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Abstract

Transcriptional programs are operating in all living organisms, allowing the activity

of a genome to be controlled by regulated modifications of the transcription of its

genes. Transcriptional programs are therefore critical to the proper operation of

many biological mechanisms, and their characterization is one of the most impor-

tant challenges in modern biology. In this thesis we describe our studies of biologi-

cal transcriptional programs. We use computational techniques from graph theory,

probabilistic models and combinatorial optimization and integrate them with biolog-

ical principles to develop models for transcriptional programs and algorithms that

learn them from data. We use our methods to study extensive biological datasets

on yeast and derive applicable hypotheses on the regulation of specific biological

processes. We study the evolving transcriptional program at the single locus and at

the co-regulated gene module level. We infer the function of extant systems from

their evolutionary behavior and suggest new evolutionary mechanisms by merging

evolutionary theories with functional genomic information.
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Chapter 1

Introduction and main results

Transcriptional programs are operating in all living organisms, allowing the activ-

ity of a genome to be controlled by regulated modifications of the transcription of

its genes. Transcriptional programs are therefore critical to the proper operation of

many biological mechanisms, and their characterization is one of the most important

steps in the journey of modern biology towards the understanding of complex bio-

logical processes. In this thesis we describe our studies of biological transcriptional

programs: their mathematical modeling and the algorithmic aspects of inferring

them from data. We specifically focus on the interplay between the evolutionary

process that gave rise to extant transcriptional programs and the functional prop-

erties of the regulatory switches in them. We build understanding of function and

evolution from a unified point of view, using ideas and results from functional anal-

ysis to understand evolution and vise versa.

Our field of research (termed ”computational biology” or ”bioinformatics”) is

combining themes from biology and computer science (or mathematics in general)

as well as ideas from other disciplines (physics, engineering). As the new discipline

develops, deeper and deeper integration of concepts is constantly in demand. It was

suggested that computational biology is not merely a new kind of applied mathe-

matics, and that new problems from biology have the potential to project back into

mathematics and play a role similar to that played by physics for centuries [24].

On the other hand, the role of mathematical thinking in biology may be even more

profound. The traditional approach of biologists, which is based on careful (usually

qualitative) study of examples, is challenged by the need to analyze quantitatively

13



14 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

very large networks of complex regulatory interactions. The technological revolu-

tion of high throughput biology increased dramatically the amount of experimental

information that is routinely collected, making experimental results intractable by

the traditional manual expert analysis. The research we report on in this thesis is

therefore relying on intimate integration of ideas and methods from mathematics

and biology. While we approach the problems from the computer science perspec-

tive, we do discuss many biological examples and the biological implications of our

computational studies. A short survey (Chapter 2) provides some background on

the most important biological concepts we are using, but cannot substitute the stan-

dard textbook introduction to molecular biology [2] and molecular evolution [89] or

the up-to-date reviews on specific biological model systems we are using.

Below we outline the main results presented in this thesis. We move in two par-

allel paths studying functional and evolutionary aspects of transcriptional switches

and their role in biological regulation. On the functional path we take a top-down

approach, starting with the development of algorithms for the dissection of large

biological networks into modules and then extending the formulation to construct

detailed models for transcriptional regulation inside a module. On the evolutionary

path we take a complementary approach. We start from the single locus level, ana-

lyzing first the selective forces that act on transcription factor binding sites. We then

move up the hierarchy, and develop tools to study the evolution of transcriptional

modules and their regulation.

1.1 Function: from modules to models of tran-

scriptional programs

We define a functional (gene) module as a group of genes that share common biolog-

ical properties in a statistically significant way. The notion of biological properties

is a mathematical abstraction that can be used to represent almost any form of

genome-wide experiment, including profiles of gene expression, transcription factor

location, protein interactions, growth sensitivity and more. In Chapter 3 we intro-

duce biclustering as a method to detect functional modules given a large compendium

of heterogeneous biological datasets. We develop a graph theoretic formulation that

represents the data as a weighted bipartite graph and the biclustering problem as

the problem of finding the heaviest subgraphs in the graph. We discuss the combina-
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torial aspects of the problem, characterize its complexity, and provide a polynomial

algorithm in case nodes on one side of the bipartite graph have bounded degrees.

We also discuss the problem of finding an optimal set of biclusters in the graph and

provide two formulations for it, one combinatorial and the other probabilistic. Our

methods, along with several heuristics that enable practical computations with very

large datasets, were implemented in the SAMBA program for biclustering biological

data.

Results from this chapter were published in the Proceeding of ISMB 2002 [134]

and in the Handbook of Bioinformatics [135]. The work described in the chapter

was done in collaboration with Roded Sharan.

In Chapter 4 we discuss applications of our biclustering algorithm to study func-

tion in the budding yeast (S. cerevisiae) genome. We have constructed a large exper-

imental compendium by combining data from 60 different studies using 7 different

technologies. We applied SAMBA to generate a comprehensive set of functional

modules. We present examples for modules that successfully integrate data from

several sources and show how to construct models for regulation given the highly

specific biclusters that SAMBA derives from the large compendium. We system-

atically assign putative function to 800 uncharacterized yeast genes and validate

our specificity both experimentally and computationally. The collection of func-

tional modules also allows for the characterization of global principles in the yeast

regulatory network. We show that the network is modular and often organized

hierarchically. We discuss in detail the analysis of two specific experiments using

the compendium and the SAMBA-derived functional modules. For experiments

perturbing the galactose metabolic pathway we reveal regulatory discrepancy for

specific mutants and suggest an explanation for the slow growth of these mutants.

For a set of experiments treating yeasts with hyper-osmotic shock, we characterize an

additive transcriptional switch that combines signals from two signaling pathways.

Results in this chapter were published in PNAS (2004) [133] and in Molecular

Systmes Biology (2005) [136]. This study was done in collaboration with Martin

Kupiec’s lab. Another application of SAMBA that was performed in collaboration

with George Church’s lab (Harvard) is not described in this thesis. That study was

published in Molecular Systems Biology (2005) [34]

We develop an extended model for transcriptional programs in Chapter 5. The

model explicitly expresses three important components of transcriptional switches: a
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set of transcription factors (TFs), their binding characteristics to a gene’s promoter,

and the logical relations among their binding sites. The three components together

determine the regulation of the gene’s transcrtipion. We introduce a combinatorial

model that represents these biological entities, and develop polynomial algorithms

for optimizing key model features. We show how to use experimental data in order

to learn other features of the model heuristically and how to infer values for hidden

variables. We then revisit the response to perturbation in the galactose pathway

and apply our algorithms to reveal the regulatory mechanisms that control galactose

enzymes and regulators.

Results from this chapter were published in Proceedings of RECOMB 2003 [131].

A journal version was published in the Journal of Computational Biology (2004)

[132].

1.2 Evolution: from binding sites to the evolving

transcriptional module

Transcriptional networks are defined by the interactions of transcription factors and

genes. Physically, a protein-DNA interaction associates a sequence-specific tran-

scription factor and a short DNA sequence, called here transcription factor binding

site (TFBS). Since evolution, to a first approximation, operates on the DNA, the

smallest component of the transcriptional network with direct evolutionary relevance

is the single TFBS. In Chapter 6 we study the evolution of TFBSs, aiming at the

functional characterization of these short sequences using analysis of the selective

forces acting on them. By a systematic phylogenetic analysis and statistical esti-

mation of the rate of substitution between any pair of DNA octamers in promoters

we represent the entire TFBS vocabulary as nodes in a graph and the evolution-

ary relations between pairs of TFBSs as edges in that graph. We call this graph

the TFBS selection network and use it to infer TFBSs’ function. First, we identify

dense clusters of TFBSs (groups of similar short sequences with high substitution

rates between them). We prove that over 90% of them consist of sequences of either

known binding sites of characterized TFs, or can be validated to be functionally

related using other sources of information (gene expression or TF location). Clus-

ters in the selection network therefore correspond to targets of specific transcription

factors. Second, we observe several cases where the set of targets that are iden-
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tifiable by a single TF are subdivided into two clusters, suggesting that evolution

avoids substituting a TFBS from one subcluster by a TFBS from another subcluster.

We analyze two such cases in detail, showing that TFBSs in each subcluster have

different binding affinities, supporting a possible functional role for the observed

subdivision.

Results from this Chapter were published in Genome Research (2004) [128]. This

study was done in collaboration with Irit Gat-Viks.

The organization of transcriptional networks into modules is a principle that

carry great functional importance in the coordination of complex cellular responses.

In Chapter 7 we study the evolutionary consequences of this functional modularity.

Specifically, we explore the effects that co-regulation of dozens of genes may have on

the evolution of the TFBSs in their promoters. We develop methods for comparative

gene expression analysis and identify transcriptional modules that are conserved

between the distant yeasts S. cerevisiae and S. pombe. We then combine sequence

analysis with phylogenetic reconstruction to explore the evolution of the TFBSs

that drive the co-regulation of genes in these transcriptional modules. Using our

methods, we discover cases where conserved transcriptional modules have conserved

TFBSs, and, more suprisingly, conserved modules showing complete divergence at

the TFBS-level. The most notable case of cis-regulatory divergence is the module

of ribosomal proteins, containing over 100 tightly co-regulated genes. Phylogenetic

analysis of the evolutionary history of the regulatory regions controling ribosomal

proteins suggests that divergence of TFBSs happened in three phases: First, an

ancient TFBS controlled the module. Second, a novel TFBS emerged in dozens of

promoters, generating a redundant transcription program that persisted for some

time in the history of the module. Third, the ancient TFBS was eliminated (in some

lineages) from virtually all of the promoters, generating extant regulatory schemes

that use only the new element. In other cases, our analysis suggests alternative

scenarios for the evolution of modules’ regulation, including, for example, gradual

drift of the TFBSs sequences. The paradigm we introduce for the understanding of

the evolution of transcriptional modules combines several of the methods described

in this thesis, and may be the basis for future attempts to understand the evolution

of more complex entities in transcriptional networks.

The results from this Chapter were published in PNAS (2005) [129]. This study

was done in collaboration with Aviv Regev (Harvard).
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Chapter 2

Background

In this chapter we give a brief introduction to some of the biological concepts used

in this thesis. We cite only the key facts and provide references for more exten-

sive expositions of the various subjects matters. For background on computational

concepts used in the thesis, see e.g., [40, 102, 36].

2.1 Genes and genomes

According to the central dogma of molecular biology, most of the information that

defines living organisms is encoded in their DNA, which is present in cells as long

linear chains of nucleotides. Segments of the DNA that are called genes are tran-

scribed into RNA, processed into RNA messages and translated into proteins. Most

of the diverse biochemical processes inside cells are performed by complex protein

machines. The activity of these machines is determined by the availability of their

protein components, which is affected by the activity level (transcription and trans-

lation) of genes [2].

2.1.1 Genomes are regulated to produce functional diversity

and to respond to the environment

The genome of unicellular or multicellular organisms contains millions (or billions)

of nucleotides and thousands of genes. The static view of the genome as simply

containing the instruction for generating proteins cannot explain the remarkable

19
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flexibility and diversity of cells. For example, yeast cells can survive on dramati-

cally different nutritional media and can respond to a rapidly changing environment

efficiently, although their genome is almost completely unchanged. An even more

striking example is the developmental programs of differentiation in multi-cellular

organisms. Such programs allow a single germ-line cell to develop into a complete

organism, including billions of cells from numerous types, although the genome of

all these cells is unchanged. The key to understanding the nature of this diversity is

a battery of mechanisms and processes collectively called genomic regulation. Regu-

latory mechanisms allow cells to choose the appropriate level of activity for each of

the genes in the genome. For example, neuron cells can express genes that code for

neuro-transmitters and avoid expressing genes that code for lipid turnover proteins.

Genomic regulation is a dynamic process even within the same cell: for example,

the yeast genome can respond to a sudden heat shock by rapidly increasing the

expression of proteins that identify damaged peptides and destroy them [45].

2.1.2 Transcription factors catalyze transcription initiation

Genome regulation is a complex process involving interaction between proteins and

DNA and among proteins. 40 years of ingenious experiments (starting with the

fundamental work by Jacob and Monod [73]) have characterized the basic building

blocks of transcriptional regulatory switches. The key players in such switches are

proteins of a special class, called transcription factors (TFs). Transcription factors

are proteins that are dedicated to genomic regulation. Their biochemical function

can involve binding of DNA, remodeling of chromatin in preparation to transcription,

assembly of components of the RNA polymerase machinery, and much more. The

DNA sequence and chromatin structure around each gene contain signals that are

identifiable by some of the TFs and therefore, each genomic region may recruit a

distinct combination of transcription factors, resulting in different rate of polymerase

assembly and transcription. On the other hand, cells may contain many copies

(dozens to thousands [53]) of a certain TF, and so copies of a single TF may interact

with many genomic regions. The flexibility of transcriptional switches relies on

the ability of cells to modify the level of activity of TFs. This can be done by

altered transcriptional regulation of genes coding for the TFs (TFs, being proteins,

are themselves encoded by genes) or by post-translational modifications that can

affect the potency of the TF to bind DNA or to interact with other factors. The
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overall picture is believed today to be even more complex than what was thought

ten years ago. Basically, there are hundreds of transcription factors that interact

with each other and with other proteins and regulate thousands of genes, including

genes coding for TFs. In addition, other factors (e.g., small RNA molecules [8]) and

additional kinds of interactions (e.g., chromosomal localization and interaction) play

an important, yet uncharacterized role in regulation. For our purpose here, we will

focus on transcription factors and their regulated genes, as the characterization of

the regulatory process, even when limited to these factors, is a major open challenge.

2.1.3 Gene promoters encode transcriptional switches

The ability of genomes to apply a different regulatory scheme to each gene relies

on information that is encoded in the DNA sequence surrounding the gene itself.

Genes consist of fragments of coding sequence which specify the content of the gene’s

end-product (the amino acid sequence in the case of protein coding genes). In close

proximity to such sequences (but not necessarily in continguity to it), the genome

contains regulatory regions that are used by the transcription control machinery to

determine when and how to activate the gene. Such control regions contain short

DNA sequences that are preferably bounded by sequence specific TFs, as well as

other signals that are not completely understood today. The short DNA sequences

that can be bound by TFs are called here TF binding sites (TFBSs). The compo-

sition and spatial organization of TFBSs near a gene determines, at each condition,

which TFs will bind the gene’s regulatory region. Biochemically, the concentration

of the TF and the free energy of the binding site-TF interaction together determine

the level of binding site occupancy. When a large number of possible TFBSs are

present and several TFs are bound to the regulatory regions simultaneously, the

reaction becomes very complex and can translate TF concentrations into transcrip-

tional activity via rich logical functions [154]. Such functions cannot be determined

directly from the sequence.

2.1.4 Sequence specific TFs recognize DNA motifs

Understanding of transcriptional switches begins in the characterization of individ-

ual TFBSs and the TF-DNA reactions on them. In theory, we would like to read

the DNA sequence and compute the affinity of each TF to each location along the
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genome just as we can predict the protein sequence out of the DNA sequence of the

gene coding for it. Unfortunately, predicting TF-DNA affinity is a very difficult task

that cannot be accurately solved even for TFs whose structure is well understood.

As a first approximation, a common simplified model represents the binding energy

as the sum of individual energy contributions from the few positions that make

up the binding site. According to this model, each TF has preferences for specific

nucleotides at each position of the site. Given these preferences, which are summa-

rized in a Position Weight Matrix (PWM) (also known as Position Specific Score

Matrix (PSSM)), we can predict the binding affinity of candidate TFBSs along the

genome. Although several studies suggest refinements of the position independence

assumption [7], it is still the prevalent approach to modeling TF-DNA interactions.

Importantly, PWMs are very easy to manipulate computationally and are a natu-

ral probabilistic/energetic substitute to the common combinatorial alternative that

uses consensus sequences to determine which sites will be bound by a TF. We note

that while binding affinity can at least be approximated from the sequence, the logic

of the entire transcriptional switch is completely out of reach using sequence alone.

The main reason for this limitation is the complexity of protein-protein interactions

among TFs and between TFs and the chromatin, which cannot be predicted from

protein sequence or even protein structure using today’s methods.

2.1.5 Coordination of biological processes is facilitated by

co-regulation at the transcriptional level

We have mentioned above that genomes contain thousands of genes and that each

gene has a distinct transcriptional switch controlling its activation. We also stated

that this switch is encoded into the sequence and structure of the genome around

that gene. In order to perform complex tasks, coordinating dozens or hundreds of

proteins, cells employ transcriptional programs that are modular and hierarchical.

Such transcriptional programs are organizing a coordinated response of groups of

co-regulated genes. For example, in eukaryotes, a small number of transcription

factors are triggered for activation in specific phases of the cell cycle by the Cdk

complex [123]. Small subsets of this set of TFs regulate the expression of hundreds

of genes each, therefore ensuring that groups of genes that are required for specific

activities (e.g. DNA synthesis) are expressed together. The regulatory regions

of genes that participate in such transcriptional programs would therefore contain
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TFBSs for specific TFs. Consequently, we should be able to associate TFBSs with

specific transcriptional responses based on genomic activity profiles, as we shall see

in the next section.

2.2 High throughput biology

The genomic revolution [85, 144] has changed the scale by which biological questions

can be asked. Additional technological innovations have made it possible to perform

experiments that capture cell activity on a genomic scale. These advances have

contributed to the transformation of biology into an information science, where a

large body of data is collected rapidly and needs to be analyzed and explained using

mathematical models and algorithms.

2.2.1 Gene expression can be measured in a genomic scale

using microarrays

The first, and currently most popular, functional genomic experimental technique

emerged in the middle of the 90s and allows the measurement of gene expression

on a genomic scale [116, 31]. The technology uses the complete genomic sequence

of an organism and builds on the ability to miniaturize DNA hybridization experi-

ments so that thousands such experiments can be performed on a single chip, in a

single experiment. Using several technological alternatives (e.g., cDNA microarrays,

oligonucleotide DNA chips) expression profiling is now a standard tool in many bio-

logical laboratories, with applications ranging from basic experiments on metabolism

of yeast [100] to clinical assessment of cancer progression and prognosis [109]. Gene

expression profiling comprehensively describes the ”output” of transcriptional pro-

grams - the activity profiles that are produced by the regulatory network in a certain

environment. Such ”molecular phenotypes” are used frequently for the identification

of genes that are involved in certain processes (in this context gene expression profil-

ing is merely an efficient genetic screening procedure). As more and more expression

profiles are obtained, the general organization of transcriptional programs can be

revealed by comparisons of the responses to many different conditions [67, 45, 18].
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2.2.2 TF genomic locations are measured by chromatin im-

munoprecipitation and microarrays

A more intimate view on the internals of transcriptional programs comes from com-

bination of chromatin immunoprecipitation and DNA microarrays (ChIP on chip).

Using cross-linking of TFs to DNA, immunoprecipitation and release from cross-

linking, fragments of DNA that are bound by a TF in vivo can be isolated and

hybridized to a microarray containing probes for all possible regulatory regions in

the genome [111, 72, 122, 87]. The genomic regions where binding occur can thus

be identified on a genomic scale, providing critical information on the topology of

the transcriptional network. Advanced technologies are continuously improving the

resolution and the magnitude by which ChIP on chip experiments are performed.

Modern tiling arrays [19] allow millions of probes to be used and enable localization

experiments to be performed in large genomes (e.g., humans).

2.2.3 Additional high throughput techniques are constantly

emerging

Many other features of biological networks are subject to high throughput experi-

mentation. Standard genetic screening, aiming at the identification of genes that are

required for growth in a certain condition, is greatly accelerated by the availability of

whole genome mutant libraries, by robotics and by image processing algorithms that

create an efficient pipeline for the measurement of phenotypic effects of mutations in

thousands of genes [54, 34]. Whole genome genetic analysis is also possible with more

complex assays, where pairs of genes are tested for essentiality in a high throughput

fashion [139]. A significant effort is directed toward the identification of physical

interactions between proteins [142, 64, 56] on a large scale. For example, informa-

tion on such interactions is revolutionizing our understanding of post-translational

cascades leading to transcriptional switches.
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2.2.4 Clustering algorithms identify groups of co-expressed

genes

Genomic and functional genomics experiments are generating massive amounts of

data. The success of experiments therefore depends not only on clever design and

a polished protocol, but also on successful analysis of very large datasets. The first

analytical method used to analyze a set of gene expression profiles was clustering.

The idea is simple: instead of having to understand the behavior of thousands of

individual genes, one can look at a much smaller set of gene clusters. A cluster is

a group of genes that, at least in the context of the experiment, behave similarly.

The algorithmic problem of clustering is well developed in general [61] and many

algorithms were suggested for clustering biological data. Perhaps the most popular

of these algorithms is hierarchical clustering [37], owing much of its success to the

familiarity of its biologist users with phylogenetic trees. Other algorithmic alterna-

tives include standard optimization approaches like k-means or self organizing maps

[127], and also algorithms that were developed specifically for gene expression data,

and take into account typical characteristics of these data [11, 121].

2.2.5 Motif finding algorithms identify regulatory elements

in groups of co-regulated genes

Clusters of co-regulated genes, as identified by clustering of gene expression data,

represent transcriptional modules - units of the transcriptional program in which a

common regulatory mechanism drives the expression of a group of genes. As we

outlined above, the transcriptional switch controlling each gene is at least partially

determined by the sequence of regulatory regions around it, and more specifically

by the presence of TFBSs that are targeted by specific TFs. Given a cluster of co-

regulated genes, one can anticipate that common sequence motifs in the regulatory

regions of genes in the cluster would carry functional importance and may correspond

to the TFBSs regulating the common module’s response. Indeed, numerous methods

for motif finding were developed to try and identify sequence motifs in groups of

regulatory regions, most of which use simplified assumptions on the structure of a

motif, either being a combinatorial consensus or a PWM [138, 137, 123, 38]. In

many cases, motif finding algorithms were able to characterize novel TFBSs and to

reveal the structure of the transcriptional networks controlling important biological
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processes.

2.3 Computational models for transcriptional pro-

grams

The computational techniques we have outlined above allow the clustering of gene

expression data and the discovery of enriched motifs in regulatory regions of genes

in specific clusters. These methods are based on well developed computational

problems (clustering and motif finding) that were adapted to the biological domain.

Biologists are typically using a two-phase approach for the analysis of gene expression

data, first clustering and then motif finding. A more integrative approach to the

computational analysis of transcriptional programs requires new algorithms and

models that are more specific to the biological domain.

2.3.1 Cluster based models for transcriptional regulation

One problem with the two-phase approach to gene expression analysis is the lack of

integration between regulatory sequence data and gene expression profiles. Cluster-

ing algorithms use only the expression to determine the partition into clusters and

this partition cannot be corrected given the results of the motif finding algorithm.

By integrating the two problems into one, algorithms for simultaneous discovery of

clustering and enriched motifs were shown to have improved performance in several

cases [16, 148, 119]. The typical integrative approach simply searches for a clus-

tering solution that is optimal with respect to a score that quantifies the clusters

expression coherence and the existence of common DNA regulatory motifs. Addi-

tional integrative approaches combine gene expression data with ChIP on chip data

[6, 87] or try to learn a model in which each cluster has a decision tree predicting

the expression of genes in the module from the activity of a selected set of putative

regulators [118].
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2.3.2 Gene networks model regulation at the single gene

level

Interpretation of transcriptional programs by means of modules (or clusters) allows

us to learn a model for transcriptional programs using a reasonable number of pa-

rameters. The cluster-based approach also provides improved robustness for the

considerable amounts of noise in gene expression data. However, the actual struc-

ture of transcriptional programs, as we outlined above, is too detailed to be fully

expressed by a cluster-based model, as each gene has its own transcriptional switch.

A more flexible approach for the computational learning of transcriptional programs

is thus to assume the activity of each gene is an independent variable and the be-

havior of each variable is determined by a variable-specific regulation function. Such

approaches, either deterministic [77, 90] or Bayesian [42] use established methods

from computational learning theory and probabilistic graphical models, but are in-

herently confined by the large number of parameters that define the model, and by

the relative scarcity of data for specifically determining all these parameters. One

partial solution to the above problem is to report only on features of the model that

can be learned robustly, using bootstrap on relations [42] or sub-networks [103].

2.3.3 Refined network models use biologically motivated con-

straints

A more sophisticated class of network models tries to assume additional constraints

on the model so that learning would become more practical and require less param-

eters. Such constraints may be using other sources of data (e.g., ChIP on chip [60])

or specific structure imposed on transcriptional switches [99]. In a more complex

family of models, prior knowledge on some of the regulation functions in part of

the network can be assumed [48, 47], and the learning algorithms take into account

a large number of hidden variables. Another important issue in network models is

their temporal behavior. A steady state assumption is used frequently since cor-

rect temporal modeling would require understanding of the time scales in different

regulatory interactions as well as rapid experimental sampling rate. Models that

explicitly formulate the time-dependency of transcriptional regulation usually as-

sume synchronous regulation and use dynamic versions of steady state models (as

in dynamic Bayesian networks [71, 5]).
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2.4 Evolution of transcriptional regulation

Biological research is conducted using a variety of model systems, from bacteria,

through worms and up to mammals. Historically, selection of model organisms was

guided by experimental considerations, choosing species in which it was possible

to study specific processes in an efficient and affordable way. Recently, with the

advent of genomic technologies and as functional genomics became an increasingly

central challenge, new advantages for studying a diverse set of species emerged.

Studying complex genomes is difficult since well defined functional elements (e.g.,

genes, TFBS) are only a tiny fraction of the genomic sequence. By analyzing a

set of genomes together (using comparative genomics) we can recruit the rich and

principled theory of evolution, and classify sequences by their evolutionary behavior

(e.g., conserved/unconserved). Evolution, in this case, serves as a powerful source

of ”experiments” - we can look at a set of similar but not identical genomes and

correlate differences in phenotype with differences in genotype.

The fundamental theory of molecular evolution [89] describes the relations be-

tween the evolutionary process at the DNA level, the fitness of individuals and the

structure of the population. Much of the theoretical development and empirical

studies in molecular evolution were focused on protein coding genes or completely

non-functional elements like pseudo-genes or repetitive elements. Regulatory regions

are different from both of these, since they are responsible for critical functions, but

this function is not coded into the sequence in a dense and systematic way as codons

in a protein coding gene. To fully exploit multiple genomes for the deciphering of

transcriptional programs, one should adequately model the evolutionary dynamics

of regulatory regions and correlate them with other data on the transcriptional pro-

grams in several species. Evolution of regulatory regions is thus an active field of

research at both the experimental and theoretical levels [152].

2.4.1 Evolution of regulatory regions

Like any DNA sequence, regulatory regions evolve by a combination of two pro-

cesses. First, the processes by which genetic material is transferred from generation

to generation is noisy and involves mutations. Mutations, ignoring for now gross in-

sertion or deletions, are commonly assumed to happen at the single nucleotide level

and independently of each other, in a rate that may be a function of the lineage
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and the chromosomal locus. The second process affecting evolution at the molecular

level is the fixation of mutations in the population. The fixation process, accord-

ing to the widely accepted neutral theory [80], is believed to be mostly random,

such that mutations that have no impact on the organism’s fitness are continuously

fixated in the population, in a rate that depends on the population size (or the

effective population size, see [89]). In other cases, mutations with negative effects on

fitness are being rapidly eliminated from the population in a process called negative

or purifying selection. When affecting regulatory regions, mutations may a) have no

effect on the transcriptional switch; b) change the binding capacity of an existing

binding site, or even eliminate its functionality; c) change the binding capacity of

a non functional site, thereby creating a new TFBS; d) have other, more indirect

effect on the switch. The evolution of regulatory regions can be viewed as a sequence

of such events, where a complex selection force, which depends on the function of

the transcriptional switch and on the importance of certain TFBSs to its activity,

affects the rate of evolution of different loci in the region.

2.4.2 Co-regulation and epistasis

An important question in the evolution of transcriptional programs (and of regu-

latory regions in particular) is the interplay between the functional interaction of

genomic loci and their evolution. For example, assume a TF is regulating a gene

through binding to the gene’s regulatory regions. Both the protein coding sequence

of the DNA binding domain of the TF and the sequence of the respective gene TFBS

are evolving together. Any change in the DNA binding domain may change the fit-

ness of the TFBS, and the effect of mutations in the TFBS’s sequence on this fitness.

The dependency of the evolution of TFs and their TFBSs is just one example of epis-

tasis - non linear effect on fitness between pairs or among larger groups of loci [89].

Epistasis may be a major driving force in the evolution of transcriptional programs.

Transcriptional networks involve numerous interactions between different factors,

and the evolution of such complex entities cannot be understood without taking

into account these dependencies. A transcriptional module, for example, where one

or few TFs regulate a large group of genes through a set of similar TFBSs, im-

plies considerable epistasis. Since the function of a transcriptional module requires

co-regulation, an evolutionary change in the regulation of a module can either af-

fect the TF’s post-translational behavior, or otherwise involve numerous loci that
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have to somehow change together. In other words, the selective pressure on TFBSs

of transcriptional modules should be increased because of the epistatic effects. The

study of evolving transcriptional modules is just one example of the deep interaction

between functional and evolutionary analysis of transcriptional programs.



Chapter 3

Biclustering

In this chapter we describe the algorithmic foundations that we shall later use to

dissect large biological systems into modules. We shall employ a high level computa-

tional approach and treats the problem in the context of biclustering. In biclustering,

one is given a large data matrix and the goal is to identify one or many submatrices

with statistically surprising characteristics. In biological applications, we search for

groups of genes with a common pattern of behavior across a group of conditions.

We start this chapter by a survey of some of the biclustering models and algorithms

that are in use today. We then outline the SAMBA graph-theoretic formalization

of the biclustering problem, and present the statistical model used by SAMBA to

guarantee the significance of biclusters. We describe the theory and practice of the

SAMBA algorithm next, and show how SAMBA can be used to discover multiple bi-

clusters, and how it eliminates redundancies. Biological applications of our methods

will be presented in the next chapter.

Most of the results presented in this chapter were published in [134, 133, 136,

135]. The SAMBA algorithm was developed with Roded Sharan.

3.1 Introduction and motivation

Given a set of gene expression profiles, organized together as a gene expression ma-

trix with rows corresponding to genes and columns corresponding to conditions (or

samples), a common analysis goal is to group conditions and genes into subsets that

convey biological significance. In its most common form, this task translates to the

31
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computational problem known as clustering. Formally, given a set of elements with

a vector of attributes for each element, clustering aims to partition the elements into

(possibly hierarchically ordered) disjoint sets, called clusters, so that within each set

the attribute vectors are similar, while vectors of disjoint clusters are dissimilar. For

example, when analyzing a gene expression matrix we may apply clustering to the

genes (as elements) given the matrix rows (as attribute vectors) or cluster the con-

ditions (as elements) given the matrix columns (as attribute vectors). Analysis via

clustering makes several a-priori assumptions that may not be perfectly adequate

in all circumstances. First, clustering can be applied to either genes or conditions,

implicitly directing the analysis to a particular aspect of the system under study

(e.g., groups of patients or groups of co-regulated genes). Second, clustering algo-

rithms usually seek a disjoint cover of the set of elements, requiring that no gene or

condition belong to more than one cluster.

The notion of a bicluster gives rise to a more flexible computational framework.

A bicluster is defined as a submatrix spanned by a set of genes and a set of conditions

(compare Figure 3.1). Alternatively, a bicluster may be defined as the corresponding

gene and condition subsets. Given a gene expression matrix, we can characterize the

biological phenomena it embodies by a collection of biclusters, each representing a

different type of joint behavior of a set of genes in a corresponding set of conditions.

Note that there are no a-priori constraints on the organization of biclusters and,

in particular, genes or conditions can be part of more than one bicluster or of no

bicluster. The lack of structural constraints on biclustering solutions allows greater

freedom but is consequently more vulnerable to overfitting. Hence, biclustering

algorithms must guarantee that the output biclusters are meaningful. This problem

is particularly acute, since gene expression data typically suffer from high noise

levels. DNA chips provide only rough approximation of expression levels, and are

subject to errors of up to two-fold the measured value [1]. Any analysis method, and

biclustering algorithms in particular, should therefore be robust enough to cope with

significant levels of noise. This is usually done by an accompanying statistical model

or a heuristic scoring method that define which of the many possible submatrices

represent a significant biological behavior. The biclustering problem is to find a set

of significant biclusters in a matrix.
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Figure 3.1: Clustering and biclustering. Clusters correspond to disjoint strips in
the matrix. A row cluster must contain all columns, and a column cluster must contain
all rows. Biclusters correspond to arbitrary subsets of rows and columns, shown here as
rectangles. Note that since gene (condition) clusters are disjoint, the rows (columns) of
the matrix can be reordered so that each cluster is a contiguous strip. Similar reordering
of rows and columns that shows all the biclusters as rectangles is usually impossible.

3.2 Current approaches

In this section we outline some of the extant methods for biclustering biological

(mostly gene expression) data. Throughout, we assume that we are given a set of

genes V a set of conditions U , together with a matrix E = (evu) where evu is the

expression level of gene v in condition u. We assume that the matrix is normalized,

though some of the algorithms below perform additional normalization. A bicluster

B = (U ′, V ′) is defined by a subset of genes V ′ ⊂ V and a subset of conditions (or

samples) U ′ ⊂ U .

