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Recent technological breakthroughs allow the quantification of hundreds of thousands of genetic
interactions (GIs) in Saccharomyces cerevisiae. The interpretation of these data is often difficult, but
it can be improved by the joint analysis of GIs along with complementary data types. Here, we
describe a novel methodology that integrates genetic and physical interaction data. We use our
method to identify a collection of functional modules related to chromosomal biology and to
investigate the relations among them. We show how the resulting map of modules provides clues for
the elucidation of function both at the level of individual genes and at the level of functional
modules.
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Introduction

One of the central tasks of current cell biology is to reveal and
understand the functional relationships between cell compo-
nents. Physical interaction (PI) and genetic interaction (GI)
data provide largely complementary functional information
that can be used to elucidate these relationships. In particular,
quantitative GIs can be a powerful source for understanding
both functions of individual genes and the interplay between
pathways in the cell.

GIs convey information about the phenotype of a double
mutant in comparison to the phenotypes of single mutants. GIs
can be crudely classified into alleviating, neutral and
aggravating interactions (Segre et al, 2005; Beyer et al, 2007).
In an aggravating interaction, the fitness of the double mutant
is lower than expected given that of the single mutants. The
most extreme example of an aggravating interaction is
synthetic lethality, in which the joint deletion of two non-
essential genes leads to a lethal phenotype. In an alleviating
interaction, on the other hand, the double mutant is healthier
than expected. The ‘expected’ fitness is usually defined using a
multiplicative model, as the product of the fitnesses of the
single mutants (Schuldiner et al, 2005; Segre et al, 2005;
St Onge et al, 2007). High-throughput mapping of aggravating
interactions, in particular synthetic lethality, has first been
performed in Saccharomyces cerevisiae using the SGA (Tong
et al, 2004) and dSLAM (Pan et al, 2006) methods. Recently,

the exploration of GI data was pushed forward by the
development of the Epistatic MiniArray (E-MAP) technology,
building on SGA and allowing a quantitative estimation of both
aggravating and alleviating information (Schuldiner et al,
2005; Collins et al, 2007b). The largest published E-MAP to
date (Collins et al, 2007b) covers GIs between 743 S. cerevisiae
genes involved in various aspects of chromosome biology (we
will refer to this map as the ChromBio E-MAP). It was shown
that the use of quantitative data can significantly increase the
amount of information on gene function (Collins et al, 2007b).

The computational analysis of E-MAPs has to address
several problems. First, due to technical and biological
difficulties, the ChromBio E-MAP contains as many as 40%
missing values. Imputation of these values is difficult, and the
computational methods require the development of ad hoc
techniques to handle missing data. Second, as the single
deletion mutants are not measured in the same experiment, a
multiplicative model cannot be directly fitted to the data and
thus it is difficult to properly interpret every individual GI. For
this reason, the insights derived from the E-MAP data were so
far mostly based on correlations of GI profiles, and not on the
GIs themselves (Schuldiner et al, 2005; Collins et al, 2007b;
Ihmels et al, 2007).

The development of high-throughput GI assays has occurred
in parallel to the development of methods for genome-wide
mapping of protein–protein interactions (PPIs; Collins et al,
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2007a). It was recently shown that joint analysis of GIs and PIs
can shed additional light on the organization of cellular
pathways. This integration is particularly appealing due to the
complementarity of the two interaction types: PIs describe
direct spatial association between molecules, whereas GIs
refer to functional associations between genes, connecting the
physical architecture to phenotypes (Beyer et al, 2007). The
integration of genetic and physical data was used to classify
GIs as occurring between or within different pathways (Kelley
and Ideker, 2005). Between-pathway GIs usually indicate
partial pathway redundancy, as deletion of a single gene affects
only one of the pathways, while deletion of two genes from
distinct pathways leads to the inactivation of both (Tucker and
Fields, 2003). Accordingly, it was found that most aggravating
interactions occur between pathways (Kelley and Ideker,
2005). Zhang et al (2005) mapped pairs of complexes with
many aggravating GIs between them. We have previously
extended the analysis of between-pathway explanations for
GIs and shown that further physical evidence can shed light on
additional properties of such pathway pairs (Ulitsky and
Shamir, 2007b). However, within-pathway aggravating inter-
actions also exist: mutations in one of the two subunits of the
same complex may have only a mild phenotype, as long as the
complex survives. However, deletion of both subunits may
lead to a complex failure and to an aggravating phenotype. On
the other hand, alleviating interactions were shown to occur
mostly within pathways (Collins et al, 2007b). These are the
result of a drastic effect of any of the single deletions on
pathway activity, which abolishes the effects of additional
deletions.

In this study, we propose a novel methodology for
integrating GI and PI data. While extant methods (Kelley and
Ideker, 2005; Ulitsky and Shamir, 2007b) have used GI data to
characterize a single pathway or a pathway pair at a time, we
propose a method for analyzing all the available data together
and producing a set of modules identified in the data,
alongside the module pairs that exhibit significant comple-
mentarity, as evidenced by the presence of multiple aggravat-
ing GIs (Figure 1). Our method can be viewed as a clustering
algorithm that explicitly addresses the relation between each
pair of modules (which can be complementary or unrelated).
By extracting a collection of related modules, rather than a set
of module pairs as in Ulitsky and Shamir (2007b), we are able
to identify weaker signals in the data and extract a consistent
set of modules. Similar ideas have been successfully used by
Segre et al (2005) for in silico analysis of GIs.

