let the inferred haplotypes be h �
(h1, h2). Comparison of t and h can be done only for sites that are
heterozygous and are resolved in t (e.g., because of pedigree
data). Suppose we restrict t and h to these sites only, and obtain
l-long vectors. We use the switch test (15, 24) to evaluate the
accuracy of h. The test counts the number of times �i we have
to switch from reading h1 to h2 or back to obtain t1, and divides
the result by di � l � 1 (the maximum possible of switches for
this genotype). The switch test value for a set of genotypes is
�i�i��idi.

Results
Chromosome 5p31. The data set of Daly et al. (21) contains 129
pedigrees of father, mother, and child, each genotyped at 103
SNP sites in chromosome 5p31. The original children data
contain 13,287 typed sites, of which 3,873 (29%) are heterozy-
gous alleles and 1,334 (10%) are missing. After pedigree resolv-
ing, only 4,315 (16%) of the 26,574 SNPs remained unknown
(unresolved or missing data). When applied to the children data
GERBIL generated 18 blocks [compared with 11 blocks in the
solution of Daly et al. (21)], and k ranged from 3 to 15 in the
different blocks. The switch error rate was 3.3%.

We compared the performance of GERBIL to three previously
published phasing algorithms: HAP (18), which uses the perfect
phylogeny criterion (see also ref. 25) gave a switch error rate of
4.2%. HAPLOBLOCK (19), which uses a Bayesian network, gave a
switch error rate of 3.6%. PHASE (14) (version 2.0.2 for Linux),
which uses the coalescent as a Bayesian prior, gave a switch error
rate of 3.1%. The run time of GERBIL was 1 min, whereas PHASE
needed 4.1 h with its default parameters. When letting PHASE run
a comparable time to GERBIL (2 min), PHASE achieved an error
rate of 5.4%.

Yoruba Genotypes. Our second test focused on the Yoruba
population genotypes from ref. 2. For this population there were
parental genotypes that could be used to infer the true solution.
We used 29 test genotypes (we removed one trio that had a high
rate of missing entries). There are 52 different samples of size
13–114 SNPs from different regions of the human genome.
GERBIL’s average switch error rate was 15% with a total run time
of 8 min over all samples. PHASE (with default parameters) gave
more accurate results, averaging 12%, with a run time of 10.1 h.
The relatively high values of switch error rate compared with the
results above are caused by the combination of small sample size
and high missing data rate (8%). The accuracy and speed on
individual samples are displayed in Figs. 2 and 3, respectively.
GERBIL was consistently 10–100 times faster.

HapMap Project Genotypes. Our third test used genotype data for
30 trios from the International HapMap Project (www.hapmap.
org). As before, we used the parental information only to infer
the true solution and applied the phasing algorithms to the
children only. The missing entries rate in this data set was 1%,
much smaller than in the former data sets.

We extracted four data sets of 70 SNPs from the beginning of
each of the human chromosomes 1–22. The first data set in each
chromosome contained SNPs 1–70, the second contained SNPs
71–140, etc. We applied both GERBIL and PHASE on all 88 data
sets. The average switch error rate was 11% for GERBIL and 10%
for PHASE. Overall run time was 31 min for GERBIL and 22.5 h for
PHASE.
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Large Simulated Data Sets. To assess our software on data sets with
a larger number of genotypes, we simulated genotypes based on
the known haplotypes of chromosome 5p31 (see above). We
generated six different data sets by random sampling and pairing
of haplotypes from the 258 known ones. These data sets con-
tained 500, 600, 700, 800, 900, and 1,000 genotypes. The results
of GERBIL and PHASE are presented in Table 1. On the larger data
sets of 800, 900, and 1,000 genotypes, PHASE aborted after 12
min, because of memory allocation overload. Attempts to run
PHASE on a larger memory machine (Pentium 3 with 2 gigabytes
of memory) also were aborted. On the smaller data sets of 500,
600, and 700 genotypes, when giving PHASE the same amount of
run time, GERBIL outperforms PHASE in accuracy. When using
the default parameters of PHASE, the program provides more
accurate results (1% vs. 3%), but requires considerably longer
run times (�3 days vs. 
1 h).

Discussion
We have introduced an algorithm for haplotype resolution and
block partitioning. The algorithm uses a stochastic model for
genotype generation, based on the biological finding that geno-
types can be partitioned into blocks of low recombination rate,
and in each block, a small number of common haplotypes is
found. Our model uses the notion of a probabilistic common
haplotype, which can have different forms in different geno-
types, thereby accommodating errors, rare recombination
events, and mutations. We were able to define a likelihood
function for this model. Finding the maximum-likelihood solu-
tion for genotype data under the model is achieved by using an
EM algorithm. The algorithm was implemented in the GERBIL
program.

In tests on real data, our algorithm gave more accurate results
than two recently published phasing algorithms (18, 19). Most of
our comparisons concentrated on PHASE (15), currently the
leading algorithm for haplotyping. There are two performance
criteria that should be considered in such a comparison. The first
and foremost is accuracy, which we measured by using the switch
test (15, 24). However, when a program becomes impractically
slow as one attempts to use it on larger and larger problems, one
should apply the criterion of speed and test the tradeoff between
accuracy and speed. Hence, we ran PHASE in two modes: one that
used similar running times to GERBIL, and another (default
PHASE) that was run with the default parameters and required
much longer run times. The tests covered 141 real data sets (2,
21) (www.hapmap.org), ranging in size between 29 and 129
genotypes and from 13 to 114 SNPs. When allowed similar run
times, GERBIL was consistently more accurate than PHASE.
Default PHASE was slightly more accurate than GERBIL but
required two orders of magnitude more time (Fig. 3). The
difference became more apparent on larger data sets containing
500 or more genotypes. On such data sets default PHASE required
several days of computing time, and on 800 genotypes or more
it completely failed to provide a solution (Table 1).

The next few years carry the promise of very large association
studies that will use haplotypes extensively (26). Studies with
400–800 genotypes already have been reported (27), and studies
with thousands of genotypes are envisioned (27). High-
throughput genotyping methods are progressing rapidly (28).
The number of SNPs typed is also likely to increase with
technology improvements: DNA chips that can type �10,000
SNPs have been in use for over a year (29), and chips with

Fig. 2. Phasing accuracy on the Yoruba genotypes. The x axis shows the
number of SNPs in each of the 52 data sets. The y axis shows the switch error
rate of GERBIL (x) and PHASE (E) on each data set.

Fig. 3. Running times on the Yoruba genotypes. The x axis shows the number
of SNPs in each data set. The y axis shows a logarithm (base 10) of running
times (in seconds) of GERBIL (x) and PHASE (E) on each data set.

Table 1. Performance of GERBIL and PHASE on large data sets

No. of
genotypes

GERBIL PHASE

Switch error
rate, %

Run time,
min

Switch error
rate, %

Run time,
min

500 3 15 7 37
1 4,711

600 3 20 6 47
1 4,100

700 3 28 5 80
1 4,525

800 3 36 No solution
900 3 42 No solution

1,000 3 59 No solution

Results are shown for different numbers of simulated genotypes generated
from true chromosome 5p31 haplotypes. All runs were on a Pentium 4
computer with 500 megabytes of memory. For PHASE, two runs were per-
formed, one with the default parameters and one with a short running time
comparable to GERBIL’s. The PHASE processes that gave no solutions were
terminated because of memory allocation overload. They also failed on a
2-gigabyte-memory machine.
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100,000 SNPs are already commercially available. Although
clearly not all such SNPs need to be phased simultaneously,
typing density would call for phasing hundreds of SNPs in up to
a few thousands of genotypes. We believe that GERBIL has the
potential to make a unique and important contribution to the
analysis of such data.

Appendix: Constructing Preliminary Haplotype Matrix
The preliminary haplotype matrix HP is constructed in the
following way: for each genotype g and for each pair of sites i, j
that are heterozygous in it, we want to score the two possible
phasing solutions of the two sites. This is done by applying the
EM algorithm (with k � 4) on the block [i, i � 1, . . . , j] from
which other sites that are heterozygous in g are removed. The
maximum-likelihood solution gives probabilities to the four
possible haplotypes that could have generated g. For example, if
the genotype is g � 201102, then the four possible haplotypes are
h00 � 001100, h11 � 101101, h01 � 001101, and h10 � 101100.
Denote the probabilities found by the algorithm for the corre-

sponding common haplotypes by P00, P11, P01, and P10, respec-
tively. (Note that these are probabilities of full haplotypes and
not only of the pair of sites i and j.) We use these probabilities
to calculate a score, which represents the certainty level in the
more probable phasing solution. Specifically, we define w(i, j) �
n(P00P11 � P01P10)2�(P00 � P01)(P10 � P11)(P00 � P10)(P01 �
P11), where n is the number of haplotypes in the resolved block
that match one of the possible haplotypes of g. [This measure is
closely related to R2 (e.g., ref. 30).] For each genotype, we build
a complete weighted graph G � (V, E), where each vertex
corresponds to a heterozygous site, and the weight of the edge
(v1, v2) is w(v1, v2). Observe that any phasing solution is obtained
according to some spanning tree of G. Hence, we find a
maximum spanning tree of G, and it provides a most probable
phasing solution for that genotype. In practice, we set w(i, j) �
0 if i � j � 30.
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A Block-Free Hidden Markov Model for Genotypes
and Its Application to Disease Association

GAD KIMMEL and RON SHAMIR

ABSTRACT

We present a new stochastic model for genotype generation. The model offers a compro-
mise between rigid block structure and no structure altogether: It reflects a general blocky
structure of haplotypes, but also allows for “exchange” of haplotypes at nonboundary SNP
sites; it also accommodates rare haplotypes and mutations. We use a hidden Markov model
and infer its parameters by an expectation-maximization algorithm. The algorithm was
implemented in a software package called HINT (haplotype inference tool) and tested on
58 datasets of genotypes. To evaluate the utility of the model in association studies, we
used biological human data to create a simple disease association search scenario. When
comparing HINT to three other models, HINT predicted association most accurately.

Key words: haplotype, algorithm, single-nucleotide polymorphism, hidden Markov model, geno-
type, expectation maximization.

1. INTRODUCTION

Most variation in the DNA sequence among individuals is at specific positions, where more
than one nucleic acid can be observed across the population. These positions are called single

nucleotide polymorphisms (SNPs) (Patil et al., 2001; Gabriel et al., 2002). In almost all cases only two
alternative bases (alleles) occur at a SNP site. The total number of common human SNPs is estimated to
be about 10 million (Kruglyak and Nickerson, 2001; Botstein and Risch, 2003). The sequence of alleles
in contiguous SNP sites along a chromosomal region is called a haplotype. Identification of haplotypes is
a central challenge of the HapMap project (www.hapmap.org), due to their expected importance in disease
associations (Martin et al., 2000; Morris and Kaplan, 2002).

Diploid organisms, like human, have two homologous (nearly identical) copies of each chromosome
(except the sex chromosome). Most experimental techniques for determining SNPs do not provide the
haplotype information separately for each of the two chromosomes. Instead, they generate for each site
an unordered pair of allele readings, one from each copy of the chromosome (cf. Sachidanandam et al.
[2001]). The sequence of these pairs is called a genotype. A homozygous site in the genotype of an
individual has two identical bases, while a heterozygous site has different bases on the two chromosomal
copies at that site. The process of inferring the haplotypes from the genotypes is called phasing or resolving.
Without additional information, each genotype with h heterozygous sites in a population can be resolved
in 2h−1 different ways. Thus, one must use some model of how the haplotypes are generated in order to
perform genotype resolving. Since Clark’s introduction of the problem in 1990 (Clark, 1990), many studies
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attempted to solve it (Excoffier and Slatkin, 1995; Long et al., 1995; Stephens et al., 2001; Stephens and
Donnelly, 2003; Niu et al., 2002; Gusfield, 2002; Eskin et al., 2003; Greenspan and Geiger, 2003; Kimmel
and Shamir, 2004). These studies suggested a variety of models and proposed methods to simultaneously
phase a set of genotypes under the model’s assumptions.

Several researchers observed that haplotypes tend to be preserved along relatively long genomic stretches,
with recombination occurring mostly in narrow regions (Gabriel et al., 2002; Patil et al., 2001). The stretch
of SNP sites between two neighboring recombination regions is called a block. The number of different
haplotypes within each block that are observed in a population is very small: typically, some 70–90% of the
haplotypes within a block are identical (or almost identical) to very few (2–5) distinct common haplotypes
(Patil et al., 2001). Several studies suggested algorithms for the block identification and partitioning in a
given dataset of haplotypes (e.g., Zhang et al. [2002a, 2003]; Koivisto et al. [2003]; Kimmel et al. [2004]).
Recently, several studies proposed algorithms for simultaneous block partitioning and phasing on genotype
data (Greenspan and Geiger, 2003; Kimmel and Shamir, 2005). However, as block patterns are sometimes
unclear, it has been argued that less restrictive models of haplotype generation are needed (e.g., Wall and
Pritchard [2003]; Bafna et al. [2003]).

In this study, we provide a new stochastic model for genotypes generation. The model, which generalizes
our previous rigid blocks model (Kimmel and Shamir, 2005), aims to reflect two complementary (and
somewhat contradictory) features observed on real haplotypes datasets: On one hand, contiguous SNPs
tend to form “blocks” in which the recombination rate is low and with few distinct haplotypes. On the other
hand, that block structure is not always conserved: Recombination may occur outside block boundaries, and
some haplotypes may not fit the general structure altogether. From a different viewpoint, it was observed
that different positions have different probability of recombination, and the linkage disequilibrium (i.e., the
correlation between allele occurrence at different sites) is higher in some block-like regions than in others
(Wall and Pritchard, 2003). The model preserves a basic “blocky” structure of haplotypes, but also allows
for “exchange” of haplotypes at every point, and not only at block boundaries. Thus, it is possible that a
specific contiguous stretch of SNPs identified as part of a haplotype can start or end inside another block
of SNPs. Additionally, in any interval, some of the haplotypes may not be part of the blocky structure.
We show how to infer the parameters of the model by deriving an EM method to achieve a maximum
likelihood phasing solution.

We implemented our algorithm in a program called HINT (haplotype inference tool), which includes
also a simple procedure to predict disease association. We tested HINT on 58 human datasets from four
sources: HapMap project (www.hapmap.org), ENCODE project (www.hapmap.org), Daly et al. (2001), and
Gabriel et al. (2002). Our experiments show that our algorithm consistently outperforms a strict blocks
model and is also significantly more accurate than using haplotypes or using the raw genotypes.

We would like to point out that haplotype phasing is not strictly necessary for association testing. One
can test for association of unphased genotypes, and the utility of using haplotypes is under debate (Morris
and Kaplan, 2002; Martin et al., 2000; Zhao et al., 2003; Zaykin et al., 2002; Zhang et al., 2004). As
we shall show, in our tests more accurate results are achieved by using our model than by using the raw
genotypes.

The paper is organized as follows: In Section 2, we present the stochastic model. In Section 3, we show
how to infer the parameters of the model. In Section 4, we present the experimental results. Section 5
discusses our methodology and future directions.

2. THE STOCHASTIC MODEL

The input to our problem is presented by an n × m genotype matrix M in which the rows correspond
to samples (individuals genotyped) and the columns correspond to SNP sites. Hence, the i-th row M[i, ∗],
also denoted by gi , describes the i-th genotype (the vector of readings for all the SNP sites in the ith
individual). We assume that all sites are bi-allelic and that the two alleles are called arbitrarily 0 and 1.
The genotype readings are denoted by M[i, j ] ∈ {0, 1, 2, ?} where 0 and 1 stand for the two homozygous
types {0,0} and {1,1}, respectively, 2 stands for a heterozygous type, and “?” stands for a missing entry.
A phasing of genotype gi is a pair of binary n-vectors h1

i , h
2
i , such that (h1

i (k), h2
i (k)) equals (0, 0) if

gi(k) = 0 and (1,1) if gi(k) = 1. If gi(k) = 2, then it equals (0, 1) or (1, 0), and if gi(k) =? then all four
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0/1 combinations are possible. Vectors (h1
i , h

2
i ) are called haplotypes corresponding to the genotype gi .

We use gi,j to denote the j th component (0, 1, 2, or ?) of the vector gi . Given a genotype matrix, the
phasing problem is to determine the most likely n pairs of haplotype vectors that constitute phasing of the
corresponding genotype vectors. “Most likely” must be defined with respect to an assumed data model.

We now describe our probabilistic model for how the genotypes are generated. The model relaxes the
rigid block structure assumption and allows for recombination of haplotypes at every point, and not only
at block boundaries. Thus, it is possible that a specific contiguous stretch of SNPs starts or ends inside
another block of SNPs. Additionally, in any interval, some of the haplotypes may not be part of the blocky
structure. In a nutshell, the model is a hidden Markov model with few possible states at each site, each
with its own emission probability, allowing transition from any state to any state in the next site. For each
site there are at most k alternative states. Each genotype is created as the confluence of two independent
Markov paths, each creating a single haplotype. Figure 1 gives an example of the model when applied on
chromosome 5 dataset (Daly et al., 2001).

We now define the model formally. The model has a position for each SNP site, and we use the terms
site and position interchangeably. At each position there are k states. We denote by Si,j the ith state in the
j th position. Each state generates (“emits") a SNP value in its corresponding position. We denote by θi,j

the probability to generate “1” in the j -th site of the i-th state. (Consequently, 1− θi,j is the probability to
generate “0” in that site.) Let α(q) denote the transition probability matrix from states in position q to states
in position q + 1. Transition probabilities between nonconsecutive positions are zero. The components of
α(q) are denoted by (α(q))i,j = α

(q)
i,j . Thus, α

(q)
i,j = Pr[Sj,q+1|Si,q ]. The starting state is denoted by S0, and

its corresponding transition probabilities to {Si,1}1≤i≤k are denoted by α
(0)
1,i .

Each genotype in the matrix M is generated as follows: For each haplotype independently, start from
state S0 and choose a number i between 1 and k according to the probability distribution {α(0)

1,1, . . . , α
(0)
1,k}.

Pass to state Si,1 and choose the first SNP value to be 1 with probability θi,1. When at state Si,q , choose a

number j between 1 and k according to the probability distribution {α(q)

i,1 , . . . , α
(q)
i,k }. Pass to state Sj,q+1

and choose the (q + 1)th SNP value to be 1 with probability θj,q+1. Continue the path until reaching one
of the states {Si,m}1≤i≤k (all m SNP values have been generated). Repeat the steps above for the second
haplotype and form the confluence of the two haplotypes . The result is the genotype.

We now develop the likelihood function under the model. Define f (gi,j ; θa, θb) to be the probability of
the observed value of the j th SNP in the ith genotype, given that the probabilities to observe 1 in the two
paths that created the genotype are θa, θb, respectively. Then

f (gi,j ; θa, θb) =

⎧⎪⎨⎪⎩
(1 − θa)(1 − θb) gi,j = 0

θaθb gi,j = 1

θa(1 − θb) + θb(1 − θa) gi,j = 2

.

Let I
(j)
i and J

(j)
i denote the state number of the first and second paths, respectively, of the ith genotype

in the j th position. Note that I
(0)
i = 1 and J

(0)
i = 1 for 1 ≤ i ≤ n. We use θ and α to denote the sets

{θi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and {α(j) : 0 ≤ j ≤ m − 1}, respectively. The full set of parameters is
denoted by ϑ := θ ∪ α. The complete likelihood function can be written as follows:

L(M) =
n∏

i=1

m−1∏
j=0

α
(j)

I
(j)
i ,I

(j+1)
i

α
(j)

J
(j)
i ,J

(j+1)
i

f (gi,j+1; θ
I

(j+1)
i ,j+1

, θ
J

(j+1)
i ,j+1

).

The complete log likelihood function is

l(M) =
n∑

i=1

m−1∑
j=0

[
log α

(j)

I
(j)
i ,I

(j+1)
i

+ log α
(j)

J
(j)
i ,J

(j+1)
i

+ log f (gi,j+1; θ
I

(j+1)
i ,j+1

, θ
J

(j+1)
i ,j+1

)

]
. (1)

Dealing with missing entries is done as follows: given a missing entry, we sum over all possible values
of the entry (0, 1, and 2), since these events are mutually exclusive. Inspection of Equation (1) reveals that
this is equivalent to using a probability of 1 for the missing entry. In this way, missing entries are treated
as part of the model and need not be handled separately from the optimization procedure.
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FIG. 1. A graphical illustration of the probabilistic model, obtained on the data of Daly et al. (2001) data. Each
node is labeled by the name of the nucleotide that is more likely to be emitted at the corresponding state (i.e., the
nucleotide in state i of position j is that corresponding to 1 if and only if θi,j > 0.5). Transitions between states
in consecutive positions are represented by edges with edge thickness proportional to probability of transition. For
readability, only edges with probability above 0.05 are shown. Node probabilities are calculated from the Markov chain
model and color coded according to the legend. The top line contains the SNP numbers. The picture was generated
using the software Graphviz (www.research.att.com/sw/tools/graphviz). Observe that certain stretches of sites manifest
a block-like structure, with little or no transition between lines of states (e.g., 1–6, 7–9, 10–14, 29–31, 61–64). Other
stretches (e.g., 15–20, 38–44) contain many crossings and show little block structure.
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3. AN ALGORITHM FOR INFERRING THE MODEL PARAMETERS

Using the maximum likelihood approach, the goal is to find a set of parameters ϑ̂ that maximizes (1).
Since {I (j)

i , J
(j)
i : ∀i, j} are unknown, we use EM approach (e.g., McLachlan and Krishnan [1997]). We

define the random variable A
(s)
a,b,i to be the number of transitions that are performed from state Sa,s to the

state Sb,s+1 in the process generating the ith genotype. Hence, A
(s)
a,b,i can be 0, 1, or 2. We also define

the random indicator variable I{A(j)
a,b,i=2} to be 1 if A

(j)
a,b,i = 2, and 0 otherwise. Now, Equation (1) can be

rewritten as:

l(M) =
n∑

i=1

m−1∑
j=0

⎡⎢⎢⎢⎢⎣
∑

1≤a≤k
1≤b≤k

A
(j)
a,b,i log α

(j)
a,b + 1

2

∑
1≤a≤k
1≤b≤k

∑
1≤c≤k
1≤d≤k

(c,d)�=(a,b)

A
(j)
a,b,iA

(j)
c,d,i log f (gi,j+1; θb,j+1, θd,j+1)

+
∑

1≤a≤k
1≤b≤k

I{A(j)
a,b,i=2} log f (gi,j+1; θb,j+1, θb,j+1)

⎤⎥⎥⎥⎦ .

