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ABSTRACT

Since the discovery of the ‘‘Philadelphia chromosome’’ in chronic myelogenous leukemia in
1960, there has been ongoing intensive research of chromosomal aberrations in cancer.
These aberrations, which result in abnormally structured genomes, became a hallmark of
cancer. Many studies provide evidence for the connection between chromosomal alterations
and aberrant genes involved in the carcinogenesis process. An important problem in the
analysis of cancer genomes is inferring the history of events leading to the observed aber-
rations. Cancer genomes are usually described in the form of karyotypes, which present the
global changes in the genomes’ structure. In this study, we propose a mathematical frame-
work for analyzing chromosomal aberrations in cancer karyotypes. We introduce the prob-
lem of sorting karyotypes by elementary operations, which seeks a shortest sequence of
elementary chromosomal events transforming a normal karyotype into a given (abnormal)
cancerous karyotype. Under certain assumptions, we prove a lower bound for the elemen-
tary distance, and present a polynomial-time 3-approximation algorithm for the problem.
We applied our algorithm to karyotypes from the Mitelman database, which records cancer
karyotypes reported in the scientific literature. Approximately 94% of the karyotypes in the
database, totaling 58,464 karyotypes, supported our assumptions, and each of them was
subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to
generate a 3-approximation, it produced a sequence whose length matched the lower bound
(and hence optimal) in 99.9% of the tested karyotypes.

Key words: combinatorics, computational molecular biology, gene expression, gene networks,

genetic variation, sequence analysis.

1. INTRODUCTION

Cancer is a disease caused by genomic mutations leading to the aberrant function of genes. Those

mutations ultimately give cancer cells their proliferative nature. Inferring the evolution of these mu-

tations is an important problem in the research of cancer. Chromosomal mutations that shuffle/delete/

duplicate large genomic fragments are common in cancer. Many methods for detection of chromosomal

mutations use chromosome painting techniques, such as G-banding, to achieve a visualization of cancer cell

genomes. The description of the observed genome organization is called a karyotype (Fig. 1). In a karyotype,

each chromosome is partitioned into continuous genomic regions called bands, and the total number of bands

is the banding resolution. Over the last decades, a large amount of data has been accumulated on cancer
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karyotypes. One of the largest depositories of cancer karyotypes is the Mitelman database of chromosomal

aberrations in cancer (Mitelman et al., 2008), which records cancer karyotypes reported in the scientific

literature. These karyotypes are described using the ISCN nomenclature (Mitelman, 1995) and thus can be

parsed automatically. While novel techniques can provide information at much higher resolution of the

cancer karyotypes (Snijders et al., 2001; Greenman et al., 2007), the Mitelman database still contains data on

a number of karyotypes a few orders of magnitudes larger.

Cancer karyotypes exhibit a wide range of chromosomal aberrations. The common classification of these

aberrations categorizes them into a variety of specific types, such as translocations, and iso-chromosomes.

Inferring the evolution of cancer karyotypes using this wide vocabulary of complex alteration patterns is a

difficult task. Nevertheless, the entire spectrum of chromosomal alterations can essentially be spanned by

four elementary operations: breakage, fusion, duplication, and deletion (Fig. 2). A breakage, formally

FIG. 1. A schematic view of two real karyotypes: a normal female karyotype (a) and the karyotype of MCF-7 breast

cancer cell-line (b) (NCI, 2001). In the normal karyotype, all chromosomes, except X and Y, appear in two identical

copies, and each chromosome has a distinct single color. In the cancer karyotype presented here, only chromosomes 11,

14, and 21 show no chromosomal aberrations.

FIG. 2. Illustrations of elementary operations: breakage, fusion, duplication, and deletion. The inverse elementary

operations are fusion, breakage, c-deletion, and addition, respectively.
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known as a ‘‘double-strand break,’’ cuts a chromosomal fragment into two. A fusion ligates two chromo-

somal fragments into one. Genomic breakages, which occur quite frequently in somatic cells, are normally

repaired by the corresponding inverse fusion. Mis-repair of genomic breakages is believed to be a major

cause of chromosomal aberrations in cancer (Ferguson and Frederick, 2001). Other prevalent chromosomal

alterations in cancer genomes are duplications and deletions of chromosomal fragments. These four ele-

mentary events play a significant role in carcinogenesis: fusions and duplications can activate oncogenes,

while breakages and deletions can eliminate tumor suppressor genes.

In this article, we introduce a new model for analyzing chromosomal aberrations in cancer based on the

four elementary operations presented above. We study the problem of finding a shortest sequence of

operations that transforms a normal karyotype into a given cancer karyotype. We call this problem kar-

yotype sorting by elementary operations (KS), and the length of a shortest sequence is called the elementary

distance between the normal and cancer karyotypes. The elementary distance indicates how far, in terms of

number of operations, a cancer karyotype is from the normal one. Hence, it corresponds to the complexity

of the cancer karyotype, which may give an indication of the tumor phase (Höglund et al., 2005). The

reconstructed elementary operations can be used to detect common events for a set of cancer karyotypes

and thus point out genomic regions suspect of containing genes associated with carcinogenesis.

Under certain assumptions, which are supported by most cancer karyotypes, the KS problem can be

reduced in linear time to a simpler problem, called RKS. For the latter problem, we prove a lower bound for

the elementary distance, and present a polynomial-time 3-approximation algorithm. We show that approx-

imately 94% of the karyotypes in the Mitelman database (58,464) support our assumptions, and each of

these was subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to

generate a 3-approximation, it produced a sequence whose length matched the lower bound (and hence

optimal) in 99.9% of the tested karyotypes. Manual inspection of the remaining cases reveals that the

computed sequence for each of these cases is also optimal.

This article is organized as follows. In Section 1, we give the combinatorial formulation of the KS

problem and its reduced variant RKS. In the rest of the article, we focus on the RKS problem. In Section 2,

we prove a lower bound for the elementary distance for RKS. Section 3 describes our 3-approximation

algorithm for RKS. Finally, in Section 4, we present the results of the application of our algorithm to the

karyotypes in the Mitelman database.

