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AbstractIn combinatorial chemistry, one generates a collection of chemical com-pounds (such as peptides) with desired properties, in order to test theirresponse in disease-related scenarios, as candidate leads for drug develop-ment. The process of generating the collection can be represented by asynthesis graph. In this work we address several problems regarding thedesign of a synthesis graph for a given target set of compounds. First,we consider a few variations of the Min Node Exact Synthesis (MNES), inwhich given the target set S, a minimum synthesis graph producing S issought. In particular, we investigate the (d; g)-Flexible Min Node Synthesis((d; g)-FMNS), in which the goal is to �nd a g-approximation of a minimumsynthesis graph producing S, and no more than d additional compounds.We show that the problem is hard for any d � O(g) and g � O(jSj 110�"),unless NP=ZPP. In particular, this implies that approximating MNES byfactor g is hard for any g = O(jSj 110�"), unless NP=ZPP.Next, we concentrate on the Max Strings Synthesis problem (MSS), inwhich the goal is to �nd a synthesis graph whose width is constrained, whichmaximizes the number of produced target compounds, given a constraint onthe number of beads. We show that this problem in NP-hard.Our main focus is presenting two heuristics for solving MSS { one basedon a continuous search using a gradient-descent algorithm, and the otherbased on discrete search. We test the heuristics on several data sets, exploretheir behavior, and show that they achieve good success rates.Key words: combinatorial chemistry, hardness of approximation, NP hard-ness, heuristics. 4
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Chapter 1
Introduction
In this chapter we �rst provide background on combinatorial chemistry andintroduce the problem that motivated this study. We then provide formalde�nitions of the algorithmic problems we will focus on. We summarize thethesis results in the last section.1.1 Combinatorial ChemistryDrug development is a long and expensive process, hence methods with po-tential of shortening it are of utmost importance. Combinatorial-chemistryis such a method, developed during the last two decades [20, 18, 14, 16, 22,10, 17, 12, 28, 8, 1, 25]. In the early stages of drug discovery, one focuseson lead �nding. Lead compound is a compound (e.g., a peptide, or a smallmolecule) with the desired biological activity. Its activity is usually insuÆ-cient for therapeutic purposes and it may have some additional limitationsas a drug. In order to overcome these shortcomings the lead is optimized.Lead optimizations is the process by which lead's activities are optimizedand other limitations are overcome. Traditionally, the leads were identi�edbased on historical medicinal research; however, in combinatorial chemistry,one relies on a broad search over large libraries (collections of compounds),15



by utilizing rapid synthesis methods. These libraries are designed to spana prede�ned parent library, which contains many potentially relevant com-pounds, but is too large to allow generation or screening of each compound.The produced libraries are normally utilized in high-throughput screening(HTS)1, with the goal of discovering a lead. The combinatorial chemistryapproach, when utilized with a good design procedure, produces librariesthat are better (with respect to the diversity criterion discussed in the fol-lowing paragraph) than the ones obtained by traditional approaches [26],thus enhancing the chances of �nding a lead.The basic approach for designing a compound library depends on thedesired type of library. At the lead-�nding stage, when there is very lit-tle knowledge on the appropriate drug, a library of high diversity is desired.Roughly speaking, each compound in the parent library has some properties,and a subset of high diversity represents a wide range of these properties,by containing highly dissimilar compounds [24]. At later stages, after activecompounds were already identi�ed and must be re�ned, a focused library {which contains many compounds similar to the active ones { is desired. Inorder to quantify these goals, the parent library is embedded in a propertyspace. The property space is a multi-dimensional space, where each coor-dinate represents a molecular descriptor, and each molecule is representedby a point corresponding to the values of its descriptors. The geometricdistance in the property space is assumed to measure functional similaritybetween compounds. This assumption is often referred to as the SimilarityPrinciple [23]. The choice of good descriptors is crucial to the success of thedesign, hence it is a subject of much research (see for example, [6, 7, 5]).Examples of molecular descriptors are fragment-substructure descriptors, inwhich a molecule is checked for the presence of some fragments, and physi-cal properties descriptors, such as geometric features, electronic charge andmass.When approaching the design of compounds libraries, one must con-1HTS deals with the rapid screening of a large number of compound against a biologicaltarget, in order to identify active compounds, which have therapeutic potential.16



Figure 1.1: Parallel Synthesis. This process produces four stringsa1a2a3a4; :::; d1d2d3d4. Building units (nodes labels) are added accordingto the order in each chain.sider the compounds synthesis method at use, as the ability to produce thedesigned library is constrained by the used synthesis method. One possi-ble synthesis method is the parallel synthesis. To describe it, let's assumefor simplicity that each compound is a linear chain of building units (e.g.,amino-acids), so it can be viewed as a string over a �nite alphabet. In aparallel synthesis each compound is grown in a unique vessel (colon) byrepetitive addition of its building units (compare Figure 1.1). This methodimposes no constraints on the set of compounds in the resulting library dueto the fact that each compound is synthesized individually. However, itdoes impose a constraint on the size of the library, as the number of avail-able synthesis vessels is limited, and the e�ort of constructing it is linear inthe number of compounds. 17



Another synthesis method, proposed by [13, 21], is the single-route com-binatorial synthesis, also referred to as split-synthesis or mix-and-split{synthesis. In the following we abbreviate and refer to this method as com-binatorial synthesis. In this synthesis method, a large set of compoundsis synthesized in a series of steps. Each step is composed of three stages(compare Figure 1.2):� Split: dividing the mixture into di�erent reaction vessels, one vesselfor each desired reaction.� Grow: in each vessel performing a simple chemical process on all thecompounds at once { adding a single building unit to the end of everycompound (e.g., peptide) in the mixture.� Mix: mixing all compounds, produced in the previous steps.The process proceeds by repeating this step, with each step extending thelength of all peptides (strings) by one. Technically, the steps are performedon miniature beads, to which the peptides are chemically attached. In thisfashion a 'split' step is just dividing the beads in a tube to random subsetsof equal size, which are then put in the tubes of the next layer. Notethat libraries produced in this synthesis method are combinatorial libraries,that is, their compounds are composed of the combinations of the buildingunits used in the di�erent positions in the molecules. The size of suchcombinatorial libraries grows exponentially with the length of the peptides(i.e., the number of building units in the peptide).The Multi-Route Synthesis, proposed by [9], is a generalization of boththe combinatorial and the parallel synthesis methods. This method, sim-ilarly to the combinatorial synthesis, is a process in which a large set ofcompounds is synthesized in a combination of mix, split and grow steps.However, the mix step here needs not be of all the previously producedcompounds, but rather of any desired combination of the previous subsets(compare Figure 1.3). Note that a Multi-Route Synthesis is indeed a gen-eralization of both the combinatorial and the parallel synthesis methods:18



Figure 1.2: Combinatorial synthesis. The empty nodes are 'mix' steps. Thenodes with letters in them are 'grow' steps. 'Split' steps are denoted byarrows emanating from a 'mix' node. This process produces 256 stringsa1a2a3a4; :::; d1d2d3d4. 19



When choosing not to mix at all, it is parallel synthesis; and when choosingto mix all compounds previously produced, one gets combinatorial synthesis.Far more diverse libraries can be produced in the Multi-Route Synthe-sis than by the traditional combinatorial-synthesis, due to the relaxationof the combinatorial constraint. Additionally, as mixing is allowed, thissynthesis method can be used, employing limited resources, to produce farlarger libraries than the parallel synthesis. However, unlike the parallel andcombinatorial synthesis methods, in Multi-Route Synthesis, given a set ofcompounds, it is unclear which is the best way to produce them: There aremany possible synthesis schemes, and many decision points where one canchoose whether or not to mix previously produced compounds. Hence, withthis synthesis method, when designing a library, one must also specify thesynthesis procedure that produces that library.A description of a Multi-Route Synthesis process may be given in asynthesis graph, as presented in [9]. A synthesis graph (see Figure 1.3) is alabelled, directed and acyclic graph. It is composed of layers, each describingthe grow operations at one position in the target compounds. The nodesin the graph correspond to the 'grow' operations, and their labels indicatethe appended unit. The arcs of the graph correspond to beads transferbetween the di�erent reaction vessels, that is, if a node v has in-comingarcs from nodes u1; :::; uk, then the mixing step is taking compounds fromnodes u1; :::; uk into node v. The strings obtained by concatenating thelabels along paths from the �rst layer in the graph to the last are called thetheoretical compounds of the graph. We refer to the theoretical compoundsas the language of the synthesis graph. They are called "theoretical", asperforming the synthesis process described by the graph might not produceall those compounds, due to the random nature of the splitting process, anddue to possible failures in the chemical reactions in the 'grow' operations.Cohen and Skiena [9] consider only unweighted synthesis graphs, wealso consider the weighted case, as outlined below: In the Weighted Multi-Route Synthesis, non-uniform distribution of the beads from one node (i.e.,20



Figure 1.3: Multi-Route Synthesis. The produced strings are a1a2a3a4,a1b2b3b4a5, a1b2b3c4b5, a1c2c3b4a5, a1c2d3c4b5, a1c2d3d4b5, b1d2d3c4b5,b1d2d3d4b5, b1e2e3d4b5.
21



reaction vessel) to its descendants is allowed. The Weighted Multi-RouteSynthesis is modelled by a weighted synthesis graph. A weighted synthesisgraph is a synthesis graph with non-negative arcs weights (compare Figure1.4). The weight of an arc (u; v) represents the fraction of substance (beads)from node u that is transferred from u to v.1.2 De�nitionsIn this section we give formal de�nitions and a discussion of the problemsthat we shall study.1.2.1 Synthesis GraphDe�nition 1.1 A Synthesis Graph (See Figure 1.3) is a layered, vertex-labelled directed acyclic graph G = (V;E). The �rst layer of G, denotedby First(G), consists of all the nodes with in-degree 0. The last layer ofG, denoted by Last(G), consists of all the nodes with out-degree 0. Allarcs are directed from one layer to the next one. label(v) denotes the labelof node v. We denote by jGj the number of internal nodes in G, that is,jGj = jV n (First(G) [ Last(G))jLet the valid paths of the graph, denoted by P (G), be the set of all paths inG initiating with a node in First(G) and ending with a node in Last(G).That is,P (G) = fv1; :::; vk j 8i (vi; vi+1) 2 E; v1 2 First(G); vk 2 Last(G)g :We assume that all the paths in the synthesis graph are of the same length.Nevertheless, in Section 5.2 we show how string sets of variable lengths maybe produced in spite of this assumption.Note that in the combinatorial synthesis at each step all the compoundsfrom the previous step are mixed together, and hence by using empty nodeswhich represent 'mix' steps, the synthesis process can be represented with22



Figure 1.4: Weighted Multi-Route Synthesis. Arcs from 'source' representthe distribution of beads to the �rst synthesis step.
23



fewer arcs (see Figure 1.2). Thus arises the problem of �nding the minimumrepresentation of a synthesis graph. That is, given a synthesis graph G, �ndanother graph G0, in which a layer of empty nodes is inserted between eachtwo layers in G, s.t. the same sets of strings are produced by both G andG0, and the number of empty nodes in G0 is minimum. This problem isNP-hard (see Remark ?? in Chapter ??). Further study of this problem isleft for future research.De�nition 1.2 The language of a synthesis graph G, denoted by L(G), con-tains all the strings which are a concatenation of node labels in G along apath in P (G). That is, L(G) = f�1:::�k j 9p = v1; :::; vk 2 P (G) s:t: 8i label(vi) =�igWe say that G produces the language L, if L = L(G).1.2.2 Weighted Synthesis GraphDe�nition 1.3 A Weighted Synthesis Graph is a synthesis graph witha weight function w : E ! R+ assigning a weight to each arc s.t. the sumof weights over all arcs outgoing from each node equals 1. The weightedsynthesis graph has one additional node { the source node, denoted by 's',which does not represent a grow step. This node is connected by arcs into allthe nodes in the �rst layer. The weights on the outgoing arcs from node vrepresent the fraction of beads from node v that are used for the subsequentsynthesis step.Let the valid paths of the graph, denoted by P (G), be the set of all pathsin G initiating in the source and ending with a node in Last(G). That is,P (G) = fs; v1; :::; vk j 8i (vi; vi+1) 2 E; (s; v1) 2 E; vk 2 Last(G)g :Note that this de�nition coincide with the de�nition given for the non-weighted version of the synthesis graph, as in a weighted synthesis graph wemay assume w.l.o.g. that the only node with in-degree 0 is the source node,and hence First(G) = fsg. 24