3.2.1 Cheng and Church’s Algorithm

Cheng and Church were the first to introduce biclustering to gene expression anal-

ysis [20]. Their algorithmic framework represents the biclustering problem as an

optimization problem, defining a score for each candidate bicluster and developing

heuristics to solve the constrained optimization problem defined by this score func-

tion. In short, the constraints force the uniformity of the matrix, the procedure gives

preference to larger submatrices and the heuristic is a relaxed greedy algorithm.

Cheng and Church implicitly assume that (gene, condition) pairs in a “good”
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bicluster have a constant expression level, plus possibly additive row and column-

specific effects. After removing row, column and submatrix averages the residual

level should be as small as possible. More formally, given the gene expression matrix

E, a subset of genes I and a subset of conditions J , we define eIj =
∑

i∈I
eij

|I| (row

subset average) eiJ =

∑
j∈J

eij

|J | (column subset average) and eIJ =

∑
i∈I,j∈J

eij

|I||J | (sub-

matrix average). We define the residue score of an element eij in a submatrix EIJ

as RSIJ(i, j) = eij − eIj − eiJ + eIJ and the mean square residue score of the entire

submatrix as H(I, J) =
∑

i∈I,j∈J

RS2
ij

|I||J | . The intuition behind this definition can be

understood via two examples: a completely uniform matrix will have score zero.

More generally, any submatrix in which all entries have the form eij = bi + cj would

also have score zero. Given the score definition, the maximum bicluster problem

seeks a bicluster of maximum size among all biclusters with score not exceeding a

threshold δ. The size can be defined in several ways, for example as the number of

cells in the matrix (|I||J |) or the number of rows plus number of columns (|I|+ |J |).

The maximum bicluster problem is NP-hard if we force all solutions to be square

matrices (|I| = |J |) or if we use the total number of submatrix cells as our op-

timization goal (Reductions are from Maximum Balanced Biclique or Maximum

Edge Biclique). Cheng and Church suggested a greedy heuristic to rapidly con-

verge to a locally maximal submatrix with score smaller than the threshold. The

algorithm (presented in Figure 3.2) can be viewed as a local search algorithm start-

ing from the full matrix. Given the threshold parameter δ, the algorithm runs in

two phases. In the first phase, the algorithm removes rows and columns from the

full matrix. At each step, where the current submatrix has row set I and column

set J , the algorithm examines the set of possible moves. For rows it calculates

d(i) = 1
|J |
∑

j∈J RSI,J(i, j) and for columns it calculates e(j) = 1
|I|
∑

i∈I RSI,J(i, j).

It then selects the highest scoring row or column and removes it from the current

submatrix, as long as H(I, J) > δ. The idea is that rows/columns with large con-

tribution to the score can be removed with guaranteed improvement (decrease) in

the total mean square residue score. A possible variation of this heuristic removes

at each step all rows/columns with a contribution to the residue score that is higher

than some threshold.

In the second phase of the algorithm, rows and columns are being added, us-

ing the same scoring scheme, but this time looking for the lowest square residues

d(i), e(j) at each move, and terminating where none of the possible moves increases
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the matrix size without crossing the threshold δ. Upon convergence, the algorithm

outputs a submatrix with low mean residue and locally maximal size.

To discover more than one bicluster, Cheng and Church suggested repeated appli-

cation of the biclustering algorithm on modified matrices. The modification includes

randomization of the values in the cells of the previously discovered biclusters, pre-

venting the correlative signal in them to be beneficial for any other bicluster in the

matrix. This has the obvious effect of precluding the identification of biclusters with

significant overlaps.

An application of the algorithm to yeast and human data is described in [20].

The software is available at http://arep.med.harvard.edu/biclustering.

3.2.2 Coupled Two-way Clustering

Coupled two-way clustering (CTWC), introduced by Getz, Levine and Domany [51],

defines a generic scheme for transforming a one-dimensional clustering algorithm

into a biclustering algorithm. The algorithm relies on having a one-dimensional

(standard) clustering algorithm that can discover significant (termed stable in [51])

clusters. Given such an algorithm, the coupled two-way clustering procedure will

recursively apply the one-dimensional algorithm to submatrices, aiming to find sub-

sets of genes giving rise to significant clusters of conditions and subsets of conditions

giving rise to significant gene clusters. The submatrices defined by such pairings are

called stable submatrices and correspond to biclusters. The algorithm, which is

shown in Figure 3.3, operates on a set of gene subsets V and a set of condition

subsets U . Initially V = {V } and U = {U}. The algorithm then iteratively selects a

gene subset V ′ ∈ V and a condition subset U ′ ∈ U and applies the one dimensional

clustering algorithm twice, to cluster V ′ and U ′ on the submatrix U ′ × V ′. If sta-

ble clusters are detected, their gene/condition subsets are added to the respective

sets V , U . The process is repeated until no new stable clusters can be found. The

implementation makes sure that each pair of subsets is not encountered more than

once.

Note that the procedure avoids the consideration of all rows and column subsets,

by starting from an established row subset when forming subclusters of established

column subsets, and vice versa. The success of the coupled two-way clustering strat-

egy depends on the performance of the given one-dimensional clustering algorithm.
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Cheng-Church(U , V , E, δ):
U : conditions. V : genes.
E : Gene expression matrix.
δ: maximal mean square residue score.

Define eIj =
∑

i∈I
eij

|I|

Define eiJ =
∑

j∈J
eij

|J |

Define eIJ =
∑

i∈I,j∈J
eij

|I||J |
Define RSIJ(i, j) = eij − eIj − eiJ + eIJ

Define H(I, J) =
∑

i∈I,j∈J

RS2
ij

|I||J | .

Initialize a bicluster (I, J) with I = U, J = V .
Deletion phase:

While (H(I, J) > δ) do
Compute for i ∈ I, d(i) = 1

|J |
∑

j∈J RSI,J(i, j).

Compute for j ∈ J , e(j) = 1
|I|
∑

i∈I RSI,J(i, j).

If maxi∈Id(i) > maxj∈Je(j) assign I = I \ {argmaxi(d(i))}.
Else J = J \ {argmaxj(e(j))}

Addition phase:
assign I ′ = I, J ′ = J

While (H(I ′, J ′) < δ) do
Assign I = I ′, J = J ′

Compute for i ∈ U \ I, d(i) = 1
|J |
∑

j∈J RSI,J(i, j).

Compute for j ∈ V \ J , e(j) = 1
|I|
∑

i∈I RSI,J(i, j).

If maxi∈Id(i) < maxj∈Je(j) assign I ′ = I ∪ {argmaxi(d(i))}.
Else J ′ = J ∪ {argmaxj(e(j))}

Report I, J

Figure 3.2: The Cheng-Church algorithm for finding a single bicluster.

We note that many popular clustering algorithms (e.g. K-means, Hierarchical, SOM)

cannot be plugged ”as is” into the coupled two-way machinery, as they do not readily

distinguish significant clusters from non-significant clusters or make a-priori assump-

tion on the number of clusters. Getz et al. have reported good results using the SPC

hierarchical clustering algorithm [52]. The results of the algorithm can be viewed in

a hierarchical form: each stable gene (condition) cluster is generated given a con-

dition (resp. gene) subset. This hierarchical relation is important when trying to
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understand the context of joint genes or conditions behavior. For example, when

analyzing clinical data, Getz et al. have focused on gene subsets giving rise to stable

tissue clusters that are correlative to known clinical attributes. Such gene sets may

have an important biological role in the disease under study.

The CTWC algorithm has been applied to a variety of clinical data sets (see,

e.g., [114]), the software can be downloaded via the site http://ctwc.weizmann.ac.il.

TWOWAY(U , V , E, ALG):
U : conditions. V : genes.
E : Gene expression matrix.
ALG : one-dimensional clustering algorithm. Inputs a matrix and outputs significant
(stable) clusters of columns or rows
Initialize a hash table weight

Initialize U1 = {U}, V1 = {V }
Initialize U = ∅, V = ∅
Initialize the sets hierarchy table HV storing for gene clusters
the condition subsets used to generate them.
Initialize the sets hierarchy table HU storing for condition
clusters the gene subsets used to generate them.
While (U1 6= ∅ or V1 6= ∅) do

Initialize empty sets U2,V2.
For all (U ′, V ′) ∈ (U1 × V1) ∪ (U1 × V) ∪ (U × V1) do

Run ALG(EU ′V ′) to cluster the genes in V ′:
Add the stable gene sets to V2

Set HV [V ′′] = U ′ for all new clusters V ′′.
Run ALG(EU ′V ′) to cluster the conditions in U ′:

Add the stable condition sets to U2

Set HU [U ′′] = V ′ for all new clusters U ′′.
Assign U = U ∪ U1, V = V ∪ V1

Assign U1 = U2, V1 = V2

Report U ,V and their hierarchies HU ,HV .

Figure 3.3: Coupled two-way clustering.
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3.2.3 The Iterative Signature Algorithm

In the Iterative Signature Algorithm (ISA) [70, 13] the notion of a significant bi-

cluster is defined intrinsically on the bicluster genes and samples – the samples of a

bicluster uniquely define the genes and vice versa. The intuition is that the genes in

a bicluster are co-regulated and, thus, for each sample the average gene expression

over all the bicluster’s genes should be surprising (unusually high or low) and for

each gene the average gene expression over all biclusters samples should be surpris-

ing. This intuition is formalized using a simple linear model for gene expression

assuming normally distributed expression levels for each gene or sample as shown

below.

The algorithm, presented in Figure 3.4, uses two normalized copies of the original

gene expression matrix. The matrix EG has rows normalized to mean 0 and variance

1 and the matrix EC has columns normalized similarly. We denote by eG
V ′u the mean

expression of genes from V ′ in the sample u and by eC
vU ′ the mean expression of the

gene v in samples from U ′. A bicluster B = (U ′, V ′) is required to have:

U ′ = {u ∈ U : |eG
V ′u| > TCσC}, V ′ = {v ∈ V : |eC

vU ′| > TGσG} (3.1)

Here TG is the threshold parameter and σG is the standard deviation of the means

eC
vU ′ where v ranges over all possible genes and U ′ is fixed. Similarly, TC , σC are the

corresponding parameters for the column set V ′. The idea is that if the genes in V ′

are up- or down-regulated in the conditions U ′ then their average expression should

be significantly far (i.e., TG standard deviations) from its expected value on random

matrices (which is 0 since the matrix is standardized). A similar argument holds for

the conditions in U ′. The standard deviations can be predicted as 1√
|U ′|

, 1√
|V ′|

being

a linear sum of |U ′| (or |V ′|) independent standard random variables. Alternatively

(and in fact, more practically), the standard deviations can be estimated directly

from the data, correcting for possible biases in the statistics of the specific condition

and gene sets used. In other words, in a bicluster, the z-score of each gene, measured

w.r.t. the bicluster’s samples, and the z-score of each sample, measured w.r.t. the

bicluster’s samples, should exceed a threshold. As we shall see below, ISA will not

discover biclusters for which the conditions (3.1) hold strictly, but will use a relaxed

version.

The algorithm starts from an arbitrary set of genes V0 = Vin. The set may be

randomly generated or selected based on some prior knowledge. The algorithm then
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repeatedly applies the update equations:

Ui = {u ∈ U : |eG
Viu
| > TCσC}, Vi+1 = {v ∈ V : |eC

vUi
| > TGσG} (3.2)

The iterations are terminated at step n satisfying:

|Vn−i \ Vn−i−1|
|Vn−i ∪ Vn−i−1|

< ε (3.3)

for all i smaller than some m. The ISA thus converges to an approximated fixed

point that is considered to be a bicluster. The actual fixed point depends on both the

initial set Vin and the threshold parameters TC , TG. To generate a representative

set of biclusters, it is possible to run ISA with many different initial conditions,

including known sets of associated genes or random sets, and to vary the thresholds.

After eliminating redundancies (fixed points that were encountered several times),

the set of fixed points can be analyzed as a set of biclusters.

The ISA algorithm can be generalized by assigning weights for each gene/sample

such that genes/samples with a significant behavior (higher z-score) will have larger

weights. In this case, the simple means used in (3.1) and (3.2) are replaced by

weighted means and the algorithm can be represented using matrix operations.

The signature algorithm has been applied for finding cis-regulatory modules

in yeast ([70]) and for detecting conserved transcriptional modules across several

species ([14]). For software see http://barkai-serv.weizmann.ac.il/GroupPage/.
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ISA(U , V , E, Vin, TG, TC , m, ε):
U : conditions. V : genes.
E : Gene expression matrix.
Vin : Initial gene set.
TG, TC : gene and condition z-score thresholds.
m, ε: stopping criteria.
Construct a column standardized matrix EC .
Construct a row standardized matrix EG.
Initialize counters n = 0, n′ = 0.
Initialize the current genes set V ′ = Vin

Initialize an empty condition set U ′.
While (n− n′ < m) do

Compute eG
V ′u = 1

|V ′|
∑

v∈V ′ eG
vu for u ∈ U .

U ′ = {u ∈ U : |eG
V ′u| >

TC√
|V ′|
}

Compute eC
vU ′ = 1

|U ′|
∑

u∈U ′ eC
vu for v ∈ V .

V ′′ = V ′

V ′ = {v ∈ V : |eC
vU ′ | > TG√

U ′ }
if ( |V

′\V ′′|
|V ′∪V ′′| < ε) then n′ = n

n = n + 1
Report U ′, V ′

Figure 3.4: The ISA algorithm for finding a single bicluster. For simplicity we
write the algorithm here as if σG = 1√

|U ′|
and σC = 1√

|V ′|
, direct estimations of the

standard deviation may give better results in practice (see text).

3.2.4 Spectral Biclustering

Spectral biclustering uses techniques from linear algebra to identify bicluster struc-

tures in the input data. Here we review the biclustering technique presented in

Kluger et al. [83]. In this model, it is assumed that the expression matrix has a

hidden checkerboard-like structure that we try to identify using eigenvector compu-

tations. The structure assumption is argued to hold for clinical data, where tissues

cluster to cancer types and genes cluster to groups, each distinguishing a particular

tissue type from the other types.

To describe the algorithm, suppose at first that the matrix E has a checkerboard-
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like structure (see Figure 3.5). Obviously we could discover it directly, but we could

also infer it using a technique from linear algebra that will be useful in case the

structure is hidden due to row and column shuffling. The technique is based on

a relation between the block structure of E and the block structure of pairs of

eigenvectors for EET and ET E, which we describe next. First, observe that the

eigenvalues of EET and ET E are the same. Now, consider a vector x that is stepwise,

i.e., piecewise constant, and whose block structure matches that of the rows of E.

Applying E to x we get a stepwise vector y. If we now apply ET to y we get a vector

with the same block structure as x. The same relation is observed when applying

first ET and then E (see Figure 3.5). Hence, vectors of the stepwise pattern of x

form a subspace that is closed under ET E. This subspace is spanned by eigenvectors

of this matrix. Similarly, eigenvectors of EET span the subspace formed by vectors

of the form of y. More importantly, taking now x to be an eigenvector of ET E with

an eigenvalue λ, we observe that y = Ex is an eigenvector of EET with the same

eigenvalue.

Ex =

 8 8 7 7 3 3

8 8 7 7 3 3

6 6 4 4 5 5

6 6 4 4 5 5




a

a

b

b

c

c

 =

 d

d

e

e

 = y, ET y =


8 8 6 6

8 8 6 6

7 7 4 4

7 7 4 4

3 3 5 5

3 3 5 5


 d

d

e

e

 =


a′

a′

b′

b′

c′

c′

 = x′

Figure 3.5: An example of a checkerboard-like matrix E and the eigenvectors of EET and
ET E. The vector x satisfies the relation ET Ex = ET y = x′ = λx. Similarly, y satisfies
the equation EET y = Eλx = λy.

In conclusion, the checkerboard-like structure of E is reflected in the stepwise

structures of pairs of EET and ET E eigenvectors that correspond to the same

eigenvalue. One can find these eigenvector pairs by computing a singular value

decomposition of E. Singular value decomposition is a standard algebraic technique

(cf. [106]) that expresses a real matrix E as a product E = A∆BT , where ∆ is a

diagonal matrix and A and B are orthonormal matrices. The columns of A and B

are the eigenvectors of EET and ET E, respectively. The entries of ∆ are square

roots of the corresponding eigenvalues, sorted in a non-increasing order. Hence the

eigenvector pairs are obtained by taking for each i the ith columns of A and B, and

the corresponding eigenvalue is the ∆2
ii.
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For any eigenvector pair, one can check whether each of the vectors can be

approximated using a piecewise constant vector. Kluger et al. use a one-dimensional

k-means algorithm to test this fit. The block structures of the eigenvectors indicate

the block structures of the rows and columns of E.

In the general case, the rows and columns of E are ordered arbitrarily, and the

checkerboard-like structure, if E has one, is hidden. To reveal such structure one

computes the singular value decomposition of E and analyzes the eigenvectors of

EET and ET E. A hidden checkboard structure will manifest itself by the existence

of a pair of eigenvectors (one for each matrix) with the same eigenvalue, that are

approximately piecewise constant. One can determine if this is the case by sorting

the vectors or by clustering their values, as done in [83].

Kluger et al. further discuss the problem of normalizing the gene expression ma-

trix to reveal checkerboard structures that are obscured, e.g., due to differences in

the mean expression levels of genes or conditions. The assumed model for the data is

a multiplicative model, in which the expression level of a gene i in a condition j is its

base level times a gene term, which corresponds to the gene’s tendency of expression

under different conditions, times a condition term, that represents the tendency of

genes to be expressed under condition j. The normalization is done using two nor-

malizing matrices: R, a diagonal matrix with the mean of row i at the ith position;

and C, a diagonal matrix with the mean of column j at the jth position. The block

structure of E is now reflected in the stepwise structure of pairs of eigenvectors with

the same eigenvalue of the normalized matrices M = R−1EC−1ET and MT . These

eigenvector pairs can be deduced by computing a singular value decomposition of

R−1/2EC−1/2. Due to the normalization, the first eigenvector pair (corresponding to

an eigenvalue of 1) is constant and can be discarded. A summary of the biclustering

algorithm is given in Figure 3.6.

The spectral algorithm was applied to human cancer data and its results were

used for classification of tumor type and identification of marker genes [83].

3.2.5 Plaid Models

The Plaid model [86] is a statistically inspired modeling approach developed by

Lazzeroni and Owen for the analysis of gene expression data. The basic idea is to

represent the genes-conditions matrix as a superposition of layers, corresponding to
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Spectral(U , V , E):
U : conditions. V : genes.
En×m : Gene expression matrix.
Compute R = diag(E · 1m) and C = diag(1T

n · E).
Compute a singular value decomposition of R−1/2EC−1/2.
Discard the pair of eigenvectors corresponding to the largest eigenvalue.
For each pair of eigenvectors u, v of R−1EC−1ET and C−1ET R−1E

with the same eigenvalue do:
Apply k-means to check the fit of u and v to stepwise vectors.

Report the block structure of the p u, v with the best stepwise fit.

Figure 3.6: The spectral biclustering algorithm.

biclusters in our terminology, where each layer is a subset of rows and columns on

which a particular set of values takes place. Different values in the expression matrix

are thought of as different colors, as in (false colored) “heat maps” of chips. This

metaphor also leads to referring to “color intensity” in lieu of “expression level”.

The horizontal and vertical color lines in the matrix corresponding to a layer give

the method its name.

The model assumes that the level of matrix entries is the sum of a uniform

background (“grey”) and of k biclusters each coloring a particular submatrix in a

certain way. More precisely, the expression matrix is represented as

Aij = µ0 +
K∑

k=1

θijkρikκjk

where µ0 is a general matrix background color, and θijk = µk + αik + βjk where µk

describes the added background color in bicluster k, α and β are row and column

specific additive constants in bicluster k. ρik ∈ {0, 1} is a gene-bicluster membership

indicator variable, i.e., ρik = 1 iff gene i belongs to the gene set of the k-th bicluster.

Similarly, κjk ∈ {0, 1} is a sample-bicluster membership indicator variable. Hence,

similar to Cheng and Church [20], a bicluster is assumed to be the sum of bicluster

background level plus row-specific and column-specific constants.

When the biclusters form a k-partition of the genes and a corresponding k-

partition of the samples, the disjointness constraints that biclusters cannot overlap

can be formulated as
∑

k κjk ≤ 1 for all j,
∑

k ρik ≤ 1 for all i. Replacing ≤ by =
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would require assignment of each row or column to exactly one bicluster. General-

izing to allow bicluster overlap simply means removing the disjointness constraints.

The general biclustering problem is now formulated as finding parameter values

so that the resulting matrix would fit the original data as much as possible. Formally,

the problem is minimizing

∑
ij

[Aij −
K∑

k=0

θijkρikκjk]
2 (3.4)

where µ0 = θij0. If αik or βjk are used, then the constraints
∑

i ρikαik = 0 or∑
j κjkβjk = 0 are added to reduce the number of parameters. Note that the number

of parameters is at most k + 1 + kn + km for the θ variables, and kn + km for the κ

and ρ variables. This is substantially smaller than the nm variables in the original

data, if k << max(n, m).

Estimating Parameters

Lazzeroni and Owen propose to solve problem (3.4) using an iterative heuristic. New

layers are added to the model one at a time. Suppose we have fixed the first K − 1

layers and we are seeking for the K-th layer to minimize the sum of squared errors.

Let

Z
(K−1)
ij = Aij −

K−1∑
k=0

θijkρijκjk (3.5)

be the residual matrix after removing the effect of the first K−1 layers. In iteration

K we wish to solve the following quadratic integer program.

min Q(K) = 1
2

∑n
i=1

∑p
j=1(Z

(K−1)
ij − θijKρiKκjK)2

s.t.
∑

i ρ
2
iKαiK = 0,

∑
j κ2

jKβjK = 0

ρiK ∈ {0, 1}, κjK ∈ {0, 1}
(3.6)

The proposed heuristic method to solve (3.6) is again iterative. To avoid con-

fusion we call the iterations for fixed K cycles, and indicate the cycle number by a

superscript in parentheses, e.g. θ(i). The integrality constraints are ignored through-

out, and the goal is to solve corresponding relaxation of it. A cycle is done as follows:

Compute the best values of the θ parameters given fixed ρ and κ values; Compute

the best values of the ρ parameters given new θ and the old κ values; Compute the

best values of the κ parameters given the new θ and the old ρ values. In order to
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avoid “locking in” of the membership variables to 0 or 1, their values are changed

only modestly on the first cycle, and they are allowed to become integral only at

the final cycle.

The following optimal parameter values in the relaxed version of (3.6) are ob-

tained by using Lagrange multipliers:

µK =

∑
i

∑
j ρiKκjKZK−1

ij

(
∑

i ρ
2
iK)(

∑
j κ2

jK)
(3.7)

αiK =

∑
j(Z

(K−1)
ij − µKρiKκjK)κjK

ρiK
∑

jK κ2
jK

(3.8)

βjK =

∑
i(Z

(K−1)
ij − µKρiKκjK)ρiK

κjK
∑

iK ρ2
iK

(3.9)

So, in cycle s, we use these equations to update θ(s) using the old values ρ(s−1)

and κ(s−1). The values for ρiK and κjK that minimize Q are:

ρiK =

∑
j θijKκjKZK−1

ij∑
j θ2

ijKκ2
jK

(3.10)

κjK =

∑
i θijKρiKZK−1

ij∑
i θ

2
ijKρ2

iK

(3.11)

At cycle s, we use these equations to update ρ(s) from θ(s) and κ(s−1), and update

κ(s) from θ(s) and ρ(s−1). The complete updating process is repeated a prescribed

number of cycles.

Initialization and Stopping Rule

The search for a new layer K in the residual matrix Zij = Z
(K)
ij requires initial values

of ρ and κ. These values are obtained by finding vectors u and v and a real value λ

so that λuvT is the best rank one approximation of Z. We refer the readers to the

original paper for details.

Intuitively, each iteration “peels off” another signal layer, and one should stop

after K − 1 iterations if the residual matrix Zij = Z
(K)
ij contains almost only noise.

Lazzeroni and Owen define the importance of layer k by σ2
k =

∑n
i=1

∑p
j=1 ρikκjkθ

2
ijk.

The algorithm accepts a layer if it has significantly larger importance than in noise.
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To evaluate σ2
k on noise, repeat the following process T times: Randomly permute

each row in Z independently, and then randomly permute each column in the re-

sulting matrix independently. Apply the layer-finding algorithm on the resulting

matrix, and compute the importance of that layer. If σ2
k exceeds the importance

obtained for all the T randomized matrices, add the new layer K to the model.

The complete algorithm is outlined in Figure 3.7.

Plaid models have been applied to yeast gene expression data [86]. The software

is available at http://www-stat.stanford.edu/∼owen/plaid.

Plaid(U , V , E, S):
U : conditions. V : genes.
E : Gene expression matrix.
S: maximum cycles per iteration.
Set K = 0
adding a new layer:

K=K+1
Compute initial values of κ

(0)
jK , ρ

(0)
iK . Set s = 1

While (s ≤ S) do:
Compute µ

(s)
K , α

(s)
iK , β

(s)
jK using equations (3.7)- (3.9).

Compute κ
(s)
K using equations (3.11)

Compute ρ
(s)
K using equations (3.10)

If ρ
(s)
K > 0.5 set ρ

(s)
K = 0.5 + s/2S, else set ρ

(s)
K = 0.5− s/2S

If κ
(s)
K > 0.5 set κ

(s)
K = 0.5 + s/2S, else set κ

(s)
K = 0.5− s/2S

If the importance of layer K is non random then record the layer and repeat
Else exit.

Report layers 1, . . . ,K − 1.

Figure 3.7: Inferring plaid models.

3.3 Functional properties

We start our description of the SAMBA biclustering algorithm by introducing an

approach for the abstraction of genomic information. The biclustering algorithms

we described above assume that the analysis is focused on gene expression data.
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In practice, however, it is often desirable to apply biclustering on a heterogeneous

dataset, so that unexpected dependencies among experiments can be discovered.

Data from many types of biological genome-wide experiments can be expressed as

vectors of real-valued measurements (one value per gene). Depending on the experi-

ment, the data entries may vary in range, order, statistical properties and reliability.

Aiming at the application of combinatorial algorithms and analysis, the SAMBA

framework abstracts all sources of information as discrete properties. Properties

are Boolean characters of genes and may be used to express any kind of biological

knowledge. Data from biological experiments are transformed into probabilities of

genes having certain properties. For example, given a gene expression experiment

we can define two properties, one for genes that are induced in the experiment and

the other for genes that are repressed in the experiment. For each gene, we can

use the microarray measurement to determine what is the probability that the gene

was induced or repressed at the experiment (the third possibility, and usually the

most probable, that the gene is neither induced nor repressed, is not defined as a

property to keep the representation sparse). We note that the transformation from

continuous measurements to discrete properties needs to be determined based on

prior understanding of the biological phenomenon and that this transformation may

degrade some of the information of the experiment. However, the SAMBA model

(see below), guarantees that whatever the discretization scheme was, the biclusters

that are detected will be significantly non random. In the following we shall assume

that we are given a set of genes V , a set of properties U and a matrix of probabilities

φ(u, v) specifying the probability of each gene to have each of the properties. We

shall describe how we derive such probabilities from various types of experiments in

practice when discussing applications in the next chapter (see e.g., Figure 4.1).

3.4 The SAMBA model

Given a set of genes and properties we form a bipartite graph G = (U, V,A) (See

Figure 3.8 for an example). In this graph, U is the set of properties, V is the set of

genes, and (u, v) ∈ A iff v have property u with nonzero probability. We also assign

each edge with the probability of the respective gene to have the respective property,

denoted as φ(u, v). A bicluster corresponds to a subgraph H = (U ′, V ′, A′) of G,

and represents a subset V ′ of genes that share a set of properties U ′ (see Figure 3.8).
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Later we shall define weights (not to be confused with the probabilities) for each

property-gene pair in the graph, the weight of a subgraph (or bicluster) will then be

the sum of the weights of gene-condition pairs in it, including edges and non-edges.

Figure 3.8: The SAMBA graph. Functional genomic data is modeled using a

bipartite graph whose two sides correspond to a set of properties U and a set of

genes V . An edge (u, v) indicates the association between gene v and property u. A

statistical model assigns weights to the edges and non-edges of the graph. A) Part

of the graph showing the gene expression property “induced in tup1 deletion” and

its effect on the genes “gal7” (response) and “ecm11” (no response). B) A heavy

subgraph (shaded) representing a significant bicluster.

In the following we develop statistical models for our bipartite graph representa-

tion of functional genomic datasets. Using these models we derive scoring schemes

for assessing the significance of an observed subgraph. We note that we are aiming

at scoring schemes that are additive - scores that can be decomposed across the edges

and non-edges of the graph. This will allow us to reduce the biclustering problem

to that of finding heavy subgraphs in a bipartite graph. We will first assume that

all edges have probability 1 (”hard discretization”) and will later explain how to

generalize the model for arbitrary probabilities.

3.4.1 A Naive Model

Let H = (U ′, V ′, A′) be a subgraph of G. Denote |U ′| = m′, |V ′| = n′. Let p = |A|
|U ||V | ,

and let k′ = |A′|. Our first model assumes that edges occur independently and

equiprobably with density p. Denote by BT (k, p, n) the binomial tail, i.e., the
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probability of observing k or more successes in n trials, where each success occurs

independently with probability p. Then the probability of observing a graph at least

as dense as H according to this model is p(H) = BT (k′, p, n′m′).

Our goal is to find a subgraph H with lowest p(H). By bounding the terms of the

binomial tail using the first one, assuming that p < 1/2, we obtain the following loose

upper bound for p(H): p(H) <
∑

i

(
n′m′

i

)
pk′(1− p)n′m′−k′ < 2n′m′

pk′(1− p)n′m′−k′ =

p∗(H). Seeking a subgraph H minimizing log p∗(H) is equivalent to finding a max-

imum weight subgraph of G where each edge has positive weight (−1 − log p) and

each non-edge has negative weight (−1− log(1− p)).

Note that p(H) is a reasonable measure for the p-value of a subgraph only if

n′m′ � nm, as its calculation ignores the total number of edges in G. An accurate

p-value for H is:

p′(H) =
1(

nm
k

) k∑
i=k′

(
n′m′

i

)(
nm− n′m′

k − i

)

3.4.2 A degree based model

The simple model presented above, assume all edges to be equally probable. Un-

fortunately, in real biological datasets this assumption does not hold. Experiments

can be relating to few genes or thousands of genes, leading to highly heterogeneous

degree distribution for property nodes in our graph. The same is correct for genes -

some genes are highly active and participate in numerous biological processes, other

are extremely specific and can be associated with few (or no) properties.

We next develop a refined null model that takes into account the variability of the

degrees in G, i.e., it incorporates the characteristic behavior of each specific condition

and gene. Let H = (U ′, V ′, A′) be a subgraph of G and denote A′ = (U ′ × V ′) \ A′.

For a vertex w ∈ U ′ ∪ V ′ let dw denote its degree in G. Our null model assumes

that the occurrence of each edge (u, v) is an independent Bernoulli variable with

parameter pu,v. The probability pu,v is the fraction of bipartite graphs with degree

sequence identical to G that contain the edge (u, v). This probability takes into

account the variability (or degree) of the associated property and associated gene,

and will typically match the statistical properties of biological data much better than

the simpler model presented above. In order to compute pu.v we can use a Monet-

Carlo simulation and sample a set of graphs with the required degree sequence. The
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MC process proceeds in a sequence of edge-crossings, swapping between randomly

chosen edges (u1, v1), (u2, v2) and the corresponding non edges (u1, v2) and (u2, v1)

(verifying that the latter are indeed non edges before the swap).

The likelihood of a subgraph H given the null model is thus p(H) = (
∏

(u,v)∈A′ pu,v)·
(
∏

(u,v)∈A′(1− pu,v)). To score a subgraph for significance, we shall quantify its devi-

ation from random behavior by comparing its likelihood according to the null model

to its likelihood according to the true-bicluster model we define next. We assume

that in a true bicluster, all node pairs should be edges with a constant probability

pc, and that pc > max(u,v)∈U×V pu,v. This model reflects our belief that biclusters

represent approximately uniform relations between their elements. The likelihood

ratio for H is therefore:

L(H) = (
∏

(u,v)∈A′

pc

pu,v

) · (
∏

(u,v) 6∈A′

1− pc

1− pu,v

)

The null model is rejected for high values of this ratio.

After taking the logarithm we get:

log L(H) =
∑

(u,v)∈A′

log
pc

pu,v

+
∑

(u,v)∈A′

log
1− pc

1− pu,v

(3.12)

Setting the weight of each edge (u, v) to log pc

pu,v
> 0 and the weight of each non-edge

(u, v) to log 1−pc

1−pu,v
< 0, we derive an additive score for H, which as we stated above,

is used to reduce the biclustering problem to the problem of finding the heaviest

subgraph in G.