2. PROBLEM FORMULATION

2.1. The KS problem

The KS problem receives two karyotypes as an input: the normal karyotype, Knormal, and the cancer

karyotype, Kcancer. We represent each of the two karyotypes by a multi-set of chromosomes. Every

chromosome in Knormal is presented as an interval of B integers, where each integer represents a band. For

simplicity, we assume that all the chromosomes in Knormal share the same B, which corresponds to the

banding resolution. Every two chromosomes in the normal karyotype are either identical, i.e., are re-

presented by the same interval, or disjoint. More precisely, we represent every chromosome in Knormal by

the interval [(k� 1)Bþ 1, kB], where k is an integer that identifies the chromosome. The normal karyotype

usually contains exactly two copies of each chromosomes, with the possible exception of the sex chro-

mosomes. Every chromosome in Kcancer is either a fragment or a concatenation of several fragments, where

a fragment is a maximal sub-interval, with two bands or more, of a chromosome in the normal karyotype.

More formally, a fragment is a maximal interval of the karyotype of the form [i, j] � [i, iþ 1, . . . , j], or

[ j, i] � [ j, j� 1, . . . , i], where i5 j, i, j 2 f(k� 1)Bþ 1, . . . , kBg, and [(k� 1)Bþ 1, kB] 2 Knormal. Note

that, in particular, a chromosome in Kcancer can be identical to a chromosome in Knormal. We use the symbol

‘‘::’’ to denote a concatenation of two fragments, e.g., [i, j]::[i0, j0]. Every chromosome, in both Knormal and

Kcancer, is orientation-less, i.e., reversing the order of the fragments, and the fragments themselves, results

in an equivalent chromosome. For example, X¼ [i, j]::[i0, j0] � [j0, i0]::[ j, i]¼ �XX:
We refer to the concatenation point of two intervals as an adjacency if the union of their intervals is

equivalent to a larger interval in Knormal. In other words, two concatenated intervals that form an adjacency

can be replaced by one equivalent interval. For example, the concatenation point in [5, 3]::[3, 1]: [5, 1] is

an adjacency. Typically, a breakage occurs within a band, and each of the resulting fragments contains a

piece of this broken band that can still be viewed and identified by cytogenetic techniques. For example, if
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[5, 1] is broken within band 3, then the resulting fragments are generally denoted the by [5, 3] and [3, 1].

For this reason, we do not consider the concatenation [5, 3]::[2, 1] as an adjacency. A concatenation point

that is not an adjacency, is called a breakpoint.1 Additional examples of concatenation points that are

breakpoints are as follows: [1, 3]::[5, 6] and [2, 4]::[4, 3].

We assume that the cancer karyotype, Kcancer, has evolved from the normal karyotype, Knormal, by the

following four elementary operations (Fig. 2):

I. Fusion: a concatenation of two chromosomes, X1 and X2, into one chromosome X1::X2.

II. Breakage: a split of a chromosome into two chromosomes. A split can occur within a fragment, or between two

previously concatenated fragments, i.e., in a breakpoint. In the former case, where the break is in a fragment

[i, j], the fragment is split into two fragments: [i, k] and [k, j], where k 2 fiþ 1, iþ 2, . . . , j� 1g.
III. Duplication: a whole chromosome is duplicated, resulting in two identical copies of the original chromosome.

IV. Deletion: a complete chromosome is deleted from the karyotype.

Given Knormal and Kcancer, we define the KS problem as finding a shortest sequence of elementary

operations that transforms Knormal into Kcancer. The length of that sequence is called the elementary distance

between the karyotypes, and denoted d(Knormal, Kcancer). An equivalent formulation of the KS problem is

obtained by considering the inverse direction: find a shortest sequence of inverse elementary operations that

transforms Kcancer into Knormal. Clearly, fusion and breakage operations are inverse to each other. The

inverse to a duplication is a constrained deletion (c-deletion), where the deleted chromosome is one of two

or more identical copies. In other words, a c-deletion can delete a chromosome only if there exists another

identical copy of it. The inverse of a deletion is an addition of a chromosome. Note that in general, the

added chromosome need not be a duplicate of an existing chromosome and can contain any number of

fragments. For the rest of the article, we analyze KS by sorting in reverse order, i.e., starting from Kcancer

and going back to Knormal. The sorting sequences will also start from Kcancer.

2.2. Reducing KS to RKS

In this section, we present a basic analysis of KS, which together with two additional assumptions, allows

the reduction of KS to a simpler variant in which no breakpoint exists (RKS). As we shall see, our

assumptions are supported by most analyzed cancer karyotypes.

We start with several definitions. A sequence of inverse elementary operations is sorting, if its appli-

cation to Kcancer results in Knormal. We shall refer to a shortest sorting sequence as optimal. Since every

fragment contains two or more bands, we can present any band i within it by an ordered pair of its two ends,

i0, which is the end closer to the minimal band in the fragment, and i1, the end closer to the maximal band in

the fragment. More formally, we map the fragment [i, j], i 6¼ j, to [i1, j0] � [i1, (iþ 1)0, (iþ 1)1, . . . , j0] if

i< j, and otherwise to [i0, j1] � [i0, (i� 1)1, (i� 1)0, . . . , j1]. We say that two fragment-ends, a and a0, are

complementing if fa, a0g ¼ fi0, i1g. The notion of viewing bands as ordered pairs is conceptually similar to

considering genes/synteny blocks as oriented, as is standard in the computational studies of genome

rearrangements in species evolution (Bourque and Zhang, 2006). In this study, we consider bands as

ordered pairs to well identify breakpoints: as mentioned previously, a breakage usually occurs within a

band, say i, and the two ends of i, i0 and i1, are separated between the two new resulting fragments. Thus, a

fusion of two fragment-ends forms an adjacency iff these ends are complementing. We identify a break-

point, and a concatenation point in general, by the two corresponding fragment-ends that are fused together.

More formally, the concatenation point in [a, b]::[a0, b0] is identified by the (unordered) pair {b, a0}. For

example, the breakpoint in [1, 2]::[4, 3] � [11, 20]::[40, 31] is identified by {20, 40}. Having defined

breakpoint identities, we refer to a breakpoint as unique if no other breakpoint shares its identity, and

otherwise we call it repeated. In particular, a breakpoint in a non-unique chromosome (i.e., a chromosome

with another identical copy) is repeated. Last, we say that a chromosome X is complex if it contains at least

one breakpoint, and simple otherwise. In other words, chromosome X is simple iff it consists of

one fragment. Analogously, an addition is complex if the chromosome added is complex, and simple

otherwise.

