Tel Aviv University
Raymond and Beverly Sackler
Faculty of Exact Sciences
School of Mathematical Sciences
Computer Science Department

Designing Multi-Route Synthesis
in Combinatorial Chemistry —

Complexity and Algorithms

by

Adi Akavia

The research work has been conducted
under the supervision of
Prof. Ron Shamir

Submitted as partial fulfillment of the requirements
towards the M.Sc. degree

SEPTEMBER 2002

Abstract

In combinatorial chemistry, one generates a collection of chemical com-
pounds (such as peptides) with desired properties, in order to test their
response in disease-related scenarios, as candidate leads for drug develop-
ment. The process of generating the collection can be represented by a
synthesis graph. In this work we address several problems regarding the
design of a synthesis graph for a given target set of compounds. First,
we consider a few variations of the Min Node Exact Synthesis (MNES), in
which given the target set S, a minimum synthesis graph producing S is
sought. In particular, we investigate the (d, g)-Flexible Min Node Synthesis
((d, g)-FMNS), in which the goal is to find a g-approximation of a minimum
synthesis graph producing S, and no more than d additional compounds.
We show that the problem is hard for any d < O(g) and g < O(|S\%75),
unless NP=ZPP. In particular, this implies that approximating MNES by
factor ¢ is hard for any g = O(\S\f_ﬂfg), unless NP=Z7ZPP.

Next, we concentrate on the Max Strings Synthesis problem (MSS), in
which the goal is to find a synthesis graph whose width is constrained, which
maximizes the number of produced target compounds, given a constraint on
the number of beads. We show that this problem in NP-hard.

Our main focus is presenting two heuristics for solving MSS — one based
on a continuous search using a gradient-descent algorithm, and the other
based on discrete search. We test the heuristics on several data sets, explore

their behavior, and show that they achieve good success rates.

Key words: combinatorial chemistry, hardness of approximation, NP hard-

ness, heuristics.

Acknowledgements

I would like to thank my advisor Prof. Ron Shamir for accompanying me in
my first steps in research and providing all that is needed to enable me to
concentrate on research. Through his demand for accuracy my vague ideas
were sharpened into precise mathematical statements, and with the aid of

his brilliant writing skills I learned to communicate these ideas to others.

I would also like to thank Prof. Muli Safra for his photographer’s eye
that saw the beautiful picture emerging from the many details I brought
before him. Working together I learned the meaning of devotion to research

and how not to despair by the many obstacles on the way.

I also want to express my thanks to Dr. Hanoch Senderovitch. His vast
knowledge and good will has made him a wonderful guide in the paths of

Combinatorial Chemistry.

Last but not least, I want to thank Alon Lerner for our long hours near

the computer in transforming ideas into actions.

Contents

1

2

Introduction

1.1 Combinatorial Chemistry

1.2 Definitions
1.2.1 Synthesis Graph
1.2.2 Weighted Synthesis Graph
1.2.3 Relevant Parameters
1.2.4 Min Node Synthesis
1.2.5 Flexible Min Node Synthesis
1.2.6 Max Strings Synthesis

1.3 Summary of Thesis Results

Hardness of Max Strings Synthesis

A Continuous Approach to Solving Max Strings Synthesis
3.1 An Overview of the Algorithm
3.2 Background — Gradient-Descent
3.3 Objective Function o o0

3.4 Derivatives

15

15

22

22

24

25

27

30

33

35

37

3.5 Imitialization L L
3.5.1 Assigning Nodes Labels
3.5.2 Assigning Arcs Weights

3.5.3 Assessing the Performance of Our Initialization Algo-

rithm

3.5.4 Complexity of the Obtained Graph

3.6 Similarity Score o oL
3.7 Learning Rate
3.8 Escaping Local Maxima
3.8.1 ProbScore 0.
3.8.2 PathScore
3.8.3 Lookahead Score 0.

3.9 Recalculating Arcs Weights

A Discrete Approach to Max Strings Synthesis

4.1 Overview of the Algorithm
4.2 Initializationo
4.3 ArcDeletion oo
4.4 Recalculating Arcs Weights
Implementation

5.1 Software
5.2 Handling Strings Sets with Variable Lengths
5.3 Graphics.

o7

71

71

71

6 Computational Results 75

6.1 Data Sets 75
6.2 Comparison of the Continuous and Discrete Approaches . . . 77
6.3 Discussion of Algorithms Comparison 78
6.4 Detailed Results for the Lookahead Algorithm 83
7 Future Work 99

7.1 Combining Diverse Library Selection with Synthesis Graph
Designo 99

72 UpperBounds 100

10

List of Figures

1.1
1.2
1.3
1.4

1.5

3.1
3.2
3.3
3.4

4.1

5.1

0.2

6.1
6.2
6.3

6.4

Parallel synthesis
Combinatorial synthesis
Multi-Route Synthesis
Weighted Multi-Route Synthesis

Duplicating labels 0oL

Convergence of Steepest Descent
Logistic sigmoid o oL
Exponent normalization

Initializing arcs weights in the gradient-descent algorithm

Initialization in the lookahead algorithm

Phantom nodeso

Visualization e

Gradient descent algorithm — progress graph
Lookahead algorithm — progress graph
Impact of the width on performance (large data sets)

Impact of the width on performance (small data sets)

11

72

6.5
6.6

6.7

6.8

6.9

Impact of the number of beads on performance (large data sets) 91

Impact of the number of beads on performance (small data

SEES) L oo 92
Tradeoff between width and the number of beads (small data
SEES) . . . e 94
Tradeoff between width and the number of beads (large data
SEES) L . 95
Impact of partial sets 97

12

List of Tables

3.1 Comparison of initialization methods 55
6.1 Running time comparison 80
6.2 Comparison of algorithms (large data sets) 84
6.3 Comparison of algorithms (small data sets) 85
6.4 Comparison of algorithms (small data sets) - continues 86
6.5 Comparison of algorithms (synthetic data sets) 87
6.6 Comparison of algorithms (synthetic data sets) 87
6.7 Comparison of algorithms (synthetic data sets) 88
6.8 Comparison of algorithms (synthetic data sets) 88
6.9 Impact of partial sets 96

13

14

Chapter 1

Introduction

In this chapter we first provide background on combinatorial chemistry and
introduce the problem that motivated this study. We then provide formal
definitions of the algorithmic problems we will focus on. We summarize the

thesis results in the last section.

1.1 Combinatorial Chemistry

Drug development is a long and expensive process, hence methods with po-
tential of shortening it are of utmost importance. Combinatorial-chemistry
is such a method, developed during the last two decades [20, 18, 14, 16, 22,
10, 17, 12, 28, 8, 1, 25]. In the early stages of drug discovery, one focuses
on lead finding. Lead compound is a compound (e.g., a peptide, or a small
molecule) with the desired biological activity. Its activity is usually insuffi-
cient for therapeutic purposes and it may have some additional limitations
as a drug. In order to overcome these shortcomings the lead is optimized.
Lead optimizations is the process by which lead’s activities are optimized
and other limitations are overcome. Traditionally, the leads were identified
based on historical medicinal research; however, in combinatorial chemistry,

one relies on a broad search over large libraries (collections of compounds),

15

by utilizing rapid synthesis methods. These libraries are designed to span
a predefined parent library, which contains many potentially relevant com-
pounds, but is too large to allow generation or screening of each compound.
The produced libraries are normally utilized in high-throughput screening
(HTS)!, with the goal of discovering a lead. The combinatorial chemistry
approach, when utilized with a good design procedure, produces libraries
that are better (with respect to the diversity criterion discussed in the fol-
lowing paragraph) than the ones obtained by traditional approaches [26],

thus enhancing the chances of finding a lead.

The basic approach for designing a compound library depends on the
desired type of library. At the lead-finding stage, when there is very lit-
tle knowledge on the appropriate drug, a library of high diversity is desired.
Roughly speaking, each compound in the parent library has some properties,
and a subset of high diversity represents a wide range of these properties,
by containing highly dissimilar compounds [24]. At later stages, after active
compounds were already identified and must be refined, a focused library
which contains many compounds similar to the active ones is desired. In
order to quantify these goals, the parent library is embedded in a property
space. The property space is a multi-dimensional space, where each coor-
dinate represents a molecular descriptor, and each molecule is represented
by a point corresponding to the values of its descriptors. The geometric
distance in the property space is assumed to measure functional similarity
between compounds. This assumption is often referred to as the Similarity
Principle [23]. The choice of good descriptors is crucial to the success of the
design, hence it is a subject of much research (see for example, [6, 7, 5]).
Examples of molecular descriptors are fragment-substructure descriptors, in
which a molecule is checked for the presence of some fragments, and physi-
cal properties descriptors, such as geometric features, electronic charge and

mass.

When approaching the design of compounds libraries, one must con-

'"HTS deals with the rapid screening of a large number of compound against a biological

target, in order to identify active compounds, which have therapeutic potential.

16

S—)—)—C
S—C)—0—C

Figure 1.1: Parallel Synthesis. This process produces four strings
a1a2a30a4, ..., dy1dodsds. Building units (nodes labels) are added according

to the order in each chain.

sider the compounds synthesis method at use, as the ability to produce the
designed library is constrained by the used synthesis method. One possi-
ble synthesis method is the parallel synthesis. To describe it, let’s assume
for simplicity that each compound is a linear chain of building units (e.g.,
amino-acids), so it can be viewed as a string over a finite alphabet. In a
parallel synthesis each compound is grown in a unique vessel (colon) by
repetitive addition of its building units (compare Figure 1.1). This method
imposes no constraints on the set of compounds in the resulting library due
to the fact that each compound is synthesized individually. However, it
does impose a constraint on the size of the library, as the number of avail-
able synthesis vessels is limited, and the effort of constructing it is linear in

the number of compounds.

17

Another synthesis method, proposed by [13, 21], is the single-route com-
binatorial synthesis, also referred to as split-synthesis or mix-and-split—
synthesis. In the following we abbreviate and refer to this method as com-
binatorial synthesis. In this synthesis method, a large set of compounds
is synthesized in a series of steps. Kach step is composed of three stages

(compare Figure 1.2):

e Split: dividing the mixture into different reaction vessels, one vessel

for each desired reaction.

e Grow: in each vessel performing a simple chemical process on all the
compounds at once adding a single building unit to the end of every

compound (e.g., peptide) in the mixture.

e Mix: mixing all compounds, produced in the previous steps.

The process proceeds by repeating this step, with each step extending the
length of all peptides (strings) by one. Technically, the steps are performed
on miniature beads, to which the peptides are chemically attached. In this
fashion a ’split’ step is just dividing the beads in a tube to random subsets
of equal size, which are then put in the tubes of the next layer. Note
that libraries produced in this synthesis method are combinatorial libraries,
that is, their compounds are composed of the combinations of the building
units used in the different positions in the molecules. The size of such
combinatorial libraries grows exponentially with the length of the peptides

(i.e., the number of building units in the peptide).

The Multi-Route Synthesis, proposed by [9], is a generalization of both
the combinatorial and the parallel synthesis methods. This method, sim-
ilarly to the combinatorial synthesis, is a process in which a large set of
compounds is synthesized in a combination of mix, split and grow steps.
However, the mix step here needs not be of all the previously produced
compounds, but rather of any desired combination of the previous subsets
(compare Figure 1.3). Note that a Multi-Route Synthesis is indeed a gen-

eralization of both the combinatorial and the parallel synthesis methods:

18

@@

Figure 1.2: Combinatorial synthesis. The empty nodes are 'mix’ steps. The
nodes with letters in them are ’grow’ steps. ’Split’ steps are denoted by
arrows emanating from a 'mix’ node. This process produces 256 strings

ajasazag, ..., d] d2d3d4.

When choosing not to mix at all, it is parallel synthesis; and when choosing

to mix all compounds previously produced, one gets combinatorial synthesis.

Far more diverse libraries can be produced in the Multi-Route Synthe-
sis than by the traditional combinatorial-synthesis, due to the relaxation
of the combinatorial constraint. Additionally, as mixing is allowed, this
synthesis method can be used, employing limited resources, to produce far
larger libraries than the parallel synthesis. However, unlike the parallel and
combinatorial synthesis methods, in Multi-Route Synthesis, given a set of
compounds, it is unclear which is the best way to produce them: There are
many possible synthesis schemes, and many decision points where one can
choose whether or not to mix previously produced compounds. Hence, with
this synthesis method, when designing a library, one must also specify the

synthesis procedure that produces that library.