3.4.3 Incorporating edge probabilities

As we explained above, SAMBA transforms continuous experimental data into prob-

abilistic observations on Boolean properties. The SAMBA graph is therefore a bi-

partite graph with edge probabilities. Recall that φ(u, v) is the probability that

the edge (u, v) is present. We interpret these probabilities as defining a simple

probability space over the deterministic bipartite graphs, where the probability of a

graph equals the product of the probabilities for having (or not having) individual

edges Pr((U, V,A)) =
∏

(u,v)∈A φ(u, v)
∏

(u,v)/∈A(1 − φ(u, v)). Given this probabil-

ity space, we shall define our bicluster score as the expected log likelihood ratio

E(log(L(H))) given a background model that uses the expected degrees for each
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node (d̂u =
∑

v∈V φ(u, v)). Since L(H) is decomposed over the edges, and using the

linearity of the expectation, it is easy to see that:

E(log(L(H))) =
∑
u,v

(φ(u, v) ∗ log
pc

pu,v

+ (1− φ(u, v)) ∗ log
1− pc

1− pu,v

) (3.13)

By setting the weight of each node pair (u, v) to φ(u, v)∗ log pc

pu,v
+(1−φ(u, v))∗

log 1−pc

1−pu,v
we can reduce the problem of finding subgraphs with optimal E(log(L(H)))

to the problem of finding heavy subgraphs. Note that for small φ(u, v) edge weights

will be negative, and for large φ(u, v) edge weights will be positive.

3.5 Finding the heaviest bipartite graph

In the previous section we have given an additive scoring scheme assigning weights to

edges and non-edges. Discovering the most significant biclusters in the data reduces

under this scoring scheme to finding the heaviest subgraphs in the bipartite graph.

The maximal weight bipartite subgraph problem is defined given a complete bipartite

graph with weights (positive and negative). The problem is to find the subgraph

with maximal total edge weight. We note this problem is NP-hard, even if the edge

weights are bounded, as can be shown by a simple reduction from CLIQUE.

Theorem 3.5.1 For a weighted complete bipartite graph G and a number k, the

problem of determining if G contains a subgraph of weight at least k is NP-complete,

even if edge weights are bounded to +1,−1 and 0.

Proof: By reduction from CLIQUE. Let (G = (V, A), k) be an instance of CLIQUE.

Let V ′ = {v′|v ∈ V }, we call v, v′ a twin pair. Build a weighted complete bipartite

graph G′ = (V, V ′, V × V ′, w) where w((v, v′)) = 1 for each v ∈ V , w((u, v′)) =

w(v, u′) = 0 if (u, v) ∈ A, and w((u, v′)) = −1 otherwise. If G has a clique of size at

least k then clearly G′ has a subgraph of weight at least k. Conversely, if G′ has a

subgraph of weight k then we can construct a k−clique as follows. Call a subgraph

symmetric if it for each v ∈ V , v is part of the subgraph iff its twin v′ is also part of it.

W.l.o.g we assume that G′ is symetric, otherwise we may remove the non-symmetric

nodes without decreasing the score (without the symmetric edge, the total weight
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contributed by a node is non-positive). Now a subgraph of weight k must contain k′

twin pairs and k′ − k negative edges. For each negative edge (v, u′), the (negative)

edge (u, v′) should also be part of the subgraph (by symmetry). Thus, by removing

the four related nodes v, u, v′, u′ from the graph we do not decrease the total graph

weight and reduce the number of negative edges. This can be done until we derive

a graph of weight k without negative edges - which corresponds to a k-clique in the

original graph G.

Using the deep result on CLIQUE hardness [63] and the fact that the reduction

we presented above does not change the score function we optimize (and is thus gap

preserving), we conclude that the maximum bipartite subgraph is not any easier to

approximate than CLIQUE:

Corollary 3.5.2 The maximal weigth subgraph problem on complete bipartite graphs

with edge weights {+1,−1, 0} is hard to approximate within O(n1−ε) for any ε > 0

unless NP = ZPP . In other words, if there exists ε > 0 and a polynomial algorithm

that approximate the problem within O(n1−ε) then NP = ZPP .

3.6 Bounded degree biclustering

In this section we will develop practical intuition into the combinatorial problem of

finding the heaviest bipartite subgraph by studying the special case in which one of

the sides in the graph have bounded degrees.

3.6.1 Maximum Bounded Biclique

We start by describing an O(|V |2d)-time algorithm to find a maximum weight bi-

clique in a bipartite graph whose gene vertices have d-bounded degree. This algo-

rithm will be a key component in our more involved algorithms that follow.

Let G = (U, V,A) be a bipartite graph. We say that G has d-bounded gene side,

if every v ∈ V has degree at most d. Let w : U × V → R be a weight function. For

a pair of subsets U ′ ⊆ U, V ′ ⊆ V we denote by w(U ′, V ′) the weight of the subgraph

induced on U ′ ∪ V ′, i.e., w(U ′, V ′) =
∑

u∈U ′,v∈V ′ w((u, v)). The neighborhood of a

vertex v, denoted N(v), is the set of vertices adjacent to v in G. We denote n = |V |
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throughout.

Problem 1 (Maximum Bounded Biclique) Given a weighted bipartite graph G

with d-bounded gene side, find a maximum weight complete subgraph of G.

Theorem 3.6.1 The maximum bounded biclique problem can be solved in O(n2d)

time and space.

Proof: Observe that a maximum bounded biclique H∗ = (U∗, V ∗, A∗) in G must

have |U∗| ≤ d. Figure 3.9 describes a hash-table based algorithm that for each

vertex v ∈ V scans all O(2d) subsets of its neighbors, thereby identifying the heaviest

biclique. Each hash entry corresponds to a subset of conditions and records the total

weight of edges from adjacent gene vertices. The iteration over subsets of N(v) is

done by repeatedly changing the current subset S by adding or removing a single

element, updating w(S, {v}) in constant time. Hence, the algorithm spends O(n2d)

time on the hashing and finding Ubest. Computing Vbest can be done in O(nd) time,

so the total running time is O(n2d). The space complexity is O(n2d) due to the

hash-table.

MaxBoundBiClique(U , V , A, d):

Initialize a hash table weight; weightbest ← 0

For all v ∈ V do

For all S ⊆ N(v) do

weight[S]←weight[S]+

max{0, w(S, {v})}
If (weight[S] > weightbest)

Ubest ← S

weightbest ← weight[S]

Compute Vbest = ∩u∈Ubest
N(u)

Output (Ubest, Vbest)

Figure 3.9: An algorithm for the maximum bounded biclique problem.

Note that the algorithm can be adapted to give the k condition subsets that

induce solutions of highest weight in O(n2d log k) time using a priority queue (heap)

data structure.
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3.6.2 Finding Heavy Subgraphs

We now look for heavy subgraphs which are not necessarily complete. We start

by giving weight 1 for an edge and weight −1 for a non-edge. Formally, given a

bipartite graph G = (U, V,A) define a weight function w : U × V → {−1, 1} such

that w((u, v)) = 1 for (u, v) ∈ A, and w((u, v)) = −1 for (u, v) ∈ (U × V ) \ A.

Consider the following problem:

Problem 2 (Maximum Bounded Bipartite Subgraph) Given a bipartite graph G with

d-bounded gene side, find a maximum weight subgraph of G.

Lemma 3.6.2 Let H∗ = (U∗, V ∗, A∗) be a maximum weight subgraph of G. Then

every vertex in H∗ is connected to at least half the vertices on the other side of H∗.

Proof: Follows from the choice of weights, since if a vertex v ∈ V ∗ has less than

d|U∗|/2e neighbors, then removing v from H∗ will result in a heavier subgraph. The

proof for u ∈ U∗ is symmetric.

Corollary 3.6.3 A maximum weight subgraph of G has at most 2d vertices from

U .

Proof: Since the degree of every vertex in V is bounded by d, this follows from

the previous lemma.

Lemma 3.6.4 Let H∗ = (U∗, V ∗, A∗) be a maximum weight subgraph of G. For each

set X ⊆ U∗ there exists a subset Y ⊆ X with |Y | ≥ d|X|/2e such that Y ⊆ N(v)

for some v ∈ V ∗.

Proof: Assume there exists X ⊆ U∗ such that all subsets X ∩N(v), v ∈ V ∗ are of

size smaller than d|X|/2e. Then the weight of the subgraph induced on (U∗ \X, V ∗)

exceeds that of H∗, a contradiction.

Corollary 3.6.5 Let H∗ = (U∗, V ∗, A∗) be a maximum weight subgraph of G. Then

U∗ can be covered by at most blog(2d)c sets, each of which is contained in the neigh-

borhood of some vertex in V ∗.
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Proof: Denote |U∗| = t. By Lemma 3.6.4 there exists a subset Y ⊆ U∗ with

|Y | ≥ dt/2e, such that Y ⊆ N(v) for some v ∈ V ∗. The same holds for the set

U∗ \ Y , and we can continue in this manner until we cover U∗. By construction we

have at most blog tc sets in the cover. Since t ≤ 2d by Corollary 3.6.3, the result

follows.

Corollary 3.6.5 implies an algorithm to find a maximum weight subgraph. The

algorithm tests all collections of at most blog(2d)c subsets of neighborhoods of ver-

tices in V . Since there are O(n2d) such subsets we have:

Theorem 3.6.6 The maximum bounded bipartite subgraph problem can be solved in

O((n2d)log(2d)) time.

A non-redundant subgraph is one whose weight cannot be increased by removing

any vertex from it. Theorem 3.6.6 can be generalized to give the k heaviest non-

redundant subgraphs in O((n2d)log(2d) log k) time.

We now extend Theorem 3.6.6 to graphs with more general weights: Suppose

that edges in G have positive weights and non-edges have negative weights. Define

r = max(u,v),(u′,v′)∈U×V | w(u,v)
w(u′,v′)

|. We call r the maximum weight ratio in G. Similarly

to Lemma 3.6.4 we can show:

Lemma 3.6.7 Let H∗ = (U∗, V ∗, A∗) be a maximum weight subgraph of G. For

each set X ⊆ U∗ there exists a subset Y ⊆ X with |Y | ≥ d|X|/(r + 1)e such that

Y ⊆ N(v) for some v ∈ V ∗.

Theorem 3.6.8 Let G be a bipartite graph with d-bounded gene side. Suppose a

weight function assigns positive and negative weights to edges and non-edges, respec-

tively, such that the maximum weight ratio is r. Then the k heaviest non-redundant

subgraphs in G can be found in O((n2d)log(r+1)/r(rd) log k) time.

3.7 Searching for multiple biclusters

So far we have discussed the problem of finding the best bicluster subgraph under

some plausible statistical definitions. In practice, however, we are rarely interested in
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just the best bicluster (which is often relatively easy to detect). Instead, we wish to

identify a comprehensive set of significant biclusters in an attempt to extract all non

trivial phenomena in the data. We can easily modify the combinatorial algorithm

described above to find for each node in the bipartite graph the k heaviest maximal

subgraphs containing it. This, as well as other heuristics (see below) will produce

a large set of locally optimal biclusters. To facilitate downstream analysis, it is

important to select from this large repertoire a non-redundant set of biclusters.

To formalize the notion of redundancy among biclusters, we revisit the definition

of the SAMBA subgraph score L(H). The definition used the log likelihood ratio

of a uniform probability dense random subgraph model (a bicluster model) over a

degree preserving random graph model. We can score a set of biclusters in a similar

fashion, applying the log likelihood ratio to all of the edges covered by the biclusters.

In other words, we assume that all edges (or non edges) that are covered by at least

one bicluster are originating from a bicluster model and compare this model to the

background as before. The structural constraint we used when searching for a single

bicluster (nodes form for a submatrix), is relaxed so that we can detect unions of

submatrices. Given a set of biclusters H1 = (U1, V1, A1), . . . , Hn = (Us, Vs, As)), we

define A′′ = ∪iAi and A′′ = ∪iAi where Ai is as before, Ai = (Ui× Vi) \Ai. The log

likelihood ratio for a set of biclusters is written as:

log L(H1, . . . , Hs) =
∑

(u,v)∈A′′

log
pc

pu,v

+
∑

(u,v)∈A′′

log
1− pc

1− pu,v

(3.14)

The above definition tries to quantify how well a set of biclusters models the

bipartite graph. To find a non redundant set of biclusters we wish to maximizes

the L score while using a reasonable number of biclusters. This is formalized by

introducing a cost cost(Hi) to each bicluster and maximizing:

log L(H1, . . . , Hs)−
∑

i

cost(Hi) (3.15)

Higher biclusters costs will result in smaller number of biclusters in the optimal

solution (and lower redundancy). For example, two biclusters that share a common

heavy subgraph, but have low or negative contribution in their difference will not be

reported together. We shall provide a probabilistic interpretation to the biclusters’

costs below.

The bicluster set optimization problem is defined given a bipartite graph G and
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a set of candidate biclusters Hi with their costs. The goal is to maximize the total

cost as defined above. The problem is NP hard as can be seen by a trivial reduction

from set cover. We can heuristically generate a solution using a greedy algorithm:

we repeatedly select the highest scoring bicluster and update the scores of all others

given the edges already covered by at least one bicluster. We can continue with

local improvements (adding or removing biclusters) as long as we can improve the

total score.

We shall next introduce an alternative representation of the model just defined

which allows for a probabilistic interpretation of the bicluster set optimization prob-

lem. We use a random variable εe for each edge in the graph and a random variable

βb for each candidate bicluster. According to our background model, each edge

appears independently with probability pu,v. If we add to the model a bicluster

βb, we change the distribution of edges that belong to it. To describe the relations

between biclusters and edges variables, we construct a Bayesian network [102] by

connecting bicluster variables to their respective edges, i.e. setting βb of the bicluster

b = (Ub, Vb, Ab) as the parent of all edges variables εu,v where u ∈ Ub and v ∈ Vb. The

conditional probability distribution of an edge variable given its associated bicluster

variables is defined as a noisy ’OR’ function:

Pr(εu,v|βb1 , . . . , βbd
) =


pc : εu,v = 1 and βb1 = 1 ∨ βb2 = 1 . . . ∨ βbd

= 1

1− pc : εu,v = 0 and βb1 = 1 ∨ βb2 = 1 . . . ∨ βbd
= 1

pu,v : εu,v = 1 and βb1 = 0 ∧ βb2 = 0 . . . ∧ βbd
= 0

1− pu,v : εu,v = 0 and βb1 = 0 ∧ βb2 = 0 . . . ∧ βbd
= 0

We complete the definition by introducing prior probabilities for the β variables

Pr(βb = 1) = 1/(1 + ecost(b)). We now interpret the SAMBA bipartite graph as

an observation on edge variables - assigning to each edge variable a value of 0 or 1.

The bicluster set optimization problem we defined above is now analogous to finding

the MAP (maximum a-posteriori) configuration of the β variables in the Bayesian

network over biclusters and edges:

Claim 3.7.1 The bicluster set optimization problem is equivalent to MAP inference

in the Bayesian network built over edges and bicluster variables.

Proof: Each assignment β of Boolean values to the β variables gives rise to a

subset of biclusters. Given a SAMBA graph (interpreted as an assignment on the
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edge variables) the likelihood of this assignment can be written as

log Pr(β|G) =∑
βb=1 log(1/(1 + ecost(b))) +

∑
βb=0 log(ecost(b)/(1 + ecost(b))) +∑

Paεu,v 6=0∧εu,v=1
log pc +∑

Paεu,v 6=0∧εu,v=0
log (1− pc) +∑

Paεu,v =0∧εu,v=1
log pu,v +∑

Paεu,v =0∧εu,v=0
log (1− pu,v)

Where the Pa notation represents the assignment of parent β variables. By sub-

tracting from the likelihood the expression −∑b log(1 + ecost(b)) +
∑

εu,v=1 log pu,v +∑
εu,v=0 log 1− pu,v (which is constant once we fix the observed graph G) we obtain

the original definition of a bicluster set score. Finding the MAP assignment is thus

equivalent to finding the highest scoring bicluster set.

The probabilistic representation allows interpretation of the bicluster costs as

prior probabilities and naturally suggests the conditional marginal probabilities

Pr(βb = 1|βb′ , G) as ways to quantify the notion of redundancy (is bicluster b sig-

nificant given that we assume bicluster b′?). The MAP inference problem however,

remains a hard optimization problem and we must resort to heuristic solutions.

3.8 SAMBA heuristic

Using the above techniques, the SAMBA practical implementation works as follows:

• Form the bipartite graph and calculate vertex pair weights by estimating the

background edge probabilities in the degree preserving random graph model

as described above.

• In practice, when processing thousands of experiments from many different

sources, some of the properties may be similar due to errors in the construc-

tion of the compendium. Dependencies between properties are also present in

the graph when generating several properties from the same experiments (see

next chapter). We reduce the effect of such dependencies by computing the

correlation between each pair of properties and searching for an independent
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set in the graph of properties in which edges connect properties whose corre-

lation is higher than a threshold. We find an independent set using a greedy

algorithm with a short local search to improve the results. The subsequent

step is performed on the subgraph induced by the reduced node set.

• Apply the hashing technique of the algorithm in Figure 3.9 to find the heaviest

bicliques in the graph. In fact, we look for the k best bicliques intersecting

every given condition or gene. This can be done efficiently using a standard

heap data structure. Since our graph does not have bounded degrees, we

ignore genes with degree exceeding some threshold D, and hash for each gene

only subsets of its neighbors of size ranging from N1 to N2.

• For each of the bicluster seeds in the heap, perform a hill climbing procedure by

iteratively applying the best modification to the bicluster (addition or deletion

of a single vertex) so as to maximize the total weight. In this phase we use

again the entire graph.

• Use the set of locally optimal biclusters to construct an instance of the bicluster

set optimization problem and solve it using greedy local search as described in

the previous section. Report the optimal set of biclusters as the final solution.

The SAMBA C++ implementation was optimized for handling large datasets.

For example, using a standard PC (PIII 3.0GHz) it can process a graph of more

than 15,000 properties and 6000 genes in less than an hour. SAMBA is also part of

the Expander suite [120] distribution and is available for both Linux and Windows.

3.9 Approximating the bicluster p-value

In this section we shall develop an alternative formulation for computing the statisti-

cal significance of a bicluster. The method computes a “p-value” for a given bicluster

B, i.e., the probability of finding at random a bicluster with at least the weight of

B. We will use this method for validation, so that the algorithmic aspects of com-

puting it would not be discussed. Let H = (U ′, V ′, A′) be a subgraph. Suppose at

first that U ′ is fixed, and we wish to compute the probability of observing H, given

that its weight is maximum among all subgraphs over the same set of conditions

U ′. To this end, we note that H is obtained by taking into V ′ all vertices v ∈ V
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whose weights w({v}, U ′) are positive. Let fU ′ : V → R be a function defined as

fU ′(v) = max{0, w({v}, U ′)}. For each v ∈ V we can view fU ′(v) as a random vari-

able. The weight of H is just w(H) =
∑

v∈V fU ′(v), a sum of independent random

variables. These variables can be shown to satisfy the requirements of Liapunov’s

generalization of the Central Limit Theorem (cf. [29]), implying that when |V | is

sufficiently large, the weight of H is approximately normally distributed. Hence, we

can compute the expectation and variance of w(H) and derive a p-value p(H) for

observing a subgraph with such weight.

We next have to accommodate for the fact that the subset U ′ is optimized by the

algorithm. For that, we apply Bonferroni’s rule and compute an upper bound on

the p-value: p∗(H) = p(H)
∑d(r+1)de

i=1

(
m
i

)
, since we are trying all subsets of U of size

at most d(r + 1)de, where r is the maximum weight ratio in the graph. Henceforth

we call log p∗(H) the significance value of H.

Figure 3.10 presents our analysis of the empirical behavior of the likelihood and

significance scores, supporting the use of likelihood ratios as reliable figures of merrits

that are easy to compute. large datasets.
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Figure 3.10: Comparing likelihood ratio to approximated p-values. X-axis -

significance value. Y-axis - likelihood score. A set of biclusters generated using real

yeast data (red) exhibit quadratic dependency between the likelihood and p-value.

A set of biclusters generated using randomized data (green) is clearly limited in both

its p-values and likelihood scores.
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Chapter 4

Functional modules

In this chapter we apply the algorithms we described above to analyze a large com-

pendium of yeast data. Using biclustering, we shall reveal groups of genes that

form functional modules in the yeast genome. We will then show how functional

modules can be exploited to A) improve our understanding of the function of in-

dividual genes, B) construct models for the transcriptional regulation of modules

and C) identify organizational principles affecting the system as a whole. Given

our set of modules, we shall then develop an integrative methodology for analyzing

genome-wide datasets in the context of the existing compendium and exemplify how

this methodology provides rich and informative basis for exploring transcriptional

regulation.

Most of the results presented in this chapter were published in [133, 136]. Biolog-

ical experiments were performed by Prof. Martin Kupiec’s lab at the Department for

Biotechnology and Molecular Biology, Tel-Aviv university. Parts of the visualization

tools for SAMBA were programmed with Israel Steinfeld.

4.1 A yeast data compendium

We have chosen to analyze the modular organization of the yeast S. cerevisiae, being

one of the best characterized model systems and the species on which many of the

novel experimental techniques are being developed. We have built a compendium

of yeast functional data including profiles from 52 gene expression studies, 5 tran-

scription factor location studies, 3 synthetic lethality studies and data on protein

63
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interactions from the GRID database. Overall, our dataset consists of 1760 different

genomewide experiments, the complete list of (hyper linked) references for all data

sources is available on the web (www.cs.tau.ac.il/∼rshamir/qubic/)1

Our algorithmic framework, as described in the previous chapter, transforms

all sources of information into properties which are analyzed in the context of one

weighted bipartite graph. We used several types of data sources: gene expression

profiles, TF location profiles, growth sensitivity profiles and protein interaction data.

We transformed the experimental measurements into probabilistic properties as fol-

lows:

• cDNA gene expression data (e.g., [123]). First, we rank-normalized the

data of each condition. We then generated from each experiment 3 proper-

ties (”high”, ”medium or stronger”, ”low or stronger”) for up-regulation and

3 properties for down-regulation. Each property is defined by a translation

function converting the physical measurement (log expression fold-change) to

a probability of having the property. The translation functions we used are

the piecewise linear functions shown in Figure 4.1.

• Affymetrix gene expression data (e.g., [18]). For each study we selected a

reference condition and transformed all data to log the ratio of each condition

vs. the reference condition. We then treated the data as for cDNA arrays.

• TF location data (e.g. [59]). We generated three properties (”strong bind-

ing”, ”medium or stronger binding”, ”low or stronger binding”) for each ChIP

profile. The p-values generated by the error model of the original studies

were ranked normalized and transformed to properties probabilities using the

translation function shown in Figure 4.1.

• Growth phenotypes of mutant libraries(e.g. [54]). We ranked normalize each

condition profile and generated two properties (’high sensitivity’, ’medium

sensitivity’) using the translation functions described in Figure 4.1.

• Protein interaction. We used interaction data generated by several technolo-

gies (two-hybrid and TAP tagging for physical interactions, synthetic lethality

1Some of the results reported below were generated using an earlier version of the compendium,
including data from only 30 gene expression, TF location and protein interaction studies.
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screens for phenotypic interactions). For each protein and each type of tech-

nology we have generated one property (”interacting with protein p in exper-

iment X”). We omitted properties that could be associated with less than 15

gene products and used hard discretization (property probability equals 1 if

interaction was detected and 0 otherwise).

We applied biclustering to the combined heterogeneous data set and derived a

set of 1248 statistically significant modules. Significance was validated using ran-

domized control tests (see Figure 4.2). Recall that each module consists of a set of

genes and a set of properties, such that the genes have significant and correlated

values over the set of properties. For example, a bicluster may be defined by a set of

genes that are (1) co-expressed in several conditions, (2) are targeted by the same

transcription factors, and (3) their protein products are likely to interact with a cer-

tain protein. To understand the biology behind specific modules we automatically

associated them with known processes and regulatory mechanisms. We assigned

modules to biological processes using functional enrichment tests based on the SGD

GO annotation (see Appendix A). We also searched for known and novel enriched

cis-elements in the promoters of the genes in each module and manually annotated

the discovered motifs (see Appendix B). When discussing modules, we use the mod-

ule number, the primary biological process associated with it (when available) and

the module’s number of genes and properties. For example, module #524 (RNA

processing, 76x211). A single biological process may be represented by several mod-

ules of varying sizes and specificities, but under the assumptions described in the

previous chapter, the algorithm guarantees that no two modules are similar.

4.2 Synergism between different sources of data

We wished to test how much synergism exists among the experimental data from dif-

ferent studies and to what extent the SAMBA framework exploits such synergism.

The distribution of module dimensions (Figure 4.3B) indicates that the compre-

hensive compendium gives rise to specific modules, with 10-50 genes supported by

20-100 conditions. The distribution of the number of studies contributing proper-

ties to each module (Figure 4.3C) demonstrates a high level of synergism in the

multi-study data compiled. 86% of the modules used data from more than one

study and 68% used data from three studies or more, showing that indeed, infor-
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Figure 4.1: Translating measurments to property probabilities. We used piecewise
linear functions to transform ranked normalized values (from gene expression, ChIP and
growth rate experiments) into probabilities of having properties. The six functions plotted
above correspond to six properties for different levels of up or down regulation in gene
expression. For ChIP we used only the three functions corresponding to ”repression”
(so that genes with small ChIP p-values were assigned with the property). For growth
sensitivity we used only the functions ”strong induction” and ”medium induction” and
applied them to the sensitivity scores reported in the original studies [54].



4.2. SYNERGISM BETWEEN DIFFERENT SOURCES OF DATA 67

Figure 4.2: Likelihood of true and random modules. We applied SAMBA to real and
shuffled datasets and plotted the distribution of minus log likelihood scores of modules (Y
axis) as a function of the size of the module gene sets (X axis). Shuffled datasets preserved
the same degree distribution of the resulting SAMBA graph. For each size, we computed
the distribution of the scores of modules of that size, and plotted the k − th percentiles
(k = 90%, 80% and 50% for true modules, 95%, 90% and 50% for modules in randomized
data). The score distribution was computed on the largest 300 modules not exceeding
that size. This was repeated for the original data and for randomly shuffled data. It is
evident that the scores of a large fraction of the modules detected in the original data
exceed the maximal random score. The graph also shows that modules with 40-70 genes
carry particularly high information content; indeed, many biological processes in yeast
consist of several dozens of interacting proteins or co-regulated genes.
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mation was extracted from multiple datasets and is not biased by one predominant

source. A global representation of the compendium and its dissection into modules

is obtained by clustering the mean module expression across all experimental con-

ditions. Since the same gene may be part of several modules, such clustering allows

the ”unfolding” of the function of pleiotropic genes and differs substantially from a

standard gene-by-condition clustering. The resulting representation (Figure 4.3D)

shows how two opposite environmental stress responses (ESRs [45]) dominate the

entire compendium. This response to stress is so strong and widespread, that other,

condition-specific regulatory programs are hard to detect without the combination

of multiple studies and the application of sensitive algorithms. As we shall see below,

separating the general stress response into specific modules and comparing their ac-

tivities in different conditions provides further insights into the complex regulation

of this biological process.

4.3 Biclusters can integrate heterogeneous data

While integration of data from several studies is clearly very effective in extending

the scope of the analysis, integration of data from different technologies, relating

to completely different biological mechanisms and processes is a much bigger chal-

lenge. In general, true integration of such data requires a model based approach

(as in, e.g., [48, 47]). Nevertheless, as we shall exemplify below, in several cases the

high level approach we are taking in this chapter can successfully exploit hetero-

geneous data and discover functional modules that are otherwise indistinguishable

from other genes. The most straightforward kind of integration is between gene

expression and TF location data. For example, the methionine biosynthesis mod-

ule (Figure 4.4) groups together a highly specific set of genes related to methionine

metabolism. The module is supported by diverse expression profiles measured in

many knockout strains and stress conditions. Mere expression profiles, however, do

not suffice to identify that module, and the binding profiles of Met4, Met32 and

Cbf1 are needed to separate it from other amino acid biosynthesis modules. The

integration of protein interaction data into the module identification process pro-

vides additional information on relations that are not observed at the transcription

level alone. It also allows the interpretation of modules in terms of complexes and

cascades. For example, a module related to the proteosome complex (Figure 4.5)
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Figure 4.3: Integrating yeast functional data. A) Bicluster analysis. The SAMBA biclustering algorithm

analyzes an integrated dataset to discover an extensive collection of modules. Each module consists of a set of genes

and is supported by a set of functional properties. B) Modules’ dimensions. The distribution of the number of genes

and properties in each module indicates that modules are characterized by specific sets of genes (10-50) and a large

number of different experiments (20-100) C) Synergism among studies. The graph shows the distribution of the

number of studies contributing to each module. 86% of the modules use data from more than one study. D) The

Module-Condition view. To obtain a global view of the behavior of our modules across all conditions, we clustered

the module mean values across all conditions. Rows represent modules and columns represent conditions, with

numbered colored bars indicating the study reporting each condition (the full references of the studies are available

on the website). We show low means in green and high means in red. The global view reveals that the massive

repression and induction of genes in stressful conditions dominates the compendium. Using integrative analysis we

can dissect this response into components and study their specific regulation. The numbers on the right refer to

modules addressed in this chapter.

is based on the combination of dense protein interaction data with expression data

indicating up-regulation in many stress conditions. Protein interactions help in sep-

arating this module from other stress responsive genes, and also shed light on the

cellular mechanisms forming it.

4.4 Understanding module’s regulation

Defined by data from many different experiments, modules can characterize highly

specific biological phenomena. Module #126 (Figure 4.6A) consists of 11 genes

related to cytokinesis and daughter-specific expression. Of these genes, DSE1-4,

SCW11, CTS1, EGT2, AMN1 and BUD9 are known to be localized to the daughter

cell during late mitosis, and are associated with cell wall separation and exit from

mitosis [26]. SUN4 is also known to be involved in cell septation [143] and PRY3

encodes a cell-wall specific protein of unknown function. The association of these

genes into a single module was based on gene expression data from 261 conditions

taken from 30 different studies, and the transcription factor location profiles of the

cell cycle regulators Ace2, Swi5 and Fkh2. Indeed, Ace2 and Swi5 are known to have

positive and negative effects, respectively, on the transcription of some of the genes in

this module [33]. Fkh2 is known to regulate genes required for the G2/M transition

and has been implicated (together with Ndd1 and Mcm1) in the regulation of the

SWI5 and ACE2 genes [122], but its direct association to cytokinesis genes, to the

best of our knowledge, was not noted before. This possible role for Fkh2 is supported

by evidence for its involvement in the regulation of pseudohyphal growth [155] and

by its synthetic lethality with CLA4 [57], a gene involved in polarization and budding



4.4. UNDERSTANDING MODULE’S REGULATION 71

Figure 4.4: Methionine biosynthesis module. The integration of data from diverse
sources enables the detection of modules in fine granularity. In this example, a group of
genes related to methionine biosynthesis is is characterized by 8 binding profiles from 3
TFs (Cbf1, Met4, Met32) that are part of the Cbf complex (yellow columns) with many
expression profiles measured in a wide variety of genetic and environmental stimulations
(red/green). Note the uncharacterized gene, YNL276C, that was assigned to the module
based on the combination of properties, although its expression profiles are only moder-
ately correlated with the module’s profile. Interestingly, a ynl276c mutant strain was also
shown to be moderately sensitive to growth on minimal media.

which functions in a cascade regulating exit from mitosis [65]. The association of

Fkh2 with cytokinesis genes may reflect the need to inhibit the function of these

genes until mitosis is completed or during transition to pseudohyphal growth.

The wealth of functional information used to construct the module enabled us

to explore the behavior of this important transcriptional program across many dif-

ferent experimental conditions. In particular, we analyzed the behavior of the mod-

ule genes in experiments perturbing different transcriptional co-activators and co-

repressors [126, 4, 49] to try and refine our understanding of the mechanisms of

transcriptional regulation used in timing the mitotic events. The module exhibits a

statistically significant response in several such experiments (Figure 4.6B). Strong

induction is observed upon perturbation of the SWI/SNF chromatin remodeling

complex (T-test, P < 0.0001 in minimal media, p < 0.001 in rich media, for both

mutants). Strong repression was observed in an experiment that inactivated the
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Figure 4.5: Incorporating protein interactions and expression. A module related
to the proteosome complex is detectable by a combination of expression data and protein
interactions. The interactions help in isolating this module, and also suggets the role of
the observed cases of module induction/repression.

RSC factor Rsc3 (P < 0.0004), but no effect was detected when the RSC factor

Rsc30 was inactivated (P < 0.89). In addition, a strain knocked out for NC2 ac-

tivity (BUR6 deletion) exhibited strong increase in the expression of this module

(P < 0.0002). Interestingly, the behavior of module #126 in the SWI/SNF, RSC and

NC2 experiments is unique among all the modules derived by SAMBA (Table 4.1)

suggesting that the particular combination of co-factors uncovered may define the

particular regulatory behavior of this module. Taken together, our analysis suggests

that the module is controlled by an extended regulatory program that includes the
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well-known Ace2/Swi5 and Fkh2 transcription factors, and a unique combination of

co-activators and co-repressors (Figure 4.6C). The cytokinesis module thus exem-

plifies the power of our methodology to unravel the complex regulation of a group

of coordinated genes.