1Formally, since the broken ends of a chromosome are not considered breakpoints here, the term ‘‘fusion-point’’ may
seem more appropriate. However, we kept the name ‘‘breakpoint’’ due to its prior use and for brevity.
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Observation 1. Let S be an optimal sorting sequence. Suppose Kcancer contains a breakpoint, p, that is

not involved in a c-deletion in S. Then there exists an optimal sorting sequence S0, in which the first

operation is a breakage of p.

Proof. Since Knormal does not contain any breakpoint, p must be eventually eliminated by S. A

breakpoint can be eliminated either by a breakage or by a c-deletion. Since p is not involved in a c-deletion,

p is necessarily eliminated by a breakage. Moreover, this breakage can be moved to the beginning of S

since no other operation preceding it involves p. &

Corollary 1. Let S be an optimal sorting sequence. Suppose S contains an addition of chromosome

X¼ f1:: f2:: :: fk, where f1, f2,…, fk are fragments, and none of the k� 1 breakpoints in X is involved in any

subsequent c-deletion in S. Then the sequence S0, obtained from S by replacing the addition of X with the

additions of f1, f2,…, fk (a total of k additions), is an optimal sorting sequence.

Proof. By Observation 1, the breakpoints in X can be immediately broken after its addition. Thus,

replacing the addition of X, and the k� 1 breakages following it, by k additions of f1, f2,…, fk, yields an

optimal sorting sequence. &

It appears that complex additions, as opposed to simple additions, make KS very difficult to analyze.

Moreover, based on Corollary 1, complex additions can be truly beneficial only in complex scenarios in

which c-deletions involve repeated breakpoints that were formerly created by complex additions (Fig. 3).

Therefore, we make the following assumption:

FIG. 3. An example Kcancer and Knormal for which any optimal sorting scenario contains a complex addition. Note that

this scenario involves duplication of the breakpoint in [1,4]::[5,8], while repeated breakpoints are quite rare in the real

data.
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Assumption 1. Every addition is simple, i.e., every added chromosome consists of one fragment.

Using the assumption above, the following observation holds:

Observation 2. Let p be a unique breakpoint in Kcancer. Then there exists an optimal sorting sequence

in which the first operation is a breakage of p.

Proof. If p is not involved in a c-deletion, then by Observation 1, p can be broken immediately.

Suppose there are k c-deletions involving p or other breakpoints identical to it. If p is on chromosome X that

is c-deleted, then at the time of the c-deletion, another copy X0 of X is present in the karyotype, with an

identical breakpoint p0 in it. Note that following Assumption 1, from the four inverse elementary opera-

tions, only fusion can create a new breakpoint. Thus, we can obtain an optimal sorting sequence, S0, from S,

by: (i) first breaking p, (ii) canceling any fusion that creates a breakpoint p0 identical to p, (iii) replacing any

c-deletion involving p, or one of its copies, with two c-deletions of the corresponding 4 unfused chro-

mosomes, and (iv) not having to break the last instance of p (since it was already broken). In summary, we

moved the breakage of p to the beginning of the sorting sequence and replaced k fusions and k c-deletions

(i.e., 2k operations) with 2k c-deletions. &

Observation 3. In an optimal sequence, every fusion creates either an adjacency, or a repeated

breakpoint.

Proof. Let S be an optimal sorting sequence. Suppose S contains a fusion that creates a new unique

breakpoint p. Then, following Observation 2, p can be immediately broken after it was formed, a con-

tradiction to the optimality of S. &

In this work, we choose to focus on karyotypes that do not contain repeated breakpoints. According to

our analysis of the Mitelman database, 94% of the karyotypes satisfy this condition. Thus, we make the

following additional assumption:

Assumption 2. The cancer karyotype, Kcancer , does not contain any repeated breakpoint.

Assumption 2 implies that we can (i) immediately break all the breakpoints in Kcancer (due to Observation

2), and (ii) consider fusions only if they create an adjacency (due to Observation 3). Hence, given a cancer

karyotype, for each normal chromosome, its fragments can be separated from all the other fragments and

used to solve a simpler variant of KS: In this variant, (i) Knormal¼f[1, B] · Ng, (ii) there are no breakpoints

in Kcancer, and (iii) neither fusions, nor additions, form breakpoints. Usually, N¼ 2, with N¼ 1 for the sex

chromosomes. We refer to this reduced problem as restricted KS (abbreviated RKS). For the rest of the

article, we shall limit our analysis to RKS only.

3. A LOWER BOUND FOR THE ELEMENTARY DISTANCE

In this section, we analyze RKS and define several combinatorial parameters that affect the elemen-

tary distance between Knormal and Kcancer. Based on these parameters, we prove a lower bound on the ele-

mentary distance. Though theoretically our lower bound is not tight, we shall demonstrate in Section 4 that

in practice, for the vast majority (99.9%) of the real cancer karyotypes analyzed, the elementary distance

achieves this bound.

3.1. Extending the karyotypes

For simplicity of later analysis, we extend both Knormal and Kcancer by adding to each karyotype 2N ‘‘tail’’

intervals:

bKKnormal¼Knormal [ f[0, 1] · N, [B, Bþ 1] · Ng
bKKcancer¼Kcancer [ f[0, 1] · N, [B, Bþ 1] · Ng
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For an example, see Figure 4a. These new ‘‘tail’’ intervals do not take part in elementary operations:

breakage and fusion are still limited to {2, 3,…, B� 1}, and intervals added/c-deleted are contained in [1, B].

Hence d(Knormal, Kcancer) � d( bKKcancer, bKKcancer). Their only role is to simplify the definitions of parameters

given below.

3.2. The histogram

We define the histogram of bKKcancer, H � H( bKKcancer) : f[i� 1, i] j i¼ 1, 2, . . . , Bþ 1g ! N [ f0g, as

follows. Let H([i� 1, i]) be the number of fragments in bKKcancer that contain the interval [i� 1, i] (Fig. 4b).