Let � = �1:::�k be a string, and p = s; v1; :::; vk a path. We say thatthe path p corresponds to �, if p 2 P (G) and 8i label(vi) = �i. The weightof p is the product of the arcs weights along its arcs, i.e., weight(p) =w(s; v1) �Qi=1;:::;k�1w(vi; vi+1). Let P� be the set of all paths correspondingto �, then the weight of � is the sum of weights of all paths in P�, thatis, weight(�) =Pp2P� weight(p). Note, that if � is not a concatenation ofnode labels in G along a path from the source node to a node in Last(G),then there is no path corresponding with �, and hence weight(�) = 0.The weighted language of a weighted synthesis graph G, denoted byWL(G), is a set of pairs each composed of a string and its weight: WL(G) =fh�;weight(�)i j 9p 2 P (G); s:t: � corresponds to pg.If � has weight weight(�) and b beads are used, then weight(�) � b is theexpected number of beads synthesized with word �. Hence, we say that aweighted word h�;weight(�)i is produced by a synthesis process following aweighted synthesis graph G and using b beads, if weight(�) � b � 1.De�nition 1.4 The language L(G; b) of the synthesis process, de�ned bythe weighted synthesis graph G and b beads, is the set of all strings � s.t.weight(�) � b � 1. That is,L(G; b) = f� j h�;weight(�)i 2WL(G); weight(�) � b � 1g :In order to simplify the description of our algorithms, we de�ne a fewterms. A valid string is string corresponding to some path p 2 P (G) (it isnot necessarily produced by the graph, as its weight may be too small); agood path is a path p 2 P (G) corresponding to some target string; and a badpath is a path p 2 P (G) that does not correspond any target string.1.2.3 Relevant ParametersFollowing Cohen and Skiena, we focus on the problem of �nding a synthesisscheme for a given library. However, when considering the real-world versionof the problem, there are many di�erent possible formulations to it. These25



formulations depend on the choice of parameters to be constrained and thoseto be optimized. Generally speaking, the relevant parameters we focus onare:1. jV j - the number of nodes in the graph (which corresponds to thenumber of 'grow'-steps). This number can be estimated by the width ofthe graph (which corresponds to the number of parallel 'grow'-steps),and the depth of the graph which is determined by the length of thestrings in S.2. jL(G; b)j (or jL(G)j in the non-weighted version) - the size of the lan-guage produced by the graph,3. jP (G)j - the number of paths in the graph (which roughly correspondsto the number of needed beads in the synthesis process),4. jL(G; b) \ Sj (or jL(G) \ Sj in the non-weighted version) - the numberof target strings, i.e., strings from the input target set, which areproduced by the graph.Note that both P (G) and L(G; b) are devised to capture the constraint ofthe number of beads used in the synthesis process. Each string must begenerated on at least one bead, hence the number of paths jP (G)j is closelyrelated to the number of beads. However, the beads are not necessarilyevenly distributed among all paths; thus, even when the number of pathsdoes not exceed the number of beads, strings corresponding to some of thepaths might not be produced. That is, the number of paths does not capturethe constraint on the number of beads well enough. Consequently, we de�neL(G; b), that directly addresses the language produced by the graph G whileusing b beads.In the above list of parameters, the �rst three parameters are to beminimized, while the fourth should be maximized.We have therefore four parameters, and in any optimization problemsome may be bounded (or set to a �xed value, or penalized) and one (or26



a function over a few of them) optimized. These variants give di�erentproblems, which might vary greatly in their complexity. In the following webriey consider examples of such variations.First, let us consider two such variations which yield easy-to-solve prob-lems. If we must produce all target strings, while there is no penalty onthe number of nodes, and the number of paths is to be minimized, the so-lution is immediate: use parallel synthesis to produce the target strings. Ifproducing all target strings is required, there is no penalty on the numberof paths, and the number of nodes is to be minimized, the solution is againobvious { combinatorial synthesis.Second, let us consider two variations which yield hard problems. Oneexample of such a variation is the Min Node Exact Synthesis, in which therequirements are to produce all target strings, while the size of the producedlanguage is limited, and the goal is to minimize the number of nodes (seeSection 1.2.4). Cohen and Skiena [9] show that this problem is NP-hard.Another example, is the Max Strings Synthesis, in which the goal is tomaximize the number of produced target strings, while the number of nodesand paths is limited (see Section 1.2.6). In Chapter 2 we show this problemis NP-hard.1.2.4 Min Node SynthesisIn the Min Node Exact Synthesis, one has to �nd a synthesis graph forproducing a given set of compounds while minimizing the number of needed'grow' operations, i.e., the number of nodes in the synthesis graph. Formally,the problem is as follows:De�nition 1.5 Min Node Exact Synthesis (MNES). Given a set S oftarget strings, �nd a synthesis graph G s.t. L(G) = S and jGj is minimum.Recall that jGj is the number of internal nodes in G, i.e., the nodes whichare not in First(G) or Last(G). 27



Figure 1.5: Label duplications in internal nodes. Duplicating labels in the�rst or last layer will not reduce the number of paths in the graph, whileduplicating labels in internal layers can possibly reduce the number of pathsin the graph (from 4 paths to 2 in this example).A very similar problem is addressed in [9] (we give here a di�erent nameto the problem, for reasons that will become clear soon). While we want tominimize the number of internal nodes in G, Cohen and Skiena minimizethe total number of nodes. Notice, that the �rst layer of G is triviallyde�ned in a minimum solution: it must contain at least one node for eachletter appearing in the �rst position of the strings in S, and moreover, noduplication of labels (i.e, di�erent nodes with the same label) is necessary(see Figure 1.5). The same holds for the last layer. Hence, the naturaloptimization goal is the number of internal nodes. Of course, this di�erenceis of no importance when discussing optimal solutions or the decision versionof the problem. However, it is crucial when addressing approximations.Cohen and Skiena show that the problem is NP-hard.Consider a synthesis graph producing a super-set S0 of the target set S.From the point of view of combinatorial chemistry, such a synthesis graphis a good solution, as long as the super-set S0 is of moderate size that maybe reasonably generated and screened (in the applications we consider, S0 isof reasonable size if jS0 n Sj = c � jSj for some small constant c). Moreover, a28



minimum synthesis graph producing S0 might be considerably smaller thana minimum synthesis graph producing S.The above two observations lead to an extension of MNES to the MinNode Synthesis problem, in which one seeks the minimum size synthesisgraph out of all graphs producing a super-set of S of reasonable size. Theformal de�nition follows.De�nition 1.6 Min Node Synthesis (MNS). Given a set S of targetstrings, and an integer d, �nd a synthesis graph G s.t.1. L(G) � S,2. jL(G)j � jSj � d,and jGj, i.e., the number of internal nodes in G, is minimum.From an algorithmic point of view this problem is very interesting. How-ever, observing that when d = 0 this is simply MNES, we obtain that theNP-hardness of MNES implies that MNS is NP-hard as well. Nonetheless,note that for some d values a solution can be easily found. For example, letd � j�jl�jSj, where j�j is the size of the alphabet, and l is the length of thestrings in S, then we may simply take the full combinatorial library, whichis trivially a minimum solution.Cohen and Skiena focus on algorithmic solutions to another variation ofMNES, in which the number of paths (jP (G)j) is limited (and not the sizeof the produced language). That is, given a set S and an integer d, �nd asynthesis graph G s.t. L(G) = S, jP (G)j � jSj � d and jGj is minimum.They present two heuristics for solving it. Their algorithms start with aninitial graph and by repetitive actions of splitting or merging paths theyreach a graph producing a super-set of the given set of compounds, thatadheres to the given constraint of the number of paths, and has a smallnumber of nodes. The performance analysis of their heuristics is measuredby comparison to the trivial solution, i.e., the number of 'grow' steps in29



a parallel synthesis producing the target set, and not with respect to theoptimum solution, which is generally unknown.The algorithms in [9] perform either only path merging or only pathsplitting. Similar algorithms, in which merging or splitting of paths areused to improve the current model, are popular in many problems, which canbe formulated as a graph minimization problem where merging or splittingof paths are applicable. The minimum Hidden Markov Model is one suchexample. This problem can be formulated by a graph, in which the nodesrepresent states of the model, and the arcs represent stochastic transitionsbetween states. The goal is to �nd a graph with a minimum number of stateswhich gives a satisfying representation of the stochastic process it is designedto describe. Algorithms for solving this problem in which the operationsof merging and splitting of paths are used are discussed in [27, 4]. Anadditional example is the minimum work-ow model problem in IndustrialEngineering. In this problem, we are given a set of tasks, i.e., sequences ofactions and partial order constraints on these actions, and we are interestedin the most eÆcient procedure for executing these tasks, i.e., one with thefewest actions. (The same action may be executed once and used for di�erenttasks). In a graph representation of this problem, actions are representedby nodes, partial order between actions is represented by arcs, and tasks arerepresented by paths. The problem is to �nd a directed graph with pathscorresponding to the given set of tasks, and with minimum number of nodes.Algorithms for solving this problem, using merging and splitting of paths,are discussed in [19, 29].1.2.5 Flexible Min Node SynthesisIn this section we consider a relaxation of Min Node Exact Synthesis, whichwe call d-Flexible Min Node Synthesis (d-FMNS).First, let us make a few observations regarding MNS. It is clear thatMNS is at least as hard to solve as MNES: for any input S to MNES, asolution G to MNS on inputs S and d = 0 is also a solution to MNES.30



Let us consider separately the two parts in the de�nition of MNS { theconstraints on a solution G, and the optimization goal. Note that whenonly the constraints on a solution are considered (while the optimizationgoal is omitted), this is a relaxation of MNES, as any solution to MNESful�ll those constraints. However, when the optimization goal is consideredas well, MNS is no longer easier than MNES: though a minimum solutionto MNES adheres to the constraints of MNS, the size of the resulting graphmight not be as small as a minimum solution to MNS.In view of the above observations, we de�ne the following relaxation ofMNES.De�nition 1.7 d-Flexible Min Node Synthesis (d-FMNS). Given aset S of target strings, �nd a synthesis graph G s.t.1. L(G) � S,2. jL(G)j � jSj � d,and jGj = jGMNESj, where GMNES is a minimum solution to MNES.Note that, in d-FMNS the parameter d is not a part of the input, butrather an outside parameter. Due to this change we cannot apply the sameargument used earlier for showing that MNS is at least as hard as MNES incase d 6= 0. Additionally, in d-FMNS { though the constraints on a solutiongraph are the same as the constraints in MNS { the optimization goal is asin MNES, that is, a solution to d-FMNS is a graph of the same size as theoptimum of MNES. This problem is indeed a relaxation of MNES as anysolution to MNES is also a solution to d-FMNS.When an optimum to MNES is sought, d-FMNS is not an interestingrelaxation. Assume we only seek the size (i.e., the number of internal nodes)of an optimal solution and not the synthesis graph itself. In this case, asolution to d-FMNS is exactly the same as a solution to MNES (as thesolution to both problems is jGMNESj).31