A

B C

Figure 4.6: Regulation of a transcriptional module: cytokinesis module. A)
Module #126 is defined by data from 30 different studies and contains a highly coherent
set of 11 genes, all but two of which are known to be involved in late mitosis and in cell
septation. B) Regulation by co-activators and co-repressors. We plot the average module
expression (red) and the background genome-wide mean and standard deviation for a
random set containing 11 genes (green) under conditions in which the Swi/Snf complex
are not expressed in minimal and rich media [126], in conditions blocking components
of the RSC complex [4] and in a strain lacking Bur6, a component of the NC2 co-factor
[49]. There is significant induction in all Swi/Snf conditions and in the NC2 experiment,
indicating a possible negative role for these co-factors in regulating the module. There is
also a significant repression in the rsc3 strain (but not in the rsc30 strain), indicating that
RSC may have a positive role in the regulation of the module. C) Extended regulatory
model for the cytokinseis module. See text for details.
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Gene Process snf1 swi2 rsc3 rsc30 bur6
minimal minimal
media media

DSE1 Mod #126 2.44 2.24 -2.42 -0.22 0.79
DSE3 Mod #126 0.88 0.78 -1.88 0.38 1.11
DSE2 Mod #126 1.83 1.60 -2.75 0.41 1.33
AMN1 Mod #126 1.42 1.13 -1.97 0.01 0.99
EGT2 Mod #126 1.75 1.47 -1.18 -0.80 1.01
CTS1 Mod #126 1.37 0.99 -1.55 -1.00 1.58
BUD9 Mod #126 0.85 0.73 -0.92 0.05 1.24
SCW11 Mod #126 2.22 1.80 -2.74 -0.26 0.84
YRO2 cell wall 3.72 3.86 -2.04 -0.74 1.23
WSC4 cell wall 2.53 2.42 -1.57 0.48 1.58
YGP1 cell wall 1.96 2.03 -1.30 -0.32 1.01
ENO1 glycolysis 0.96 1.11 -1.55 -0.62 0.78
TDH1 glycolysis 1.69 1.54 -2.74 -0.59 2.13
PGM2 glycogen 0.86 0.92 -2.16 -0.61 4.35
GSY2 glycogen 1.69 1.19 -1.55 -0.75 2.21
GCV1 glycogen 1.26 1.57 -2.14 0.76 1.70
ADE17 purines 0.77 0.84 -1.35 0.52 1.51
YER067W unknown 1.29 1.31 -1.66 -0.61 2.83
YOL106W unknown 1.63 1.54 -1.79 -0.54 1.43

Table 4.1: cytokinesis cofactor profile. The table shows all genes that are A) induced
(log2(fold change) > 0.7) in swi2, snf1 (in minimal media) and bur6 (YPD) B) repressed
(log2(fold change) < −0.9) in rsc3 and C) not significantly responding (−1 < log2(fold
change) < 1) in rsc30. Only 18 genes satisfy this criterion, eight of which belong to module
#126 and additional three are cell wall associated. Out of the remaining eight genes, six
are structural enzymes in glycogen or related metabolism and two are uncharacterized.

4.5 Annotating unchracterized genes

As we have shown above, bicluster analysis may identify very specific functional

modules using combination of data from many studies and technologies. One possi-

ble use of such modules is to perform ”guilt by association” and predict the function

of genes. Uncharacterized genes in modules showing enrichment (p < 0.01 and over
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40% of the annotated genes) for genes known to be related to one biological process

are likely to participate in the same process. We tested the specificity of this ap-

proach by performing a five-way cross validation: We repeatedly applied SAMBA

to datasets in which one fifth of the known gene annotations were hidden and tested

the specificity of predicting the function of these genes. Overall we obtained 40%

to 100% specificity for a variety of classes including mating (GO:0007322, 65%),

amino acid metabolism (GO:0006520, 40%), sporulation (GO:0030435, 55%), glu-

cose metabolism (GO:0006006, 100%), lipid metabolism (GO:0006629, 92%) and

more (Figure 4.7). Average specificity ranged between 58% and 78%, depending

on the strictness threshold used for annotation. In many cases, the classification

errors result from ambiguous annotation terms or too general categories. This may

represent missing information rather than misclassification. For example, stress

response and cell cycle are very general categories that intersect many other pro-

cesses. Stress-annotated genes are often also related to carbohydrate metabolism

and transport, so our classification for such genes may reflect an additional func-

tion and not an error. In total, our scheme generated putative functional anno-

tations for 874 uncharacterized yeast genes. The complete list is available on the

web (www.cs.tau.ac.il/∼rshamir/qubic). We note that although SAMBA was not

designed specifically for performing functional annotation, and although our anno-

tation scheme was very simple once the biclusters are given, we perform well relative

to other approaches [153, 140]. This further supports the importance of integrating

data sources and analyzing them together.

As an additional test of our annotation accuracy we analyzed, in collaboration

with Martin Kupiec’s lab, five yeast strains deleted for ORFs predicted by SAMBA

to be involved in mating. Quantitative mating experiments showed that four of the

strains (YDR429c, YBR223c/TDP1, YNL106c/INP52 and YOL106w) exhibited

reduced mating ability, compared to the wild type, confirming the involvement of

these genes in the mating process. A fifth ORF, YFL027c/GYP8, exhibited mating

ability indistinguishable from that of the wild type control.

4.6 The global organization of the yeast system

The combined analysis of gene expression and TF binding location was used be-

fore to study the transcriptional network of specific processes (e.g., cell cycle [122,
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Figure 4.7: Cross validation of functional annotation. 874 uncharacterized genes
were assigned with putative annotations based on functionally enriched SAMBA modules.
We tested the specificity of the annotation process using five-way cross validation, repeat-
edly hiding one fifth of the annotations and trying to recover them. Each sub-figure plots
the distribution of true functions in genes annotated by SAMBA with a specific function.
Sub-figures that show partition into several sizeable functions are often a result of over-
lapping biological processes. For example: sporulation and meiosis, transport and amino
acid metabolism, ribosomal structural proteins and ribosome biogenesis.

87, 6]). SAMBA enables the simultaneous analysis of the entire network and the

exploration of the relations among TF binding profiles, biological processes and

DNA regulatory motifs in a single map (Figure 4.8; for an interactive version see

www.cs.tau.ac.il/∼rshamir/biobic). To form the transcriptional network map we

generated nodes for all GO processes that were significantly over represented in at

least one module. We also added nodes for TFs having ChIP profiles. We associated

a TF node with a process node whenever there existed a module annotated with the
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process (p < 0.01) which has the TF binding profile as one of its properties.

By analyzing the transcriptional network map, we could characterize the regula-

tion of several processes, mostly those that are active in the same condition that were

used in the ChIP experiments. Cell cycle modules, as previously observed [122, 87],

are associated with a combination of known TFs acting in a cyclic fashion. Amino

acid metabolism modules are associated with combinations of the master regulator

Gcn4 and module specific regulators (Cbf1-Met4-Met31 for methionine and sulfur,

Arg80 and Arg81 for arginine). Respiration modules are regulated by Hap2-5, and

protein biosynthesis genes are associated with Rap1, Fhl1 and others.

Systems that are activated during stress or developmental processes have weaker

support of binding profiles [87]. For example, sporulation modules are associated

with Sum1 but not with other important meiotic regulators (Ndt80, Ume6) [107].

Modules that are repressed by the environmental stress response are either well

explained by Rap1 binding (the ribosomal protein module), or are highly enriched

by the RRPE and PAC binding sites [9] without a matching ChIP profile.

We next turned to explore the global organization of the yeast system as revealed

by the association of different modules into one functional network. To this end we

constructed and analyzed two graphs. The gene graph contains as nodes all yeast

genes, with an edge between two genes whenever they are both contained in some

module. The module graph (Figure 4.9) contains as nodes all the modules, with

an edge between two modules whenever their gene set intersection is larger than a

33% threshold. Since the gene graph is induced by gene modules (cliques in the

graph), it is expected to have a modular structure. The module graph, on the other

hand, could not be pre-assumed to exhibit modularity. To systematically analyze

the topology of the two graphs, we computed their clustering coefficients [110]. The

clustering coefficient of a node is the fraction of the pairs of its neighbors that

have edges between them. High average clustering coefficient is an indication of

modularity. For example, a tree graph has value zero, and a complete graph has

value 1. As expected, the average cluster coefficient of the gene graph is a high 0.473.

Interestingly, the module graph also has a very high average clustering coefficient of

0.49. We have sampled 1000 random graphs with the same degree distribution and

computed the mean coefficient 0.0398 and standard deviation 0.008, supporting this

graph is significantly more modular than expected by chance.

We note that it is very difficult to completely rule out algorithmic artifacts that
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Figure 4.8: Functional modules and their transcription factors in the yeast sys-
tem. Modules with significant functional enrichment for a particular process (p < 0.01)
are grouped and plotted as an oval with the process name. TFs with binding profiles
associated with any of these modules are marked as green circles and connected to the as-
sociated process. Modules may be enriched in more than one process and thus contribute
to several regions in the map. The thickness of the connecting lines is inversely propor-
tional to the p-value of the functional enrichment in the associated module. The map was
automatically generated by SAMBA using no prior biological knowledge. Key abbrevia-
tions: Met: Metabolism, AA: Amino Acid, Tran: Transport. An interactive version of
this figure is available on our website.

generate a modular graph just due to a systematic errors (e.g., in redundancy elim-

ination). Nevertheless, we can analyze biologically characterized cases in which

known larger modules are divided into smaller, more specialized modules, and com-

pare what is known to the module map topology. Indeed, in some cases (mostly

in metabolism) modules are themselves organized into super-modules (Figure 4.9).

The overall organization in those cases is thus hierarchical: Genes are grouped into

modules that are clustered into super-modules. Note that genes can participate in

more than one module, and modules can be part of more than one super-module.

Given this hierarchical architecture, it is important to characterize the genes that

connect different super-modules and tie together different processes. To this end,

we recalculated the average cluster coefficient in the gene graph over sets of genes

annotated with each GO entry. A class with low average coefficient contains genes

that are more likely to bridge different super-modules. Indeed, the classes with

lowest coefficients are related to signaling (e.g., G-protein coupled receptor with

value 0.27 and MAP kinase with 0.29) and transport (e.g., iron transporter with

value 0.21 and phospholipid transport with 0.25). Closer examination of genes with

low cluster coefficient may help in identifying genes that have multiple functions

and improve our understanding of the way in which different biological processes

are organized together.
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Figure 4.9: Organization of the yeast molecular network. The module graph was
generated by connecting two modules (small ovals) if over one third of the genes in one (the
smaller) are present in the other. We used our module annotations to manually classify
regions in the graph (shown as colored large ovals). In several regions, the graph reflects
a hierarchical organization that arranges modules in clusters. Some of the clusters (e.g.,
protein biosynthesis) are organized in more than two hierarchical levels: large modules are
composed of several smaller modules, giving a star-like topology.
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4.7 Module based analysis of the yeast galactose

system

Using the data compendium, and the comprehensive collection of functional mod-

ules derived from it by SAMBA, we shall next show how to analyze a single high

throughput dataset given the entire compendium. The yeast galactose utilization

pathway is among the best-characterized biological systems. In a systematic set of

experiments, Ideker et al. [68] measured the transcriptional response of yeast strains

knocked out for a set of enzymes and regulators involved in galactose metabolism.

The data were then clustered and analyzed in light of the known Gal4-Gal80-Gal3

regulatory circuit. We used the galactose dataset as a test case for an integrated

methodology: instead of clustering yeast genes given their expression in the galactose

data set only, we screened the complete set of modules, which are based on almost

2000 experiments, for modules that are responsive in at least one of the conditions

analyzed by Ideker et al.. Since the data defining the modules are relevant to many

different aspects of the yeast regulatory network, we were able to interpret galactose-

related conditions from a broad perspective. We depict the effect of galactose-related

conditions on several central modules in Figure 4.10 (interactive visualization of all

modules is available on the web (www.cs.tau.ac.il/∼rshamir/qubic). As expected,

the strongest effects are well known and were easily observed using clustering of

the galactose dataset alone. For example, module #389 (Galactose metabolism,

20x160), the classical Gal4 regulon, consists mainly of enzymes required for the

utilization of galactose (GAL1,2,7,10) and is strongly repressed when galactose is

lacking from the medium or when knockouts in the GAL pathway compromise its

yield. The response of other modules, however, is less predictable and reveals novel

regulatory relations between different processes.

A first surprising effect revealed by our analysis is the repression of module

#524 (RNA processing, 76x211) in gal4 strains, in both galactose-containing (Paired

T-test, gal4+galactose/wt+galactose P < 10−21) and galactose-free media (gal4-

galactose/wt-galactose P < 10−22). The repression of this module in mutants lack-

ing structural enzymes is much weaker, and so is the response of the wild type

strain to lack of galactose (gal4+galactose /wt-galactose,P < 10−10). Moreover, in

three strains knocked out for GAL80 (the Gal4 inhibitor), grown in medium lacking

galactose, we observe induction of module #524 (gal80/wt P < 10−17, gal80gal2/wt
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Figure 4.10: Revisiting the galactose system. Response of selected modules to
disruptions in the GAL system. We plot the mean and standard deviation of the expression
of several key modules that our algorithm associated with conditions from the galactose
dataset [68]. For each module, we plot the behavior in four galactose related mutants
and two double mutants grown with (red) and without (green) galactose. Module #389
(galactose metabolism), is strongly repressed when galactose is lacking or when the GAL
pathway yield is compromised. Modules #232 (ribosomal proteins) and #524 (RNA
processing) are repressed when growth is slower. Interestingly, module #524 is particularly
repressed when GAL4 is knocked-out, and is induced when GAL80 is knocked-out and
galactose is not available (right-most bars). Modules #536 (Respiration) and #1215
gluconeogenesis) are induced when galactose is not available or not processed. Here again,
the GAL80 mutants exhibit altered behavior (module #536 is repressed). Modules #503
(Nucleotides), #686 (Amino acids) and #967 (Methionine) are repressed when growth is
slower.
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P < 10−25, gal80gal4/wt P < 10−20). This result includes the double mutant

gal4gal80, implying that the effect is Gal4-independent. The induction of module

#524 is particularly interesting given the slow growth and transcriptional repression

of module #232 (ribosomal proteins, 145x269) in the gal80 strains. Across the entire

compendium, the expression of modules #524 and #232 is tightly coupled, as both

are strongly repressed under general stress conditions [45]. The correlation between

the mean expressions of the two modules across 1500 gene expression conditions is

indeed very high (Pearson=0.73, Figure 4.11). The marked difference between the

expression of the two modules in the gal80 and gal4 experiments (Figure 4.12) rep-

resents a regulatory discrepancy whose mechanistic causes are still unclear. Module

#524 is regulated by the two highly enriched cis-elements PAC (GCGATGAG) and

RRPE (GAAAATTTT), but it is still not known which factors bind these sites.

Module #232 is regulated by Rap1 and possibly by additional factors [95]. Some

interaction between these factors, their co-activators/repressors and the Gal4/Gal80

circuit may account for the mutants altered response.

Figure 4.11: Correlation of module #232 (Ribosomal Proteins) and module #524 (RNA
processing). The graph shows the mean expression of the two modules across more than
1500 gene expression profiles.

Mutations in genes of the galactose pathway and changes in the carbon source

have an extensive effect on the yeast metabolism as a whole. The transcriptional reg-

ulation of nonfermentative metabolism involves a complex network of transcriptional

regulators, co-activators and co-repressors (reviewed in [117]). Many of the modules

that were associated with the galactose dataset are linked to different metabolic

activities. Using data from different studies we can dissect the general metabolic
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Figure 4.12: Disrupted coupling of two stress-related modules. The plot shows the
mean expression of module #232 (Ribosomal proteins) and module #524 (RNA process-
ing) in the galactose pathway experiments, together with the linear regression line of the
dependency between the mean expression levels of the two modules over the entire com-
pendium (Methods). Broken lines indicate 1 STD. The gal80 mutants exhibit increased
expression, while the gal4 mutants (excluding gal80gal4) exhibit decreased expression rela-
tive to the compendium trend, supporting a possible involvement of the gal80-gal4 circuit
in the regulation of the modules.

response into basic building blocks, thereby shedding light on the regulatory interac-

tions that gave rise to it (compare Figure 4.10). Overall, we observe two types of be-

havior. Modules #1215 (Gluconeogenesis, 54x86) and #536 (Respiration, 44x156)

are generally induced in conditions in which the yield of the galactose pathway

is compromised. Modules #503 (Purine metabolism, 13x198), #686 (Amino acid

biosynthesis, 18x150) and #967 (Methionine metabolism, 15x156) are repressed un-

der these conditions. This general trend fits well with our understanding of the

yeast regulatory program. Yeast cells respond to the lack of galactose-based energy

by increasing the activity of the respiratory pathway and adapt to slower growth by

reducing biomass production. Given these general, well-documented trends, the be-

havior of the gal80 strains again remains unexplained. Module #536 (respiration),

for example, is repressed in gal80, gal2gal80 and gal4gal80 strains in the absence of

galactose (Figure 4.13), although there is no yield from the galactose pathway under

these conditions. The repression cannot be explained by constitutive expression of
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Figure 4.13: Hap4-independent repression of module #536 in gal80 strains.
We plot the mean expression of module #536 (respiration) and the expression of the
gene coding for its direct regulator Hap4 in selected conditions. When galactose is not
available, module #536 is induced via increased expression of HAP4. Similar effect is
observed in several other conditions, for example in the gal4 strain. In gal80 strains
we observe repression (or lack of induction) of the module, although the HAP4 gene is
expressed at high levels.

Figure 4.14: Correlation between expression of the HAP4 gene and of the Hap4- regulon.
The graph shows the expression of the HAP4 gene and the mean expression of module
#536 across more than 1500 gene expression profiles.
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GAL genes, given that expression is reduced also in the gal4gal80 double mutant.

Module #536 is regulated by the Hap2-5 complex, and HAP4 is itself part of the

module [117]. There is a strong correlation between Hap4 expression and expression

of module #536 across the entire compendium (Pearson = 0.65, Figure 4.14). Nev-

ertheless, in the three conditions in which GAL80 is inactivated, Hap4 is strongly

induced while its module exhibits significant repression, suggesting the involvement

of other factors in the repression of the respiratory genes. Other modules show

different deviant responses to the gal80 knockout. For example, a Met4/31 module

(#967) is induced in the gal80 strain, in contrast to its general repression in other

conditions with reduced energy flux. Given the involvement of Gal80 in the re-

pression of SAGA recruitment to Gal4 binding sites [17] and the similar acetylation

patterns found in the Gal4-, Hap4- and Met4- activation sites [28], we hypothesize

that in media without galactose addition, Gal80 is capable of affecting the recruit-

ment of co-activators or co-repressors for factors other than Gal4. Overall, our

results provide an explanation of the slow growth phenotype of the gal80 strain,

suggesting that deletion of this central regulator has far reaching implications, most

notably breaking of the coupling between ribosomal proteins and RNA processing

modules, and the blocking of Hap4-dependent activation of the respiration module.

4.8 Module based analysis of the yeast response

to osmotic shock

In response to hyper-osmotic stress, yeast cells activate a combination of signaling

pathways and transcriptional programs (reviewed in [66]. We applied our analysis

framework to a set of 129 expression profiles obtained in experiments that tested

the response of S. cerevisiae to varying levels of osmotic stress in strains knocked

out for Hog1, Ssk1 and Ste11, three important proteins in the HOG pathway [101].

The response to high levels of osmotic stress is widespread and involves at least one

fifth of the yeast genome. We found that this massive response can be dissected

into finer transcriptional programs that govern specific modules (Figure 4.15). For

example, modules #232 (ribosomal proteins, 145x269) and #524 (RNA process-

ing, 76x211) are strongly repressed in 0.5M KCl. In the wild type repression peaks

at 20 minutes and is alleviated in a HOG1-dependent manner after 40 minutes.

This joint effect was noted before based on standard clustering analysis. Using the
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Figure 4.15: Revisiting the response to hyper-osmotic stress. Outline of the
hyper osmotic stress signaling pathway is shown on the upper left part of the figure. Two
Hog-dependent (Ssk1, Ste11) and one Hog-independent (Msn2/4) pathways mediate the
hyper osmotic stress signal. We plot the average expression of several modules that were
associated with osmotic stress conditions, in several strains knocked-out for key players
in the HOG pathway. The graphs show modules’ mean expression time courses after
treatment in 0.5M KCl. In general, modules #232 (Ribosomal proteins) and #524 (RNA
processing), #686 (Amino Acids), #503 (purines) and #985 (ergosterol) are repressed as
part of the environmental stress response, with peak response observed at 20 minutes and
re-establishment of normal transcription after 40-60 minutes. Modules #536 (respiration)
and #1215 (gluconeogenesis) are induced with similar kinetics. Specific modules show
particular deviation from these two general trends as discussed in the text.
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compendium, we uncover a refined regulatory program. In module #524, the hog1

and ssk1 strains exhibit reduced repression in the presence of 0.5 M KCl (Paired

T-test, hog1/wt P < 10−20, ssk1/wt P < 10−14, Figure 4.8a), but no reduction is

observed for ste11 (ste11/wt P < 0.14). Derepression by a hog1/ssk1 knockout is

also noticeable in a medium containing 0.125M KCl, (hog1/wt - P < 10−28, ssk1/wt,

P < 10−20, Figure 4.8b), and the effect is almost identical for the two knockouts

(hog1/ssk1 P < 0.002). Our analysis thus suggests that in medium/low osmotic

shock, an Ssk1/Hog1-transmitted signal represses the RNA processing module activ-

ity, whereas during high osmotic shock, a Hog1- independent pathway is repressing

the module additively to the Ssk1/Hog1-mediated effect (Figure 4.16).

Figure 4.16: Multiple signals additively regulate module #524. We plot the mean
expression of module #524 and its standard deviations in four strains (wt, hog1, ste11,
ssk1) under two levels of hyper-osmotic shock (0.5M KCl, 0.125M KCl). There is marked
difference between the ssk1 and hog1 strains and the wt, ste11 strains, suggesting the
existence of two regulatory mechanisms. An osmotic stress-specific, Ssk1/Hog1-mediated
signal represses the module in both low and high levels of osmotic shock. In high osmotic
shock a second, Hog1-independent signal (which is probably related to the general environ-
mental stress response) is active in parallel to the Hog1 signal and contributes additively
to the repression of the module.

Similar decomposition of the general stress response into components is possible
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for the set of stress-induced genes. Two of the transcriptional modules that are ac-

tivated in general stress conditions (and specifically in the 0.5M KCl experiments)

are module #536 (Respiration, regulated by Hap4) and module #1215 (Gluconeo-

genesis). Interestingly, while the response of both modules is remarkably similar

in the early phases of the osmoregulation program (0-40 minutes), only the Respi-

ration module shows a strong secondary induction after 60 minutes (Figure 4.18.

Examination of the expression of the HAP4 gene, which is generally coupled to the

module’s expression level (Figure 4.14), also reveals an increase after 60 minutes,

supporting the hypothesis that module #536 undergoes two consecutive inductions,

one via some common mechanism (which also affects module #1215) and a second,

which occurs later and is facilitated by the increased levels in HAP4 expression. This

second wave of regulation is the adaptive response of yeast cells that have recovered

from the osmotic shock, in preparation for further growth.

Analysis of the behavior of module #985 (Ergosterol biosynthesis, 18x69) pro-

vides another example for the power of the integrative approach. A clear Hog1-

dependent repression is observed. This result is in sharp contrast to the general ESR

pattern, in which only derepression is Hog1 dependent. Previous work has shown

that ergosterol-related genes respond strongly to osmotic shock [66, 112, 113]. Our

analysis suggests that their repression directly depends on Hog1 through an unknown

signaling pathway, that does not involve Ssk1 or Ste11.

4.9 A new paradigm for analyzing genomewide

experiments

After almost a decade of microarray-based experiments, a revision of the paradigm

for their computational analysis is appropriate. In the previous two sections, we

introduced a method for the simultaneous analysis of new high throughput datasets

given a large compendium of diverse functional data. We have shown that the inte-

grative approach greatly extends our understanding of the regulation of biological

processes and allows the decomposition of seemingly global responses into charac-

terized regulatory programs of specific biological modules. The methodology we

envision (Figure 4.19) relies on a growing compendium of public datasets and on ro-

bust algorithms for revealing biological correlations present within these data. Given

the data of a new study, its integration with the large body of prior data allows us
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to recast the new experiments in terms of a) the behavior of already characterized

modules and b) new modules that are discovered for the first time upon the addition

of the new data. Using this approach, backed by appropriate community effort for

modules nomenclature (e.g., based on Gene Ontologies), the results of high through-

put experiments will be easier to assess and share, as it will be clear what in the

new experiments is new and what confirms previously published evidence.



4.9. ANALYZING GENOMEWIDE EXPERIMENTS 91

Figure 4.17: Hog1-Ssk1 dependent repression of module #524. We plot the
change in expression of all the genes in module #524 (RNA processing) in the wt strain
(X axis) and in the hog1, ssk1 and ste11 strains (Y axis), 20 minutes after treatment in
KCl. The strains that disrupt the osmotic stress-specific signaling pathway (ssk1, hog1)
exhibit reduced repression in both high (a) and low (b) KCl doses. The ste11 strain
behaves similarly to the wildtype.
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Figure 4.18: A two-phase regulatory program for Module #536. We show the
time courses of the mean expression of module #536 (respiration) and its main regulator
gene HAP4, when treated in 0.5M KCl in the wt strain. The module exhibits weak and
poorly correlated induction, which is Hap4 independent, during the primary phase of the
osmoregulation program (0-40 minutes). A second phase is observed at 60-180 minutes,
where a tightly correlated induction is facilitated by increase in HAP4 expression.
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Figure 4.19: A paradigm for analyzing functional genomic experiments. Accord-
ing to the current prevalent paradigm (top part), novel data are analyzed in isolation,
typically using clustering and expert manual analysis of specific clusters. We suggest
an approach (lower part) in which the community maintains the current publicly avail-
able datasets and the set of biological modules revealed by them. Modules may cover
all aspects of biological processes and their regulation, as revealed, for example, by our
biclustering algorithm. Using this resource, novel datasets can be represented in terms of
the behavior of known and novel modules, providing an objective and transparent method
for understanding, communicating and reusing high throughput data.



94 CHAPTER 4. FUNCTIONAL MODULES



Chapter 5

Modeling transcriptional programs

We have seen above how to use functional genomics datasets to dissect large bi-

ological systems into simpler building blocks (functional modules). Our methods,

however, could not offer a systematic way for describing the regulatory processes

driving each functional module or the mechanisms differentiating them from each

other. In fact, our approach to biclustering was deliberately high level, allowing in-

tegration of as much data as possible but losing much of the data’s semantics. In this

chapter we propose a mechanistic, multi-level model for transcriptional programs.

We will introduce the model and study computational problems related to its auto-

mated learning from data. We will exemplify how to use the algorithms for learning

transcriptional regulation by analyzing again the yeast galactose pathway, this time

using a more detailed and systematic approach than the one used in Chapter 4.

5.1 Introduction

A transcription program can be described by the following 3-level model (compare

Figure 5.1). First, certain transcription factors attain specific concentrations in

specific post translational conformations. Second, as a result of sequence signals

in the target gene’s promoter and of the concentrations of certain TFs, the DNA

in the proximity of that gene undergoes chromatin modifications and TF binding.

We say that TFBSs in the gene’s promoter become active in such cases. Third,

the spatial organization of the active TFBSs and the interactions among bound

TFs determine the rate of RNA polymerase recruitment and regulate the rate of

95
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transcription initiation.

Figure 5.1: The three components of a transcription program. Left: TFs are
transcriptionally and post translationally regulated to attain specific doses. Center: target
gene promoters contain signals that enhance chromatin modifications and bind specific
TFs. Right: the relative positions of TFs in their binding sites and their conformational
properties induce a combinatorial regulation scheme for each gene.

The real computational challenge of building a consistent and predictive model

for transcription is shaped by the nature of each of these three layers, but many of

the current methods focus on one level and ignore the others. There are methods

that try to model the combinatorial regulation of genes or of clusters of genes (e.g.,

[105, 118]) or methods that try to infer the activity of TFs [16], but true integrative

modeling is still in its infancy.

In this chapter we develop a model for transcriptional programs that combines

these aspects of transcription regulation. The model is constructed by representing

a) TF concentrations (or doses), b) TF-gene affinities and binding site activities, and

c) gene expression. The model ties the three levels together by two types of functions.

It defines functions that determine binding site activity given TF doses and TF-gene

affinities (these are called dose-affinity-response functions, and are specific for each

TF). The model also defines functions that determine the rate of transcription given

the activities of TFBSs in the gene promoter (these are called combinatorial logic

schemes). In each biological condition, we infer (or use measured) concentrations of
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Figure 5.2: Transcription program models. Common gene network models (left)
study a set of genes and the interactions among them. Genes and their proteins are
indistinguishable and mRNA expression rates are identified with the active protein doses.
Here we use a more detailed model that employs a bipartite topology (right). The model
represents transcription factors and their concentrations, promoter binding sites and their
affinities (edges in the graph; affinity is schematically indicated by the edge thickness)
and the regulated genes and their expression rate. The structure of our model allows for
integration of diverse experimental data types (expression, TF binding location) and for
clear, mechanistic interpretation of the results.

active TFs. We use the dose-affinity-response functions to compute the activity of

putative TFBSs at each promoter. We then use the site activities as the inputs to

the combinatorial logic schemes and predict the rate of gene expression.

The chapter is organized as follows. We start by formally defining the model. We

then describe algorithms for polynomial learning of dose-affinity-response functions

given full data. We describe heuristics for inferring TF doses next and then show how

to learn the entire model. We then discuss experiments with yeast data, building a

model for the regulation of galactose related genes and showing how the integrative

approach coherently combines TFs, affinities and expression into one model.

The Results in this chapter were published in [131, 132].



98 CHAPTER 5. MODELING TRANSCRIPTIONAL PROGRAMS

5.2 A model for transcription programs

We first define a model for transcriptional programs. The model is a generalization

of simple genetic networks [90, 42]. In such networks, one studies a set of genes

using a directed graph. The topology encodes the regulatory relations among genes,

namely, the set S of genes with arcs into g are the regulators of g. g is also called the

regulatee of S. For each regulatee one defines a function (logic) which determines the

rate of transcription of the regulatee given the levels of its regulators. Basic network

models make two critical assumptions on the regulatory system: a) the regulators

states can be represented using the expression rate of the genes encoding them, and

b) the relation between a potential regulator and a regulatee is a binary attribute

(either there is an arc or there is none). The model we shall define and use below

relaxes both assumptions in an attempt to build a model which can follow more

faithfully our knowledge on transcriptional switches.

5.2.1 The topology

The transcription program model involves entities of three types. Active TFs rep-

resent transcription factors in their catalytically active from. TF binding sites rep-

resent loci at genes promoters where TFs bind. mRNAs represent the rate of tran-

scription for genes in the system - the end product of the transcription program.

We tie the three types of entities using a simple bipartite graph.

Definition 5.2.1 A transcription program topology is a bipartite graph M =

(T, V, S) consisting of a set T of active TFs, a set V of genes and a set S of binding

sites (or edges) connecting TFs and genes. We use the term regulators set of

g ∈ V , or N(g) to denote the set of edges adjacent to g, or the set of TFs adjacent

to g, depending on the context.

Note that we shall use V to denote both the genes and their mRNAs. For

convenience, we shall use the term gene throughout for both. In each biological

condition, we assume nodes and edges in M attain certain values. Active TFs are

assigned doses (or concentrations). A binding site has a certain level of activity

(or reaction) between the corresponding TF and gene’s promoter. Genes have a

rate of transcription (or of expression). A transcription program model is built

over the topology by defining the way gene expression levels are determined once
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A B

Figure 5.3: Transcription program models. A: The 3-layered mechanistic model of
transcription regulation. The transcription factor proteins (top) attain their active states
in particular doses di. Sites in the promoter region of the target gene g (si, center) allow
binding of the TFs. Each site’s activity is determined by the TF dose and the affinity αi

of the TF and the gene, via the dose-affinity-response function δj . Transcription rate eg

is then determined by these site activities via the regulation logic fg. The site affinity is a
constant value for each particular TF-gene pair. The doses - and hence the activities - vary
depending on the experimental conditions. B: A typical DAR function. This function has
three activity levels, denoted 0, 1, and 2. The activity level is determined as a function of
the TF dose and the site’s affinity. Note that the function is monotone increasing in each
coordinate. DAR functions are specific to each TF, and are applied to all the TF-gene
sites that include it.

their binding sites activity levels are known, and by specifying how site levels are

determined once their associated TFs levels are given.

5.2.2 Scoring a topology

We first focus on the dependency between sites and genes. We assume that both site

activities and transcription rates attain values in a discrete alphabet C = {1 . . . C}
and that their regulatory logic is a collection of unconstrained combinatorial func-

tions. Specifically, the regulation of g is assumed to be via a regulation function

fg : C|N(g)| → C which determines the transcription rate of g as a function of the
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activity levels of its regulator sites. The concrete functions will not play a major

role here, but their nature is implicitly used in the model. In reality, the levels of

sites are hidden variables that will be predicted by the model from TF doses. We

shall temporarily assume that sites levels, in addition to gene expression levels, are

measured across a set of experimental conditions and given as input. We will show

how to score the fit between these input data and the model topology. We will then

turn to our main problem, which is the optimization of the regulator functions.