Taking the expectation with respect to the probability measure under the parameter set ϑ0, we get

QM,ϑ0(ϑ) =
n∑

i=1

m−1∑
j=0

⎡⎢⎢⎢⎢⎣
∑

1≤a≤k
1≤b≤k

E[A(j)
a,b,i] log α

(j)
a,b + 1

2

∑
1≤a≤k
1≤b≤k

∑
1≤c≤k
1≤d≤k

(c,d)�=(a,b)

× E[A(j)
a,b,iA

(j)
c,d,i] log f (gi,j+1; θb,j+1, θd,j+1)

+
∑

1≤a≤k
1≤b≤k

E[I{A(j)
a,b,i=2}] log f (gi,j+1; θb,j+1, θb,j+1)

⎤⎥⎥⎥⎦ .

For compactness of writing, we use matrices to describe the above equations. Define the matrices W
(s)
i , Y

(s)
i ,

α
(s)
i , G

(s)
i as follows.

(W
(s)
i )a,b := E[A(s)

a,b,i]

(Y
(s)
i )b,d :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∑
1≤a≤k
1≤c≤k

E[A(s)
a,b,iA

(s)
c,d,i] b �= d

1

2

∑
1≤a≤k
1≤c≤k
a �=c

E[A(s)
a,b,iA

(s)
c,d,i] +

∑
1≤a≤k
1≤c≤k
a=c

E[I
A

(s)
a,b,i=2

] b = d

(α(s))a,b := α
(s)
a,b

(G
(s)
i )a,b :=

⎧⎪⎨⎪⎩
(1 − θa,s)(1 − θb,s) gi,s = 0

θa,sθb,s gi,s = 1

θa,s(1 − θb,s) + θb,s(1 − θa,s) gi,s = 2

(2)
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If U, V are n×m real matrices, let U •V denote the inner product of the two matrices: U •V = trace(UT V )

(equivalently, it can also be expressed as
∑

1≤i≤n
1≤j≤m

Ui,jVi,j ). We use Ua,· to denote the ath row of U , and

U·,b to denote the bth column of U . Vector enenen is defined to be the vector (1, 1, . . . , 1)T of size n. Let S
n

denote the n-dimensional open simplex, i.e., S
n = {x ∈ R

n| ∀i : 0 < xi < 1}.
Using the above definitions, QM,ϑ0(ϑ) can be rewritten, and we get the following optimization problem:

max: QM,ϑ0(ϑ) =
n∑

i=1

m−1∑
j=0

[
W

(j)
i • log(α(j)) + Y

(j)
i • log(G

(j+1)
i )

]
,

subject to: ϑ ∈ S
|ϑ |,

∀a, s :
k∑

b=1

α
(s)
a,b = 1.

(3)

We use the interior domain of the simplex, excluding the surface, since we want the objective function
to be twice continuously differentiable. For practical purposes, this assumption is not significant. We use
W, Y, α, G to denote the sets {W(j)

i }, {Y (j)
i }, {α(j)}, {G(j+1)

i }, respectively. Note that W, Y are constants and
α, G are determined directly by the parameters set ϑ . The constants W, Y are obtained using ϑ0, as will be
presented below. The optimization problem (3) is called “the genotypes optimization subproblem.” Clearly,
a solution ϑ̂ to the genotypes optimization subproblem increases the complete likelihood score of (1).

We now describe the expectation and maximization steps of the algorithm. We show how to calculate
W and Y given ϑ and how to calculate ϑ when W and Y are known. We also explain how we resolve the
genotypes, once the model’s parameters are found.

3.1. Expectation

Since each genotype is generated by two passes through the hidden Markov model, we can formally
double the model for the representation below. In this doubled model, for each position there are

(
k
2

)
states,

which correspond to all possible pairs of states in the original model. We denote them by {D{a,b},j : 1 ≤
a ≤ b ≤ k, 1 ≤ j ≤ m}, where D{a,b},j corresponds to the pair of states Sa,j , Sb,j . Let Pr[e|D{a,b},j ]
denote the probability to observe e ∈ {0, 1, 2}, given the state D{a,b},j . The probability to obtain 0, 1, and
2 in each of these states can be calculated as follows:

Pr[0|D{a,b},j ] = (1 − θa,j )(1 − θb,j ),

Pr[1|D{a,b},j ] = θa,j θb,j ,

Pr[2|D{a,b},j ] = θa,j (1 − θb,j ) + θb,j (1 − θa,j ).

The transition probabilities in the doubled model can also be calculated directly:

Pr[D{c,d},j ′ |D{a,b},j ] =

⎧⎪⎪⎨⎪⎪⎩
α

(j)
a,cα

(j)
b,d + α

(j)
a,dα

(j)
b,c c �= d, j ′ = j + 1

α
(j)
a,cα

(j)
b,c c = d, j ′ = j + 1

0 otherwise

.

Using the Baum–Welch algorithm (Baum, 1972), we find Pr[D{a,b},j , D{c,d},j+1|gi], and we can then
obtain

Pr[A(j)
a,b,i = 1|gi] =

∑
a1=a2=a

b1=b,b2 �=b

Pr[D(a1,a2),j , D(b1,b2),j+1|gi]

+
∑

a1=a,a2 �=a
b1=b,b2 �=b

[
Pr[D(a1,a2),j , D(b1,b2),j+1|gi]

α
(j)
a1,b1

α
(j)
a2,b2

α
(j)
a1,b1

α
(j)
a2,b2

+ α
(j)
a1,b2

α
(j)
a2,b1

]
,
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Pr[A(j)
a,b,i = 2|gi] = Pr[D(a,a),j , D(b,b),j+1|gi],

Pr[A(j)
a1,b1,i

= 1, A
(j)
a2,b2,i

= 1|gi] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr[D(a1,a2),j , D(b1,b2),j+1|gi]

α
(j)
a1,b1

α
(j)
a2,b2

α
(j)
a1,b1

α
(j)
a2,b2

+ α
(j)
a1,b2

α
(j)
a2,b1

a1 �= a2

Pr[D(a1,a2),j , D(b1,b2),j+1|gi] a1 = a2

.

We are now ready to calculate the expectation:

E[A(j)
a,b,i |gi] = Pr[A(j)

a,b,i = 1|gi] + 2 Pr[A(j)
a,b,i = 2|gi],

E[A(j)
a1,b1,i

A
(j)
a2,b2,i

|gi] = Pr[A(j)
a1,b1,i

= 1, A
(j)
a2,b2,i

= 1|gi], if (a1, b1) �= (a2, b2),

E[I{A(j)
a,b,i=2}] = Pr[A(j)

a,b,i = 2|gi].

(4)

Now, matrices W
(j)
i , Y

(j)
i can be obtained by substituting (4) into (2).

3.2. Maximization

The following lemma implies that solving the genotypes optimization subproblem, even when W and Y

are given, is not trivial, as the optimization function is neither convex nor concave.

Lemma 1. The genotypes optimization subproblem is neither convex nor concave.

Proof. It suffices to give an example where convexity and concavity do not hold. Let k = 2 and m = 2.
The function QM,ϑ0(ϑ) is assumed to be twice continuously differentiable, and thus we use H(ϑ) to denote
the Hessian matrix of QM,ϑ0(ϑ) at point ϑ . We note that QM,ϑ0(ϑ) is the sum of functions of α(0), α(1),
θ·,1, and θ·,2, and hence it is enough to show that QM,ϑ0(ϑ) is nonconvex and nonconcave in θ·,2. Denote

by H(θ·,2) the submatrix of H(ϑ), which is induced only by θ·,2; i.e., (H(θ·,2))i,j := ∂2QM,ϑ0
∂θi,2∂θj,2

. We can
write QM,ϑ0(ϑ) as follows:

QM,ϑ0(ϑ) = t1(α) + t2(θ·,1)

+ C11 log(θ2
1,2) + C12 log(θ1,2θ2,2) + C22 log(θ2

2,2)

+ D11 log(θ1,2(1 − θ1,2)) + D22 log(θ2,2(1 − θ2,2))

+ E11 log((1 − θ1,2)
2) + E12 log((1 − θ1,2)(1 − θ2,2)) + E22 log((1 − θ2,2)

2)

+ R log[θ1,2(1 − θ2,2) + θ2,2(1 − θ1,2)],

where t1(α) is a function of α, t2(θ·,1) is a function of θ·,1, and C··, D··, E··, R are positive constants that
depend on Y

(1)
i and on the genotypes data. In this way, the Hessian matrix is

H(θ·,2) =

⎛⎜⎜⎜⎜⎜⎜⎝
−
[
P11

1
θ2
1,2

+ S11
1

(1−θ1,2)2
+ R

(1−2θ2,2)2

(θ1,2+θ2,2−2θ1,2θ2,2)2

]
−R 1

(θ1,2+θ2,2−2θ1,2θ2,2)2

−R 1
(θ1,2+θ2,2−2θ1,2θ2,2)2

−
[
P22

1
θ2
2,2

+ S22
1

(1−θ2,2)2
+ R

(1−2θ1,2)2

(θ1,2+θ2,2−2θ1,2θ2,2)2

]
⎞⎟⎟⎟⎟⎟⎟⎠,
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where

P11 := 2C11 + C12 + D12 + D11,

S11 := 2E11 + E12 + D21 + D11,

P22 := 2C22 + C12 + D21 + D22,

S22 := 2E22 + E12 + D12 + D22.

Choosing θ·,2 = θ̂·,2 = (0.5 0.5)T , we get

H(θ̂·,2) =
(−[4P11 + 4S11] −4R

−4R −[4P22 + 4S22]
)

. (5)

We can set R to be larger enough than P11, S11, P22, S22, such that det[H(θ̂·,2)] < 0. This is possible
since the constants P11, S11, P22, S22 depend only on the number of homozygous SNPs (0 or 1) and R

depends only on the number the heterozygous SNPs (2). According to the Frobenius Theorem, since all
the components of (5) are negative, it has at least one negative eigenvalue, and since det[H(θ̂·,2)] < 0, the
other eigenvalue must be positive. If the signs of the two eigenvalues of H(θ̂·,2) are different, then H(θ̂·,2)
is neither positive semi-definite nor negative semi-definite, so θ̂·,2 is a feasible point, where the function
QM,ϑ0(ϑ) is nonconvex and nonconcave.

Notice that if the haplotypes are given in a resolved form, and the problem is only to find the parameters,
then we have a simple hidden Markov chain model. In this case, the optimization subproblem is convex
and has an analytical solution using the Baum–Welch algorithm (Baum, 1972). In general, the whole EM
process converges to a local optimum that is not necessarily the global optimum, but as we shall show,
overall performance is usually good and robust on the real data that we used.

A solution to the genotype optimization subproblem. Although, as was shown in Lemma 1, the
genotype optimization subproblem is nonconvex and nonconcave, we cope with it in the following way:
As can be observed in (3) the function QM,ϑ0(ϑ) is a linear combination of log(α(j)) and log(G

(j+1)
i ), for

all 0 ≤ j ≤ m − 1. Thus, we can perform the optimization process for each j separately. For a given j ,
we want to solve

max: QM,ϑ0(ϑj ) =
n∑

i=1

[
W

(j)
i • log(α(j)) + Y

(j)
i • log(G

(j+1)
i )

]
,

ϑj ∈ S
|ϑj |,

∀a :
k∑

b=1

α
(j)
a,b = 1.

(6)

Under the domain ϑj ∈ S
|ϑj |, the Lagrangian is

LM,ϑ0(α
(j), θj , λ) =

n∑
i=1

[
W

(j)
i • log(α(j)) + Y

(j)
i • log(G

(j+1)
i )

]
+

k∑
a=1

λa

(
k∑

b=1

α
(j)
a,b − 1

)
, (7)

where λ = (λ1, . . . , λk)
T ∈ R

k . We find an analytical solution for α(j) by solving
∂LM,ϑ0 (α(j),θj ,λ)

∂α(j) = 0.
We obtain

α
(s)
a,b =

n∑
i=1

E[A(s)
a,b,i]

n∑
i=1

k∑
b=1

E[A(s)
a,b,i]

.
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Finding θj is done numerically by solving

max
θj ∈S

|θj |
Y

(j−1)
i • log(G

(j)
i ), (8)

which is neither convex nor concave, by Lemma 1. However, we note that there are only k variables in
this optimization problem, and k is assumed to be small, so solving it numerically is possible in practice.
Moreover, when working with biological genotypes, it is reasonable to restrict the possible values of θj

to be close to 0 or close to 1. Hence, we solve the same optimization problem described in (8), but we
use the domain S

n
ε = {x ∈ R

n| ∀i : 0 < xi < ε or 1 − ε < xi < 1} instead of S
n, where ε is some small

constant.

3.3. Resolving the genotypes

Once the parameters set ϑ̂ = {̂α, θ̂} is found, we use Viterbi’s algorithm (Viterbi, 1967) to find the optimal
path for each genotype in the double Markov chain model. The algorithm provides a pair D{a1,a2},j for
each position j , and one still has to determine the two paths corresponding to the two haplotypes, in terms
of the original Markov chain. If for a genotype gi , in positions j, j + 1, the two state pairs found by the
algorithm are D(a1,a2),j and D(b1,b2),j+1, respectively, then we have two possibilities for the two paths in
the original Markov chain:

1. Sa1,j → Sb1,j+1 and Sa2,j → Sb2,j+1,
2. Sa1,j → Sb2,j+1 and Sa2,j → Sb1,j+1.

For each, the probability can be calculated as follows:

Pr[Sa1,j → Sb1,j+1, Sa2,j → Sb2,j+1|D(a1,a2),j , D(b1,b2),j+1] = α
(j)
a1,b1

α
(j)
a2,b2

α
(j)
a1,b1

α
(j)
a2,b2

+ α
(j)
a1,b2

α
(j)
a2,b1

,

Pr[Sa1,j → Sb2,j+1, Sa2,j → Sb1,j+1|D(a1,a2),j , D(b1,b2),j+1] = α
(j)
a1,b2

α
(j)
a2,b1

α
(j)
a1,b1

α
(j)
a2,b2

+ α
(j)
a1,b2

α
(j)
a2,b1

.

We choose the possibility with larger probability, and thus the resulting two paths maximize the likelihood
as required.

Once we have a separate path for each haplotype, we resolve each SNP in each haplotype, according to
the larger probability in each site. If for haplotype hi,p (where p ∈ {1, 2}) in position j the corresponding
state is Sa,j , then hi,p,j is determined to be 0 if θa,j < 0.5, and 1 otherwise.

4. RESULTS ON BIOLOGICAL DATASETS

We implemented our algorithm in a software package call HINT (haplotype inference tool). HINT
was implemented in C++. Running time on a 2 GHz Pentium 4 for 100 genotypes with 100 SNPs is
approximately two minutes.

4.1. Description of the datasets

We tested HINT extensively using four datasets encompassing 58 different genomic regions.

• A dataset due to Daly et al. (2001). In this study, genotypes for 103 SNPs from a 500 KB region
of chromosome 5q31 were collected from 129 mother, father, and child trios from a European derived
population in an attempt to identify a genetic risk for Crohn’s disease. We used only the child population
in this dataset.
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• Population D from the study of Gabriel et al. (2002). The data consist of 51 sets of genotypes from
various genomic regions, where the number of SNPs per region ranges from 13 to 114.

• Regions ENm013, ENr112, and ENr113 of the ENCODE project (www.hapmap.org). These are 500 KB
regions of chromosomes 7q21.13, 2p16.3, and 4q26, respectively, which were collected from 30 trios.
The numbers of SNPs genotyped in each region are 361, 412, and 515 respectively (thus, the density
of the sample is 3–5 times greater than the density of that of Daly et al. [2001]). For convenience, we
divided each of these regions into four or five datasets that contain approximately 100 SNPs each.

• Genotypes from the HapMap project (www.hapmap.org). We used three sets of SNPs spanning the three
genes PP2R4, STEAP, and TRPM8. For each of these genes, we took the HapMap SNPs that are spanned
by the gene plus 10 KB upstream and downstream. The resulting sets contain 39, 23, and 102 SNPs.

The last three sets contained 30 mother, father, and child trios from Yoruba’s population. In each case
we used only the 60 genotypes of the parents.

4.2. Initialization and predefined constants

When using the model to predict diseases, we chose to use k = 5 on all datasets since our tests show
that this value obtains the most accurate results on a large number of different datasets (Fig. 2). Here, we
used mean prediction rate as a measure for accuracy. This measure reflects the accuracy in predicting a
missing causative SNP and will be described in detail in Section 4.4. Notably, the changes are minor when
different values of k are used.

We used the GERBIL software (Kimmel and Shamir, 2004) for finding initial parameter values for HINT.
GERBIL phases the data and creates a block partition. In each block, the number of common haployptes
in GERBIL is determined using a minimum description length criterion (see Section 4.3). We use only
the k most common haplotypes in each block, where k is a predefined parameter of HINT. A probability
matrix is computed for the transitions between common haployptes in consecutive blocks. Accordingly, if
the neighboring SNPs j and j + 1 are in the same block, then the initialized values of α(j) are set to be
α

(j)
q,q = 1 and α

(j)
q1,q2 = 0, for q1 �= q2. If the neighboring SNPs j and j + 1 are in different blocks, then

FIG. 2. Mean prediction accuracy versus different values of k parameter, on 51 different datasets of Gabriel et al.
(2002).
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α(j) is set according GERBIL’s transition probability matrix between common haplotypes. Each parameter
θ is initialized to its corresponding value in GERBIL.

4.3. MDL comparison

In order to assess the possible advantage of our new block-free model over a rigid block model, we
chose to compare it to GERBIL. This choice was made due to two reasons: first, GERBIL was shown
to be relatively accurate (Kimmel and Shamir, 2004), and second, the main difference between the two
models is the strict block structure of GERBIL. Since the HINT model is more complex, direct compar-
ison of likelihood is meaningless. Instead, we calculated the minimum description length (MDL) score
in both solutions, as suggested by Greenspan and Geiger (2003) and by Koivisto et al. (2003) using
the formula: Length(Model, Data) = Length(Model) + Length(Data | Model), where Length(·) measures
the description length in bits. We used accuracy of (log n)/2 to describe the numbers, based on (Rissa-
nen, 1987). Hence, Length(Model) is the length of the parameters in bits, and Length(Data | Model) =
− log(Pr[Data | Model]) = −l(M), which is derived in Equation (1).

Our experiments show that using k = 2 achieves the minimal MDL score, so we used this value for the
MDL evaluation. The results on all datasets are presented in Fig. 3. For GERBIL’s model, the parameter
k and the blocks partition are chosen to minimize the MDL score. HINT’s MDL score was significantly
lower than GERBIL’s with paired t-test p-value of 0.0074. The mean of the difference between HINT’s
MDL score and GERBIL’s score was 695.58. We would like to comment that using k = 2 in HINT is not
the optimal parameter for disease prediction (see Section 4.2), although it is the optimized parameter for
the MDL score.

4.4. Disease Prediction

We wanted to assess the model’s utility in another test, which is paramount for medical applications: the
veracity of predicting genotypes at unobserved SNPs. This is a first step towards finding disease alleles.
For that purpose, we used real genotypes to simulate case-control data, as follows: Suppose a single SNP

FIG. 3. A comparison of MDL scores on all biological datasets: blue X—HINT model, red circles—strict block model
(GERBIL). Dataset number 70 of Daly et al. (2001) contains more genotypes than the datasets 1–69 (129 versus 60),
which explains its higher MDL score.
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causes the disease with 100% penetrance. Assume that the SNP value (0, 1, or 2) is the phenotype data.
Our test is done in a leave-one-out manner: We select one test genotype and use the rest as training data. In
all genotypes, the causative SNP is removed. In the training data, its value is used as the phenotype of each
genotype. The goal is to determine the phenotype of the test genotype, based on the training information
and on the other SNPs in the test genotype. The process is applied repeatedly by selecting all possible
combinations of test genotype and causative SNPs.

