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ABSTRACT

Motivation: Microarray-based gene expression studies have great
potential but are frequently difficult to interpret due to their
overwhelming dimensions. Recent studies have shown that the
analysis of expression data can be improved by its integration with
protein interaction networks, but the performance of these analyses
has been hampered by the uneven quality of the interaction data.
Results: We present Co-Expression Zone ANalysis using NEtworks
(CEZANNE), a novel confidence-based method for extraction of
functionally coherent co-expressed gene sets. CEZANNE uses
probabilities for individual interactions, which can be computed
by any available method. We propose a probabilistic model and
a weighting scheme in which the likelihood of the connectivity
of a subnetwork is related to the weight of its minimum cut.
Applying CEZANNE to an expression dataset of DNA damage
response in Saccharomyces cerevisiae, we recover both known and
novel modules and predict novel protein functions. We show that
CEZANNE outperforms previous methods for analysis of expression
and interaction data.
Availability: CEZANNE is available as part of the MATISSE software
at http://acgt.cs.tau.ac.il/matisse.
Contact: rshamir@tau.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The use of microarrays for gene expression profiling has recently
become widespread in biomedical research. While microarray
gene expression profiles can provide answers to many biological
questions and suggest novel hypotheses, they are frequently difficult
to interpret due to the large volumes of data and the noise
inherent in the biological and experimental systems. Integration of
microarray data with additional data sources can help overcome
these problems.

Protein–protein interaction (PPI) networks were shown to be very
useful in interpreting gene expression data by improving sample
classification using microarray data (Chuang et al., 2007; Rapaport
et al., 2007) and improving detection of differentially expressed
genes (Li and Li, 2008; Ma et al., 2007; Wei and Pan, 2008). Here,
we focus on using network information to enhance detection of
modules of co-expressed genes. Ideker and colleagues pioneered
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this approach, proposing a method for detecting subnetworks active
in a subset of the profiled samples (Ideker et al., 2002), an approach
that was extended and improved by several groups (Cabusora et al.,
2005; Guo et al., 2007; Liu, et al., 2007; Nacu et al., 2007;
Rajagopalan and Agarwal, 2005). We and others proposed methods
for identifying subnetworks co-expressed across all the sampled
conditions (Hanisch et al., 2002; Segal et al., 2003; Ulitsky and
Shamir, 2007). Our method, called MATISSE, has several important
advantages: (i) it does not require the number of modules to be
specified in advance; (ii) modules can incorporate genes that are
not affected on the transcription level; (iii) it can handle not only
expression profiles but also any type of data that can be represented
as a similarity matrix. A slightly modified version of MATISSE
was recently employed to identify a key subnetwork up-regulated
in human pluripotent stem cells (Muller et al., 2008).

One of the obstacles to exploiting PPI networks is their high rate
of false positive and false negative interactions (Suthram et al.,
2006; von Mering et al., 2002). To better handle uncertainty in
PPIs, several works devised probabilistic schemes to estimate the
confidence of individual interactions (Collins et al., 2007; Li, et al.,
2008; Rhodes et al., 2005; Suthram et al., 2006; von Mering,
et al., 2007). To the best of our knowledge, none of the existing
methods for identifying functional modules using network and
expression data make use of these confidence scores. Here, we
develop and employ CEZANNE (Co-Expression Zone ANalysis
using NEtworks), a novel methodology for extracting subnetworks
with correlated expression profiles (co-expression modules) that
uses a confidence-based interaction network. CEZANNE builds
upon MATISSE and extends it with a novel probabilistic model
for subnetwork connectivity. We show that, with an appropriate
edge weighting scheme, identifying modules connected with high
confidence is equivalent to identifying subgraphs in which the
weight of the minimum cut exceeds a threshold. We then show how
to identify such modules efficiently. Our probabilistic model and
methodology are general and can be employed with other methods
that use network connectivity.

In order to evaluate its performance, we applied CEZANNE to a
dataset of gene expression of Saccharomyces cerevisiae following
treatment with various DNA damaging agents (Gasch et al., 2001).
Our analysis identified well characterized co-expressed protein
complexes, such as the ribosomes, as well as novel splicing and
actin-related modules. In several cases, we were able to predict
novel protein functions based on module assignment. A comparison
with other methods showed that the use of confidence levels can
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significantly improve the integration of network and expression data
for extraction of functional modules.