A description of a Multi-Route Synthesis process may be given in a
synthesis graph, as presented in [9]. A synthesis graph (see Figure 1.3) is a
labelled, directed and acyclic graph. It is composed of layers, each describing
the grow operations at one position in the target compounds. The nodes
in the graph correspond to the 'grow’ operations, and their labels indicate
the appended unit. The arcs of the graph correspond to beads transfer
between the different reaction vessels, that is, if a node v has in-coming
arcs from nodes uyq, ..., ug, then the mixing step is taking compounds from
nodes uq,...,u; into node v. The strings obtained by concatenating the
labels along paths from the first layer in the graph to the last are called the
theoretical compounds of the graph. We refer to the theoretical compounds
as the language of the synthesis graph. They are called ”theoretical”, as
performing the synthesis process described by the graph might not produce
all those compounds, due to the random nature of the splitting process, and

due to possible failures in the chemical reactions in the ’grow’ operations.

Cohen and Skiena [9] consider only unweighted synthesis graphs, we
also consider the weighted case, as outlined below: In the Weighted Multi-

Route Synthesis, non-uniform distribution of the beads from one node (i.e.,

20

Figure 1.3: Multi-Route Synthesis. The produced strings are ajasagay,
a1bobsbyas, aibabzcybs, aicacgbias, aycadzeabs, ajcedsdybs, bidadzesbs,
b]d2d3d4b5, b] €2€3d4b5.

21

reaction vessel) to its descendants is allowed. The Weighted Multi-Route
Synthesis is modelled by a weighted synthesis graph. A weighted synthesis
graph is a synthesis graph with non-negative arcs weights (compare Figure
1.4). The weight of an arc (u,v) represents the fraction of substance (beads)

from node u that is transferred from v to v.

1.2 Definitions

In this section we give formal definitions and a discussion of the problems
that we shall study.

1.2.1 Synthesis Graph

Definition 1.1 A Synthesis Graph (See Figure 1.3) is a layered, vertex-
labelled directed acyclic graph G = (V,E). The first layer of G, denoted
by First(G), consists of all the nodes with in-degree 0. The last layer of
G, denoted by Last(G), consists of all the nodes with out-degree 0. All
arcs are directed from one layer to the next one. label(v) denotes the label

of node v. We denote by |G| the number of internal nodes in G, that is,

G| = |V \ (First(G) U Last(G))]

Let the valid paths of the graph, denoted by P(G), be the set of all paths in
G initiating with a node in First(G) and ending with a node in Last(G).
That is,

P(G) ={v1,...,v5 | Vi (vi,vit1) € E, v1 € First(G), vg € Last(G)} .

We assume that all the paths in the synthesis graph are of the same length.
Nevertheless, in Section 5.2 we show how string sets of variable lengths may

be produced in spite of this assumption.

Note that in the combinatorial synthesis at each step all the compounds
from the previous step are mixed together, and hence by using empty nodes

which represent 'mix’ steps, the synthesis process can be represented with

22

Csource
27 151 WA
@) ® ©
e |1
5}{11{{?1/,{1
0@
Va0 |]
1 2
L) (o
/ 1
@ ®

Figure 1.4: Weighted Multi-Route Synthesis. Arcs from ’source’ represent
the distribution of beads to the first synthesis step.

23

fewer arcs (see Figure 1.2). Thus arises the problem of finding the minimum
representation of a synthesis graph. That is, given a synthesis graph G, find
another graph G’, in which a layer of empty nodes is inserted between each
two layers in G, s.t. the same sets of strings are produced by both G and
G', and the number of empty nodes in G’ is minimum. This problem is
NP-hard (see Remark ?? in Chapter ??). Further study of this problem is

left for future research.

Definition 1.2 The language of a synthesis graph G, denoted by L(G), con-
tains all the strings which are a concatenation of node labels in G along a
path in P(G). Thatis, L(G) = {o1...05 | Ip = v1,...,vx € P(Q) s.t. Vi label(v;) =

oi}
We say that G produces the language L, if L = L(G).

1.2.2 Weighted Synthesis Graph

Definition 1.3 A Weighted Synthesis Graph is a synthesis graph with
a weight function w : E — RT assigning a weight to each arc s.t. the sum
of weights over all arcs outgoing from each node equals 1. The weighted
synthesis graph has one additional node — the source node, denoted by ’s’,
which does not represent a grow step. This node is connected by arcs into all
the nodes in the first layer. The weights on the outgoing arcs from node v
represent the fraction of beads from node v that are used for the subsequent

synthesis step.
Let the walid paths of the graph, denoted by P(G), be the set of all paths
in GG initiating in the source and ending with a node in Last(G). That is,
P(G) ={s,v1,...,v | Vi (vi,vi41) € E, (s,v1) € E, vy € Last(G)}.

Note that this definition coincide with the definition given for the non-
weighted version of the synthesis graph, as in a weighted synthesis graph we
may assume w.l.o.g. that the only node with in-degree 0 is the source node,
and hence First(G) = {s}.

24

Let 0 = 01...01 be a string, and p = s,v1,...,v; a path. We say that
the path p corresponds to o, if p € P(G) and Vi label(v;) = 0;. The weight
of p is the product of the arcs weights along its arcs, i.e., weight(p) =
w(s,v1)-[[;—1 1 w(vi,vit1). Let P, be the set of all paths corresponding
to o, then the weight of o is the sum of weights of all paths in P,, that
is, weight(o) = >_ . p weight(p). Note, that if o is not a concatenation of
node labels in G along a path from the source node to a node in Last(G),

then there is no path corresponding with o, and hence weight(o) = 0.

The weighted language of a weighted synthesis graph G, denoted by
W L(QG), is a set of pairs each composed of a string and its weight: W L(G) =
{{o, weight(o)) | Ip € P(G), s.t. o corresponds to p}.

If o has weight weight(o) and b beads are used, then weight(o) - b is the
expected number of beads synthesized with word o. Hence, we say that a
weighted word (o, weight(o)) is produced by a synthesis process following a

weighted synthesis graph G and using b beads, if weight(o) - b > 1.

Definition 1.4 The language L(G,b) of the synthesis process, defined by
the weighted synthesis graph G and b beads, is the set of all strings o s.t.
weight(o) - b > 1. That is,

L(G,b) = {0 |(o,weight(o)) € WL(G), weight(o) -b>1}.

In order to simplify the description of our algorithms, we define a few
terms. A walid string is string corresponding to some path p € P(G) (it is
not necessarily produced by the graph, as its weight may be too small); a
good path is a path p € P(G) corresponding to some target string; and a bad
path is a path p € P(G) that does not correspond any target string.

1.2.3 Relevant Parameters

Following Cohen and Skiena, we focus on the problem of finding a synthesis
scheme for a given library. However, when considering the real-world version

of the problem, there are many different possible formulations to it. These

25

formulations depend on the choice of parameters to be constrained and those
to be optimized. Generally speaking, the relevant parameters we focus on

are:

1. |V| - the number of nodes in the graph (which corresponds to the
number of ’grow’-steps). This number can be estimated by the width of
the graph (which corresponds to the number of parallel 'grow’-steps),
and the depth of the graph which is determined by the length of the

strings in S.

2. |L(G,b)| (or |[L(G)| in the non-weighted version) - the size of the lan-
guage produced by the graph,

3. |P(QG)| - the number of paths in the graph (which roughly corresponds

to the number of needed beads in the synthesis process),

4. |L(G,b) N S| (or |L(G) N S| in the non-weighted version) - the number
of target strings, i.e., strings from the input target set, which are

produced by the graph.

Note that both P(G) and L(G,b) are devised to capture the constraint of
the number of beads used in the synthesis process. Each string must be
generated on at least one bead, hence the number of paths |P(G)| is closely
related to the number of beads. However, the beads are not necessarily
evenly distributed among all paths; thus, even when the number of paths
does not exceed the number of beads, strings corresponding to some of the
paths might not be produced. That is, the number of paths does not capture
the constraint on the number of beads well enough. Consequently, we define
L(G,b), that directly addresses the language produced by the graph G while

using b beads.

In the above list of parameters, the first three parameters are to be

minimized, while the fourth should be maximized.

We have therefore four parameters, and in any optimization problem

some may be bounded (or set to a fixed value, or penalized) and one (or

26

a function over a few of them) optimized. These variants give different
problems, which might vary greatly in their complexity. In the following we

briefly consider examples of such variations.

First, let us consider two such variations which yield easy-to-solve prob-
lems. If we must produce all target strings, while there is no penalty on
the number of nodes, and the number of paths is to be minimized, the so-
lution is immediate: use parallel synthesis to produce the target strings. If
producing all target strings is required, there is no penalty on the number
of paths, and the number of nodes is to be minimized, the solution is again

obvious — combinatorial synthesis.

Second, let us consider two variations which yield hard problems. One
example of such a variation is the Min Node Exact Synthesis, in which the
requirements are to produce all target strings, while the size of the produced
language is limited, and the goal is to minimize the number of nodes (see
Section 1.2.4). Cohen and Skiena [9] show that this problem is NP-hard.
Another example, is the Max Strings Synthesis, in which the goal is to
maximize the number of produced target strings, while the number of nodes
and paths is limited (see Section 1.2.6). In Chapter 2 we show this problem
is NP-hard.

1.2.4 Min Node Synthesis

In the Min Node Exact Synthesis, one has to find a synthesis graph for
producing a given set of compounds while minimizing the number of needed
‘grow’ operations, i.e., the number of nodes in the synthesis graph. Formally,

the problem is as follows:

Definition 1.5 Min Node Exzact Synthesis (MNES). Given a set S of
target strings, find a synthesis graph G s.t. L(G) = S and |G| is minimum.
Recall that |G| is the number of internal nodes in G, i.e., the nodes which
are not in First(G) or Last(Q).

27

a)(b

Figure 1.5: Label duplications in internal nodes. Duplicating labels in the
first or last layer will not reduce the number of paths in the graph, while
duplicating labels in internal layers can possibly reduce the number of paths

in the graph (from 4 paths to 2 in this example).

A very similar problem is addressed in [9] (we give here a different name
to the problem, for reasons that will become clear soon). While we want to
minimize the number of internal nodes in G, Cohen and Skiena minimize
the total number of nodes. Notice, that the first layer of G is trivially
defined in a minimum solution: it must contain at least one node for each
letter appearing in the first position of the strings in S, and moreover, no
duplication of labels (i.e, different nodes with the same label) is necessary
(see Figure 1.5). The same holds for the last layer. Hence, the natural
optimization goal is the number of internal nodes. Of course, this difference
is of no importance when discussing optimal solutions or the decision version
of the problem. However, it is crucial when addressing approximations.
Cohen and Skiena show that the problem is NP-hard.

Consider a synthesis graph producing a super-set S’ of the target set S.
From the point of view of combinatorial chemistry, such a synthesis graph
is a good solution, as long as the super-set S’ is of moderate size that may
be reasonably generated and screened (in the applications we consider, S’ is

of reasonable size if |S’ \ S| = ¢-|S] for some small constant ¢). Moreover, a

28

minimum synthesis graph producing S’ might be considerably smaller than

a minimum synthesis graph producing S.

The above two observations lead to an extension of MNES to the Min
Node Synthesis problem, in which one seeks the minimum size synthesis
graph out of all graphs producing a super-set of S of reasonable size. The

formal definition follows.

Definition 1.6 Min Node Synthesis (MNS). Given a set S of target
strings, and an integer d, find a synthesis graph G s.t.

1. L(G) 2 S,

2. |L(G)| —|S| < d,
and |G|, i.e., the number of internal nodes in G, is minimum.

From an algorithmic point of view this problem is very interesting. How-
ever, observing that when d = 0 this is simply MNES, we obtain that the
NP-hardness of MNES implies that MNS is NP-hard as well. Nonetheless,
note that for some d values a solution can be easily found. For example, let
d > |2|' —|S|, where || is the size of the alphabet, and [is the length of the
strings in S, then we may simply take the full combinatorial library, which

is trivially a minimum solution.

Cohen and Skiena focus on algorithmic solutions to another variation of
MNES, in which the number of paths (|P(G)|) is limited (and not the size
of the produced language). That is, given a set S and an integer d, find a
synthesis graph G s.t. L(G) = S, |P(G)| — |S| < d and |G| is minimum.
They present two heuristics for solving it. Their algorithms start with an
initial graph and by repetitive actions of splitting or merging paths they
reach a graph producing a super-set of the given set of compounds, that
adheres to the given constraint of the number of paths, and has a small
number of nodes. The performance analysis of their heuristics is measured

by comparison to the trivial solution, i.e., the number of ’grow’ steps in

29

a parallel synthesis producing the target set, and not with respect to the

optimum solution, which is generally unknown.

