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Abstract

We present a method for identifying connected gene subnetworks significantly en-
riched for genes that are dysregulated in specimens of a disease. These subnetworks
provide a signature of the disease potentially useful for diagnosis, pinpoint possible
pathways affected by the disease, and suggest targets for drug intervention. Our method
uses microarray gene expression profiles derived in clinical case-control studies to iden-
tify genes significantly dysregulated in disease specimens, combined with protein inter-
action data to identify connected sets of genes. Our core algorithm searches for minimal
connected subnetworks in which the number of dysregulated genes in each diseased
sample exceeds a given threshold. We have applied the method in a study of Hunting-
ton’s disease caudate nucleus expression profiles and in a meta-analysis of breast cancer
studies. In both cases the results were statistically significant and appeared to home in
on compact pathways enriched with hallmarks of the diseases.

1 Introduction

Systems biology has the potential to revolutionize the diagnosis and treatment of com-
plex disease by offering a comprehensive view of the molecular mechanisms underlying
the pathology. To achieve these goals, a computational analysis extracting mechanis-
tic understanding from the masses of available data is needed. To date, such data in-
clude mainly microarray measurements of genome-wide expression profiles, with over
160,000 profiles stored in GEO alone as of August 2007. A wide variety of approaches
for elucidating molecular mechanisms from expression data have been suggested [1].
However, most of these methods are effective only when using expression profiles ob-
tained under diverse conditions and perturbations, while the bulk of data currently avail-
able from clinical studies are expression profiles of groups of diseased individuals and
matched controls. The standard “pipeline” for analysis of such datasets involves the
application of statistical and machine learning methods for identification of the genes
that best predict the pathological status of the samples [2]. While these methods are
successful in identifying potent signatures for classification purposes, the insights that
can be obtained from examining the gene lists they produce are frequently limited [3].

It is thus desirable to develop computational tools that can extract more knowledge
from clinical case-control gene expression studies. A challenge of particular interest
is to identify the pathways involved in the disease, as such knowledge can expedite



development of directed drug treatments. One strategy of solution to this problem uses
predefined gene sets describing pathways and quantifies the change in their expression
levels [4]. The drawback of this approach is that pathway boundaries are often difficult
to assign, and in many cases only part of the pathway is altered during disease. To
overcome these problems, the use of gene networks has been suggested [5]. The appeal
of using network information increases as the quality and scale of experimental data on
such interaction networks improve.

Several approaches for integrating microarray measurements with network knowl-
edge were described in the literature. Some (including us) proposed computational
methods for detection of subnetworks that show correlated expression [6, 7]. A suc-
cessful method for detection of ‘active subnetworks’ was proposed by Ideker et al. and
extended by other groups [8–12]. These methods are based on assigning a significance
score to every gene in every sample and looking for subnetworks with statistically sig-
nificant combined scores. Breitling et al. proposed a simple method named GiGA which
receives a list of genes ordered by their differential expression significance and extracts
subnetworks corresponding to the most differentially expressed genes [13]. Other tools
use network and expression information together for classification purposes [5, 14].

Methods based on correlated expression patterns do not use the sample labels, and
thus their applicability for case-control data is limited, as correlation between transcript
levels can stem from numerous confounding factors not directly related to the disease
(e.g., age or gender). The extant methods that do use the sample labels rely on the
assumption that the same genes in the pathway are differentially expressed in all the
samples (an exception is jActiveModules which can identify a subset of the conditions
in which the subnetwork is active [8]). This assumption may hold in simple organisms
(e.g., yeast or bacteria) or in cell line studies. However, in human disease studies, the
samples are expected to exhibit intrinsic differences due to genetic background, envi-
ronmental effects, tissue heterogeneity, disease grade and other confounding factors.
Here we propose a new viewpoint for analysis of clinical gene expression samples in
the context of interaction networks, which avoids the above assumption.