2 METHODS

2.1 The basic methodology
Our approach builds on the MATISSE methodology for identifying
co-expressed subnetworks (Ulitsky and Shamir, 2007). We outline that
methodology and describe the improvements in CEZANNE. A pseudocode
of the algorithm appears in the Supplementary Material. The input to
MATISSE includes an undirected constraint graph GC = (V , E), a subset
Vsim ⊆ V and a symmetric matrix S where Sij is the similarity between vi

and vj , where vi,vj ∈Vsim. The goal is to find disjoint subsets U1,U2, … ,Um,
called modules, with each subset inducing a connected subgraph in GC and
containing elements that share high similarity values. We call the nodes in
Vsim front nodes and the nodes in V\Vsim back nodes.

In the biological context, V represents genes or gene products (we use
the term ‘gene’ for brevity), and E represents interactions between them. Sij

measures the similarity between genes i and j, e.g. the Pearson correlation
between their gene expression patterns. The set Vsim may be smaller than
V . For example, when using mRNA microarrays, some of the genes may
be absent from the array, and others may show insignificant expression
patterns across the tested conditions and therefore be excluded. Since
a module is a set of genes that have highly similar behavior and also
induce a connected component in the constraint graph, it should capture
genes that belong to a single complex or pathway and therefore share a
common function. The quantification of module similarity is obtained in
MATISSE by formulating the problem as a hypothesis-testing question.
This formulation leads to a full weighted similarity graph whose vertices
correspond to Vsim. Statistically significant modules correspond to heavy
subnetworks in this graph (i.e. subnetworks having high co-expression score),
with nodes inducing a connected subgraph in GC. This score is described in
the Supplementary Material. A three-stage heuristic was developed in Ulitsky
and Shamir (2007) to obtain high-scoring modules. Here, we use the same co-
expression score, but replace the connectivity condition by the requirement
that modules must be connected with high confidence. We will next describe
a novel methodology for identifying such modules.

2.2 The probabilistic model for module connectivity
The following is a description of our model for using interaction confidence.
In addition to the constraint graph GC = (V , E), we are given, for every edge
e∈E, the probability that the edge exists p(e)∈(0,1). Edge occurrences are
assumed to be mutually independent. We can assume that GC is a complete
graph; otherwise, it can be completed by adding all the missing edges with
zero probability. The key difference in our model here is that since edge
occurrences are probabilistic, connectivity must also be accounted for in
a probabilistic sense. We call a set of vertices U ⊆V q-connected if, for all
U ′ ⊂U, the probability that at least one edge connects U ′ with U\U ′ is at
least q (Fig. 1). We now show the relationship between this characteristic
and the weight of the minimum cut in the subgraph induced by the set. A cut
in a graph is a partition of its nodes into two disjoint sets. A minimum cut in
a graph is a cut for which the total weight of the edges between the two sets
is minimal (see Supplementary Material for a formal definition). Let G(U)
be the subgraph induced by U in G. Let E(U,W ) denote the event that at
least one edge connects a node from W with a node from U\W . Then U is
q-connected if and only if P(E(U, W ))<1 – q for every W ⊂U. Assuming
edge appearances are independent, we get

P (E (U,W ) )=
∏

e∈ (W ,U\W )

(
1−p (e )

)
.

Note that if we set w(e)=−log(1−p(e)), then

P (E (U,W ,q ) )<1−q⇔
∑

e∈(W ,U\W )

w(e)≥−log(1−q)

Fig. 1. A q-connected module for q = 0.9. The numbers of the edges indicate
edge probabilities. The probability of missing edges is 0. For every possible
partition of the nodes into two sets, the probability that at least one true
interaction connects the two sets exceeds 0.9. Four such partitions are shown.

When setting w(e)=−log(1−p(e)),U is q-connected if the weight of
every cut exceeds T =−log(1−q). Hence, it is enough to check that the
weight of the minimum cut exceeds T . From this point on, we will refer to
−log(1−p(e)) as the confidence weight of an edge e.

2.3 Finding q-connected modules
CEZANNE is designed to identify modules that are q-connected and have
maximum co-expression score. The CEZANNE framework consists of three
basic steps: (i) identification of high-scoring seeds; (ii) greedy optimization;
and (iii) significance filtering.

2.3.1 Seed identification Our tests show that modules consisting of
single nodes provide poor starting points for a local search algorithm with
minimum-cut constraints, such as the algorithm we use here (results not
shown). Thus, we devised the following seed-finding algorithm. We first
execute MATISSE on an unweighted graph containing only edges that pass a
certain confidence threshold. This yields a collection of disjoint initial seeds.
We then assign the confidence weights to the edges and extract q-connected
seeds by recursively computing the minimum cut and using it to split the
initial seed into two. This procedure is repeated until the weight of the
minimum cut exceeds T . The resulting modules with more than two genes
constitute the set of seeds for the optimization phase.