Nevertheless, when considering approximations and not exact solutions,this is indeed a relaxation as demonstrated in the following discussion. Ag-approximate solution of d-FMNS is a synthesis graph G, which is (a) afeasible solution to d-FMNS, i.e., L(G) � S and jL(G)j � jSj � d, and (b)a g-approximation, that is, jGj � g � jGMNESj. We denote the problem of�nding a g-approximation to d-FMNS by (d; g)-Flexible Min Node Synthesis.A formal de�nition follows.De�nition 1.8 (d; g)-Flexible Min Node Synthesis ((d; g)-FMNS).Given a set S of target strings, �nd a synthesis graph G s.t.1. L(G) � S,2. jL(G)j � jSj � d,and jGj � g � jGMNES j.Note, that any graph G, which is a feasible solution to FMNS, is alsofeasible solution to MNS, as in both problems a solution must adhere to thesame constraints (that is, constraints (1) and (2)). Therefore, any solutionG to (d; g)-FMNS is at least as large as the minimum solution to MNS, thatis, jGMNS j � jGj, where GMNS is a minimum solution to MNS on inputs Sand d. Combining this with the above de�nition, we obtain that for any asolution G to (d; g)-FMNS:jGMNS j � jGj � g � jGMNES j :In contrast, let us consider the problem of �nding a g-approximation ofMNES. We denote this problem by g-MNES. A g-approximation of MNESis a synthesis graph G, s.t. L(G) = S and jGj � g � jGMNESj. Combiningthose two requirements, we obtain that for any solution G to g-MNESjGMNES j � jGj � g � jGMNES j :A solution G to either one of the above approximation problems ((d; g)-FMNS or g-MNES) is bounded from above by g � jGMNES j. However, the32



lower bound is not the same for the two problems. A solution to (d; g)-FMNS is bounded from below by jGMNS j; whereas a solution to g-MNES isbounded from below by jGMNES j. Note that jGMNS j may be considerablysmaller than jGMNES j. Therefore, a solution to g-MNES is also a solution to(d; g)-FMNS, but the converse does not necessarily hold. Therefore, (d; g)-FMNS is a relaxation of g-MNES as we intended.In contrast, a g-approximation of MNS on inputs S and d, is a synthesisgraph G, s.t. L(G) � S, jL(G)j � jSj � d, and jGMNS j � jGj � g � jGMNS j.Note that jGMNS j may be considerably smaller than jGMNES j, hence a g-approximate solution MNES might be larger than g � jGMNS j, i.e., it is notnecessarily a g-approximate solution to MNS.We investigate the complexity of approximating d-FMNS for di�erentvalues for d. It is clear that when d is very large this problem is in P . Forexample, when d is large enough so that a minimum solution to MNS canbe polynomially found, a minimum solution to d-FMNS can also be polyno-mially found (as a minimum solution to MNS on inputs S and d is clearlyalso a minimum solution to d-FMNS on the input S). Additionally, whend = 0, d-FMNS, is equivalent to MNES, hence the hardness of approxima-tion results we show for d-FMNS, imply the hardness of approximation ofMNES.1.2.6 Max Strings SynthesisIn many real-life situations the laboratory constraints on the number ofavailable reaction vessels (corresponding to the number of nodes in any singlelayer) and the number of used beads (related to the number of paths andto L(G; b)) are quite rigid. On the other hand, the target set of stringsis heuristically designed, so producing all of them is not critical. Moreover,avoiding some target strings can reduce the number of paths and the numberof nodes sharply. Hence, we de�ne the Max Strings Synthesis problem, inwhich the goal is to produce as many target strings as possible within theabove constraints (see de�nition 1.9).33



Let w be the number of available reaction vessels, and b the number ofused beads. Bounding w and b imposes bounds on other parameters, asfollows. Let l be the length of the strings in S, then the number of nodesin G is at most l � w. Additionally, a string � is produced if weight(�) � 1b ,hence bounding b imposes a constraint on the produced language.Note that a synthesis graph (or a weighted synthesis graph) represents astochastic process, as each 'split' step randomly divides the set of beads intosubsets. Maximizing jL(G; b) \ Sj corresponds to maximizing the expectednumber of produced target strings. When applying the synthesis schemerepresented by the synthesis graph, one can ensure that the actual numberof produced strings is close to the expectation by taking redundant beads.The needed amount of redundancy is explored in [30].In the applications we address, S is a set of small molecules or peptides {their length does not exceed ten building units, and is usually a lot smaller,say, �ve building units. Therefore, the length of the strings in S can beregarded as a constant. Nevertheless, whenever this assumption is used tosimplify our algorithm we also indicate how the algorithm can be extendedto work without this assumption. Additionally, we assume that w is givenin unary, that is, the graph width is polynomial in the input. This technicalassumption (used in Section 3.5.4) virtually always holds, as the length ofthe target set is jSj � ` � log(j�j) and in practice jSj >> w.De�nition 1.9 Max Strings Synthesis (MSS). Given a set S of targetstrings and two integers b 2 Z+ and w 2 Z+, �nd a weighted synthesisgraph G of width at most w, that maximizes jL(G; b) \ Sj, i.e., the numberof produced target strings.Note, that assuming only one 'grow' step can be done in a reaction vessel,w is actually the number of vessels that can be used in parallel.34



1.3 Summary of Thesis ResultsWe show that (d; g)-Flexible Min Node Synthesis, when d � O(g), is hardfor any g � O(jSj 110�"), unless NP=ZPP. Consequently, Min Node ExactSynthesis is hard to approximate by factor g � O(jSj 110�"), unless NP=ZPP.We focus mainly on Max Strings Synthesis. We begin by showing thatMax Strings Synthesis is NP-hard, and proceed by suggesting heuristics forsolving it.We explore two heuristic approaches for this problem { a continuous ap-proach and a discrete one. In the continuous approach, we use a gradient-descent algorithm to optimize our score function. The score function is de-vised as a continuous approximation of the score of a synthesis graph, whichis the number of target strings produced by it. In the discrete approach, wesearch for an optimal synthesis graph by starting with some initial synthesisgraph, and using repetitive discrete actions of deleting arcs from the graphwith the aim of improving it.We implemented both algorithms, and performed extensive experimentsto evaluate their performances and time requirements. The experimentswere done over synthetic and real data sets. The real data we used are datasets of 96 strings and 1000 strings each.The implementation of the discrete optimization is very eÆcient { itsrunning time, on each of the data sets, is shorter than one minute. Theimplementation of the continuous optimization is much slower: althougheach optimization iteration is very eÆcient (taking less than a second), avery large number of optimization iterations is required for convergence.Nevertheless, it is still reasonably eÆcient { its running time is a few hourson the data sets we tested.The discrete optimization gave better results than the continuous one.Using a graph width w = 10, and a number of beads b = 10; 000, the discreteoptimization produced on average 87% of the target strings on the small datasets (96 strings), and 36% on the large ones (1000 strings). In contrast, the35



continuous optimization produced on average only 57:5% and 18:5%, respec-tively. The results of the continuous algorithm can be greatly enhanced bycombining it with several types of arcs-deletion heuristics, which are moti-vated by the discrete approach. With these improvements the results of thediscrete algorithm are matched.Finally, we explore the behavior of the discrete algorithm when di�erentvalues of the graph width and the number of beads are used. As expected,increasing either the width or the number of beads improves the results. Inparticular, when increasing the graph width or the number of beads by afactor of 10, the results obtained on the large data sets are about equal tothe results on the small ones with the standard parameters. Note that thetwo types of real data sets di�er in size by a factor of 10.
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Chapter 2
Hardness of Flexible MinNode Synthesis
In this chapter we investigate the complexity of (d; g)-Flexible Min NodeSynthesis.First let us recall some standard graph theoretic de�nitions: Let G =(P;Q;E) be a bipartite graph. A biclique C is a set of vertices C � P [Q,which induces a complete bipartite graph. We say that, a biclique C coversan arc (u; v), if u; v 2 C.A biclique edge cover of G is a collection C1; :::; Ck of bicliques, whichcovers all arcs of G (see Figure ?? for an example). Note that non-edgesof G cannot be covered. Let us denote by B(G) the set of all biclique edgecovers of G, and for every biclique edge cover b 2 B(G) let us denote by jbjthe number of its bicliques.De�nition 2.1 Min Biclique Edge Cover (BEC). Given a bipartitegraph G = (P;Q;E), �nd a minimum biclique edge cover of G, that is, �nda biclique edge cover b� of G s.t. jb�j = minb2B(G) jbjNext, we de�ne a relaxation of BEC approximation problem. In this37



Figure 2.1: A biclique edge cover. The graph is covered by three bicliques{ each marked set of nodes is a biclique, and they cover all the arcs (and nonon-arcs)
38



relaxation, the cover may consist of \almost-bicliques", which are bicliqueswith up to a few missing arcs.De�nition 2.2 (d; g)-Flexible Min Biclique Edge Cover problem ((d; g)-FBEC). Given a bipartite graph G = (P;Q;E), �nd a biclique edge coverb for a graph G0, obtained from G by the addition of no more than d arcs,s.t. jbj � g �minb2B(G) jbj.Similarly to our discussion regarding (d; g)-Flexible Min Node Synthesis (seeSection 1.2.4), (d; g)-FBEC is a relaxation of the BEC approximation prob-lem. Additionally, when d = 0, a solution to (d; g)-FBEC, is simply ag-approximation of BEC.The next theorem [?] gives parameters for which (d; g)-FBEC is hard.Theorem 2.1 (Akavia and Safra, 2002) For every " > 0, (d; g)-FBECis hard for any g � O(jP [Qj 15�") and d � O(g), unless NP=ZPP.We now prove our result regarding the (d; g)-FMNS.Theorem 2.2 For every " > 0, (d; g)-Flexible Min Node Synthesis is hardfor any g � O(jSj 110�") and d � O(g), unless NP=ZPP. This holds even ifall the strings in S are of length 3, and all have the same second letter.Proof. By a gap-preserving reduction from d-FBEC to d-FMNS. The reduc-tion is outlined in Figure ??. Let G = (P;Q;E) be a bipartite graph, whichis the input to d-FBEC. De�ne a language S = fpAqj(p; q) 2 Eg.First, we assume a solution of size ` to d-FBEC, and show how to con-struct a solution of size ` to d-FMNS. Let G0 = (P;Q;E0), C1; : : : ; C` be asolution for the instance G. Using this solution, we may de�ne a synthesis39



Figure 2.2: A exible biclique edge cover. The graph is modi�ed and thencovered by two bicliques. The bold lines are additional arcs. Each markedset of nodes is a biclique, and together they cover all the arcs in the modi�edgraph.
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graph H = (VH ; EH) in the following way (compare Figure ??).VH = P [Q [ f1; : : : ; `g;EH = f(p; i) j p 2 Cig [ f (i; q) j q 2 Cigand the labelling is:8v 2 VH ; label(v) = 8<:v if v 2 P [QA if v 2 f1; : : : ; `gThe above construction has the following characteristics:� S � L(H): Let pAq 2 S. By the de�nition of S it follows that(p; q) 2 E. Since fCig is a cover of E0 and E � E0, there existsa biclique Ci such that p; q 2 Ci. Hence, by the de�nition of H,(p; i); (i; q) 2 EH . This implies that pAq 2 L(H).� jL(H)j�jSj � d: For every pAq 2 L(H), there exists i s.t. (p; i); (i; q) 2EH . This implies, by the de�nition of H, that 9i; p; q 2 Ci. Hence,(p; q) 2 E0 (as Ci is a biclique in G0). Moreover, note that every pathin P (H) is of the form p; i; q where p 2 P; i 2 f1; :::; `g and q 2 Q(since First(H) = P , Last(H) = Q and there are no arcs connectingP and Q). Therefore, every string in L(H) is of the form pAq andjL(H)j � jE0j. Furthermore, by the construction of S, jSj = jEj.Hence jL(H)j � jSj � jE0j � jEj. However, jE0j � jEj � d, since G0 isa solution to (d; g)-FBEC. Therefore jL(H)j � jSj � d.� jVH j = jP j+ jQj+ l (immediate from the construction).Hence H is a solution of d-FMNS of size `.Second, we assume a solution of size ` to d-FMNS, and show how toconstruct a solution of size ` to d-FBEC. Let H = (VH ; EH) be a solution ofsize ` to the instance S of d-FMNS, i.e., VH contains ` internal nodes. Note,that w.l.o.g. we may assume that all internal nodes are labelled with A, asany node labelled di�erently contributes nothing to S, and may be deleted.41