Assume we are given a topology M and a set E of experimental conditions,

where each condition u ∈ U has a vector of gene expression levels eu. eu
g ∈ C is

the expression level of gene g in condition u and E = {eu|u ∈ U}. Suppose we

also have the set A of (measured or predicted) activity levels ru
s of each site s ∈ S

under each condition u ∈ U . A topology score φ(M, E, A) will be a real valued

function using M and E to evaluate a site activity matrix A. Put differently, the

score should assess the dependencies among site levels and gene expression levels

given the topology M . φ is closely related to commonly used gene network scoring

schemes, but with altered roles for topology and regulators values: Most network

schemes score the topology, while in our setting we score the regulator activity values

given a fixed topology. We call a score decomposable if it can be expressed as a

sum of separate contributions from individual genes, each depending only on the

value of the gene and its regulators sites, i.e., φ(M, E, A) =
∑

v∈V φ(rN(v), ev). In

what follows we assume that the score is decomposable.

Denote by nv
r the number of conditions u ∈ U in which v’s regulator sites N(v)

attain the specific combination of activity values r (r is a vector of size |N(g)|).
Denote by nv,j

r the number of conditions meeting the previous criterion which also

have eu
v = j. Also denote by n the number of conditions |U | and by nv,j the number

of times eu
v equals j. We next show how several known network evaluation schemes

can be used as topology scores.

• Consistency [130]. This simply sums over all genes the maximal possible num-

ber of correct model predictions:
∑

v∈V

∑
r maxj nv,j

r .

• Mutual Information [69, 104]:
∑

v∈V I(rN(v), ev) where I(rN(v), ev) = −∑j
nv,j

n
log nv,j

n
+∑

r(
nv

r

n
log(nv

r

n
)−∑j

nv,j
r

n
log(nv,j

r

n
)).

• Bayesian scores [42]: We can interpret the models probabilistically and at-

tempt at inferring a joint distribution of the sites and genes. In this case,
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standard Bayesian scores (e.g., BDe) can be naturally applied.

• funcFit, or the mutual information p-value score [46]. The score equals the

χ2 value of the standard mutual information I(rN(v), ev). The χ2 statistic is

used with (C − 1)(R − 1) degrees of freedom, where R equals the number of

r vectors for which ng
r > 0.

5.2.3 The Dose-Affinity-Response model

We now turn to describe the model that ties up TFs and sites. The model computes

site activities given TF doses, using additional experimental information on the

nature of relations between TFs and promoter binding sites. We denote by αs the

affinity of the site interaction represented by the edge s (recall that a binding site

in our abstraction is a pair (TF,gene) so the affinity of a site actually refers to the

affinity of the TF to the gene’s promoter). Affinities are unbounded non negative

integers and represent the strength of interaction (or biochemical reaction constant)

between the DNA and the TF. Note that if several binding sites are present in the

promoter of a certain gene, we will indicate this by increased affinity and not by

several edges. We next define the function that computes site activities from TF

doses and site affinities.

Definition 5.2.2 A Dose-Affinity-Response (DAR) function is a non-decreasing

function δ : Z+×Z+ → C computing for each TF dose and site affinity a site activ-

ity level. A DAR model is a triplet (M, α, ∆) where M is a transcription program

topology, α is a set of site affinities αs for each s ∈ S, and ∆ is a set of DAR

functions δt for each t ∈ T .

Hence, if TF t has a DAR function δt, and s = (t, g) has affinity αs, then the

activity of site s is determined by the dose d of t via δt(d, αs). Note that the affinity

is a constant value per site, while the site’s activity will vary (monotonically) with

t’s dose. The monotonicity of DAR functions means that for a fixed dose, response

increases with affinity, and for a fixed affinity, response increases with dose. Suppose

we are given a set of conditions U , where for each u ∈ U we have a vector of gene

expressions levels eu and a vector of TF doses du. We can compute site activities ru

using the DAR functions by simple substitution:

ru
s = δts(d

u
ts , αs). (5.1)
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Any topological score can be applied to the computed activities and the given

gene expression to evaluate the fit of a DAR model to the experiments. We can now

define our main model optimization problem w.r.t a topology score φ:

Definition 5.2.3 The DAR optimization problem. We are given a transcrip-

tion program topology M , site affinities αs, and a set of experiments U = (eu
v , d

u
t ).

The goal is to find a set of DAR functions, giving rise to site activities A = {ru
s |u ∈

U, s ∈ S}, such that the topology score φ(M, E, A) is optimized.

A transcription program model is a DAR model along with concrete regu-

lation functions for all regulatees. Given a DAR model and a set of experiments,

it is easy to complete it to a transcription program model using majority voting:

For the regulatee v and the combination r of activity levels of the sites N(v), fv(r)

is the most often observed expression rate of v when the inputs combination is r.

This is the standard way by which generative gene network models are inferred once

their topology is determined [104]. Note that the resulting functions will often be

incomplete, as not all regulators combinations will be available.

5.2.4 Characteristics of the model

The DAR models we have introduced above serve several purposes and overcome

some of the shortcomings of existing network models. Most importantly, we replace

the ”black box” used before to express the regulatory relations among genes with

a detailed mechanistic model that incorporates new direct experimental data (e.g.,

TF-gene affinities) when available. The price we have to pay is the addition of hidden

variables that increase the model’s degrees of freedom and may lead to over-fitting.

We control this effect by adding structure to the models, namely, constraints on the

topology and restricted classes of DAR functions. A main structural constraint is

the utilization of monotone DAR functions only. True active TFs tend to behave

monotonically, while artifacts are unlikely to manifest such consistent pattern. We

have observed this phenomenon in several cases, as shown in Figure 5.4. The inte-

gration of gene expression and TF affinities via the dose-affinity-response function

thus models current biological understanding.
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Figure 5.4: Effects of affinity on activity. X axis - different experimental conditions
from [68]. Y axis - mean expression log fold change. Left: gcn4 bounded genes show
variable response as a function of binding strength. We sorted all yeast genes by gcn4
binding affinity from [87]. We collected the first, second and third groups of 30 genes and
plotted the mean expression of each group over the different conditions. The magnitude of
repression in gcn4 bounded genes depends on gcn4 affinity. The analysis, although ignoring
important effects such as combinatorial regulation, strongly supports the hypothesis of
monotonic relation between affinity and response in gcn4 regulated genes. Furthermore,
we detect multiple levels of response, underlying the importance of using more than two
response types. Right: mig1 bounded genes are undetectable in [87] but exhibit similar
behavior as seen by consensus based testing of mean expression. We plotted the average
expression of yeast genes with the mig1 consensus TGGGGTA and its minor perturbation
TGGGGAA. Both sets manifest significant induction of expression, compared to the global
mean, but the exact mig1 consensus is responding stronger.
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Most of the existing network learning algorithms [42, 130, 69, 104] employ dis-

crete models. Such models are simpler computationally and enable easier statistical

interpretation than in continuous (e.g., kinetic) models. High throughput experi-

ments are inherently noisy, and thus they can rarely be translated to exact phys-

ical units. The experiments usually provide a normalized quantity which is only

indicative of the actual physical quantity sought. For example, gene expression ar-

rays results cannot be represented in absolute units of mRNA molecules per cell.

Discrete models pre-process experimental information to transform a set of incom-

parable quantities into a small discrete set of semantically meaningful values in a

small alphabet. The discretization process is known to be problematic in several

respects: arbitrary thresholds must be set in advance and critical information may

be lost. The model we describe here is a compromise between discrete and continu-

ous models: Gene expression is discretized as before, but TF doses and affinities are

used as ranked integers. The assumption is that although we cannot interpret most

experimental results in exact physical units, we can quite safely compare them. We

thus assume the DAR functions take ranked integers as inputs and output a discrete

binding site activity. Using this approach, we avoid the need to arbitrarily determine

a TF affinity threshold that would simplistically divide the genes into two sets of

”regulated” and ”non regulated” ones. The representation of TF doses as ordered

values enables their estimation using statistical tests for hypotheses like ”a TF dose

in condition X is larger than its dose in condition Y”. A similar approach to gene

expression may be exploited in future work.

5.3 Model optimization

The monotonicity we impose on DAR functions is not only a biologically meaningful

and powerful constraint, but also can be turned into an algorithmic advantage and

enable efficient algorithms for the solution of the DAR optimization problem. We

will deal with the case in which we optimize the DAR of one TF while fixing all

others. We represent the dose-affinity plain as a matrix with a column for each

affinity value and a row for each dose value (see Figure 5.5). Our algorithm will

represent single DAR optimization as a longest path problem in an appropriate grid

graph built over that matrix. The idea, in the simple case where site activities are

binary, is that since DARs are assumed to be monotone, we only need to determine
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one dose threshold for each affinity level (or vise versa) and ensure those thresholds

are non-increasing with affinity. The threshold decision at each affinity level can

be scored separately (since the topology score is decomposable), and the total score

for a DAR function will equal the sum of contributions from each affinity level. We

next define the algorithm formally.

Figure 5.5: Single DAR optimization for binary activity levels. The grid graph
represents the two dimensional dose-affinity plain of the DAR function. Arcs are directed
such that paths may not go upward or to the left. A path in the graph is equivalent to a
monotone DAR function, where nodes on or above the path have activity level 1 (black)
and nodes below have activity 0 (white). Arc costs are set so that the longest path through
the graph corresponds to an optimal DAR function.

Proposition 5.3.1 The optimization of a single DAR function with k site activity

levels can be done in O(vuk(log(vuk)+k))+O(vukΦ) time, where v is the number of

genes, u is the number of conditions, and Φ is the time complexity of φ computation.

In particular, the problem is polynomial for fixed k.

Proof: Assume first that k = 2. We have a partial DAR model (M, α, ∆′) where

∆′ defines all DAR functions except δt which is the target of the optimization. Let

g1 . . . gn be the genes regulated by t via sites s1 . . . sn respectively. We assume the in-

dices are sorted by increasing site affinities a1 = αs1 < . . . < an = αsn . Let u1 . . . u|U |

be the set of experiments sorted by increasing doses of t, d1
t < . . . < d

|U |
t . For sim-

plicity, we assume that all values (ai, di) are distinct. We add an artificial condition

u|U |+1 and an artificial gene gn+1. We build a grid digraph on the pairs (uj, gi) and

add horizontal arcs ((uj, gi), (uj, gi+1)) and vertical arcs ((uj, gi), (uj−1, gi)). The

horizontal arc from (uj, gi) to (uj, gi+1) represents the determination of δt in the i’th
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affinity level δ(∗, ai). The function is set to 0 for doses strictly smaller than dj and

1 otherwise. Given this dose threshold, we can determine the activity vector for the

site si and may calculate φ(rN(gi), egi
). This score will be used as the horizontal arc

cost. We set the cost of vertical arcs to 0. It is now clear that directed paths in the

matrix induce monotone DAR functions (and that different DARs induce distinct

paths). Moreover, for each function, the score of the model with that DAR function

equals the sum of arc costs along the path that induces it. We find the optimal

DAR function by solving a longest path problem in the directed acyclic graph.

To handle k > 2 activity levels we shall use a similar construction in higher

dimension. A monotone DAR function with k activity levels divides each column

in the dose-affinity plain into k segments (some possibly empty). We uniquely

represent this sub-division by a non decreasing sequence h1 ≤ . . . ≤ hk−1 where δt

attains level i in the dose range [hi, hi+1) (we set h0 = u1, hk = u|U |+1). To fully

define a monotone DAR function, we must determine for each affinity level aj a sub-

division hj
1 . . . hj

k−1 such that hj
i ≥ hj′

i whenever j < j′. We thus define a digraph

on pairs (h, ai) where h is any sub-division and ai an affinity level. We add arcs

(((h1, . . . , hk−1), al), ((h
′
1, . . . , h

′
k−1, al)) whenever hi = h′i for all i except one index

j for which hj = h′j + 1, and we set their costs to 0. These arcs are analogous to

the vertical arcs in the binary case. We also add arcs ((h, ai), (h, ai+1)) and set their

costs to φ(rN(gi), egi
) using the DAR function δ(∗, ai) induced by the subdivision h

to determine site activities rN(gi). We can again optimize the DAR function using

the longest path algorithm. For the implementation we may use a Fibonacci heap

based algorithm [41] which requires O(M +NlogN) time on a graph with N vertices

and M arcs. In our case N = O(vuk), M = O(kvuk). We also have to precompute

all arc costs by applying φ once for each node in O(NΦ). The total time complexity

follows.

Note that in practice the number of activity levels is small (we used k = 3 in the

analysis in Section 5.5), so the exponential dependence of the complexity on k is not

a practical obstacle. However, optimizing several DAR functions simultaneously is

NP-hard, as we now show.

Proposition 5.3.2 DAR optimization is NP-hard when optimizing simultaneously

an arbitrary number of TFs, if consistency is used as the topology score. This is

true even if the set of regulators of each gene is of size 3.
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Proof: We will show that the DAR problem (in decision version) is NP complete

using a reduction from 3SAT. We are given an instance I of 3SAT with variables

x1, . . . xn and clauses c1, . . . cm. Let ci = (zi1 ∨ zi2 ∨ zi3), and let the variables

that correspond to these literals be xi1, xi2 and xi3, respectively. We construct a

topology with a TF for each variable and a gene for each clause. For each i, we add

sites between ci and xik for k = 1, 2, 3. All sites have the same affinity. We now

construct the set of experiments. We use three dose levels, denoted by 0, 1
2
, and 1

and binary expression levels 0 and 1. For each clause ci we add eight experiments

in which all doses are set to 0 except for the doses of xi1, xi2 and xi3. Those are set

so that each of the eight possible 0/1 dose combinations is covered once. We have

8m such experiments in total, with the property that for each truth assignment of

each clause, there exists at least one experiment in which the doses of the clause

variables coincide with their truth assignment values. The gene expression rates at

the 8m experiments are defined using the clauses, as follows: For each of the eight

experiments of each ci, the expression rate of each gene cj is set to the truth value of

clause cj when substituting the dose values (0 as false, 1 as true) of xj1, xj2 and xj3

in that experiment into cj. Precisely, let u be an experiment with doses du
1 , . . . , d

u
n.

For clause, set eu
i = 1 iff (du

i1 ∨ du
i2 ∨ du

i3) = TRUE. Finally, add one experiment,

denoted by u′, in which all doses equal 1
2

and all expression rates equal 1. The total

number of experiments is thus 8m + 1. The required bound for the total score is

(8m + 1)n. Note that this score requires perfect consistency. This concludes our

reduction which is evidently polynomial. We claim that the instance i is satisfiable

iff the DAR optimization problem has solution with consistency score (8m + 1)n.

Assume first I is satisfiable with values xi = wi. Define a DAR solution in which

δxi
(0) = 0, δxi

(1) = 1 and δxi
(1

2
) = wi for all i. Clearly all functions are monotone.

We claim that the resulting consistency score is optimal. To see this we should

prove that for each two experiments and each gene, identical site activities imply

identical expression rates. This is true by construction for all pairs that do not

include u′, since their expression rates were determined by the clause in a consistent

way. For a pair of experiments that includes u′, we must ensure that for each gene,

all experiments with site activities of input TFs that equals δxi
(1

2
) have expression

level 1 (since in u′ all expression rates were set to 1). The latter is true since δxi
(1

2
)

were set to a satisfying truth assignment wi.

To show the other direction, assume we have a solution for the DAR problem

with φ = (8m + 1)n. In particular, this solution specifies values δxi
(1

2
) for all xis.
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We shall use these values as our truth assignment. To see why this assignment

satisfies all clauses, observe that the experiment u′ gives rise for each gene to a

specific site activity combination which is also present in some other experiment

u′′ (since we have covered, for each gene, all possible dose combinations). Since the

expression value of all genes in u′ is 1 and expression values in other experiments are

determined by the clauses, consistency is possible only if δxi
(1

2
) satisfies all clauses.

This conclude the proof.

The proof above would apply to another topology score if the optimal DAR

solution in the reduction under that score is the same as for the consistency score.

This is indeed the case for the three other scores defined in the previous section,

and so the hardness result holds for those scores.

In practical settings, a heuristic to globally optimize a model is to repeatedly

apply the polynomial algorithm for single DAR optimization to one TF at a time.

We start with some arbitrary set of DAR functions and repeatedly select one TF,

reoptimize its DAR function and add it to the current set of functions. Since single

DAR optimization is solved to optimality, the new function obtained must have a

score that is equal or higher than that of the previous one. Hence, the whole process

is monotonically improving, and convergence to a local optimum is guaranteed. In

the biological analysis reported below, our implementation converges within seconds.

5.4 Estimating TF doses

The algorithms described in the previous section rely on the knowledge of the active

TF doses - the concentration of TFs in their catalytically active conformations. Since

detailed measurements on protein abundance and conformation are not available yet,

we must find a way to estimate TF doses. We do so by combining expression and

sequence data. Our working assumption (see, e.g., [16]) is that TFs have specific

DNA binding motifs, and that we can estimate the active TF doses by analyzing

the expression of genes with such motifs in their promoters. We show below how to

use this assumption to generate initial estimation of the TF doses. We also show

how to rectify initial bias in dose estimates, by reevaluating the doses with respect

to a given transcription program model, and, in later stages of the procedure, by

alternating between model optimization and dose optimization.
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In Section 5.4.1 we introduce an extension to motif models, and then show in

Section 5.4.2 how to assign an activity value and statistical significance to such

motifs. Section 5.4.3 describes an algorithm to screen and optimize active motifs

. Finally, Section 5.4.4 discusses the dose optimization problem, when a model is

given.

5.4.1 A location-dependent motif model

A position weight matrix (PWM) is a standard way for representing DNA motifs

(see appendix 2 or [36]). A PWM P is a vector of distributions over ACGT . We

denote by P (i, t) the probability of observing character t in position i of the motif.

In practice, many binding sites motifs tend to concentrate in particular regions

within the promoter. To model this phenomenon, we introduce a distribution of

locations for the motif: A localized PWM (LPWM) is a PWM with an additional

location distribution pl, where pl(j) is the probability of having the motif starting

at position j in the target promoter. The likelihood of an LPWM match with a

sequence s in location j is simply the product of profile probability and location

probability: Pr(P, s, j) = pl(j)
∏

0≤i≤l P (i, s[i + j]).

The matching likelihood of a string s and an LPWM P is ML(P, s) = maxj Pr(P, s, j).

For each gene, we extract its promoter by taking a fixed-length sequence preceding

the gene’s start codon. Typical promoter lengths for yeast are 500-1000 bases. The

matching likelihood of P with gene g, denoted ML(P, g) is ML(P, s) where s

is the gene’s promoter sequence. Denote the set of genes with matching likelihood

exceeding a threshold T by JP
T = {g ∈ V |ML(P, g) ≥ T}.

5.4.2 Estimating motif activity

The standard way of assessing the activity of a putative motif given a normalized

expression profile is to calculate the Z score of the mean expression taken over all

genes with the motif in their promoter [16, 21]. Here, we improve this strategy by a)

replacing the normalization procedure by calculation of log likelihood ratios using

the random graph models introduced in SAMBA (see Chapter 3) and b) assessing

the p-value of the log-likelihood ratio in order to improve the statistical significance

of obtained motif activities.
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For the sake of the discussion here one can view the SAMBA approach as a

method for replacing the raw value in the genes- by-conditions expression matrix by

new weights. The method uses a positive model and a null model. The former assigns

probabilities to sets of co-expressed genes (as manifest by a bicluster). The null

model, which corresponds to uncorrelated, random sets of genes, takes into account

the prevalence of each gene’s (and condition’s) expression. Thus, the presence of

a commonly-expressed gene in a set would be more probable under the null model

than that of a rarely expressed gene. The SAMBA weights are defined so that

the sum of weights of a set of genes S in a given condition, denoted W (S), is

−log(p+(S)/p0(S)), where p+(S) (resp., p0(S)) is the probability of observing S

under the positive (resp., null) model. Since the null model takes into account the

data properties in a detailed way, one gets a more sensitive evaluation than using

mean expression.

To further improve sensitivity, we use re-sampling of random gene sets to assess

the empirical distribution of W (S) for each condition and gene set S of size i. That

distribution is not normal, and we compute its mean µ(i) and maximal deviation

β(i). We define the activity score of a gene set J and a condition j as AS(J, j) =

|W (J) − µ(|J |)|/β(|J |). Finally, given an expression matrix on a set of conditions

I, and a motif P , the activity score for the motif P is:

AS(P ) = max
0≤T≤1

∑
i∈I

AS(JP
T , i) (5.2)

Given the threshold Th(P ) that maximized AS(P ), we can compute the activity

of P on each of the conditions i ∈ I as AS(P, i) = AS(JP
Th(P ), i).

5.4.3 Screening and optimization of motifs

We shall next present an algorithm for activity optimization of an LPWM. The

algorithm is an EM-like heuristic with alternating phases of PWM update and gene

set optimization. Similar motif refinement procedures were previously used, e.g.,

in multiple sequence alignment [3] and motif finding. We start from an initial

LPWM P0 (possibly random). The first phase computes the activity score of P0

and determines the threshold T0 for which
∑

i∈I AS(JP0
T0

, i) is optimal. For each gene

j ∈ JP0
T0

we calculate its score contribution as x0
j = AS(JP0

T0
) − AS(JP0

T0
\ j). In the

second phase we find for each gene j ∈ JP0
T0

with positive x0
j a position of P0 in the
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promoter sj that maximizes the matching likelihood, and use these positions as a

gap-less alignment from which we extract the profiles P1 for the next iteration. P1

is formed by weighted counting in which gene j has a weight x0
j , so higher activity

genes have larger effect on the new PWM. We continue iterating the two phases

until AS(Pk) does not improve. The algorithm is described in Figure 5.6.

AS-EM(P0, wc
ij, sj):

k = 0

while(AS(Pk) > AS(Pk−1))

calculate AS(Pk), extract optimal JPk
Tk

For each j ∈ JPk
Tk

calculate xj = AS(JPk
Tk

)− AS(JPk
Tk
\ j).

Let Pos = {j ∈ JPk
Tk
|xj > 0}

For each j ∈ Pos calculate oj = argmaxl<|sj |Pr(Pk, sj, l).

Let X =
∑

j∈Pos xj

Initialize Pk+1 with uniform prior

for l = 0 to Pk’s length and for each j ∈ JPk
Tk

Pk+1(l, sj(oj + l)) = Pk+1(l, sj(oj + l)) + xj/X

pk+1(oj) = pk+1(oj) + xj/X

smooth pk+1

next k

return Pk

Figure 5.6: LPWM optimization algorithm.

We use the AS-EM algorithm as a subroutine in a platform for discovery of

active motifs. We combine an exhaustive search for active k-mers and subsequent

optimization of the highest scoring seeds. The combinatorial search examines all

short DNA sequences with one possible gap, scans the entire set of promoters with

the motif, extracts a set of genes and scores them using the AS scheme. We use a

precomputed hash of short k-mers matches to speed up the procedure. The entire

workflow is as follows:

1. Generate the SAMBA weights; sample random gene sets; assess likelihood

distributions; sample random motif scores and determine score significance

thresholds (for single and multiple testing)
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2. Exhaustively screen all k-mers with a single gap of size ≤ l

3. Use AS-EM to optimize each gapped k-mer with AS value above the random

level

4. Cluster similar LPWMs and output a concise set of motifs

5.4.4 Refining transcription factor dose estimations

The initial estimation of TF doses using the expression of regulated genes may

be strongly biased by effects of combinatorial regulation. For example, whenever

TF A is positively regulating a set of genes and part of the set is also negatively

regulated by TF B, we shall assign lower activity to A in cases where B is in ac-

tion. We try to overcome such misleading initial values by tuning the TF activities

given a TP model. The TF dose optimization problem is defined given a DAR

model (M, α, ∆), input expression profiles E and a score φ. The goal is to find

TF doses du
t optimizing φ (recall that given the DARs δt and the doses du

t we can

calculate site activities r and apply the topological score φ). One can show that

this problem is NP-hard by a simple reduction from SAT. We can heuristically

approach it using hill climbing, optimizing the dose of one TF in one condition

at each step. The optimal value of du
t , fixing the rest of the parameters, is de-

rived by maximizing the combination of score contributions from all the model’s

genes: argmax
x∈{du′,u′ 6=u

t }
∑

v∈V φ(rN(v), ev), where the site activities r are defined as

usual 5.1.

By alternating between model optimization and dose optimization, we finally

converge to a locally optimal solution. Our empirical studies show that the rough

initial estimation of TF doses using motif activity scores generates a good starting

point for this iterative algorithm.

5.5 Results

Here we report on the application of the framework developed in this chapter to

analyze experimental data related to carbohydrate metabolism in yeast using 61

relevant expression profiles that were selected from [68, 45, 67, 92]. We applied

SAMBA to transform gene expression to log likelihood weights (using probability
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Figure 5.7: Different sources for TF affinities. We plot the mean expression of several
groups of genes in galactose related conditions from [68]. X axis: different conditions. Y
axis: Mean log expression ratio. The ChIP group consists of the 30 genes with strongest
binding to gcn4, according to location analysis [87]. The Transfac PWM group consists
of the 30 genes with highest matching likelihood of their promoter to Transfac PWM
M00038. The consensus group consists of all yeast genes with the exact motif TGACTCA
in their promoter. Since all groups manifest significant co-expression compared to the
global mean, all these sources of information may be used as affinities to some extent.
However the direct physical measurements outperform other methods.

Pc = 0.6 for the positive model, see Chapter 3). To assess p-values of weights we

randomized 10000 gene sets of each size from 1 to 2000 genes and calculated their

total weight. We used 500 bases upstream from the start codon as the promoters.

5.5.1 Comparing activity score and mean expression

To compare the performance of the activity score to the mean expression methods

we used the 32 yeast PWMs from Transfac [149] version 5.1. Following [70], the

mean-based score of a set of genes G ⊂ V was computed as follows: Each condition

in the expression matrix was normalized to mean 0 and standard deviation 1. Let

sG
c be the mean expression of genes in G on condition c. Let sG be the mean value

of sG
c over all conditions c ∈ C. The collection of conditions with significant mean is

then extracted as S = {c ∈ U ||sG
c −sG| ≥ θσ} where σ = 1√

|G|
and θ is a parameter.
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The mean score is finally defined as:

MeanScore(G) =
∑
c∈S

(|sG
c − sG|) (5.3)

For each PWM we ordered all yeast genes by the matching likelihood of their

promoter to the PWM. We selected an optimal threshold for maximal activity score

(Formula (5.2)). To determine significance, we used the maximum score obtained

over 5000 instances in which the genes’ promoters were randomly shuffled. The same

process (selecting an optimal threshold and sampling) was repeated with MeanScore.

As can be seen in Figure 5.9, both methods correctly identified the GAL4 and RAP1

sites as active, but only the activity score succeeded in identifying additional tran-

scription factors which are known to be functionally associated with carbohydrate

metabolism (MIG1, ADR1 and more).

5.5.2 Effect of motif localization on activity

We tested the utility of incorporating motif location distribution into the PWM

by re-analyzing TRANSFAC’s known PWMs on the same dataset using different

positioning windows. We tested the activity of each PWM restricted to windows of

100bp starting at -500 with steps of 50bp and ending at 0. Some of the motifs (but

not all) show higher activity in specific windows (Figure 5.8). Using LPWM can

improve the specificity of TF-gene association and refine our understanding of the

relation between DNA and TFs.

5.5.3 Discovery of active motifs in the galactose system

To infer a transcription program for the galactose system we first applied the active

motif discovery algorithm to the dataset of [68]. This is a subset of 23 conditions out

of the 61 analyzed above. We first repeated the screening with 32 TRANSFAC motifs

as in Section 5.5.1. On this dataset, only GAL4, GCN4, and MIG1 were detectable as

significantly active, in accordance with biological literature on the galactose pathway.

We then screened all 6-mers with one gap of size 0-12 bases and optimized all hits

with scores above the noise level. The active motifs are listed in Table 5.1. We accu-

rately rediscovered de-novo the known motifs GAL4, GCN4 and ADR1/MIG1. We

also discovered three additional motifs (CANCCCC, TT(9N)CCCC, CCG(5N)CCG)

which achieve scores above or equal to ADR1/MIG1.
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Figure 5.8: Effect of motif position on activity. Plots of activity as a function of
the range window. X axis: distance of the left endpoint of the 100-bases window from
promoter TSS. Y axis: AS score. The left figure shows the behavior of several known
motifs: RAP1 is strongly biased to -400 bases from the TSS, GAL4 to -350, GCN4 to
-200. In contrast, ADR1 is active in a broader range. The right figure shows the global and
localized score for PHO4. The peak of the local score at -300 bases exceeds the detection
level, while the global score is below it.

Figure 5.9: Comparing the activity score to mean expression. 32 yeast PWMs
from Transfac were scored against a combined carbohydrate data set. Left: Mean scores.
X axis: Mean score. Only RAP1, GAL4 and possibly GCN4 and CBF1 are detectable
above the noise level (vertical bold line). Right: Activity scores. X axis: Activity score.
Additional relevant active motifs (ADR1, MIG1, STRE, AP-1) are detected.

Figure 5.10 shows the activity profiles of all inferred motifs. We observe four

transcriptional sub-programs: a) GAL4 regulated genes are repressed in many of

the tested conditions, most dominantly when galactose is absent from the media or

when upstream regulators (GAL3) are manipulated. b) GCN4 repression is limited

to GAL4 active conditions, but seems to be independent of the level of galactose

(active in GAL3,4,7,10 knockouts, both when galactose is present or absent). This

may be explained by the fact that GCN4 regulates amino acid biosynthesis pathways
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that in part depend on the yield of the TCA cycle, which in turn may be dependent

on the galactose pathway. c) MIG1/ADR1,U1 and U3 are active together and may

represent a more general cellular response to stress. U1 and U3 have a common

sub-motif (CCCC) which also appears in MIG1 complement. When comparing the

gene sets associated with each of the three motifs, only the sets of U1 and U3 have

statistically significant intersection (30% of the genes). All three motifs may be

related to the STRE site (CCCCT-AGGGG), but the STRE motif is not active

itself. A particularly high activity of these motifs is observed in the gal1-gal10-

double mutant, in which GAL4 response is weak. Interestingly, this activity seems

to be a combination of the activity in the single mutants gal1- and gal10-. d) The

U2 motif contains a fragment of the GAL4 sequence, but its gene set does not

significantly intersect that of GAL4. Its activity does not manifest either galactose

dependent or galactose independent pattern.

Figure 5.10: Activity profiles of galactose-related motifs. Rows represent the six
binding site profiles that we detected. Columns represent different experimental conditions
from [68] and are labeled using the naming convention of that study.

5.5.4 A dose-activity response model for the galactose sys-

tem

We have used the six active motifs discovered above to build a model explaining the

gene expression of all the variable genes in the 23 conditions in the data set of [68].

We selected 310 genes with significant expression change in the data set (at least 3

conditions with over 2-fold change in expression). We assigned affinity levels based

on TF binding location data from [87] for GAL4 and GCN4. For the four other

motifs, including MIG1, we used the LPWM matching likelihood. (The location
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data on MIG1 in [68] could not be used, since that experiment took place in normal

growth, and in such condition MIG1 has low activity). We calculated initial TF

doses using the activity scores of the motifs in each condition. We sorted affinities

and doses of each TF and used the ranking as inputs for the inference algorithm. For

model optimization, site activity and gene expression were assumed to have three

possible values. We optimized DARs using consistency [130] for the topology score.

Figure 5.11 shows the results of the optimization with consistency scores.

GAL4 MIG1 GCN4

U1 U3 U2

Figure 5.11: Transcription program model DAR’s for the galactose TFs. X
axis: ranked gene affinity. Y axis: ranked TF dose. The colors represent the response (or
derived TF activity). Darker color indicates stronger response.

The optimized transcription model also constructs, of course, for each site, a

concrete affinity level and concrete activity levels under each condition, as well as

a specific regulation function for each gene. A fragment of the model is shown in

Figure 5.12. We selected for easy visualization only those genes that are regulated

by GAL4 according to the model. A gene is considered regulated by a TF if its

affinity level is above the threshold selected to maximize the TF’s activity5.2. The

figure shows TF-gene interactions, where genes with an identical set of regulators

are grouped together. The graph represents the predicted combinatorial regulation

schemes involving GAL4. For example, the important regulatory gene GAL3 is

combinatorially regulated by GAL4, MIG1 and GCN4, PUT4, a proline permease,

is controlled by GAL4, U1 and U2 . Interestingly, there are 19 genes regulated by
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GAL4 alone, 34 genes regulated by two TFs, 23 genes regulated by 3 TFs and only

3 regulated by four TFs. No gene is regulated by five or all six. This indicates

both the power of combinatorial regulation to generate complex control using a few

regulators, and its efficiency in terms of the number of regulators used.

To test the utility of our integrative approach for TF binding location and gene

expression data we compared the results of the DAR optimization process when

given the experimental TF location profiles for GAL4 and GCN4 and when using

the LPWM matching likelihood instead. Overall we obtain improved score for the

complete model (using all six TFs) when using the experimental location profiles

(model score without location data: score=5657, with GAL4: score=5687, with

GCN4: score=5687, with both: score=5717).