Our approach aims to detect subnetworks in which multiple genes are dysregulated
in the diseased specimens, while allowing for distinct affected gene sets in each patient.
We call such modules dysregulated pathways (DPs). Specifically, we look for minimal
connected subnetworks in which the number of dysregulated genes in each diseased
sample exceeds a given threshold. By comparing to statistics of randomized networks,
we can identify statistically significant DPs. As finding such modules is NP-hard, we
propose heuristics and algorithms with provable approximation ratios and study their
performance on real and simulated data. Our approach has several important advan-
tages over the existing methods: (a) the dysregulated genes in a DP can vary between
patients; (b) the method is robust to outliers (i.e., patients with unusual profiles); (c) the
DPs can contain relevant genes based on their interaction pattern, even if they are not
dysregulated; (d) it has only two parameters, both of which have an intuitive biological
interpretation; (e) while not guaranteeing optimality, the algorithmic backbone of the
method has a provable performance guarantee.

We first tested the performance of our method on simulated data. We then used it
to dissect the gene expression profiles of samples taken from the caudate nucleus of



Fig. 1. From case-control profiles to dysregulated pathways. (A) The first input to our method is the gene expression
matrix where the columns correspond to samples taken from case/control subjects and rows correspond to genes. (B) In
a preprocessing step, differential expression is analyzed and, for each gene, the set of cases in which it is differentially
expressed (up-regulated, down-regulated or both) is extracted. (C) A second input is a protein interaction network with nodes
corresponding to genes and edges to interactions. The row next to each gene is its dysregulation pattern (its row from B).
The goal is to find a smallest possible subnetwork in which, in all but l cases, at least k genes are differentially expressed. In
this example, the circled subnetwork satisfies the condition with k = 2, l = 1: (i) A and C are dysregulated in case 1; (ii)
A and B are dysregulated in case 3. (D) The bipartite graph representation of the data. Genes (left) are connected to the cases
(right) in which they are differentially expressed. Edges between genes constitute the protein interaction network. The genes
of the minimal cover and the samples covered by them are in green.

Huntington’s Disease (HD) patients. We reveal specific subnetworks that are up and
down regulated in cases in comparison to controls, and show that they are significantly
enriched with known HD-related genes. Finally, we performed a network-based meta-
analysis of six breast cancer datasets, extracting DPs associated with good and poor
outcome of the disease. In all cases, the DPs are significantly enriched with genes from
relevant pathways and contain both known and novel potential drug targets.

For lack of space, some details and proofs are not included in this manuscript.

2 Methods

2.1 Problem formulation

In this section we describe the theoretical foundations of our methodology (Fig. 1). The
known gene network is presented as an undirected graph, where each node (gene) has
a corresponding set of elements (samples) in which it is differentially expressed. Our
goal is to detect a DP, which is a minimal connected subnetwork with at least k nodes
differentially expressed in all but l analyzed samples (l thus denotes of the number of
allowed ‘outliers’).

We formalize these notions as follows. We are given an undirected graph G =
(V,E) and a collection of sets {Sv}v∈V over the universe of elements U , with |U | =



n. For ease of representation, we will use, in addition to G, a bipartite graph B =
(V,U,EB) where (v, u) ∈ EB , v ∈ V, u ∈ U if and only if u ∈ Sv (Fig. 1D). A
set C ⊆ V is a connected (k, l)-cover (denoted CC(k, l)) if C induces a connected
component in G and a subset U ′ ⊆ U exists such that |U ′| = n− l and for all u′ ∈ U ′,
|N(u′) ∩ C| ≥ k, i.e., in the induced subgraph (C,U ′) the minimal degree of nodes in
U ′ is at least k (N(x) is the set of neighbors of x in B). We are interested in finding a
CC(k, l) of the smallest cardinality. We denote this minimization problem by MCC(k,l).

2.2 Similar problems and previous work

If G is a clique, MCC(1, 0) is equivalent to the Set Cover problem [15]. For this classi-
cal NP-hard problem, Johnson proposed a simple greedy algorithm with approximation
ratio O(ln(n)) [15]. If k > 1 and G is a clique, the MCC(k, 0) problem is equivalent
to the set multicover problem, also known as the set k-cover problem, a variant of the
Set Cover problem in which every element has to be covered k times. The set multicover
problem can be approximated to factor of O(p), where p is the number of sets covering
the element that appears in the largest number of sets [15]. The greedy algorithm for set
multicover was shown to achieve an approximation ratio of O(log(n)) [16]. See [15]
for a comprehensive review of the available approximation results on set cover and set
multicover problems.