2.3.2 Optimization We use a greedy algorithm to optimize the initial seeds
while maintaining their q-connectivity. The basic greedy algorithm described
in Ulitsky and Shamir (2007) aims to optimize together a collection of sets
(and singletons). It allows the following operations: (i) addition of a singleton
to a module; (ii) removal of a node from a module; (iii) reassignment of a
node from one module to another; and (iv) merging of two modules. The
algorithm iteratively seeks the highest scoring operation and performs it.
Here, unlike in Ulitsky and Shamir (2007), edge weights must be taken into
account. In order to maintain q-connectivity throughout the optimization
procedure, we must make sure that no operation causes the minimum cut
in a module to drop below T . This problem is a dynamic minimum cut
problem (Thorup, 2007) for a weighted graph. Its simple (but expensive)
solution is to solve a new minimum cut problem for every tested operation.
Instead, we use the following heuristic. We use an implementation of the
Stoer–Wagner algorithm (Stoer and Wagner, 1997) for each minimum cut
computation, which requires O(mn+nlogn) on a graph with n nodes and
m weighted edges. The observations below allow us to perform a relatively
limited number of such computations, keeping the running time of the entire
algorithm practical on a standard PC. Our optimization first considers all
possible node additions and module merges. Node removal or reassignment
is considered only if no such operation can improve the score.

1159



[11:37 25/3/2009 Bioinformatics-btp118.tex] Page: 1160 1158–1164

I.Ulitsky and R.Shamir

Node addition and module merging. Let C(U) be the weight of the
minimum cut in the subgraph induced by the module U. We observe that,
since the confidence weights are non-negative,

C
(
U ∪{x})�min

{
C

(
U

)
,
∑
u∈U

w
(
x,u

)}

Suppose that U is q-connected, and we are considering adding x to U. If∑
u∈U (x,u)�T , then U ∪{x} will also be q-connected. The total weight of

the edges between every node x and every module U can be easily maintained
in O(m) after each operation performed. Similarly, in module merging,

C
(
U1 ∪U2

)
�min


C

(
U1

)+C
(
U2

)
,

∑
x∈U1,y∈U2

w
(
x,y

).

In that case, it is enough to maintain the total weight of the edges between
every pair of modules. This enables addition and merging operations to be
checked efficiently without executing the full minimum cut computation.

Node removal or reassignment. Since C(U\{x}) can be significantly
smaller than C(U), we must explicitly validate that node removal does
not violate the q-connectivity of the module. We call a node v∈M min-
cut essential if C(M\{v})<T . The set of min-cut essential nodes can
be maintained throughout the optimization, and recomputed only when
necessary using the Stoer–Wagner algorithm. Specifically, the min-cut
essential nodes are recomputed every time the removal of any node v from
module U can improve the score, unless U has not changed since the last
time its minimum cut was computed.

2.3.3 Evaluation of statistical significance An empirical P-value for
module significance was computed as follows: we randomly shuffled the
expression pattern of each gene and re-ran the algorithm. This process was
repeated 100 times and the highest co-expression score obtained in each run
was recorded. Modules in the real dataset were given P-values according
to the distribution of these recoded scores. Only modules with P <0.1 were
retained.

2.4 Module annotation with gene functional categories
We used the TANGO algorithm (Shamir et al., 2005) to find annotations
enriched in the modules. TANGO considers all levels of gene ontology
(GO) and uses the standard hypergeometric test to compute raw enrichment
P-values. It then uses resampling to correct these P-values for multiple
testing and for category dependency. Briefly, TANGO repeatedly selects
random sets of genes to compute an empirical distribution of maximum
P-values for annotation enrichment obtained across a random sample of sets
that maintain the same size characteristics as the ones analyzed. TANGO uses
this empirical distribution to determine thresholds for significant enrichment
on the true clusters. The algorithm filters out redundant categories by
performing conditional enrichment tests.