Formally, for a genotype matrix M , let s be the test genotype number, and let t be the missing SNP
number. For specific s, t , we build the n − 1 × m − 1 induced matrix Ms,t , which equals M without the
t th line and the sth column:

M
s,t
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mi,j i < s and j < t

Mi+1,j i ≥ s and j < t

Mi,j+1 i < s and j ≥ t

Mi+1,j+1 i ≥ s and j ≥ t

.

Let ds,t = (Mi,t : i �= s)T be the missing SNP vector in the training set genotypes, and let gs,t = (Ms,j :
j �= t) be the test genotype without that SNP. The goal is to predict the causative SNP based on the
training data. Let Pred be an algorithm that predicts the phenotype in a test genotype given training data
(genotypes and phenotypes). Let Pred(Ms,t , ds,t , gs,t ) be the value predicted by Pred for the t th SNP in
the sth genotype. Note that the input for the learning algorithm does not include the position of the missing
SNP (t). The prediction accuracy µ is the probability to be correct in predicting a specific SNP in some
genotype and is evaluated by (see Halperin et al. [2005]):

µ = 1

nm
|{Pred(Mi,j , di,j , gi,j ) = Mi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}|.

We checked two different scenarios:

1. The phenotype value is given as the original form of the missing SNP (0, 1, or 2). The goal here is
predict that value.

2. A dominant disease model is assumed, where values of 1 or 2 in the causative SNP represent cases and
0 represents controls. The phenotype information is represented only in the form of case/control (both
as an input for the prediction algorithm and as the predicted value).

In both models, we assume 100% penetrance, which is unrealistic. The reason is that we wish to
measure the disease prediction accuracy of several models. Adding randomness by using lower penetrance
may reflect the biological reality better, but would have obfuscated this measured value.

We now present our prediction algorithm. The algorithm, a variation of the prediction algorithm of
Halperin et al. (2005), is based on the observation, made by several biological studies, that the correlation
between SNPs tends to decay as the physical distance increases (see, e.g., Gabriel et al. [2002]; Bafna
et al. [2003]; Daly et al. [2001]; Kimmel and Shamir [2004]; Halperin et al. [2005]). We assume that
given the genotypes values of two SNPs, the probabilities of the values at any intermediate SNPs do not
change by knowing the values of additional more distant ones. This assumption, although not valid in all
cases, was shown to lead to accurate results in predicting SNPs correctly (Halperin et al., 2005). Here,
we apply some variation of the algorithm described by Halperin et al. (2005) to predict the missing SNP
in two steps: (1) finding two consecutive SNPs j, j + 1 in the training set that predict the phenotype
most accurately and (2) predicting the missing SNPs using SNPs j, j + 1. The prediction algorithm is
presented in Fig. 4. For simplicity, we describe scenario (1), where the SNP value itself (0, 1, or 2) is the
phenotype.

We compared the prediction accuracy of HINT to that of three different models: resolved haplotypes,
genotypes, and a strict blocks model. For each of the four methods, we first constructed an axillary matrix A
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FIG. 4. The prediction algorithm.

using the specific model. Then, using M = A, the same prediction algorithm described above (Fig. 4)
was employed in the four cases to predict the disease status or the missing SNP of the test genotype. The
matrix A reflects the data and the additional information obtained by the model. It is calculated as follows:

1. For the HINT model, A is a 2n × m matrix that contains the states’ indices of the resolved haplotypes
of the data. Hence, if the SNP gi(j) was found using HINT to be generated by states (Sq1,j , Sq2,j ),
then (A)2i−1,j = q1 and (A)2i,j = q2. (Hence, Ai,j ∈ {1, 2, . . . , k}.)

2. For the haplotypes model, A is a 2n×m matrix that equals the resolved haplotype matrix of the genotype
matrix M . (Hence, Ai,j ∈ {0, 1}.) Here the true haplotypes information available from pedigree data
was used.

3. For the simple SNPs model, A is a n × m matrix that equals the genotype matrix M . (Hence, Ai,j ∈
{0, 1, 2}.)

4. For a strict blocks model, we use GERBIL (Kimmel and Shamir, 2004). Here, A is a 2n × b matrix,
where b is the number of blocks obtained by the algorithm. Indices (A)2i−1,j and (A)2i,j are defined to
be the common haplotype indices of the j th block of the ith genotype. (Hence, Ai,j ∈ {1, 2, . . . , kb},
where kb is the maximal number of common haplotypes allowed in a block.)

Figures 5 and 6 present the results of the SNP prediction model and the heterozygous disease model.
The prediction rate is the fraction of correct predictions made by the model. Means and standard deviations
are summarized in Tables 1 and 2. HINT shows a consistent advantage over the other models on most
data sets. Notably, the simple haplotypes model was the second most accurate. The differences between
the different models are statistically significant. For example, in the SNP prediction model, the difference
between the HINT model and the haplotypes model is 7.4 STDs, which corresponds to a t-test p-value of
6.15 · 10−12. A less significant difference is seen in the heterozygous disease model, possibly due to loss
of information (p-value = 0.039). Interestingly, in both SNP and disease prediction scenarios, the blocks
structure model was the least accurate.
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FIG. 5. SNP value prediction rates for all the biological datasets: black X—HINT, red circles—haplotypes, blue +—
genotypes, green triangles—strict blocks (GERBIL). Datasets 52–69 from the ENCONDE project have high density
SNPs, which explains the better prediction rate by all the algorithms.

FIG. 6. Disease phenotype prediction rates for all the biological datasets: black X—HINT, red circles—haplotypes,
blue +—genotypes, green triangles—strict blocks (GERBIL).
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Table 1. SNP Value Prediction Ratesa

Model HINT Haplotypes Genotypes Blocks

Mean prediction rate 0.86962 0.86496 0.86307 0.84481
Standard deviation 0.00063 0.00064 0.00064 0.00068

aThe average and standard deviations are calculated on all the biological datasets, using the
four different prediction models.

Table 2. Disease Phenotype Prediction Rates on all the Biological
Datasets, Using the Four Different Prediction Models

Model HINT Haplotypes Genotypes Blocks

Mean prediction ratio 0.88776 0.88671 0.87102 0.87064
Standard deviation 0.00059 0.00059 0.00062 0.00063

5. DISCUSSION

In this paper, we have defined a novel model for genotypes generation. The model aims to reflect the
somewhat blocky structure of haplotypes, but allows deviations, i.e., intrablock transitions. A first-order
Markov model is kept, without the need to maintain a strict block structure. We have shown how to resolve
the model parameters using an EM algorithm.

Our model was examined on a broad spectrum of biological datasets. The prediction rate was used as a
measure for the validity of the model. The goal in our experiments was to predict a missing causative SNP,
given a training set of genotypes. We have shown that HINT gives more accurate results when compared
to simpler models. The advantage is not very large, but is statistically significant. An additional interest-
ing byproduct of our analysis is the conclusion that better predictions are made when using haplotypes
compared to using genotypes. The strict blocky structure, on the other hand, seemed to cause loss of
information and was less accurate in predicting diseases.

It has been argued that haplotype block structures can be helpful for association studies because each
haplotype block can be treated as a single locus with several alleles (the block-specific haplotypes) (Daly
et al., 2001). It was shown that finding the blocks of SNPs is expected to contribute to association studies,
by decreasing the number of SNPs needed to be genotyped, with minimal statistical power loss (Zhang
et al., 2002b). A major problem is that, currently, there are different ways of defining and identifying
haplotype blocks (for example, Kimmel et al. [2003]; Zhang et al. [2002a]; Koivisto et al. [2003]). The
advantage of blocks is in reducing the number of multiple tests one has to perform, when conducting
association studies. Nevertheless, this approach has a drawback, the information loss. Here, we try to take
some advantage of the blocks, and by relaxing the model to a “mosaic-like" structure, less information is
lost. We plan to explore the power of HINT in disease association studies.

Another interesting question is whether using a higher-order Markov model improves the accuracy.
Biologically, an improvement is expected as there is evidence for SNPs that are more linked to distal
ones than to closer SNPs (Carlson et al., 2004). On the other hand, adding more parameters to the model
is a major disadvantage, as the extent of data we have is limited and the learning process may become
infeasible.

A natural alternative to the hidden Markov model is a recombination-based approach, which attempts
to reconstruct the past recombination events in the gene genealogy rather than seek ad hoc exchanges of
extant haplotypes. The method presented here is much faster, while most investigators that have attempted
the ancestral recombination graph (ARG) reconstruction approach have found it to be prohibitively slow
(Griffiths and Marjoram, 1996; Song and Hein, 2005). The advantage of the ARG approach is of course
that there is an underlying population genetic model, which HINT lacks. Comparing the performance of
the two approaches is an interesting research direction.
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We have focused our attention here on human genotypes. Haplotype inference and association testing
is being applied to other organisms, where the levels of variability and of recombination may be quite
different. While HINT can be applied to any organism, performance may not be as good on some organisms.
In such cases, retuning of HINT may be necessary, and other approaches that exploit the properties of
these organisms’ haplotypes may be better.

Another natural extension that we intend to pursue is to include the pedigree information, when available
(e.g., HapMap and ENCODE trios), to the HINT inference. Such extension would have a clear advantage
by combining the population LD data as HINT does with the transmission information from the trios.
(We have already implemented a similar extension for the GERBIL model.)

In our simulation for disease prediction, we assumed for simplicity that the disease trait has 100%
penetrance and that it is caused by a single SNP. Obviously, under such assumptions, the trait would be
a Mendelian factor and would be mapped by linkage much faster and more easily than by a population
association test. None of the diseases that are being mapped by association testing today have such
major SNPs, but instead entail multiple SNPs with weak penetrance. Extending the simulation to these
more complex and more realistic scenarios is therefore desirable, but it would require substantially larger
population sizes.

In this study, our focus was to build a model with improved performance in association studies. We
did not aim to improve the phasing per se, and therefore we did not compare phasing quality to that of
extant phasing programs. If one wishes to use HINT for phasing, a natural question is how to assign
confidence to individual haplotypes or to a phased pair of haplotypes. Naturally, the HMM attributes a
probability to each pair of paths it produces. To distinguish among near-optimal solutions, one should find
several best-scoring path pairs for each genotype and compare their probabilities. Another criterion for
phasing performance is a direct comparison to a known solution, using, e.g., the switch test (Stephens
and Donnelly, 2003; Kimmel and Shamir, 2005) or error rate (Stephens and Donnelly, 2003; Kimmel and
Shamir, 2004). Note that when phasing a large number of SNPs, the resulting pairs of full haplotypes are
less meaningful for association, as most of the SNPs are relatively distant from each other and thus poorly
associated. A better definition of phasing and haplotypes that emphasizes locality is needed in these cases.
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ABSTRACT
Motivation: The search for genetic regions associated with
complex diseases, such as cancer or Alzheimer’s disease, is
an important challenge that may lead to better diagnosis and
treatment. The existence of millions of DNA variations, primar-
ily single nucleotide polymorphisms (SNPs), may allow the fine
dissection of such associations. However, studies seeking dis-
ease association are limited by the cost of genotyping SNPs.
Therefore, it is essential to find a small subset of informative
SNPs (tag SNPs) that may be used as good representatives
of the rest of the SNPs.
Results: We define a new natural measure for evaluating the
prediction accuracy of a set of tag SNPs, and use it to develop a
new method for tag SNPs selection. Our method is based on a
novel algorithm that predicts the values of the rest of the SNPs
given the tag SNPs. In contrast to most previous methods, our
prediction algorithm uses the genotype information and not
the haplotype information of the tag SNPs. Our method is very
efficient, and it does not rely on having a block partition of the
genomic region.

We compared our method with two state-of-the-art tag SNP
selection algorithms on 58 different genotype datasets from
four different sources. Our method consistently found tag
SNPs with considerably better prediction ability than the other
methods.
Availability: The software is available from the authors on
request.
Contact: kgad@tau.ac.il

1 INTRODUCTION
Most of the genetic variation among different people can be
characterized by single nucleotide polymorphisms (SNPs),
which are mutations at single nucleotide positions that
occurred during human history and were passed on through
heredity. Most of these SNPs are biallelic, i.e. only two
bases (alleles) are observed across the population at such
sites. It has been estimated that there are about 7 million

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint first Authors.

common SNPs (i.e. SNPs with minor allele frequency of at
least 5%) in the human genome (Kruglyak and Nickerson,
2001; Botstein and Risch, 2003). Alleles of SNPs in close
physical proximity to each other are often correlated, and
the variation of the sequence of alleles in contiguous SNP
sites along a chromosomal region (haplotype) is known to
be of limited diversity. The identification and analysis of
haplotypes, currently a major effort of the international com-
munity (http://www.hapmap.org/), is expected to play a key
role in trait and disease association studies (Martinet al., 2000;
Morris and Kaplan, 2002).

The objective of disease association studies is to find genetic
factors correlated with complex disease. In these studies, the
DNA of individuals from two populations (healthy individuals
and carriers of the disease) is sampled. Then, discrepancies in
the haplotype structure of the two populations are revealed by
various statistical tests. These discrepancies serve as evidence
for the correlation of the genomic region studied with the
disease.

Clearly, the statistical significance of the study is directly
affected by the number of individuals typed. The total cost
of the study is also affected by the number of SNPs typed.
Therefore, to save resources, one wishes to reduce the num-
ber of SNPs typed per individual. This is usually done by
choosing an appropriate small subset of the SNPs, called tag
SNPs, that could predict the rest of the SNPs with a small error.
Thus, when performing a disease association study, the genet-
icist would experimentally test for association by considering
only the tag SNPs, thereby considerably saving resources (or
increasing the power of the statistical tests by increasing the
number of individuals). Hence, a key problem is to find a set of
tag SNPs of minimum size that would have a very good predic-
tion ability. In this paper, we propose a new method, selection
of tag SNPs to maximize prediction accuracy (STAMPA) that
finds a set of tag SNPs given a genotype sample taken from a
set of unrelated individuals.

Finding a high-quality set of tag SNPs is a challenging task
for several reasons. One of the main challenges is that the
haplotype information is usually not given, and instead we
get the genotypes. As opposed to haplotypes, the genotypes
give bases at each SNP in both copies of the chromosome,

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i195
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but lack the phase, i.e. information as to the chromosome on
which each base appears. Owing to technology constraints,
most sequencing techniques provide the genotypes and not
the haplotypes. There are however, computational tools that
use the correlations between neighboring SNPs in order to
predict the phase information. Their accuracy depends on the
proximity and correlation of the tagged SNPs. When a set of
tag SNPs is chosen and then tagged, the rest of the SNPs are
not measured and instead must be predicted from this inform-
ation. The accuracy of such prediction is limited, since the
correlation between the tag SNPs is not necessarily as strong
as the correlation between SNPs that are in close proximity
to each other. One of the advantages of our tag SNPs pre-
dictor is that it only uses the genotype information and does
not require knowledge of the haplotypes of the tag SNPs. We
use the phase information in a reference training set to select
the tag SNPs, and subsequently predict the other SNP values
in a test individual on the genotype of that individual for the
tag SNPs only. To the best of our knowledge, all extant pro-
grams that aim to explicitly predict individual SNPs use the
haplotypes of the tag SNPs.

Another issue that is crucial in the search for tag SNPs is
the definition of an adequate measure of the prediction qual-
ity. Many of the current tag SNP selection methods partition
the region into blocks of limited diversity (e.g. Zhanget al.,
2002, 2003, 2004), and find a set of tag SNPs that aims to pre-
dict the common haplotypes of each block. There are various
disadvantages to such methods, most apparent is the lack of
cross-block information and the dependency of the tag SNPs
choice on the block definition. We propose here a new nat-
ural measure, prediction accuracy, which directly evaluates
the average SNP prediction quality.

There is a large body of research on finding a highly pre-
dictive set of tag SNPs (Zhanget al., 2002; Avi-Itzhaket al.,
2003; Bafnaet al., 2003; Carlsonet al., 2004; Pe’eret al.,
2004). In contrast to most previous methods, our method uses
the genotype information for the tag SNP selection. Zhang
et al. (2004) have also used genotypes information for tag
SNP selection. However, their study selects the SNPs so as to
maximize haplotype diversity, and given the genotypes of the
tag SNPs in a tested individual it infers blocks and common
haplotypes, but does not predict the individual SNPs. Another
key difference between our method and previous ones is that
we do not rely on any block partition.

We performed extensive tests ofSTAMPA on genotypes
from a variety of sources. Our tests covered 58 datasets
from four sources: HapMap project http://www.hapmap.org,
ENCODE project http://www.hapmap.org, Dalyet al. (2001),
and Gabrielet al. (2002). We show that usingSTAMPA, very
accurate results are achieved. For example, only 17 tag SNPs
out of 103 SNPs (16.5%) suffice to attain prediction accuracy
of 95% in the data of Dalyet al. (2001). Our method is also
very efficient: runs on a regular PC required seconds to several
minutes on all datasets.

We compared our algorithm with two state-of-the-art tag
SNP selection algorithms: ldSelect (Carlsonet al., 2004) and
HapBlock (Zhanget al., 2004). Our experiments show that
STAMPA consistently outperforms both these methods. On the
average ldSelect uses ten times more tag SNPs thanSTAMPA

in order to achieve prediction accuracy of 90%. Our algorithm
was also more accurate than HapBlock on each of the 58
datasets, sometimes by>15%. Moreover, the running time
of STAMPA was much less than HapBlock. For example, on
chromosome 5q31 dataset,STAMPA was faster by a factor of
97. Such advantage will be more prominent on future larger
datasets.

2 PROBLEM FORMULATION
In order to present our method, we first formalize the problem
of tag SNPs prediction. We first need to introduce some nota-
tions and definitions. Since we are only interested in biallelic
SNPs, we assume that each haplotype is represented by a bin-
ary string. Thus, a haplotype of lengthm is a sequence over
{0, 1}m. A genotype of lengthm is represented by a{0, 1, 2}
sequence, where 0 and 1 stand for the homozygous types{0, 0}
and{1, 1}, respectively, and 2 stands for a heterozygous type.
We are given a set ofn genotypesg1, . . . ,gn of length m

each. We usegi,j to denote thej -th component (0, 1 or 2)
of the vectorgi . A phasing of a genotypegi is a pair of hap-
lotypes,h1

i ,h2
i ∈ {0, 1}m, such thath1

i,k �= h2
i,k if gi,k = 2 and

h1
i,k = h2

i,k = gi,k if gi,k ∈ {0, 1}. We also use the notationg(j)

to denote thej -th SNP in genotypeg.
Consider a genomic region that spans a set ofm SNPs.

The frequencies of the genotypes in that region across the
entire populations are given by some unknown distribution
function Pr(gi ∈ G), where G is the sample space of all
genotypes in the population. A prediction algorithm is a func-
tion f : {0, 1, 2}t → {0, 1, 2}m. Informally, the prediction
algorithm uses the genotype values of the tag SNPs in order
to predict the values of the rest of the SNPs. For a given vec-
tor q ∈ {0, 1, 2}t of tag SNPs values, letfj (q) denote thej -th
component of that vector. Note thatfj refers to the com-
ponents of the predicted vector of allm SNPs, given the
tag genotypesq. Finally, let zT : {0, 1, 2}m → {0, 1, 2}t be
the restriction of the genotype to the tag SNPs position. For
instance, for a set of tag SNPsT = {1, 3, 5, 6} the restriction
of the genotypegi = 0122010 iszT (gi) = 0201.

Our goal is to find a minimum size set of tag SNPs and a
prediction algorithm, such that the prediction error is minim-
ized. Formally, for a givent , our objective is to find a set of
tag SNPsT of size t and a prediction functionf , such that
the following expression is minimized.

η =
m∑

j = 1

Pr[fj (zT (g)) �= g(j)], (1)

where the probability is over the sample space given by
Pr(g ∈ G). In other words, for a randomly picked individual
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ALGORITHM Predict(i,j1,j2,a1,a2)

Input: i, j1, j2 ∈ {1, . . . ,m}, anda1,a2 ∈ {0, 1, 2}.
Output: An integerv ∈ {0, 1, 2} which is a predicted value of a SNP in positioni, given that in positionj1 andj2 the values are
a1 anda2 respectively.

1. For every(x,y, z) ∈ {0, 1}3 we let C(x,y, z) = {(j ,p) | h
p

jj1
= x,hp

jj2
= y,hp

ji = z} be the set of haplotypes having the
valuesx,y, z in positionsj1, i andj2 respectively.

2. LetA(x,y) = z ∈ {0, 1}, where|C(x,y, z)| ≥ |C(x,y, 1− z)| breaking ties arbitrarily.

3. Letc(x,y) = |C(x,y, 0)| + |C(x,y, 1)|.
4. We compute the values of two variablesx,y using the following case analysis.

• If a1 < 2 anda2 < 2, then we setx = y = A(a1,a2).

• If a1 = 2, a2 = 2 andc(0, 0) · c(1, 1) ≥ c(0, 1) · c(1, 0), thenx = A(0, 0) andy = A(1, 1).

• If a1 = 2, a2 = 2 andc(0, 0) · c(1, 1) < c(0, 1) · c(1, 0), thenx = A(0, 1) andy = A(1, 0).

• If a1 = 1, a2 = 2 (a2 = 1, a1 = 2), then we setx = A(1, 1) andy = A(1, 0) (y = A(0, 1)).

• If a1 = 0, a2 = 2 (a2 = 0, a1 = 2), then we setx = A(0, 0) andy = A(0, 1) (y = A(1, 0)).