From the definition of bKKcancer, it follows that H([0, 1])¼H([B, Bþ 1])¼N. For simplicity, we refer to

H ([i� 1, i]) as H (i). The histogram H has a wall at i 2 f1, . . . , Bg if H(i) 6¼ H(iþ 1). If H(iþ 1)4H(i)

(respectively, <H(i)) then the wall at i is called a positive wall (respectively, a negative wall). Intuitively, a

wall is a vertical jump of H. We define w to be the total size of walls in H. More formally,

w¼
XB

i¼1

jH(iþ 1)�H(i)j

Since H(1)¼H(Bþ 1)¼N, the total size of positive walls is equal to the total size of negative walls, and

hence w is even. Note that if bKKcancer¼ bKKnormal then w¼ 0. The pair (i, h) � (i, [h� 1, h]), h 2 N, is a brick in

the wall at i if H(i)þ 1 � h � H(iþ 1) or H(iþ 1)þ 1 � h � H(i). A brick (i, h) is positive (respectively,

negative) if the wall at i is positive (respectively, negative). Note that the number of bricks in a wall is equal

to its total size. Hence, w corresponds to the total number of bricks in H.

Observation 4. For breakage and fusion, �w¼ 0; For c-deletion and addition, �w¼f� 2, 0, 2g.

3.3. Counting complementing end pairs

Consider the case where w¼ 0. Then there are no gains and no losses of bands, and the number of

fragments in bKKcancer is greater or equal to the number of fragments in bKKnormal. Note that each of the four

elementary operations can decrease the total number of fragments by at most one. Hence, when w¼ 0, an

optimal sorting sequence would be to fuse pairs of complementing fragment-ends, not including the tails.

Let us define f � f ( bKKcancer) as the maximum number of disjoint pairs of complementing fragment-ends.

Note there could be many alternative choices of complementing pairs. Nevertheless, any maximal disjoint

pairing is also maximum. It follows that if w¼ 0, then d( bKKnormal, bKKcancer)¼ f � 2N. Also, when w 6¼ 0, a

c-deletion may need to be preceded by some fusions of complementing ends, to form two identical

fragments. In general, the following holds:

FIG. 4. An example of a cancer karyotype K̂Kcancer and its combinatorial parameters. (a) The (extended) cancer

karyotype is K̂Kcancer¼f[0, 1] · 2, [1, 4], [4, 5], [5, 10] · 2, [10, 11] · 2, [2, 3] · 2, [6, 8]g. Here N¼ 2, B¼ 10. The number

of disjoint pairs of complementing fragment-ends, f, is 5. (b) The histogram H � H(K̂Kcancer). H has walls at 1, 2, 3, 5, 6,

and 8. There are four positive bricks: (2,2), (2,3), (5,2), and (6,3), and four negative bricks: (1,2), (3,3), (3,2), and (8,3).

Hence w¼ 8. Four of the eight bricks are simple: (2,2), (3,2), (6,3), and (8,3), thus s¼ 4. (c) The weighted bipar-

tite graph of BG. It is not hard to verify that M¼f ((2, 3), (3, 3)), ((6, 3), (3, 2)), ((2, 2), (1, 2)), ((5, 2), (8, 3)) g is a

minimum-weight perfect matching and hence m¼ 2.
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Observation 5. For breakage �f ¼ 1; For fusion, �f ¼ � 1; For c-deletion, �f 2 f0, � 1, � 2g; For

addition, �f 2 f0, 1, 2g.

Lemma 1. For breakage and addition, �(w / 2þ f )¼ 1; For fusion and c-deletion, �(w / 2þ f )¼ � 1:

Proof. For breakage/fusion, �w¼ 0, and thus the lemma immediately follows from Observation 5. For

addition: (�w¼ 0)) (�f ¼ 1); (�w¼ � 2)) (�f ¼ 2); (�w¼ 2)) (�f ¼ 0). For c-deletion:

(�w¼ 0)) (�f ¼ � 1); (�w¼ � 2)) (�f ¼ 0); (�w¼ 2)) (�f ¼ � 2). &

3.4. Simple bricks

A brick (i, h) is called simple if: (i) (i, h� 1) is not a brick, and (ii) bKKcancer does not contain a pair of

complementing fragment-ends in i (Fig. 4b). Thus, in particular, a simple brick cannot be eliminated by a

c-deletion. On the other hand, for a non-simple brick, (i, h), there are two fragments ending in the corre-

sponding location (i.e., i). Nevertheless, it may still be impossible to eliminate (i, h) by a c-deletion if these

two fragments are not identical. We define s � s( bKKcancer) as the number of simple bricks.

Observation 6. For breakage, �s 2 f0, � 1g; For fusion, �s 2 f0, 1g; For c-deletion, �s¼ 0; For

addition, j�sj � 2.

Observation 6 and Lemma 1 imply:

Lemma 2. For every move, �(w / 2þ f þ s) � � 1.

3.5. The weighted bipartite graph of bricks

The last parameter that we define is based upon matching pairs of bricks. Note that in the process of

sorting bKKcancer, the histogram is flattened, i.e., all bricks are eliminated, which can be done only by using

c-deletion/addition operations. If a c-deletion/addition eliminates a pair of bricks, then one of these bricks is

positive and the other is negative. Thus, roughly speaking, every sorting sequence defines a matching

between pairs of positive and negative bricks that are eliminated together.

Given two bricks, v¼ (i, h) and v0 ¼ (i0, h0), we write v< v0 (resp. v¼ v0) if i< i0 (resp. i¼ i0). Let Vþ and

V� be the sets of positive and negative bricks, respectively. We say that v and v0 have the same sign, if

either v, v0 2 V þ , or v, v0 2 V � . Two bricks have the same status if they are either both simple, or both non-

simple. Let BG¼ (V þ , V � , � ) be the weighted complete bipartite graph, where � : V þ · V � ! f0, 1, 2g is

an edge-weight function defined as follows. Let vþ 2 V þ and v� 2 V � . Then:

�ðvþ ; v�Þ¼

0 vþ and v� are both simple and v�5 vþ

0 vþ and v� are both non-simple and vþ 5 v�

1 vþ and v� have opposite status

2 otherwise

8>>>>>>><
>>>>>>>:

For an illustration of BG, see Figure 4c. Roughly speaking, �(vþ , v� ) corresponds to the additional cost of

eliminating vþ and v� together, either by an addition, when v�< vþ, or by c-deletion, when vþ< v�. A

matching is a set of vertex-disjoint edges from V þ · V �. A matching is perfect if it covers all the vertices in

BG (recall that jVþj¼ jV�j). Thus, a perfect matching is in particular a maximum matching. Given a

matching M, we define d(M) as the total weight of its edges. Let m � m(K̂Kcancer) denote the minimum weight

of a perfect matching in BG. The problem of finding a minimum-weight perfect matching in a bipartite

graph, also known as the assignment problem, can be solved in O(n3) time (Kuhn, 1955; Munkres, 1957). In

the Appendix, we describe a simple O(n log n) algorithm for computing m, which relies heavily on the

specific weighting scheme, d.