The algorithms in [9] perform either only path merging or only path
splitting. Similar algorithms, in which merging or splitting of paths are
used to improve the current model, are popular in many problems, which can
be formulated as a graph minimization problem where merging or splitting
of paths are applicable. The minimum Hidden Markov Model is one such
example. This problem can be formulated by a graph, in which the nodes
represent states of the model, and the arcs represent stochastic transitions
between states. The goal is to find a graph with a minimum number of states
which gives a satisfying representation of the stochastic process it is designed
to describe. Algorithms for solving this problem in which the operations
of merging and splitting of paths are used are discussed in [27, 4]. An
additional example is the minimum work-flow model problem in Industrial
Engineering. In this problem, we are given a set of tasks, i.e., sequences of
actions and partial order constraints on these actions, and we are interested
in the most efficient procedure for executing these tasks, i.e., one with the
fewest actions. (The same action may be executed once and used for different
tasks). In a graph representation of this problem, actions are represented
by nodes, partial order between actions is represented by arcs, and tasks are
represented by paths. The problem is to find a directed graph with paths
corresponding to the given set of tasks, and with minimum number of nodes.
Algorithms for solving this problem, using merging and splitting of paths,

are discussed in [19, 29].

1.2.5 Flexible Min Node Synthesis
In this section we consider a relazation of Min Node Exact Synthesis, which
we call d-Flexible Min Node Synthesis (d-FMNS).

First, let us make a few observations regarding MNS. It is clear that
MNS is at least as hard to solve as MNES: for any input S to MNES, a
solution GG to MNS on inputs S and d = 0 is also a solution to MNES.

30

Let us consider separately the two parts in the definition of MNS — the
constraints on a solution G, and the optimization goal. Note that when
only the constraints on a solution are considered (while the optimization
goal is omitted), this is a relaxation of MNES, as any solution to MNES
fulfill those constraints. However, when the optimization goal is considered
as well, MNS is no longer easier than MNES: though a minimum solution
to MNES adheres to the constraints of MNS, the size of the resulting graph

might not be as small as a minimum solution to MNS.

In view of the above observations, we define the following relaxation of

MNES.

Definition 1.7 d-Flexible Min Node Synthesis (d-FMNS). Given a
set S of target strings, find a synthesis graph G s.t.

1. L(G) 2 S,

2. |L(G)| - |S]| < d,
and |G| = |GynEs|, where Gy nps is a minimum solution to MNES.

Note that, in d-FMNS the parameter d is not a part of the input, but
rather an outside parameter. Due to this change we cannot apply the same
argument used earlier for showing that MNS is at least as hard as MNES in
case d # 0. Additionally, in d-FMNS though the constraints on a solution
graph are the same as the constraints in MNS the optimization goal is as
in MNES, that is, a solution to d-FMNS is a graph of the same size as the
optimum of MNES. This problem is indeed a relaxation of MNES as any
solution to MNES is also a solution to d-FMNS.

When an optimum to MNES is sought, d-FMNS is not an interesting
relaxation. Assume we only seek the size (i.e., the number of internal nodes)
of an optimal solution and not the synthesis graph itself. In this case, a
solution to d-FMNS is exactly the same as a solution to MNES (as the

solution to both problems is |Gy nvEs])-

31

Nevertheless, when considering approximations and not exact solutions,
this is indeed a relaxation as demonstrated in the following discussion. A
g-approzimate solution of d-FMNS is a synthesis graph G, which is (a) a
feasible solution to d-FMNS, i.e., L(G) 2 S and |L(G)| — |S| < d, and (b)
a g-approximation, that is, |G| < ¢g - |GunEs|. We denote the problem of
finding a g-approximation to d-FMNS by (d, g)-Flexible Min Node Synthesis.

A formal definition follows.

Definition 1.8 (d,g)-Flexible Min Node Synthesis ((d,g)-FMNS).
Given a set S of target strings, find a synthesis graph G s.t.

1. L(G) 2 8,

2. |L(G)| —|S| <d,
and ‘G‘ S g - |GMNE'S‘-

Note, that any graph G, which is a feasible solution to FMNS, is also
feasible solution to MNS, as in both problems a solution must adhere to the
same constraints (that is, constraints (1) and (2)). Therefore, any solution
G to (d,g)-FMNS is at least as large as the minimum solution to MNS, that
is, |Guns| < |G|, where Gy is a minimum solution to MNS on inputs S
and d. Combining this with the above definition, we obtain that for any a
solution G to (d, g)-FMNS:

|Guns| < |Gl <g-|GunEs|.

In contrast, let us consider the problem of finding a g-approzimation of
MNES. We denote this problem by g-MNES. A g-approximation of MNES
is a synthesis graph G, s.t. L(G) = S and |G| < g |GynEs|- Combining

those two requirements, we obtain that for any solution G to g-MNES

|Gunes| < |G| <g-|GunEs|.

A solution G to either one of the above approximation problems ((d, g)-
FMNS or g-MNES) is bounded from above by ¢ - |Garnrs|. However, the

32

lower bound is not the same for the two problems. A solution to (d,g)-
FMNS is bounded from below by |G anvs|; whereas a solution to g-MNES is
bounded from below by |Gy nps|. Note that |Gy ys| may be considerably
smaller than |Gy ngs|. Therefore, a solution to g-MNES is also a solution to
(d,g)-FMNS, but the converse does not necessarily hold. Therefore, (d, g)-
FMNS is a relaxation of ¢-MNES as we intended.

In contrast, a g-approximation of MNS on inputs S and d, is a synthesis
graph G, s.t. L(G) 2 8, |L(G)| — |S| < d, and |Garns| < G < g+ |Garnsl.
Note that |Gy ns| may be considerably smaller than |G nps|, hence a g-
approximate solution MNES might be larger than g - |Gynsl, i.e., it is not

necessarily a g-approximate solution to MNS.

We investigate the complexity of approximating d-FMNS for different
values for d. It is clear that when d is very large this problem is in P. For
example, when d is large enough so that a minimum solution to MNS can
be polynomially found, a minimum solution to d-FMNS can also be polyno-
mially found (as a minimum solution to MNS on inputs S and d is clearly
also a minimum solution to d-FMNS on the input S). Additionally, when
d = 0, d-FMNS, is equivalent to MNES, hence the hardness of approxima-
tion results we show for d-FMNS, imply the hardness of approximation of
MNES.

1.2.6 Max Strings Synthesis

In many real-life situations the laboratory constraints on the number of
available reaction vessels (corresponding to the number of nodes in any single
layer) and the number of used beads (related to the number of paths and
to L(G,b)) are quite rigid. On the other hand, the target set of strings
is heuristically designed, so producing all of them is not critical. Moreover,
avoiding some target strings can reduce the number of paths and the number
of nodes sharply. Hence, we define the Max Strings Synthesis problem, in
which the goal is to produce as many target strings as possible within the

above constraints (see definition 1.9).

33

Let w be the number of available reaction vessels, and b the number of
used beads. Bounding w and b imposes bounds on other parameters, as
follows. Let I be the length of the strings in S, then the number of nodes
in G is at most [- w. Additionally, a string o is produced if weight(o) > %,

hence bounding b imposes a constraint on the produced language.

Note that a synthesis graph (or a weighted synthesis graph) represents a
stochastic process, as each ’split’ step randomly divides the set of beads into
subsets. Maximizing |L(G,b) N S| corresponds to maximizing the expected
number of produced target strings. When applying the synthesis scheme
represented by the synthesis graph, one can ensure that the actual number
of produced strings is close to the expectation by taking redundant beads.

The needed amount of redundancy is explored in [30].

In the applications we address, S is a set of small molecules or peptides —
their length does not exceed ten building units, and is usually a lot smaller,
say, five building units. Therefore, the length of the strings in S can be
regarded as a constant. Nevertheless, whenever this assumption is used to
simplify our algorithm we also indicate how the algorithm can be extended
to work without this assumption. Additionally, we assume that w is given
in unary, that is, the graph width is polynomial in the input. This technical
assumption (used in Section 3.5.4) virtually always holds, as the length of

the target set is |S|- £ - log(]X|) and in practice |S| >> w.

Definition 1.9 Max Strings Synthesis (MSS). Given a set S of target
strings and two integers b € ZT and w € ZT, find a weighted synthesis
graph G of width at most w, that mazimizes |L(G,b) N S|, i.e., the number

of produced target strings.

Note, that assuming only one ’grow’ step can be done in a reaction vessel,

w is actually the number of vessels that can be used in parallel.

34

1.3 Summary of Thesis Results

We show that (d, g)-Flexible Min Node Synthesis, when d < O(g), is hard
for any g < O(|S|11_075), unless NP=ZPP. Consequently, Min Node Exact
Synthesis is hard to approximate by factor g < O(\S|%7€), unless NP=Z7PP.

We focus mainly on Max Strings Synthesis. We begin by showing that
Max Strings Synthesis is NP-hard, and proceed by suggesting heuristics for

solving it.

We explore two heuristic approaches for this problem a continuous ap-
proach and a discrete one. In the continuous approach, we use a gradient-
descent algorithm to optimize our score function. The score function is de-
vised as a continuous approximation of the score of a synthesis graph, which
is the number of target strings produced by it. In the discrete approach, we
search for an optimal synthesis graph by starting with some initial synthesis
graph, and using repetitive discrete actions of deleting arcs from the graph

with the aim of improving it.

We implemented both algorithms, and performed extensive experiments
to evaluate their performances and time requirements. The experiments
were done over synthetic and real data sets. The real data we used are data

sets of 96 strings and 1000 strings each.

The implementation of the discrete optimization is very efficient its
running time, on each of the data sets, is shorter than one minute. The
implementation of the continuous optimization is much slower: although
each optimization iteration is very efficient (taking less than a second), a
very large number of optimization iterations is required for convergence.
Nevertheless, it is still reasonably efficient — its running time is a few hours

on the data sets we tested.

The discrete optimization gave better results than the continuous one.
Using a graph width w = 10, and a number of beads b = 10, 000, the discrete
optimization produced on average 87% of the target strings on the small data

sets (96 strings), and 36% on the large ones (1000 strings). In contrast, the

35

continuous optimization produced on average only 57.5% and 18.5%, respec-
tively. The results of the continuous algorithm can be greatly enhanced by
combining it with several types of arcs-deletion heuristics, which are moti-
vated by the discrete approach. With these improvements the results of the

discrete algorithm are matched.

Finally, we explore the behavior of the discrete algorithm when different
values of the graph width and the number of beads are used. As expected,
increasing either the width or the number of beads improves the results. In
particular, when increasing the graph width or the number of beads by a
factor of 10, the results obtained on the large data sets are about equal to
the results on the small ones with the standard parameters. Note that the

two types of real data sets differ in size by a factor of 10.

36

Chapter 2

Hardness of Flexible Min
Node Synthesis

In this chapter we investigate the complexity of (d, g)-Flexible Min Node
Synthesis.

First let us recall some standard graph theoretic definitions: Let G =
(P,Q. E) be a bipartite graph. A biclique C is a set of vertices C C P U Q,
which induces a complete bipartite graph. We say that, a biclique C' covers

an arc (u,v), if u,v € C.

A biclique edge cover of G is a collection Cf1, ..., Cy of bicliques, which
covers all arcs of G (see Figure ??7 for an example). Note that non-edges
of G cannot be covered. Let us denote by B(G) the set of all biclique edge
covers of G, and for every biclique edge cover b € B(G) let us denote by |b|

the number of its bicliques.

Definition 2.1 Min Biclique Edge Cover (BEC). Given a bipartite
graph G = (P, Q, E), find a minimum biclique edge cover of G, that is, find
a biclique edge cover b* of G s.t. |b*| = minyecp(q) ||

Next, we define a relaxation of BEC approximation problem. In this

37

Figure 2.1: A biclique edge cover. The graph is covered by three bicliques
each marked set of nodes is a biclique, and they cover all the arcs (and no

non-arcs)

38

relaxation, the cover may consist of “almost-bicliques”, which are bicliques

with up to a few missing arcs.

Definition 2.2 (d, g)-Flexible Min Biclique Edge Cover problem ((d,g)-
FBEC). Given a bipartite graph G = (P,Q, E), find a biclique edge cover

b for a graph G', obtained from G by the addition of no more than d arcs,
s.t. |b] < g - minyep() (b

Similarly to our discussion regarding (d, g)-Flexible Min Node Synthesis (see
Section 1.2.4), (d, g)-FBEC is a relaxation of the BEC approximation prob-
lem. Additionally, when d = 0, a solution to (d,g)-FBEC, is simply a
g-approximation of BEC.

The next theorem [?] gives parameters for which (d, g)-FBEC is hard.