5. If x �= y output 2, else outputx.

Fig. 1. The procedure Predict. We implicitly assume that the training set and its phase are given. The variablesx andy computed by the
case analysis represent the majority votes for the two haplotypes induced by the valuesa1 anda2. Note that the output value is determined by
simply counting the frequencies of different partial haplotypes in the training set that matcha1 anda2 and taking the majority vote.

from the population, we want to minimize the expected
number of prediction errors.

The main problem in achieving this goal is that the fre-
quencies of the genotypes in the population are unknown.
Therefore, we use a training dataset of genotypes,g1, . . . ,gn

in order to learn the distribution of genotypes in the data.
For a given prediction algorithmf : {0, 1, 2}t → {0, 1, 2}m,
we are interested in finding a set of tag SNPsT of size
t , such that expression (1) is minimized when the geno-
type is randomly picked from the training set. Formally, if
XT = |{(i, j) | gi,j �= fj (zT (gi))}|, wheregi,j is thej -th SNP
of gi , then we are looking for a setT of SNPs of sizet such
thatXT is minimized. The resulting prediction rate of the tag
SNPs depends both on the prediction functionf and on the
choice of the tag SNPs.

3 THE PREDICTION ALGORITHM
In this section we present our prediction algorithm. The
algorithm is based on the observation made by several biolo-
gical studies, that the correlation between SNPs tends to decay
as the physical distance increases (Gabrielet al., 2002; Bafna
et al., 2003; Dalyet al., 2001; Kimmel and Shamir, 2004). We
assume that given the genotypes values of two SNPs, the prob-
abilities of the values at any intermediate SNPs do not change
by knowing the values of additional distal ones. Formally, this
assumption can be stated as:

∀s: a < s < b, ∀q: q < a or q > b, ∀v ∈ {0, 1, 2}, ∀i:

Pr[gi,s = v|gi,a ,gi,b] ≈ Pr[gi,s = v|gi,a ,gi,b,gi,q ].
(2)

Thus, our prediction function predicts an SNP value using
only the values of the two closest tag SNPs to this SNP.
To be precise,fi(zT (g)) = f (gj1,gj ,gj2), wherej1 and j2

are the closest tag SNPs toj , on both sides, if possible.
Although many biological studies support this assumption,
it clearly does not hold for all SNPs or in all datasets.
However, the assumption is a rather faithful approximation
of the reality in most cases. As we shall show in Section 5,
using this assumption we achieve very high-prediction
rates.

Given a set of tag SNPsT = (s1, . . . , st ), we use the pro-
cedure Predict given in Figure 1 to predict the value of
SNP i given the value of the tag SNPs. We assume that we
are given the training set of genotypesg1, . . . ,gn together
with their corresponding haplotypesh1

1,h2
1,h1

2, . . . ,h2
n, where

h
j

i = (h
j

i1, . . . ,hj

im) ∈ {1, 2}m for j = 1, 2. The haplotypes
can be computed from the genotypes using a variety
of available algorithms (Kimmel and Shamir, 2005; Eskin
et al., 2003; Stephens and Donnelly, 2003; Greenspan and
Geiger, 2003).

Let j1 andj2, j1 < i < j2 be the positions of the tag SNPs
closest to positioni on both sides. If there is no tag SNP in
positionj2 > j , thenj1 andj2 are the last two SNPs, and if
there is no tag SNP in positionj1 < j thenj1 andj2 are the
first two SNPs. The procedure Predict(i, j1, j2,a1,a2) uses a
majority vote in order to determine which value is more likely
to appear in positioni given that positionsj1 andj2 have the
valuesa1 ∈ {0, 1, 2} anda2 ∈ {0, 1, 2}, respectively. In order
to use the phased information given by the model, we use
two majority votes to determine the two different alleles. For
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instance, ifa1 = 0 anda2 = 2, we find the most likely allele
given that the alleles in positionsj1 andj2 are both 0, and
another allele given that the alleles in positionsj1 andj2 are
0 and 1, respectively. Further details are given in Figure 1.
Note that predicting SNPi using the procedure Predict makes
no use of most of the tag SNPs—we simply ignore all the tag
SNPs except for the ones closest toi.

4 ALGORITHMS FOR TAG SNP SELECTION
Recall that our goal is to find a set of tag SNPsT of
size t , such thatXT is minimized, whereXT = |{(i, j) |
gi,j �= Predict(j , j1, j2,gi,j1,gi,j2)}|. We give two algorithms
for selecting the tag SNPs. Both algorithms use the prediction
algorithm as a subroutine. The first is a polynomial algorithm
that guarantees an optimal solution. The second is a simpler
and faster random sampling algorithm. We shall discuss their
performance in Section 5.

4.1 An exact algorithm
We now describe an algorithm that solves this problem
to optimality. The algorithm, STAMPA, uses dynamic
programming.

Let X
i,j
T = 1 if gi,j �= Predict(j , j1, j2,gi,j1,gi,j2) and let

X
i,j
T = 0 otherwise. Clearly,XT = ∑

i,j X
i,j
T . For every pair

of SNPsm1 < m2 we next define three auxiliary score func-
tions, score(m1,m2), score1(m1,m2) and score2(m1,m2),
which will be used in the dynamic program recursion. These
score functions evaluate the expected number of errors in a
subregion (a contiguous set of SNPs), given a partial set of
the tag SNPs. We assume thatm1,m2 ∈ T and that for each
m1 ≤ j ≤ m2, j /∈ T . Then, we define

score(m1,m2) =
n∑

i = 1

m2−1∑
j = m1

X
i,j
T .

Thus, score(m1,m2) is the total number of prediction errors
in SNPsm1, . . . ,m2 − 1, given thatm1 andm2 are tag SNPs,
and that there are no tag SNPs betweenm1 andm2. Since
the procedure Predict infers an SNP value by considering
only its neighboring tag SNPs, we can readily compute the
score, while disregarding the information on all the other
tag SNPs.

For score1(m1,m2), we assume thatm1 andm2 are the last
two tag SNPs. Then, the score is defined as

score1(m1,m2) =
n∑

i = 1

m∑
j = m1

X
i,j
T .

Thus, score1(m1,m2) is the the total number of prediction
errors in SNPsm1, . . . ,m when the last two SNPs are in
positionsm1,m2. Again, since Predict only uses the closest
tag SNPs in order to compute the SNP values, we can compute
score1 independently of the locations of the rest of the SNPs.

Similarly, for score2(m1,m2) we assume thatm1 andm2

are the first two tag SNPs, and define

score2(m1,m2) =
n∑

i = 1

m2−1∑
j = 1

X
i,j
T .

In this case, score2(m1,m2) is the total number of prediction
errors in SNPs 1,. . . ,m2 − 1 when the first two SNPs are in
positionsm1,m2.

We next define the functionf that will be used in the
dynamic programming recursion.f (m∗, l) is defined forl ≥ 2
and 1≤ m∗ ≤ m. For l < t , the functionf (m∗, l) rep-
resents the minimum number of prediction errors in SNPs
1, 2,. . . ,m∗, given that thel-th tag SNP is in positionm∗. For
l = t , the functionf (m∗, t) represents the minimum number
of prediction errors in all SNPs 1, 2,. . . ,m given that the last
tag SNP is in positionm∗. Formally, we definef (m∗, l) in the
following way:

• Forl = t , f (m∗, t) = ∑n
i = 1

∑m
j = 1 X

i,j
T when the last tag

SNP is in positionm∗.

• For t > l ≥ 2, f (m∗, l) = ∑n
i = 1

∑m∗−1
j = 1 X

i,j
T when the

l-th tag SNP is in positionm∗.

It is easy to verify by the definitions off and of score, score1

and score2, that the following recurrence relation holds:

f (m∗, l) =




min1≤ m′<m∗ score2(m′,m∗), l = 2,
minl−1≤ m′<m∗ {f (m′, l − 1),

+ score(m′,m∗)}, 2 < l < t

mint−1≤ m′<m∗ {f (m′, t − 1)

+ score1(m′,m∗)}, l = t .
(3)

We now apply dynamic programming in order to find the value
of f (m∗, t) for everyt ≤ m∗ ≤ m, using the above recurrence
relation. Sincef (m∗, t) is the total number of prediction errors
given that the last tag SNP is in positionm∗, it is clear that the
minimum value ofXT over all possible sets of tag SNPs of
sizet is min{m∗|t ≤ m∗ ≤ m} f (m∗, t). Using back pointers in the
process, one can also find a set of tag SNPs minimizingXT .

4.1.1 Complexity analysis We first compute the three
scores for all

(
m
2

)
possible pairs of SNPs. For every pair the

running time isO(mn). Hence, the total running time for
this stage isO(m3n). We keep the scores in a matrix and we
use that matrix in order to computef . Given the computed
scores, for everym∗ ≤ m, computingf (m∗, 2) takesO(m∗),
so doing this for allm∗ takesO(m2). Similarly, computing
f (m∗, i) for everyi < t ,m∗ < m takesO(m2t). Finally, com-
putingf (m∗, t) for everym∗ ≤ m takesO(m2). Sincet ≤ m

the total running time isO(m3n).
If the number of SNPs is large (even in the hundreds), a run-

ning time ofO(m3n) is very expensive. However, in practice,
the correlation between SNPs is decaying when the phys-
ical distance between the SNPs increases. Put differently, tag

i198



“bti1021” — 2005/6/10 — page 199 — #5

Tag SNP selection in genotype data

SNPs tend to predict well other SNPs in the same or neigh-
boring block, but not farther away. Thus, having a very large
distance between neighboring tag SNPs yields poor prediction
power. Hence, in most practical cases one can use a boundc on
the maximal distance in SNPs between neighboring tag SNPs.
c will depend on the SNP typing density and will typically
not exceed 20 or 30. In such a case, computing score(m1,m2)

takeO(mc2n) and computing score1 and score2 takeO(c3n).
Computingf (m∗, i) for eachi takesO(mtc). Thus, the total
running time isO(mtc + mc2n) = O(mc(cn + t)).

4.2 Random sampling
In some cases we are interested in finding quickly a very small
number of tag SNPs that roughly predict the rest of the SNPs,
i.e. we are willing to give up some of the prediction power if
we can get a very small number of tag SNPs. In these cases,
the assumption that the tag SNPs are close to each other cannot
be made, sincec is very large, and the exact algorithm may be
too slow. We therefore suggest a very simple and much more
efficient algorithm that does not guarantee optimal results.

The algorithm is as follows: We generate 100 sets of tag
SNPs,T1,T2, . . . ,T100, each generated by randomly picking
t positions out of them possible positions. We then compute
XTi

for i = 1, 2,. . . , 100, and we choose the set of tag SNPs
Ti that minimizesXTi

. This algorithm is very naive, but we
show that it gives reasonable results in practice.

5 RESULTS ON BIOLOGICAL DATASETS
5.1 Description of the datasets
We used four datasets encompassing 58 different genomic
regions.

• A dataset from the works of Dalyet al. (2001). In this
study, genotypes for 103 SNPs, from a 500 kb region
of chromosome 5q31, were collected from 129 mother,
father and child trios from European derived population
in an attempt to identify a genetic risk for Crohn’s disease.
We only used the population of children in this dataset.

• Population D from the study of Gabrielet al. (2002). The
data consist of 51 sets of genotypes from various genomic
regions, with number of SNPs per region ranging from 13
to 114. The sets contained 30 mother, father, child trios
that were taken from a Yoruba’s population, from which
we only used the 60 genotypes of the parents.

• Regions ENm013, ENr112 and ENr113 of the ENCODE
project (http://www.hapmap.org). These are 500 kb
regions of chromosomes 7q21.13, 2p16.3 and 4q26,
which were collected from 30 trios. The number of SNPs
genotyped in each region is 361, 412 and 515, (thus,
the density of the sample is 3–5 times greater than the
density of Dalyet al., 2001). We used the 60 genotypes
corresponding to the parents from each dataset.

• Genotypes from the HapMap project (http://www.
hapmap.org). We used three sets of SNPs spanning
the three genes PP2R4, STEAP and TRPM8. For each
of these genes we took the HapMap SNPs that are
spanned by the gene plus 10 kb upstream and down-
stream. The resulting sets contain 39, 23 and 102
SNPs. In this dataset we used the genotypes of the
parents.

5.2 Implementation
STAMPA was implemented in C. All reported runs used a
Linux operating system on a 4 Ghz PC using 500 M cache.
Running times are discussed below (Fig. 3 and Table 2).

The Predict procedure requires a phased training set.
To obtain that solution when applyingSTAMPA, we used
the GERBIL algorithm (Kimmel and Shamir, 2005). Run-
ning times for phasing using GERBIL were almost always
<1 min. The dataset of Dalyet al. (2001) required the most
time, ∼2 min. These times are not included in the reporting
below.

5.3 Exact solution versus random sampling
algorithm

We first measured the prediction accuracy of the two
algorithms in Section 4. ForSTAMPA, we usedc = 30 as the
upper bound of distance between tag SNPs. The experiments
were performed in a leave-one-out manner: We repeatedly
removed one of the genotypes from the set, used the remain-
ing genotypes as the training set in order to find a set of tag
SNPs, and used these tag SNPs in order to predict the other
SNPs in the removed genotype.

The results show thatSTAMPA uses very few tag SNPs in
order to predict the other SNPs with high confidence. For
example, in chromosome 5q31 dataset (Dalyet al., 2001),
typing 2 SNPs suffices to predict all the 103 SNPs with 80%
accuracy, 6 SNPs are needed to achieve 90% and only 17 SNPs
need to be typed for 95%.

The results of the comparison of the two algorithms are sum-
marized in Figure 2. As expected, in most cases,STAMPA

was more accurate than the random sampling algorithm.
However, when the number of tag SNPs is small, there is
a clear advantage for the random sampling algorithm. For
example, in Encode region ENr113, when less than 15 tag
SNPs are required, the prediction accuracy of the random
sampling algorithm was high. This gap can be explained
by the fact that when the number of tag SNPs is small, the
upper bound for the distance between tag SNPs is too restrict-
ive for STAMPA. It is important to emphasize, that each of
the two algorithms has a parameter, that can be increased
to obtain more accurate results, but at the expense of lar-
ger running times. Such is the parameterc in STAMPA, and
the number of samples in the random sampling algorithm.
Although in our experiments we saw a clear advantage to
STAMPA, in some situations we expect the opposite to be true,
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Fig. 2. Prediction accuracy as a function of the number of tag SNPs used in the two selection algorithms. Blue X,STAMPA, red circles,
random sampling algorithm.

e.g. when SNPs are genotyped with high density in a very
long region and the number of tag SNPs is required to be very
small.

5.4 Comparisons to extant methods
We chose to compare our algorithm with two recent algorithms
for tag SNP selection that are widely used: ldSelect, an
algorithm suggested by Carlsonet al. (2004), which uses a
greedy approach, and HapBlock suggested by Zhanget al.
(2004), which uses dynamic programming and a partition-
ligation EM subroutine to phase subintervals in the recur-
sion. Two additional tag SNP selection algorithms that were
reported in the literature (Bafnaet al., 2003; Pe’eret al.,
2004) could not be included in the comparisons since their
implementations were not available.

In order to evaluate the prediction accuracy of a tag SNP
selection algorithm, one has to provide a prediction algorithm
such as Predict. Unfortunately, ldSelect and HapBlock do not

provide a prediction algorithm. Hence, in order to evaluate
the prediction accuracy of these algorithms, we had to choose
a prediction algorithm for each of them.

ldSelect requires phased genotypes as input. We used
PHASE (Stephens and Donnelly, 2003) to obtain the phas-
ing solution, since it is a widely used and highly accurate
phasing program (Kimmel and Shamir, 2005). The output of
the program is sets of SNPs and for each one a subset of its
tag SNPs. SNPs in a set are not necessarily contiguous. We
used a majority vote of the tag SNPs inside each set as the
prediction method of SNPs in this set. (This rule is equivalent
to that of Predict in the case of two tag SNPs, with the key
difference that Predict assumes a specific order of the two tag
SNPs and the predicted one.)

HapBlock gets as input a genotype matrix and outputs the
tag SNPs. There are several input parameters for this soft-
ware, such as the algorithm for block partitioning and the
method of tag SNP selection. Additional numeric parameters
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Table 1. Performance ofSTAMPA and ldSelect. The number of tag SNPs needed in order to reach accuracies of 80 and 90% by each algorithm is listed

Dataset 80% accuracy 90% accuracy Total number of SNPs
STAMPA ldSelect STAMPA ldSelect

5q31 2 64 6 91 103
Gabrielet al. 3.4 (1.8) 41.6 (14.8) 12.1 (6.3) 51 (17.8) 55.6 (20.2)
ENm013 5 84 12 189 360
ENr112 9 97 17 169 411
ENr113 11 83 18 325 514
PP2R4 2 6 2 6 38
STEAP 2 20 2 22 22
TRPM8 3 38 6 53 101

For the data of Gabrielet al. (2002) the first number is the average over all 51 datasets, followed by the standard deviation in parentheses. See Figure 3 for more detailed results on
these datasets.
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Fig. 3. Performance ofSTAMPA, ldSelect and HapBlock on each of the 51 genotyped regions in Gabrielet al. (2002). Thex-axis is the
51 datasets in an arbitrary order; blue cross—STAMPA, red circles—the other algorithm. Comparison with ldSelect: the number of tag SNPs
found by the algorithm to reach an accuracy of 80% (a) and 90% (b). Comparison with HapBlock: prediction accuracy (c) and running times
(d) of the algorithms on each dataset.

are required, e.g. a threshold for common haplotypes. We
used the default values presented in the software manual
(http://www.cmb.csu.edu/∼msms/HapBlock). Since the input
to this program is unphased genotypes and no predic-
tion algorithm was suggested, we used our own prediction
algorithm (Section 3) to measure the accuracy of tag SNPs
chosen by the algorithm.

In Table 1 and in Figure 3 we give a summary of the com-
parison ofSTAMPA with ldSelect. In each of the methods,
we searched for the minimal number of tag SNPs needed

in order to reach accuracies of at least 80 and 90%. Since
the input format of ldSelect does not allow specifying the
number of tag SNPs, but rather the Pearson correlation value
between the tag SNPs and the predicted SNPs, we searched
for the minimal Pearson correlation value needed in order
to reach 80% (or 90%) accuracy. Reducing the value of the
Pearson correlation results in a smaller number of tag SNPs.
Our experiments show thatSTAMPA consistently outperforms
ldSelect. On average, ldSelect uses 10 times more tag SNPs
thanSTAMPA in order to reach an accuracy of 90%.
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Table 2. Prediction accuracy and running times ofSTAMPA and HapBlock

Dataset Number of Prediction accuracy Running times (s)
tag SNPs STAMPA HapBlock STAMPA HapBlock

5q31 17 0.949 0.889 179 17 311
ENm013 15 0.929 0.759 78 8710
ENr112 33 0.939 0.822 87 3810
STEAP 3 0.951 0.763 3 5
TRPM8 12 0.942 0.811 34 140
Gabrielet al. 16.9 (6.5) 0.932 (0.019) 0.88 (0.04) 1282 20 131

The number of tag SNPs is determined according the output of HapBlock software, using its default parameters. No comparison could be performed on ENr113 since HapBlock gave
no solution due to memory overload. The gene PP2R4 was dropped since HapBlock outputs only one tag SNP for that gene, so comparison was meaningless. For the data of Gabriel
et al. (2002) the first number is the average over all 51 datasets, followed by the standard deviation in parentheses; running times are totals over all 51 datasets. See Figure 3 for more
detailed results on these datasets.

In Table 2 and Figure 3 we give a summary of the compar-
ison of STAMPA and HapBlock . We used the same number
of tag SNPs generated by HapBlock to select tag SNPs with
STAMPA. In all the 58 datasetsSTAMPA was more accur-
ate. Moreover, the running time ofSTAMPA was much less
than HapBlock. For example, on chromosome 5q31 dataset,
STAMPA was faster by a factor of 97. Such advantage will be
more prominent on future larger datasets.

6 DISCUSSION
In this paper, we have defined a novel measure for evaluating
the quality of tag SNP selection. The measure we use, pre-
diction accuracy, has a very simple and intuitive meaning: it
aims to maximize the expected accuracy of predicting untyped
SNPs, given the unphased (genotype) information of the tag
SNPs. The prediction itself is done using a simple majority
vote. By making an additional natural approximate assump-
tion that SNP values can be determined best based on the
values of their nearest tag SNPs on each side, the prediction
becomes quite simple, and the optimal selection of tag SNPs
can be done in polynomial time.

We presented a method for tag SNPs selection and for SNP
prediction based on the genotype values of the tag SNPs. Our
selection method, calledSTAMPA, is unique in its treatment
of the prediction part. Most extant methods for tag SNP selec-
tion (Zhanget al., 2002; Avi-Itzhaket al., 2003; Bafnaet al.,
2003; Carlsonet al., 2004; Pe’eret al., 2004) rely on haplo-
type information that is often not readily available in real life
scenarios. One exception is the HapBlock algorithm (Zhang
et al., 2004), which selects the tag SNPs based on the geno-
types and not on the haplotypes. However, HapBlock selects
the tag SNPs in order to maximize diversity of the common
haplotypes in blocks, and it is not clear whether this method
could be easily extended to an SNP prediction algorithm using
genotype data for the tag SNPs.