Previous studies analyzed E-MAP data primarily using
hierarchical clustering, and successfully recovered known
and novel pathways and complexes (Schuldiner et al, 2005;
Collins et al, 2007b). Our method has several advantages over
hierarchical clustering: (a) it readily provides the pairs of
modules exhibiting complementarity; (b) it produces a set of
disjoint modules corresponding to putative pathways, rather
than a tree; (c) the number of modules is determined by the
algorithm and does not have to be determined by the user and
(d) hierarchical clustering considers only similarity between
pairs of gene profiles. By considering GIs between module
pairs in addition to the gene similarity, our method can pick up
modules based on a consistent module-wise GI pattern, even if
gene profile similarity is relatively weak, e.g. due to missing

values. As we shall show, these theoretical advantages indeed
yield practical advantage, as we are able to identify important
module relations that cannot be identified using gene
similarity alone.

We applied our method to the ChromBio E-MAP and
obtained a collection of modules as well as a map of related
module pairs. In particular, we provided the first comprehen-
sive map of the relationships among ChromBio modules,
which could not be obtained by prior means. The results
improve over extant methods in terms of the functional
enrichment of the obtained modules. Using a collection of
single-deletion phenotypes we found that although the
modules are based on GIs measured in rich medium, they
remain cohesive functional units under other conditions,
emphasizing the power of the E-MAP coupled with our
methodology in recovering functional modules. We showed
that the module map can be utilized for function prediction on
several levels: to suggest with high confidence novel functions
for individual genes, to identify novel functions of complete
modules and to highlight interplay between modules. In
particular, we provided genetic and physical evidence for (1) a
new role for the nuclear pore in the mitotic spindle checkpoint;
(2) a new role for proteolysis in mitosis and (3) an interplay
between the THO complex and deubiquitination.

Results

A novel methodology for partitioning E-MAPs
into functional module

We developed four methods for partitioning of E-MAPs into
functional modules and identifying complementing module
pairs (CMPs). The methods are described in detail in Materials
and methods. The methods use models that differ in the way
they treat inter-module GIs and in their use of PIs. There are
two basic models, ‘Alleviating’ and ‘Correlated’. Both prefer
partitions in which GIs between CMP modules are mostly
aggravating. The Alleviating model scores highly partitions in
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Figure 1 Toy example of a modular partition. The genes are partitioned into
four modules. Each module induces a connected component in the PI network.
Modules A and B have multiple aggravating GIs between them and are thus
designated as a CMP. The same is true for modules B and C. Module D is not
involved in any CMP. Genes w, x are siblings; genes w, y are cousins; genes y, z
are cousins; genes x, z are strangers.
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which intra-module GIs are mostly alleviating. The Correlated
model scores highly partitions in which the correlation
between GI profiles are high within each module. The
‘Connected’ variants of the two basic models, termed
‘AlleviatingConnected’ and ‘CorrelatedConnected’, also re-
quire that each module induce a connected component in the
PI network.

Analysis of the ChromBio E-MAP and comparison
with other methods

We analyzed the E-MAP of GIs among 743 S. cerevisiae genes
involved in chromosome biology (the ChromBio E-MAP;
Collins et al, 2007b) alongside a network containing 2061 PIs
between the genes contained in the E-MAP. The PIs were taken
from SGD and BioGrid databases (Cherry et al, 1998; Stark
et al, 2006) (Supplementary information). We excluded yeast
two-hybrid interactions from the analysis as we found that
this improved the results (results not shown).

We compared the results obtained under each of our four
formulations and of other methods for extracting modules
from these data types: hierarchical clustering of the GI profiles,
clustering of the GI profiles using Markov clustering (MCL;
Enright et al, 2002), clustering of the PI network using MCL
and previous methods for combining binary GI and PI data
(Kelley and Ideker, 2005; Ulitsky and Shamir, 2007b). MCL was
chosen for clustering PI data as it was recently shown to
outperform other alternatives for this task (Brohee and van
Helden, 2006). Different parameter values were tested for MCL
and hierarchical clustering (see Materials and methods).
Results were measured in terms of the enrichment for (a) GO
‘biological process’ annotations, (b) MIPS complexes and (c)
genes with similar phenotype (taken from SGD; Cherry et al,
1998). In all cases, we considered all the annotations that

contained at least two genes in the ChromBio E-MAP (see
Supplementary information for annotation lists). Statistics on
the modules found by each method are given in Table I. The
fraction of annotations enriched in at least one module (which
we refer to as ‘recall’) and fraction of modules enriched with at
least one annotation (which we refer to as ‘precision’) are
shown in Figure 2.

We summarized recall and sensitivity using the F-measure
(Van Rijsbergen, 1979), which is the weighted harmonic
mean of precision and recall: F¼2?(precision?recall)/(preci-
sionþ recall). The F-measures of the different methods are
listed in Table I. It is evident that both ‘Correlated’ variants
usually outperform the corresponding ‘Alleviating’ variants.
An inspection of well-characterized yeast complexes (Supple-
mentary Figure 2) reveals the reason for this superiority.
Except for a few complexes (e.g., prefoldin and SWR1), pairs of
genes within the same complex generally do not exhibit strong
alleviating GIs. We found many cases in which the S-scores
between members of the same complex were missing (e.g. in
the mediator complex), neutral or aggravating (e.g., in the
SAGA complex). Our results thus indicate that although
positive S-scores (corresponding to alleviating GIs) do, to
some extent, enable extraction of functional modules, correla-
tions of S-score profiles are more helpful for this task.