Theorem 2.1 (Akavia and Safra, 2002) For every ¢ >0, (d,g)-FBEC
is hard for any g < O(|P U Q|%75) and d < O(g), unless NP=ZPP.

We now prove our result regarding the (d, g)-FMNS.

Theorem 2.2 For every € > 0, (d,g)-Flexible Min Node Synthesis is hard
for any g < O(\S\%%) and d < O(g), unless NP=ZPP. This holds even if

all the strings in S are of length 3, and all have the same second letter.

Proof. By a gap-preserving reduction from d-FBEC to d-FMNS. The reduc-
tion is outlined in Figure ?7?7. Let G = (P, Q, E) be a bipartite graph, which
is the input to d-FBEC. Define a language S = {pAq|(p,q) € E}.

First, we assume a solution of size ¢ to d-FBEC, and show how to con-
struct a solution of size ¢ to d-FMNS. Let G' = (P,Q, E'), Cy,...,C; be a

solution for the instance G. Using this solution, we may define a synthesis

39

Figure 2.2: A flexible biclique edge cover. The graph is modified and then
covered by two bicliques. The bold lines are additional arcs. Each marked
set of nodes is a biclique, and together they cover all the arcs in the modified

graph.

40

graph H = (Vi, E) in the following way (compare Figure 77).

Ve=PUQU{L,... ¢},
Eg ={(p.i) [p€ C:i} U{(i,q) g € Ci}
and the labelling is:

v ifvePUQ

Vv € Vi, label(v) =
A ifve{l,... .0}

The above construction has the following characteristics:

e S C L(H): Let pAq € S. By the definition of S it follows that
(p,q) € E. Since {C;} is a cover of E' and E C FE’, there exists
a biclique Cj such that p,q € C;. Hence, by the definition of H,
(p,i),(i,q) € Ef. This implies that pAq € L(H).

e |L(H)|—|S| < d: Forevery pAq € L(H), there exists i s.t. (p,i), (i,q) €
FEg. This implies, by the definition of H, that Ji, p,q € C;. Hence,
(p,q) € E' (as C; is a biclique in G'). Moreover, note that every path
in P(H) is of the form p,i,q where p € P,i € {1,...,4} and ¢ € Q
(since First(H) = P, Last(H) = @ and there are no arcs connecting
P and Q). Therefore, every string in L(H) is of the form pAq and
|L(H)| < |E'|. Furthermore, by the construction of S, |S| = |E]|.
Hence |L(H)| — |S| < |E'| — |E|. However, |E'| — |E| < d, since G’ is
a solution to (d, g)-FBEC. Therefore |L(H)| — |S| < d.

e |Vi| = |P|+ |Q| + [(immediate from the construction).

Hence H is a solution of d-FMNS of size 4.

Second, we assume a solution of size ¢ to d-FMNS, and show how to
construct a solution of size £ to d-FBEC. Let H = (V, Eg) be a solution of
size £ to the instance S of d-FMNS, i.e., Vi contains £ internal nodes. Note,
that w.l.o.g. we may assume that all internal nodes are labelled with A, as

any node labelled differently contributes nothing to S, and may be deleted.

41

Let us denote by A1, ..., A; those nodes labelled by A. Using H, we define a
solution G' = (P,Q, E'), Cy,...,Cy to the instance G of d-FBEC, as follows

(compare Figure 77).

E'={(p.q) |pAq € L(H)}
Ci={p|(p Ai) € EntU{q|(4i.q) € Ex} Vi=1,....¢

The above construction has the following characteristics:

e G' = (P,Q,F') is obtained from G by the addition of no more than
d arcs: By the definition of E', |E'| < |L(H)|. By the definition
of S, |[E| = |S|. Combining those two facts, we obtain that |E'| —
\E| < |L(H)| — |S|. However, H is a solution to d-FMNS, hence
\L(H)| — |S| < d. Therefore |E'| — |E| < d. Additionally, S C L(H),
therefore & C E'.

e For each i, C; is a biclique in G': By the definition of C;, for every
p,q € Cy, (p, A;), (Ai,q) € Ey. Therefore pAq € L(H). Hence, by the
definition of G', (p,q) € E'.

. {Ci}7::1,...,e is a biclique edge cover of G': For every edge (p,q) € F,
pAq € L(H) (by the definition of G'). Hence, there exists an internal
node A; in H, s.t. (p, A;),(A;,q) € Ey. Therefore, by the definition
of C;, p,q € Cj.

Hence {C;},_, , is a solution of size £ to d-FBEC.

We saw that a solution of size £ to d-FBEC, implies a solution of size £ to
d-FMNS, and vice versa. In particular, by considering d = 0, we may deduce
that the size of a minimum solution to BEC and the size of a minimum
solution to MNES are equal. Hence, {Ci}izl,...,K is a g-approximation of
d-FBEC if and only if H is a g-approximation of d-FMNS.

Assume H approximates the minimum solution to d-FMNS within a fac-

1
tor g < O(|S|7°). Then, {Cj},_, _, approximates the minimum solution
to d-FBEC within the same factor g. Note, that |S| < |P x Q| < [P U Q|*;

42

hence, g < O((|P U Q|2)%75) =O(|]PU Q\%fg). This is a contradiction of
Theorem ?7. O

Remark 2.3 Note that by replacing nodes labelled by ' A’ with empty nodes,
the above reduction gives a reduction from BEC to the problem of finding
the minimum representation of a synthesis graph (see Section 1.2.1), thus

showing that finding the minimum representation of a synthesis graph is
NP-hard.

43

K{)

{uAv | (uv)eE} —:)

Q

APAN

&5

Synthesis
oraph H

Bipartite
graph G

Strings
set S

Figure 2.3: Outline of the reduction from d-FBEC to d-MNS

Chapter 3

Hardness of Max Strings
Synthesis

In this chapter, we prove that Max Strings Synthesis is NP-hard. In the
applications we address the considered molecules are short peptides or small
molecules. Hence it is reasonable to assume that the strings in S are of length
bounded by O(1). We show that under this assumption the decision problem
corresponding to Max Strings Synthesis is NP-complete. Of course, when
the strings length is not bounded, the problem is at least as hard, therefore
this assumption does not weaken our result. Moreover, this assumption is
only used in showing that the problem in polynomially verifiable, that is,

showing it is in the class NP.

First, let us define the decision version of the Max Strings Synthesis.

Definition 3.1 Max Strings Synthesis — decision version. Given an
input (S,b,w), and a threshold t, where

e S is a set of strings, over an alphabet X1, ...,%;, where [is the length
of the strings in S.

e bc Z* is a limit on the number of beads used in the process.

45

e w € Z* is a limit on the width of the weighted synthesis graph.

Does there exist a weighted synthesis graph G, of width at most w, such that
|L(G,b)NS| > t?

Recall the definition of the NP-Complete problem — Balanced-Biclique
(problem [GT24] in [15]):

Definition 3.2 Balanced-Biclique. Given a bipartite graph G = (V,U, E),
and a threshold k, does there exist a balanced k-biclique W, i.e., a set of
nodes W =V'UU', such that V! CV, U CU and |V'| = |U'| = k, where

W induces a biclique?

Theorem 3.1 Max Strings Synthesis is NP-hard.

Proof. We show that the corresponding decision problem is NP-complete,

even if b = oo and all strings in S are of length 2.

Clearly the problem is in NP, as given a synthesis graph it is easy to verify
it is a valid solution (note that we assume that the length of the strings in
S is bounded by a constant, thus the number of paths is polynomial in the

width w). Hardness is proven by reduction from Balanced-Biclique:

Given an instance G = (V,U, E), k of Balanced-Biclique, let us define
an instance (S,b,w),t of the decision version of Max Strings Synthesis, as
follows: 1 =V, 39 = U and

S = {ou|(v,u) € E}
w = k
b = o
t = K

Note that since b = oo we may disregard the weights in the graph, as each

path with non-zero weight is produced.

46

We first argue that we can assume that any synthesis graph H s.t.
L(H) C S is an induced subgraph of G. If H is not an induced subgraph
of G, then the following procedure defines a graph H' s.t. L(H') = L(H)
and H' is an induced subgraph of G. Unite all the nodes in the same layer
with identical labels into one node whose neighbors are the union of the
neighbors of all the nodes it was composed of. Delete any node x in layer 4
s.t. label(z) ¢ X;. Delete any arc (v,u) with no corresponding arc in G,i.e.,
with no arc (v',u') € E s.t. label(v') = label(v) and label(u') = label(u).
This procedure does not increase the excessive strings (strings that are not
in S) produced by the graph, nor does it change the number of target strings
(strings in S) produced by the graph, and clearly the obtained graph is an
induced subgraph of G.

Moreover, any induced subgraph of G with z arcs is a synthesis graph
producing a subset S’ of S such that |S’| = z (immediate from the definition

of S).

Now, we shall demonstrate that (S,b,w),t is a "YES” instance if and

only if G,k is a " YES” instance.

e Assume (S,b,w),t is a "YES” instance, then there exists a synthesis
graph H with width at most w (and b < o0), producing at least ¢
strings. But since w = k, the only way to obtain t = k? strings
is by a biclique with k vertices at each side, s.t. each arc in the
biclique corresponds to a string in S. However, as noted earlier, any
such synthesis graph is a subgraph of G, and hence G has a balanced

biclique with k£ nodes at each side.

e In contrast, assume (S,b,w),t is a "NO” instance, then G cannot
contain a balanced biclique with k£ nodes at each side: Such a biclique
immediately translates to a synthesis graph with width at most k(= w)

producing k?(= t) strings.

O

Remark 3.2 Note that — unlike the previous reduction (see Remark 77)

47

— this reduction does not easily extend to allow empty nodes (see Section
1.2.1).

48

Chapter 4

A Continuous Approach to
Solving Max Strings
Synthesis

In this chapter we present a continuous approach to solving Max Strings
Synthesis. We begin with a general overview of our algorithm, and proceed
with a brief background on gradient-descent algorithms. Finally, we describe
the specifics of the our algorithm: We give a detailed description of our
objective function, and its partial derivatives, and provide a description of

our algorithm.

4.1 An Overview of the Algorithm

The algorithm we present here is basically a greedy search algorithm, which
searches the best weighted synthesis graph out of all graphs adhering the
given constraints on the width and on the number of beads. The algorithm

starts with an initial graph and by repetitive actions improves the graph.

The modification may be done either by 'continuous actions’, or by ’dis-

crete actions’. In continuous actions the arcs weights are modified following

49

a gradient-descent algorithm. In discrete actions some arcs are deleted, that
is, assigned weight zero. The deleted arcs are chosen according to a scoring

function as specified in Section 3.8.

The search is guided by the problem’s objective function, i.e., the number
of target strings produced by the graph. However, this function is discrete,
hence for the continuous actions we use a continuous approximation of this

function.

The search begins with a graph of maximum width. Searching for the
best graph only over graphs of maximum width suffices, since there exists
an optimal solution of maximum width graph (as we may simply have some
isolated nodes, in case not the entire width is needed). The nodes labels
are chosen in the initialization stage, and they are not modified during the

search, in order to narrow the search space we explore.

A combination of continuous and discrete actions is designed with the
purpose of escaping local optima reached by the gradient-descent, and trying
to find a better optimum. Their combination is done as follows: continuous
gradient-descent search is executed until a local optimum is reached, then
a discrete action is applied, and a continuous search begins again. These
iterations between gradient-descent and arcs deletion heuristic continue until
a graph with a number of paths that is at most b (the number of beads)
is reached. The motivation to this stopping criterion is the fact that once
such a graph is reached, all the strings corresponding to its paths can be

produced, assuming the arcs weights are properly assigned (see Section 3.9).

A general description of the algorithm and its stopping condition is as

follows.

1. Initialize G, an initial synthesis graph.
2. Initialize best, the best synthesis graph found so far, to be G.

3. While the number of paths in G is at most b (i.e., the number of beads)
do

50

(a) Run the gradient-descent algorithm until one of the following

conditions holds:
e a plateau is reached, that is, there is no improvement in the
continuous score over a pre-given number of iterations,
e the number of iterations exceeds a pre-given limit.

(b) If the current local optimum is better than best, update best to
be the current graph.

(c) Escape local maximum: delete z arcs, where x is a parameter

given to the procedure.

4. Recalculate the arcs weights so that all the paths would be produced
by the graph, that is, the weight of every path p € P(G) is at least 1.

5. If the obtained graph is better than best, update best to be the

current graph.

6. Return best.

We ran several variations of our algorithm: one in which only the con-
tinuous actions are executed, and three variations in which a combination
of continuous and discrete actions are executed. The discrete actions differ
in the scoring function they follow for the choice of the arcs to be deleted.