To further test the robustness of the framework, we repeatedly selected one

location profile and one TF, and used that profile as the genes affinities for that

TF. The rest of the model was initialized with LPWM matching likelihood and we

recorded the score after optimizing the complete model. This was repeated for all

660 possible TF-profile combinations (for 6 TFs and 110 profiles). We found that

the score reached for the only experimental profiles that were available (GAL4 and

GCN4) was not matched by any of the other experiments (p=0.001). This shows

the superiority of location profiles over computed ones, and also demonstrates the

robustness of our methodology. Further experimentation based on this model may

lead to improved understanding of the way in which the transcription program of

galactose related genes respond to different stimulations.

Shortly after the initial publication of our results on the galactose system in

yeast, a comprehensive comparative study was published by Kellis et al. [79]. In

this study conservation across four yeast species was used to detect functional signals

in promoters. Significantly, one of the new binding motifs detected by this study

was identical to the motif U2 that we had reported.
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LPWM Consensus AS Score Remark

CGG(11N)CCG 30.8 GAL4 consensus

TGACTCAWT 22.57 GCN4 consensus

TGGGGTA 22.03 ADR1/MIG1 consensus

CANCCCC 26.92 Unknown, denoted U1

CCG(5N)CCG 26.6 Unknown, denoted U2

TT(9N)CCCC 22.03 Unknown, denoted U3

Table 5.1: De-novo identification of active motifs in the galactose system. Using our
framework for active motif discovery, we identified three known and three putative bind-
ing site motifs with statistically significant activity. The results match the literature in
predicting activity of GAL4, GCN4 and MIG1. Putative sites represent predictions that
extend the model of galactose related transcription program.



120 CHAPTER 5. MODELING TRANSCRIPTIONAL PROGRAMS

Figure 5.12: The Galactose system. A part of the transcription program model recon-
structed by the DAR methodology for the galactose system. Having optimized the DAR
model, only genes that have affinity above the activity threshold for a particular TF are
considered to be regulated by it. Regulation is indicated by an edge. Genes with identical
set of regulators are grouped together and shown within the same oval. Thicker edges
underline larger groups of genes. The figure presents only those genes that are regulated
by the TF GAL4. Filled ovals: TFs. White ovals: genes. The large set of genes in the
oval at the right bottom contains some of the genes that are regulated only by GAL4,
according to the model. Numbers in the cells are the activity scores. Darker cell shades
indicate higher scores, and blank cells represent lack of significant activity. Note that high
activity may be due to either induction or repression with respect to the wild type state.
The direction of activity is not shown in the figure (but can be easily checked using the
original expression values of the genes regulated by each motif).



Chapter 6

The evolution of TF binding sites

As we saw in the previous chapters, the interaction between transcription factors

and their DNA binding sites is a central element of gene regulation. Recall that

transcription regulation is mediated by TFs that bind short specific sequences (de-

noted in this thesis as TFBSs) upstream of the regulated genes. Sequence specific

TFs can physically recognize a limited repertoire of sequences variants, and each

variant may have a different binding affinity. The functional effect of small vari-

ations in the binding sequence are known to play a role in transcription control

[27, 75], and as we have shown, differences in binding affinities can be exploited

when constructing a mathematical model for transcriptional programs. So far, our

approach to the analysis of transcriptional regulation was based on experiments that

tested the behavior of a single model system (S. cerevisiae) in a set of conditions.

By analyzing the similarities (e.g., expression patterns, regulatory sequences) and

differences in the response of many genes to similar environments, we inferred mod-

els for transcriptional regulation. In this chapter, and in the next one, we shall

take a different approach, using evolutionary analysis to compare the function of

transcriptional programs in several species. We shall focus here on the evolutionary

dynamics of TFBSs and on the relations between TFBSs’ function and the selective

pressures affecting their evolution.

Results from this chapter were published in [128] in collaboration with Irit Gat-

Viks.
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6.1 Motivation

The natural diversity of living organisms suggests itself as a rich source for informa-

tion on the function of regulatory networks in general and transcriptional programs

in particular. Instead of probing the behavior of a single system in different con-

ditions and perturbations, it is possible to study several different systems (species)

and examine their evolutionary similarities and differences as a way to infer their

function. The evolutionary paradigm provides us with structures (e.g., phylogenetic

trees) and principles (e.g., parsimony) by which we can interpret diverse data on

the phenotypes and genotypes of many species. When applied to transcriptional

networks, we have the advantage of using well defined genomic loci (TFBSs) as

genotypes that we can relatively easily correlate with the gene expression pheno-

types.

The common approach to comparative genomics of regulatory regions [55, 124]

highlights the identification of conserved sequences as a way to distinguish between

functional and non-functional parts of the genome. According to this methodology,

we summarize all our evolutionary insights into binary tagging of the sequence (con-

served, unconserved). While this approach offers simplicity and was proved to be

highly effective in revealing novel functions in genomes (e.g., small RNA genes [8],

ultra conserved elements [10]), it is expected that much more can be inferred from

the evolutionary relations among species. As we shall see below, the evolutionary

dynamic of TFBS sequences reveals a rich structure of selective pressures that can be

correlated with function in higher resolution than possible using conservation-based

analysis.

6.2 The selection network

6.2.1 Standard models for neutral evolution

In this section we develop a mathematical representation for the evolutionary rela-

tions between short DNA sequences (including TFBSs sequences and non-functional

short sequences). We start with a brief background on molecular evolution and the

neutral model for sequence evolution (for the standard textbook introduction see

[89]). We shall assume that in the course of evolution, one DNA sequence is trans-



6.2. THE SELECTION NETWORK 123

formed into another by a series of independent substitutions of single nucleotides.

We will assume that other events causing insertion or loss of DNA segments are

much less frequent and will neglect them throughout. The neutral theory of evolu-

tion models the evolutionary process as a combination of two processes: mutation

and fixation. Mutations are continuously being introduced into the population due

to DNA damage and inaccuracies in the transmission of genetic materials from gen-

eration to generation. The neutral hypothesis states that most of the mutations have

small or no effect on the organism’s fitness (these are neutral mutations). Neverthe-

less, in a population of a given size, a considerable fraction of the neutral mutations

would become fixated (i.e., present in all or most of the population), due to pure

chance. On the other hand, mutations that have negative effect on the organism’s

fitness have very low fixation probability. In these cases, we will say that the muta-

tion was under negative selection. The rate of substitution at each neutral position

is modeled using a substitution matrix defining the probability of substitution from

each nucleotide to each nucleotide over a unit time interval. In its simplest form

(the one parameter model) the substitution matrix describes the rate of mutation

without distinguishing which nucleotides are being substituted. In a more realis-

tic version we use different rates for transitions (A↔G, C↔T) and transversions

(A,G↔C,T, the Kimura two-parameters model [81]) or even set individual rates for

each substitution (a sixteen parameter model). To sum up, it is widely assumed

that neutral sequences (sequences that do not contribute to the organism’s fitness)

in a specific lineage evolve independently at each nucleotide according to a roughly

fixed substitution matrix.

Given the DNA sequences of two species we can estimate a 16 parameters sub-

stitution matrix matching the evolutionary period between them by aligning the

sequences and counting aligned nucleotide pairs (assuming the vast majority of se-

quence evolve neutrally). In probabilistic terms, this procedure can be interpreted

as finding the maximum likelihood substitution model for the aligned sequences.

When we have more than two species, we will use a phylogenetic tree to describe

the evolutionary relations among them. According to the common maximum likeli-

hood approach, one can infer a substitution matrix and phylogenetic branch lengths

so that the likelihood of the aligned sequence is optimal (using, e.g., an EM al-

gorithm [36]). We will take an alternative approach and estimate a substitution

matrix separately for each branch in the phylogenetic tree. This approach is reason-

able since we will analyze relatively few species (less than ten) using whole genomes
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(millions of loci for each species). Using the maximum parsimony assumption we

shall infer the sequences of ancestral species and estimate a substitution matrix for

each branch, as is done in the case of two species. The mutation independence as-

sumption, together with estimated substitution matrices over a phylogenetic tree,

provide us with a simple background model for the evolution of neutral sequences.

The applications we will develop below test how well the neutral model can predict

the observed sequences, and identify regions in which it fails to do so as targets for

closer functional analysis.

6.2.2 Selective pressures on TFBSs

Sequences that are functional are evolving differently than neutral ones, being sub-

ject to selection. The most easily detectable and widespread type of selection is

negative selection: a process that reduces the fixation probability of mutations that

decrease the organism’s fitness. Negative selection can be detected by comparing

aligned sequences in several species and estimating the conservation rate along the

alignment. Nucleotides that are more conserved than expected by the neutral model

can be hypothesized to be under negative selection and therefore functional. Com-

paring observed sequences to a neutral model is the essence of today’s comparative

genomics [79, 55, 124].

Assume that we are observing a set of aligned regulatory regions and that these

regions are mostly neutral, except for TFBSs that are relatively sparse. Also assume

that in the phylogeny of species we are analyzing, there exists a set of TFs that

are completely conserved, and that each TF is binding specifically a distinct and

disjoint set of short DNA sequences (the same set in all species). Finally assume

that binding of a TF to a regulatory region occurs at any locus that contains one of

the sequences the TF recognizes. We can thus summarize all we have to know on

TFs and their targets in a simple code, grouping short DNA sequences according

to the TF that binds them. Under these simplified assumptions (which are clearly

weak approximation of the reality, but will serve us in the following discussion), we

would like to use comparative genomics to discover the code from aligned sequences.

If this can be done, we will be extracting more information than mere tagging of

sequence as functional or non functional.

Now consider the selective pressures acting on a nucleotide in the regulatory
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region, under our simplified assumptions. If the nucleotide is neutral (i.e., does not

participate in any TFBS) then no selection should be observed. If the nucleotide is

a part of a TFBS, the selective pressure on mutations involving it would be depen-

dent on the family of sequences that the TF can bind. Mutations that change the

nucleotide but keep the TFBS functional and identifiable by the same TF would be-

have neutrally. Mutations that compromise the function of the TFBS (by changing

its identity or completely eliminating it) should be selected against. If we analyze

short DNA sequences (or more specifically, k-mers), instead of single nucleotides,

we can predict that in general, substitutions between two k-mers that belong to

the same family should be neutral and substitutions that crosses family boundries

should be selected against. By estimating the selection acting on each of the possi-

ble substitutions between k-mers we can group k-mers to neutrally interchangeable

families and reconstruct the regulatory code.

In practice, our simplified functional model for TFs will only be approximately

correct. First of all, many of the loci we shall analyze will not be functional, due

to chromatin structure or other factors that affect the TF-DNA interactions and

are not directly coded to the TFBS sequence. Second, the actual regulatory code

is much more complex and less well defined than the cluster model we introduced

above. Third, TFBSs may have different lengths which can be shorter or longer than

k. The total selective pressure on each k-mer would therefore be a combination of

possible effects on parts, suffixes or prefixes of the k-mer. As we shall see below,

grouping k-mers into families will still be possible, even though our assumptions are

gross simplifications of the biological reality.

6.2.3 Estimating selection on k-mers

We focus on changes in words of length k, and use the term substitution here to

mean a change of a single base in a word. We estimate the selection on substitutions

between k-mers by comparing the observed number of substitutions to the number

of substitutions predicted by the neutral model. Assume first we have two species

and that their sequences are aligned. We denote the multiplicity of each DNA k-mer

m in the first species as n1(m). The expected number of substitution from m to

m′ (denoted as the predicted count) would equal npred
m,m′ = Pr(m→ m′)n1(m), where

Pr(m → m′) =
∏

i Pr(m[i] → m′[i]) according to the neutral model. On the other

hand, the observed number of substitutions equals the number of aligned k-mer
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pairs m, m′ which we denote as nm,m′ . We next define:

Definition 6.2.1 The selection ratio of a substitution m→ m′ is defined as ρm,m′ =

log(nm,m′/npred
m,m′). The conservation ratio for a k-mer m is defined as ρm,m.

ρ values that are significantly smaller than 0 suggest negative selection, but

we note that these values are very sensitive to the sample size n1(m) and cannot

be used directly. Given our background neutral model we can model nm,m′ as a

binomial random variable that equals the sum of n1(m) Bernoulli variables with

probability Pr(m → m′). We can therefore compute a p-value for rejecting the

neutral hypothesis on the substitution m → m′ using the binomial distribution:

Pr(b(n1(m), P r(m→ m′)) < nm,m′) (b being the binomial distribution).

Now assume that we are given aligned regulatory sequences s1, . . . , sn for more

than two species, and that the phylogenetic relations among the species are defined

by the tree T = (S, V, par) where S = {s1, . . . , sn} are the extant species, V are the

ancestral species and par(v) defines parent-child relations in the phylogenetic tree.

We again wish to estimate the selection on substitutions m → m′. To that end we

will reconstruct ancestral sequences and use the formula we developed above for the

case of two species over each of the phylogenetic branches. To reconstruct ancestral

sequences we may use any of the standard methods (parsimony or maximum like-

lihood). In the results reported below we used the maximum parsimony approach

[36] to determine for each ancestral node and each position on the alignment the

set of maximum parsimony nucleotides i ∈ V, si[h] ⊆ {A, C,G, T}. Note the si[h]

may contain more than one character if the parsimony solution is not unique. Given

the most parsimonious sets of characters, we used a simplistic uniform probability

model and define the probability of observing a k-mer m at the ancestral species i

in position h as the product Pr(si[h . . . h + k] = m) =
∏

j
1

|si[h+j]| if m[j] ∈ si[h + j]

for all j < k and 0 otherwise.

To estimate the predicted and the observed number of substitutions between each

pair of k-mers we combine information from all of the branches. The contribution

of a phylogenetic branch (i, i′) to the number of observed substitutions between

m→ m′ equals ni′
m,m′ =

∑
h Pr(si[h . . . h + k] = m)Pr(si′ [h . . . h + k] = m′) where h

is running over all aligned positions. The number of predicted m→ m′ substitutions

is computed by using a background model for the branch i→ i′ and applying it to the

expected number of m appearances in the specie i: ni′,pred
m,m′ = (

∑
h Pr(si[h . . . h+k] =
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m)) ∗ Pr(m → m′|i → i′) where Pr(m → m′|i → i′) is the mutation probability of

m → m′ on the branch i → i′. By adding up the observed and predicted number

of substitutions across all phylogenetic branches we compute the nm,m′ and npred
m,m′

statistics for the entire phylogeny. We can compute their ratio ρm,m′ as in the case of

two species. We can also generate binomial p-values as before, although in this case

we will have to treat a sum of several binomial variables with different parameters

(each branch have different probability for m→ m′).

We can now define the selection network, for a fixed value of k:

Definition 6.2.2 The selection network is a weighted directed graph (S, E, ρ),

containing a node for each DNA sequence k-mer and an arc from each node to each

other node at hamming distance one. The arc weights ρm,m′ equal the substitution

selection ratios defined above. ρ is also extended to include the conservation ratios.

6.3 Estimating the Saccharomyces selection network

To compute the selection network for the Saccharomyces clade, we used promoter

alignments of the four sensu stricto species S. cerevisiae, S. mikatae, S. kudriavzevii

and S. bayanus [23], and the established phylogenetic relations among them. For

each promoter we reconstructed the ancestral sequences using maximum parsimony

as described above. We estimated the background model by counting single nu-

cleotide substitutions at each phylogenetic branch. We used k = 8 throughout. We

counted the number of octamer substitutions and built the selection network by

computing for each edge the ratio ρm,m′ . Our analysis was genome-wide, including

all aligned octamers in each of the aligned promoters (up to 1000bp upstream the

gene, about 2 million loci in total). We ignored octamers that were aligned with

gaps while estimating the background model and while counting substitutions. Our

analysis was therefore implicitly focused on generally conserved regions. We ensured

that divergent promoters were treated only once (choosing the strand arbitrarily).

The global distributions of estimated substitutions ratios ρm,m′ and conservations

ratios ρm,m are shown in Figure 6.1. For conservation there is a clear bias toward

increased ratios, reflecting k-mers that are functional and are more conserved than

expected by the neutral model. For substitutions, we see the complementary ef-

fect on substitutions that have negative ρ values, suggesting negative selection on
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mutations that change functional sites.

Figure 6.1: Global distributions of substitution and conservation ratios. The
distribution of conservation ratios for the 65536 motifs (A) shows a normal-like form that
is disrupted by a significant peak of motifs (P << 10−10, G-test for goodness of fit) that
are conserved more than expected. The distribution of substitution ratios for more than
1.5 million neighbor motif pairs (B) is enriched (P << 10−10, G-test for goodness of fit)
in substitutions that appear less than expected.

6.4 Analyzing reverse complementing substitutions

Recall that we have motivated the construction of the selection network by simplified

assumptions on the relations between k-mers and TFBSs. These assumptions may

or may not be an adequate formalization of the structure and function of TFBSs.

Moreover, we constructed the network by compiling information for numerous loci,

most of which are not likely to encode for a function or may encode for a function that

does not match our TFBS model. The reliability of the estimated selection ratios

on network edges should therefore be carefully assessed. One possible approach

is to compute binomial p-values for the observed nm,m′ as described above, but

this approach cannot control for systematic errors in the background model or for

inaccuracies in the estimation methodology. We shall next describe an alternative

method using comparisons of reverse complementing substitutions.

It is known that transcription factors can bind both strands of the DNA and

that in many cases TFBSs on both strands can be equally functional. Since we

analyze data on the 5’ strand only, and since each k-mer in the 5’ appears in re-

verse complement on the coupled 3’, the estimated ratios of reverse complementing
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substitutions can be argued to serve as two independent observations on the same

physical quantity (under the assumption that motifs in both strands are functional).

Given a k-mer m we denote its reverse complement as mc. The reverse complement-

ing substitution of m1 → m2 is mc
1 → mc

2. The correlation between the ρm1,m2 and

ρmc
1,mc

2
is shown in Figure 6.2. The high correlation supports the hypothesis that

motifs in both strand have similar functions in many cases. As expected, when the

sample size (which we quantify using npred
m1,m2

) increases, the estimated ρ values are

more accurate and the correlation between reverse complementing substitutions in-

creases. A similar effect can be seen by comparison of the conservation ratios ρm,m

and ρmc,mc (Figure 6.3).

We can thus use the differences between ratios of reverse complementing sub-

stitutions to assess the estimation errors for each ρm,m′ . We partition all k-mer

pairs into bins of similar sample size blow < npred
m1,m2

≤ bhigh. Assume that for all

motif pairs m1, m2 in a particular bin, we have ρm1,m2 = ρ′m1,m2
+ εblow,bhigh

where

ρ′m1,m2
= ρ′mc

1,mc
2

is the real selection ratio for the substitution and εblow,bhigh
is a nor-

mally distributed error term which is the same for all k-mer pairs in the bin. Given

these assumptions we can estimate σ(εblow,bhigh
) by computing the variance of the

distribution of ρm1,m2 − ρmc
1,mc

2
for pairs m1, m2 in the bin (Figure 6.4). The error

term standard deviation is estimated as
√

2σ where σ is the standard deviation of

the difference distribution. We define the standard deviation for the substitution

ratio of m1, m2 as the standard deviation of the error term of the appropriate bin.

We denote it by σm1,m2 .

6.5 Functional families in the selection network

Having constructed the selection network, given our estimated selection ratios and

their confidence levels, we shall next examine the topology of the network and asso-

ciate it with the function of TFBSs. The most prominent structure that we shall seek

in the selection network is the partition into clusters, in accordance with our very

basic model for TFBSs evolution. We define functional families as sets of conserved

k-mers that are neutrally substituting with each other.

Definition 6.5.1 Given a selection network with selection ratios and their error

rates (S, E, ρ, σ), we define a k-mer family as a connected component in the subnet-
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A

B

Figure 6.2: Supporting substitution ratio estimations by analysis of reverse
complementing substitutions. The substitutions that change k-mer A to B and the
reverse complement (RC) of A to that of B represent similar alteration of regulatory
function. The ratios of such RC substitutions are estimated independently and can be used
to assess the reliability of the statistics and the specificity of selective pressures. A) Pearson
correlation between RC substitution ratios, as a function of npred

m,m′ threshold. For each
threshold value, the correlation is computed only for substitutions with predicted count
exceeding that threshold. B) Scatter plots for RC substitution rates (exponentiated rho

values) for different thresholds. The increase in correlation as a function of the threshold
reflects reduced noise levels when sample sizes for individual RC substitutions are larger.
For large npred

m,m′ the estimated ratios are very specific.

work including only k-mers m for which ρm,m − zcσm,m > C1 and edges m, m′ for

which ρm,m′− zsσm,m′ > C2, where zc, C1 are the conservation parameters and zs, C2

are the neutrality parameters.
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A

B

Figure 6.3: Conservation ratios of reverse complementing k-mers. A) Pearson
correlation of conservation ratios, as a function of the npred

m,m threshold. For each threshold
value, the correlation is computed only for conservations with predicted counts exceeding
that threshold. B) Scatter plots for conservation rates (exponentiated rho values) for
different thresholds.

Under these definitions, searching for families is an easy computational problem

(identifying connected components in a graph).
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Figure 6.4: Distribution of differences between reverse complementing substi-
tutions. (A) The distribution of differences between ratio estimations of reverse comple-
menting substitutions with predicted counts in three different intervals. The variance in
these normal-like distributions is approximately twice the estimation variance of individ-
ual ratios (see text). (B) Variance of estimation for increasing predicted count ranges.
The estimation variance is decreasing with the increase in predicted count.

We searched for k-mer families in the yeast selection network (setting zc = zs =

2, C1 = 0.2, C2 = −0.5) and disregarded all single-vertex components. The results

are detailed in Table 6.1 and in Figure 6.5. In principle, families could be artifacts
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Figure 6.5: Partial view of the selection network. k-mers are represented as circles; k-mers that have

ρm,m − 2σm,m > 0.2 are drawn as large circles, k-mers with conservation ratio ρm,m′ − 3σm,m > 0.2 are shown as

large filled circles. Substitutions are shown as color coded arcs. Black: non-negative substitution ratio (ρm,m′ > 0

and ρm,m′ −2σm,m′ > −0.5); cyan: negative ratios (ρm,m′ +2σm,m′ < −0.5). A family in the selection network is a

cluster of k-mers that are interconnected via high or neutral substitution arcs. Low ratio substitution arcs separate

families. Arc directions are not shown for readability, but 91% of the negative ratio arcs point from a family k-mer

to a k-mer outside the family. We annotated each family by a consensus motif, and by the names of the transcription

factors that match that consensus (if such are known). Many known transcription factors are identified as families of

k-mers, some of which are shown in this figure. Families can be further analyzed for intricate intra-family relations.

Certain transcription factors (e.g., Reb1) correspond to more than one family suggesting multiple functionalities as

discussed below. Transcription factors with binding sites that are less frequent in the genomes (e.g. Gcn4) have

larger variance on ratio estimations, so are harder to cluster robustly.
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resulting from errors in the estimation of selection ratios or from more basic problems

with the neutral background model. To control for these, and to assign putative

function for families, we tested if the association among k-mers from the same

family could be supported by information on function of yeast genes. We define

for each k-mer m a set of genes Gm including all genes bearing the k-mer in their

promoter at least once. For a k-mer family F = {mi} we form the union of all gene

sets GF = ∪iGmi
. For each k-mer family we test for functional support using the

following sources of information:

• Enrichment of GF sets in ChIP targets: We tested directly if GF sets were

enriched in ChIP targets of specific TFs (using data from [87]). This was done

by testing GF independence (using hyper geometric p-value) from the sets of

conservative (p < 0.001) and permissive (p < 0.01) TF targets. p-values were

corrected for multiple testing using the conservative Bonferroni factor.

• Co-expression of GF sets: We used a collection of 980 gene expression profiles

(see Chapter 4) to test for each cluster F if genes in GF are over-expressed

or under-expressed in each of the gene expression profiles. We identified, for

each of the expression conditions, the sets of up (expression over 1SD above

the average) and down (expression under 1SD below the average) regulated

genes, and computed their hyper-geometric p-values of independence from GF

(again corrected for multiple testing).

• GF GO functional enrichment: We tested if GF genes are enriched with genes

known to be involved in specific processes by computing hyper-geometric p-

values for independence of GF and sets of genes with a particular GO anno-

tation (see appendix A).

Using these three sources of information we can show that over 90% of the k-mer

families can be associated with some function or TF (Figure 6.6), confirming that

even given our assumptions and thresholds, we are still able to identify groups of

motifs that are functionally related. Importantly, using the above data we can also

suggest the functions that may be regulated by k-mers from different families, and

the TFs that bind them (in cases where ChIP profiles are associated with a family).

The way we define and create motif families does not follow the common approach

of identifying groups of binding sites by conservation and consensus. Here, instead,
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Figure 6.6: Functional enrichment of genes associated with motifs families. Each
point represents a motif family. For each family, the set of genes that contain a motif from
the family in their promoter was identified. The p-value of the best match to a ChIP
experimental profile (x coordinate) and the highest co-regulation achieved in a collection
of gene expression experiments (y coordinate), were computed. The vast majority of true
motif clusters (green) are strongly supported by functional data, and are well separated
from the respective p-values computed with the same motif clusters but randomly shuffled
promoters-genes association (red).

it is the substitution rates between motifs that determine the families. Using this

approach, we can identify motifs that were previously hidden by nearby stronger

consensus sites. For example, the motifs cluster TCTCGAGA (Figure 6.5 consists

of 11 motif variants that resemble the known PHO4/CBF1 cluster CACGTG but

are well separated from it by negatively selected substitutions. The sets of genes

with motifs from each of those families have totally different expression profiles

(t-test, p < 0.0002). Interestingly, the TCTCGAGA motif set manifests strong

down co-regulation (p < 10−11) in a gal80 and gal1 knockout strains grown without

galactose [68], supporting its possible role in transcription regulation (recall our

analysis of these strains in Chapter 4). An additional example of a putative family

is GGTRATGR with a possible role in the regulation of ribosome biogenesis (p <

10−23). See Table 6.1 for more details on functional families and their annotations.
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Cluster

Consensus

Name

Comments Size ChIP P GO Annota-

tion

P Expression P U/D

RTTACCCG REB1 re-

lated motifs

3 REB1 -144.1 proteolysis and

peptidolysis

-8.5 Natarajan01

GCN4C/

GCN4

(R4760/R6257)

-5.9 up

TTACCCT* 4 REB1 -69.3 metabolism -6.6

**CCGGGT 10 REB1 -45.7 protein

catabolism

-5.4

PHO4

CACGTG**

Pho4 motifs 9 CBF1 -81.1 sulfur

metabolism

-15.6 Ogawa00

PHO4c vs wild

type

-9.3 up

AATCACGT 5 CBF1 -60.5 sulfur

amino acid

metabolism

-7.4 Gasch00

Amino acid

adenine starva-

tion 2 h

-5.3 up

ESR1

A*CTCATC

ESR (PAC)

and related

motifs

11 ribosome bio-

genesis

-53.8 Gasch00 1 5

mM diamide 20

min

-63.0 down

ESR1 CT-

CATCGC

2 ABF1 -4.1 ribosome bio-

genesis

-37.1 Gasch00 1 5

mM diamide 20

min

-56.1 down

RAP1 GY-

ATGGGT

RAP1/FHL1

motifs

6 RAP1 -61.8 macromolecule

biosynthesis

-17.8 Natarajan01

WT +/-

100mM

3AT (Set

C) (KNY164)

-16.2 up

CCGTGCAT 2 FHL1 -48.3 macromolecule

biosynthesis

-17.5 Gasch00 Heat

Shock 000 min-

utes series 2

-12.8 up

BAS1 GT-

GACTCA

GCN4/BAS1

motifs

2 GCN4 -47.2 amino acid

biosynthesis

-23.8 Hughes00 top3

haploid

-38.1 up

BAS1 GT-

GAGTCA

2 GCN4 -30.5 amino acid

biosynthesis

-26.1 Hughes00 top3

haploid

-32.6 up

SWI6

WRACGCGT

SWI4.SWI6

and IME5

motifs

6 MBP1 -42.3 DNA repli-

cation and

chromosome

cycle

-21.7 Spellman98

alpha fac-

tor release

sample016

-32.3 up

ATTTCGCG 2 SWI4 -30.6 DNA repli-

cation and

chromosome

cycle

-6.3 Spellman98

CLN3 induc-

tion 30 minutes

-24.3 up

*RAACGCG 9 MBP1 -26.5 DNA

metabolism

-13.3 Spellman98

CLN3 induc-

tion 30 minutes

-29.3 up

MSN2

MSN4 CM-

CCCCTT

STRE

moitifs

7 HSF1 -7.8 carbohydrate

metabolism

-5.2 Gasch00 heat

shock 17 to 37

20 minutes

-26.5 up

MSN2

MSN4

TAAGGGGT

2 HSF1 -4.1 Gasch00 heat

shock 21 to 37

20 minutes

-17.5 up
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GTGGCGAA RPN4 and

proteoly-

sis related

motifs

2 REB1 -6.1 proteolysis and

peptidolysis

-27.3 Gasch00 1 5

mM diamide 60

min

-21.4 up

TCGCCACC 2 protein

catabolism

-23.8 Gasch00 1 5

mM diamide 60

min

-25.4 up

YTGTTTAT fkh1/2 mo-

tifs

6 FKH2 -24.9 cell cycle -7.9 ”Robertson00

bni1D 50 nM

aF, 120 min

log10(ratio)”

-8.6 dow

FKH1

FKH2

TGTT-

TAC*

5 FKH1 -22.1 M phase of mi-

totic cell cycle

-4.4 ”Robertson00

bni1D 50 nM

aF, 120 min

log10(ratio)”

-6.1 dow

RACAATRG ROX1 6 Gasch01 pRS

ROX1 GAL

media

-19.7 down

TCGTTTMA ERG11

URS1 but

not exactly

3 steroid

metabolism

-14.8 Hughes00 Itra-

conazole

-12.3 up

TTCYRGAA 3 HSF1 -18.9 protein folding -12.5 Gasch00 Heat

Shock 015 min-

utes

-9.1 up

ACCAATCA 2 HAP4 -16.2 ATP synthesis

coupled proton

transport

-9.3 Ferea99 parent

vs evolved 2

-12.3 up

*TTATATA 5 HIR2 -5.3 main path-

ways of car-

bohydrate

metabolism

-8.8 Gasch00 YPD

10 h 30C

-15.4 up

TCCRCGGA 3 YAP6 -7.1 response to

drug

-6.8 Hughes00 aep2 -15.0 up

TGTGGCGT 2 MET4 -10.8 sulfur

metabolism

-6.5 Gasch00

Amino acid

adenine star-

vation 0 5

h

-6.9 up

CTCCGCGG PDR1 4 CBF1 -6.6 response to

drug

-6.2 Carrol02

pho85D 10 mM

1NaPP1

-10.7 up

ACACACAC Meiosis re-

lated motifs

5 IME4 -10.5 pyridoxine

metabolism

-4.5 Nautiyal02 tlc1

Expt.2 Passage

5

-6.1 up

YGTCACAR ”(Ume6,Sum1,

Ime4)”

3 SUM1 -10.2

MSE ACA-

CAAAA

4 SUM1 -7.4 spore wall

assembly

(sensu Saccha-

romyces)

-4.9

PDR1

UME6

TCRGCGGC

3 CBF1 -7.5 meiosis -8.4 Hughes00 sgs1 -7.1 up

SWI5 GTG-

GCTGG

2 SWI5 -8.8
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MIG1 ACC-

CCGCA

2 monosaccharide

transport

-8.3 Hughes00 sir4 -7.1 up

CCAATCAA 2 HAP4 -8.2 ”energy cou-

pled proton

transport

down the elec-

trochemical

gradient”

-5.6 Ferea99 parent

vs evolved 2

-7.3 up

GCGAAAAA 4 ASH1 -6.7 regulation of

transcription

from Pol III

promoter

-4.2 Spellman98

CLN3 induc-

tion 30 minutes

-7.0 up

CGCCGTAC 2 DAL81 -7.0 Ideker01

gal1gal10+gal

-5.4 up

GGTACGGC 2 DAL81 -5.5 amino acid

transport

-6.2 Ideker01

gal1+gal

-5.2 up

TGTGCCTT 2 PHD1 -6.0

TCTCGAGA Putative 11 SWI4 -5.2 Ideker01 gal80-

gal

-14.7 down

GGTRATGR Putative

(ESR1?

RAP1?)

15 ribosome bio-

genesis

-22.7 Gasch00 1 5

mM diamide 10

min

-23.7 down

CCCTTAAA Putative

(related to

msn2/4?

(CCCCT))

2 Gasch00 YPD

2 d 30C

-13.3 up

CCCTTGRA Putative 3 Gasch00 heat

shock 17 to 37

20 minutes

-12.5 up

GGGTGCAG Putative

(REB1 and

RAP1 with

1 mis)

2 siderochrome

transport

-10.8 Hughes00 kre1 -11.1 up

Table 6.1: Octamer families and their functional annotation. For each source of

information P indicates the logarithm (base 10) of the p-value obtained. U/D indi-

cates the direction of the co-regulation in gene containing the motifs in the condition

that appears under ’Expression’.
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6.6 Selection on Reb1 TFBSs

The representation of binding sites as families of motifs is a powerful and informative

tool for analyzing their regulatory function. By studying intra- and inter-family

substitution ratios in the selection network, one can sometimes reveal high resolution

evolutionary structure inside families. Such structure may suggest that the targets

of a certain TF are subdivided into two or more groups with different functions.