Below, we prove a lower bound for the elementary distance using the four parameters we have just

defined: w, f, s, and m. First, we prove two technical lemmas.
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Lemma 3. Let M and M0 be two perfect matchings that differ by exactly two edges (i.e., four vertices).

Then jd(M)� d(M0)j � 2.

Proof. Let M nM0 ¼ fe1, e2g and M0 nM¼fe3, e4g. Assume w.l.o.g. that �¼ �(M0)� �(M) � 0. Then

�¼ �(e3)þ �(e4)� �(e1)� �(e2) � 4, since for every edge, e, �(e) 2 f0, 1, 2g. If �(e1)þ �(e2) � 2 then

clearly D� 2. Suppose d(e1)þ d(e2)< 2. Now, let e1¼ (v1, u1) and e2¼ (v2, u2). W.l.o.g. we assume that

e3¼ (v1, v2) and e4¼ (u1, u2).

� Case 1: d(e1)¼ d(e2)¼ 0. In this case, e1 and e2 connect vertices with the same status. If v1 has a different status

than v2, then d(e3)¼ d(e4)¼ 1. Otherwise, v1, u1, v2, and u2 have the same status. In this case it is not hard to verify

by considering the possible orderings of fv1, u1, v2, u2g that �(e3)þ �(e4) 2 f0, 2g. Thus, in either case D� 2.
� Case 2: d(e1)þ d(e2)¼ 1. In this case, exactly three vertices in fv1, u1, v2, u2g have the same status, while the

remaining vertex has the opposite status. Thus, it follows that either d(e3)¼ 1 or d(e4)¼ 1 and thus D� 2. &

Let K 0 be obtained from K by an elementary operation (a move). For a function F defined on karyotypes,

define D(F)¼F(K 0)�F(K).

Proposition 1. For every move, �(w / 2þ f þ sþm) � � 1.

Proof. For a given move, let �¼�(w / 2þ f þ sþm). Let G1 and G2 be the graphs before and after we

make the move, respectively, and let M1 and M2 be minimum-weight perfect matchings in G1 and G2,

respectively, where jM2 nM1j is minimal. Thus Dm¼m2�m1, where m1¼ d(M1) and m2¼ d(M2) We shall

prove D��1 by considering each move type.

� Breakage. We shall prove that jDj � 1. Now, D(w/2þ f )¼ 1 (Lemma 1), �(s) 2 f0, � 1g (Observation 6). If

Dm¼ 0 then � 2 f1, 0g. Suppose Dm= 0. Then a simple brick v became non-simple due to the move and

Ds¼�1. It follows that every edge, e, adjacent to v satisfies �(�(e)) 2 f� 1, 1g. Hence, for every perfect

matching M, �(�(M)) 2 f� 1, 1g. Then, in G1: m1 � �(M2) � m2þ 1, and in G2: m2 � �(M1) � m1þ 1. Hence

jDj ¼ jDmj � 1.
� Fusion. Since fusion is the inverse operation to breakage, it follows that jDj � 1 for fusion as well.
� C-deletion. By Lemma 1 D(w/ 2þ f )¼�1 and by Observation 6, D(s)¼ 0. We shall prove that Dm� 0 by

analyzing the possible values of Dw.
� Dw¼�2. Then two bricks, vþ 2 V þ and v� 2 V � , were eliminated, where vþ< v�, and both vþ and v� are non-

simple. Let e¼ (vþ,v�). Clearly, d(e)¼ 0. Thus before we apply the move: m2¼ �(M2)¼ �(M2 [ feg) �
�(M1)¼m1. Hence Dm� 0.
* Dw¼ 0. In this case, a non-simple brick, v, was replaced with another non-simple brick, v 0 with the same sign. If

v, v0 2 V þ , then v< v0, otherwise, v> v0. Thus, for every vertex u with the same sign to v, d((v, u))� d((v0, u)).

For every vertex u with the opposite sign, d((v,u))¼ d((v0,u)). Hence, Dm� 0.
* Dw¼ 2. In this case, a pair of new non-simple bricks, v� 2 V � and vþ 2 V þ was added, where v�< vþ. Let

e¼ (vþ,v�). Then clearly d(e)¼ 2. Recall that jM2 nM1j is minimal. We now prove that M2¼M1 [ feg and

hence m2¼m1þ 2. Suppose e 62 M2. Let uþ 2 V þ and u� 2 V � be the nodes matched to v� and vþ, re-

spectively, in M2. Let M01 be a minimal perfect matching in G1 that contains e0 ¼ (u�,uþ). Then �(M01) � m1 and

thus it suffices to prove that �(M2) � �(M01). We will do so by proving that d(v�, uþ)þ d(vþ, u�)� d(e0). If

d(e0)¼ 0 then this is certainly true. Suppose d(e0)> 0.

—d(e0)¼ 1. Then exactly one of uþ and u� is simple, hence either d(v�, uþ)¼ 1 or d(vþ, u�)¼ 1.

—d(e0)¼ 2. Then uþ and u� have the same status. If they are both simple then d( v�, uþ)þ
d(vþ, u�)¼ 1þ 1¼ 2¼ d(e0). Otherwise, a simple case analysis reveals that at least one of the edges (vþ, u�)

and (uþ, v�) has a weight 2, and thus d(v�, uþ)þ d(vþ, u�)� 2.
� Addition. Then D(w/2þ f )¼ 1 (Lemma 1), Ds��2 (Observation 6).

* Dw¼�2. In this case, two bricks, v� 2 V � and vþ 2 V þ , were eliminated, where v�< vþ. Let e¼ (v�, vþ).