Let us denote by A1; : : : ; Al those nodes labelled by A. Using H, we de�ne asolution G0 = (P;Q;E0); C1; :::; C` to the instance G of d-FBEC, as follows(compare Figure ??).E0 = f(p; q) j pAq 2 L(H)gCi = fp j (p;Ai) 2 EHg [ fq j (Ai; q) 2 EHg 8i = 1; : : : ; `The above construction has the following characteristics:� G0 = (P;Q;E0) is obtained from G by the addition of no more thand arcs: By the de�nition of E0, jE0j � jL(H)j. By the de�nitionof S, jEj = jSj. Combining those two facts, we obtain that jE0j �jEj � jL(H)j � jSj. However, H is a solution to d-FMNS, hencejL(H)j � jSj � d. Therefore jE0j � jEj � d. Additionally, S � L(H),therefore E � E0.� For each i, Ci is a biclique in G0: By the de�nition of Ci, for everyp; q 2 Ci, (p;Ai); (Ai; q) 2 EH . Therefore pAq 2 L(H). Hence, by thede�nition of G0, (p; q) 2 E0.� fCigi=1;:::;` is a biclique edge cover of G0: For every edge (p; q) 2 E0,pAq 2 L(H) (by the de�nition of G0). Hence, there exists an internalnode Ai in H, s.t. (p;Ai); (Ai; q) 2 EH . Therefore, by the de�nitionof Ci, p; q 2 Ci.Hence fCigi=1;:::;` is a solution of size ` to d-FBEC.We saw that a solution of size ` to d-FBEC, implies a solution of size ` tod-FMNS, and vice versa. In particular, by considering d = 0, we may deducethat the size of a minimum solution to BEC and the size of a minimumsolution to MNES are equal. Hence, fCigi=1;:::;` is a g-approximation ofd-FBEC if and only if H is a g-approximation of d-FMNS.Assume H approximates the minimum solution to d-FMNS within a fac-tor g � O(jSj 110�"). Then, fCigi=1;:::;` approximates the minimum solutionto d-FBEC within the same factor g. Note, that jSj � jP �Qj � jP [Qj2;42



hence, g � O((jP [Qj2) 110�") = O(jP [Qj 15�"). This is a contradiction ofTheorem ??. �Remark 2.3 Note that by replacing nodes labelled by 0A0 with empty nodes,the above reduction gives a reduction from BEC to the problem of �ndingthe minimum representation of a synthesis graph (see Section 1.2.1), thusshowing that �nding the minimum representation of a synthesis graph isNP-hard.
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Figure 2.3: Outline of the reduction from d-FBEC to d-MNS
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Chapter 3
Hardness of Max StringsSynthesis
In this chapter, we prove that Max Strings Synthesis is NP-hard. In theapplications we address the considered molecules are short peptides or smallmolecules. Hence it is reasonable to assume that the strings in S are of lengthbounded by O(1). We show that under this assumption the decision problemcorresponding to Max Strings Synthesis is NP-complete. Of course, whenthe strings length is not bounded, the problem is at least as hard, thereforethis assumption does not weaken our result. Moreover, this assumption isonly used in showing that the problem in polynomially veri�able, that is,showing it is in the class NP.First, let us de�ne the decision version of the Max Strings Synthesis.De�nition 3.1 Max Strings Synthesis { decision version. Given aninput hS; b; wi, and a threshold t, where� S is a set of strings, over an alphabet �1; :::;�l, where l is the lengthof the strings in S.� b 2 Z+ is a limit on the number of beads used in the process.45



� w 2 Z+ is a limit on the width of the weighted synthesis graph.Does there exist a weighted synthesis graph G, of width at most w, such thatjL(G; b) \ Sj � t?Recall the de�nition of the NP-Complete problem { Balanced-Biclique(problem [GT24] in [15]):De�nition 3.2 Balanced-Biclique. Given a bipartite graph G = (V;U;E),and a threshold k, does there exist a balanced k-biclique W , i.e., a set ofnodes W = V 0 [ U 0, such that V 0 � V , U 0 � U and jV 0j = jU 0j = k, whereW induces a biclique?Theorem 3.1 Max Strings Synthesis is NP-hard.Proof. We show that the corresponding decision problem is NP-complete,even if b =1 and all strings in S are of length 2.Clearly the problem is in NP, as given a synthesis graph it is easy to verifyit is a valid solution (note that we assume that the length of the strings inS is bounded by a constant, thus the number of paths is polynomial in thewidth w). Hardness is proven by reduction from Balanced-Biclique:Given an instance G = (V;U;E); k of Balanced-Biclique, let us de�nean instance hS; b; wi; t of the decision version of Max Strings Synthesis, asfollows: �1 = V; �2 = U andS = fvu j (v; u) 2 Egw = kb = 1t = k2Note that since b = 1 we may disregard the weights in the graph, as eachpath with non-zero weight is produced.46



We �rst argue that we can assume that any synthesis graph H s.t.L(H) � S is an induced subgraph of G. If H is not an induced subgraphof G, then the following procedure de�nes a graph H 0 s.t. L(H 0) = L(H)and H 0 is an induced subgraph of G. Unite all the nodes in the same layerwith identical labels into one node whose neighbors are the union of theneighbors of all the nodes it was composed of. Delete any node x in layer is.t. label(x) =2 �i. Delete any arc (v; u) with no corresponding arc in G,i.e.,with no arc (v0; u0) 2 E s.t. label(v0) = label(v) and label(u0) = label(u).This procedure does not increase the excessive strings (strings that are notin S) produced by the graph, nor does it change the number of target strings(strings in S) produced by the graph, and clearly the obtained graph is aninduced subgraph of G.Moreover, any induced subgraph of G with x arcs is a synthesis graphproducing a subset S0 of S such that jS0j = x (immediate from the de�nitionof S).Now, we shall demonstrate that hS; b; wi; t is a "YES" instance if andonly if G; k is a "YES" instance.� Assume hS; b; wi; t is a "YES" instance, then there exists a synthesisgraph H with width at most w (and b � 1), producing at least tstrings. But since w = k, the only way to obtain t = k2 stringsis by a biclique with k vertices at each side, s.t. each arc in thebiclique corresponds to a string in S. However, as noted earlier, anysuch synthesis graph is a subgraph of G, and hence G has a balancedbiclique with k nodes at each side.� In contrast, assume hS; b; wi; t is a "NO" instance, then G cannotcontain a balanced biclique with k nodes at each side: Such a bicliqueimmediately translates to a synthesis graph with width at most k(= w)producing k2(= t) strings. �Remark 3.2 Note that { unlike the previous reduction (see Remark ??)47



{ this reduction does not easily extend to allow empty nodes (see Section1.2.1).
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Chapter 4
A Continuous Approach toSolving Max StringsSynthesis
In this chapter we present a continuous approach to solving Max StringsSynthesis. We begin with a general overview of our algorithm, and proceedwith a brief background on gradient-descent algorithms. Finally, we describethe speci�cs of the our algorithm: We give a detailed description of ourobjective function, and its partial derivatives, and provide a description ofour algorithm.4.1 An Overview of the AlgorithmThe algorithm we present here is basically a greedy search algorithm, whichsearches the best weighted synthesis graph out of all graphs adhering thegiven constraints on the width and on the number of beads. The algorithmstarts with an initial graph and by repetitive actions improves the graph.The modi�cation may be done either by 'continuous actions', or by 'dis-crete actions'. In continuous actions the arcs weights are modi�ed following49



a gradient-descent algorithm. In discrete actions some arcs are deleted, thatis, assigned weight zero. The deleted arcs are chosen according to a scoringfunction as speci�ed in Section 3.8.The search is guided by the problem's objective function, i.e., the numberof target strings produced by the graph. However, this function is discrete,hence for the continuous actions we use a continuous approximation of thisfunction.The search begins with a graph of maximum width. Searching for thebest graph only over graphs of maximum width suÆces, since there existsan optimal solution of maximum width graph (as we may simply have someisolated nodes, in case not the entire width is needed). The nodes labelsare chosen in the initialization stage, and they are not modi�ed during thesearch, in order to narrow the search space we explore.A combination of continuous and discrete actions is designed with thepurpose of escaping local optima reached by the gradient-descent, and tryingto �nd a better optimum. Their combination is done as follows: continuousgradient-descent search is executed until a local optimum is reached, thena discrete action is applied, and a continuous search begins again. Theseiterations between gradient-descent and arcs deletion heuristic continue untila graph with a number of paths that is at most b (the number of beads)is reached. The motivation to this stopping criterion is the fact that oncesuch a graph is reached, all the strings corresponding to its paths can beproduced, assuming the arcs weights are properly assigned (see Section 3.9).A general description of the algorithm and its stopping condition is asfollows.1. Initialize G, an initial synthesis graph.2. Initialize best, the best synthesis graph found so far, to be G.3. While the number of paths in G is at most b (i.e., the number of beads)do 50



(a) Run the gradient-descent algorithm until one of the followingconditions holds:� a plateau is reached, that is, there is no improvement in thecontinuous score over a pre-given number of iterations,� the number of iterations exceeds a pre-given limit.(b) If the current local optimum is better than best, update best tobe the current graph.(c) Escape local maximum: delete x arcs, where x is a parametergiven to the procedure.4. Recalculate the arcs weights so that all the paths would be producedby the graph, that is, the weight of every path p 2 P (G) is at least 1.5. If the obtained graph is better than best, update best to be thecurrent graph.6. Return best.We ran several variations of our algorithm: one in which only the con-tinuous actions are executed, and three variations in which a combinationof continuous and discrete actions are executed. The discrete actions di�erin the scoring function they follow for the choice of the arcs to be deleted.The results of those experiments are presented in Chapter 6.In the following sections we describe the algorithm in more details.4.2 Background { Gradient-DescentConsider an optimization problem, in which one wants to minimize a func-tion f(x). In gradient methods of optimization, the process is initiated withsome (possibly arbitrary) point x0, and then in iteration i xi is altered toxi+1 according to the gradient of f in the current point. In the Steepest De-scent method (e.g., [3]), the choice of direction towards which x is altered is51



done according to where f decreases most sharply, which is in the directionof rf(xi). Precisely, we get the following iterative de�nition:xk+1 = xk + �krf(xk);where �k is the learning rate, that is, the size of the step in changing xk.The learning rate is usually taken as to decrease over time, in order toavoid skipping over an optimum due to too large a step (compare Figure??). Guaranteeing convergence to a local minimum (if one exists) can bedone by setting the learning rate s.t. �k ! 0 and P1k=0 �k = 1 [2]. Forexample, �k = 1k ful�lls those constraints. Nevertheless, the convergencerate tends to be very slow. This drawback can be somewhat overcome byinitiating the search at proximity to a minimum. In practice �k is ofteneither set to be a constant, or decreases exponentially over time (in order toaccelerate the convergence).The Steepest Descent method is intuitive, simple, easy to apply, andeach iteration is fast.4.3 Objective FunctionThe objective function in the Max Strings Synthesis is the expected numberof produced target strings, that is, jL(G; b) \ Sj. In the following we referto this function as the discrete score. In order to calculate this score eÆ-ciently, we de�ne auxiliary variables, denoted by q(v; �). q(v; �) indicatesthe expected number of beads entering the node v which holds a pre�x of thestring � (q stands for quantity). The method of computing these variablesis described later in this section. With these notations, the discrete scorecan be expressed as follows:D(G) = ������8<:� 2 S j Xv2Last(G) q(v; �) � 19=;������ :Since we aim to use the gradient-descent algorithm for solving MaxStrings Synthesis, we need a continuous approximation of the discrete score.52