To illustrate this, we examined the region of the selection network corresponding to

Reb1 motifs (Figure 6.7).

We selected the relevant Reb1 motifs by taking 80 octamers with highest match-

ing probability to the Transfac Reb1 position weight matrix M00307 [149]. To gain

maximal amount of information, we used all selection network arcs, even where

confidence intervals were large. This process generates larger clusters than those

detected in the global analysis. Most Reb1 motifs form a large family of densely

connected variants of a consensus. Interestingly, in addition to the large family,

a well-separated smaller Reb1 family is also observed. Although many motifs in

one family differ by one nucleotide from some motifs in the other family, there are

very low substitution rates (and consequently negative selection ratios) on all these

inter-family arcs. We tested the probability of detecting two separated clusters of

the observed size in a random graph with the same number of non-negative-rate

arcs as in the original one. Indeed we found that such pattern is unlikely to appear

at random (p < 10−4).

Both Reb1 families show strong association (p < 10−60 for each) with the Reb1

ChIP profile [87] but expression of genes with binding sites from the two clusters

differs (t-test, p < 0.01). The combination of evolutionary and functional genomics

evidences lead to the hypothesis that each family represents a distinct mode of

Reb1 operation. Reb1 is an auto-regulating TF and it was shown that several auto-

regulatory binding sites are present in its promoter [147]. The two strongest of these

sites contain the motifs TTACCCG (binding affinity kd=25nM) and TTACCCT

(kd=70nM), which appear as major hubs in the two families. The direct binding

affinity measurements of the two variants provide a possible mechanistic explanation

for the functional diversity of the two families: The large family, containing the

first auto-regulatory motif, is composed of sites with higher Reb1 affinity levels

(lower kd), and is capable of activation or repression in lower transcription factor

concentrations. The smaller family, containing the second auto-regulatory motif,
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is composed of sites with lower Reb1 affinities, which respond only when Reb1

attains high concentrations. Reb1 may thus operate in two distinct modes, which

are stabilized via autoregulation.

Figure 6.7: Multi-modality of the Reb1 transcription factor. A part of the selec-
tion network containing k-mers that are associated with Reb1 is shown in greater detail.
All nodes represent variants of the Reb1 consensus. Note that in this figure, all selection
network arcs, including those with low confidence, are plotted, and reverse complement
motifs are not combined. Upper part: Reb1 motifs. Mid part: Reb1 reverse complement-
ing motifs. Black arcs represent high substitution ratio (low selective pressure). Blue arcs
represent low substitution ratio (high selective pressure). A clear two-family structure
emerges, where low ratio arcs are separating a large Reb1 family from a smaller one. The
structure is mirrored in the reverse complement motifs. The Reb1 promoter (lower part)
contains two auto-regulatory sites, each located in a different family, with distinct binding
site affinities. This raises the hypothesis of two distinct Reb1 modes of operation, each
activating a different group of motifs in a specific concentration. Note that nodes in the
network are octamers and the Reb1 consensus is a septamer.
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6.7 Selection on Leu3 TFBSs

To further study the relation between binding affinity levels and transcription factor

functional diversity, we analyzed in detail the selection on Leu3 binding sites. Leu3

binding affinity was measured for 50 different variants of the palindromic consensus

decamer CCGGTACCGG [91]. For each of the 50 motifs with known affinity value,

we also added to the list its reverse complement and assumed that they have equal

affinities. This added 49 distinct motifs in total. We identified 455 weakly con-

served loci, in which at least 3 out of the 5 sequenced sensu stricto species (the four

mentioned above plus S. paradoxus) contained one of the 99 variants with known

affinity, or a neighbor of such a variant. Additionally, we searched the promoters of

S. castellii and S. kluyveri and added matching loci when found (about 15% success

for each). Since Leu3 motifs are sparse and since we were interested in the selection

inside the family, we estimated substitution rates directly, not computing selection

ratios. Recall that we are using a phylogenetic tree (S, V, par) and assume that the

length (duration) of the branch leading to a node v is given by tv (tv’s were esti-

mated from the data using a standard one-parameter model (as in [79])).The rate of

substitution for a pair m1, m2 is computed as nm1,m2/(
∑

v tvn
par(v)
m1

). In other words,

we divide the number of inferred ancestral m1 → m2 substitutions by the total time

in which m1 was under selection. Note that this approach is much more sensitive

to artifacts than the selection ratios we introduced above, since we have to assume

the t parameters and since we explicitly model the process as exponential.

Figure 6.8 shows a clear sub-family structure in the Leu3 selection network.

Interestingly, the sub-family structure is matching the known Leu3 affinities. We

observe one high affinity family (consisting of the palindromic consensus) and two

reverse complementing, low affinity families. We estimated the average exponential

rate of substitution between high affinity sites as 0.17, and the rate of high to low

affinity substitutions (breaking the subfamily boundaries) as 0.01 (see Figure 6.8B).

To test the significance of this rate difference we performed a generalized likelihood

ratio test. The null hypothesis assumes all substitutions appear with equal rates.

The alternative hypothesis allows different rates for the two types of substitutions

(high-high and high-low). We estimated a p-value by re-sampling substitutions

from an exponential distribution and computing the distribution of likelihood ratios

under the null model. This procedure allowed us to reject the null hypothesis with

a significant p-value (p < 0.01).



142 CHAPTER 6. THE EVOLUTION OF TF BINDING SITES

The significant rate difference supports the hypothesis that the two Leu3 sub-

families represent distinct functional modes of Leu3 regulation and that evolution

conserved not only functionality (ability to bind Leu3) but also the more intricate

level of activation. Motifs in both affinity domains are conserved at similar rates

(Figure 6.9), indicating that both families are functional. Furthermore, motifs with

kd levels that fall in-between the high and low affinity families appear infrequently

in promoters (Figure 6.8c), raising the hypothesis that sites with ambiguous affinity

are selected against, and that evolution imposed a discrete bimodal structure on

Leu3 sites, by selecting only sites that fall clearly in one of the two families.



6.7. SELECTION ON LEU3 TFBSS 143

Figure 6.8: The effect of binding site affinity on Leu3 multi-modality. (A)
Cluster structure in a fragment of the Leu3 selection network. Blue nodes: high affinity
(kd < 50nM) motifs; red: low affinity (kd > 170nM); gray: unknown affinity. Arcs
connect neighbors with high substitution rate. Arcs with low substitution ratio are not
shown. As only motifs with measured affinities and their neighbors are presented, some
real families may appear fragmented. Note that no component contains both high and
low affinity nodes. (B) Rate of substitution as a function of affinity change within and
between the families. Substitutions with similar effect on log(kd) are grouped together
and their joint rate is plotted. The rates of substitution between high affinity sites and
from high to low affinity sites differ significantly (p < 0.01). (C) Motif abundance box-
plots for different affinity intervals. Both non functional motifs (undetectable kd-s) and
medium affinity motifs (50nM < kd < 170nM) have very low abundances compared to
motifs in the high and low affinity intervals, which were also identified as families in the
selection network. This may indicate that medium affinity motifs are selected against to
avoid ambiguity of site modality and to increase transcriptional program robustness.
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Figure 6.9: Leu3 conservation rates in high and low affinity sites. The box-
plot represents the distribution of conservation rates for motifs in the affinity intervals
0nM < kd < 50nM and 170nM < kd ≤ 400nM . In spite of the difference in affinity
level, the conservation rates behave similarly, supporting the claim that both constitute
functional targets of Leu3.



Chapter 7

Evolution of transcriptional

modules

In this chapter we combine some of the techniques developed above, in an attempt to

characterize the evolution of cis-regulation in transcriptional modules. Transcrip-

tional modules of co-regulated genes play a key role in regulatory networks. As

was shown above, we can use functional genomics data to dissect large biological

systems into such modules. Moreover, comparative studies show that modules of

co-expressed genes are conserved across taxa [14, 125, 98]. A common tacit as-

sumption is that conserved regulatory mechanisms underlie module conservation, as

co-regulation imposes tight constraints on the evolution of a module’s promoters.

Indeed, recent studies showed that orthologous transcriptional modules are often

associated with conserved cis-elements [44].

Here we explore the evolution of cis-regulatory programs associated with con-

served modules by integrating expression profiles for two yeast species with sequence

data of 15 other fungal genomes. Our goal is to match the conservation of the

molecular phenotype (gene expression program) with the underlying genotype (cis-

regulatory elements). We show that while the cis-elements accompanying certain

conserved modules are strictly conserved, those of other conserved modules are re-

markably diverged. In particular, we infer the evolutionary history of the regulatory

program governing ribosomal modules. We show how a new cis-element emerged

concurrently in dozens of promoters of ribosomal protein genes, followed by the loss

of a more ancient cis-element. We suggest that this formation of an intermediate re-

145
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dundant regulatory program allows conserved transcriptional modules to gradually

switch from one regulatory mechanism to another while maintaining their function-

ality. The methodology we develop in this chapter can serve as the basis for deeper

explorations into the evolution of regulatory mechanisms.

Results in this chapter were derived in join work with Aviv Regev (Harvard) and

were published in [129].

7.1 Phylogenetic cis-profiling

Our methodology for the analysis of cis-regulatory evolution of transcriptional mod-

ules consists of the following steps. First, we identify conserved transcriptional mod-

ules using expression data from two distant yeast species, Saccharomyces cerevisiae

and Schizosaccharomyces pombe (Figure 7.1a,b). Second, we use sequence informa-

tion to derive orthologous modules in 15 additional fungal species and identify the

cis- regulatory elements associated with each module in each species (Figure 7.11c-

e). Third, we reconstruct the evolution of cis-elements associated with each module

(Figure 7.1f).

7.1.1 Fungal sequences

We used the previously published genomic sequences and annotations of Saccha-

romyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, Saccharomyces

kudriavzevii, Saccharomyces bayanus, Saccharomyces castellii, Saccharomyces kluyveri

[23, 79], Kluyveromyces waltii [78], Ashbya gossypii [32], Candida albicans [74], Neu-

rospora crassa [43], Aspergillus nidulans (Aspergillus Sequencing Project, Center

for Genome Research, http://www.broad.mit.edu/annotation/fungi/aspergillus/),

Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, Yarrowia lipolyt-

ica [35] and S. pombe [151].

7.1.2 Approximate promoter identification

For each species, we obtained a set of approximate promoter regions by extracting

the sequence 600bp upstream of the transcription start site of each annotated gene.
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Figure 7.1: A computational framework for evolutionary cis-profiling of transcriptional modules

in fungi. (a) Expression profiles (genes - rows, arrays - columns) are used to identify transcriptional modules - sets

of genes with a shared expression patterns across a set of conditions (dashed grey rectangles). Independent sets of

transcriptional modules are generated from S. cerevisiae and S. pombe gene expression profiles using the SAMBA

algorithm. (b) Using orthology relations (see Methods), orthologous module pairs are identified and constitute the

conserved transcriptional modules in subsequent analysis. Each pair of modules has a shared subset of matched

orthologous genes (black arrows) together with species-specific genes (blue and red bars for S. cerevisiae and S.

pombe, respectively). (c) Projected orthologous modules (POMs) (dashed rectangle) are generated in additional

species by taking all genes in that species that are orthologous to genes from the conserved module pair - either

just the orthologous core (black arrows) or all genes (black, red and blue arrows). POMs are generated for 15

additional fully sequenced fungal species. (d) Each of the original and projected transcriptional modules (solid

and dashed rectangles, respectively) is searched for enriched cis-regulatory elements (green and orange bars) in its

genes’ promoters (black lines). (e) A phylogenetic cis-profile identifying the enriched elements (green and orange

boxes) is generated for each set of orthologous modules. (f) The evolutionary history of the regulatory mechanism

is reconstructed for each module from its phylogenetic cis-profile using the known phylogeny of the yeast species

[84].
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If another gene was annotated within that region, the sequence was pruned accord-

ingly. For species of the Saccharomyces genus, we found that in many cases, the first

exon was missed by the existing annotation, resulting in the loss of important regula-

tory signals in subsequent promoter analysis. To correct such annotation errors, we

extracted the set of intronic S. cerevisiae genes and their orthologs in each of the Sac-

charomyces species, as defined by the Saccharomyces Genome Database [22] (SGD,

http://www.yeastgenome.org). For each such potential intron-associated gene, we

tested for the occurrence of the exact S. cerevisiae splicing branch site TACTAAC

within 100bp upstream of its annotated start codon. If such a sequence appeared,

we changed the annotation of that gene to reflect an intron of the same size as the S.

cerevisiae intron, thereby moving the predicted promoter upstream. We manually

reviewed all annotation changes.

7.1.3 Ortholog identification

To identify orthologous genes between S. cerevisiae, S. pombe and all other species

we used a standard BLASTp [3] homology search of all open reading frames (ORFs)

in one species against all those of another species. Two proteins in a pair of species

were identified as orthologous if each was the other’s best match according to the

BLAST score, a standard approach in sequence analysis. For S. cerevisiae, A.

gossypii and K. waltii, we also added orthologies based on the previously published

whole genome duplication analysis [32, 78]. For the Saccharomyces species, we used

previously published orthologies [23, 79]. Our subsequent analysis only used ortholo-

gies between pairs of species (e.g., for computing projected orthologous transcription

modules), so pair-wise relations were sufficient and we did not employ higher order

analysis (e.g., grouping orthologous proteins to clusters).

7.1.4 Orthologous transcriptional modules

To discover transcriptional modules we analyzed 1020 previously published expres-

sion profiles for S. cerevisiae and 87 available profiles for S. pombe. The expression

data of each species were analyzed separately using the SAMBA algorithm and two

sets of transcriptional modules were formed. Each transcriptional module is com-

prised of a set of genes with a significant shared expression pattern across a set of

experiments. We measured the degree of orthology between modules based on the



7.2. CONSERVED MODULES AND THEIR CIS-ELEMENTS 149

number of orthologous genes shared by them using the following approach. Given

an S. cerevisiae module and an S. pombe module, we calculated the number of genes

from the S. cerevisiae module that have an ortholog in the S. pombe module, and

used the hypergeometric distribution to calculate a p-value for finding at least that

many shared orthologs between these modules (given the total number of S. pombe

genes with at least one S. cerevisiae ortholog). Two modules with lowest reciprocal

orthology p-values were defined as orthologous and were used in subsequent analy-

sis of conserved transcriptional modules. As the set of modules generated in each

species may contain overlaps, this final step eliminated possible redundancies.

7.1.5 Phylogenetic cis-profiling

To discover cis-elements enriched in conserved modules in different species we em-

ployed the following procedure. Starting with a pair of orthologous transcriptional

modules in S. cerevisiae and S. pombe, we first formed a projected orthologous mod-

ule (POM) in each of the other species by taking all of the genes in this species

that are orthologous to genes from the S. cerevisiae module. Several alternative

definitions of the POMs, such as the union or intersection of the orthologous gene

sets from both the S. cerevisiae and S. pombe modules, yielded similar results. Since

S. cerevisiae is evolutionarily closer than S. pombe to the additional 15 species we

analyzed, we report results based on the simplest procedure, in which we projected

all POMs from the S. cerevisiae modules. Next, we applied our cis-element finding

algorithm (Appendix B) to each of the POMs and construct a set of significant

PWMs in each of them. We then used all the discovered PWMs (from all species

and all modules) as seeds for the PWM optimization algorithm on all modules in

all species. This final step ensures that the absence of a PWM in one species’ POM

is not an artifact of the motif finding procedure.

7.2 Conserved modules and their cis-elements

Using the methods outlined above, we have detected a set of conserved transcrip-

tional modules and identified cis-elements that are enriched in their promoters (Fig-

ure 7.2). In several cases we found similar cis-elements enriched in the orthologous

modules of both species, even when the orthologous genes constituted only a small
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fraction of the modules’ genes. The conserved elements were often also known to

correspond to binding sites of orthologous transcriptional complexes (Figure 7.2a-

b). Surprisingly, we also found several cases where the ”phenotypic” conservation of

gene expression is not accompanied by a corresponding conservation of the enriched

cis-elements. These cases include modules for key molecular functions, such as ri-

bosomal protein synthesis (Figure 7.2d) and stress response (Fig. 1e), all of which

were demonstrated to be conserved across a wide range of taxa [14, 125]. In other

cases, such as the ribosome biogenesis module (Figure 7.2f) or the S phase module

(Figure 7.2a), an S. cerevisiae-specific motif is found along with a second, conserved

motif.

We wished to ensure that the differences in enriched cis-elements between species

are not an artifact of the way in which we identified orthologous transcription mod-

ules or of our motif discovery approach. To verify that these differences are identi-

fiable even when looking for cis- elements only in the promoters of conserved genes

shared by the two modules, we repeated the cis-regulatory analysis using perfectly

orthologous transcription modules in which each gene in one module is matched

by at least one ortholog in the other module. To generate perfect orthologous mod-

ules from a pair of mutual (non-perfect) orthologous ones, we enhanced the existing

SAMBA algorithm. The modified algorithm is initialized with a pair of modules and

starts by removing all non-orthologous genes in the two modules. The algorithm

then iteratively adds and removes pairs of orthologous genes to improve the total

score of the module pair. In cases where a gene has more than one ortholog, the

algorithm can add either a single gene pair or a larger orthologous group of genes,

depending on which alternative scores higher. The algorithm outputs a pair of tran-

scription modules, such that each gene in one module has at least one ortholog in

the other module and such that additional gene pairs cannot be added or removed

without decreasing the total score of the module pair. Importantly, the results of

enriched cis-elements obtained on such perfect orthologous module pairs are consis-

tent with those we reported for the (non-perfect) orthologous modules. They thus

confirm that our findings on the evolutionary dynamic of cis-regulation were not

biased by the imperfect orthology. To ensure that our motif discovery procedure

does not lead to false negatives we initiated the motif search for a given species (in

the second iteration) using the motifs discovered for the orthologous modules in all

the other species.

We conclude that the divergence in cis-elements in conserved transcriptional
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Figure 7.2: Conserved transcriptional modules in S. pombe and S. cerevisiae and
their associated cis-elements. Shown are the S. cerevisiae and S. pombe modules for the
six key conserved modules we identified, together with the cis-elements enriched in the pro-
moters of these modules’ genes. For each module, the profile shows the module genes (rows)
induced (red) and repressed (green) across different experiments (columns). Rectangles
indicate the orthologous genes, their number, and the p-value of their co-occurrence. The
enriched cis- elements associated with each module are shown in sequence logo above or be-
low it. (a) S-phase module, associated with the conserved MCB element (ACGCGT, bound
by orthologous MBF complexes in both species), as well as an S. cerevisiae-specific ele-
ment. (b) Respiration module, associated with the conserved HAP2345 site (CCAATCA,
bound by the orthologous Hap2345 and Php2-5 complexes). (c) Amino acid metabolism
module, associated with the conserved GCN4 site (TGACTCA). (d) Ribosomal proteins
module, associated with RAP1 (TACATCCGTACAT) and IFHL sites (TCCGCCTAG)
in S. cerevisiae, and with a Homol-D box (TGTGACTG) and a Homol-E site (ACCC-
TACCCTA) in S. pombe. (e) Stress module, associated with the STRE site (AGGGG)
in S. cerevisiae and with the CRE site (ACGTCA) in S. pombe. (f) Ribosome biogen-
esis module, associated with the conserved element RRPE (AAAAATTTT) and the S.
cerevisiae-specific PAC element (GCGATGAG).
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modules does not stem from the non-orthologous members of these modules It was

difficult to envision how such divergence in the mechanisms regulating the expres-

sion of highly essential and tightly coordinated modules could take place without

deleterious effects.

7.3 Phylogenetic cis-profiles in 17 yeast species

To try and shed light on the apparent divergence of cis-regulatory elements in con-

served modules, we analyzed the cis-elements enriched in conserved modules in 15

additional fully sequenced fungal species covering the evolutionary spectrum be-

tween S. cerevisiae and S. pombe. Since genome-wide expression data for these

species are currently scarce, we inferred projected orthologous modules (POMs) in

these species by taking all genes that have an ortholog in the S. cerevisiae con-

served modules. We then searched for enriched cis-elements in the promoters of the

projected module’s genes and analyzed each motif identified in one species for its

presence in all other species. As before, we verified that the motifs we detected were

also enriched in modules that were generated by projecting only from the orthol-

ogous cores of the S. cerevisiae and S. pombe modules. This ensured that unique

motifs are not simply contributed by the non-orthologous genes. The resulting phy-

logenetic cis-profile associates each module with a set of cis-elements in each species.

By examining similarities across the profiles, we can identify conserved mechanisms.

Indeed, for modules whose regulatory mechanisms were conserved between S. cere-

visiae and S. pombe, the phylogenetic cis-profiles reveal perfect conservation in all

other species (Figure 7.3), consistent with recently published results [44]. Impor-

tantly, by also considering differences between profiles and invoking classical evolu-

tionary principles (e.g., maximum parsimony), we can reconstruct the evolutionary

scenario that explains the divergence of the regulatory mechanisms associated with

each conserved transcriptional module.
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Figure 7.3: Conserved cis-elements in orthologous modules from 17 yeast
species. For each of the 17 yeast species we analyzed, we show the sequence logo of
the cis- elements discovered in the S phase, respiration and amino acid metabolism mod-
ules. For all species, we discover the MCB box in the S-phase module, the Hap2345
binding site in the respiration module and the GCN4 site in the amino acid metabolism
module. The only exception is the absence of the HAP2345 element in N. crassa, which
may be due to the relatively few genes in the orthologous module. We note that except
for the four sensu stricto Saccharomyces species, all promoters were completely divergent
and could not be aligned, consistent with previous reports [23].
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7.4 The evolution of the ribosomal regulatory pro-

gram

A remarkable example of regulatory divergence is the large, tightly regulated and

highly conserved ribosomal proteins (RPs) module. Two elements are associated

with the S. cerevisiae module: the well-known RAP1 binding site, and an IFHL site

TC(C/T)GCCTA [97, 115, 145]. Two different elements are found in the S. pombe

module: the Homol-D box (TGTGACTG) and the homol-E box (CCCTACCCTA),

both of which have been shown to regulate the expression of RPs in this species

[150]. Such disparity can result either from divergence in the DNA binding sequence

of the same ancestral transcription factors or from the emergence of novel sites

bound by distinct transcription factors. If the latter option is true, it also raises

the questions of how a regulatory program can shift from one mechanism to another

without affecting the module’s function. The detailed phylogeny of cis-elements in

RP promoters (Figure 7.4) allows us to infer the evolutionary scenario underlying

this divergence and to address this question of evolvability.

As shown in Figure 7.4, the profiles of S. castellii, C. glabrata, S. kluyveri, K.

waltii, and A. gossypii contain both the Homol-D box and the RAP1 site (in addi-

tion to a strong IFHL site, discussed below). This apparent redundancy of binding

sites in these species has two important implications. First, the presence of inter-

mediate species, in which both the Homol-D and the RAP1 sites appear in RP

promoters, suggests that the regulatory mechanism associated with the RP module

has ”switched” from a Homol-D-based mechanism (in the Ascomycota ancestor and

S. pombe) to a RAP1-based one (in S. cerevisiae) and was not modified due to a

mere drift in cis-element sequences. Second, it points to a potential process by which

such a dramatic change in the regulatory mechanism of an essential module could

take place without destroying the coordinated regulation. According to the most

parsimonious scenario supported by the data (Figure 7.5), an ancient Homol-D box

played the key role in regulating RP transcription. Subsequently, before the diver-

gence of A. gossypii, RAP1 emerged as an additional regulator of this module, while

the module maintained the functionality of the Homol-D box. As the abundance of

RAP1 sites increased, Homol-D lost its central role and was eventually eliminated,

possibly following the divergence or loss of the corresponding unknown transcrip-

tion factor. Thus, a process of infiltration (of RAP1) and loss (of Homol-D) swept
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through the promoters of the RPs.

To support this evolutionary scenario, we compared two possible scenarios for the

ancestral regulation of RP genes by Homol-D and RAP1. In the most parsimonious

scenario (Figure 7.5A), Homol-D was present at the ancestral Ascomycotes species,

but RAP1 was not. This scenario requires six events (1) Loss of the Homol-D site

in the A. nidulans - N. crassa lineage (2) Loss of the Rap1p TA domain in the C.

albicans lineage (3) gain of RAP1 prior to A. gossypii speciation (4) loss of Homol-D

in the K. lactis lineage (5) loss of Homol-D in the Saccharomyces lineage (6) Loss

of the Homol-D site in the metazoan lineage (or alternatively gain of the site in

the fungal kingdom). In the alternative scenario (Figure 7.5B) both elements were

present at the ancestral species. This scenario requires (in the most parsimonious

explanation) ten events (1) Loss of the Rap1p TA domain in S. pombe (2) Loss of the

Rap1p TA domain in the A. nidulans - N. crassa lineage (3) Loss of the Homol-D

site in the A. nidulans N. crassa lineage (4) Loss of the Rap1p TA domain in the

C. albicans lineage (5) Loss of the Homol-D site in the C. albicans lineage (6) loss

of Homol-D in the K. lactis lineage (7) Loss of the Homol-D site in the S. cerevisiae

- S. bayanus lineage (8) Loss of the Rap1p TA domain in the Y. lipolytica lineage

(9) Loss of the Rap1p TA domain in the metazoan lineage (or alternatively gain of

the domain in the fungal kingdom) (10) Loss of the Homol-D site in the metazoan

lineage (or alternatively gain of the site in the fungal kingdom).

7.5 The basis for regulator switching in the ribo-

somal regulatory program

Several additional lines of evidence support the ”TF switching” evolutionary sce-

nario. First, we consider the Rap1p transcription factor. Rap1p’s binding specificity

is associated with its ancient and conserved function in the regulation of telomere

length [88]. The RAP1 binding site in RP promoters is a sub-motif of the telom-

eric repeat sequence bound by Rap1p in these species [25], including those that do

not have a RAP1 site in their RP promoters. Thus, the sequence of the RAP1

motif that emerged in RP promoters matched Rap1p’s pre- existing DNA binding

site. More importantly, analysis of Rap1p’s coding sequence in all 17 fungal species

and in mammals suggests that the invasion of RAP1 sites into RP promoters is

associated with the acquisition of a new trans-activation (TA) domain by Rap1p
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Figure 7.4: Evolution of the regulatory mechanisms in the highly conserved
module of ribosomal proteins. Phylogenetic cis-profile of the RP module. A schematic
phylogenetic tree (branches are not drawn to scale) representing the known phylogeny [84]
of the 17 analyzed species is shown, together with the sequence logos of the main cis-
elements enriched in each module’s promoters, grouped into three distinct types (colored
boxes): RAP1 (green), IFHL (blue) and Homol-D (magenta). The total number of genes
in each POM is shown in parentheses, and the number of genes that contain each motif
is indicated as well. Although the RP module is phenotypically extremely conserved, the
phylogenetic cis-profile reveals a gradual switch from a Homol-D dominated mechanism
to a RAP1-controlled one, beginning before the speciation of A. gossypii. Concomitantly,
the IFHL site underwent gradual sequence divergence and possible dimerization or domain
duplication of the corresponding transcription factor.
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Figure 7.5: Evolutionary scenarios for RP genes regulation by Homol-D and
RAP1 cis-elements.
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after the C. albicans speciation and prior to the A. gossypii speciation event (Fig-

ure 7.6). Thus, while the DNA binding domains of Rap1p (Myb- domains) have

been conserved in all species, the TA domain, which is responsible for Rap1p’s role

as an RP transcription factor [58], follows exactly the same evolutionary pattern as

the RAP1 binding site in RP promoters, and is present only in the clade spanning

from A. gossypii to S. cerevisiae. Moreover, Rap1p from species lacking the TA

domain, such as C. albicans and S. pombe, cannot functionally complement for the

S. cerevisiae Rap1p [76, 15, 141], while those with the TA domain (e.g., S. castellii)

are adequate substitutes [146]. Thus, the newly acquired domain allowed Rap1p to

assume a new role in transcriptional regulation, whereas its conserved DNA binding

domain determined the sequence of its corresponding cis-element.

Analysis of the RP promoters loci that contain a Homol-D site in A. gossypii

and K. waltii, two of the species in our collection to also exhibit a RAP1 site, sug-

gests a possible mechanistic model for the process of switching of the transcription

factor binding site. In these species, when both RAP1 and Homol-D sites appear in

the same promoter, they are usually separated by no more than 2-6 base-pairs, in

the conserved order 5’-HomolD-RAP1-3’ (Figure 7.7,Figure 7.8), with Homol-D in

a fixed orientation relative to the transcription start site (in contrast to S. pombe,

where it has no strand preference). This strong association may indicate a corre-

sponding cooperative association between the Homol-D binding protein and Rap1p,

which may have facilitated Rap1p’s infiltration into the RP regulatory program.

Taken together, our results for both the transcription factors and their binding sites

propose a coherent view of a process by which RP regulation gradually switched

from one transcription factor to another without losing its essential functionality.

7.6 Gradual evolution in the IFHL box

Additional examination of the phylogenetic cis-profiles (Figure 7.4) suggests that the

second cis-element in the S. cerevisiae RP module, the IFHL site (TCTGCCTA), has

evolved primarily by a different mechanism, involving gradual divergence in DNA

binding sequence. First, this element is clearly enriched in the entire Saccharomyces

genus as well as S. kluyveri, K. lactis, A. gossypii and K. waltii. Furthermore, close

inspection of motifs enriched in the remaining species, C. albicans, D. hansenii, Y.

lipolytica, N. crassa, A. nidulans and S. pombe, suggests that they also carry related
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Figure 7.6: Rap1p sequence evolution. A scaled schematic representation of Rap1p
sequences is shown for 8 of the species in panel A, along with the human protein. Colored
ovals indicate the presence and position of BCRT (orange), DNA binding (Myb, pink),
silencing (olive), and trans-activation (TA, dark green) domains. The DNA binding Myb-
domain is present in all species, but the trans-activation domain is apparent only in those
species that harbor the RAP1 motif in their RP module genes (S. cerevisiae, S. castellii,
K. waltii, A. gossypii and all the intermediate species). The TA domain is absent from
all species lacking the RAP1 element in RP promoters, including C. albicans, N. crassa,
A. nidulans, and S. pombe. A Rap1p ortholog cannot be identified in Y. lipolytica and no
significant homology was found to the TA domain for the D. hansenii Rap1p (not shown).
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Figure 7.7: The Homol-D-RAP1 cis-regulatory module. Shown is a scaled
schematic representation of the 35 promoters of the A. gossypii RP genes with the high-
est scoring Homol-D elements. Colored bars indicate the Homol-D (magenta) and RAP1
(green) sites. The two sites are extremely close, with the RAP1 trailing the Homol-D
site by 2-6 bp, indicating a possible interaction between their corresponding transcription
factors.



7.6. GRADUAL EVOLUTION IN THE IFHL BOX 161

Figure 7.8: The Homol-D-RAP1 cis-regulatory module in A. gossypii. Shown are
the sequences flanking the highest scoring Homol-D sites in the promoters of RP genes
in A. gossypii. Homol-D sites (magenta) and RAP1 sites (green) are highlighted. The
two sites appear in very close proximity - within a 2-6 bp distance - indicating possible
interaction between the corresponding transcription factors binding them.
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variants of the same motif (albeit not identical ones). In C. albicans, the strongest

cis-element in the RP module (AGGGCTATAGCCCT) is a palindrome containing

two copies (TAGCCCT and its reverse complemented AGGGCTA) of a variant of the

second part of the IFHL motif (GCCTA). A similar complex cis-element is present

in D. hansenii and Y. lipolytica. The promoters of RP genes in the evolutionary

distant N. crassa and A. nidulans contain an exact match to the second half of the

C. albicans motif (GCCCTA) and the S. pombe Homol-E motif (CCCTACCCTA)

is a duplicated variant of the same motif (CCCTA). Thus, an ancestral IFHL DNA

binding protein may have been associated with the RP module throughout the

evolutionary history of the Ascomycota clade. In addition to acquiring smaller

scale mutations causing changes in its DNA recognition site, the IFHL binding

protein may have either undergone convergent domain duplication in C. albicans

and S. pombe or acquired a dimerization domain in these species. Note that these

dimerization or domain duplication events have presumably occurred by different

routes in the two species, accounting for the differences in the organization of the

respective elements (direct repeats vs. palindromic ones). Additional species-specific

motifs are also associated with the RP module, consistent with the evolutionary

flexibility of the RP regulatory mechanisms. For example, RP module genes in C.

albicans, D. hansenii, and Y. lipolytica are also enriched for the RRPE motif, which

is usually involved in other stress related modules. Traces of this enrichment can

also be found in other species, most notably K. waltii, S. bayanus and N. crassa.

7.7 Conservation of the spatial configuration in

ribosomal promoters

To examine the interplay between the three main regulatory elements in different

species, we analyzed their co-occurrence in the RP genes in each of the species and

their relative spatial organization (Figure 7.9, Figure 7.10). In A. gossypii and K.

waltii many promoters have ”redundant” regulatory mechanisms with three different

cis-acting sites, whereas S. cerevisiae promoters are simpler and often contain only

a (possibly duplicated) RAP1-binding element. Spatial analysis also reveals that

certain features of global promoter organization are conserved across species. For

example, we found that IFHL sites are typically found 100-200 bp 5’ to the Rap1

site, consistent with the functional constraint imposed by the interaction between
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Ifh1p, Fhl1p and Rap1p in the combinatorial regulation of RP genes [97, 115, 145].