The results of those experiments are presented in Chapter 6.

In the following sections we describe the algorithm in more details.

4.2 Background — Gradient-Descent

Consider an optimization problem, in which one wants to minimize a func-
tion f(z). In gradient methods of optimization, the process is initiated with
some (possibly arbitrary) point xg, and then in iteration i z; is altered to
x;+1 according to the gradient of f in the current point. In the Steepest De-

scent method (e.g., [3]), the choice of direction towards which z is altered is

o1

done according to where f decreases most sharply, which is in the direction

of Vf(x;). Precisely, we get the following iterative definition:
Tr1 = T + MV f(2k),
where A; is the learning rate, that is, the size of the step in changing zy.

The learning rate is usually taken as to decrease over time, in order to
avoid skipping over an optimum due to too large a step (compare Figure
?7). Guaranteeing convergence to a local minimum (if one exists) can be
done by setting the learning rate s.t. Ay — 0 and 7 Ay = oo [2]. For
example, \p = % fulfills those constraints. Nevertheless, the convergence
rate tends to be very slow. This drawback can be somewhat overcome by
initiating the search at proximity to a minimum. In practice A; is often
either set to be a constant, or decreases exponentially over time (in order to

accelerate the convergence).

The Steepest Descent method is intuitive, simple, easy to apply, and

each iteration is fast.

4.3 Objective Function

The objective function in the Max Strings Synthesis is the expected number
of produced target strings, that is, |L(G,b) N S|. In the following we refer
to this function as the discrete score. In order to calculate this score effi-
ciently, we define auxiliary variables, denoted by ¢(v,0). ¢(v,o) indicates
the expected number of beads entering the node v which holds a prefix of the
string o (g stands for quantity). The method of computing these variables
is described later in this section. With these notations, the discrete score

can be expressed as follows:
D(G)=qo€esS| Z q(v,0) >1
v€ Last(Q)

Since we aim to use the gradient-descent algorithm for solving Max

Strings Synthesis, we need a continuous approximation of the discrete score.

52

i

START

Figure 4.1: Convergence of Steepest Descent. The step size gets
smaller and smaller, crossing and recrossing the valley (shown
as contour lines), as it approaches the minimum. (source:

www.gothamnights.com/trond /Thesis/node26.html)

93

Such an approximation can be obtained by changing the discrete step-
function ”jump” between »_ ¢g(v,0) > 1 and > q(v,0) < 1, to a continuous

approximation the logistic sigmoid (logsig in short) function. That is,

Cc(G) = Zlogsig(Z q(v,0)), where
o€S v€Last(G)
1

lOgS’Lg(.’E) = m

The logistic sigmoid approximates a step function between zero and one.
The position of the step is determined by «, and its sharpness is determined
by 5 (compare Figures 3.2). The step function we approximate jumps from
zero to one at position z = 1, therefore we use & = 1. Assigning larger values
for 8 improves the obtained approximation; nevertheless, we use § = 1. The
value for § was determined after extensive experiments with our algorithm,
which indicates that the gradient-descent algorithm gives better results with

small values for 5.

Recall, that arcs weights in a synthesis graph are non-negative reals,
which represent the fraction of beads transferred from one node to the next.
When using the gradient-descent algorithm for finding the best weights to
the arcs of the graph, the weights may either be increased or decreased.
Unfortunately, when decreasing an arc’s weight, it might become negative.
For using the gradient-descent algorithm, we chose to ignore the arc weight
non-negativity constraint and perform a filtering step after each iteration,
in order to restore non-negativity. This is done by adjusting arc weights
w(u,v) using the exponent normalization function:

exp(T - w(u,v))

filter(w(u,v)) = Z{u’ (! 0)eE) exp(T - w(u',v)) .

This function, applied to any real values (positive or negative), returns values
between 0 and 1 (compare Figure 3.3). Additionally, it ensures that the sum
of arcs weights over all arcs originating from the same node equals 1. The
parameter T is a positive real that was experimentally chosen to be 1 for

arcs emanating from the source, and 5 for all other arcs. Note that for a

o4

0.8

0.6

0.4

0.2

Figure 4.2: An overlay of two graphs of the Logistic sigmoid function, one
with parameters « = 1, § = 1 and the other with parameters « =1, § = 3.
The values grow from 0 to 1, reaching % at . When 8 = 3 the gradient is
sharper than when g = 1.

95

0.7

0.6

0.4

0.3

0.2

0.11

Figure 4.3: Exponent normalization with parameter T' = 1. The x-axis
represents the weights of 11 arcs emanating from the same node. The weights
are -5,-4,....,5. The y-axis represents the value of the exponent normalization

applied on each of the arcs.

o6

fixed input weights distribution, the distribution of weights obtained as an

output of this filter becomes less uniform as T" becomes larger.

In order to complete the above definitions, we must give the formal
definition of g(v,0). But first, let us define some notation. Recall that a
synthesis graph is a layered graph. For each node v, let layer(v) be the
index of the layer containing v. For each layer index k, let V}, be the set of

all nodes in this layer. Let I be the length of the strings in S.

b if v=s

q(’U, o= o0 _O'Z) — Z’ll,e‘/laygr(u),l f’lltelr(w(u7 ,U)) : q(u7 U) (4.2)

if v € Vg, and label(v) = oy,

0 otherwise

(4.3)

4.4 Derivatives

In order to use the gradient-descent algorithm, we must calculate the partial
derivative of the continuous score with respect to an arbitrary arc weight.
In the following we present a recursive formula of those partial derivatives,

and analyze the complexity of calculating them.

The partial derivative of the score is composed of a derivative of the
logistic sigmoid (logsig) function and a partial derivative of ¢(v, o) for any

string o € S:
Let z =3 crast(c) 4(v, 0), then

dcontinuous score Z d logsig(z) Z dq(v,0)
ow(z,y) = dz velavt(C) ow(z,y)
The derivative of the logsig function has a simple formula:

d logsig(z)

T = P logsig(z) - [1 — logsig(2)]

o7

Calculating the partial derivatives of g(v, o) is more complicated. In the

following we present a recursive formula of this calculation.

For each v € V,

dq(v,0 = 01...09)

dq(v,0) . ofilter(w(z, 7))
Z) dfilter(w(z, 7)) ow(z,y)

= 5gk label(v) *
ow(z,y) j€layer(y

1 of = label(v)
where 0q, 1abel(v) =

0 otherwise

It remains to specify the partial derivative of ¢(v,o) according to filter,
and of filter according to the arc weight. First, we present the formula
for calculating the partial derivative according to an arc emanating in the

previous layer:

Yo € Vi, and ¥z € Vi_4

) L f label(v) =
aq(’U,O' = U]"-Ul) Q(.’E U) 'Lf ave (’U) o

dfilter(w(zx, 7))

0 otherwise

Second, we present a recursive formula for calculating the partial derivative

o8

according to an arc not emanating from the previous layer:

Vo € Vi, and Yz ¢ Vi
dq(v,0 = 01...09) 0q(u, o)
= . E
afilter(w(x,j)) okslabel(v) [afilter(w(x,j))

Ofilter(w(u,v))]
dfilter(w(zx, 7))

- falter (w(u,v))
ueVy_q

+q(u,0)

(Zuevkq filter (w(u,v)) - 7611”?;%:&'7))
B if layer(z) < k —1 and label(v) = oy
| 0 otherwise
(1. filter(w(z, 7)) - [1 — filter(w(x, j))]
ofilter(wiz.i) _ | ifi=y
ow(z,y) =T - filter(w(z, 7)) - filter(w(z,y))
L if j #y, layer(y) = layer(j)

For each string o € S, this calculation requires (in the worst case) go-
ing over all the arcs in the graph (due to its recursive nature). Thus the
complexity of calculating one partial derivative is O(]S|-m), where m is the
number of arcs in the graph. At first glance, this seems to imply complexity
of O(|S| - m?) for calculating all the partial derivatives. However, by using
forward propagation the computation for all the partial derivatives can be
preformed in O(|S| - m). By forward propagation’ we mean that the value
of each partial derivative used in the recursion is calculated once, instead
of being recalculated for each partial derivative. This calculation is done
in a bottom-up manner. Moreover, at each stage of the computation we
only need to recall the derivatives according to one layer the previous one.
Therefore, the increase in the space complexity is only by factor O(w), and
not by factor O(m) (recall, m < (I—1)w?, where [is the length of the strings
in S).

99

4.5 Initialization

As discussed in Section 3.2, the gradient-descent method is prone to slow
convergence. This drawback can be partially overcome by choosing a good
initialization point. We devised an initialization algorithm that considers
frequencies of letters when labelling the nodes, and frequencies of transitions
between letters when determining the initial arcs weights. We compared
our initialization algorithm with random initialization, and obtained clear
results indicating that the frequency-based initialization is much better than

the random one.

Initializing the synthesis graph requires choosing the nodes labels and

the arcs weights. First, let us concentrate on initializing the nodes labels.

4.5.1 Assigning Nodes Labels

In assigning labels, we first choose a layer in the graph, and then assign
labels to all the nodes of this layer. We repeat the process until the nodes

in all the layers are labelled.

Note that by labelling the nodes of some layer 4, it may be the case that
some of the strings in S cannot be produced by the graph. This happens if
a string has a letter in position i, which is not the label of any node in this
layer. We use an auxiliary variable called considered-strs, which holds
the set of target strings that can be produced by some labelling of the nodes
in the remaining unlabelled layers. considered-strs is updated after the

labelling of each layer of the graph.

The order in which the layers are labelled is greedily chosen. The next
layer to be labelled is one such that the labelling we assign it causes the
elimination from considered-strs of as few strings as possible. That is,
one whose labelling leaves the considered-strs as large as possible. Note
that in the applications we address, the strings length is short, therefore this

process is extremely fast.

60

The labelling of layer 7 is done according to the letters frequencies in
the i*" position of the strings in the considered-strs: First, the nodes are
divided equally between the relevant labels, that is, each label is assigned
to L% nodes. The remaining (w mod j) nodes are assigned the (w mod j)
most frequent labels. Thus, letters with high frequency are assigned to one

more node than letters with low frequency.

Note that this initialization prefers variety in labels over clear preference
to the frequent ones. This approach was chosen after examining the success
of our algorithm on both approaches. Nevertheless, in Section 3.6 we show
how the success of the algorithm can be further improved by preprocessing
the set S of target strings, to obtain a subset S’ C S, where roughly

speaking — strings with rare letters are eliminated.

This procedure is summarized as follows.

1. Let the considered-strs be the set of all the target strings.
2. Repeat until nodes labels of all layers are defined

(a) For each layer, check how many strings remain in the considered-strs
set, after labelling it (as described in 2b). Let i be a layer with

the highest number of remaining strings.

(b) Sort the letters appearing in the i*" position in descending or-
der of their number of appearances in the considered-strs set.
Let 5 be the number of different letters in position ¢ of the
considered-strs. Label I_%J nodes in layer ¢ with each let-
ter in position ¢ in the considered-strs set, and add one more

node labelled with each of the (w mod j) most frequent letters.

(c) Remove from the considered-strs set irrelevant strings, i.e.,

strings that can no longer be produced by the graph.

The calculations for each layer are composed of sorting (which requires
O(]S]) time, if bucket sort is used, provided that the size of the alpha-
bet is fixed), assigning labels (which requires O(w) time) and updating the

61

For the string:
A+B-+C+F

add 1 to the arcs
along its path.

Figure 4.4: Initializing arcs weights in the gradient-descent algorithm

considered-strs set (which requires O(|S]|) time). Thus, the complexity
of the entire procedure is O(I? - (|S| + w)).

4.5.2 Assigning Arcs Weights

Once the nodes labels are set, we initialize the arcs weights as follows. For
each pair of nodes v, u in two consecutive layers i, i+ 1, let the weight of the
arc (v, u) between them be the number of strings out of the considered-strs
that have letters label(v),label(u) in positions i, i + 1 respectively, i.e., the
number of strings that correspond to a path that may pass through this arc
(compare Figure 3.4). Note that if a letter appears more than once in the
same level we might get more than one path corresponding to a given string.
Weights are then normalized so that the sum of weights outgoing from each

node is one.

62

4.5.3 Assessing the Performance of Our Initialization Algo-

rithm

In order to assess the performance of our initialization algorithm, we com-
pared the results of the gradient-descent algorithm obtained with our ini-
tialization with the results obtained by assigning random arcs weights. For
each of the first 10 small data sets of real data, we chose 100 random ini-
tializations of arcs weights, and ran the gradient-descent algorithm on these
initial graphs, without the heuristic of escaping local maxima. The random
initialization of arcs weights is done by first assigning a random integer in
the range 0,...,99 to each arc corresponding to some string in .S, and then
normalizing the weights so that the sum of weights outgoing from each node
is one. In Table 3.1 we give a summary of the results of these experiments.
The results show a clear advantage of our initialization. The poor results
obtained by the random initialization may indicate that the potential space

of our objective function has many local optima.