Figure 4.1: Convergence of Steepest Descent. The step size getssmaller and smaller, crossing and recrossing the valley (shownas contour lines), as it approaches the minimum. (source:www.gothamnights.com/trond/Thesis/node26.html)
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Such an approximation can be obtained by changing the discrete step-function "jump" between P q(v; �) � 1 and P q(v; �) < 1, to a continuousapproximation { the logistic sigmoid (logsig in short) function. That is,C(G) = X�2S logsig( Xv2Last(G) q(v; �)); wherelogsig(x) = 11 + exp��(x��)The logistic sigmoid approximates a step function between zero and one.The position of the step is determined by �, and its sharpness is determinedby � (compare Figures 3.2). The step function we approximate jumps fromzero to one at position x = 1, therefore we use � = 1. Assigning larger valuesfor � improves the obtained approximation; nevertheless, we use � = 1. Thevalue for � was determined after extensive experiments with our algorithm,which indicates that the gradient-descent algorithm gives better results withsmall values for �.Recall, that arcs weights in a synthesis graph are non-negative reals,which represent the fraction of beads transferred from one node to the next.When using the gradient-descent algorithm for �nding the best weights tothe arcs of the graph, the weights may either be increased or decreased.Unfortunately, when decreasing an arc's weight, it might become negative.For using the gradient-descent algorithm, we chose to ignore the arc weightnon-negativity constraint and perform a �ltering step after each iteration,in order to restore non-negativity. This is done by adjusting arc weightsw(u; v) using the exponent normalization function:filter(w(u; v)) = exp(T � w(u; v))Pfu0 j(u0;v)2Eg exp(T � w(u0; v)) (4.1)This function, applied to any real values (positive or negative), returns valuesbetween 0 and 1 (compare Figure 3.3). Additionally, it ensures that the sumof arcs weights over all arcs originating from the same node equals 1. Theparameter T is a positive real that was experimentally chosen to be 1 forarcs emanating from the source, and 5 for all other arcs. Note that for a54
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�xed input weights distribution, the distribution of weights obtained as anoutput of this �lter becomes less uniform as T becomes larger.In order to complete the above de�nitions, we must give the formalde�nition of q(v; �). But �rst, let us de�ne some notation. Recall that asynthesis graph is a layered graph. For each node v, let layer(v) be theindex of the layer containing v. For each layer index k, let Vk be the set ofall nodes in this layer. Let l be the length of the strings in S.
q(v; � = �1:::�l) = 8>>>>>>>>><>>>>>>>>>:

b if v = sPu2Vlayer(v)�1 filter(w(u; v)) � q(u; �)if v 2 Vk; and label(v) = �k0 otherwise (4.2)(4.3)4.4 DerivativesIn order to use the gradient-descent algorithm, we must calculate the partialderivative of the continuous score with respect to an arbitrary arc weight.In the following we present a recursive formula of those partial derivatives,and analyze the complexity of calculating them.The partial derivative of the score is composed of a derivative of thelogistic sigmoid (logsig) function and a partial derivative of q(v; �) for anystring � 2 S:Let z =Pv2Last(G) q(v; �), then@continuous score@w(x; y) =X�2S d logsig(z)dz � Xv2Last(G) @q(v; �)@w(x; y)The derivative of the logsig function has a simple formula:d logsig(z)dz = � � logsig(z) � [1� logsig(z)]57



Calculating the partial derivatives of q(v; �) is more complicated. In thefollowing we present a recursive formula of this calculation.For each v 2 Vk,@q(v; � = �1:::�l)@w(x; y) = Æ�k;label(v) � Xj2layer(y) @q(v; �)@filter(w(x; j)) � @filter(w(x; j))@w(x; y)
where Æ�k;label(v) = 8><>: 1 �k = label(v)0 otherwiseIt remains to specify the partial derivative of q(v; �) according to filter,and of filter according to the arc weight. First, we present the formulafor calculating the partial derivative according to an arc emanating in theprevious layer:8v 2 Vk; and 8x 2 Vk�1@q(v; � = �1:::�l)@filter(w(x; j)) = 8><>: q(x; �) if label(v) = �k0 otherwise

Second, we present a recursive formula for calculating the partial derivative58



according to an arc not emanating from the previous layer:8v 2 Vk; and 8x =2 Vk�1@q(v; � = �1:::�l)@filter(w(x; j)) = Æ�k;label(v) � Xu2Vk�1[ @q(u; �)@filter(w(x; j)) � filter(w(u; v))+q(u; �) � @filter(w(u; v))@filter(w(x; j)) ]= 8>>>><>>>>: Pu2Vk�1 filter(w(u; v)) � @q(u;�)@filter(w(x;j))if layer(x) < k � 1 and label(v) = �k0 otherwise@filter(w(x; j))@w(x; y) = 8>>>><>>>>: T � filter(w(x; j)) � [1� filter(w(x; j))]if j = y�T � filter(w(x; j)) � filter(w(x; y))if j 6= y; layer(y) = layer(j)
For each string � 2 S, this calculation requires (in the worst case) go-ing over all the arcs in the graph (due to its recursive nature). Thus thecomplexity of calculating one partial derivative is O(jSj �m), where m is thenumber of arcs in the graph. At �rst glance, this seems to imply complexityof O(jSj �m2) for calculating all the partial derivatives. However, by usingforward propagation the computation for all the partial derivatives can bepreformed in O(jSj �m). By 'forward propagation' we mean that the valueof each partial derivative used in the recursion is calculated once, insteadof being recalculated for each partial derivative. This calculation is donein a bottom-up manner. Moreover, at each stage of the computation weonly need to recall the derivatives according to one layer { the previous one.Therefore, the increase in the space complexity is only by factor O(w), andnot by factor O(m) (recall, m � (l�1)w2, where l is the length of the stringsin S). 59



4.5 InitializationAs discussed in Section 3.2, the gradient-descent method is prone to slowconvergence. This drawback can be partially overcome by choosing a goodinitialization point. We devised an initialization algorithm that considersfrequencies of letters when labelling the nodes, and frequencies of transitionsbetween letters when determining the initial arcs weights. We comparedour initialization algorithm with random initialization, and obtained clearresults indicating that the frequency-based initialization is much better thanthe random one.Initializing the synthesis graph requires choosing the nodes labels andthe arcs weights. First, let us concentrate on initializing the nodes labels.4.5.1 Assigning Nodes LabelsIn assigning labels, we �rst choose a layer in the graph, and then assignlabels to all the nodes of this layer. We repeat the process until the nodesin all the layers are labelled.Note that by labelling the nodes of some layer i, it may be the case thatsome of the strings in S cannot be produced by the graph. This happens ifa string has a letter in position i, which is not the label of any node in thislayer. We use an auxiliary variable called considered-strs, which holdsthe set of target strings that can be produced by some labelling of the nodesin the remaining unlabelled layers. considered-strs is updated after thelabelling of each layer of the graph.The order in which the layers are labelled is greedily chosen. The nextlayer to be labelled is one such that the labelling we assign it causes theelimination from considered-strs of as few strings as possible. That is,one whose labelling leaves the considered-strs as large as possible. Notethat in the applications we address, the strings length is short, therefore thisprocess is extremely fast. 60



The labelling of layer i is done according to the letters frequencies inthe ith position of the strings in the considered-strs: First, the nodes aredivided equally between the relevant labels, that is, each label is assignedto xwj y nodes. The remaining (w mod j) nodes are assigned the (w mod j)most frequent labels. Thus, letters with high frequency are assigned to onemore node than letters with low frequency.Note that this initialization prefers variety in labels over clear preferenceto the frequent ones. This approach was chosen after examining the successof our algorithm on both approaches. Nevertheless, in Section 3.6 we showhow the success of the algorithm can be further improved by preprocessingthe set S of target strings, to obtain a subset S0 � S, where { roughlyspeaking { strings with rare letters are eliminated.This procedure is summarized as follows.1. Let the considered-strs be the set of all the target strings.2. Repeat until nodes labels of all layers are de�ned(a) For each layer, check how many strings remain in the considered-strsset, after labelling it (as described in 2b). Let i be a layer withthe highest number of remaining strings.(b) Sort the letters appearing in the ith position in descending or-der of their number of appearances in the considered-strs set.Let j be the number of di�erent letters in position i of theconsidered-strs. Label xwj y nodes in layer i with each let-ter in position i in the considered-strs set, and add one morenode labelled with each of the (w mod j) most frequent letters.(c) Remove from the considered-strs set irrelevant strings, i.e.,strings that can no longer be produced by the graph.The calculations for each layer are composed of sorting (which requiresO(jSj) time, if bucket sort is used, provided that the size of the alpha-bet is �xed), assigning labels (which requires O(w) time) and updating the61



Figure 4.4: Initializing arcs weights in the gradient-descent algorithmconsidered-strs set (which requires O(jSj) time). Thus, the complexityof the entire procedure is O(l2 � (jSj+ w)).4.5.2 Assigning Arcs WeightsOnce the nodes labels are set, we initialize the arcs weights as follows. Foreach pair of nodes v; u in two consecutive layers i; i+1, let the weight of thearc (v; u) between them be the number of strings out of the considered-strsthat have letters label(v); label(u) in positions i; i+ 1 respectively, i.e., thenumber of strings that correspond to a path that may pass through this arc(compare Figure 3.4). Note that if a letter appears more than once in thesame level we might get more than one path corresponding to a given string.Weights are then normalized so that the sum of weights outgoing from eachnode is one. 62



4.5.3 Assessing the Performance of Our Initialization Algo-rithmIn order to assess the performance of our initialization algorithm, we com-pared the results of the gradient-descent algorithm obtained with our ini-tialization with the results obtained by assigning random arcs weights. Foreach of the �rst 10 small data sets of real data, we chose 100 random ini-tializations of arcs weights, and ran the gradient-descent algorithm on theseinitial graphs, without the heuristic of escaping local maxima. The randominitialization of arcs weights is done by �rst assigning a random integer inthe range 0; :::; 99 to each arc corresponding to some string in S, and thennormalizing the weights so that the sum of weights outgoing from each nodeis one. In Table 3.1 we give a summary of the results of these experiments.The results show a clear advantage of our initialization. The poor resultsobtained by the random initialization may indicate that the potential spaceof our objective function has many local optima.average std max min our init96 real data 1 39.59 1.59 43 35 5796 real data 2 43.94 1.95 48 39 6396 real data 3 42.15 1.48 47 39 5996 real data 4 42.72 2.03 47 38 6296 real data 5 39.83 1.65 44 37 5796 real data 6 37.31 1.50 42 34 5596 real data 7 40.67 1.7 45 35 5996 real data 8 36.85 1.41 41 33 5396 real data 9 42.8 1.87 46 38 6396 real data 10 41.95 1.53 46 38 60Table 4.1: Impact of the initialization scheme. Comparison of our initial-ization vs. random initialization on small sets of real data. Each row sum-marizes the average, standard deviation, maximum and minimum scores of100 random initializations as well as the score obtained by our algorithm.63



4.5.4 Complexity of the Obtained GraphThe width of the graph is polynomial in the input (recall, that we assumedthat w is given in unary). Let l+1 be the length of the graph. The numberof nodes is bounded by l � w + 1, and the number of arcs is bounded by(l � 1) � w2 + l. That is, they are both polynomial. The number of paths isbounded by wl�1, which is polynomial under our assumption that the lengthof the graph is O(1). However, in the following we describe how to changethe initialization procedure, so that our algorithms would be polynomialeven when l is not bounded by O(1).Our algorithm can be extended to handle target sets with strings ofpolynomial length as follows. The graph is partitioned into 'slices': Eachslice has no more than one copy of each label in each layer; and the slices aredisconnected, that is, there are no arcs connecting nodes in di�erent slices.Each string corresponds to at most one path in each slice (as there is atmost one copy of each label in each layer). Therefore, the number of goodpaths in each slice is at most jSj. (Recall that a path p 2 P (G) is goodif it corresponds to a string � 2 S { see Section 1.2.2). Additionally, thenumber of slices in no more than w. Therefore, the number of good pathsin the obtained graph is polynomial. The good paths can be held in a datastructure (say, a list) that allows accessing them without encountering badpaths. Since the size of the graph is polynomial, for each good path such alist can be constructed by simply going over all the slices in the graph andchecking if all the arcs between the nodes corresponding to this path exist.Since the number of good paths is polynomial (at most jSj � w), the entirelist can be polynomially constructed.In the following sections, the complexity analysis is measured with re-spect to the number of good paths in the graph. We show that the algorithmswe use are polynomial in the number of good paths in the graph and in theinput. By the above discussion, this indicates that with proper initializa-tion, our algorithms are indeed polynomial in the input even when l is notbounded by O(1). 64



This initialization with slices has more advantages than merely the re-duction in the complexity. A discussion of these advantages is given inSection 4.1.4.6 Similarity ScoreIn this section we describe preliminary ideas on combining the steps of targetlibrary construction and synthesis graph design. As discussed in the intro-duction, the target set of strings is chosen so as to represent the relevantparent library. There are many di�erent sets of compounds, which may rep-resent the parent library equally well. Appropriately choosing the right setof compounds may greatly a�ect the ability to synthesize it. In particular,our experiments show that though all tested data sets of the same type werechosen by the same diversity selection, on some of them our algorithms givemuch better results than on the others. On di�erent real sets of 96 strings,scores ranged from 82 to 91, and on 1000-strings data sets they ranged from339 to 377 (detailed results appear in Section 6).A natural question is how to combine the diversity selection with thesynthesis design, so that many target strings can be synthesized under thegiven synthesis constraints. As a �rst step toward this goal, we de�ne ascoring function { the similarity score { to direct our search. The scoringfunction we de�ne measures the similarity in the sequence of building-units(say, amino acids) of the compounds in the target set. The similarity oftwo compounds measures the number of arcs in a synthesis graph, thatcan possibly be shared by both compounds. Precisely, for each two strings,a = a1 : : : al and b = b1 : : : bl0 with l0 � l, we de�neSim(a; b) = 1l � 1 � l�1Xi=1 �(aiai+1; bibi+1), where�(aiai+1; bibi+1) = 8><>: 1 if ai = bi; ai+1 = bi+10 othewise :65