For a general G, MCC(1, 0) is the Connected Set Cover problem, which has been
recently studied in the context of wavelength assignment of broadcast connections in
optical networks [17]. It was shown to be NP-Hard even if at most one vertex of G has
degree greater than two, and approximation algorithms were suggested for the cases
where G is a line graph or a spider graph. Both of these special cases are not applicable
in our biological context.

2.3 Greedy algorithms for MCC(k, l)

We tested two variants of the classical greedy approximation for Set Cover. For simplic-
ity we will describe them for MCC(1, 0). The first algorithm, ExpandingGreedy works
as follows: Given a partial cover W ⊆ V and the set of corresponding covered elements
X ⊆ U , the algorithm picks a node v ∈ V that is adjacent to W and that covers the
largest number of elements of U \ X , adds v to the cover and adds N(v) ∩ U to X .
Initially W = ∅, X = ∅ and the first node is picked without connectivity constraints.
Unfortunately, ExpandingGreedy can be shown to give a solution that is O(|V |) times
the optimal solution. Specifically, it runs into difficulties in cases where all the nodes
in the immediate neighborhood of the current solution have equal benefit, and the next
addition to the cover is difficult to pick. The second algorithm, ConnectingGreedy, first
uses the simple greedy algorithm [15] to find a set cover that ignores the connectivity
constraints and then augments it with additional nodes in order to obtain a proper cover.
The diameter of a graph is the maximum length of a shortest path between a pair of
nodes in V . It can be shown that ConnectingGreedy guarantees an approximation ratio
of O(D log n) for MCC(1, 0), where D is the diameter of G.



2.4 The CUSP algorithm

We next describe an algorithm called Covering Using Shortest Paths (CUSP). Let d(v, w)
be the distance in edges between v and w in G. For each root node r and for each el-
ement u ∈ U the algorithm computes distances (M [r, u]1, ...,M [r, u]k) and pointers
(P [r, u]1, ..., P [r, u]k) to the k nodes closest to r that cover u. This can be done by
computing the distances from r to all the nodes in V that cover u, and then retrieving
the k closest nodes, which is an instance of the selection problem and can be solved in
expected linear time [18]. Now take Xr, the union of the paths to the nodes covering
the n − l elements for which maxq{d(r, P [r, u]q), 1 ≤ q ≤ k} are the smallest. Xr is
a proper CC(k, l): (a) it is a subtree of T and thus induces a connected component in
G; (b) n − l elements of U are covered k times by the corresponding {P [r, u]i}. The
final solution is X = arg minv |Xv|. This algorithm can be proved to give a k(n − l)-
approximation for MCC(k, l).

In terms of computational complexity, the total amount of work for each choice of r
is O(|V |+ |E|+ |EB |) and the overall complexity is O(|V |(|V |+ |E|+ |EB |)). Note
that it is not necessary to execute the algorithm from every root node, but only from the
l + 1 nodes that cover elements from U ′ ⊆ U for which maxu′∈U ′ |N(u′)| is minimal.

2.5 Practical heuristics and implementation details

In order to improve the performance of the proposed algorithms, we implemented sev-
eral practical heuristics.
CUSP∗ - starting from high coverage cores: A drawback of CUSP is that it ignores
the number of elements covered by each node, and treats the coverage of every element
separately. We therefore also implemented the CUSP∗ heuristic: For each root, it uses
dynamic programming to identify a subnetwork of k nodes that offers a good coverage
of the elements, and then extends it to a proper CC(k, l) as in CUSP.
Clean-up: The DPs produced by all the described algorithms may contain superfluous
nodes that are not necessary neither for the cover requirements nor for subnetwork con-
nectivity. In all algorithms we therefore perform a clean-up step that iteratively removes
such nodes until no further reduction is possible.
Shortest path tree construction: While the approximation bound of CUSP holds re-
gardless of the shortest paths used, some sets of such paths may eventually give rise
to smaller covers than others. We used the following heuristic in the BFS algorithm: at
each level of the constructed BFS tree, we sort the nodes in descending order based on
the added coverage they offer. The nodes are then scanned in this order and the next
level of the tree is built.
Starting points: The performance of the algorithms depends on the number of starting
points/seeds used. In all the results described here we executed all algorithms starting
from the 30 nodes that had the highest degrees in B.
Assessment of DP significance: CUSP produces a set of DPs for a range of k values.
To select the most significant DP, 200 random networks were generated by degree-
preserving randomization [19]. CUSP was executed on each network, for a range of k
values, and an empirical p-value was computed. The k value for which the size of the
DP was most significant was subsequently used. In case of a tie, a normal distribution