3 RESULTS

3.1 DNA damage response in S. cerevisiae
Our method was applied to a dataset containing expression profiles
measured over time in wild-type and mutant yeasts exposed to
DNA damage caused by methylmethane sulfonate (MMS) or
by ionizing radiation (IR) (Gasch et al., 2001). This dataset
contained 47 expression profiles of 6167 genes. The 2074 genes
that showed at least 2-fold change in the expression levels across
the conditions were used as front nodes (Section 2). The network
and confidence values were based on purification enrichment (PE)
scores, as described by Collins et al. (2007). Importantly, the

GO classifications we later used to compare CEZANNE to other
methods were not used to calculate these scores. In order to enhance
computational efficiency confidence values below 0.1 were set to 0.
The distribution of confidence scores is shown in Supplementary
Figure 1. Analysis of the data with CEZANNE resulted in 14
modules encompassing 471 genes (Table 1 and Supplementary
File 1). The modules varied greatly in size, ranging from 3 to 346
genes (average 33.6 genes). By using confidence weights, we were
not required to set an artificial upper limit on module size, which was
necessary with MATISSE (Ulitsky and Shamir, 2007). Enrichment
analysis using TANGO (Section 2) found significantly enriched
‘biological process’ categories in all 14 modules and ‘molecular
function’ categories in 11 modules (79%). When using GO-slim
protein complex annotations, 85.7% of the CEZANNE modules
were enriched for at least one complex. The enriched GO annotations
are listed in Table 1 and in Supplementary File 1.

3.2 Comparison to other methods
The modules obtained by CEZANNE were compared with
those obtained on the same data by several other methods:
MATISSE (which ignores the edge confidence values), co-clustering
of network and expression data (Hanisch et al., 2002) and
two clustering algorithms (which work only on the expression
data): k-means and CLICK (Sharan and Shamir, 2000).
Enrichment was computed using the standard hypergeometric
test without correction (see Supplementary File 1 for P-values
corrected for multiple testing). For each method, we measured
the fraction of annotations that are enriched in at least one
module at P < 10−4 (sensitivity) and the fraction of modules
enriched with at least one annotation at P < 10−4 (specificity).
We summarized the two terms using the F-measure defined
as F = 2 ×Sensitivity × Specificity/(Sensitivity + Specificity) (Van
Rijsbergen, 1979). Modules extracted using CEZANNE were
significantly superior to those extracted by other methods in terms
of the enrichment significance for GO biological process, GO-slim
complex annotations and MIPS complex annotations (Fig. 2 and
Supplementary Fig. 2).

We also compared, for each annotation, the lowest P-value it got
in any module identified by each algorithm. When both CEZANNE
and a competing algorithm identified the same annotation enriched at
P<10−4, the enrichment P-values in CEZANNE modules tended to
be more significant (sign test, P < 0.01). The improved performance
in comparison to clustering, which uses only expression data and
is oblivious of the network, is expected, since it was observed
that genes connected in the PPI network tend to be functionally
related (Wu et al., 2006). This fact is also reflected in the better
performance of network-based co-clustering method in comparison
to k-means clustering. We verified that the performance comparisons
are not biased by a single predominant module (Module 1), which
is enriched for many functional categories (Supplementary Fig. 3).
We got similar results when using another expression dataset, for
the osmotic shock response in yeast (Supplementary Fig. 4).

3.3 DNA damage response modules
The modules found by CEZANNE identify both known and
novel pathways involved in S. cerevisiae DNA damage response.
The largest module, Module 1 with 346 genes, consists of
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Table 1. Modules identified in the response of S. cerevisiae to DNA damage

Module (size) GO biological process P-value GO-slim protein complexes P-value

1 (346) Ribosome biogenesis and assembly 1.2·10−117 Ribosome 5.9·10−91

Translation 1.0·10−85 Eukaryotic 43S preinitiation complex 3.8·10−49

rRNA processing 7.5·10−79 Small nucleolar ribonucleoprotein complex 1.5·10−41

35S primary transcript processing 4.6·10−44 DNA-directed RNA polymerase III complex 3.1·10−17

Ribosome assembly 4.3·10−39 Exosome (RNase complex) 4.4·10−15

Ribosomal large subunit biogenesis 9.2·10−14 DNA-directed RNA polymerase I complex 5.7·10−14

rRNA modification 4.4·10−12 Noc complex 3.2·10−6

2 (38) Protein catabolism 1.8·10−46 Proteasome complex (sensu Eukaryota) 5.7·10−71

Proteolysis 9.0·10−44 Proteasome core complex (sensu Eukaryota) 9.4·10−32

Ubiquitin cycle 1.1·10−42

3 (12) Histone acetylation 3.6·10−13 Histone acetyltransferase complex 2.1·10−12

Chromatin modification 5.9·10−11

Transcription from RNA polymerase II promoter 1.4·10−6

4 (12) Translation 1.1·10−14 Ribosome 1.4·10−15

5 (12) Nuclear mRNA splicing, via spliceosome 3.5·10−21 Spliceosome complex 3.5·10−17