(the 1l factor, normalizes this score, when compounds of di�erent lengthsare handled.)Using the de�nition of similarity between two sequences, we may nowde�ne the similarity of a string to a set of strings, as follows.Sim(a; S0) =Xb2S0 Sim(a; b);When S0 � S is very close in size to S, Sim(a; S0) � Sim(a; S) (as mostof the compound are common to both sets). Therefore, in order to choose asubstantial subset S0 with large similarity score, we simply take the strings0a0 with the highest Sim(a; S) scores.4.7 Learning RateAs discussed in Section 3.2, it is a common practice to use a learning pa-rameter � that decreases over time in order to avoid oscillating around theoptimum without the ability to make �ne enough movements to reach it.Hence we decrease � as follows. We initialized � to be 0:01. As long as thescore improves, we keep � constant. However, when a "zigzag" behavior isencountered we decrease � by dividing it by two. Thus, �(t) = 0:01 � (12)t0 ,where t0 is the number of times a "zigzag" behavior is encountered. Thisvalues were experimentally determined.4.8 Escaping Local MaximaThe gradient descent algorithm is aimed at achieving a local optimum; how-ever it is the global optimum which naturally interests us. Enhancing thechance of �nding the global optimum can be done by running the algorithmfrom multiple starting points and choosing the best local optimum that wasfound. Another alternative is directing the search itself by imposing smallchanges which escape a local optimum and enable a continuation of the66



search. While doing so, one must record the best local optimum found sofar, so that eventually, the best local optimum that was encountered in thesearch is returned.In this work we applied a combination of both methods { we examinedmultiple starting points and from each starting point we sought multiplelocal optima. The starting points are either chosen randomly, or by our ini-tialization algorithm (see Section 3.5), or by our similarity measure (Section3.6). The local changes we apply are arc deletions operations. The deletionof an arc changes the graph so that it is usually no longer a local optimum,and consequently, when the search (using the gradient-descent algorithm)continues, another local optimum is found.The choice of arcs to be deleted can be done in many di�erent ways.We checked three options, which we refer to as the "Prob", "Path", and"Lookahead" heuristics. The general scheme of all the di�erent heuristicsis the same: a score is attached to each arc, the arc with the lowest scoreis deleted, and the entire graph is amended (for example, other arcs maybecome irrelevant due to the arc deletion, so they are also deleted). However,the three heuristics di�er in the way they score the arcs. These scoringmethods are described in the following sections. Since each scoring methodimplies a di�erent order of arcs deletion, it gives a di�erent synthesis graph.Combining the arc deletion heuristic with the gradient-descent algorithmis done according to the following scheme: as long as there are more pathsthan the number of beads (b), iterate between (1) running the gradient-descent algorithm until a local optimum is found, and (2) applying an arcdeletion heuristic followed by the deletion of irrelevant arcs, that is, arcswhich are not on any path corresponding to a target string.4.8.1 Prob ScoreIn the prob score each arc is assigned a score according to the total pathprobability of good paths using it. This score is calculated using the nor-malized arcs weights, and equals the sum of paths' weights over all good67



paths passing through that arc.prob score(ui; ui+1) = Xp=(s;v1;:::;vl)2Good(ui;ui+1)w(s; v1) � 1�1Yi=1 w(vi; vi+1);whereGood(ui; ui+1) = fp = (s; v1; :::; vl) j p is a good path; vi = ui; vi+1 = ui+1gFor each given path this calculation is linear in l. All good paths can bestored in a list of size t (see Section 3.5.4). Thus, calculating this score forall the arcs in the graph can be done in time O(jEj � t � l). This is indeedpolynomial as our assumptions imply that t is polynomial in the input length(see Section 3.5.4).Note that this heuristic takes into account the arcs weights and thereforerunning the gradient descent algorithm a�ects the arcs that are deleted inthe heuristic. In Sections 3.8.2 and 3.8.3 we shall show procedures that donot use the weights.4.8.2 Path ScoreThe path score of an arc is the ratio between the number of good paths andthe number of bad paths passing through it.path score(v; u) = #good paths passing through (v; u)#bad paths passing through (v; u)Although there may be an exponential number of such bad paths, theirnumber can be eÆciently computed observing that the number of bad pathsthrough an arc equals the total number of paths passing through it minusthe number of good paths passing through it. The number of good pathsthrough an arc is polynomial (see Section 3.5.4).The total number of paths passing through an arc can be calculatedas follows. For each node v we calculate two values: the number of pathsoutgoing from v (outgoing(v)), and the number of paths incoming to it68



(incoming(v)). outgoing(v) can be recursively calculated for all the nodes inthe graph starting from the last layer and going backwards: outgoing(v) = 1if v 2 Last(G), outgoing(v) = Pfu j(v;u)2Eg outgoing(u) otherwise. Work-ing layer-by-layer backwards implies that outgoing(u) is previously calcu-lated as u is in a layer preceding the layer of v. incoming(v) can be calcu-lated in a similar manner, when starting from First(G). The total numberof paths passing through a node is the product of the number of incomingpaths and the number of outgoing paths, that is, incoming(v) �outgoing(v).4.8.3 Lookahead ScoreRecall that a string is valid (see Section 1.2.2) if it corresponds to some pathp 2 P (G) (it is not necessarily produced by the graph, as its weight maybe too small). When an arc is deleted, any string � that was created onlythrough that arc, is no longer valid in the graph. Hence, all the arcs whichwere used only by � or other bad paths may also be deleted. The deletion ofthose arcs may in turn cause the elimination of some additional bad paths(and no additional good paths). In the lookahead score we take into accountthe total e�ect of the deletion of the arc and not only the counts of goodand bad paths passing through it.Similar to the path score, the lookahead score of an arc is the ratiobetween good and bad paths eliminated by the deletion of the arc. Thedi�erence is that here we regard all paths eliminated as a result of the arcdeletion, that is, both paths that pass through that arc, and paths that passthrough other arcs that are deleted as a result of the deletion of that arc.The number of such paths is calculated by summing the numbers of badpaths through the arc and all through all other arcs that could be deletedas a result of its deletion.lookahead score(v; u) = #good paths eliminated as a result of deleting (v; u)#bad paths eliminated as a result of deleting (v; u)Note that both the path and the lookahead scores are not inuencedby arcs weights (they are only a�ected by the existence or non-existence of69



the arcs). Additionally, the gradient-descent algorithm does not eliminatearcs (it only gradually changes their weights). Hence, the scores they assignare not a�ected by applying gradient-descent on the graph before usingthem. Nevertheless, they often achieve better results than the prob score,as discussed in Chapter 6.4.9 Recalculating Arcs WeightsOnce the number of paths in the graph is no more than the number of beads,the arcs weights are reassigned to be:w(v; u) = outgoing(u)outgoing(v) ;where outgoing(v) is the number of paths outgoing from node v. Thisnumber is calculated as described in Section 3.8.1.In the following we show that this is a weighting scheme by which all thepaths in the graph are produced, i.e., the weight of each path is at least 1b .First, note that w(v; u) is a normalized weight, as: 0 � w(v; u) � 1 andXfu j(v;u)2Egw(v; u) = Xfu j(v;u)2Eg outgoing(u)outgoing(v)= 1outgoing(v) � Xfu j(v;u)2Eg outgoing(u)= 1:It remains to show that indeed the weight of each path in the graphis at least 1b . This is easily proved by incorporating the following threefacts: the weight of a path is a telescopic product; for each vl 2 Last(G),outgoing(vl) = 1; and outgoing(s) � b (as the number of paths in no more70



than the number of beads). The formal calculation follows:weight(p = (s; v1; :::; vl)) = w(s; v1) � l�1Yi=1w(vi; vi+1)= outgoing(v1)outgoing(s) � l�1Yi=1 outgoing(vi+1)outgoing(vi)= outgoing(vl)outgoing(s)� 1b
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Chapter 5
A Discrete Approach to MaxStrings Synthesis
An alternative approach to solving the Max Strings Synthesis is by discretesearch over the space of synthesis graphs. This is done by starting froman initial graph and performing local changes with the aim of graduallyimproving the graph. In the following we describe both the initializationmethod, and the local changes we used.5.1 Overview of the AlgorithmIn order to simplify our discussion, let us begin with a few de�nitions. Recallthat a target string is a string which appears in the input S. We say that astrings is unused, if it is a target string with no corresponding path in thegraph. We say that a string is unrequested, if it is not a target string.Initializing the graph requires setting the nodes labels and the arcsweights. When doing so, we are confronted with two opposing goals: on theone hand, we want as many paths corresponding to target strings as pos-sible, but on the other hand, we want as few paths for unrequested stringsas possible. We want to limit the number of paths for unrequested strings,73



Figure 5.1: Initialization in \slices". Arcs between light nodes and darknodes are not allowed.since the number of beads is limited: having more unrequested strings leadsto less requested strings being produced by the graph. To balance thesetwo opposite goals, we initialize the graph in "slices" (compare Figure 4.1)as follows. Each slice has no more than one copy of each label (letter) ineach layer; and the slices are unconnected, that is, there are no arcs con-necting nodes in di�erent slices (arcs between nodes of the same slice areallowed). This type of initialization reduces the connectivity of the graph,thus reducing the number of paths in the graph.The number of slices depends on the constraint of the graph width. If thegraph width is smaller than the size of the alphabet, then only one slice isinitialized. In general, once the previous slices were already determined, thenext slice takes the next xk nodes in each layer k, where xk = min fj�kj ; w0kg,with �k { the alphabet at position k in the unused strings, and w0k { theremaining width of layer k of the graph, that is, the number of unlabellednodes in layer k.In our algorithm, the initialization and the arc-deletion heuristic areinterleaved together { we iterate between initializing the next slice and usingthe arc-deletion heuristic on the current graph (i.e., all slices initialized sofar). After using the arc-deletion heuristic we check which of the strings are74



not produced by the graph built so far, that is, which are the unused strings.When initiating the next slice, we concentrate only on those strings.The general scheme of the algorithm is as follows.1. Initially the set of unused strings is the set S of all target strings.2. De�ne the current slice: in each layer k, the current slice contains the�rst x nodes, where x = min fj�kj ; wg (we assume the nodes in eachlayer are ordered from 1 to w).3. Repeat until� the entire width of the graph is used in at least one level, or� all the target strings are produced by the graph.(a) Initialize current slice: label nodes and assign arcs weights in thecurrent slice of the graph according to the set of unused strings,(b) Arcs-deletions heuristic: repeat until the number of paths is atmost b:i. attach a score to each arc, and delete the arc with the lowestscore,ii. delete irrelevant arcs (i.e., arcs that are no longer on anypath corresponding to a target string).(c) Recalculate the arcs weights so that each path is of weight atleast 1b .(d) Let the unused strings be the strings in S that are not producedby the current graph.(e) De�ne the current slice: in each layer k, the current slice containsthe next x nodes, where x = min fj�kj ; w0kgIn the following sections, the algorithm is explained in detail.75