As expected, it is also evident that using information on the
PI network allows for a more biologically meaningful solution,
as the ‘CorrelatedConnected’ formulation usually outperforms
the ‘Correlated’ one (an exception is the phenotype analysis,
where connectivity seems to worsen the results, see also
Supplementary Figure 4). When considering all three bench-
marks together, using GIs together with PIs improves upon
using the PI data alone for module identification, as evident by
higher F-measures of our methods when compared to MCL
clustering of the PI network.

Table I Comparison of the modules found by different methods

Algorithm Reference Number of
modules

Genes in
modules

F-measure

GO biological process MIPS complexes SGD phenotypes

CorrelatedConnected This study 62 313 0.629 0.496 0.233
AlleviatingConnected This study 29 182 0.389 0.423 0.276
Connected This study 53 446 0.420 0.316 0.262
Alleviating This study 54 457 0.257 0.213 0.187
US Ulitsky and Shamir (2007b) 46 229 0.559 0.381 0.188
KI Kelley and Ideker (2005) 98 305 0.602 0.468 0.167
MCL:PPI I=1.2 Enright et al (2002) 22 597 0.397 0.202 0.113
MCL:PPI I=2 Enright et al (2002) 116 585 0.620 0.425 0.117
MCL:PPI I=3 Enright et al (2002) 154 552 0.574 0.333 0.114
MCL:PPI I=4 Enright et al (2002) 161 517 0.553 0.292 0.078
MCL:PPI I=5 Enright et al (2002) 158 477 0.528 0.259 0.082
MCL:E-MAP I=3 Enright et al (2002) 3 754 0.179 0.065 0.220
MCL:E-MAP I=5 Enright et al (2002) 10 750 0.326 0.211 0.249
MCL:E-MAP I=7 Enright et al (2002) 21 735 0.381 0.330 0.225
MCL:E-MAP I=9 Enright et al (2002) 33 690 0.425 0.284 0.196
MCL:E-MAP I=11 Enright et al (2002) 40 654 0.378 0.267 0.170
Hierarchical t=0.2 Collins et al (2007b) 110 736 0.407 0.212 0.210
Hierarchical t=0.3 Collins et al (2007b) 124 567 0.508 0.271 0.198
Hierarchical t=0.4 Collins et al (2007b) 90 384 0.547 0.314 0.209
Hierarchical t=0.5 Collins et al (2007b) 78 269 0.526 0.250 0.209
Hierarchical t=0.6 Collins et al (2007b) 52 167 0.429 0.198 0.105
Hierarchical t=0.7 Collins et al (2007b) 29 92 0.337 0.169 0.138

Only modules with at least two genes are considered. The highest F-measure (see Results) in each column is in bold. In MCL clustering, the I parameter is the ‘inflation’
parameter of the algorithm. In hierarchical clustering, the t parameter is the threshold used to extract modules from the clustering tree (see Materials and methods).
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A comparison of the methods thus reveals that the
‘CorrelatedConnected’ formulation outperforms other alter-
natives. We therefore used the results of the CorrelatedCon-
nected formulation (Figure 3) in all subsequent analysis.
Figure 3 presents a ‘heatmap’ of the solution focusing on
intra-module and inter-complementing module pairs (CMP)
interactions. An alternative presentation showing all inter-
actions is shown in Supplementary Figure 3. A searchable
interface to the module collection obtained using this method
is available at http://acgt.cs.tau.ac.il/emap/chromBio/.

Functional characterization of the modules

When correcting for multiple testing using TANGO (Shamir
et al, 2005), we found that 27 out of 62 modules were
significantly enriched (Po0.05) for GO ‘biological process’
and 32 were enriched for a GO ‘cellular compartment’ (looking
only at subterms of ‘protein complex’). Together, 45 modules
(72.5%) were enriched with a known annotation. Manual
inspection of the remaining 17 modules revealed that 11 of
them in fact match known complexes, which are not annotated
in GO. A full listing of the modules and their functions appears
in Supplementary information. The fact that the vast majority
of the modules (56 out of 62) correspond to known protein

complexes demonstrates the ability of our approach to identify
functionally cohesive units. In addition, as we show below, it
appears that the main power of the modular approach is in
identifying novel protein functions.

Protein function prediction

As our method can extract functionally coherent modules, it
can reveal novel gene functions through ‘guilt by association’.
When a module is significantly enriched with a function,
unannotated genes in the module can be predicted to have the
same function. Using cross-validation (see Materials and
methods), we estimate that this method can predict the correct
function for a protein in 161 out of 204 (78.9%) of the cases.
This figure is likely to be an underestimate of the specificity of
our method, as even for some of the most studied proteins not
all the functions are known. After manual evaluation of the
obtained modules, we identified several cases where our
predictions had some support from other experimental
evidence:

� Gbp2 is a poly(Aþ ) RNA-binding protein, involved in the
export of mRNAs from the nucleus to the cytoplasm. It
shares a module together with four members of the NuA4
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Figure 2 Comparison of the functional coherence of modules found by different methods. Only modules with at least two genes and categories with at least two genes
in the E-MAP were considered. The methods are compared in terms of the fraction of annotations enriched with Po0.001 in at least one module and the fraction of
modules enriched with Po0.001. ‘US’ is an implementation of a method that is similar to CorrelatedConnected, but looks for a single CMP pair at a time (Ulitsky and
Shamir, 2007b). ‘KI’ is an implementation of the method proposed by Kelley and Ideker (2005) where edges in the GI graph appear between any pair of genes with an S-
score below �3. MCL clustering of the PPI network and of the E-MAP correlations was executed with different parameters (see Table I). For clarity, only the execution
with the highest F-measure is shown. Different symbols represent different data sources. All the methods were applied to the same E-MAP and PI data sets.
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histone acetyltransferase complex, as well as with a histone
methyltransferase (Set2) and Rco1, part of the Rpd3S
histone deacetylase complex (Figure 4A). Evidence for co-
transcriptional processing of RNA has accumulated in the
recent years, and it is becoming clear that RNA expression,
stability and export from the nucleus are tightly regulated
(Keene, 2007). Indeed, ChIP experiments have shown that
Gbp2 is localized to the promoters of actively transcribed
genes (Hurt et al, 2004). We thus propose that the
interaction between Gbp2 and chromatin remodelers plays
a role in the coupling of transcription with mRNA export.

� YDL176W is a non-essential gene of unknown function,
which appears in module 17, together with five genes
involved in the ubiquitination of fructose-1,6-bisphospha-
tase (FBPase), as part of the gluconeogenesis pathway
(Figure 4B). Indeed, a structure-based study has recently

suggested that this protein is involved in glycolysis and
gluconeogenesis (Ferre and King, 2006). The fact that our
method suggests the same function, using a completely
different methodology and data, further supports the
conjecture that YDL176W is involved in gluconeogenesis.
The five genes in module 17 with a known role in FBPase
degradation were identified using a genome-wide reverse
genetics screen (Regelmann et al, 2003). We suggest that
analysis of the stability of an FBPase-b-galacosidase fusion
in strains deleted for YDL176W can be carried out to further
analyze its function.

� Module 25 contains YTA7 (YGR270W), an ATPase of
unknown function, alongside five genes involved in
chromatin silencing at the telomeres and other heterochro-
matic regions (Figure 4C). Indeed, it has been found that
mutations in YTA7 lead to shortened telomeres (Askree

Figure 3 A summary map of the modules found in the ChromBio E-MAP. (A) The heat map shows the ChromBio S-scores between genes appearing in modules with
at least two genes found using the CorrelatedConnected method. Rows and columns correspond to genes, ordered so that genes in the same module appear
consecutively. Selected module names and functions are listed on the right. Green lines separate modules. Modules are sorted by their size. To facilitate recognition of
CMPs, rectangles corresponding to NMPs are drawn in black. In rectangles corresponding to CMPs, the S-scores are colored by scale (blue––alleviating, red––
aggravating, white––neutral). Missing values are in gray. (B) Module examples. The node labels correspond both to the gene and to the protein and therefore
capitalised. Edges correspond to protein–protein interactions. In each module, the genes having the GO annotation most enriched in the module are in yellow. Module
networks were drawn using MATISSE (Ulitsky and Shamir, 2007a). (C) A blowup of the submatrix showing the S-scores between genes in modules 15, 14 and 8.
Modules 15 and 8 form a CMP; Modules 15 and 14 form a CMP; modules 14 and 8 do not.
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et al, 2004). In addition, YTA7 was recently shown to be
required for preventing the spreading of silencing beyond
the heterochromatic HMR locus (Jambunathan et al, 2005).
A better characterization of its role will require genomic
location studies to characterize its genomic distribution
(Ren et al, 2000).

� Module 27 contains YKL023W, a protein of unknown
function, together with three known members of the SKI
complex (Ski2, Ski3 and Ski8; Figure 4D). The SKI complex
is involved in exosome-mediated 30–50 mRNA degradation
and the inhibition of translation of non-poly(A) mRNAs.
YKL023W was shown to physically interact with a fragment
of Nmd2, involved in nonsense-mediated mRNA decay (He
et al, 1997). We thus suggest that YKL023W is involved in
mRNA degradation. Further insights into this role will
require characterization of some RNA forms processed by
the exosome, such as U4 snRNA (van Hoof et al, 2000), in a
strain deleted for YKL023W.

Phenotype analysis

Our algorithm partitions the genes into modules based on GIs
and PIs, both of which are usually measured in rich medium.
We tested the similarity between the phenotypes exhibited by
mutants of genes in the same module in other growth
conditions. To this end, we used data from the high-
throughput phenotype profiling performed by Brown et al
(2006). We defined phenotypic similarity as the Pearson
correlation between the phenotypic profiles of the mutants.
We found that genes within the same module tended to exhibit
phenotypic similarity far greater than expected at random
(average r¼0.424, Po0.01). Examples of highly coherent
modules include the modules 50 (‘Postreplication DNA repair’,

the genes are required for survival following treatment with
DNA-damaging factors such as UV, IR, cisplastin and
oxaloplatin), 20 (‘HIR’, a strong phenotype in environments
with a high or low pH and high salt) and 14 (‘Elongator’, a
strong phenotype after treatments with antimycin, benomyl,
idarubicin and in elevated pH and salinity). The full list
appears in Supplementary information.