‘ average ‘ std ‘ max ‘ min ‘ our init ‘
96 real data 1 39.59 | 1.59 | 43 35 57
96 real data 2 43.94 | 1.95| 48 39 63
96 real data 3 42.15 | 1.48 | 47 39 59
96 real data 4 42.72 | 2.03 | 47 38 62
96 real data 5 39.83 | 1.65 | 44 37 57
96 real data 6 37.31 1.50 | 42 34 55
96 real data 7 40.67 1.7 45 35 59
96 real data 8 36.85 | 1.41 | 41 33 53
96 real data 9 42.8 1.87 | 46 38 63
96 real data 10 | 41.95 | 1.53 | 46 38 60

Table 4.1: Impact of the initialization scheme. Comparison of our initial-
ization vs. random initialization on small sets of real data. Each row sum-
marizes the average, standard deviation, maximum and minimum scores of

100 random initializations as well as the score obtained by our algorithm.

63

4.5.4 Complexity of the Obtained Graph

The width of the graph is polynomial in the input (recall, that we assumed
that w is given in unary). Let [+ 1 be the length of the graph. The number
of nodes is bounded by [- w 4+ 1, and the number of arcs is bounded by
(I — 1) -w? 4+ 1. That is, they are both polynomial. The number of paths is
bounded by w!~', which is polynomial under our assumption that the length
of the graph is O(1). However, in the following we describe how to change
the initialization procedure, so that our algorithms would be polynomial

even when / is not bounded by O(1).

Our algorithm can be extended to handle target sets with strings of
polynomial length as follows. The graph is partitioned into ’slices’: Each
slice has no more than one copy of each label in each layer; and the slices are
disconnected, that is, there are no arcs connecting nodes in different slices.
Each string corresponds to at most one path in each slice (as there is at
most one copy of each label in each layer). Therefore, the number of good
paths in each slice is at most |S|. (Recall that a path p € P(G) is good
if it corresponds to a string o € S — see Section 1.2.2). Additionally, the
number of slices in no more than w. Therefore, the number of good paths
in the obtained graph is polynomial. The good paths can be held in a data
structure (say, a list) that allows accessing them without encountering bad
paths. Since the size of the graph is polynomial, for each good path such a
list can be constructed by simply going over all the slices in the graph and
checking if all the arcs between the nodes corresponding to this path exist.
Since the number of good paths is polynomial (at most |S| - w), the entire

list can be polynomially constructed.

In the following sections, the complexity analysis is measured with re-
spect to the number of good paths in the graph. We show that the algorithms
we use are polynomial in the number of good paths in the graph and in the
input. By the above discussion, this indicates that with proper initializa-
tion, our algorithms are indeed polynomial in the input even when [is not

bounded by O(1).

64

This initialization with slices has more advantages than merely the re-
duction in the complexity. A discussion of these advantages is given in
Section 4.1.

4.6 Similarity Score

In this section we describe preliminary ideas on combining the steps of target
library construction and synthesis graph design. As discussed in the intro-
duction, the target set of strings is chosen so as to represent the relevant
parent library. There are many different sets of compounds, which may rep-
resent the parent library equally well. Appropriately choosing the right set
of compounds may greatly affect the ability to synthesize it. In particular,
our experiments show that though all tested data sets of the same type were
chosen by the same diversity selection, on some of them our algorithms give
much better results than on the others. On different real sets of 96 strings,
scores ranged from 82 to 91, and on 1000-strings data sets they ranged from
339 to 377 (detailed results appear in Section 6).

A natural question is how to combine the diversity selection with the
synthesis design, so that many target strings can be synthesized under the
given synthesis constraints. As a first step toward this goal, we define a
scoring function the similarity score to direct our search. The scoring
function we define measures the similarity in the sequence of building-units
(say, amino acids) of the compounds in the target set. The similarity of
two compounds measures the number of arcs in a synthesis graph, that
can possibly be shared by both compounds. Precisely, for each two strings,
a=ai...qpand b="0by...by with !’ > [, we define

-1
. 1
Sim(a,b) = —1 ZX((M:(MH, bibiy1), where
i=1

1 ifa; =bja;11 = bipq
x(aiait1,bibit1) =
0 othewise

65

(the % factor, normalizes this score, when compounds of different lengths
are handled.)

Using the definition of similarity between two sequences, we may now

define the similarity of a string to a set of strings, as follows.

Sim(a,S') = Z Sim(a,b),
be S’

When S’ C S is very close in size to S, Sim(a, S') ~ Sim(a,S) (as most
of the compound are common to both sets). Therefore, in order to choose a
substantial subset S’ with large similarity score, we simply take the strings
'a’ with the highest Sim(a,S) scores.

4.7 Learning Rate

As discussed in Section 3.2, it is a common practice to use a learning pa-
rameter A that decreases over time in order to avoid oscillating around the
optimum without the ability to make fine enough movements to reach it.
Hence we decrease A as follows. We initialized A to be 0.01. As long as the
score improves, we keep A constant. However, when a ”zigzag” behavior is
encountered we decrease A by dividing it by two. Thus, A(¢) = 0.01 - (%)t',

K

where t' is the number of times a "zigzag” behavior is encountered. This

values were experimentally determined.

4.8 Escaping Local Maxima

The gradient descent algorithm is aimed at achieving a local optimum; how-
ever it is the global optimum which naturally interests us. Enhancing the
chance of finding the global optimum can be done by running the algorithm
from multiple starting points and choosing the best local optimum that was
found. Another alternative is directing the search itself by imposing small

changes which escape a local optimum and enable a continuation of the

66

search. While doing so, one must record the best local optimum found so
far, so that eventually, the best local optimum that was encountered in the

search is returned.

In this work we applied a combination of both methods — we examined
multiple starting points and from each starting point we sought multiple
local optima. The starting points are either chosen randomly, or by our ini-
tialization algorithm (see Section 3.5), or by our similarity measure (Section
3.6). The local changes we apply are arc deletions operations. The deletion
of an arc changes the graph so that it is usually no longer a local optimum,
and consequently, when the search (using the gradient-descent algorithm)

continues, another local optimum is found.

The choice of arcs to be deleted can be done in many different ways.
We checked three options, which we refer to as the ”Prob”, ”"Path”, and
”Lookahead” heuristics. The general scheme of all the different heuristics
is the same: a score is attached to each arc, the arc with the lowest score
is deleted, and the entire graph is amended (for example, other arcs may
become irrelevant due to the arc deletion, so they are also deleted). However,
the three heuristics differ in the way they score the arcs. These scoring
methods are described in the following sections. Since each scoring method

implies a different order of arcs deletion, it gives a different synthesis graph.

Combining the arc deletion heuristic with the gradient-descent algorithm
is done according to the following scheme: as long as there are more paths
than the number of beads (b), iterate between (1) running the gradient-
descent algorithm until a local optimum is found, and (2) applying an arc
deletion heuristic followed by the deletion of irrelevant arcs, that is, arcs

which are not on any path corresponding to a target string.

4.8.1 Prob Score

In the prob score each arc is assigned a score according to the total path
probability of good paths using it. This score is calculated using the nor-

malized arcs weights, and equals the sum of paths’ weights over all good

67

paths passing through that arc.

1-1

prob score(u;, uit1) = Z w(s,vy) - H w(vi, Vit1),

p=(8,01,...,u1) EGood(u; ,u;+1) =1

where
Good(u;, uiv1) = {p = (8,v1,...,v) |p is a good path, v; = u;, viy1 = uiy1}

For each given path this calculation is linear in [. All good paths can be
stored in a list of size ¢ (see Section 3.5.4). Thus, calculating this score for
all the arcs in the graph can be done in time O(|E| - ¢ -1). This is indeed
polynomial as our assumptions imply that ¢ is polynomial in the input length
(see Section 3.5.4).

Note that this heuristic takes into account the arcs weights and therefore
running the gradient descent algorithm affects the arcs that are deleted in
the heuristic. In Sections 3.8.2 and 3.8.3 we shall show procedures that do

not use the weights.

4.8.2 Path Score
The path score of an arc is the ratio between the number of good paths and
the number of bad paths passing through it.

#good paths passing through (v, u)
path score(v,u) =

#bad paths passing through (v, u)

Although there may be an exponential number of such bad paths, their
number can be efficiently computed observing that the number of bad paths
through an arc equals the total number of paths passing through it minus
the number of good paths passing through it. The number of good paths

through an arc is polynomial (see Section 3.5.4).

The total number of paths passing through an arc can be calculated
as follows. For each node v we calculate two values: the number of paths

outgoing from v (outgoing(v)), and the number of paths incoming to it

68

(incoming(v)). outgoing(v) can be recursively calculated for all the nodes in
the graph starting from the last layer and going backwards: outgoing(v) = 1
if v € Last(G), outgoing(v) = > 1, (y.uwery outgoing(u) otherwise. Work-
ing layer-by-layer backwards implies that outgoing(u) is previously calcu-
lated as w is in a layer preceding the layer of v. incoming(v) can be calcu-
lated in a similar manner, when starting from First(G). The total number
of paths passing through a node is the product of the number of incoming

paths and the number of outgoing paths, that is, incoming(v) - outgoing(v).

4.8.3 Lookahead Score

Recall that a string is valid (see Section 1.2.2) if it corresponds to some path
p € P(G) (it is not necessarily produced by the graph, as its weight may
be too small). When an arc is deleted, any string o that was created only
through that arc, is no longer valid in the graph. Hence, all the arcs which
were used only by o or other bad paths may also be deleted. The deletion of
those arcs may in turn cause the elimination of some additional bad paths
(and no additional good paths). In the lookahead score we take into account
the total effect of the deletion of the arc and not only the counts of good
and bad paths passing through it.

Similar to the path score, the lookahead score of an arc is the ratio
between good and bad paths eliminated by the deletion of the arc. The
difference is that here we regard all paths eliminated as a result of the arc
deletion, that is, both paths that pass through that arc, and paths that pass
through other arcs that are deleted as a result of the deletion of that arc.
The number of such paths is calculated by summing the numbers of bad
paths through the arc and all through all other arcs that could be deleted

as a result of its deletion.

#good paths eliminated as a result of deleting (v, u)

lookahead =
ookahead score(v, u) #bad paths eliminated as a result of deleting (v, u)

Note that both the path and the lookahead scores are not influenced

by arcs weights (they are only affected by the existence or non-existence of

69

the arcs). Additionally, the gradient-descent algorithm does not eliminate
arcs (it only gradually changes their weights). Hence, the scores they assign
are not affected by applying gradient-descent on the graph before using
them. Nevertheless, they often achieve better results than the prob score,

as discussed in Chapter 6.

4.9 Recalculating Arcs Weights

Once the number of paths in the graph is no more than the number of beads,

the arcs weights are reassigned to be:

(0, 1) outgoing(u)
w(v,u) = ———————=
’ outgoing(v)’

where outgoing(v) is the number of paths outgoing from node v. This

number is calculated as described in Section 3.8.1.

In the following we show that this is a weighting scheme by which all the
paths in the graph are produced, i.e., the weight of each path is at least %

First, note that w(v,u) is a normalized weight, as: 0 < w(v,u) <1 and

.
S wmw) =y uloing(u)

{u |(vu)e R} {u [y OUt9oing (V)

1 .
R Z outgoing(u)

outgoing(v) {ul|(v,u)eFR}

= 1.

It remains to show that indeed the weight of each path in the graph
is at least % This is easily proved by incorporating the following three
facts: the weight of a path is a telescopic product; for each v; € Last(G),

outgoing(v;) = 1; and outgoing(s) < b (as the number of paths in no more

70

than the number of beads). The formal calculation follows:

weight(p = (8,01, ...,v7))

v

-1
w(s,v1) H w(vi, Vit1)

=1
outgoing(v1) 1:[outgoing(viy1)
outgoing(s) outgoing(v;)

outgoing(v;)

outgoing(s)
1

b

71

72

Chapter 5

A Discrete Approach to Max
Strings Synthesis

An alternative approach to solving the Max Strings Synthesis is by discrete
search over the space of synthesis graphs. This is done by starting from
an initial graph and performing local changes with the aim of gradually
improving the graph. In the following we describe both the initialization

method, and the local changes we used.