Another difference betweenSTAMPA and HapBlock is in the
use of phasing: Although both methods employ the dynamic

programming approach, HapBlock solves many phasing sub-
problems in the dynamic programming recursion, determines
the blocks and selects the tag SNPs in each block. In contrast,
STAMPA uses phased data for the training set and then employs
only the much simpler and faster prediction algorithm in the
recursion. This is the reason the latter algorithm is much faster.

We presented two tag SNP selection algorithms, one based
on dynamic programming and the other based on random
sampling. The dynamic programming algorithm guarantees
an optimal solution in polynomial time, but may be prohibit-
ively slow in practice when the number of tag SNPs is large.
A practical compromise that we used is to limit the distance
between neighboring tag SNPs. Under this restriction optim-
ality is not guaranteed anymore, but our results using over
50 different genotype sets show that accuracy is very good in
most cases even with a modest distance bound (c = 30). The
distance-bounded dynamic programming approach usually
provides better results than the random sampling approach.
These findings are consistent with the report in Zhanget al.
(2004), where a different criterion (power) was used to
evaluate random sampling and HapBlock performance on
simulated data. However, the random sampling algorithm is
very efficient, and therefore we believe that it may be useful
in some specific situations, e.g. on large datasets where a very
sparse set of tag SNPs is sought.

In comparison with another tag SNP selection algorithm,
ldSelect (Carlsonet al., 2004),STAMPA consistently obtained
higher accuracy. This is not surprising, since ldSelect uses
a simple greedy approach. Interestingly, even the random
sampling approach outperformed ldSelect (data not shown).
ldSelect has the added flexibility to select tag SNPs for non-
contiguous sets of SNPs, and thus may have an advantage
overSTAMPA in the cases where the LD does not decay with
distance.

What is the best measure for selecting tag SNPs? The
answer is still not clear, and also depends on the context.
We propose here the expected prediction accuracy, and show
that under reasonable assumptions it yields an efficient and
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accurate method for selection. All the same, other criteria
have been proposed. If the ultimate goal is to detect disease
association, the power of a selection method may be evaluated
using this criterion. We intend to explore the power ofSTAMPA

in disease association in the future. Another objective may be
to maximize the distinction between common haplotypes in
blocks. STAMPA does not provide common haplotypes and
does not assume any block structure, which simplifies the
algorithmics but may be viewed as a disadvantage. Our work
shows that if the expected number of errors is of interest, then
our algorithms provide more accurate prediction compared
with the existing algorithms.
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ARTICLE

A Fast Method for Computing High-Significance Disease
Association in Large Population-Based Studies
Gad Kimmel and Ron Shamir

Because of rapid progress in genotyping techniques, many large-scale, genomewide disease-association studies are now
under way. Typically, the disorders examined are multifactorial, and, therefore, researchers seeking association must
consider interactions among loci and between loci and other factors. One of the challenges of large disease-association
studies is obtaining accurate estimates of the significance of discovered associations. The linkage disequilibrium between
SNPs makes the tests highly dependent, and dependency worsens when interactions are tested. The standard way of
assigning significance (P value) is by a permutation test. Unfortunately, in large studies, it is prohibitively slow to compute
low P values by this method. We present here a faster algorithm for accurately calculating low P values in case-control
association studies. Unlike with several previous methods, we do not assume a specific distribution of the traits, given
the genotypes. Our method is based on importance sampling and on accounting for the decay in linkage disequilibrium
along the chromosome. The algorithm is dramatically faster than the standard permutation test. On data sets mimicking
medium-to-large association studies, it speeds up computation by a factor of 5,000–100,000, sometimes reducing running
times from years to minutes. Thus, our method significantly increases the problem-size range for which accurate, mean-
ingful association results are attainable.

From the School of Computer Science, Tel Aviv University, Tel Aviv
Received April 27, 2006; accepted June 27, 2006; electronically published July 24, 2006.
Address for correspondence and reprints: Dr. Gad Kimmel, School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail:

kgad@post.tau.ac.il
Am. J. Hum. Genet. 2006;79:481–492. � 2006 by The American Society of Human Genetics. All rights reserved. 0002-9297/2006/7903-0011$15.00

Linking genetic variation to personal health is one of the
major challenges and opportunities facing scientists today.
It was recently listed as 1 of the 125 “big questions” that
face scientific inquiry over the next quarter century.1 The
accumulating information about human genetic variation
has paved the way for large-scale, genomewide disease-
association studies that can find gene factors correlated
with complex disease. Preliminary studies have shown
that the cumulative knowledge about genome variation
is, indeed, highly instrumental in disease-association
studies.2–4

The next few years hold the promise of very large as-
sociation studies that will use SNPs extensively.5 There
are already reported studies with 400–800 genotypes,6 and
studies with thousands of genotypes are envisioned.6

High-throughput genotyping methods are progressing
rapidly.7 The number of SNPs typed is also likely to in-
crease with technological improvements: DNA chips with
1100,000 SNPs are in use,8 and chips with 500,000 SNPs
are already commercially available (Affymetrix). Hence, it
is essential to develop computational methods to handle
such large data sets. Our focus here is on improving a key
aspect in the mathematical analysis of population-based
disease-association studies.

The test for association is usually based on the difference
in allele frequency between case and control individuals.
For a single SNP, a common test suggested by Olsen et al.9

is based on building a contingency table of alleles com-
pared with disease phenotypes (i.e., case/control) and
then calculating a -distributed statistic. When multiple2x

markers in a chromosomal region are to be tested, several

studies suggested the use of generalized linear models.10–

12 Such methods must assume a specific distribution of the
trait, given the SNPs, and this assumption does not always
hold. Typically, a Bonferroni correction for the P value is
employed to account for multiple testing. However, this
correction does not take into account the dependence of
strongly linked marker loci and may lead to overconser-
vative conclusions. This problem worsens when the num-
ber of sites increases.

To cope with these difficulties, Zhang et al.13 suggested
a Monte Carlo procedure to evaluate the overall P value
of the association between the SNP data and the disease:
the value of each marker is calculated, and the maxi-2x

mum value over all markers, denoted by , is used asCCmax

the test statistic. The same statistic is calculated for many
data sets with the same genotypes and with randomly
permuted labels of the case and control individuals. The
fraction of permutations for which this value exceeds the
original is used as the P value. A clear advantage ofCCmax

this test is that no specific distribution function is as-
sumed. Additionally, the test handles multiple testing di-
rectly and avoids correction bias. Consequently, it is
widely used and, for instance, is implemented in the state-
of-the-art software package, Haploview, developed in the
HapMap project.

The permutation test can be readily generalized to han-
dle association between haplotypes and the disease—for
example, by adding artificial loci of block haplotypes,14–16

with states corresponding to common haplotypes. Simi-
larly, one can represent loci interactions as artificial loci
whose states are the allele combinations.
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Running time is a major obstacle in performing per-
mutation tests. The time complexity of the algorithm is

, where is the number of permutations, n isO(N nm) NS S

the number of samples, and m is the number of loci. To
search for P values as low as p, at least 1/p permutations
are needed (see appendix A for details). Therefore, the time
complexity can be written as . For instance, to1O( nm)p

reach a P value of in a study that contains 1,000 cases�610
and 1,000 controls with 10,000 loci, 11013 basic computer
operations are required, with a running time of 130 d on
a standard computer. Scaling up to larger studies with
�100,000 loci is completely out of reach.

When complex diseases are being studied, SNP inter-
actions should also be considered, and, then, time com-
plexity is an even greater concern. Several statistical stud-
ies focus on modeling loci interactions that have little or
no marginal effects at each locus.17–19 Recently, Marchini
et al.20 addressed the issue of designing association studies,
given the plausibility of interactions between genetic loci
with nonnegligible marginal effects. In all of these studies,
the multiple-testing cost of fitting interaction models is
much larger than that of the single-locus analysis. Fur-
thermore, the dependency among different tests is higher,
so the disadvantage of the conservative Bonferroni cor-
rection is exacerbated. For example, when all possible pair-
wise loci interactions are tested, the number of tests grows
quadratically with the number of loci, and applying Bon-
ferroni correction would artificially decrease the test
power. In this case, the permutation test is of even higher
value. Unfortunately, the running time is linearly corre-
lated with the number of tests, which causes this algo-
rithm to become prohibitively slow, even with a few hun-
dred SNPs.

In this study, we present a faster algorithm for com-
puting accurate P values in disease-association studies. We
apply a well-known statistical technique, importance sam-
pling, to considerably decrease the number of sampled
permutations. We also use the linkage disequilibrium (LD)
decay property of SNPs, to further improve the running
time. These two elements are incorporated in a new sam-
pling algorithm called “RAT (Rapid Association Test).” Ac-
counting for decay in LD has already been employed by
several studies, for the development of more-efficient and
more-accurate algorithms. For example, by using this
property, Halperin et al.21 reported a more accurate and
faster method for tagging-SNP selection, and Stephens et
al.22 presented an algorithm that improves the phasing
accuracy. To the best of our knowledge, LD decay has not
yet been exploited in permutation tests.

In the standard permutation test (SPT), when y per-
mutations are performed and z successes are obtained, the
P value is estimated as z/y. However, when , wez p 0
know only that . Therefore, to obtain small P valuep � 1/y
bounds, one has to expend a lot of computational effort.
In contrast, our method provides an estimate of the true
P value, with a guaranteed narrow error distribution
around it. The distribution gets narrower as the P value

decreases, and, therefore, much less effort is needed to
achieve accurate, very low P values.

Our method has a running time of , whereO(nb � N nc)R

is the number of permutations drawn by RAT, b is aNR

predefined sampling constant, and c is the upper bound
on the distance in SNPs between linked loci. Put differ-
ently, any two SNPs that have �c typed SNPs between
them along the chromosome are assumed to be indepen-
dent. In appendix A, we analyze in terms of the neededNR

accuracy and the true P value.
We compared the performance of our algorithm with

that of the regular permutation test, on simulated data
generated under the coalescent model with recombina-
tion23 (ms software) and on real human data. For both
algorithms, we measured accuracy by the SD of the mea-
sured P value. We required an accuracy of 10�6 and com-
pared the times to convergence in both algorithms. On
realistic-sized data sets, RAT runs 3–5 orders of magnitude
faster. For example, it would take ∼30 d for the SPT to
evaluate 10,000 SNPs in a study with 1,000 cases and 1,000
controls, whereas RAT needs ∼2 min. When marker-trait
association is tested in simulations with 3,000 SNPs from
1,000 cases and 1,000 controls, it is 15,000 times faster.
With 10,000 SNPs from chromosome 1, a speed-up of
120,000 is achieved. With 30,556 simulated SNPs from
5,000 cases and 5,000 controls, it would take 4.62 years
for the SPT to achieve the required accuracy, whereas RAT
requires 24.3 min. Hence, our method significantly in-
creases the problem-size range for which accurate, mean-
ingful association results are attainable.

This article is organized as follows: in the “Methods”
section, we formulate the problem and present the math-
ematical details of the algorithm. In the “Results” section,
results for simulated and real data are presented. The “Dis-
cussion” section discusses the significance of the results
and future plans. Some mathematical analysis and proofs
are deferred to appendix A.

Methods
Problem Formulation

Let n be the number of individuals tested, and let m be the number
of markers. The input to our problem is a pair ( ), where M isM,d
an –“markers matrix” and d is an n-dimensional “disease-n # m
status” vector. When haplotype data are used, the dimensions of
the matrix may be . The possible types (alleles) a marker2n # m
may attain are denoted by . Hence, if the0,1, … ,s � 1 M(i,j) p k
ith individual has type k in the jth marker. Each component of
the disease vector is either 0 (for an unaffected individual) or 1
(for an affected individual). An “association score” betweenS(d)
M and d is defined below. Let p(d) be a permutation of the vector
d. The goal is to calculate the P value of —that is, the prob-S(d)
ability of obtaining an association score � under the randomS(d)
model, in which all instances (M, p(d)) are equiprobable.

Let (i.e., y is the number of affected individuals).n
y p � d(a)ap1

In this article, the set of all possible permutations of the binary
vector d is defined by { is a binary vector that contains exactlyvFv
y 1s}. In other words, two permutations cannot have the same
coordinates set to 1. Following this definition, there are pos-n( )y



www.ajhg.org The American Journal of Human Genetics Volume 79 September 2006 483

sible permutations of d, instead of possibilities by the standardn!
definition of a permutation. Notice that, since all (standard) per-
mutations are equiprobable, our definition for a permutation is
equivalent to the standard one from a probabilistic view: for each
of the permutations with the use of our definition, there aren( )y
exactly permutations with the use of the standardy!(n � y)!
definition.

For two marker vectors x and y of size n, let T denote their
contingency table. T is built as follows: T p F{kFx(k) p i,i,j

. Let be its expected contingency table, assumingy(k) p j}F TE

the vectors x and y are independent—that is, T pEi,j

. The Pearson score of the table T is2� T � T /� T xi,a a,j a,ba a a,b

. We also use to denote .2S(T) p � (T � T ) /T S(x,y) S(T)i,j Ei,j Ei,ji,j

The jth column of the matrix M is denoted by . We use theM7,j

notation for the score . Hence, is the PearsonS (x) S(M ,x) S (d)j 7,j j

score of marker j and the disease vector d. Under the random
model described above, the asymptotic distribution of isS (d)j

, with df.24 For a vector x, let —that is,2x s � 1 S(x) p max S (x)j j

the highest Pearson score of any marker in M with the disease
vector x. is called the “association score” for . We wouldS(d) (M,d)
like to calculate the probability that , where x is a ran-S(x) 1 S(d)
dom permutation of the vector d.

Let be the event space of all possible permutations of thenF ( )y
vector d. The probability measure of is defined asF Ga � F:

. We use to denote . Let be the subset1Pr (a) p f(7) Pr (7) HF FFFF

of , such that . (Note that through-F H p {d Fd � F,S(d ) � S(d)}i i i

out we denote, by , the ith permutation and not the ith com-di

ponent of the vector d.) Then, is the desired P value.FHFp p FFF

Zhang et al.13 proposed a Monte Carlo sampling scheme of the
space . This test will be referred to as the “SPT.” The runningF
time of this algorithm is , where is the number ofO(nmN ) NS S

permutations of the standard algorithm. We use to denote thepS

calculated P value of SPT and to denote the calculated P valuepR

of our algorithm.

Importance Sampling

We now describe our sampling method. We use the methodology
of importance sampling.25 Informally, in SPT, sampling is done
from all possible permutations of the labels of the case and con-
trol individuals. This is very computationally intensive, since the
number of all possible permutations can be very large. For ex-
ample, the number of all possible permutations for 1,000 cases
and 1,000 controls is . In our method, instead of2,000 600≈ 10( )1,000
sampling from this huge space, sampling is done from the space
of all “important permutations”—namely, all possible permuta-
tions that give larger association scores than the original one. To
achieve this goal, we first define this probability space (i.e., define
a probability measure for each of these permutations) and then
show how to correctly sample from it. This sampling is done in
three steps: (1) a column (or a SNP) is sampled, (2) a contingency
table is sampled for that column from the set of all possible con-
tingency tables that are induced by this column and whose as-
sociation score is at least as large as the original one, and (3) an
important permutation that is induced by this contingency table
is sampled.

We construct an event space , which contains the same eventsG
as but with a different probability measure that will be definedH
below. has three important properties: (1) one can efficientlyG
sample from , (2) the probability of each event in can be readilyG G
calculated, and, (3) for each , . The probabilityd � H Pr (d ) 1 0i G i

function over is denoted by .G g(7)

We use NR to denote the number of permutations drawn by
the RAT algorithm. With the use of property 3, if NR samples are
drawn from instead of from , thenG F

NR1 f(d )ip p lim . (1)�
N g(d )ip1N r� R iR

We now define the probability measure on . For a permutationG
, let . Namely, ise � H Q(e) p F{jF 1 � j � m, S (e) � S(d)}F Q(e)j

the number of columns in M whose Pearson score with the disease
vector e is at least S(d). Observe that, since , . Thee � H Q(e) � 1
probability of e in is defined as:G

Q(e)
g(e) p . (2)� Q(e)

e�H

Let be the set of all possible contingency tables that corre-Tj

spond to column j of M and to different permutations of the
vector d. The number of different permutations of d that cor-
respond to a specific contingency table T is denoted by mj(T) and
can be calculated directly as follows:

s�1
T � Ti,0 i,1m (T) p . (3)�j ( )Tip0 i,1

Let T be a contingency table that fits column j. Define

m (T) S(T) � S(d)jm (T) p .j {0 otherwise

Let be the set . Observe that .mH H p {d FS (d ) � S(d)} H p ∪ Hj j i j i jp1 j

Define .C p {T � T F S(T) � S(d)}j j

The following sampling algorithm from will be referred to asG
the “ -sampler”:G

1. Sample a column j with probability .FH Fjm� FH Faap1

2. Sample a contingency table T from with probability .m (T)jCj FH Fj
3. Sample a permutation that fits the contingency table T uni-

formly—that is, with probability .1
m (T)j

Theorem 1: The probability for a vector di to be sampled in the
-sampler algorithm is g(di).G
Proof: Let , and suppose that . Let T be the cor-d � G Q(d ) p qi i

responding contingency table of . With the use of the -sampler,d Gi

there is a probability of

FH F m (T) 1 qj jq # # # pm m
FH F m (T)j j� FH F � FH Fa a

ap1 ap1

to choose an element from . Since , themd H � Q(d ) p � FH Fi i jd �H jp1i

probability is .Q(d )i� Q(d )id �Hi

Step 3 in the -sampler can be easily performed, given T. ForG
example, in the case of binary traits, one has to randomly select

out of the controls and out of the cases. When performingT T0,0 0,1

steps 1 and 2, there are two computational challenges: (1) cal-
culating and (2) sampling a contingency table T from withFHF Cj

probability . We present two different schemes for these prob-m (T)j

FH Fj
lems: an exact algorithm and a faster approximation algorithm.

An exact algorithm.—For a column j, we enumerate all s�1O(n )
possible contingency tables and construct the set . For each tableCj
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T, we calculate according to formula (3), and is calcu-m (T) FH Fj j

lated by . The total time complexity of this al-FH F p � m (T)j jT�Cj

gorithm is .s�1O(n m � N nm)R

An approximation algorithm.—To calculate , let b be a con-FHF

stant. We randomly sample a set L of b columns and calculate
for each of the columns in set L, by using the exact algo-FH Fj

rithm. is then approximated by . In practice, formFHF � FH FjH �Lb j

the problem sizes we tested, this approach was very accurate when
used with . The running time of this step is , ands�1b p 100 O(n b)
the total running time of the algorithm is . Ins�1O(n b � N nm)R

our case, , since there are two possible alleles in each po-s p 2
sition, so the time complexity becomes .O(nb � N nm)R

For sampling a contingency table from with probabilityT CJ

, we use a Metropolis-Hastings sampling algorithm.26,27 Wem (T)j

FH Fj
define a directed graph with nodes corresponding to Markov
states and with edges corresponding to transitions between states.
Each state represents a specific contingency table T and is denoted
by St(T). Let . Our goal is to sample a state St(T) withm (T)jp(T) p FH Fj
probability . We do this by generating a random walk thatp(T)
has a stationary distribution p[St(T)].

To define the edges in the graph, we first need some definitions.
We say that a row is “extreme” if one of its cells has value 0. T
is a “boundary table” if it has fewer than two nonextreme rows.
A “tweak” to a contingency table is obtained by taking a 2 # 2
submatrix, decreasing by one the elements on one diagonal, and
increasing by one the elements on the other diagonal. A tweak
is “legal” if the resulting table is nonnegative.

Let be the set of all contingency tables that can be ob-N (T)g

tained by a legal tweak of T. In addition, if T is a boundary table,
then also contains all other possible boundary tables thatN (T)g

maintain . The resulting set constitutes the pos-p[St(T)] 1 0 N (T)g

sible transitions from St(T).

Let J(Told,Tnew) be defined as:

1
T � N (T )new g oldFN (T )Fg oldJ(T ,T ) p .old new {

0 otherwise

The sampling algorithm, which will be called “T-sampler,” is
as follows:

1. Start with an arbitrary table .T � Cold j

2. Choose an arbitrary table , and calculateT � Ng(T )new old

p(T )J(T ,T )new new oldh p min 1, .[ ]p(T )J(T ,T )old old new

3. With probability h, set .T p Told new

4. Return to step 2.

The T-sampler algorithm is stopped after a predefined constant
number of steps, denoted by z, and outputs the final contingency
table T. It is guaranteed that, when z is large enough, T is sampled
with probability close to . The last sentence holds true, sincep(T)
the sampler is irreducible (this is proved in appendix A). The
running time of the T-sampler algorithm is bounded by a con-
stant, since z is a predefined constant.