Then d(e)¼ 2þDs. Moreover, m2¼ �(M2 [ feg)� �(e) � m1� �(e). Thus DmþDs��d(e)þDs¼�2. Hence

D��1.
* Dw¼ 0. In this case, one brick, v, was replaced with a new brick with the same sign, v0. Thus Ds��1, and

Dm��2, since only the edges adjacent to v, which are now adjacent to v0, are affected. If Ds� 0 then clearly

D��1. Suppose Ds¼�1. The a simple brick was replaced with a non-simple brick. Let u be a vertex with the

opposite sign to v. Then d((u,v))� d((u,v0))��1, and thus Dm��1. Therefore, D��1.
* Dw¼ 2. Then two new bricks, vþ 2 V þ and v� 2 V � , were added, where vþ< v�. Thus Ds� 0. Also

D( f )¼ 0. It suffices to prove that Dm��2 and hence D��1. Let e¼ (vþ, v�). If e 2 M2 then clearly m2�m1,
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and thus Dm� 0. Suppose e 62 M2. Then there exist e1, e2 2 M2 where e1¼ (vþ, u�), e2¼ (v�, uþ). Let

M01¼M2 n fe1, e2g [ fe0g, where e0 ¼ (uþ, u�). Then M01 is a perfect matching in G1 and thus �(M01) � m1. Now,

M02¼M01 [ feg is a perfect matching in G2, which differs from M2 by exactly two edges. By Lemma 3,

�(M2) � �(M02)� 2. Since �(M02)¼ �(M01)þ �(e0) � m1, it follows that m2�m1� 2 and thus Dm��2. &

Corollary 2. d�w/ 2þ f� 2Nþ sþm� 0.

Proof. Since N is constant, Proposition 1 implies D(w/ 2þ f� 2Nþ sþm)��1. For

K̂Kcancer¼ K̂Knormal, w / 2þ f � 2Nþ sþm¼ 0þ 2N� 2Nþ 0þ 0¼ 0. Thus the left inequality holds, and it

suffices to prove that t¼w/ 2þ f� 2Nþ sþm� 0. If f� 2N then clearly t� 0. Suppose f< 2N. We shall

prove that fþ sþm� 2N. There are at least 2N� f intervals of the form [0, 1] or [B,Bþ 1], with no

complementing fragment-ends at 1,B. Each of these unmatched tails corresponds to a brick at 1 or B. Let

us look at an optimal matching and focus on the edges involving these bricks. There are at least

d(2N� f )/ 2e such edges. It is easy to verify that each of these edges contributes 2 to sþm, hence

sþm� 2N� f. &

4. THE 3-APPROXIMATION ALGORITHM

Algorithm 1 is a polynomial procedure for the RKS problem. We shall prove that it is a 3-approximation,

and then describe a heuristic that aims to improve it.

Lemma 4. Algorithm 1 transforms K̂Kcancer into K̂Knormal using at most 3w/ 2þ f� 2Nþ sþm inverse

elementary operations.

Proof. Let � � �(w / 2þ f þ sþm). First, we prove that D¼�1 for each move except Step 13, and

for Step 13 moves, D¼ 1.

� Step 3: �(w / 2þ f )¼ 1, �(sþm)¼ � 2. Note that if there exists a negative (resp. positive) brick at 1 (resp. B),

then this brick is necessarily eliminated in this step.
� Steps 7,9: �(w / 2þ f )¼ 1 (by Lemma 1). After Step 3, any brick at 1 (resp. B) is necessarily positive (resp.

negative) and thus not simple. Thus Ds¼�1. Now Dm��1 (by Proposition 1). By using the maximal matching

induced by M, in which v is replaced by 1 (if v 2 V þ ) or by B (if v 2 V � ), we get Dm¼�1.
� Step 13: By now, Vþ[V� contains only non-simple bricks, i.e., s¼ 0 and thus Ds¼ 0. Moreover, m¼ 0, since the

matching induced by M is optimal (see previous step) and every pair (vþ,v�) in it, where vþ 2 V þ and v� 2 V � ,

satisfies vþ< v�. Therefore, Dm¼ 0. D(w/ 2þ f )¼ 1 (by Lemma 1).
� Step 18: There are no bricks at p, thus Ds¼Dm¼ 0, and D¼D(w/ 2þ f )¼�1 (by Lemma 1).
� Step 20: By now, all bricks are non-simple and the negative bricks are at B. Thus s¼m¼ 0 and Ds¼Dm¼ 0. D(w/

2þ f )¼�1 (by Lemma 1).

Algorithm 1 Elementary Sorting (RKS)

1: M/ a minimum-weight perfect matching in BG

2: for all (v� , vþ ) 2 M where v� 5 vþ do

3: Add the interval [v� , vþ ].

4: end for /* Now vþ< v� for every (vþ , v� ) 2 M, where vþ 2 V þ , v� 2 V � � /

5: for all v 2 V þ [ V � such that v is simple, and v= 1, B do

6: if v 2 V þ then

7: Add the interval [1,v]

8: else

9: Add the interval [v,B]

10: end if

11: end for /* Now vþ< v� for every (vþ , v� ) 2 M, where vþ 2 V þ , v� 2 V � and

all the bricks are non-simple. In addition, 1 62 V � and B 62 V þ�/
12: for all v� 2 V � such that v�<B do

13: Add the interval [v�, B]
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Let t¼w / 2þ f � 2Nþ sþm. There are at most w/ 2 additions at Step 13, each of which satisfies D¼ 1.

For all the other operations we have shown that D¼�1. Thus the overall number of operations is less or

equal to w / 2þ tþw / 2¼ 3w / 2þ f � 2Nþ sþm. &

Theorem 1. Algorithm 1 is a polynomial-time 3-approximation algorithm for RKS.

Proof. By Lemma 4, the algorithm requires � 3t moves. By Corollary 2, that number is at most 3d.&

Note that the same result applies to multi-chromosomal karyotypes, by summing the bounds for the RKS

problem on each chromosome. Note also that the results above imply also that d 2 [w / 2þ f � 2Nþ
sþm, 3w / 2þ f � 2Nþ sþm]

We now present Procedure 2, a heuristic that attempts to improve the performance of Algorithm 1, by

suggesting an alternative to steps 12–21. The procedure assumes that (i) all bricks are non-simple, and (ii)

vþ< v�, for every (vþ , v� ) 2 M, v� 2 V � , vþ 2 V þ . In this case, m¼ 0, and the lower bound is reached

only if no additions are made. Thus, Procedure 2 attempts to minimize the number of extra addition

operations performed. For an interval I, let L(I) and R(I) be the left and right endpoints of I respectively.

5. EXPERIMENTAL RESULTS

In this section, we present the results of sorting real cancer karyotypes, using Algorithm 1, combined

with the improvement heuristic in Procedure 2.