We also examined the phenotypic similarity in CMPs. The
average phenotypic similarity between genes in different
modules that constitute a CMP was 0.156, as opposed to
0.087 between non-complementary module pairs (Po0.001).
Interestingly, we also observed several CMPs with very
dissimilar phenotypic profiles. The most dissimilar pair
(r¼�0.25) was formed by modules 49 and 18 (‘SAGA’;
Supplementary Figure 5). Both modules contain deubiquitina-
tion complexes, and in particular the ubiquitin-specific
proteases Ubp3 and Ubp8. In this case, the negative correlation
probably results from the combination of largely different
specificity of the proteases (Zhang, 2003), and partial
functional buffering, reflected in the aggravating GIs between
the modules.

A map of modules and their relations

One of the merits of our approach is its ability to identify, on
top of the modular decomposition, complementarity between
modules. We identified 153 CMPs in the ChromBio E-MAP. A
map of the modules we identified in the ChromBio E-MAP and
their relationships is shown in Figure 5. We used the various
annotations and, where possible, manually assigned module
names, which are used below (listed in Supplementary
information). Coarse-grained annotation of the module map
into main cellular processes (Figure 5) reveals a complex
picture of interplay between modules, indicating the pleio-

Figure 4 Modules with proposed novel protein functional annotations. Edges correspond to PIs. In each module, genes associated with the main annotation are drawn
in yellow and with a thick border. (A) Module 14. The highlighted (yellow) genes belong to the NuA4 histone acetyltransferase complex. (B) Module 17. Genes
associated with gluconeogenesis are highlighted. (C) Module 25. Genes associated with chromatin silencing at the telomere are highlighted. (D) Module 27. SKI
complex genes are highlighted.
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tropy of the genes involved in chromosome biology. Evidently,
most CMPs are formed by modules annotated by similar
biological processes (Figure 5). In addition, a large number of
CMPs link transcription with chromatin modification and DNA
repair with DNA replication. Using GO semantic similarity
(Lord et al, 2003), we found a significant negative correlation
between the average S-scores and the functional similarity
over all module pairs (Spearman correlation r¼�0.105,
P¼7.38�10�6). Importantly, this correlation was much higher
than the correlation between functional similarity and S-scores
for individual gene pairs (r¼�0.023). This suggests that
redundancy is manifested more strongly at the level of the
functional unit, i.e. the module, than on the level of individual
genes. We provide several examples of how CMPs formed by
seemingly functionally unrelated modules can lead to biolo-

gical insight. Note that these relationships could not be
identified by methods using solely S-score profile similarity,
as in all cases the similarity between the S-score profiles of
genes from different modules was close to 0 (Figure 6).

The role of nuclear pore in the mitotic spindle
checkpoint

An interesting CMP linking seemingly unrelated processes
consists of modules 21 (‘mitotic spindle checkpoint’) and 63
(Figure 6A). Module 63 contains two genes: SAC3 and THP1,
both associated with the nuclear pore, with roles in transcrip-
tion regulation and mRNA export. Some evidence of a
relationship between the nuclear pore and the mitotic spindle
checkpoint can be found in the literature. The spindle

DNA replication 

Chromatin maintenanceGO semantic similarity

0.25 1.0

Transcription

DNA repair 

RNA metabolism

Proteolysis

Mitotic spindle related

Figure 5 Modules identified in the ChromBio E-MAP and relationships among them. Every node in the network represents a module. Node radius is proportional to the
module’s size. Node labels are the module number or its primary annotation. Edges connect pairs of modules that form a CMP. The edge width is inversely proportional
to the average S-score between the two modules in the CMP: thicker edges correspond to stronger aggravating GIs, dashed edges correspond to weak aggravating GIs
(�3p S-score p0). Edge color is proportional to the GO semantic similarity (Lord et al, 2003) between cousins in the CMP. Figure was produced using Cytoscape
(Shannon et al, 2003).
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checkpoint proteins Mad1 and Mad2 (both part of the module
21) were shown to reside predominantly at the nuclear pore
throughout the cell cycle (Iouk et al, 2002). Several compo-
nents of the nuclear pore complex (such as Nup170) are
specifically associated with chromosome segregation (Iouk
et al, 2002; Scott et al, 2005). Furthermore, Mad1 has a role in
transport of specific proteins, such as Pho4, through the
nuclear pore (Iouk et al, 2002). A role for nuclear pore
complexes in the spindle assembly was also shown in higher
eukaryotes (Orjalo et al, 2006). However, we found no reports
of this novel relationship between the Sac3-Thp1 complex and
the mitotic spindle checkpoint proteins. sac3 deletion mutants
accumulate in mitosis as large budded cells with extended
microtubules, and have an increased rate of chromosome loss
compared to wild-type strains (Bauer and Kolling, 1996). As
evident in Figure 5, the genes in both modules exhibit GIs with
several other modules, and thus the specific elucidation of the
connection between Sac3-Thp1 and the mitotic spindle
checkpoint would have been very difficult without a focused
module map such as the one presented here. Moreover, this
connection could not be picked up using S-score correlations
alone, as the smallest hierarchical clustering subtree that

contained the genes in modules 21 and 63 consisted of 231
genes.