was fitted to the random scores, and k yielding the subnetwork with the most significant
z-score was selected.
Finding multiple DPs: After recovering the first DP V1, we seek additional DPs by
removing all the edges adjacent to V1 from EB and reapplying the search procedure.
This is repeated until no significant DP is found.
Our algorithms were implemented in Java, and source code of the implementation is
available upon request. A user-friendly graphical interface for the algorithms described
here is currently in development.

3 Results

Human protein interaction network: We compiled a human protein-protein interac-
tion network encompassing 7,384 nodes corresponding to Entrez Gene identifiers and
23,462 interactions. The interactions are based mostly on small-scale experiments and
were obtained from several interaction databases. The network and the sources infor-
mation are available at our website http://acgt.cs.tau.ac.il/clean.

3.1 Simulation

We first evaluated the algorithms on simulated data in which a single DP is planted.
We used the human protein interaction network as G, created a biclique between a con-
nected subgraph of G and a specified number of elements in U and added noise to
B by randomly removing and inserting edges. In the simulations (results not shown)
ExpandingGreedy generally found the smallest covers. The results produced by CUSP
and CUSP∗ were only slightly inferior. However, the covers produced by CUSP and
CUSP∗ were much more compact, giving a much lower mean shortest path length be-
tween nodes in the cover.

3.2 Analysis of Huntington’s disease caudate nucleus expression profiles

Huntington’s disease (HD) is a devastating autosomal dominant neurological disorder
caused by an expansion of glutamine repeats in the ubiquitously expressed huntingtin
(htt) protein. HD pathology is well understood at a histological level but its effect on the
molecular level in the human brain is poorly understood. Recent studies have shown that
mutant huntingtin interferes with the function of widely expressed transcription factors,
suggesting that gene expression may be altered in a variety of tissues in HD. Hodges
et al. reported gene expression profiles in grade 0-2 HD brains obtained using oligonu-
cleotide arrays [20]. We focused our analysis on 38 patient samples and 32 unaffected
control samples from that study, all taken from the caudate nucleus region of the brain,
as this is the region where the disease is manifested the most. For every sample (patient),
differentially expressed genes were selected based on comparison to the controls. The
expression pattern of each gene was first standardized to mean 0 and standard deviation
of 1. For every gene v, a normal distribution was fitted to its expression values in the
control group, and for every HD sample u, a one-tailed p-value pu

v was computed. We



Fig. 2. Subnetwork identified by the CUSP algorithm as down-regulated in the caudate nucleus of HD patients.
(A) Comparison of the minimal cover size obtained by the greedy and the CUSP algorithms. (B) Comparison of the average
shortest path length between nodes in the minimal cover obtained by the greedy and the CUSP algorithms. (C) The subnet-
work obtained for k = 25 and l = 8. HD modifiers described in [21] are in yellow. KEGG HD pathway genes are drawn
with thick border. Note that HD is the official name of huntingtin (htt). (D) Heat map of the normalized expression values of
the subnetwork genes in the control and HD groups. (E) The subnetwork genes and their differential expression in each HD
samples. Red cells correspond to significantly down-regulated genes.

then introduced an edge (v, u) to EB if and only if pu
v < 0.05. At this significance

level, 1,073 (1,696) genes were selected as down (up) regulated in a sample on average.
We first describe the results on down-regulation (Fig. 2), using l = 8. While CUSP,

CUSP∗ and ExpandingGreedy found minimal covers of similar size (Fig. 2A), the cov-
ers found by CUSP were the most compact, as evident from the average shortest path
length between a pair of nodes in the subnetwork (Fig. 2B). As compact and dense sub-
networks are more likely to correspond to real biological pathways, we used the results
of CUSP in further analysis.