Finally, we asked whether some of the differences in the organization of the regula-

tory mechanisms may also match ”phenotypic” differences in gene expression. The

evidence from S. cerevisiae and S. pombe indicates that switching from a Homol-D

to a RAP1 cis-regulatory mechanism does not entail such a change, as RP genes

are strictly co-regulated in both species, and respond similarly to environmental

stress. However, some of the organisms, for example C. albicans, employ a regula-

tory mechanism lacking both RAP1 and Homol-D elements (and using IFHL and

RRPE elements). Indeed, a recent expression profiling study [39] indicates that the

C. albicans RP module responds much more weakly to environmental stress than

either S. cerevisiae or S. pombe.

7.8 Regulatory divergence in the ribosome bio-

genesis module

The phylogenetic cis-profile of the ribosome biogenesis (RB) module (Figure 7.11)

further implies the rapid evolution of cis-regulatory mechanisms. We detected two

elements that were previously associated with the transcription of ribosome biogen-

esis genes in S. cerevisiae - the Ribosomal RNA Processing Element (RRPE) [67]

and the Polymerase A and C (PAC) element [30]. RRPE was detectable in each of

the 17 species, whereas we found PAC as a possible innovation of the C. albicans -

S. cerevisiae lineage (a GATA like box in N. crassa may suggest the origin of this

innovation). The phylogenetic profile of a third element, TTTCTTTTT, indicates

emergence prior to A. gossypii speciation and loss after the S. kluyveri - K. waltii

speciation. Co-occurrence and spatial analysis indicate that, as in the emergence of

the RAP1 site in the RP module, the transient TTTCTTTTT site is spatially clus-

tered with the additional binding sites PAC and RRPE (Figure 7.12, Figure 7.13,

Figure 7.14), possibly facilitating its emergence as a regulator of the module.
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A B

C D

Figure 7.9: Distributions of relative distances between pairs of cis-elements in
promoters of RP genes. Shown are distributions of the distances (in bp) between pairs
of cis- elements in different fungal species. In case of several hits of the same element
in the same promoter, the strongest match to the site was used. The coupling of sites
with typical (often tight) distances in multiple species corroborates their functional inter-
action. (a) Distribution of distances between Rap1 and Homol-D sites. The two sites are
tightly coupled when they co- occur in the same promoters. (b) Distribution of distances
between Rap1 and IFHL sites. Both A. gossypii and S. castellii exhibit a similar and
specific distance. A slightly increased distance is observed between the sites in K. waltii,
probably as a consequence of IFHL infiltration in this species. The distances between
the motifs in the sensu stricto Saccharomyces species, S. cerevisiae and S. bayanus, are
more variable and the distribution is both less peaked and bimodal. (c) Distribution of
distances between pairs of Rap1 sites. A very tight positional coupling of multiple RAP1
cis-elements is exhibited in all species, possibly serving to increase the binding affinity for
the corresponding transcription factor and to enhance the evolutionary robustness of the
transcription program. (d) Distribution of distances between pairs of IFHL sites. Posi-
tional coupling of multiple IFHL cis-elements is exhibited, in particular in A. gossypii and
K. waltii.
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Figure 7.10: Co-occurrence distribution of cis-regulatory elements in promot-
ers of RP genes in specific species. The percentage of promoters bearing each type
of pair of cis- elements is shown for each of the species. We observe a transition from
highly redundant promoters, with multiple types of cis-elements (e.g. in A. gossypii and
S. castellii) to a RAP1- dominated regulatory mechanism (e.g., in S. bayanus and S. cere-
visiae). Consistent with the spatial distributions, promoters with two IFHL cis-elements
are more abundant in K. waltii compared to the other species, and Rap1-IFHL pairs are
less abundant in the Saccharomyces sensu stricto species
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Figure 7.11: Evolution of the regulatory program in the ribosome biogenesis module. A schematic

phylogenetic tree (branches are not drawn to scale) representing the known phylogeny [84] of the 17 analyzed species

is shown, together with the sequence logos of the main cis-elements enriched in each module’s promoters, grouped

into three distinct types (colored boxes): RRPE (magenta), PAC (green) and a TC-rich sequence (blue). The total

number of genes in each POM is shown in parentheses, and the number of genes that contain each motif is indicated

as well. While the RRPE element is conserved in all 17 species, the PAC element emerged only prior to the N.

crassa or C. albicans speciation, whereas the ”TC element” (TTTCTTTTT) is specific to A. gossypii, K. lactis, K.

waltii and S. kluyveri, possibly following rapid modification of the regulatory network before the speciation of A.

gossypii and after the divergence of S. kluyveri. The GATA motif in N. crassa differs from the PAC element in one

critical position.
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Figure 7.12: Distributions of the relative distance of cis-elements in promoters
of RB genes. Shown are distributions of the distances between pairs of cis-elements in
different fungal species. Tight coupling is observed for all three factors (TC, RRPE and
PAC).
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Figure 7.13: Co-occurrence distribution of cis-regulatory elements in promoters
of RB genes in specific species. The percentage of promoters bearing each type of
pair of cis- elements is shown for each of the species. We observe that co-occurrence of two
RRPE sites in the same promoter is rare in K. waltii and S. kluyveri. This may be due to
the presence of TC elements that serve as a substitute site in these species. A. gossypii
genes, which also have the TC element, display more redundant promoters in general

7.9 Buffering and evolvability in transcriptional

modules

We hypothesize that two major different trends shape the functional interaction

among different cis-elements and influence their evolution. The first trend (”con-

servation”) occurs wherever there is a specific regulatory role for each of the cis-

elements, and selection conserves a particular combination of cis-elements present

in each gene’s promoter. The second trend (”buffering” [62]) occurs in cases where

two cis-elements have a similar regulatory role, and increases the redundancy in the

regulatory mechanism. We estimated the relative contribution of these two forces

at different stages in the evolution of the RP regulatory mechanisms. For each el-

ement we produced a ”cis-affinity profile” that indicates which genes it occurs in

and at what strength. We then compared these profiles between species separated

by various phylogenetic distances by computing their pair-wise correlations. When

conservation is a dominant trend, we expect the same cis-regulatory element to ap-

pear in the same genes in two different species, as the element’s function cannot

be easily complemented by substitution with other elements active in the module.

Hence, a high correlation between the corresponding profiles should be observed. On
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Figure 7.14: The TC-RRPE-PAC cis-regulatory module in A. gossypii. Shown are
the sequences flanking the highest scoring RRPE site (magenta) in the promoters of RB
genes in A. gossypii. RRPE sites (magenta), PAC sites (green) and TC sites (blue) are
highlighted. The three sites are tightly organized into a cis-regulatory module, centered
on RRPE, with the TC site upstream and the PAC site downstream.
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the other hand, when buffering is dominant, and two elements are interchangeable,

each should exhibit a lower correlation when comparing related species.

Specifically, for each combination of motif m and species s, we generated cis-

element affinity profile as a vector Lm,s, where Lm,s(g) is the PWM likelihood score

of the best hit of motif m in gene g’s promoter. We then computed inter- and

intra- species correlations of such cis-element profiles by calculating the Spearman

rank correlation of each pair Lm,s and Lm′,s′ . We derived a p-value for rejecting the

independence assumption corrected for multiple testing using Bonferroni’s factor.

In principle, species at different evolutionary distances may exhibit different levels

of promoter conservation, resulting in different background levels of affinity profile

conservation. However our analysis shows that for evolutionary distances beyond

the sensu stricto Saccharomyces clade, this background level is negligible.

We found several cases of significant correlation between cis-element profiles

(Figure 7.15). For example, the profiles of IFHL elements are often highly correlated

with each other across different species (e.g., A. gossypii, K. waltii and S. castellii),

suggesting that these elements play a distinct role in the regulation of a specific sub-

set of RP genes in some species (Panel a). In other cases, we find correlation between

different cis- elements in different species, suggesting that one element assumed the

functional role of the other. This is the case when correlating the profile of Homol-D

box elements in the species that are in the process of losing this site (S. kluyveri,

S. castellii) and the RAP1 profile in species that have completely lost Homol-D (S.

cerevisiae, S. bayanus, panel b). Finally, we observe cases where the correlation

between similar cis-elements in different species is low, a fact that may indicate

the aforementioned buffering trend. For example, the RAP1 profiles exhibit low

correlation within some of the species (e.g. between A. gossypii, K. waltii, and S.

castellii) (panel c). A similar low correlation is found between the Homol-D profiles

in the same set of species (panel d). This may indicate that the two motifs are

functionally redundant, and thus their particular set of targets is not conserved.

Note, that while the affinity profiles are statistically robust and provide interesting

insights in some cases, other findings cannot be explained in a straightforward way

by the two evolutionary processes we considered. These include the high correlation

between IFHL profiles in N. crassa and S. kluyveri and the medium correlation

between Homol-D profiles in S. pombe and S. kluyveri. Overall, it appears that both

conservation and buffering play a role in shaping the cis-regulatory mechanisms

associated with the RP module in the 17 analyzed species.
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Figure 7.15: Conservation and buffering in the evolution of RP regulation. Shown are color-coded

correlation diagrams between pairs of cis- element affinity profiles across different species. The color intensity

(middle scale) of each entry indicates the significance of the correlation coefficient between the corresponding pair

of cis-element affinity profiles in the two species (white entries are insignificant). Darker entries indicate that the

pair of cis-elements may be functionally conserved in a gene specific manner between the corresponding species.

(a) IFHL correlations. We observe a significant correlation between IFHL elements in A. gossypii, K. waltii and

S. castellii and a weaker correlation in species closer to S. cerevisiae. (b) RAP1 and Homol-D correlations. We

observe significant correlation between the Homol-D profile in S. castellii and S. kluyveri and the RAP1 profile in

S. cerevisiae and S. bayanus. (c) RAP1 correlations. We observe lack of conservation in the gene specific affinity

profiles of RAP1 in A. gossypii and K. waltii, two species in which both RAP1 and Homol-D sites are associated

with RP promoters. This is in marked contrast to the significant correlation between RAP1 profiles in species that

completely lost the Homol-D box (S. cerevisiae and S. bayanus). (d) Homol-D correlations. As with RAP1 sites,

we observe lack of conservation between the gene specific affinity profiles of Homol-D in A. gossypii, K. waltii, and

S. castellii.
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7.10 Modes of evolution in transcriptional mod-

ules

The evolution of transcriptional modules is an important aspect in understanding

regulatory networks. Previous studies have suggested that groups of genes that are

orthologous to S. cerevisiae expression modules are frequently regulated by con-

served cis-elements [44]. Our analysis demonstrates that the regulatory mechanisms

associated with ancient and tightly conserved transcriptional modules can often be

remarkably diverged. The results in this chapter suggest a general framework for the

study of the evolution of module regulation, including full conservation of binding

site and transcription factor, gradual changes in a single DNA binding site, simpli-

fication and elaboration of existing programs and even dramatic events of element

infiltration and loss that result in transcription factor switching (Figure 7.16). In

particular, we suggest that the formation of a redundant and coupled intermediate

program may explain how a coordinated response may be conserved even though the

underlying regulatory mechanisms are changing. This dynamic view of regulatory

network evolution is consistent with previous studies on rapid promoter evolution

[94, 93, 152], and with the known relative flexibility of cis- regulatory sequences com-

pared to protein coding sequences. Our analysis implies that specific evolutionary

processes exploit the dynamic nature of promoters to continuously modify the level

of redundancy in regulatory mechanisms. Such redundancy may provide a buffering

capacity [62] and may be important for the evolvability [82] of the regulatory pro-

gram. Additional data and further studies are required to validate our hypotheses

and fully elucidate such processes. For example, we still lack experimental evidence

as to the redundancy of the various sites in the intermediate programs, and we do

not know how a large number of novel binding sites are introduced in a coordinated

fashion, whether the coupling of elements we observed within promoters facilitates

or constrains the evolution of regulatory programs, and the exact rate of sequence

changes necessary to introduce a novel motif.

The results discussed above have significant implications for the study of tran-

scription regulation in an evolutionary context. We have shown that computational

techniques, merging new data with well-established evolutionary concepts, facilitate

improved integration of genomic (sequence) and phenotypic (expression) data and

their synthesis into a coherent reconstruction of the evolution of regulatory net-



7.10. MODES OF EVOLUTION IN TRANSCRIPTIONAL MODULES 173

Figure 7.16: Evolution of transcriptional modules regulation. We summarize the
results of our analysis for several transcriptional modules and their regulatory programs.
The schematic figure represents the evolution of an archetypical module’s gene promoter,
but importantly, the evolutionary process is applied to dozens of promoters simultaneously.
Conservation of the modules is sometime induced by conservation of both at both the cis-
and trans- regulatory levels, but in other cases our results suggest gradual changes in the
binding sites, elaboration of the transcriptional program by emergence of new cis-elements
or even a process by which one cis-element is replaced by another through an intermediate
phase of a redundant program. The regulation of modules thus evolve at both the cis-
and trans- levels, and is flexible even when the module contains dozens of genes and is
functionally conserved.
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works. The evolutionary context is crucial for the exploitation of these data and

greatly enhances the potential of comparative methods [128]. Whereas previous re-

search in comparative genomics of regulatory networks focused on the identification

of conserved cis-elements [23, 79, 108], our results emphasize the importance of ac-

counting for changes - both gradual sequence divergence and dramatic innovation

processes. Finally, the putative buffering effect of redundant regulatory elements

that we report here may be instrumental in enabling rapid evolutionary change

of regulatory networks, and may play a major role in metazoan eukaryotes. The

typical animal promoter is organized into cis-regulatory-modules [96] that contain

multiple, often redundant, binding sites. It is possible that this organization is a

consequence of evolutionary processes similar to those we report here, that are es-

sential for the emergence of the increased complexity and evolvability of animals’

regulatory networks.



Appendix A

Functional annotation of gene sets

using the GO hierarchy

A.1 Introduction

Many of the current methods in functional genomics, both experimental and com-

putational, generate sets of genes as their output. For example, gene expression

experiments are used to identify sets of differentially expressed genes or clusters of

co-regulated genes. Successful analysis of these experiments relies on the association

of gene sets with biological function. In many of the applications, known functions of

genes in each set are used to predict the function of the whole set in a computational

procedure that is called functional enrichment testing. Rougly speaking, we wish to

check if a particular gene set contains an unusually high proportion of genes from

any particular category, compared to the complete collection of genes. To facilitate

such analysis, databases for gene functional annotations (for example, the important

Gene Ontology database [50]) were formed and a considerable community effort is

continuously put into their update.

A major concern with testing functional enrichment for a gene set vs. a mod-

ern gene annotation database is the extensive multiple testing that is performed

when considering thousands of different functional categories in repeated statistical

enrichment tests. The problem is particularly acute since the number of defined

functional categories is rapidly increasing and, moreover, different categories inter-

act in complex and sometime hidden ways so that naive schemes for multiple testing
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correction reduce sensitivity unjustifiably. To address this problem, we have devel-

oped a program called TANGO (Tool for ANalysis of GO enrichment). TANGO

performs functional enrichment tests that fully account for multiple testing using a

rapid implementation of a simple resampling algorithm. The program utilizes sev-

eral methods for filtering similar annotations and also corrects for multiple testing

in cases where many sets (e.g., all clusters) are screened at once. The TANGO

algorithm thus allows functional testing using the entire GO hierarchy and provides

reliable and parsimonious results for single or multiple gene sets.

A.2 TANGO main features

• Test functional enrichment of a collection of target gene sets given large

databases of functional annotations (GO, MIPS)

• Stringent, yet sensitive correction for multiple testing providing more power

than the standard correction schemes that assume independence between the

tests (Bonferonni/FDR [12]).

• Test enrichment using the entire annotation vocabulary, finding the best level

of granularity by testing all the hierarchy, eliminating the need for pre-processing

and simplification of the annotations used (as in, e.g., GO Slim).

• Efficient implementation allows testing to be performed interactively with up-

stream analysis algorithms (e.g., clustering, biclustering).

A.3 Correcting for multiple testing

The basic statistical test that is commonly performed to test enrichment of a target

gene set for genes annotated with a particular function, employs the hyper-geometric

distribution. According to the test (also called the Fisher exact test for indepen-

dence), we are observing a background set of n genes, m of which are annotated with

a certain function (the set A). Given a target set T of m′ objects, the probability

that the intersection of T and A is of size k is:

Prob(|A ∩ T | = k) = hg(n,m,m′, k) =

(
m
k

)(
n−m
m′−k

)
(

n
m′

) (A.1)
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The p-value for intersection of size k or larger between A and T is thus:

EnrichmentPV (T, A) = Prob(|A ∩ T | ≥ k) =
∑
j≥k

hg(n, |A|, |T |, j) (A.2)

Given a database of functional annotations, including a collection of terms and

their annotated sets of genes Ai, we use this formula to determine which of the

annotation terms is enriched within the target set T . We define:

MinEnrichmentPV (T,A) = maxi(EnrichmentPV (T,Ai)) (A.3)

When the number of terms is large, the p-values we derive have to be corrected,

since we test many hypotheses and can obtain low p-values even if the target set T is

completely random. Assuming the sets Ai were independent, one could have applied

a standard correction procedure (Bonferroni for controlling the maximal p-value,

Benjamini- Hochberg for controlling the false discovery rate (FDR)). However, when

the sets Ai are highly dependent, such correction may be too stringent. Consider

for example two GO terms that have exactly (or almost exactly) the same set of

annotated genes in a certain species. The p-values for enrichment in both of these

sets are completely (or almost completely) dependent and we need not correct for

multiple testing. The dependencies between annotation terms can be completely

characterized using the sizes of their gene sets intersections, but as these intersections

define an arbitrary dependency structure it is difficult to analytically describe the

appropriate correction procedure for multiple testing. In other words, no closed

form formula is known that determines, given arbitrary sets Ai and a target set T ,

the distribution of MinEnrichmentPV (T,A).

To cope with this problem, TANGO takes a simple approach, and computes

the empirical distribution of the maximal enrichment p-value by sampling a large

number of random gene sets and computing their p-values vs. each of the annotation

sets. Formally, TANGO estimates:

CorrectedEnrichmentPV (T,A) =
1
B
|{j|1 ≤ j ≤ B, EnrichmentPV (pj(T ),A) ≤ EnrichmentPV (T,A)}|

(A.4)

where pi are random permutations of the genes background set (see comment below),

and B is the sample size. When annotating a collection of gene sets Ti in a single
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analysis, we also have to correct for testing each of them separately:

CorrectedEnrichmentPV (Ti,A, {T1, . . . , Tl}) =
1
B
|{j|1 ≤ j ≤ B, MinEnrichmentPV ({pj(Tl)}l,A)) ≤ EnrichmentPV ({Ti},A)}|

(A.5)

In practice, we compute corrected p-values for a collection of gene sets Ti and

an annotation database Aj by estimating the distribution of enrichment p-values

in permuted genes sets p(Ti). The idea is that we keep all of the relations among

annotation sets Ai and among target sets Tj, but we decouple any dependency

between them by applying a random permutation on the gene ids used by the Tis.

Finally, we note that if the analysis generating the target sets included only part

of the genome (because of, e.g., the ensemble of genes printed on the chip), we

should perform all the analysis with an appropriately chosen background set. To

do this we intersect all annotation sets with the analysis gene subset, and assume

the basic hyper-geometric tests to be performed with a universe including only these

relevant genes. This precaution can prevent many artifacts, for example, discovering

enrichment for cancer genes in clusters that were generated from data derived by a

chip that contains only cancer related genes.

A.4 Filtering Redundancies

Gene annotation databases are designed for maximum flexibility and provide gen-

eralized biological vocabulary that can support diverse species and model systems.

The organization of the vocabulary is hierarchical and often several level of the hi-

erarchies are not relevant for a specific model system. As a result, when testing

functional enrichment, one can detect several annotation terms with significant cor-

rected p-values, such that all of the terms reflect essentially the same set of genes.

To avoid reporting such redundant terms, TANGO performs a redundancy filtering

procedure based on the conditional hyper-geometric test. The idea is to start with

all annotation terms that got a significant enrichment p-values for a certain target

set, and then test if given one of the enrichments, other enrichments are no longer

significant. Formally, given a target set T that is enriched with genes from the set

A′, we test if T is enriched with genes from another set A, assuming we already
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know the size of intersection between A′ and T and between A and A′:

CondEnrichmentPV (T, A|A′) =∑
k≥|T∩A∩A′| hg(|A′|, |A ∩ A′|, |T ∩ A′|, k)×∑l≥|(T−A′)∩A| hg(n− |A′|, |A− A′|, |T − A′|, l)

(A.6)

To filter redundancies, TANGO performs a greedy algorithm. First, all annota-

tion sets are sorted by their p-values of enrichment in the set T , generating a or-

dered list Ai1 , Ai2 , . . . , Aik . Second, the list is traversed, and only sets Ai for which

CondEnrichmetPV (T, Ai|Aj) < τ for all j < i are reported. The parameter τ can

be modified to control the allowed level of redundancy. We note that three types of

typical redundancies can be detected. The first scenario is where a general annota-

tion terms is enriched in the set T and as a result, several of its specializations are

also enriched (although their p-values will be typically larger). In this case TANGO

selects the more general term and removes the specializations. The second scenario

is where a specific annotation term is enriched in the set T and as a result several of

its generalizations are also enriched. In this case TANGO selects the specialization

and removes the generalizations. The third scenario is where two terms have almost

identical gene sets associated with them. In this case TANGO arbitrarily chooses

one of the terms.

A.5 Implementation notes

TANGO is implemented in C++ and is provided for Linux and Windows. The

implementation makes heavy use of bit vectors operations that are optimized for

finding the size of intersection between a target set and annotation set. TANGO

can annotate hundreds of target sets using thousands of annotation sets with 1000

bootstraps iterations in minutes on a standard PC. The programs is accessible from

the Expander system, but is also provided sperately with a standalone interface that

is documented below.
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A.6 Reference manual

Using the TANGO program

----------------------

TANGO is a program for functional annotation of gene sets. It uses pre-processed

tables of genes and their GO annotation, and performs hyper-geometric enrichment

tests for sets of genes with common annotation and sets of genes given as input.

Importantly, TANGO corrects for multiple testing at both the multiple GO classes

and multiple tested sets levels. It does so by bootstrapping and estimating the

empirical p-value distribution for the evaluated sets.

TANGO is a standalone program available for Linux and Windows. Precompiled

annotation tables are available through the Expander system. See

www.cs.tau.ac.il:/~amos for downloading the current standalone version.

and www.cs.tau.ac.il/~rshamir/expander for precompiled annotation files for

various species.

1.Running TANGO

------------

You should run tango like this:

tango parameter_file

TANGO will read files as specified in the parameter file and will write its

output to yet another file (that is specified in the param file). Below

you’ll find a description of the files and parameters.

2.Precompiled annotation files

----------------------------

TANGO use preprocessed GO annotation files to map genes and known annotations.

All files are tab delimited text files. A set of tables always describe
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the annotation of a single species.

varob.txt - mapping variable internal ids with external gene identifiers

(ORF, Locuslink etc)

Field 0: Internal variable id (Number)

Field 1: Variable Name (String)

Field 2: Variable External Key (String)

Example line:

21043 TP53 7157

goclskey.txt - key file containing the names of all annotation categories.

Typically, each category reflects one GO attribute, and the gene associated

with it those annotated with this attribute, or with an attribute

that specialize it.

Field 0: Internal annotation category id

Field 1: GO id (or any external id for the annotation source)

Field 2: Category name

Field 3: Number of genes annotated with this category (not used by TANGO)

Example line:

0 GO:0008289 lipid binding 15

clsassoc.txt - this table associates categories with variable internal

ids (key to varob.txt)

Field 0: Category id (key to goclskey)

Field 1: Gene id (key to varob)

3.TANGO Input files

----------------
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TANGO processes two input files. One defines the set of genes that should be

considered as the background. Typically this set can include the entire genome,

or only the genes that were printed on the chip that was used to

generate the clusters/biclusters, or only the genes that survived the

filtering that precede the analysis that generated the gene sets. The second

file defines the actual sets (clusters/biclusters) to analyze.

chip.txt - defines the background set

Field 0: Gene external key (points to field 2 in the varob table). In other

words - a list of locuslink ids (mammals), orf codes (yeast), flybase ids

(fly) etc.

sets.txt - defines the sets to annotate

Field 0: Gene external key (points to field 2 in the varob table)

Field 1: Set Id (serial number for the sets to annotate)

Example:

YOR348C 0

YPL265W 0

YPL274W 0

YAL067C 1

YBL042C 1

YBR021W 1

This example defines two sets of yeast genes, each with 3 genes.

4.TANGO output file

------------------

TANGO generates a tab delimited text file including all significant annotations.

The format is as follows:
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Field 0: set id (key to sets.txt)

Field 1: annotation name (name from goclskey)

Field 2: uncorrected hyper-geometric p-value (log10)

Field 3: Corrected hyper-geometric p-value (log10)

Field 4: fraction of genes in the set annotated with the category

Field 5: number of genes in the set annotated with the category

Field 6: category external id (field 1 in goclskey)

5.TANGO Parameter file

-------------------

TANGO comes with a parameter file that controls the input files it

uses, as well as important algorithmic parameters. The file is formatted as

an INI file - including "scopes" (bracket delimited names in their own lines)

and "options" (assignments of values to parameter in the format

options=value). The ordering of options is not important as long as each

option is below its appropriate scope.

Here is an example of the parameter file, explanations are below:

#file starts here

[Random]

Seed=19

[Tables]

varob=/data/yeast/varob.txt

goclskey=/data/yeast/annots/go/goclskey.txt

clsassoc=/data/yeast/annots/go/clsassoc.txt

ChipOrfs=chip.txt

SetsOrfs=sets.txt

AnnotReport=annots.txt

[TANGO]

BootstrapNum = 1000
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MinClsSize=5

MaxClsSize=1000

MinClsInter=4

MaxPvToRep=0.01

FilterRedPVThres = 0.05

#file ends here

Random::Seed - controls the pseudo-random sequence used for bootstrapping.

Runnig tango twice with the same seed and same data will generate the SAME

results.

Tables::varob - the full path + name of the varob file (see section 2)

Tables::goclskey - the full path + name of the goclskey file (see section 2)

Tables::ChipOrfs - the full path + name of the chip.txt file (see section 3)

Tables::SetsOrfs - the full path + name of the sets.txt file (see section 3)

Tables::AnnotReport - the tango output file (see section 4)

TANGO::BootstrapNum - number of bootstrap iteration to perform. The corrected

p-value will always be larger or equal 1/BoostrapNum, but since the output

report provides the uncorrected value as well as the corrected one, using

1000 should be generally enough. We recommend using 1000 bootstraps to

determine which annotation is significant and the raw hypergoemetric p-value

to further understand the strength of functional association.

Note that the number of bootstraps linearly affects the running

time of the program (naturally), so use it carefully.

TANGO::MinClsSize - the minimal size of category to consider for annotation.

Categories that have less annotated genes than this number will not be

considered. Use this to save time and reduce the abundance of spurious results.

TANGO::MaxClsSize - the maximal size of category to consider for annotation.

Categories that have more annotated genes than this number will not be

considered. Use this to prevent very general annotations (e.g., metabolism).
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TANGO::MinClsInter - the minimal number of genes that are annotated with

the category and are part of the annotated set to be consider for annotation.

Setting this to 0 will allow annotation using a single gene, which are prone

to false positives. Although these will be corrected by the bootstrap

procedure, we recommend to set this value to >3 to increase the statistical power.

TANGO::MaxPvToRep - the maximal p-value (uncorrected) to report on.

TANGO::FilteredPVThres - the maximal conditional p-value to consider when

filtering annotations of the same set. TANGO filter results by performing

conditional hyper-geometric tests for one category, assuming the observed

enrichment in the other. Whenever this conditional p-value is higher than

the threshold set by this parameter, TANGO will remove the weaker annotation

of the two (see TANGO technical report for more details)
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Appendix B

Finding cis-regulatory motifs in

gene modules

In this appendix we describe a program for finding enriched cis-regulatory motifs in

the promoters of gene modules. The approach is heuristic and combines combinato-

rial scoring with standard PWM models. We experimented with it extensively, see

for example the results in Chapters 4 and 7.

Throughout this appendix we assume that we are given a set of putative regu-

latory regions (which we will call promoters), one region sv for each gene v ∈ V .

We are also given a gene module B ⊂ V . Our goal is to find sequence motifs that

appear in {sv|v ∈ B} significantly more than expected by their frequency in the

entire genome.

Scoring and searching for DNA k-mers. The first and most simple type of

sequence motifs we consider are exact DNA words. We treat such words over an

alphabet including the wildcard character ”*” to allow gaps. Given a word m, we

define Vm as the set of genes v ∈ V for which m is a substring of sv. Note that

wildcard characters match any nucleotide. We test if an exact motif m is enriched

in B by applying the hyper-geometric test to the intersection of B and Vm (see

Appendix A). In other words, the score of m equals hg(|V |, |Vm|, |B|, |Vm ∩B|). To

search for motifs with significant scores we can exhaust all k-mers of specific lengths

and gap structures. Algorithmically, this can be performed efficiently using a hash

table h in which the keys are motifs and the values are bit-vectors over the gene set

V . We iterate on each sv and for all j mark h[sv[j . . . j +k]][v] = 1. After processing

187
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the promoters of all genes, we can efficiently intersect h[m] with B and compute

the score. To guarantee significant results, we must correct for multiple testing by

the Bonferroni factor or using FDR. The good practice of motif finding, however,

suggests that only motifs with very significant scores will be considered.

Scoring PWMs. PWMs (Position Weight Matrices, defined in Chapter 5) gen-

eralize simple combinatorial motifs by introducing a probability distribution over

k-mers and defining it by means of independent contributions from each motif posi-

tion. We define the PWM matching probability as P (s1 . . . sk) =
∏

0≤i<k wi[si] where

the wi are probability distributions over the four nucleotides and k is the PWM di-

mension. Note that a combinatorial motif can be expressed as a PWM in which each

position specifies one of the nucleotides with high probability and the others with low

probability. We define the affinity of a PWM to a regulatory region by integrating (in

the max or sum norms) the matching probabilities across all possible sites in the se-

quence. P (si) =
∑

h(P (s[h] . . . s[h+k]) or maxh P (s[h] . . . s[h+k]). Given an affinity

threshold T we define the set of genes V T
P = {v ∈ V |P (sv) > T}. To score the enrich-

ment of the PWM in the gene module B we optimize the threshold to maximize the

combinatorial hypergeometric score score(P ) = maxT hg(|V |, |V T
P |, |B|, |V T

P ∩B|).

Optimizing PWMs. Given a initial PWM (built from a single k-mer or taken

from the literature) we may optimize its enrichment score using the following it-

erative algorithm. The algorithm is analogous to the one described in Figure 5.6,

so we shall only briefly outline it here. We are using two alternating phases (simi-

lar to an EM algorithm but with no guarantees for convergence). First, given the

current PWM, the optimal affinity threshold is computed. This is done by sorting

all genes according to their current PWM affinity and testing all possible affinity

thresholds. This part is done (assuming hg is computed in O(1)) in O(
∑

i |si|) for

computing the affinities, O(nlogn) time for sorting and O(n) time for finding the

optimal threshold by scanning the sorted list and updating the intersection size in-

crementally. Second, the PWM is re-estimated as the combination of all sequences

with matching likelihood exceeding the threshold (see Figure 5.6 for a more formal

description. The algorithm, while lacking formal performance guarantees, does well

in practice. We terminate it after the first iteration in which the score does not

increase. One major disadvantage of PWMs over combinatorial motifs is the poten-

tial over-fitting resulting from the additional degrees of freedom in the model. Our

implementation tries to control for this by eliminating PWM positions with low en-

tropy. After each re-estimation iteration, we compute for each position i the entropy
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∑
c∈{A,C,G,T} wi[c]log(wi[c]). If the entropy is higher than a threshold (we usually use

1.05), we change the weights to reflect the background nucleotide distribution. In

other words - only positions with significant information content can be part of the

PWM model. An additional parameter that the algorithm can optimize is the strand

preference of the motif. In each iteration, the algorithm computes enrichment scores

and affinity thresholds when matching only the 5’ strand and when matching both

strands. The alternative that scores higher is the one used when re-estimating the

model for the next iteration and when reporting the final results.

A two-phase motif finding algorithm. To discover PWMs with optimal

scores we are using a two phase approach. In the first phase, we search for k-mers

with significant scores as described above. In the second phase we build PWMs

by initializing the PWM optimization algorithm with seeds that are built from the

highest scoring k-mers (with a weak prior). The algorithm tries optimizing each

of the signifcantly scoring k-mers, ordered by their enrichment score. Whenever

we find a statistically significant PWM, we mask all its hits (subsequences with

matching probability above the affinity threshold) from further consideration by the

next PWMs. In this way we avoid the identification of redundant motifs, as a typical

PWM generalizes many high scoring k-mers.
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