Once a permutation is drawn, calculating takesd Q(d )i i

, so the total running time of the algorithm (applying theO(nm)
-sampler for NR permutations) is . We note that, whenG O(N nm)R

n is not too large, the sampling of the contingency table can be
done by calculating the probability of all possible contin-s�1O(n )
gency tables. This is relevant, in particular, when testing individ-
ual SNPs (and, thus, ).s p 2

Calculating g(di) and the P value.—After a random permutation
is drawn from , is calculated in the following way: ac-d G g(d )i i

cording to equation (2), we need to calculate both andQ(d )i
. The second term, , equals and ism� Q(d ) � Q(d ) � FH Fi i jd �H d �H jp1i i

calculated only once, as a prepossessing step. We denote this value
by G. The first term is calculated in time, by going over allO(m)
columns and counting .Q(d ) p F{jF 1 � j � m, S (d ) � S(d)}Fi j i

To calculate the P value, define

1 nF p p .( )
yf(d )i

The P value is calculated using equations (1) and (2):

1N NR R F1 f(d ) 1ip p lim p lim (4)� �
1N g(d ) Nip1 ip1N r� N r�R i RR R Q(d )iG

NRG 1 1
p lim .�

F N Q(d )ip1N r� R iR

Hence, is calculated by .NG 1 1Rp # �R ip1F N Q(d )R i

It follows from equation (4) (with the assumption that G was
correctly computed) that the only factor that determines the ac-
curacy of the importance sampling is the variance of and not1

Q(e)
whether it is small or large. The smaller the variance, the better
the accuracy. This relationship is discussed theoretically in ap-
pendix A. In practice, as described in the “Results” section, the
variance of (or of the calculated P value) was small, though1

Q(e)
not zero, when real data were used. Intuitively, this can be ex-
plained by the limited range of linkage between markers: if the
linkage is limited to, at most, c markers, will not be muchQ(e)
larger than c, and, hence, will be bounded.1Var [ ]Q(e)

Using LD Decay to Improve Time Complexity

In this section, we show how to improve time complexity, under
assumptions of biological properties of the data. Assume that two
SNPs separated by �c SNPs along the genome are independent,
because of the LD decay along the chromosome. c is called the
“linkage upper bound” of the data. Hence, when calculating

for each permutation , it is unnecessary to go over all mQ(d ) di i

SNPs. Let be the position of the SNP that induces the permu-bi

tation that achieves maximum score. Only SNPs within a dis-di

tance of c—that is, SNPs whose positions are between andb � ci

—are checked.b � ci

The remaining SNPs are independent of , so them � 2c � 1 bi

expected number of columns that give scores 1 isS(d) (m � 2c �

, where q is the probability for a single column to result with1)q
a score 1 . q can be calculated only once at the preprocessingS(d)
step. Consequently, only operations are needed to calculateO(cn)

, instead of . Since operations are needed for theQ(d ) O(nm) O(nb)i

preprocessing phase, the total time complexity is .O(nb � N nc)R

Observe that, by increasing the value of c, one can improve the
accuracy of the procedure at the expense of longer run time.

It should be pointed out that, by using this scheme, the correct
expectation of is obtained, since the remote markers areQ(d )i
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Figure 1. Comparison of running times of the two algorithms
that test the disease association of individual SNPs. We present
run times of RAT (#) and SPT (circles) on simulated data under
the coalescent model with recombination. The target P value was

in all cases. Running times reflect savings due to importance�610
sampling only, without the additional possible savings due to LD
decay. The Y-axis gives the logarithm (base 10) of the running
time in seconds.

independent of . Theoretically, the remote markers need notbi

necessarily be independent of each other, and, hence, the cal-
culated may be biased. In practice, as we shall show (in theQ(e)
“Results” subsection “Real Biological Data”), this is a faithful ap-
proximation. Upper bounds on the number of permutations re-

quired to search for a P value p are derived in appendix A, both
for SPT and RAT.

Results

We implemented our algorithm in the software package
RAT in C�� under LINUX.

Simulated Data

To simulate genotypes, we used Hudson’s program that
assumes the coalescent process with recombination23 (ms
software). We followed Nordborg et al.,28 using a mutation
rate of per nucleotide per generation, a recom-�82.5 # 10
bination rate of per pair of nucleotides per genera-�810
tion, and an effective population size of 10,000. Of all the
segregating sites, only the ones with minor-allele fre-
quency 15% were defined as SNPs and were used in the
rest of the analysis. We used the strategy described else-
where29 in choosing the disease marker—that is, we chose
a SNP locus as the disease locus if it satisfied two condi-
tions: (1) the frequency of the minor allele is between
0.125 and 0.175, and (2) the relative position of the
marker among the SNPs is between 0.45 and 0.55 (i.e., the
disease locus is approximately in the middle). The chosen
disease SNP was removed from the SNP data set. We then
generated case-control data according to a multiplicative
disease model. The penetrances of genotypes aa, aA, and
AA are l, lg, and lg2, respectively, where l is the phe-
nocopy rate and g is the genotype relative risk. As in Zhang
et al.,29 we set and , which corresponds tog p 4 l p 0.024
a disease prevalence of 0.05 and a disease-allele frequency
of 0.15. Finally, N cases and N controls were randomly
chosen for each experiment.

We compared the times until convergence in both al-
gorithms, where convergence was declared when the SD
of the computed P value drops below . In all our tests,�610
the actual P values were � (see the “Discussion” sec-�610
tion). We set in RAT, so no LD decay is assumed,c p m
and the running time is measured using only the impor-
tance-sampling component. The approximation algo-
rithm was used in all cases, with the parameter b set to
100. The running times of SPT are very large and, there-
fore, were extrapolated as follows: since at least per-610
mutations are needed to achieve an accuracy of (see�610
appendix A), we measured the running time for 100 per-
mutations, excluding the setup cost (e.g., loading the files
and memory allocation), and multiplied by to obtain410
the evaluated running time. We validated this extrapo-
lation by conducting several experiments with 1,000 per-
mutations. The differences between different runs of 1,000
permutations were ! . All runs were done on a Pen-1.5%
tium 4 2-GHz machine with 0.5 gigabytes of memory.

In the first setup, we simulated 20,000 haplotypes in a
region of 1 Mb. Overall, 3,299 SNPs were generated. We
compared the running times when varying three param-
eters: (1) the number of SNPs (100, 200,…, 2,000), (2) the



486 The American Journal of Human Genetics Volume 79 September 2006 www.ajhg.org

Figure 2. Convergence of RAT to the “true” P value. Each of the five figures represents a different experiment with 100 controls and
100 cases of simulated SNPs in a 1-Mb region (∼3,000 SNPs), under the coalescent model. SPT P value was evaluated by applying
10,000 (A, D, and E) or 100,000 (B and C) permutations. The horizontal dashed lines correspond to the 95% CI of SPT P value. Each
graph corresponds to the RAT P value.

number of sampled cases and controls ( , 1,000,…,N p 500
5,000), and (3) the SNP density. We chose every ith SNP,
where i varies from 1 to 10 (this corresponds to SNP den-
sities between 3,299 and 329 SNPs/Mb). The results are
summarized in figure 1. On average, RAT is faster than SPT
by a factor of 15,000. For example, it would take ∼62 d
for SPT to evaluate all 3,299 SNPs for 5,000 cases and 5,000
controls, whereas RAT needs 13 min to obtain the result.

We also tested both algorithms on a very large data set
consisting of 10 different regions of 1 Mb each. This data
set, generated as described above, contained 5,000 cases
and 5,000 controls with 30,556 SNPs. For RAT, we used a
linkage upper-bound value of kb, on the basis ofc p 100
our observations of LD decay in real biological data (see
the “Real Biological Data” subsection). The evaluation of

the running time of SPT was performed by the same ex-
trapolation method described above. For this data set, SPT
would take 4.62 years to achieve the required accuracy of

, whereas RAT’s running time is 24.3 min (i.e., 100,000�610
times faster).

Since RAT and SPT are both based on sampling, their
computed P values are distributed around the exact one.
Does RAT provide accuracy similar to SPT, in terms of the
spread of their distributions? To answer this question, we
tested whether RAT converges to the P value obtained by
SPT. To obtain a reliable estimate of the P value obtained
by SPT, we used a relatively small number of cases and
controls and ran SPT for a large number of permutations.
We simulated five different data sets, each with 3,299 SNPs
and with 100 cases and 100 controls. We ran SPT for
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Figure 3. Dependence of accuracy on the P value. Data sets were
simulated SNPs under the coalescent model with recombination of
a 1-Mb region. To obtain different P values, we performed the
simulations with different numbers of cases and controls ranging
from 50 to 500.

Figure 4. Running times of RAT and SPT at different P values.
The data sets are simulated data under the coalescent model with
recombination of a 1-Mb region (∼3,300 SNPs) of 5,000 cases and
5,000 controls. To obtain different P values, the simulations were
performed with different phenocopy rates (l parameter) of the
multiplicative disease model. # p RAT; circles p SPT. The Y-axis
shows the logarithm (base 10) of the running time in seconds,
and the X-axis shows the logarithm (base 10) of the P value.

10,000 permutations, to calculate 95% CIs of the “true”
P values. Since a small P value was obtained (!.001) in
two of these experiments, we increased the number of
permutations to 100,000, to improve the accuracy. The
results are summarized in figure 2. In all five cases, con-
vergence of the P value calculated by RAT to the CI was
obtained after !100 permutations.

Our theoretical analysis (see appendix A) shows that,
when RAT with a linkage upper bound is used, the ac-
curacy (measured by SD) increases as the P value decreases.
For evaluation of the actual connection between these two
measures, we used simulated data of a 1-Mb region, as
described above. We conducted several experiments with
different values of N, to obtain a range of P values. In each
experiment, we generated 100 permutations, to estimate
the SD. The results are presented in figure 3. For the whole
range of P values, the SD is, on average, 1/15 of the P
value.

The complexity analysis of both algorithms (see table
A1) shows the theoretical advantage of RAT over SPT when
the required P value is sufficiently small. At what level of
P value does RAT have an advantage in practice? To answer
this question, we tested both algorithms on data generated
by the simulation described above. The data contain
∼3,300 SNPs from 5,000 cases and 5,000 controls. To ob-
tain different P values, the simulations were performed
with different phenocopy rates (l parameter) of the mul-
tiplicative disease model. The results are presented in fig-
ure 4. A shorter running time for RAT can be observed,
starting from .�2P p 10

Real Biological Data

We also tested RAT on HapMap project data. We used SNPs
from chromosomes 1–4 of 60 unrelated individuals in the
CEPH population. We used the GERBIL algorithm and
trios information15,30 to phase and complete missing SNPs

in the data. We amplified the number of samples by adapt-
ing the stochastic model of Li and Stephens for haplotype
generation.31 When there are k haplotypes, the st(k � 1)
haplotype is generated as follows: first, the recombination
sites are determined assuming a constant recombination
rate along the chromosome (we used per pair of ad-�810
jacent nucleotides). Second, for each stretch between two
neighboring recombination sites, one of the k haplotypes
is chosen, with probability 1/k. The process is repeated
until the required number of haplotypes is achieved. After
amplification of the number of samples, cases and con-
trols were chosen as described in the “Simulated Data”
subsection.

We wanted to test the effect of the linkage upper bound
of the algorithm on real data. Different linkage upper
bounds ranging from 1 to 500 kb were checked. For each
of the four chromosomes, we used the first 10,000 SNPs
(∼85 Mb) in 200 cases and 200 controls and applied RAT
with varying values of c. The results are presented in figure
5. A linkage upper bound of 75 kb (which corresponds to
9 SNPs, on average) appears to be enough to obtain very
accurate evaluation of the P value.

For a scenario of genomewide association studies that
requires typing and checking numerous sites, we used the
first 10,000 SNPs of chromosome 1, which span ∼84 Mb.
We used 1,000 cases and 1,000 controls. For this data set,
the running time of RAT for testing disease association of
individual SNPs was 361 s (∼6 min), compared with the

s (∼30 d) needed for SPT.62.6 # 10
The contribution of the LD decay property is larger

when the data set contains more SNPs. To evaluate it, we
measured the running times of RAT while using different
linkage upper bounds, with 1,000 cases and 1,000 controls
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Figure 5. Effect of the linkage upper bound used on the P value calculated by RAT. Data sets A–D are the first 10,000 SNPs in
chromosomes 1–4, respectively, of 200 cases and 200 controls, which were amplified from 60 unrelated individuals (the CEPH population
from the HapMap project). The dashed lines correspond to the 95% CI of the calculated P value. The wide range of P values obtained
is probably due to the random choice of the disease SNP, the stochastic model of the disease, and chromosomal characteristics.

Figure 6. Effect of the LD decay on the speed of RAT. The Y-axis
shows the time required by the permutation phase of the RAT
algorithm. The X-axis shows the assumed linkage bound. The data
are the first 10,000 SNPs in chromosome 1 of 1,000 cases and
1,000 controls, which were amplified from 60 unrelated individuals
(the CEPH population from the HapMap project).

for the 10,000 SNPs of chromosome 1. The permutation
phase of RAT takes 7 s when the linkage upper bound is
1,000 kb and !2 s when it is set to 200 kb (fig. 6). Without
the use of this property, 265 s are required (a factor of
132). An additional preprocessing time of 96 s is needed
in both cases.

Discussion

The faithful calculation of disease association is becoming
more important as more large-scale studies involving
thousands of persons and thousands of SNPs are con-
ducted. Testing not only individual SNPs but also haplo-
types and loci interactions will further increase this need.
Unfortunately, as the size of the data increases, the run-
ning time of SPT becomes prohibitively long. In this work,
we present an algorithm called “RAT” that dramatically
reduces the running time. Our analysis shows that RAT
indeed calculates the permutation test P value with the
same level of accuracy as SPT, but much faster. Our ex-
periments illustrate that the running time of our algo-
rithm is faster by 4–5 orders of magnitude on realistic data
sets. This vast difference in the running time enables an
evaluation of high-significance association for larger data
sets, including evaluations of possible loci interactions
and haplotypes.

It is important to emphasize that the advantage of RAT

over SPT applies only when the sought P value is low.
Consider a case-control–labeled data set of SNPs, and sup-
pose there is no association with the disease (e.g., P p

. Using SPT, one can halt the test after very few per-.5
mutations and conclude that no association exists.
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An important reason for achieving high-significance re-
sults was presented by Ioannidis et al.,32 who asked why
different studies on the same genetic association some-
times have discrepant results. Their aim was to assess how
often large studies arrive at conclusions different from
those of smaller studies and whether this situation arises
more often when there is a contradiction between the first
study and subsequent works. They examined the results
of 55 meta-analyses of genetic association and tested
whether the magnitude of the genetic effect differs in
large, as opposed to smaller, studies. They showed that,
in only 16% of the meta-analyses, the genetic association
was significant and the same result was obtained inde-
pendently by several studies, without bias. In a later work,
Ioannidis33 discussed possible reasons for bias in relatively
small association studies. He argued that, when many re-
search groups conduct similar association studies, the neg-
ative results in studies that do not reach a sufficient sig-
nificance might never be published. Hence, the scientific
literature may be biased. It is hard, or maybe impossible,
to correct this multiple-testing effect, since a researcher
may not be aware of other groups that study the same
question. The solution to this problem is to conduct larger
association studies, which, one would hope, would yield
lower P values. In that sense, knowing that the P value is
below, say, is not sufficient, and obtaining the most�210
accurate evaluation possible of the P value is crucial.

Our procedure also has an advantage in testing a large
population for more than a single disease, where different
diseases may be associated with the genotypes at different
intensities. Here, one also has to correct for testing mul-
tiple diseases. Consider a study that addresses 100 diseases.
In such a scenario, a P value of .01 for a specific phenotype
obtained by SPT with 100 permutations is not sufficient.
In this case, a more accurate evaluation of the significance
of association for each of the phenotypes is required. This
can be done either by increasing the number of permu-
tations of SPT, which may be time prohibitive, or by using
RAT.

Unlike several previous methods, we do not assume any
distribution function of the trait, given the SNPs. The ran-
dom model (adopted from Zhang et al.13) assumes only
that the cases and controls are sampled independently
from a specific population, without any additional re-
quirements about the distribution. However, even this as-
sumption does not always hold. One of the crucial prob-
lems in drawing causal inferences from case-control
studies is the confounding caused by the population struc-
ture. Differences in allele frequencies between cases and
controls may be due to systematic differences in ancestry
rather than to association of genes with disease.34–36 In this
article, this issue is not addressed, and we intend to study
it in the future. We believe that this problem can be solved
by incorporating methods for population structure
inference37,38 into RAT.

Using the LD decay property improves the theoretical
running time of our method, from toO(nb � N nm)R

. This improvement is meaningful when theO(nb � N nc)R

tested region is much larger than c, the linkage upper
bound. In practice, in our experiments, the reduction in
the running time due to the importance sampling was
much more prominent. We are not aware of a method
that can take advantage of LD decay to reduce the running
time in SPT. As we show, the importance-sampling ap-
proach can readily exploit the LD decay property. Since
each drawn permutation in the importance-sampling pro-
cedure is induced by a known locus, testing only neigh-2c
boring loci is possible.

RAT can also expedite association analysis when the
phenotypic information available for each individual is
more complex. For instance, there may be several addi-
tional phenotype columns in the input that describe
smoking status, sex, age group, or existence of another
specific disease. Obviously, with certain factors one cannot
use the property of LD decay, but the speed-up due to the
importance-sampling algorithm still applies.

We have focused here on the problem of finding asso-
ciation between a genotype matrix and a binary trait (cases
and controls), but our algorithm can easily be adapted to
also handle continuous traits. A possible score function
for a specific column j can be the score used in the ANOVA
model, denoted by . The statistic is , and the PF max Fj j j

value can be calculated by permuting the trait values of
individuals, similarly to the binary-traits case. We can use
the same methodologies presented here to efficiently cal-
culate the P value.

This work improves the methodologies for the upcom-
ing large-scale association problems. We achieve a dra-
matic reduction in the time complexity, enabling us to
evaluate low-probability (and high-significance) associa-
tions with many loci, which was previously time prohib-
itive. Nevertheless, much more research should be done
in this direction. If the number of loci is in the tens of
thousands, testing all pairwise interactions is too time
consuming, even with our algorithm. If one wants to ex-
amine k loci interactions, the running time increases ex-
ponentially with k and becomes prohibitive, even for a
relatively small number of SNPs. Additional assumptions,
such as nonnegligible marginal effects,20 may help to re-
duce complexity. We hope that, eventually, combining
such assumptions with faster algorithms like RAT may fa-
cilitate better analysis of very large association studies.
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Appendix A
Theoretical Upper Bounds on the Accuracy

We use the SD of the estimated P value in both algo-
rithms, as a measure of accuracy. Obviously, in both al-
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gorithms, when more permutations are sampled, the SD
is lower. Here, we provide mathematical analysis that re-
lates the number of permutations, the data parameters,
and the accuracy.

For SPT, given that permutations are performed, ifNS

none of the permutations yields a score , weS(d ) 1 S(d)i

can evaluate the SD by

1 1(1 � )N NS S 1�SD(p ) p p V , (A1)( )S N NS S

which implies that, to achieve an accuracy of , ∼1/ per-e e

mutations are needed. In particular, when an accuracy
equal to the true P value p is desired, .N ≈ 1/pS

For the RAT algorithm, let , and let be ,U p FHF c Q(d )i i

where is the ith permutation out of all possible U per-di

mutations in . Let Q denote the random variable ,H Q(e)
where e is a permutation sampled from .G

The expectation of 1/Q is

U1 c 1 UiE p # p ,( ) �
Q G c Gip1 i

and the variance of the calculated P value is

NRG 1 1
Var (p ) p Var # (A2)�R [ ]F N Q(d )ip1R i

NR2G 1 1
p Var( ) �[ ]F N Q(d )ip1R i

2 21 G 1 12
p E � E( ) ( )( ) [ ] [ ]{ }N F Q QR

U
2 21 G 1 1 U

p �( ) � ( )[ ]N F G c Gip1R i

U
2 21 G U 1 1 U

p �( ) � ( )[ ]N F U G c Gip1R i

U
21 G U 1 1 U

p � .( ) � ( )[ ]N F G U c Gip1R i

Observe that

U p Fp . (A3)

Substituting equation (A3) into equation (A2) yields

U
21 Gp U 1 1 U

Var (p ) p � (A4)( ) � ( )R [ ]N U G U c Gip1R i

U 21 G 1 1 U p2p p � � ,� ( )[ ] 1N U U c Gip1R i N E( )R Q

where the last inequality follows from U1 10 � � �U cip1 i

.U( ) � 1G

Without additional assumptions, the expectation of 1/
Q is �1/m. Substituting in equation (A4), we have

m�SD(p ) � p .R NR

Hence, to obtain accuracy p, m permutations are needed.
This bound can be improved if we exploit the LD decay

property of biological data. Since LD decay is limited to
100 kb (see the “Real Biological Data” subsection in the
“Results” section) and the SNP density is, at most, 1:300
bases, in practice. With the assumption of a linkagec ! 350
upper bound c for a specific locus l, there are, at most,

loci that may depend on l. For each of the other loci,2c
the probability that its score with a permutation of the
vector at locus l is 1 is �p. Hence, we can writeS(d)

E(Q) � 2c � (m � c)p . (A5)

Since always holds true because of Jen-1/[E(1/Q)] � E(Q)
sen’s inequality, when substituting equation (A5) in equa-
tion (A4), we get

2c � (m � c)p�SD(p ) � p . (A6)R NR

Equation (A6) establishes the connection between the
data’s parameters and the accuracy. A prominent differ-
ence from the accuracy of SPT, described in equation (A1),
is the strong dependence on p. Interestingly, when all
other data parameters and NR are fixed, the smaller p is,
the more accurate the RAT algorithm is. In other words,
as p decreases, the convergence rate of RAT increases.