The role of the proteasome in mitosis

Another CMP that crosses process boundaries and connects
seemingly unrelated modules links module 12 (‘Proteasome’)
with module 46 (Figure 6B). Module 46 contains three proteins
(Kar3, Cik1 and Vik1) involved in microtubule-related
processes in mitosis and meiosis. Kar3 is a kinesin-14 protein
that forms heterodimers with both Cik1 and Vik3 and acts as a
motor to pull chromosomes apart. The proteasome (the
complex in charge of most protein degradation in the cell) is
known to affect progression through cell cycle (Gordon and
Roof, 2001; May and Hardwick, 2006). Inspection of single-
deletion phenotypes reveals that mutants of genes from
module 12 (in particular Rpn10, Sem1 and Ump1) show
relative benomyl resistance (Brown et al, 2006). Benomyl is an
antimitotic drug that destabilizes microtubules and inhibits
microtubule-mediated processes, including nuclear division,
nuclear migration and nuclear fusion (Hampsey, 1997). The
fact that we observe particularly strong aggravating GIs

1
0.5
0

–0.5
–1

CorrelationS-scores

4
2
0

–2
–4

Physical interaction
Aggravating interaction

Module 63

Module 46

Module 21

Module 12

Module 31

Module 49

Figure 6 CMP examples. In each example, on the left the two subnetworks forming the pair are shown in different colors. In the middle, the S-scores between the
genes in the CMP are color-coded. Blue rectangles correspond to alleviating GIs and red rectangles correspond to aggravating GIs. On the right, the correlations
between the S-score profiles of genes in the CMP are color-coded. Green lines separate the modules.
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between the proteasome and the three members of module 46
suggests another link between proteolysis and the mitotic
spindle, involving the Kar3 kinesin. One possible explanation
for this relation is that alternative kinesin motors are prevented
from functioning by a protein(s) that is a substrate for
proteasomal degradation. Thus, lack of proteasome activity
is genetically equivalent to lack of the alternative motor,
exhibiting strong aggravating GIs. A similar parallel pathway is
the one that restricts the activity of the alternative kinesin
motors Cin8 and Kip1 by CDK-mediated proteasomal degrada-
tion (Crasta et al, 2006).

Deubiqutination and the THO complex

Module 49 contains Bre5 and Ubp3, which together form a
deubiquitination complex with known roles in regulating
vesicle traffic (Cohen et al, 2003), transcriptional regulation
through TFIID (Auty et al, 2004) and DNA damage (Bilsland
et al, 2007). These roles closely correspond to the CMPs that
include module 49 (Figure 5). Our map shows a strong GI
between this module and module 31, which contains three
proteins from the THO complex, involved in transcription
elongation and its coupling to mRNA export (Figure 6C). Our
analysis thus uncovers a coordinated activity of the Bre5-Ubp3
deubiquitination and the THO complexes, most likely during
transcription elongation. Such coordination might be required
to prevent DNA damage from occurring during transcription;
indeed, mutations in members of either complex result in
increased sensitivity to DNA-damaging agents and hyper-
recombination (Bilsland et al, 2007; Garcia-Rubio et al, 2008).
In addition, recent experiments demonstrate a new role for the
THO complex in transcription-coupled DNA damage repair
(Gaillard et al, 2007). A connection was found between THO
complex activity during transcription, and an alternative DNA
repair pathway involving ubiquitin-mediated inactivation of
RNA polymerase II (Somesh et al, 2005). On the basis of our
results, we propose that under specific circumstances,
deubiquitination of RNA polymerase II by the Bre5-Ubp3
complex may allow resumption of transcription.

Discussion

Analysis of GI data is an important challenge in computational
biology. It was previously demonstrated that integrated
analysis of GIs and PIs is a powerful approach for outlining
pathways and for identifying pairs of complementing path-
ways (Kelley and Ideker, 2005; Ulitsky and Shamir, 2007b).
Here, we have shown how this integration can be extended in
two important directions. First, we handle a richer source of GI
data, provided by the E-MAP technology. Second, we describe
an algorithmic approach that is capable of extracting a
comprehensive map of multiple modules along with their
relationships, rather than focusing on a single module or on a
module pair. This approach is capable of identifying significant
modules that exhibit weak but consistent GIs.

As our formulation of the module-finding problem is
computationally hard, we use an efficient greedy heuristic
for finding high-scoring partitions. As a very large percentage
of the modules we identify correspond to known complexes or

pathways, it is evident that this heuristic performs quite well in
detecting functional modules. However, as a local search
algorithm, our algorithm may converge to a local minimum.
More precise algorithms for the problem could further improve
the results. Addition of an ability to assign confidence to
individual predictions is also expected to boost the applic-
ability of our method. In the PPI network used in this study, we
chose to exclude yeast two-hybrid interactions as we found
that this improved the results. However, this exclusion may
bias our current results toward detection of protein complexes.
PI confidence schemes (Qi et al, 2006; Suthram et al, 2006)
should be helpful for a better incorporation of all possible
interaction evidence into our framework.