5.1 Overview of the Algorithm

In order to simplify our discussion, let us begin with a few definitions. Recall
that a target string is a string which appears in the input S. We say that a
strings is unused, if it is a target string with no corresponding path in the

graph. We say that a string is unrequested, if it is not a target string.

Initializing the graph requires setting the nodes labels and the arcs
weights. When doing so, we are confronted with two opposing goals: on the
one hand, we want as many paths corresponding to target strings as pos-
sible, but on the other hand, we want as few paths for unrequested strings

as possible. We want to limit the number of paths for unrequested strings,

73

Figure 5.1: Initialization in “slices”. Arcs between light nodes and dark

nodes are not allowed.

since the number of beads is limited: having more unrequested strings leads
to less requested strings being produced by the graph. To balance these
two opposite goals, we initialize the graph in ”"slices” (compare Figure 4.1)
as follows. Each slice has no more than one copy of each label (letter) in
each layer; and the slices are unconnected, that is, there are no arcs con-
necting nodes in different slices (arcs between nodes of the same slice are
allowed). This type of initialization reduces the connectivity of the graph,

thus reducing the number of paths in the graph.

The number of slices depends on the constraint of the graph width. If the
graph width is smaller than the size of the alphabet, then only one slice is
initialized. In general, once the previous slices were already determined, the
next slice takes the next 25, nodes in each layer k, where z;, = min {|3;|, w} },
with 3 — the alphabet at position k in the unused strings, and wj, — the
remaining width of layer k of the graph, that is, the number of unlabelled

nodes in layer k.

In our algorithm, the initialization and the arc-deletion heuristic are
interleaved together we iterate between initializing the next slice and using
the arc-deletion heuristic on the current graph (i.e., all slices initialized so

far). After using the arc-deletion heuristic we check which of the strings are

74

not produced by the graph built so far, that is, which are the unused strings.

When initiating the next slice, we concentrate only on those strings.

The general scheme of the algorithm is as follows.

1. Initially the set of unused strings is the set S of all target strings.

2. Define the current slice: in each layer k, the current slice contains the

first = nodes, where = min {|X;|, w} (we assume the nodes in each

layer are ordered from 1 to w).

3. Repeat until

the entire width of the graph is used in at least one level, or

all the target strings are produced by the graph.

Initialize current slice: label nodes and assign arcs weights in the

current slice of the graph according to the set of unused strings,

Arcs-deletions heuristic: repeat until the number of paths is at

most b:
i. attach a score to each arc, and delete the arc with the lowest
score,
ii. delete irrelevant arcs (i.e., arcs that are no longer on any

path corresponding to a target string).

Recalculate the arcs weights so that each path is of weight at

1
least 3

Let the unused strings be the strings in S that are not produced

by the current graph.

Define the current slice: in each layer &, the current slice contains

the next = nodes, where z = min {|X|, w} }

In the following sections, the algorithm is explained in detail.

75

5.2 Initialization

Each slice is initialized according to the set of unused strings. The nodes are
labelled as follows: Each letter in the unused strings is assigned as a label of
one node in the layer corresponding to its position in the string. The arcs are
assigned weights as follows: Let u,v be nodes in layers 7,7 + 1 respectively.
The weight of the arc (u,v) is assigned according to the frequency of strings
in the set of unused strings with letters corresponding to the labels of u
and v in positions 7 and 7 + 1 respectively. For a more detailed description
of this initialization the reader is referred to Section 3.5. Note that the
initialization is done with respect to the set of unused strings and not with

respect to the target set S (as in Section 3.5).

5.3 Arc Deletion

Once a new slice is initialized, we usually obtain a graph with far too many
paths (with respect to b the constraint over the number of beads). There-
fore we use the arc-deletion heuristic to transform this graph into a graph
with no more than b paths. Then we recalculate the arcs weight in such
a way, that each valid path in the graph is produced by it. Note that, we
would like not only to reduce the number of paths in the graph, but also
to maintain as many paths corresponding to target strings as possible. We
would like to eliminate many paths corresponding to unrequested strings,

and as few paths corresponding to target strings as possible.

Similarly to the escape from local maximum (see Section 3.8), the changes
we impose on the graph are arc deletions. Our general strategy in choos-
ing the next deleted arc is to delete the worst arc according to our scoring

function; that is:

1. Repeat until the number of path is at most b

e Score all arcs according to the used scoring function.

e Delete an arc with the worst score.

76

It remains to describe the scoring function. Here, again, we tried the three
scoring functions described in Section 3.8, that is, the prob score (see Section
3.8.1), the path score (see Section 3.8.2) and the lookahead score (see Section
3.8.3). As presented later (see Chapter 6), the lookahead score gave the best

results, and hence it was chosen as our scoring function.

Note that the arcs weights affect the score only when the prob score is

used. Otherwise, we may simply mark the arcs as existent vs. non-existent.

5.4 Recalculating Arcs Weights

The recalculation of the arcs weights is done as described in Section 3.9.

7

78

Chapter 6
Implementation

In this chapter we discuss some implementation related topics. This includes
details on the software we developed, handling sets with strings of variable

lengths, and the graphical interface we implemented.

6.1 Software

Our algorithms are implemented using the C' + 4 language. In total, the
software contains approximately 12,000 lines of code. The programs are
quite fast. For example, while running on 500MHz Pentium III, the looka-
head algorithm runs (on average) within 45 seconds on a large data set with
1000 strings, and only 0.0032 seconds on a smaller data set with 96 strings.

Exact times are given in Chapter 6.

6.2 Handling Strings Sets with Variable Lengths

So far, we described our algorithms and the synthesis graph under the as-
sumption that all target strings had the same length. This was done in
order to simplify the description. In practice we also handle strings sets

with varying lengths. This is incorporated in our algorithm in the following

79

Figure 6.1: Phantom nodes. The left column of nodes represents the Phan-
tom nodes. The beads that end up on these nodes hold short requested

strings.

way. We define an additional column of nodes, which we refer to as phan-
tom nodes. The phantom nodes have no labelling, and they represent a path
termination: an arc from node v into a phantom node p corresponds to a
short string that ends in node v. Hence, an arc (v, p) indicates that, in the
synthesis process, w(v,p) fraction of beads should be taken out of v so that

no more grow operations would be applied to them.

6.3 Graphics

As means of illustrating the synthesis graph obtained as an output of our

algorithm, we implemented a graphical interface. In our graphical interface

80

the output graph (labels and arcs weights) is presented as a picture, with
some additional features such as the list of strings produced by the graph,
their weights and the paths through which they were produced. An example

of such an illustration is given in Figure 5.2

81

é8

Il graph for file: random_lend ... |EIL>_CI

verts are labeled with our
internal labeling (letter array
matches a label to a letter).

2 ==k —1: D.0446393
a vertex labeled
"-17 is a phantom
vertex

2 =k ?: 0.212114

chosen > 1 =L : urlgln_
vertex vertex's
label

2 =k T: 0.196721

outgoing arcs

for the wvertex destination

vertex's
label

2 =k 1 0D.19&6721

the arcs value

2 =@ 5. D0.147540

2 =k 2: 0.229508

Figure 6.2: Graphical representation of a synthesis graph and the strings produced by it.

Chapter 7
Computational Results

In this chapter we present computational results of our algorithms for solving
the Max Strings Synthesis problem. In order to estimate both the success of
our different algorithms, and their time requirements, we performed exten-
sive experiments with all algorithms on different types of data sets. In this
chapter, we first describe the data sets we used, and then give comparative
results of all the algorithms we designed. Those comparative results show
that the lookahead algorithm was the best both with respect to time require-
ments and to the synthesis graphs it found. Hence, we continue by running

extensive experiments on this algorithm alone, and present their results.

7.1 Data Sets
The data sets we used may be divided into 3 types:

e small sets of real data,
e large sets of real data,

e synthetic data.

83

We worked with a parent library, which contained all possible sequences of
length 5 generated by the 10 natural amino acids (in parenthesis, single
letter code): Alanine(A), Arginine(R), Asparagine(N), Aspartic Acid(D),
Cysteine(C), Glutamine(Q), Glutamic Acid(E), Glycine(G), Histidine(H)

and Isoleucine(I).

Each sequence was characterized by a set of 30 descriptors and following
Principal Component Analysis (PCA) it was found that six principal com-
ponents covered more than 90% of the variance in the original data set. Sets
of sequences were diversity selected from the space defined by the above six
PC’s by the MaxMin! function using 100000 Monte Carlo steps with 10000
idle steps as a termination criterion. All calculations were performed with

Cerius2 version 4.5[11].

By this diversity selection method, we chose 50 small data sets, each
containing 96 compounds. We also chose 20 large data sets, each containing
1000 compounds. Additionally, we used synthetic data sets. The synthetic
data sets are based on a set of 60 compounds from the parent library, from
which 55 compounds can be produced by a synthesis graph with the basic
parameters of 10000 beads and width 10. The 60 compounds are chosen
such that a minimum synthesis graph of width 10 producing all of them
has out-degree 6 in each node. Thus, it has 10 - 6* paths, which is more
than the number of beads (10,000). By eliminating 5 paths, we can obtain
a synthesis graph producing 55 compounds, in which the out-degree of half
of the nodes is reduced to 5. This graph has only 5-5* +5- 6% paths (which
is less than the number of beads). This construction gave us a lower bound
on the number of paths in the optimal solution, and hence a way to evaluate
the performances of our algorithms in an absolute (and not only relative)
manner. On top of theses 60 compounds, we added different amounts of
“noise”, that is, extra compounds, which were randomly chosen from the

parent library.

'The maxmin function is defined as follows: Let D;; be the distance in the property
space between the two compounds ¢ and j. This function maximizes the minimum squared
distance between two points in the selected subset of compounds. This objective aims to

generate a subset of the parent library that is as diverse as possible.

84

In summary, this is a list of the data sets we used:

(i) 50 sets of 96 compounds, diversity selected from the parent library.
(ii) 20 sets of 1000 compounds, diversity selected from the parent library.
(iii) 10 sets of synthetic data with 10 “noise compounds”.

(iv) 10 sets of synthetic data with 20 “noise compounds”.

(v) 10 sets of synthetic data with 30 “noise compounds”.

(vi) 10 sets of synthetic data with 40 “noise compounds”.

Note that the results on the synthetic data are encouraging (see Tables

6.5,6.6,6.7 and 6.8).

7.2 Comparison of the Continuous and Discrete

Approaches

Our results comparing the performances of the algorithms we have presented
on the different data sets are given in Tables 6.2-6.8. In each table, we
present the performance on a different type of data set. All algorithms were
run with the basic parameters: number of beads 10000 and width 10. The
gradient-descent algorithms were run with the following parameters for the

logistic sigmoid (logsig) function: « =1, § = 1.

The following is a brief key to reading the tables. In each line, we present
the performances of all algorithms on a single data set. Each column gives
the number of target molecules that were produced by the solution of the
used algorithm (in the followings this number is referred to as the score of

the algorithm).

The synthesis graphs normally utilize (roughly) all the given beads, thus
they produce many other molecules, in addition to those in the data set. In

most of our experiments the synthesis graphs had unique labels in each layer,

85

thus the produced strings were distinct. Consequently, when using 10000
beads, the graph produced approximately 10000 distinct strings. However,
the excessive strings are not presented in the results we give here as they

are not part of the problem definition.

The first column gives the outcome of the gradient descent algorithm,
described in Section 3. The second column describes the outcome of the
algorithm combining the gradient descent algorithm with the prob score
heuristic of arcs-deletion (see Section 3.8). The next three columns, ”prob”,
"path” and ”lookahead”, describes the performances of the different arcs-
deletion heuristics that we use the prob score heuristic (see Section 3.8.1),
the path score heuristic (see Section 3.8.2) and the lookahead heuristic (see
Section 3.8.3).

Table 6.1 compares the time requirements of the different algorithms.

7.3 Discussion of Algorithms Comparison

From the comparison results, it is clear that the lookahead algorithm per-

formed consistently better than all the other algorithms we have presented.

It is expected that the lookahead heuristic would be better than the prob
and path heuristics. All those three heuristics work by the same principle of
performing arcs deletions which locally improve the ratio of target strings
vs. unrequested strings produced by the graph. The ”lookahead” heuristic
has an advantage over the two other heuristics, since it chooses the deleted
arcs by testing the results of these actions a few steps ahead and not only the
immediate result. Even so, it could be that occasionally the other heuristics
outperform the lookahead heuristic, since all the heuristics are limited to
a local estimation, and neither is guarantied to identify the optimum arcs-

deletion ordering.