Arranging equation (A6) differently,

2 32cp � (m � c)p
N � .R 2[SD(p )]R

If we set the required accuracy, SD(pR), to be p, we have

N � 2c � (m � c)p � 2c � mp .R

Hence, to search for P values as low as p, the number of
required permutations is !( ). In that case, the time2c � mp
complexity of RAT can be written as .2O(nb � nc � pcnm)
The theoretical complexity of the algorithms is summa-
rized in table A1.

Proof of Irreducibility of the T-Sampler Algorithm

We provide a proof that the T-sampler algorithm pre-
sented in the subsection “An approximation algorithm”
(in the “Methods” section) is irreducible. Consider two
tables, and , from the sample space, such thatT T1 2

and . Our goal is to show that there is ap(T ) 1 0 p(T ) 1 01 2

path with probability 10 between and .T T1 2

If both and are boundary tables, thenT T T �1 2 2
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and, hence, , and there is positive prob-N (T ) J(T ,T ) 1 0g 1 1 2

ability to move from directly to .T T1 2

Suppose that, without loss of generality, is not aT1

boundary table. In that case, there are at least two non-
extreme rows a and b in . There are two tables inT1

that are created by legal tweaks on the submatrixN (T )g 1

T Ta,0 a,1 .( )T Tb,0 b,1

We use to denote the table in which is increasedT Tx a,0

by one and to denote the other table. The differenceTy

in the Pearson score of the tables and isT Tx 1

T T T Ta,0 b,1 a,1 b,0S(T ) � S(T ) p 2 � � �x 1 ( )T T T TEa,0 Eb,1 Ea,1 Eb,0

1 1 1 1
� � � � p d � w ,( )T T T TEa,0 Eb,1 Ea,1 Eb,0

where

T T T Ta,0 b,1 a,1 b,0
d p 2 � � �( )

T T T TEa,0 Eb,1 Ea,1 Eb,0

and

1 1 1 1
w p � � � .( )

T T T TEa,0 Eb,1 Ea,1 Eb,0

Similarly, .S(T ) � S(T ) p �d � wy 1

Since , at least one of the expressionsw 1 0 S(T ) � S(T )x 1

and is positive. Suppose that, without loss ofS(T ) � S(T )y 1

generality, . Then, , and .d 1 0 S(T ) 1 S(T ) � S(d) p(T ) 1 0x 1 x

This means that the probability that the sampler moves
from to is positive.T T1 x

If rows a and b still do not have extreme values in ,Tx

the exact same procedure can be repeated again and again,
until we obtain a table in which at least one of these∗T1

rows has an extreme value.
Suppose a steps were performed, generating a sequence

of tables . A straightforward inductive∗T ,T ,…,T p T1 2 a�1 1

argument shows that, for all k, S(T ) � S(T ) p d �k�1 k

. The last inequality follows by the assumption2kw � w 1 0
that . Hence, all the tables in the sequence have pos-d 1 0
itive probability. The same argument is repeated with ad-
ditional nonextreme rows until a boundary table is
reached.

Consequently, there is a path with positive probability
from any nonboundary table to some boundary table.
Since, by definition, transitions between boundary tables
have positive probability, it follows that there is a path of
positive probability between any two tables with p(T) 1

, which proves the irreducibility of the sampler.0

Table A1. Summary of the Theoretical Time Complexities of SPT and RAT

Algorithm
Prepossessing

Phase
Permutations

Phase No. of Permutationsa Total Running Timea

SPT … V(N nm)S 1/p 1
V( nm)p

RAT (no assumptions) O(nb) O(N nm)R �m 2O(nb � nm )
RAT (LD decay assumption) O(nb) O(N nc)R �2c � mp 2O(nb � nc � pcnm)

NOTE.—For RAT with LD decay, as the true P value decreases, fewer permutations are needed, and the relative weight of
the preprocessing phase increases.

a Needed to achieve accuracy p.

Web Resources

URLs for data presented herein are as follows:

Affymetrix GeneChip Human Mapping 500K Array Set, http://
www.affymetrix.com/products/arrays/specific/500k.affx

Haploview, http://www.broad.mit.edu/mpg/haploview/
HapMap project, http://www.hapmap.org/
ms, http://home.uchicago.edu/˜rhudson1/source.html (software

that generates samples under a variety of natural models)
RAT, http://www.cs.tau.ac.il/˜rshamir/rat
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Chapter 3

Discussion

In the course of this thesis I studied computational problems in modern human

genetics, and developed novel algorithms and methods to analyze data sets in

this field. In most of our articles four steps of research were done:

1. Exploration of the possible mechanisms for generation of genetics data.

2. Formalization of the these mechanisms in new mathematical models and

using these models to formulate new biological problems (e.g., tag SNPs

selection and phasing).

3. Development of algorithms that solve these problems for large-scale data

sets.

4. Application of these new methods on real biological data sets, and compar-

ing the performance of our methods to recent published ones.

We continuously validated and developed our methods in two channels. First,

we utilized public genetics data as they become available to analyze our methods.

Second, we established collaborations with leading biological laboratories in Israel

and Germany, and conducted joint research that combines our computational

methods and their experimental data. Several of these collaborated researches

were submitted for publication, and two have already been published [11, 31].

These works are not included in this thesis.

Two performance criteria were considered and compared to previous works.

The first and foremost is accuracy. However, when a program becomes imprac-
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tically slow as one attempts to use it on larger and larger problems, one should

apply the criterion of speed, and test the trade-off between accuracy and speed.

Accuracy is not always easy to evaluate, and the golden standard for com-

parison is not always clear. In some cases, it is possible to use some additional

biological information that is not used by the algorithm, to evaluate the error

rate. For instance, in testing phasing algorithms, we used pedigree information

to obtain the true solution. In other cases, one has to use simulated data in order

to test one’s method. A common model in the literature for simulating SNPs and

haplotype is the coalescent model with recombination [19, 57]. In our work we

tried to use as much real biological data as possible, and used simulated data only

when there was no other alternative. For example, the data set of the Hapmap

project [60] contains millions of SNPs, but only on a limited number of persons.

To generate a larger sample of genotypes based on the Hapmap data, we used

an amplification method due to Li and Stephens [32] that generates additional

haplotypes based on the available real ones. In this way, the data that were

generated were only partially simulated, and were derived from real ones.

Reducing the time complexity of the algorithms was done in two different

approaches: First, we exploited the biological knowledge to improve the running

time of the algorithm. For example, in order to test associations between SNPs

and traits we used the property that SNPs that are in close physical proximity

to each other are often correlated, and that lower correlation is often observed

between loci that are far apart, to reduce the running time of the algorithm.

Second, we used computational methods for developing algorithms that are more

efficient.

3.1 Identifying Blocks and Resolving Geno-

types

The thesis research was started by redefining and studying the concept of

blocks [27, 28]. In simulations, our score leads to more accurate block detec-

tion than does the LD-based method of [10]. The latter methods apparently tend

to over-partition the data into blocks, as they demand a very stringent criterion

between every pair of SNPs in the same block. This criterion is very hard to

satisfy as block size increases, and the number of pairwise comparisons grows
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quadratically. On the data of [7] we generated a slightly more concise block

description than do extant approaches, with a somewhat better fraction of high-

LD pairs. We also treated the question of partitioning a set of haplotypes into

sub-populations based on their different block structures, and devised a practical

heuristic for the problem. On a genotype data set of [10] we were able to iden-

tify two sub-populations correctly, in spite of ignoring all heterozygous types.

While in some studies the partition into sub-populations is known, others may

not have this information, or further, finer partition may be detectable using our

algorithm. In our model we implicitly assumed that block boundaries in different

sub-populations are independent. In practice, some boundaries may be common

due to the common lineage of the sub-populations.

Next, we concentrated in performing phasing in a specific block. We investi-

gated the incomplete perfect phylogeny haplotype problem [21, 25]. The goal is

phasing of genotypes into haplotypes, under the perfect phylogeny model, where

some of the data are missing. We proved that the problem in its rooted version is

NP-complete. We also provided a practical expected polynomial-time algorithm,

under a biologically motivated probabilistic data generation model. We applied

our algorithm on simulated data, and concluded that the running time and the

number of distinct candidate phylogeny solutions are relatively small, under a

broad range of biological conditions and parameters, even when the missing data

rate is 50%. An accurate treatment for phasing of genotypes with missing entries

can therefore be obtained in practice. In addition, due to the small number of

phylogenetic solutions observed in simulations, incorporation of additional sta-

tistical and combinatorial criteria with our algorithm is feasible.

In order to obtain more accurate phasing, we formulated a stochastic model

for generation of genotypes. We presented a model for haplotype resolution and

block partitioning as one process, and an algorithm to resolve the model’s param-

eters (GERBIL) [22, 24]. In tests on real data, our algorithm gave more accurate

results than two previously published phasing algorithms [8, 12]. Most of our

comparisons concentrated on PHASE [52], at that time the leading algorithm for

haplotyping. PHASE (version 2.0.2), run with default parameters, was slightly

more accurate than GERBIL, but required two orders of magnitude more time.

The difference becomes crucial on larger data sets, containing 500 or more geno-

types. On such data sets PHASE required several days of computing time, and

on 800 genotypes or more it completely failed to provide a solution.



110 Chapter 3. Discussion

In a subsequent study [23], we further improved the model to reflect the some-

what blocky structure of haplotypes, but also to allow deviations, i.e. intra-block

transitions. A first order Markov model is used, without the need to maintain a

strict block structure. We have shown how to resolve the model parameters using

an EM algorithm. Our new model (HINT) was examined on a broad spectrum

of biological data sets. Prediction rate was used as a measure for the validity of

the model. The goal in our experiments was to predict a missing causative SNP,

given a training set of genotypes. We have shown that HINT gives more accurate

results when compared to simpler models. The advantage is not very large, but is

statistically significant. An additional interesting byproduct of our analysis is the

conclusion that better predictions are made when using haplotypes compared to

using genotypes. The strict blocky structure, on the other hand, seems to cause

loss of information, and was less accurate in predicting diseases.

It has been argued that haplotype block structures can be helpful for associ-

ation studies because each haplotype block can be treated as a single locus with

several alleles (the block-specific haplotypes) [7]. It was shown that finding the

blocks of SNPs is expected to contribute to association studies, by decreasing

the number of SNPs needed to be genotyped, with minimal loss of statistical

power [62]. A major problem is that, currently, there are different ways of defin-

ing and identifying haplotype blocks (for example, [27, 63, 30]). The advantage

of blocks is in reducing the number of multiple tests one has to perform when

conducting association studies. On the down side, this approach causes some

information loss. In HINT we try to take some advantage of the blocks, and by

relaxing the model to a “mosaic-like” structure, less information is lost.

After our paper was accepted, we learned of a novel study by Stephens and

Scheet, who used a variation of our HINT model [23] to develop a software that

can handle very large data sets. Their software, called fastPHASE [53], gave very

promising results, especially in terms of the accuracy of imputing missing data.

3.2 Selecting the Most Predictive SNPs

In our study [16] we have defined a novel measure for evaluating the quality of

tag SNP selection. The measure we use, prediction accuracy, has a very simple

and intuitive meaning: It aims to maximize the expected accuracy of predicting

untyped SNPs, given the unphased (genotype) information of the tag SNPs. The
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prediction itself is done using a simple majority vote. By making an additional

natural assumption that SNP values can be determined best based on the values

of their nearest tag SNPs on each side, the prediction becomes quite simple, and

the optimal selection of tag SNPs can be done in polynomial time.

We presented a method for tag SNPs selection and for SNP prediction based

on the genotype values of the tag SNPs. Our selection method, called STAMPA,

is unique in its treatment of the prediction part. Most extant methods for tag

SNP selection (e.g., [63, 2, 3, 43]) rely on haplotype information. Since such

information is often not readily available in real life scenarios, phasing of the

genotypes is assumed to have been done separately. One exception is the Hap-

Block algorithm [64], which selects the tag SNPs based on the genotypes and not

on the haplotypes. However, HapBlock selects the tag SNPs in order to maximize

diversity of the common haplotypes in blocks, and it is not clear whether that

method could be easily extended to a SNP prediction algorithm using genotype

data for the tag SNPs.

What is the best measure for selecting tag SNPs? The answer is not clear yet,

and also depends on the context. We proposed the expected prediction accuracy,

and showed that under reasonable assumptions it yields an efficient and accurate

method for selection. Still, other criteria have been proposed. If the ultimate goal

is to detect disease association, the power of a selection method may be evaluated

using this criterion. Our work shows that if the expected number of errors is

of interest, then our algorithms provide more accurate prediction compared to

existing algorithms.

3.3 Evaluating the Significance in Association

Studies

The last part of the thesis studied one of the important problems in modern hu-

man genetics today: evaluating the significance in association studies [26]. The

importance of calculating the probability for association will increase as more

large-scale studies, involving thousands of persons and thousands of SNPs, are

conducted. Testing not only individual SNPs but also haplotypes and loci in-

teractions will further intensify this need. Unfortunately, as the size of the data

increases, the running time of the standard permutation test limits it utility. In
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this work, we presented an algorithm (RAT) that aims to dramatically reduce the

running time. Our analysis shows that RAT indeed calculates the permutation

test p-value with the same level of accuracy much faster than the standard per-

mutation test. Our experiments illustrate that the running time of our algorithm

is faster by a factor of 104-105 on realistic data sets. This huge difference in the

running time is more than just a theoretical complexity improvement, since it

enables an evaluation of association for larger data sets with possible loci inter-

actions and haplotypes. It is important to emphasize that the advantage of RAT

over the standard permutation test applies only when the p-value is low, i.e., for

highly significant association.

New genotyping technologies like DNA chips [20] are expected to decrease the

cost of SNP typing studies substantially. However, the error rate and noise in such

high throughput experiments may be high. Moreover, in multi-factorial diseases,

such as cancer, high blood pressure or Alzheimer, the disorder is sometimes a

composition of several distinct diseases, and the complexity of the phenotype

adds to the noise in the data. For instance, a person may be mistakenly labeled

as healthy, just because during the research the disease has not became prominent

enough to be diagnosed. To tackle this problem, one should increase the number

of individuals in the study. Assuming there is an association between the SNPs

and the disease, this will decrease the p-value. Moreover, an experimenter may

want to sample more in order to increase her belief in the results before continuing

to the next step of drug development, which is very expensive. It is thus plausible

that studies in the future will contain thousands of people, resulting in relatively

low p-values.

Our work is only the first step in improving the methodologies in the up-

coming large-scale association problems. We achieve a dramatic reduction of the

time complexity, enabling us to evaluate associations with many loci, which were

otherwise time-prohibitive. Nevertheless, much more research should be done in

this direction. If the number of loci is dozens of thousands, testing all pairwise

interactions is too time consuming, even with our algorithm. If one wants to

examine the possibility of k-loci interactions, the running time increases expo-

nentially, and becomes prohibitive, even for a relatively small number of SNPs.

Additional assumptions, such as non-negligible marginal effects [35], may help

to reduce complexity. There is usually a trade-off between adding more assump-

tions (which implies performing less tests) and the running time. Eventually, we
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hope that combining such assumptions with sped-up algorithms like RAT may

facilitate better analysis of future association studies.

3.4 Concluding Remarks

The initial goal of our research was to study current central problems in mod-

ern human genetics, to formalize them, and to develop computational tools and

methods to analyze them. In all of our works, we applied the tools on real data,

and compared them to previous methods. An advantage in accuracy or in the

running time (or both) was demonstrated in all studies.

We have started by studying combinatorial problems concerning SNPs and

genotypes (blocks of high LD and perfect phylogeny). Next, our main research

focus was combining algorithms, probability and statistical theory in order to

model mutations and recombination processes, for developing improved methods

for genotype analysis (haplotypes inference and tag SNPs selection). Finally, we

used advanced techniques in probability and statistics to improve the accuracy

in evaluation of significance in association studies for very large data sets.

Notably, all of these problems are strongly associated and intertwined. Phas-

ing algorithms rely on partition into blocks to perform resolving. The phasing

information is crucial for tag SNPs selection, and for predicting the other SNPs

using the tagged ones. Tag SNPs selection is significant for association studies:

Selecting less SNPs in a study reduces the typing cost, so that more persons can

be typed. This increases the power of the study. The last step, association stud-

ies testing, is also strongly related to the definition of blocks, since association is

also tested between the haplotypes in the blocks and the disease.

During our research, a better understanding of several of the main compu-

tational problems in modern human genetics was achieved. This has led to the

development of more accurate and faster tools for analyzing nowadays large-scale

genotype data sets. As is often true in research, further improvements in all theo-

retical and practical aspects of the problems are probably possible and desirable.
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משקל ה שיווי חוסרועל כך שיש דעיכה ב) importance sampling( גימה לפי חשיבות דעל

שוואה לשיטה של מה סדרי גודל בהבכ יותרמהירה  השיטה . לאורך הכרומוזוםבתאחיזה

 הסטטיסטית של מובהקות אשר בה משתמשים לשם הערכת ה,מבחן תמורות רגיל

האלגוריתם היה , גודל בינוני עד גדולעל מאגרי נתונים ב,  כך למשל.אסוציאציה למחלות

 .והוריד את זמן הריצה משנים למספר בודד של דקות, 100,000 עד 5,000 פי ריות מהיר

 מובהקותאשר ניתן לחשב עבורן , שיטה זו מגדילה משמעותית את גודל הבעיות, לכן

  . למחלותבים”שבבביצוע מחקרי אסוציאציה בין , סטטיסטית גבוהה ומדוייקת

  



5. A block-free hidden Markov model for genotypes and its application 

to disease association. 

Gad Kimmel and Ron Shamir. 

Published in Journal of Computational Biology (JCB) [23]. 

בין מודל " פשרה"המודל מציע . ם חדש ליצירה של גנוטיפיהסתברותי  הוצג מודלבמאמר זה

אך מאפשר , הוא משקף את המבנה הבלוקי של הפלוטיפים: בלוק קשיח לבין חוסר מבנה

המודל הוא למעשה . באיזורים שאינם גבולות בין הבלוקיםגם  בין הפלוטיפים "החלפות"

רמטרים של המודל ההסתברותי פה. הכללה של המודל שהוצג בשני המאמרים הקודמים

 HINT) Haplotypeהאלגוריתם יושם בתוכנה בשם . EMי אלגוריתם " עמחושבים

INference Tool .( והשיגה דיוק רב ,  קבצי נתונים ביולוגיים שונים58התוכנה נבדקה על

  . בעבר שהוצגוים אחריםל מודשלושהי "הדיוק שהושג עציה של מחלות מאיותר במיפוי אסוצי

  

6. Tag SNP selection in genotype data for maximizing SNP prediction 

accuracy. 

Eran Halperin*, Gad Kimmel* and Ron Shamir (*equal contribution). 

Published in Bioinformatics journal supplement for the proceedings of The 

13th Annual International Conference on Intelligent Systems for Molecular 

Biology (ISMB 2005) [16]. 

, בי תיוג”שב באמצעות בים”שבמידה טבעית להערכה של חיזוי  הגדרנו בעבודה זו

בניגוד לשיטות . בי התיוג”שב בחירתוהשתמשנו במידה זו על מנת לפתח אלגוריתם ל

 ,תיוגהבי ”שב בהנתן ,חרים האבים”השבשיטת החיזוי של , בי תיוג”שב קודמות לבחירת

בלוקים ואינו תלוי בחלוקה ל, מאד יעילהאלגוריתם . הפלוטיפיםבגנוטיפים ולא ב משתמשת

בהפעלת האלגוריתם על מספר רב של קבצי נתונים ביולוגיים נצפה . לצורך מתן פיתרון

  .אשר פורסמו קודם לכן, בי תיוג”שב  לבחירתבדיוק לעומת שתי שיטותמשמעותי פור שי

 

7. A fast method for computing high significance disease association in 

large population-based studies. 

Gad Kimmel and Ron Shamir. 

An invited oral presentation in The Biology of Genomes meeting, Cold Spring 

Harbor Laboratory, 2006. To appear in American Journal of Human Genetics 

[26]. 

  הסטטיסטית של מחקרמובהקות חישוב ה הצגנו אלגוריתם מהיר לשםבמאמר זה

לא , בניגוד לשיטות אחרות. (case - control)אסוציאציה של נתונים מבוססי אוכלוסיה 

האלגוריתם מבוסס .  בהנתן הגנוטיפיםשל המחלהידועה פונקציית ההתפלגות הנחנו קיום 



3. Maximum likelihood resolution of multi-block genotypes. 

Gad Kimmel and Ron Shamir. 

Published in Proceedings of the Eighth Annual International Conference on 

Research in Computational Molecular Biology (RECOMB 04) [22]. 

 בידול י הבעיות שלבכדי להתמודד עם שתברותי ואלגוריתם סת פיתחנו מודל הבעבודה זו

 ליצירה של  על מודל הסתברותיהניתוח מבוסס. בתהליך אחד משותףוחלוקה לבלוקים 

ועליהם המודל , אשר בכל בלוק יש מספר נמוך יחסית של הפלוטיפים נפוציםכ, בלוקים

הבעייה הוצגה מתמטית כבעייה של מיקסום . מאפשר מוטציות ורקומבינציות נדירות

 בבדיקת. Expectation - Maximization  (EM)י אלגוריתם"ונפתרה ע, פוונקציית נראות

שפורסמו , תמים אחרים אלגוריולוגיים הושג דיוק טוב יותר משל שניהאלגוריתם על נתונים בי

  .במאמרים קודמים

 

4. GERBIL: genotype resolution and block identification using 

likelihood. 