5.1. Data preprocessing

For our analysis, we used the Mitelman database (version of November 4, 2008), which contained 57,776

cancer karyotypes, collected from 9,311 published studies. The karyotypes in the Mitelman database

(henceforth, MD) are represented in the ISCN format and can be automatically parsed and analyzed using

the software package CyDAS (Hiller et al., 2005). We refer to a karyotype as valid if it was parsed by

Procedure 2 Heuristic for eliminating non-simple bricks

1: while Vþ= ; do

2: vþ/max Vþ

3. for all p4 vþ , p5B, p 62 V � do

4: Fuse any pair of intervals complementing at p.

5: end for

6: if AI1,I2, where I1¼ I2 and L(I1)¼ vþ, and R(I1)5R(I2) 2 V � then

7: Let I1,I2 be a pair of intervals with minimal length satisfying the above.

8: C-delete I1

9: else if AI1,I2, where L(I1)¼ L(I2)¼ vþ and R(I1)5R(I2) 2 V � then

10: Let I1,I2 be a pair of intervals with minimal length satisfying the above.

11: Add the interval [R(I1),R(I2)]

12: else

13: Let u� ¼ minfv� 2 V � jv� 4 vþ g
14: Add the interval [u�,B]

15: end if

16: end while

14: end for /* Now all the bricks are non-simple, and v� ¼B, 8v� 2 V �� /

15: while Vþ= ; do

16: vþ/max Vþ

17: for all p> vþ, p<B do

18: Fuse any pair of intervals complementing at p.

19: end for

20: C-delete an interval [vþ, B]

21: end while
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CyDAS without any error. According to our processing, 50,769 (88%) of the records gave valid karyotypes.

Since some of the records contain multiple distinct karyotypes found in the same tissue, the total number of

simple valid karyotypes that we deduced from MD was 62,421.

A karyotype may contain uncertainties, or missing data, both represented by a ‘‘?’’ symbol. We ignored

uncertainties and deleted any chromosomal fragments that were not well defined.

5.2. Sorting the karyotypes

Out of the 62,421 karyotypes analyzed, only 3,957 karyotypes (6%) contained repeated breakpoints. Our

analysis focused on the remaining 58,464 karyotypes. We note that 21,747 (35%) of these karyotypes do

not contain any breakpoint at all. (In these karyotypes, there are no fusions of bands that are not adjacent in

normal chromosomes, but some chromosome tails, as well as full chromosomes, may be missing or

duplicated.) Following our assumptions (see Section 1.2), we broke all the breakpoints in each karyotype.

To avoid over estimation of whole chromosome gains due to events of global changes in the genome

ploidy, we used the ploidy of each karyotype as the normal copy-number (N) of each chromosome. (The

ploidy was computed by the CyDAS parser, based on the the ISCN description of karyotype.) We first

applied Algorithm 1 (without the heuristic), to the fragments of each of the chromosomes in these kar-

yotypes. In 54,903 (94%) of the analyzed karyotypes, this algorithm achieved the lower-bound, and thus

produced optimal sequences. We then applied Algorithm 1, combined with Procedure 2, and the number of

karyotypes that achieved the lower bound increased to 58,434 (99.9%) of the analyzed karyotypes. Each of

the remaining 30 karyotypes contained one or two chromosomes for which the computed sequence was

larger by 2 than the lower-bound. Manual inspection revealed that for each of these cases the elementary

distance was indeed 2 above the lower bound. Hence the computed sequences were found to be optimal in

100% of the analyzed cases.

5.3. Operations statistics

We now present statistics on the elementary operations reconstructed by our algorithm. The 58,464

analyzed karyotypes, contained 86,666 (unique) breakpoints in total. Hence the average number of fusions

FIG. 5. The distribution of number of breakpoints (i.e., fusions of non-adjacent bands) per karyotype. ‘‘Sorted

karyotypes’’ correspond to karyotypes with no repeated breakpoints. ‘‘Non-sorted karyotypes’’ correspond to karyo-

types with repeated breakpoints. About 35% of all the karyotypes do not contain any breakpoint.

Table 1. Average Number of Elementary Operations per (Sorted) Cancer Karyotype

Breakage Fusion Deletion Duplication All

2.4 1.5 2.6 1.1 7.6
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(eq. breakpoints) per karyotype is approximately 1.5. The distribution of the number of breakpoints per

karyotype, for all valid karyotypes, including the non-sorted karyotypes (i.e karyotypes with repeated

breakpoints, which are not analyzed by our algorithm), is presented in Figure 5. The most frequent number

of breakpoints after zero is two, which is due to the prevalence of reciprocal translocations in the analyzed

cancer karyotypes. (Indeed, a direct analysis of cancer karyotypes with exactly two breakpoints shows that

75% have a single translocation.) Table 1 summarizes the average number of operations per sorted kar-

yotype.

6. DISCUSSION

In this article, we proposed a new mathematical model for analyzing the evolution of cancer karyotypes,

using four simple operations. Our model was developed following our empirical observation that chro-

mosome gain and loss are dominant events in cancer (Ozery-Flato and Shamir, 2007). That observation

relied on a purely heuristic algorithm that reconstructed for each cancer karyotype a sequence of events

leading to the normal karyotype, using a wide catalog of complex rearrangement events, such as inversions,

tandem-duplications, iso-chromosome creation, etc. Here we attempted to reconstruct rearrangement events

in cancer karyotypes in a rigorous, yet simplified, manner.

The fact that we model and analyze bands and karyotypes may seem out of fashion in an era of CGH

micro arrays and next generation sequencing. While modern techniques today allow in principle detection

of chromosomal aberrations in cancer at an extremely high resolution, the clinical reality is that kar-

yotyping is still commonly used for studying cancer genomes, and to date it is the only abundant data

resource for cancer genomes structure. Moreover, our framework is not limited to cytogenetic banding

resolution, as the ‘‘bands’’ in our model may represent any DNA blocks.