Our significance evaluation of the results showed that for values of k between 10
and 40 the cover found was significantly smaller than the one obtained at random, in-
dicating that genes dysregulated in HD are indeed clustered in the network. The most
significant DP was obtained for k = 25 (p < 0.005). It contained 34 genes (Fig. 2C-E),



CUSP GiGA jActiveModules t-test top t-test FDR < 0.05

Number of genes 34 34 282 34 1762

Contains Huntingtin? Yes No No No Yes

HD modifiers 6 (7.7 · 10−10) 3 (1.55 · 10−4) 12 (3.15 · 10−11) 2 (0.001) 16 (3.47 · 10−5)

HD relevant 7 (4.29 · 10−11) 2 (0.008) 14 (1.42 · 10−9) 1 (0.124) 18 (6.06 · 10−5)

KEGG HD pathway 4 (7.95 · 10−7) 0 4 (0.003) 0 8 (0.03)

Calcium signaling 6 (9.23 · 10−7) 5 (1.99 · 10−5) 10 (5.68 · 10−4) 3 (0.005) 49 (2.97 · 10−12)

Table 1. Comparison of gene sets identified as down-regulated in HD caudate nucleus using different methods.
GiGA was implemented as described in [13] and used to produce a subnetwork of 34 nodes. jActiveModules [8] was executed
from Cytoscape and yielded five subnetworks. The reported results are for the highest scoring subnetwork. ‘t-test top’ refers
to the 34 down regulated genes with the most significant t-scores. HD modifiers are taken from [21]. HD relevant genes are
taken from [23]. Calcium signalling genes are taken from MSigDB [4].

with the htt protein as the major hub. Indeed, mutations in htt are the cause of the HD
pathology. Moreover, the network contains six additional genes identified as genetic
modifiers of the HD phenotype in a fly model of the disease [21] (the modifiers are
highlighted in Fig. 2C). The network is also enriched with genes from the KEGG HD
pathway (p = 7.95 · 10−7). Furthermore, the network contains at least six genes related
to regulation of calcium levels (data taken from MSigDB [4], p = 9.23 · 10−7), which
is known to be intimately related to HD [22]. An inspection of the expression patterns
(Fig. 2D) indicates the importance of the outlier parameter l. A few of the samples (pa-
tients 16,103,86) have profiles that differ from those of the other patients, but this fact
does not affect the algorithm.

A comparison of the DP we identified with gene sets identified using other methods
(Table 1) reveals that the subnetwork produced by our method is more significantly
enriched with most hallmarks of HD. The subnetwork identified by jActiveModules is
also enriched for these hallmarks, but this subnetwork is an order of magnitude larger,
and thus less focused. The output of jActiveModules consists of (i) the ‘active’ subnet-
work; and (ii) the samples in which the subnetwork is active. In this dataset, the active
subnetwork produced by this algorithm was based on a single sample, and thus it does
not reflect common dysregulation across most patients in the study.

The running time on this dataset, for k = 25, was 10.6 seconds on a PC with two
2.67GHz processors and 4GB of memory. A search for additional down-regulated DPs
(see Methods) did not produce significant networks.

Similar analysis of genes up-regulated in HD samples identified a marginally sig-
nificant subnetwork (k = 10, p = 0.11) of 14 nodes centered at BRCA1 and p53, which
are master regulators of DNA damage response, and are known to be hyperactive in HD
affected cells [24]. Interestingly, p53 and BRCA1 are not differentially expressed in
most HD samples, and the functional category ‘DNA damage response’ is not enriched
in the 100 genes most significantly up-regulated in the HD samples (as obtained by a t-
test). This further underlines the ability of our method to extract relevant pathways even
if only part of the pathway is differentially expressed in diseased specimens. Another
hub in this focused subnetwork is HDAC1, a histone deacetylase known to be elevated
in HD neurons [25]. Sodium phenylbutyrate, a histone deacetylase inhibitor, is currently
tested as a potent drug for HD [26], and was shown to revert HD transcriptional dysreg-



ulation in mouse and human brain and blood tissues [27, 28]. Hence, the inclusion of
HDAC1 in a focused subnetwork identified as up-regulated in diseased caudate nuclei
demonstrates the ability of our method to detect potential therapeutic targets.