Gad Kimmel and Ron Shamir. 

Published in Proceedings of the National Academy of Sciences of the United 

States of America (PNAS) [24]. 

 שיפרנו את השיטות המתמטיות לביצוע כאן. יר של המאמר הקודםמאמר זה הינו המשך יש

 הוספנו שיטות חדשות על מנת למדל את הנתונים הביולוגיים .שהוצגו במאמר הקודם, בידול

. Minimum Description Length (MDL)- באמצעות שימוש בל למש, בצורה מדוייקת יותר

 ביולוגיים מאגרי נתוניםהדגש בעבודה זו היה לבדוק את האלגוריתם על מספר רב של 

יושם בחבילת האלגוריתם .  אחרים בידול ולהשוות את הדיוק לאלגוריתמי, ממקורות שונים

 GERBIL (Genotype Resolution and Block Identification using בשם תוכנה

Likelihood) . בדקנו אתGERBILקבוצות גדולות של נתונים ביולוגיים ממקורות  על ארבע 

. PHASE -זמן הריצה לאלגוריתם נפוץ בספרות המדעית את השווינו את הדיוק ו. שונים

ברירת המחדל  כאשר הרצנו אותו עם פרמטרי GERBIL-אלגוריתם זה היה יותר מדוייק מ

תוך , נו את שני האלגוריתמיםיכאשר השוו.  בסדרי גודל ארוך יותרלם דרש זמן ריצהאו, שלו

זמן ,  נתונים הכוללים מאות גנוטיפיםעל.  היה מדוייק יותרGERBIL, כדי מתן זמן ריצה זהה

, לכן.  הופך אותו לבלתי שמישPHASE רוך הדרוש לצורך הפעלת האלגוריתםהריצה הא

GERBIL ר בהפעלה על נתונים ממחקרים גדולים הכוללים מאות יתרון ברו הינו בעל

  .גנוטיפים

  

 



וצגו בכנסים אשר פורסמו בכתבי עת מדעיים וה, שבעה מאמריםעבודה זו מבוססת על 

  :להלן פירוט תקציר המאמרים. מדעיים

 

1. Computational problems in noisy SNP and haplotype analysis: block 

scores, block identification and population stratification. 

Gad Kimmel, Roded Sharan and Ron Shamir. 

Published in Proceedings of the Workshop on Algorithms in Bioinformatics 

(WABI 03) [27] and in INFORMS Journal on Computing [28]. 

פונקציית . לבלוקים חקרנו מספר בעיות חישוביות שעולות בחלוקה של הפלוטיפים בעבודה זו

, קשה-NPהראינו כי הבעייה היא . המטרה היתה למזער את מספר ההפלוטיפים בבלוק

מספר גרסאות של  והצגנו אלגוריתמי קירוב ל,כאשר יש טעויות מדידה ונתונים חסרים

תחת מודל מתמטי , הצגנו אלגוריתם שפותר את הבעייה בהסתברות גבוהה, בנוסף. בעייהה

וריתם האלג, לציהוסימעל נתוני כאשר הרצנו את האלגוריתם . ת בילוגיותשמבוסס על הנחו

נו כי חלוקת יהרא, על נתונים ביולוגיים.  לבלוקים האמיתייםשלנו יצר בלוקים דומים מאוד

 שיווי חוסר המבוסס על ,אחר אלגוריתםי "הבלוקים שלנו יותר מדוייקת מחלוקה המבוצעת ע

  .משקל בתאחיזה

 

2. The incomplete perfect phylogeny haplotype problem. 

Gad Kimmel and Ron Shamir. 

Published in Proceedings of the Second RECOMB Satellite Workshop on 

Computational Methods for SNPs and Haplotypes [21] and in Journal of 

Bioinformatics and Computational Biology (JBCB) [25]. 

כאשר , העץ הפילוגנטי המושלם על פי מודל בידול שהבעייה של ביצוע , הוכחנובמאמר זה

 , על פי רוב, שכן,חשיבות הבעייה גדולה. שלמה-NP היא בעייה ,חלק מהנתונים חסרים

,  הבעייהפיתרוןלשם .  עקב סיבות טכניותאינה מלאה בנתונים בילוגיים בים”השבמדידת 

 אלגוריתם אשר פיתחנו, תחת מודל זהו ,ות בילוגיות הנחוסס עלהגדרנו מודל מתמטי המב

הראינו , ציהול מסימבבדיקות שערכנו על נתוני.  בגודל הקלטתרץ בתוחלת זמן פולינומיאלי

  .שהאלגוריתם משיג את הפתרון הנכון בזמן ריצה נמוך יחסית

 

 

 

 

 

 



ולפיכך  בים”השבקיימת מדידה חלקית בלבד של , תיוגהבי ”שבכאשר מבוצעת מדידה של 

  . מדוייקבידוללצורך ביצוע  עלולה לא להספיק בי התיוג”שבבין הפיזית קרבה ה

 

  מבחני אסוציאציה למחלות

 ,היאש ,בים”שבהמטרה העיקרית של מדידת מבחני האסוציאציה באים לשרת את 

 - שני סוגים עיקריים של מחקרי אסוציאציה נםיש.  קישורם למחלות נפוצות שונות,כאמור

, ם ממשפחה אחת או ממספר משפחותבו החולים והבריאים נבחרי, מחקר מבוסס משפחות

 בו חולים ובריאים נבחרים אקראית ,)case - control study (כלוסייהמבוסס אוומחקר 

  .מהאוכלוסיה

רכזנו בעיקר בשיטות החישוביות של מחקר מבוסס במסגרת המחקר שלנו הת

התאמה  שמבוצע במחקר מבוסס אוכולוסיה הוא מבחן טיבהסטטיסטי המבחן  .אוכלוסיה

ות שונות למדידת הקשר  גישותקיימ,  רביםבים”שבכאשר יש . ]41 [ בודדSNPעבור 

 הסטטיסטית היא מובהקותהבעייה העיקרית בהערכת ה.  למחלהבים”השבהסטטיסטי בין 

ים  תלויבים”השב ,מאידךו ,השערות מרובותיש לתקן ל ולכן בים”שבשמחד יש מספר רב של 

לשם פיתרון הבעייה הוצע . בונפרוני הוא שמרני מדיש "כך שהתיקון הקלאסי ע, זה בזה

 הרעיוןש , קרלו-י שיטת מונטה "הסטטיסטית ע אשר מעריך את המובהקות] 62[לגוריתם א

 תוך כדי חישוב, ל החולים והבריאים על התוויות ש תמורותהעומד מאחוריו הינו ביצוע

ללא ,  ישירותהמבחנים המרוביםשהיא פותרת את בעיית הוא  היתרון בשיטה זו .הסטטיסטי

סרונה ח, עם זאת . יחסית נפוצההשיטה דיוקה משום. ת מדימרניוצורך בשימוש בשיטות ש

 רך לבצע הערכה מדוייקת של המובהקותכאשר יש צו. שלהזמן הריצה  אורך הוא

ידרוש זמן ריצה של ל "האלגוריתם הנ,  באלפי אנשיםבים”שבהסטטיסטית של מאות אלפי 

  .על מחשב סטנדרטיעד שנים  חודשים

 יתקיימו וצפוי כי בעתיד,  במאות אנשיםבים”בש כיום קיימים מחקרים המודדים

 הנמדדים צפוי לעלות עם שיפור בים”השבגם מספר ]. 39 [מחקרים שיכללו גם אלפים

 בים”שב 500,000טכנולוגיה שמסוגלת למדוד  כאשר כבר היום יש בנמצא, הטכנולוגיה

להתמודד עם יש חשיבות רבה בפיתוח כלים חישוביים שיוכלו , אי לכך]. 58[בניסוי אחד 

  .כמות הנתונים הרבה הזאת

 

 

 

 

 

 



רוב הטכניקות המעבדתיות אינן  .(genotype)  גנוטיפ נקראאותו אדםפלוטיפים של הה

זוגות של  רצף המציג, אלא מידע גנוטיפי ,נפרד כל כרומוזום במספקות מידע הפלוטיפי על

  :עבור רצף הגנוטיפ הבא,  למשל. מכל עותק של הכרומוזוםבים”השבלא סדורים של 

{A,A} {A,C} {C,G} יש שתי אפשרויות לזוג של ,  באדם מסוייםבים”שבשלושה  של

הואיל ויש ערך רב באיתור ההפלוטיפים עצמם . AAC- וACGאו , AAG- וACC: הפלוטיפים

 מכיוון .(phasing) בידולא זה נקרחישוב תהליך . התעורר הצורך בחישובם מתוך הגנוטיפים

 פותחו שיטות חישוביות , של גנוטיפלבידולרונות רבים אפשריים  יש פתשבהעדר מידע נוסף

  . באופן סימולטני על אוכלוסיה של אנשיםהבידולרבות אשר מבצעות את תהליך 

 עץ פילוגנטי מושלם על פי מודל בידולע וציבת היא גישה נפוצה ושימושי

(perfect phylogeny tree) ]14[.אשר יצר את , יחה שקיים עץ הפלוטיפים גישה זו מנ

הנסמכות על הנחות ביולוגיות , מקיים תכונות מתמטיות מסויימותואשר , ההפלוטיפים בהווה

  שמוטציה מתרחשת במיקום מסויים פעם אחת בלבד במהלך ההסטוריהכדוגמת ההנחה(

ימים טיפים שמתאההפלו מציאת  היא, המתעוררת בהקשר זההבעייה החישובית. )הגנטית

קיימים .  שמסביר את קיומםפילוגנטי מושלם עץ קייםשכך , אשר רצפם נתוןלגנוטיפים 

  .אשר הראו תוצאות מדוייקות על נתונים ביולוגיים, ]8[אלגוריתמים הנסמכים על מודל זה 

רוב .  מודל הסתברותי ליצירת ההפלוטיפים והגנוטיפיםהגדרתהיא , גישה נוספת

כן  וHardy-Weinberg  [17]יווי משקלש מניחים, שה זוגישעושים שימוש בהמחקרים 

. בלוק בנפרדכל מבוצע בתוך עצמו  בידול הכאשר, ים מקרייםזיווגמ שהאוכלוסיה נוצרה

  .תהליך אחדכ וחלוקה לבלוקים בידולאשר מבצעות ] 12,52[לאחרונה הוצעו גישות חדשות 

 

 בי תיוג”שב

על מנת , לכן.  שנמדדים בוםבי”השב ממספר תהעלות הכוללת של מחקר מושפע

תוך ,  בכל אדם הנמדדבים”השב חוקרים מנסים למזער את מספר,  כלכליותסוך בהוצאותלח

  הנקראתבים”השבקבוצה של -י בחירה של תת"עתהליך זה מבוצע  .מידע  מינמלי שלאיבוד

 תיוגהי ב”שבאת ערכי מדוד לל גנטיקאי וכי, בזמן עריכת ניסוי, כך. (tag SNPs) בי תיוג”שב

הרחבת היקף המחקר  או  בעלויות כספיותמדידה חלקית זאת מאפשרת חיסכון .בלבד

  .מסקנותיוחיזוק הסטטיסטי של המחקר ו הכוח תוך כדי העלאת, אנשים רבים יותרל

עולה שאלת הגדרת , ראשית.  הינה אתגר חישובי מסיבות רבותבי תיוג”שבמציאת 

 בכל בלוק בי תיוג”שבגנוטיפים לבלוקים ומחפשות שיטות רבות מחלקות את ה. בי התיוג”שב

רי שהן מובילות לאובדן המידע  ה,הגם ששיטות אלו מסייעות בפיתרון הבעייה. בנפרד

 מידעלרוב ה, שנית. ולתלות של הפיתרון בחלוקת הבלוקים,  בין בלוקים שוניםהמקשר

 כלים חישוביים אשר םקיימי, כמו שתואר לעיל. םנתונים רק הגנוטיפיההפלוטיפי לא ידוע ו

.  השוניםבים”השב בין  מדוייקים רק כאשר יש קירבה רבהאולם כלים אלו, בידולמבצעים 



 תקציר

  

  רקע כללי

 של (DNA) .א.נ.ד רצפי  הבדלים ביןחיפושת ריצוף הגנום האנושי מאפשרת השלמ

מחלות , שבץ מוחי, מחלות נפוצות כדוגמת סרטן עם וקישורם, נשים שונים לכל אורך הגנוםא

לאורך חוקרים מתרכזים במיקומים ,  מטרה זולצורך השגת. סכרת ואסתמה, לב וכלי דם

מיקומים אלו .  באוכלוסיהאשר מראים שונות בתכולת חומצות האמינו שלהם, .א.נ.הד

. ]Single Nucleotide Polymorphisms (SNPs)) [ב"שב(שונות בבסיס בודד ים נקרא

  מספר מחקרים. מיליון10-ב מוערך הכולל םמספרו] 47,56 [ עד היוםנמצאו בים”שבמיליוני 

ים עם כי הסיכון ללקות במחלה נפוצה מושפע מגורמים גנטיהראו  [36,38,46] ראשוניים

מה השערה זו  כספו מספיק נתונים על מנת להבין עד נאטרם. גבוהה באוכלוסיהשונות 

 מאמץ מרכזי של הקהילה המדעית  כיוםהוא בים”שבזיהוי ומחקר , לכן. ניתנת להכללה

  .]60 [הבינלאומית

  

   שיווי משקל בתאחיזהבלוקים של חוסר

קרובים זה  הבים”שב  (haplotype).נקרא הפלוטיפ לאורך כרומוזום בים”השברצף 

 שיווי משקל חוסרי "קורלציה זו נמדדת ע. בקורלציה גבוההלרוב מצאים נ, לזה בגנום

 שיווי משקל בתאחיזה נוטה לדעוך חוסר]. Linkage Disequilibrium (LD) []44[בתאחיזה 

  . נצפים בין מיקומים רחוקים יותר שלו נמוכים יותרכך שערכים, עם המרחק

שמר לאורך  נוטים להכי הפלוטיפים,  לאחרונההראו] 10,42[מספר מחקרים 

 השונים בים”השב בין משקל בתאחיזהה שיווי חוסר, באזורים אלו. מקטעים גנומיים ארוכים

בעיקר על פני הגנום  שרקומבינציה מתרחשת הסבר מקובל לתופעה זו הוא. הוא גבוה יחסית

 האזורים בין שתי נקודות חמות. (”hot spots“) "נקודות חמות"באזורים צרים המכונים 

 70-90% שכן, הוא קטןומספר ההפלוטיפים השונים בכל בלוק , (blocks) םבלוקים נקראי

 השאר.  הפלוטיפים נפוצים2-5ה של לקבוצה קטנכ "בדמההפלוטיפים בתוך בלוק שייכים 

לצורך ביצוע מבחני  בעיקר בעל חשיבות רבההינו ממצא זה . םנקראים הפלוטיפים נדירי

בצורה חזקה  למחלותהפלוטיפים ווה היא שניתן יהיה לקשר כאשר התק,  למחלותאסוציאציה

 והוצעו,  מספר מחקרים התרכזו בבעיית החלוקה לבלוקים. בודדיםבים”שבמאשר יותר 

  .קריטריונים שונים לחלוקה זו

 

 גנוטיפים ובידול

כמו (רגניזמים דיפלואידים בעיית החלוקה לבלוקים קשורה לבעייה אחרת באו

 שני של מידע המאוחדה. שני עותקים כמעט זהים לכל כרומוזוםלי אשר הינם בע, )האדם



הגדרנו מידה טבעית להערכת . בי התיוג”שב בחירת חקרנו את בעיית, בשלב הבא

בי ”שבבחירה של שיטה ללצורך פיתוח והשתמשנו בה , בי תיוג”שבמידת הדיוק של קבוצת 

. בי תיוג”שבבחירה של ל נו את השיטה שפיתחנו לשתי שיטות ידועות בספרותיהשוו .תיוג

 אשר שיטות עם יכולת חיזוי טובה יותר מבי תיוג”שב  באופן עיקביהשיטה שלנו מצאה

  .אחרות

  לחישוב מכפי שהיה קיים עד כהפיתחנו אלגוריתם מהיר יותר, נו האחרוןבמחקר

p-value דגימה לפי  פיתחנו שיטה המבוססת על.במחקרי אסוציאציה למחלות מדוייק 

 שיווי משקל בתאחיזה חוסר וניצול תכונת הדעיכה של (importance sampling)חשיבות 

,(linkage disequilibrium)3-5- מהיר בהאלגוריתם שפיתחנו. ימת לאורך הכרומוזום שקי 

 אשר בו ,)standard permutation test( רות הרגיל מבחן התמוסדרי גודל מאלגוריתם

 על אך שומר,  הסטטיסטית של אסוציאציה למחלותמובהקותהמשתמשים לשם הערכת 

האלגוריתם , עד גדול על מאגרי נתונים בגודל בינוני, כך למשל. אותה רמת מהיימנות ודיוק

והוריד את זמן הריצה משנים למספר בודד של ,  מהיר יותר100,000 עד 5,000 פי היה

 ניתן לבצע מבחני אסוציאציה גודל הבעיות בהןשיטה זו מגדילה משמעותית את . דקות

  .מדוייקים

 

 

 

 

 

 

 

 

 

 

 

 



  תמצית

שונות  נקודות מסויימות בגנום הנקראות מתבטאת בבני אדםרוב השונות הגנטית בין 

חקר השונות . ]Single Nucleotide Polymorphisms (SNPs)) [ב"שב(בבסיס בודד 

 בים”שבמסיבה זו זיהוי וניתוח של .  במבחני אסוציאציה למחלות מרכיב הכרחיהגנטית הוא

חקרנו , בעבודה זו.  בימים אלושל הקהילה המדעית הבינלאומיתת ממטרותיה מהווה אח

, לצורך כך. בים”שבחלק מהבעיות החישוביות העיקריות המתעוררות באנליזה של 

התבססות על תוך ו, הסתברות וסטטיסטיקה, השתמשנו בטכניקות חישוביות מתורת הגרפים

 על מנת לחקורהשתמשנו בשיטות שפיתחנו . פיתחנו מודלים לבעיות אלו, עקרונות ביולוגיים

 . אנושיבים”שבחבים של  נרמאגרי נתונים

בהנתן קבוצה של . חלוקה לבלוקים של הפלוטיפיםה חקרנו את בעיית ,ראשית

אשר ממזערת את המספר הכולל של , המטרה היתה למצוא חלוקה לבלוקים, הפלוטיפים

שה כאשר יש טעויות במדידה או נתונים ק-NPנו שהבעייה היא יהרא. הפלוטיפים בבלוקיםה

על נתונים ביולוגיים .  של הבעייהו אלגוריתמי קירוב למספר גרסאותופיתחנ, חסרים

  .שיטות קודמות יותר לבלוקים לעומת מדוייקת הראינו כי מתקבלת חלוקה, אמיתיים

 בעיית בתחילה ניתחנו את. (phasing) הבידולהצעד הבא היה לחקור את בעייה 

הוכחנו כי הבעייה היא . (perfect phylogeny tree) ול בהנחת עץ פילוגנטי מושלםבידה

NP- הריצה שלו זמן תוחלת  אשר, פיתחנו אלגוריתם. חסריםשלמה כאשר חלק מהנתונים

 ,ציהסמולב. תחת הנחת מודל הסתברותי הגיוני מבחינה ביולוגית, בגודל הקלט תפולינומיאלי

גם כאשר שיעור , הפלוטיפים הנכונים במהירות ודיוק גבוהיםצא את המהאלגוריתם שפיתחנו 

  . גבוה יחסית היההנתונים החסרים

פיתחנו אלגוריתם אשר מבצע ,  יותרמדוייקות בידולעל מנת לקבל תוצאות , בהמשך

הגדרנו מודל הסתברותי לבלוקים בהם , לצורך כך.  לבלוקים כתהליך אחד וחלוקהבידול

ארועי , וכן מאפשר קיום מוטציות, פי גרעיןוטיקטן של הפלהפלוטיפים נוצרים ממספר 

 דיוק רב אשר השיג,  למודל זהEM פיתחנו אלגוריתם .רקומבינציה נדירים וטעויות מדידה

האלגוריתם .  שהיו קיימים כאשר פורסמה העבודה,בידוליותר מרוב האלגוריתמים של 

,  זמן הריצה הארוך.ות אנשיםאשר כללו מא, גדולים במאגרי נתונים שפותח אפשר טיפול

 על לא אפשר את השימוש בהם, בידולאשר נדרש מאלגוריתמים מדוייקים אחרים לביצוע 

בין מודל בלוקים " פשרה" פיתחנו מודל אשר מציע ,בעבודת המשך. נתונים באותו היקף

, המודל משקף את מבנה הבלוקים של הפלוטיפים: קשיח למצב בו אין כל הגבלה על המבנה

מאפשר , בנוסף. בלוקים  גבול ביןבאזורים בהם איןגם בין הפלוטיפים " החלפה"ך מאפשר א

 , רבים של גנוטיפיםמאגרי נתונים על המודל נבדק. וטציות וטעויות מדידההמודל קיום מ

  . לשלושה מודלים אחרים כמדויק יותר בהשוואהוהוכיח את עצמו
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