Readers familiar with the wealth of computational works on evolutionary genome rearrange-

ments (Bourque and Zhang, 2006) may wonder why we have not used traditional operations, such as

inversions and translocations, as has been previously done (Raphael et al., 2003). The reason is that

while inversions and translocations are believed to dominate the evolution of species, they form less

than 25% of the rearrangement events in cancer karyotypes Ozery-Flato and Shamir (2007), and 15%

in karyotypes of malignant solid tumors. The extant models for genome rearrangements do not cope

with duplications and losses, which are frequently observed in cancer karyotypes, and thus are not

suitable for cancer genomes evolution. Extending these models to allow duplications results, even for

the simplest models, in computationally hard problems (Radcliffe et al., 2005, Theorem 10). On the

other hand, the elementary operations in our model can easily explain the variety of chromosomal

aberrations viewed in cancer (including inversions and translocations). Moreover, each elementary

operation we consider is strongly supported by a known biological mechanism (Albertson et al., 2003):

breakage corresponds to a double-strand-break (DSB); fusion can be viewed as a non-homologous end-

joining DSB-repair; whole chromosome duplications and deletions are caused by uneven segregation of

chromosomes.

Based on our new model for chromosomal aberrations, we defined a new genome sorting problem. To

further simplify this problem, we made two assumptions that essentially prohibit the occurrence of repeated

breakpoints in cancer karyotypes, and in their intermediates. All the cancer karyotypes we analyzed did not

contain repeated breakpoints. Although we do not have direct evidence about their intermediate karyotypes,

our assumption is supported by the fact that the vast majority (94%) of reported cancer karyotypes do not

contain repeated breakpoints. We presented a lower bound for this simplified problem, and developed a

polynomial 3-approximation algorithm. The application of this algorithm to 58,464 real cancer karyotypes

yielded solutions that achieve the lower bound (and hence an optimal solution) in almost all cases (99.9%).

This is probably due to the relative simplicity of reported karyotypes, especially after removing ones with

repeated breakpoints (Fig. 5).

In the future, we would like to extend this work by weakening our assumptions in a way that will allow

the analysis of the remaining non-analyzed karyotypes. Those karyotypes, due to their complexity, are

likely to correspond to more advanced stages of cancer. Our hope is that this study will lead to further

algorithmic research on chromosomal aberrations, and thus help in gaining more insight on the ways in

which cancer evolves.
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7. APPENDIX: FINDING A MINIMUM-WEIGHT PERFECT MATCHING

In this section, we present an O(n log n) algorithm for finding a minimum-weight perfect matching. For

status T (i.e T¼ ‘‘simple’’ or T¼ ‘‘non-simple’’) and a set of bricks V, let VT�V denote the set of bricks in

V that are of status T.

Observation 7. Let vþ1 , vþ2 2 V þT and v�1 , v�2 2 V �T . Suppose vþ1 5 vþ2 and v�1 5 v�2 .

� If T¼ ‘‘simple’’ then �(v�1 , vþ2 )) � �((v�1 , vþ1 )) � �((v�2 , vþ1 )).
� If T¼ ‘‘non-simple’’ then �(vþ1 , v�2 )) � �((vþ1 , v�1 )) � �((vþ2 , v�1 )).

Let vþ1 , vþ2 2 V þ , and v�1 , v�2 2 V �. Let e1¼ (vþ1 , v�1 ), and e2¼ (vþ2 , v�2 ). We say that e1� e2 if

vþ1 � vþ2 and v�1 � v�2 .

Lemma 5. Suppose e� ¼ minfe 2 V þt · V �T j�(e)¼ 0g. Then there is a minimum-weight perfect

matching that contains e�.

Proof. Let M0 be a perfect matching that does not contain e�, with a minimum weight. Let M be a

perfect matching most similar to M0 that does contain e�. In other words M differs from M0 by exactly two

edges, one of which is e�. Let e2 2 M nM0, e2 6¼ e�. Suppose e� ¼ (vþ1 , v�1 ) and e2¼ (vþ2 , v�2 ), where

vþ1 , vþ2 2 V þ and v�1 , v�2 2 V � . Then M0 nM¼fe3, e4g, where e3¼ (vþ1 , v�2 ) and e4¼ (vþ2 , v�1 ). We

shall prove that �m¼ �(M)� �(M0)¼ �(e�)þ �(e2)� (�(e3)þ �(e4)) � 0.

If d(e2)¼ 0 then clearly Dm� 0. Suppose d(e2)> 0. Since �(e�)¼ 0, vþ1 and v�1 are of the same status,

say T. Let �TT be the inverse status to T.

Case 1: vþ2 and v�2 have the same status. Then d(e2)¼ 2. If the status of vþ2 and v�2 is �TT then d(e3)¼ d(e4)¼ 1 and thus

Dm¼ 0. Suppose the status of vþ2 and v�2 is T. It suffices to prove that either d(e3)¼ 2 or d(e4)¼ 2. Suppose

d(e3)¼ 0. Recall that e� ia a minimal edge in V þT · V �T with a zero weight.

� T¼ ‘‘simple’’. Then (�(e2)¼ 2)) (vþ2 5 v�2 ), and �(e3)¼ 0)) (vþ1 4 v�2 ) and thus vþ2 5 v�1 and e4¼
(vþ2 , vþ1 )5 (vþ1 , v�1 )¼ e�. Since e�, e4 2 V þT · V �T and e� is the minimal edge in V þT · V �T satisfying d(e1)¼ 0, it

follows that d(e4)¼ 2.
� T¼ ‘‘non-simple’’. In this case similar arguments to the case where T¼ ‘‘simple’’ are used, by simply reversing the

direction of each inequality.

Case 2: vþ2 and v�2 have a different status. In this case �(e�)þ �(e2)¼ 0þ 1¼ 1, and either d(e3)¼ 1 or d(e4)¼ 1. Thus

Dm� 0. &

Observation 7 and Lemma 5 immediately imply Algorithm 3, which finds a minimal-weight perfect

matching in BG. It is not hard to verify that this algorithm can be implemented in O(n log n).

Algorithm 3 Finding a minimum-weight perfect matching in the weighted bipartite

graph of bricks

1: M/ ;
2: for all T¼ ‘‘simple’’,‘‘non-simple’’ do

3: if T¼ ‘‘simple’’ then

4: L1/ increasingly ordered V �T
5: L2/ increasingly ordered V þT
6: else

7: L1/ increasingly ordered V þT
8: L2/ increasingly ordered V �T
9: end if

10: flag / true

11: while flag¼ true and L1= ; do

12: v1 / the first brick in L1

13: L1  L1 n fv1g
14: while v1 is unmatched and L2= ; do
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