The terminology of a ‘module’ is frequently used in different
settings in systems biology (Hartwell et al, 1999). On some
level, the entire collection of genes tested in the ChromBio
E-MAP can be considered a module, as they were all selected
based on their role in chromosome biology. Some methods for
analysis of GI data (e.g. Segre et al, 2005; Collins et al, 2007b)
produce a hierarchical collection of modules. This approach
has some advantages as description of biological processes is
inherently hierarchical (e.g., different chromatin remodeling
complexes form a ‘chromatin remodeling’ module). However,
systematic prediction of gene function and module function is
more difficult in this setting. A hierarchical tree for the
ChromBio E-MAP encompasses hundreds of highly over-
lapping modules. Here, we use PI data in an attempt to identify
distinct modules of genes acting cooperatively in the cell,
which can be used for systematic prediction.

We compared two methods for scoring gene similarity: one
based on alleviating interactions and another based on
similarity of GI profiles across the entire E-MAP. Our results
indicate that the use of profile similarity is generally superior
when analyzing the ChromBio E-MAP. A recent study by
Bandyopadhyay et al (2008), which was published while this
article was in revision, used a combination of PIs and GIs, and
found that modules enriched with aggravating interactions are
also of interest, as they frequently correspond to essential
complexes. It was also suggested that pairs of pathways could
exhibit multiple alleviating interactions between them in some
cases (Segre et al, 2005). Therefore, further research on
alternative scoring schemes may reveal other types of
interactions within functional modules.

The main contribution of our approach to the analysis of E-
MAP data is in our ability to identify not only the modules in
the data but also the relationships among them. As we
illustrate above, analysis of the data in light of the CMP
relationship is a powerful tool for improving our under-
standing of the roles played by the modules.

Materials and methods

Problem formulation and the probabilistic model

We are given a PI network G¼(V, E) and a matrix of GI scores S (which
we denote S-scores as in Collins et al, 2006). We are interested in
obtaining a partition of the network nodes into subsets M¼{M1,y ,
Mm, R}, in which each module Mi corresponds to a cohesive biological
unit and R is a set of singleton genes that do not belong to modules. We
distinguish between two types of module pairs: (a) module pairs
exhibiting a large number of aggravating GIs, which we call CMPs and
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(b) pairs of unrelated modules, which we call neutral module pairs
(NMPs). We refer to a pair of genes as: (a) siblings if both genes
are assigned to the same module; (b) cousins if they are assigned to
two different modules that together form a CMP and (c) strangers
otherwise (see toy examples in Figure 1). The modular decomposition
we seek to score consists of the partition M alongside the set of CMPs
C¼{(Mi, Mj)}.

We tested four different problem formulations; the formulations
differ in the way they treat within-module similarity and connectivity
of a module. We denote the different formulations Alleviating,
AlleviatingConnected, Correlated and CorrelatedConnected. In all
formulations, we modeled the set of S-scores as coming from a
mixture of three Gaussian distributions: Gm for pairs of genes with
exceptionally high scores (corresponding to alleviating GIs); Gf for
pairs of genes with exceptionally low scores (corresponding to
aggravating GIs) and Gn for pairs with neutral S-scores. These
assumptions have a theoretical justification (Sharan and Shamir,
2000), and we verified that they hold on the E-MAP data using quantile
plots (see Supplementary Figure 1 and Supplementary information).

The Alleviating model

We first describe the Alleviating model formulation. In this variant, we
looked for modules with the following properties: (a) siblings exhibit
mostly alleviating GIs and (b) cousins exhibit mostly aggravating GIs.
We formulate the score of a putative solution as a hypothesis-testing
question. Given the partition M and the set of CMPs C, the null
hypothesis H0 is: M is a random partition, and the modular hypothesis
H1 is: M exhibits a biologically plausible modularity. Formally, in the
modular hypothesis: (a) the S-scores between siblings come from Gm

with a high probability bm and from Gn otherwise; (b) the S-scores
between cousins come from Gf with a high probability bf and from Gn

otherwise and (c) The S-scores between strangers come from
distribution Gm with probability pm, from Gf with probability pf, and
from Gn otherwise. Thus, the likelihood of an S-score between two
genes under the module hypothesis is:

PðSijjH1Þ ¼
bmPGm ðSijÞ þ ð1 � bmÞPGn ðSijÞ if i; j are siblings
bfPGf

ðSijÞ þ ð1 � bfÞPGf
ðSijÞ if i; j are cousins

pmPGm ðSijÞ þ pfPGf
ðSijÞ þ ð1 � pm � pfÞPGn ðSijÞ if i; j are strangers

0
@

1
A

Under the null hypothesis, for each gene pair, the probability that its
S-score comes from distribution Gx is px. The probability under the null
model is thus: PðSijjH0Þ ¼ pmPGm ðSijÞ þ pfPGf

ðSijÞ þ pnPGn ðSijÞ. By
setting the partition score to log PðSjH1Þ=PðSjH0Þ, we get that
by maximizing this score we obtain partitions of maximum likelihood
ratio. Assuming independence between gene pairs, the partition score
can be decomposed over all pairs of nodes:

log
PðSjH1Þ
PðSjH0Þ

¼ logð
Y
i;j

PðSijjH1Þ
PðSijjH0Þ

Þ ¼
X

i;j

log
PðSijjH1Þ
PðSijjH0Þ

Note that if we denote

Wsði; jÞ ¼ log
bmPGm ðSijÞ þ ð1 � bmÞPGn ðSijÞ

pmPGm ðSijÞ þ pfPGf
ðSijÞ þ pnPGn ðSijÞ

and

Wcði; jÞ ¼
PðSijjH1Þ
PðSijjH0Þ

¼
bfPGf

ðSijÞ þ ð1 � bfÞPGn ðSijÞ
pmPGm ðSijÞ þ pfPGf

ðSijÞ þ pnPGn ðSijÞ
the partition score is Wp ¼

P
i;j2siblings Wsði; jÞ þ

P
i;j2cousins Wcði; jÞ:

The Correlated model

The Correlated model formulation scores GIs between cousins as
before, but differs in scoring GIs between siblings. Instead of scoring a
pair of genes based on the single GI between them, it scores the pair
based on their full GI profiles. The same score was used with
hierarchical clustering in Collins et al (2006). Let Cij denote the
correlation between the GI profiles of genes i and j (which we call the
C-score). We model the distribution of C-scores as a mixture of two
Gaussian distributions, Gm

C for siblings and Gn
C for non-siblings (see

Supplementary Figure 1 and Supplementary information). In the

model hypothesis, we assume that correlations between the profiles of
genes within the same module come from Gm

C with probability bm
C and

from Gm
C otherwise. The likelihood of the C-score under the module

hypothesis is thus:

PðSijjH1Þ ¼
bC

mPGC
m
ðCijÞ þ ð1 � bC

mÞPGC
n
ðCijÞ if i; j are siblings

bfPG
f
ðSijÞ þ ð1 � bfÞPGn

ðSijÞ if i; j are cousins

pmPGm ðSijÞ þ pfPGf
ðSijÞ þ pnPGn ðSijÞ if i; j are strangers

0
B@

1
CA

Connectivity requirements

We tested two variants for each of the two models described above: one
that used solely the E-MAP data and another in which each module
was required to induce a connected subnetwork in G. We denote the
latter models as AlleviatingConnected and CorrelatedConnected.

Finding high-scoring partitions

We first established that the problems we are studying are computa-
tionally hard by a reduction from the related correlation clustering
problem (see Supplementary information). While several approxima-
tion algorithms for the latter problem are available (Demaine and
Immorlica, 2003; Demaine et al, 2006), they cannot be applied directly
in our setting. We thus developed a greedy heuristic for detection of
high-scoring partitions. Starting from a partition in which each module
contains a single node from V, we iteratively apply two update steps. In
the first step, the node whose module re-assignment provided the
highest score improvement is selected and re-assigned accordingly.
When no such node is found, we look for pairs of modules that could
be merged to improve the partition score. In the Connected formula-
tions, we require that the re-assignments maintain the connectivity of
all the modules. In the second step, the set of CMPs is re-computed. For
every pair of modules Mi and Mj, we compute the contribution to the
score of the solution if (Mi, Mj) is included in the set of CMPs:
Sx2Mi ; y2Mj

Wcðx; yÞ. The pair is included in the CMP set if this
contribution is significantly high (see below).

We found that the above algorithm has difficulties in finding good
improving moves when starting from singleton sets. We therefore
developed a two-phase approach: we first execute the greedy algorithm
until convergence when using only the first step, i.e. keeping C empty.
In the second phase, we execute the full algorithm as described above.

Identifying significant CMPs

To assess each candidate CMP (M1, M2), we evaluated the significance
of the aggravating GIs between the modules given their overall GI
profiles. To this end, for every gene giAM1, we compared the values of
the Wp weights between gi and the genes in M2 to the entire weight
profile of gi using the Wilcoxon rank-sum test. Let us denote the
significance by pi

1. {pi
1} is then transformed into a single significance

level using the z-transform (Stouffer’s method; Hedges and Olkin,
1985). p2 is computed in a similar way, evaluating the significance of
the weights between M1 and M2 given the weight profiles of the genes
in M2. Finally, M1 and M2 are declared as CMPs if and only if
max(p1, p2)o0.005. Note that these P-values are not corrected for
multiple testing due to evaluation of a large number of possible CMPs
by the algorithm. Therefore, this score is a heuristic, which, as we shall
show, is successful as identifying biologically meaningful CMPs.

Parameter estimation

The parameters of the Gaussian distributions (including pm and pf)
were estimated using a standard expectation-maximization algorithm
(Bilmes, 1997). In all the results reported here, we used bm¼bf¼0.7.
We validated that the results reported here are robust to the choice of
these parameters (see Supplementary information).

Hierarchical clustering analysis

Hierarchical clustering of the E-MAP data was performed using
average linkage as in Collins et al (2007b). Pearson correlation was
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used as a distance measure between pairs of GI profiles. When
computing the correlation between profiles Xi and Xj, only positions in
which neither profile had missing data were used. For comparison with
other methods, modules were constructed using the hierarchical
clustering tree, by extracting maximal subtrees in which the average
correlation of the GI patterns was above a threshold t.

Assessing the reliability of function prediction

We performed cross-validation to assess the reliability of function
prediction using the modular partition. The following process was
repeated for each annotated gene in every module. We hid the gene’s
annotation and predicted it based on the annotations of the rest of the
module’s genes. We used the GO biological process annotation and
predicted a function only if its enrichment in the module had Po0.001.
A prediction was considered correct if the majority of the predicted
biological processes were correct, and wrong otherwise. The reliability
was defined as the fraction of correct predictions. All GO biological
process categories with at least two genes in the E-MAP were
considered. To predict a relatively narrow function, we considered
only genes that shared at least one GO category with no more than 30
other genes in the E-MAP. In total, 204 genes were considered.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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