5.2 InitializationEach slice is initialized according to the set of unused strings. The nodes arelabelled as follows: Each letter in the unused strings is assigned as a label ofone node in the layer corresponding to its position in the string. The arcs areassigned weights as follows: Let u; v be nodes in layers i; i + 1 respectively.The weight of the arc (u; v) is assigned according to the frequency of stringsin the set of unused strings with letters corresponding to the labels of uand v in positions i and i+ 1 respectively. For a more detailed descriptionof this initialization the reader is referred to Section 3.5. Note that theinitialization is done with respect to the set of unused strings and not withrespect to the target set S (as in Section 3.5).5.3 Arc DeletionOnce a new slice is initialized, we usually obtain a graph with far too manypaths (with respect to b { the constraint over the number of beads). There-fore we use the arc-deletion heuristic to transform this graph into a graphwith no more than b paths. Then we recalculate the arcs weight in sucha way, that each valid path in the graph is produced by it. Note that, wewould like not only to reduce the number of paths in the graph, but alsoto maintain as many paths corresponding to target strings as possible. Wewould like to eliminate many paths corresponding to unrequested strings,and as few paths corresponding to target strings as possible.Similarly to the escape from local maximum (see Section 3.8), the changeswe impose on the graph are arc deletions. Our general strategy in choos-ing the next deleted arc is to delete the worst arc according to our scoringfunction; that is:1. Repeat until the number of path is at most b� Score all arcs according to the used scoring function.� Delete an arc with the worst score.76



It remains to describe the scoring function. Here, again, we tried the threescoring functions described in Section 3.8, that is, the prob score (see Section3.8.1), the path score (see Section 3.8.2) and the lookahead score (see Section3.8.3). As presented later (see Chapter 6), the lookahead score gave the bestresults, and hence it was chosen as our scoring function.Note that the arcs weights a�ect the score only when the prob score isused. Otherwise, we may simply mark the arcs as existent vs. non-existent.5.4 Recalculating Arcs WeightsThe recalculation of the arcs weights is done as described in Section 3.9.
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Chapter 6
Implementation
In this chapter we discuss some implementation related topics. This includesdetails on the software we developed, handling sets with strings of variablelengths, and the graphical interface we implemented.6.1 SoftwareOur algorithms are implemented using the C + + language. In total, thesoftware contains approximately 12,000 lines of code. The programs arequite fast. For example, while running on 500MHz Pentium III, the looka-head algorithm runs (on average) within 45 seconds on a large data set with1000 strings, and only 0.0032 seconds on a smaller data set with 96 strings.Exact times are given in Chapter 6.6.2 Handling Strings Sets with Variable LengthsSo far, we described our algorithms and the synthesis graph under the as-sumption that all target strings had the same length. This was done inorder to simplify the description. In practice we also handle strings setswith varying lengths. This is incorporated in our algorithm in the following79



Figure 6.1: Phantom nodes. The left column of nodes represents the Phan-tom nodes. The beads that end up on these nodes hold short requestedstrings.way. We de�ne an additional column of nodes, which we refer to as phan-tom nodes. The phantom nodes have no labelling, and they represent a pathtermination: an arc from node v into a phantom node p corresponds to ashort string that ends in node v. Hence, an arc (v; p) indicates that, in thesynthesis process, w(v; p) fraction of beads should be taken out of v so thatno more grow operations would be applied to them.6.3 GraphicsAs means of illustrating the synthesis graph obtained as an output of ouralgorithm, we implemented a graphical interface. In our graphical interface80



the output graph (labels and arcs weights) is presented as a picture, withsome additional features such as the list of strings produced by the graph,their weights and the paths through which they were produced. An exampleof such an illustration is given in Figure 5.2
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Figure 6.2: Graphical representation of a synthesis graph and the strings produced by it.
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Chapter 7
Computational Results
In this chapter we present computational results of our algorithms for solvingthe Max Strings Synthesis problem. In order to estimate both the success ofour di�erent algorithms, and their time requirements, we performed exten-sive experiments with all algorithms on di�erent types of data sets. In thischapter, we �rst describe the data sets we used, and then give comparativeresults of all the algorithms we designed. Those comparative results showthat the lookahead algorithm was the best both with respect to time require-ments and to the synthesis graphs it found. Hence, we continue by runningextensive experiments on this algorithm alone, and present their results.7.1 Data SetsThe data sets we used may be divided into 3 types:� small sets of real data,� large sets of real data,� synthetic data. 83



We worked with a parent library, which contained all possible sequences oflength 5 generated by the 10 natural amino acids (in parenthesis, singleletter code): Alanine(A), Arginine(R), Asparagine(N), Aspartic Acid(D),Cysteine(C), Glutamine(Q), Glutamic Acid(E), Glycine(G), Histidine(H)and Isoleucine(I).Each sequence was characterized by a set of 30 descriptors and followingPrincipal Component Analysis (PCA) it was found that six principal com-ponents covered more than 90% of the variance in the original data set. Setsof sequences were diversity selected from the space de�ned by the above sixPC's by the MaxMin1 function using 100000 Monte Carlo steps with 10000idle steps as a termination criterion. All calculations were performed withCerius2 version 4:5[11].By this diversity selection method, we chose 50 small data sets, eachcontaining 96 compounds. We also chose 20 large data sets, each containing1000 compounds. Additionally, we used synthetic data sets. The syntheticdata sets are based on a set of 60 compounds from the parent library, fromwhich 55 compounds can be produced by a synthesis graph with the basicparameters of 10000 beads and width 10. The 60 compounds are chosensuch that a minimum synthesis graph of width 10 producing all of themhas out-degree 6 in each node. Thus, it has 10 � 64 paths, which is morethan the number of beads (10,000). By eliminating 5 paths, we can obtaina synthesis graph producing 55 compounds, in which the out-degree of halfof the nodes is reduced to 5. This graph has only 5 � 54+5 � 64 paths (whichis less than the number of beads). This construction gave us a lower boundon the number of paths in the optimal solution, and hence a way to evaluatethe performances of our algorithms in an absolute (and not only relative)manner. On top of theses 60 compounds, we added di�erent amounts of\noise", that is, extra compounds, which were randomly chosen from theparent library.1The maxmin function is de�ned as follows: Let Dij be the distance in the propertyspace between the two compounds i and j. This function maximizes the minimum squareddistance between two points in the selected subset of compounds. This objective aims togenerate a subset of the parent library that is as diverse as possible.84



In summary, this is a list of the data sets we used:(i) 50 sets of 96 compounds, diversity selected from the parent library.(ii) 20 sets of 1000 compounds, diversity selected from the parent library.(iii) 10 sets of synthetic data with 10 \noise compounds".(iv) 10 sets of synthetic data with 20 \noise compounds".(v) 10 sets of synthetic data with 30 \noise compounds".(vi) 10 sets of synthetic data with 40 \noise compounds".Note that the results on the synthetic data are encouraging (see Tables6.5,6.6,6.7 and 6.8).7.2 Comparison of the Continuous and DiscreteApproachesOur results comparing the performances of the algorithms we have presentedon the di�erent data sets are given in Tables 6.2-6.8. In each table, wepresent the performance on a di�erent type of data set. All algorithms wererun with the basic parameters: number of beads 10000 and width 10. Thegradient-descent algorithms were run with the following parameters for thelogistic sigmoid (logsig) function: � = 1, � = 1.The following is a brief key to reading the tables. In each line, we presentthe performances of all algorithms on a single data set. Each column givesthe number of target molecules that were produced by the solution of theused algorithm (in the followings this number is referred to as the score ofthe algorithm).The synthesis graphs normally utilize (roughly) all the given beads, thusthey produce many other molecules, in addition to those in the data set. Inmost of our experiments the synthesis graphs had unique labels in each layer,85



thus the produced strings were distinct. Consequently, when using 10000beads, the graph produced approximately 10000 distinct strings. However,the excessive strings are not presented in the results we give here as theyare not part of the problem de�nition.The �rst column gives the outcome of the gradient descent algorithm,described in Section 3. The second column describes the outcome of thealgorithm combining the gradient descent algorithm with the prob scoreheuristic of arcs-deletion (see Section 3.8). The next three columns, "prob","path" and "lookahead", describes the performances of the di�erent arcs-deletion heuristics that we use { the prob score heuristic (see Section 3.8.1),the path score heuristic (see Section 3.8.2) and the lookahead heuristic (seeSection 3.8.3).Table 6.1 compares the time requirements of the di�erent algorithms.7.3 Discussion of Algorithms ComparisonFrom the comparison results, it is clear that the lookahead algorithm per-formed consistently better than all the other algorithms we have presented.It is expected that the lookahead heuristic would be better than the proband path heuristics. All those three heuristics work by the same principle ofperforming arcs deletions which locally improve the ratio of target stringsvs. unrequested strings produced by the graph. The "lookahead" heuristichas an advantage over the two other heuristics, since it chooses the deletedarcs by testing the results of these actions a few steps ahead and not only theimmediate result. Even so, it could be that occasionally the other heuristicsoutperform the lookahead heuristic, since all the heuristics are limited toa local estimation, and neither is guarantied to identify the optimum arcs-deletion ordering.A more surprising result is the superiority of the lookahead heuristicover the gradient-descent algorithm. It is clear that the gradient-descentis liable to reach a local minimum, and indeed this shortcoming explains86



the poor results achieved by the gradient-descent. However, by and large,when combined with the prob heuristic this shortcoming is overcome, asthe results show. Nevertheless, the lookahead algorithm outperforms thecombined gradient-descent and prob heuristic algorithm.In order to explore the reasons for the superiority of the lookahead algo-rithm over the gradient-descent algorithm, we observed the progress of bothalgorithms. This progress is presented in Figures 6.1 and 6.2. We can seethat both algorithms progress in a similar manner of gradually increasingthe number of produced compounds, except in the last step. In the laststep, we see a great leap in the number of produced strings in the looka-head algorithm, with only a minor improvement for the gradient-descentalgorithm. This great leap in the number of produced strings is a resultof the recalculation of the arcs weights, which is applied to the graph bythe lookahead algorithm, when the number of paths in the graph decreasesbelow the number of beads. By this recalculation, we obtain a graph thatproduces all strings with a corresponding path in the graph, and hence wehave a signi�cant increase in the number of produced strings. However,in the graph obtained by the gradient-descent, the number of paths doesnot usually decrease below the number of beads, as the gradient-descentalgorithm hardly ever eliminates arcs, but rather gradually decreases theirweights. Therefore, the gradient-descent algorithm does not usually achievea graph with less paths than the number of beads, and hence does not enjoythe leap at the number of produced strings, observed in the lookahead algo-rithm. Note however that even without the "leap" the lookahead algorithmis superior.When the gradient-descent is combined with an arcs-deletion heuris-tic, arcs are deleted until the number of paths decreases below the numberof beads. Once this occurs, the arcs weights are recalculated so that allstrings with corresponding paths are produced. This causes a leap in thescore, similar to the one in the lookahead algorithm. Nevertheless, when thegradient-descent is combined with the prob heuristic, the achieved scoresare still inferior to the one achieved by the lookahead heuristic. This is due87