Small nuclear ribonucleoprotein complex 2.5·10−15

6 (10) Barbed-end actin filament capping 4.8·10−6 F-actin capping protein complex 4.8·10−6

Endocytosis 1.1·10−5

Cytoskeleton organization and biogenesis 2.8·10−5

7 (8) Establishment and/or maintenance of chromatin
architecture

1.1·10−5 Chromatin remodeling complex 4.6·10−6

8 (7) Glycogen metabolism 3.0·10−8 Protein phosphatase type 1 complex 3.3·10−5

Sporulation (sensu Fungi) 2.0·10−6

9 (6) Translation 1.1·10−7 Ribosome 4.0·10−8

10 (6) tRNA processing 2.5·10−14 Ribonuclease P complex 9.2·10−8

rRNA processing 2.2·10−9

11 (4) Trehalose biosynthesis 6.8·10−14 Alpha, alpha-trehalose-phosphate synthase
complex (UDP-forming)

6.8·10−14

12 (4) Ubiquitin-dependent protein catabolism 5.2·10−7

13 (3) Pseudohyphal growth 9.8·10−7 cAMP-dependent protein kinase complex 9.6·10−7

14 (3) Proteasome assembly 3.2·10−6

Protein folding 3.9·10−6

P-values listed in the table are raw hypergeometric enrichment scores. Corrected p-values, accounting for multiple testing, appear in Supplementary File 1. All the annotations in
this table attained a corrected P-value <0.05. Only the seven most significantly enriched GO biological process categories are shown for Module 1.

Fig. 2. Performance of several module finding methods. All GO annotations
were used in the comparison. The F-measure evaluates sensitivity and
specificity (see text).

ribosomal biosynthesis proteins, probably the best characterized
transcription program in yeast (Gasch et al., 2000). These proteins
are strongly downregulated in a Mec1-dependent way following
both MMS and IR treatments. The second largest module, Module 2
(Fig. 3A), consists of the proteasome, a large complex strongly
transcriptionally co-regulated by Rpn4 under various conditions,
including DNA damage (London et al., 2004). The transcription
levels of the genes in the module exhibit mild upregulation
following DNA damage, which is stronger after MMS than after
IR treatment.

Module 4 (Fig. 3B) consists of 11 known genes from the small
subunit of the mitochondrial ribosome that are downregulated
following mock irradiation. It also contains SWS2, which is a
putative mitochondrial ribosomal protein (Gan et al., 2002). SWS2
is significantly correlated to the other genes in the module on the
expression level (r = 0.46 on average), but is not linked to them
using MATISSE, CLICK or other approaches based on expression
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Fig. 3. Modules identified in S. cerevisiae response to DNA damage. For each module, the expression heat-map is presented together with the interaction
network. In each subnetwork, the genes belonging to the dominant annotation are highlighted. (A) Members of the proteasome are in yellow. (B) Small
mitochondrial ribosome subunit genes (from MIPS) are in yellow. (C) Genes annotated with ‘nuclear mRNA splicing’ in GO are in yellow. (D) Genes
localized to actin in (Huh et al., 2003) are in yellow.

data (Tanay et al., 2005; Wapinski et al., 2007). Our analysis
thus provides further support for the role of SWS2 in the small
subunit of the mitochondrial ribosome, adding to evidence based
on localization (Huh et al., 2003), sequence (Gan et al., 2002) and
deletion phenotypes (Steinmetz et al., 2002). Members of the large
mitochondrial ribosomal subunit are enriched in a different module,
Module 9.

Module 5 (Fig. 3C) consists of 12 spliceosome-related genes,
whose transcription is weakly but consistently downregulated in
a Mec1-dependent manner following DNA damage. This raises
the interesting possibility of the spliceosome’s involvement in the
DNA damage response. Nine of the 12 genes in Module 5 are
essential and therefore were not tested in systematic screens for
MMS-affected genes. However, deletion of two of the non-essential
genes, LEA1 and LSM7, caused MMS sensitivity (Parsons et al.,
2006).