3.3 Meta-analysis of breast cancer studies

In order to test our methodology on other diseases and on inter-study comparisons we
performed meta-analysis of six breast cancer studies, spanning together expression pro-
files of 1,004 patients. Full details on the studies are available at our website. These
studies compared breast cancer tumor samples, for which follow-up outcome informa-
tion was available. We focused on comparison of tumors with good and poor prognosis
(defined as development of distant metastases within five years [2]). In each study, us-
ing a one-tailed t-test, we extracted a set of differentially expressed genes between good
and poor prognosis patients (p = 0.05 was used as a threshold). Here we applied CUSP
to the genes vs. studies matrix. The most significant DP up-regulated in poor prognosis
cancers is shown in Fig. 3A (k = 40, l = 2, p < 0.005). This network is highly en-
riched with cell-cycle genes (28 out of 51 genes are associated with cell-cycle in GO,
p = 2.44 · 10−26). Cell cycle and proliferation genes are known to be associated with
higher grade, poor prognosis tumors in numerous studies (see [29] and the references
therein). In addition, this DP contains 15 genes shown to be regulated by YY1 (as found
in [30], p = 2.42 · 10−16), known to be associated with overexpression of the ERBB2
oncogene and with poor prognosis of breast cancer [31]. We recovered an additional
significant DP which is described on our website.

The most significant DP down-regulated in poor prognosis cancers (k = 25, p <
0.005, Fig. 3B) is enriched with genes associated with drug resistance and metabolism
(Source:MSigDB, p = 3.54 · 10−9), p53 signalling (p = 3.54 · 10−9) and the JAK-
STAT signalling pathway (p = 3.68 · 10−4). The latter pathway mediates the signals of
a wide range of cytokines, growth factors and hormones, making its aberrant activation
prone to lead to malignancy. This pathway was also linked specifically to breast cancer
[32]. Our results indicate the down-regulation of this pathway on the expression level
is associated with cancers with poor prognosis. Interestingly, this subnetwork, but not
the up-regulated one, was enriched with genes that are frequently mutated in cancer in
general (p = 1.14 · 10−7) and in breast cancer in particular (p = 3.2 · 10−4, both sets
taken from [33]). A search for additional DPs did not yield significant results.

4 Discussion

We have developed a novel computational technique for network-based analysis of clin-
ical gene expression data. The method is aimed at identifying pathways in the interac-
tion network that exhibit ample evidence of disruption of transcription that is specific
to diseased patients. Application of the method to a large-scale human protein-protein
interaction network and a Huntington’s disease study as well as meta-analysis of six
breast cancer studies has shown its potential in outlining subnetworks with a high rele-
vance to the mechanisms of pathogenesis. Comparison to extant techniques for analysis



Fig. 3. DPs identified in breast cancer meta-analysis. In the differential expression maps (right) red cells correspond to
differentially expressed genes. (A) a DP up-regulated in poor prognosis breast cancers (k = 40, p < 0.005). Cell cycle
genes (from GO) are in yellow. YY1 regulated genes are drawn with thick border. (B) DP with a lower expression in poor
prognosis breast cancers (k = 25). Drug resistance pathway genes appear in pink. JAK-STAT signalling pathway genes are
drawn with thick border.

of gene expression data highlights the advantages of our approach in identifying clini-
cally sound pathways.

While the results presented here are encouraging, there is certainly room for further
development of these methods. Currently, we look for multiple subnetworks by itera-
tively finding and removing the most significant DP from the network. Better methods
are needed to detect overlapping DPs. Furthermore, one can obtain significance scores
for individual nodes in the DPs using established statistical methods such as bootstrap-
ping [34].

Our problem formulation used a fixed k value, thus requiring that the same least
number of genes is altered in all patients (or studies). All the algorithms and proofs pre-
sented are generalizable to the scenario where different samples have different thresh-
olds. This case can be attractive if, for example, the number of differentially expressed
genes varies significantly among patients or studies, and the goal is to detect subnet-
works covering a fixed percentage of the differentially expressed genes. The value of l
used in the examples presented here was set to 20% of the elements (cases or studies) in
the dataset. While we observed that our method is rather robust to l values in the range
of 15-40% of the cases, the methodology for a more rigorous selection of the l value is
also an interesting subject for further research.

One of the main goals of case-control studies using microarrays is the detection of
biomarkers, leading to an improved characterization of the pathologies of each patient.
We believe that the fact that the subnetworks that we identified for HD and breast cancer
contain numerous established therapeutic targets carries the promise that an integrative
analysis of such studies with complementary molecular datasets can also indicate spe-
cific points for medical intervention.
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