to the superiority of the lookahead heuristic over the prob heuristic.The lookahead algorithm is also faster than the gradient-descent algo-rithm. In Table 6.1 we present the average running times of the gradient-descent and the lookahead algorithms. The running time of the gradient-descent algorithm is mostly determined by the number of iterations. Thenumber of needed iterations depends on the extent of convergence desiredby the user. gradient descent (50,000 iterations) lookahead1000 real data 100 min 45.15 sec96 real data 6 min 0.0032 secTable 7.1: Running time comparison. Numbers are average over all datasets of the corresponding types. The running time of the gradient-descentalgorithm is expressed by the average number of minutes needed for com-pleting 25,000 gradient-descent iterations (on the data sets we examined,25,000 iterations suÆced for convergence). The running time of the looka-head algorithm is expressed by the average number of seconds needed for acomplete run.
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Figure 7.1: Progress of the gradient-descent algorithm. The results show the improvement of the score as theiterations progress, on one real 1000 strings data set. The iterations are presented in a scale of 1:500.
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Figure 7.2: Progress of the lookahead algorithm. The results show the improvement of the score as the iterationsprogress, on one real 1000 strings data set. The iterations are presented in a scale of 1:1.
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7.4 Detailed Results for the Lookahead AlgorithmHaving established the superiority of the lookahead algorithm, we wouldlike to explore its performance more deeply. We present results giving thenumber of target compounds produced by the lookahead algorithm, whendi�erent constraints were imposed on the synthesis graph.First, we would like to explore the di�erence between the results on thetwo real data sets. At �rst, it might seem surprising that while on the 96strings data sets we reach an average success of 87%, on the 1,000 stringsdata sets, we reach an average success of only 36%. This phenomenon iseasily understood when we recall that the graph parameters (width 10, andnumber of beads 10,000) were kept the same for both data sets in spite of thegreat di�erence between their sizes. Figure 6.3 shows that indeed when thewidth of the graph is increased by the factor of 10, the success over the largedata sets (1,000 strings) becomes close to 80% as expected. Additionally,when the number of beads in increased 10-fold, the success trivially becomes100%, as in a graph of width 10 and length 5, the full combinatorial libraryrequires no more than 100,000 beads.Next, we explore the behavior of our algorithm when di�erent values ofthe graph width and the number of beads are taken. In Figure 6.3 we presentthe results of the lookahead algorithm on the large sets of real data withdi�erent widths between 2 and 100. In Figure 6.4 we present the results ofthe lookahead algorithm on the small sets of real data with widths between5 and 20.In Figures 6.6 and 6.5 we give the number of produced strings on graphswith width 10 as a function of the number of beads.
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gradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics1000 real data1 184 364 367 382 3771000 real data2 194 348 341 369 3681000 real data3 173 324 327 349 3501000 real data4 195 357 350 368 3711000 real data5 184 340 340 356 3571000 real data6 191 341 349 360 3601000 real data7 198 354 361 373 3731000 real data8 182 341 348 370 3681000 real data9 181 328 335 346 3411000 real data10 172 325 319 347 3471000 real data11 170 326 322 339 3391000 real data12 173 329 332 342 3421000 real data13 194 334 334 354 3551000 real data14 191 349 352 366 3691000 real data15 193 343 345 359 3581000 real data16 178 340 333 356 3561000 real data17 188 334 343 358 3571000 real data18 196 357 358 367 3681000 real data19 189 329 323 343 3461000 real data20 175 337 338 352 355average 185.05 340 340.85 357.8 357.85std 9.09 11.80 13.18 11.61 11.32Table 7.2: Performance of all algorithms on 1000 strings real data
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gradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics96 real data 1 57 85 85 83 8696 real data 2 63 89 89 90 9196 real data 3 59 87 87 85 8896 real data 4 62 87 88 89 8996 real data 5 58 86 86 86 8796 real data 6 55 84 84 84 8696 real data 7 59 86 85 86 8696 real data 8 53 84 84 83 8496 real data 9 63 89 89 87 8996 real data 10 60 86 87 86 8896 real data 11 55 86 87 87 8896 real data 12 58 88 88 87 8896 real data 13 57 86 87 83 8796 real data 14 58 85 84 82 8596 real data 15 54 86 86 85 8796 real data 16 57 85 84 82 8696 real data 17 59 87 88 88 8996 real data 18 59 88 87 87 8896 real data 19 55 83 84 82 8596 real data 20 57 85 85 84 8696 real data 21 56 85 85 84 8696 real data 22 62 89 89 88 9096 real data 23 58 85 85 85 8796 real data 24 60 87 87 87 8896 real data 25 58 86 86 86 8796 real data 26 59 85 85 82 8696 real data 27 57 86 86 85 8596 real data 28 57 85 84 85 8696 real data 29 49 80 81 78 8296 real data 30 58 87 88 86 89Table 7.3: Performance of all algorithms on 96 strings real data (part 1)93



gradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics96 real data 31 57 86 86 87 8796 real data 32 57 86 86 85 8796 real data 33 58 85 85 84 8696 real data 34 57 85 86 84 8796 real data 35 58 86 85 85 8796 real data 36 57 87 88 86 8896 real data 37 57 84 87 85 8896 real data 38 57 87 88 86 8896 real data 39 58 86 87 85 8796 real data 40 52 83 82 82 8496 real data 41 58 87 87 86 8896 real data 42 58 85 85 83 8696 real data 43 55 83 85 83 8696 real data 44 62 87 87 87 8896 real data 45 62 86 86 86 8796 real data 46 56 86 87 87 8896 real data 47 54 86 86 84 8696 real data 48 57 87 87 85 8896 real data 49 55 85 86 85 8796 real data 50 58 86 87 84 88average 57.5 85.8 86.06 85.02 87std 2.68 1.62 1.68 2.12 1.57Table 7.4: Performance of all algorithms on 96 strings real data (continued)
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gradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics70 synth data1 35 61 61 60 6170 synth data2 36 61 62 61 6270 synth data3 36 60 61 61 6170 synth data4 35 60 61 60 6170 synth data5 36 61 61 61 6270 synth data6 36 63 63 62 6370 synth data7 36 61 61 61 6270 synth data8 35 61 61 61 6170 synth data9 37 63 63 63 6370 synth data10 37 62 62 62 63average 35.9 61.3 61.6 61.2 61.9std 0.73 1.05 0.84 0.91 0.87Table 7.5: Performance of all algorithms on 70 strings synthetic datagradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics80 synth data1 42 68 68 68 6980 synth data2 40 68 69 67 6980 synth data3 44 70 70 69 7080 synth data4 44 69 69 67 6980 synth data5 39 65 66 65 6780 synth data6 44 69 70 69 7080 synth data7 41 67 68 67 6880 synth data8 42 68 69 68 6980 synth data9 42 67 67 66 6880 synth data10 41 67 67 66 68average 41.9 67.8 68.3 67.2 68.7std 1.72 1.39 1.33 1.31 0.94Table 7.6: Performance of all algorithms on 80 strings synthetic data95



gradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics90 synth data1 46 76 77 75 7790 synth data2 46 74 75 72 7590 synth data3 47 75 75 74 7690 synth data4 44 74 74 72 7590 synth data5 47 74 75 73 7590 synth data6 44 72 74 72 7490 synth data7 46 74 73 71 7590 synth data8 45 74 75 73 7690 synth data9 50 77 77 77 7890 synth data10 47 75 75 72 76average 46.2 74.5 75 73.1 75.7std 1.75 1.35 1.24 1.79 1.15Table 7.7: Performance of all algorithms on 90 strings synthetic datagradient gradient & prob path lookaheaddescent prob hue. heuristics heuristics heuristics100 synth data1 52 82 82 79 83100 synth data2 49 81 81 78 81100 synth data3 49 81 81 79 82100 synth data4 51 81 80 78 82100 synth data5 46 78 80 77 80100 synth data6 51 82 81 79 82100 synth data7 48 78 78 76 79100 synth data8 49 78 78 77 80100 synth data9 52 82 82 80 83100 synth data10 50 81 83 81 83average 49.7 80.4 80.6 78.4 81.5std 1.88 1.71 1.64 1.50 1.43Table 7.8: Performance of all algorithms on 100 strings synthetic data96



Figure 7.3: Impact of the width on performance. The graph summarizes the results of the lookahead algorithmwith di�erent widths on real data sets of 1000 strings. The average (dot), minimum and maximum (bars) areshown for each width.
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Figure 7.4: Impact of the width on performance. The graph summarizes the results of the lookahead algorithmwith di�erent widths on real data sets of 96 strings. The average (dot), minimum and maximum (bars) are shownfor each width.
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Figure 7.5: Impact of the number of beads on performance. The graph summarizes the results of the lookaheadalgorithm with di�erent number of beads on real data sets of 1000 strings. The average (dot), minimum andmaximum (bars) are shown for each number of beads.
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Figure 7.6: Impact of the number of beads on performance. The graph summarizes the results of the lookaheadalgorithm with di�erent number of beads on real data sets of 96 strings. The average (dot), minimum andmaximum (bars) are shown for each number of beads.
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From the above results, it is clear that increasing either the width or thenumber of beads improves the obtained results. The e�ect of increasing thenumber of beads is sublinear, while increasing the width �rst causes a rapidexponential-like rise of the score, and then a slow, sublinear rise. The rapidrise continues until the alphabet size is reached, as each new letter which isadded for the �rst time accommodates many of the target sequences. Afterall the letters are present, the e�ect of additional copies of the same lettersis more modest. In Figures 6.7 and 6.8 we explore the tradeo� betweenthose two parameters. Such plots allow the experimentalist to make themost convenient choice of the two parameters in order to achieve a desirednumber of target strings.Finally, as our algorithm is deterministic and greedy, we explored itsstability by trying di�erent starting points of the algorithm. In order toachieve this goal, we ran the algorithm using subsets of the large sets ofreal data as input. Each subset contained 900 strings that were randomlychosen out of the full set of 1000 strings. Note that the solution of thealgorithm on the full set of 1000 strings had no more than 400 strings, thustaking only 900 strings as input does not necessarily imply a decrease in theobtained result. The initialization according to each subset gives a di�erentinitial graph, and hence a di�erent order of arc deletions, which results ina di�erent output. This experiment was repeated for each of the �rst 10large data sets with 950 di�erent randomly chosen subsets of 900 strings.The results of those experiments show that our algorithm is very stable, atit always performed better than all other initializations. A summary of theresults is presented in Table 6.9 and Figure 6.9.In order to test the utility of using the similarity score, we compared thesuccess of our algorithm on randomly chosen subsets of the given data setsand on the subsets chosen by their high similarity. The results of this testare presented in Table 6.9 and Figure 6.9. We can see that subsets chosenby their similarity always performed better than randomly chosen subsets;and more surprisingly, in 8 out of 10 cases, they also give better results thanthe algorithm on the full set of 1000 strings.101



Figure 7.7: Tradeo� between the width and the number of beads. Perfor-mance of the lookahead algorithm with di�erent widths and di�erent numberof beads on 96 strings real data sets.
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Figure 7.8: Tradeo� between the width and the number of beads. Perfor-mance of the lookahead algorithm with di�erent widths and di�erent numberof beads on 1000 strings real data sets.
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average max min 1000 similarity1000 real data1 349.59 366 337 377 3811000 real data2 344.01 362 330 368 3751000 real data3 326.18 340 313 350 3491000 real data4 341.76 358 327 371 3731000 real data5 329.08 342 314 357 3541000 real data6 333.47 347 316 360 3641000 real data7 345.65 358 328 373 3761000 real data8 336.98 350 322 368 3691000 real data9 325.39 339 309 341 3551000 real data10 323.39 337 309 347 352Table 7.9: Impact of partial sets. In order to achieve di�erent starting points,the algorithm was applied to 950 di�erent subsets of 900 target strings,which were chosen out of each 1000 strings real data set, and statisticswere collected. Columns 2,3,4 give the average, maximum and minimumscore obtained. Column 5 repeats for comparison the result on the full set.Column 6 gives the result on a set chosen according to the similarity score.
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Figure 7.9: Impact of partial sets { graphical summary. The setup is as for Table 6.9. The x axis gives the tenlarge data sets in arbitrary order. The y axis gives the number of produced target strings.
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Chapter 8
Future Work
In this chapter we suggest two directions for future work. One is combininglibrary selection with the design of a synthesis graph producing it; and theother is establishing tight upper bounds for the solutions to the variousproblems we explored.
8.1 Combining Diverse Library Selection with Syn-thesis Graph DesignAs discussed in Section 3.6 there are many target sets which represent theparent library equally well. However, these target sets may vary greatlyin their synthesis complexity. Hence, we suggest exploring possibilities ofcombining library selection with the design of a synthesis graph producingit. That is, choosing a library that not only represents the parent library,but can also be eÆciently synthesized.107



8.2 Upper BoundsAnother important issue is the establishment of tight upper bounds for thesolutions to the various problems we explored.Worst case upper bounds are easily obtained in some cases. Considera target set S in which the letters in each of the strings' positions are dis-tinct. In the applications we address this is indeed a realistic example: Forexample, when the alphabet is composed of unnatural amino acids its sizecan reach a few thousands. Clearly the strings in S must be synthesizedindividually, i.e., by parallel synthesis. Therefore, the minimum solution toMNES is of size (i.e., a number of internal nodes) (l� 2) � jSj, where l is thelength of the strings in S. Likewise, a maximum solution to MSS producesw strings out of S, where w is the constraint on the width of the solutiongraph (assuming w is at most jSj).A more interesting question is the establishment of average case upperbounds. However, even identifying the average case is a diÆcult problem.The target set which is an input to the problems we explored is designed torepresent some parent library. It is de�nitely not a random set. In fact theproperties of such a set are still the subject of extensive research.The ultimate goal is the establishment of speci�c tight upper bounds.That is, for each target set S bounding its synthesis requirements: in termsof the number of required nodes for MNES, and in terms of the number ofstrings which can possibly be synthesized for MSS.
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