Module 6 (Fig. 3D) is a 10-gene module strongly upregulated after
DNA damage and other stresses, as evident in the Gasch et al. (2000)
stress dataset. Module 6 contains members of two known complexes:
two members of the F-actin capping protein complex and two of
the eisosome complex. Interestingly, six of the module’s genes
are localized to actin (Huh et al., 2003) (P= 4.8•10−6), including
YIR003W, a protein of unknown function. CMD1 (calmodulin) is

known to be required for actin organization (Desrivieres et al.,
2002). Surprisingly, this module also contains MRP8, a putative
mitochondrial ribosomal protein that was shown to have a different
transcriptional program than the known mitochondrial ribosome
proteins (Matsumoto et al., 2005). Our results further suggest that
MRP8 has a role unrelated to mitochondria, perhaps one involving
cytoskeleton organization. Module 6 was strongly upregulated in
response to treatment with a variety of DNA damaging agents,
without dependence on Rpn4, in another DNA damage dataset
(Jelinsky et al., 2000), and was strongly upregulated following
a variety of other stresses in a stress dataset (Gasch et al.,
2000). The phenotypic profile of the �yir003w strain in (Brown
et al., 2006) was similar to that of the �abp1 and �cap1 strains
(Pearson correlations of 0.49 and 0.12, respectively) in that all
three deletion mutants show sensitivity to Calcofluor, a phenotype
related to cell wall biosynthesis. Taken together, these findings
suggest that Module 6 corresponds to a novel transcriptionally co-
regulated complex or pathway with cellular localization at actin
microfilaments.

These findings demonstrate the ability of CEZANNE to extract
modules that correlate well with the known biology of transcriptional
responses, and to point to novel functional associations between
genes and processes.
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3.4 Robustness to noise in the interaction network
In order to test the effect of noise in the network on the performance
of CEZANNE, we randomly removed or added edges to the
interaction network and reevaluated the sensitivity and specificity
of the obtained modules using GO and MIPS gene annotations.
The results are presented in Supplementary Figure 5. We find that
removal of up to 20% of the edges or randomly doubling the number
of edges degrades performance by not more than 20%. The better
tolerance to edge addition compared to edge removal is probably
due to CEZANNE’s ability to ignore edges that do not connect
co-expressed genes.

3.5 Implementation and user interface
A graphical user interface to CEZANNE is available as part of
the MATISSE software (http://acgt.cs.tau.ac.il/matisse). It allows
full setting of the methods parameters, execution on network and
expression data from any organism, visualization of the network
and expression data for each module and functional annotation of the
obtained modules. The Java source code for CEZANNE is available
upon request.

4 DISCUSSION
We have presented a novel approach that makes better use of
PPI networks for the interpretation of microarray study results.
Augmented with proper search algorithms, our methodology can
be used to improve other methods involving network connectivity,
such as those described in (Chuang et al., 2007; Ideker et al., 2002;
Nacu et al., 2007; Ulitsky et al., 2008). The approach is not specific
to PPI networks and can applied directly to other networks with
differential interaction confidence, such as protein-DNA (Lee et al.,
2002) and functional linkage (von Mering et al., 2007) networks.

We note that the interaction probabilities we use here correspond
to the confidence in the existence of an interaction, and are not the
probability that an interaction takes place in the cell at any particular
time point. However, if information on the latter becomes available
it can also be used by our method.

While the results of our method are promising, there is room for
many algorithmic improvements. The greedy optimization algorithm
we currently employ can converge to local minima, in terms of both
the co-expression score and the minimum cut requirements. Our
approach can be improved by better search initialization algorithms
and by allowing more complex optimization moves (e.g. adding two
nodes simultaneously). The latter approach will probably demand a
more efficient optimization algorithm, one that requires less time
per iteration for maintaining the minimum cut.

Which method should be used for future data analysis—
MATISSE or CEZANNE? The answer depends on the availability
and the quality of the interaction confidence data. Information on
functional interactions for several species is available in the STRING
database (von Mering et al., 2007). Confidence of individual PPI
interactions is yet to be systematically assessed in most species.
Given a confidence-based network for the studied organism, as our
results show, CEZANNE should be the method of choice. In the
absence of reliable confidence values MATISSE is more useful.

The modules found by CEZANNE in the DNA damage response
of S. cerevisiae accurately identify complexes with known roles
in DNA repair, such as the RPA and complexes whose regulation

is known to be related to stress response in S. cerevisiae, such
as the ribosomes and the proteasome. In addition, we identify
rather large modules that were not previously associated with DNA
damage response. This highlights the main goal of integrating
network into gene expression analysis: achieving higher sensitivity
in identifying transcriptional programs that are missed when the
analysis if performed on the level of an individual gene. Together
with the user-friendly interface that we provide, we hope that
CEZANNE will be highly instrumental in the analysis of future
microarray studies.
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