A more surprising result is the superiority of the lookahead heuristic
over the gradient-descent algorithm. It is clear that the gradient-descent

is liable to reach a local minimum, and indeed this shortcoming explains

86

the poor results achieved by the gradient-descent. However, by and large,
when combined with the prob heuristic this shortcoming is overcome, as
the results show. Nevertheless, the lookahead algorithm outperforms the

combined gradient-descent and prob heuristic algorithm.

In order to explore the reasons for the superiority of the lookahead algo-
rithm over the gradient-descent algorithm, we observed the progress of both
algorithms. This progress is presented in Figures 6.1 and 6.2. We can see
that both algorithms progress in a similar manner of gradually increasing
the number of produced compounds, except in the last step. In the last
step, we see a great leap in the number of produced strings in the looka-
head algorithm, with only a minor improvement for the gradient-descent
algorithm. This great leap in the number of produced strings is a result
of the recalculation of the arcs weights, which is applied to the graph by
the lookahead algorithm, when the number of paths in the graph decreases
below the number of beads. By this recalculation, we obtain a graph that
produces all strings with a corresponding path in the graph, and hence we
have a significant increase in the number of produced strings. However,
in the graph obtained by the gradient-descent, the number of paths does
not usually decrease below the number of beads, as the gradient-descent
algorithm hardly ever eliminates arcs, but rather gradually decreases their
weights. Therefore, the gradient-descent algorithm does not usually achieve
a graph with less paths than the number of beads, and hence does not enjoy
the leap at the number of produced strings, observed in the lookahead algo-
rithm. Note however that even without the "leap” the lookahead algorithm

is superior.

When the gradient-descent is combined with an arcs-deletion heuris-
tic, arcs are deleted until the number of paths decreases below the number
of beads. Once this occurs, the arcs weights are recalculated so that all
strings with corresponding paths are produced. This causes a leap in the
score, similar to the one in the lookahead algorithm. Nevertheless, when the
gradient-descent is combined with the prob heuristic, the achieved scores

are still inferior to the one achieved by the lookahead heuristic. This is due

87

to the superiority of the lookahead heuristic over the prob heuristic.

The lookahead algorithm is also faster than the gradient-descent algo-
rithm. In Table 6.1 we present the average running times of the gradient-
descent and the lookahead algorithms. The running time of the gradient-
descent algorithm is mostly determined by the number of iterations. The
number of needed iterations depends on the extent of convergence desired

by the user.

gradient descent (50,000 iterations) | lookahead
1000 real data 100 min 45.15 sec
96 real data 6 min 0.0032 sec

Table 7.1: Running time comparison. Numbers are average over all data
sets of the corresponding types. The running time of the gradient-descent
algorithm is expressed by the average number of minutes needed for com-
pleting 25,000 gradient-descent iterations (on the data sets we examined,
25,000 iterations sufficed for convergence). The running time of the looka-
head algorithm is expressed by the average number of seconds needed for a

complete run.

88

68

200

180

160

140

120

100 f/
a0
B0

40
20

Score

I:I rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrirrrrrrrrrrrrirrrrirrrrrrrrrrTrrrrrrd

1T 4 7 1013 16 19 22 25 28 3 34 37 40 43 46 49 52 55 58 B1 B4 67

gradient descent iterations {1:500 scale)

Figure 7.1: Progress of the gradient-descent algorithm. The results show the improvement of the score as the

iterations progress, on one real 1000 strings data set. The iterations are presented in a scale of 1:500.

06

400
350
200
240
200
150
100

a0

sSCore

1

10

19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181

lookahead iteration

Figure 7.2: Progress of the lookahead algorithm. The results show the improvement of the score as the iterations

progress, on one real 1000 strings data set. The iterations are presented in a scale of 1:1.

7.4 Detailed Results for the Lookahead Algorithm

Having established the superiority of the lookahead algorithm, we would
like to explore its performance more deeply. We present results giving the
number of target compounds produced by the lookahead algorithm, when

different constraints were imposed on the synthesis graph.

First, we would like to explore the difference between the results on the
two real data sets. At first, it might seem surprising that while on the 96
strings data sets we reach an average success of 87%, on the 1,000 strings
data sets, we reach an average success of only 36%. This phenomenon is
easily understood when we recall that the graph parameters (width 10, and
number of beads 10,000) were kept the same for both data sets in spite of the
great difference between their sizes. Figure 6.3 shows that indeed when the
width of the graph is increased by the factor of 10, the success over the large
data sets (1,000 strings) becomes close to 80% as expected. Additionally,
when the number of beads in increased 10-fold, the success trivially becomes
100%, as in a graph of width 10 and length 5, the full combinatorial library

requires no more than 100,000 beads.

Next, we explore the behavior of our algorithm when different values of
the graph width and the number of beads are taken. In Figure 6.3 we present
the results of the lookahead algorithm on the large sets of real data with
different widths between 2 and 100. In Figure 6.4 we present the results of
the lookahead algorithm on the small sets of real data with widths between
5 and 20.

In Figures 6.6 and 6.5 we give the number of produced strings on graphs

with width 10 as a function of the number of beads.

91

gradient | gradient & prob path lookahead
descent | prob hue. | heuristics | heuristics | heuristics
1000 real datal 184 364 367 382 377
1000 real data2 194 348 341 369 368
1000 real data3 173 324 327 349 350
1000 real data4 195 357 350 368 371
1000 real datad 184 340 340 356 357
1000 real data6 191 341 349 360 360
1000 real data7 198 354 361 373 373
1000 real data8 182 341 348 370 368
1000 real data9 181 328 335 346 341
1000 real datal0 172 325 319 347 347
1000 real datall 170 326 322 339 339
1000 real datal2 173 329 332 342 342
1000 real datal3 194 334 334 354 355
1000 real datal4 191 349 352 366 369
1000 real datald 193 343 345 359 358
1000 real datal6 178 340 333 356 356
1000 real datal7 188 334 343 358 357
1000 real datal8 196 357 358 367 368
1000 real datal9 189 329 323 343 346
1000 real data20 175 337 338 352 355
average 185.05 340 340.85 357.8 357.85
std 9.09 11.80 13.18 11.61 11.32

Table 7.2: Performance of all algorithms on 1000 strings real data

92

gradient | gradient & prob path lookahead
descent | prob hue. | heuristics | heuristics | heuristics
96 real data 1 57 85 85 83 86
96 real data 2 63 89 89 90 91
96 real data 3 59 87 87 85 88
96 real data 4 62 87 88 89 89
96 real data b 58 86 86 86 87
96 real data 6 55 84 84 84 86
96 real data 7 59 86 85 86 86
96 real data 8 53 84 84 83 84
96 real data 9 63 89 89 87 89
96 real data 10 60 86 87 86 88
96 real data 11 55 86 87 87 88
96 real data 12 58 88 88 87 88
96 real data 13 57 86 87 83 87
96 real data 14 58 85 84 82 85
96 real data 15 54 86 86 85 87
96 real data 16 57 85 84 82 86
96 real data 17 59 87 88 88 89
96 real data 18 59 88 87 87 88
96 real data 19 55 83 84 82 85
96 real data 20 57 85 85 84 86
96 real data 21 56 85 85 84 86
96 real data 22 62 89 89 88 90
96 real data 23 58 85 85 85 87
96 real data 24 60 87 87 87 88
96 real data 25 58 86 86 86 87
96 real data 26 59 85 85 82 86
96 real data 27 57 86 86 85 85
96 real data 28 57 85 84 85 86
96 real data 29 49 80 81 78 82
96 real data 30 58 87 88 86 89

Table 7.3: Performance of all algorithms on 96 strings real data (part 1)

93

gradient | gradient & prob path lookahead
descent | prob hue. | heuristics | heuristics | heuristics

96 real data 31 57 86 86 87 87
96 real data 32 57 86 86 85 87
96 real data 33 58 85 85 84 86
96 real data 34 57 85 86 84 87
96 real data 35 58 86 85 85 87
96 real data 36 57 87 88 86 88
96 real data 37 57 84 87 85 88
96 real data 38 57 87 88 86 88
96 real data 39 58 86 87 85 87
96 real data 40 52 83 82 82 84
96 real data 41 58 87 87 86 88
96 real data 42 58 85 85 83 86
96 real data 43 55 83 85 83 86
96 real data 44 62 87 87 87 88
96 real data 45 62 86 86 86 87
96 real data 46 56 86 87 87 88
96 real data 47 54 86 86 84 86
96 real data 48 57 87 87 85 88
96 real data 49 55 85 86 85 87
96 real data 50 58 86 87 84 88
average 57.5 85.8 86.06 85.02 87
std 2.68 1.62 1.68 2.12 1.57

Table 7.4: Performance of all algorithms on 96 strings real data (continued)

94

gradient | gradient & prob path lookahead
descent | prob hue. | heuristics | heuristics | heuristics
70 synth datal 35 61 61 60 61
70 synth data?2 36 61 62 61 62
70 synth data3 36 60 61 61 61
70 synth datad 35 60 61 60 61
70 synth datab 36 61 61 61 62
70 synth data6 36 63 63 62 63
70 synth data? 36 61 61 61 62
70 synth data8 35 61 61 61 61
70 synth data9 37 63 63 63 63
70 synth datal0 37 62 62 62 63
average 35.9 61.3 61.6 61.2 61.9
std 0.73 1.05 0.84 0.91 0.87

Table 7.5: Performance of all algorithms on 70 strings synthetic data

gradient | gradient & prob path lookahead

descent | prob hue. | heuristics | heuristics | heuristics
80 synth datal 42 68 68 68 69
80 synth data2 40 68 69 67 69
80 synth data3 44 70 70 69 70
80 synth data4 44 69 69 67 69
80 synth datab 39 65 66 65 67
80 synth data6 44 69 70 69 70
80 synth data7? 41 67 68 67 68
80 synth data8 42 68 69 68 69
80 synth data9 42 67 67 66 68
80 synth datal0O 41 67 67 66 68
average 41.9 67.8 68.3 67.2 68.7
std 1.72 1.39 1.33 1.31 0.94

Table 7.6: Performance of all algorithms on 80 strings synthetic data

95

gradient | gradient & prob path lookahead

descent | prob hue. | heuristics | heuristics | heuristics
90 synth datal 46 76 7 75 7
90 synth data2 46 74 75 72 75
90 synth data3 47 75 75 74 76
90 synth data4 44 74 74 72 75
90 synth datab 47 74 75 73 75
90 synth data6 44 72 74 72 74
90 synth data? 46 74 73 71 75
90 synth data8 45 74 75 73 76
90 synth data9 50 7 7 7 78
90 synth datal0 47 75 75 72 76
average 46.2 74.5 75 73.1 75.7
std 1.75 1.35 1.24 1.79 1.15

Table 7.7: Performance of all algorithms on 90 strings synthetic data

gradient | gradient & prob path lookahead

descent | prob hue. | heuristics | heuristics | heuristics
100 synth datal 52 82 82 79 83
100 synth data2 49 81 81 78 81
100 synth data3 49 81 81 79 82
100 synth data4 51 81 80 78 82
100 synth datab 46 78 80 7 80
100 synth data6 51 82 81 79 82
100 synth data7 48 78 78 76 79
100 synth data8 49 78 78 7 80
100 synth data9 52 82 82 80 83
100 synth datal0 50 81 83 81 83
average 49.7 80.4 80.6 78.4 81.5
std 1.88 1.71 1.64 1.50 1.43

96

Table 7.8: Performance of all algorithms on 100 strings synthetic data

16

ooa ¥
700 - L
BO0 - i

500 - ¥

400+ H{ﬁl{i
300 A IIE}B

200 43

SCore

o0 4 #

0 10 20 30 40 50 B0 0 80 a0 100
wid th

Figure 7.3: Impact of the width on performance. The graph summarizes the results of the lookahead algorithm
with different widths on real data sets of 1000 strings. The average (dot), minimum and maximum (bars) are

shown for each width.

86

100_ | { x T]

90 1{{

80 A

70 A {

60

50 {

40 -

30 A {{

20

10 - i

0 T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20
width

s5core

Figure 7.4: Impact of the width on performance. The graph summarizes the results of the lookahead algorithm
with different widths on real data sets of 96 strings. The average (dot), minimum and maximum (bars) are shown
for each width.

66

1000 2
900 :

800 - '

700 A 3

600 - ¥

500 -)

400 -

#
300 14
200 | &

100 *

U T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Thousand

Score

number of beads

Figure 7.5: Impact of the number of beads on performance. The graph summarizes the results of the lookahead
algorithm with different number of beads on real data sets of 1000 strings. The average (dot), minimum and

maximum (bars) are shown for each number of beads.

00T

100

a0 1

80 1 11111

70 - fff

B0 1

al 13

40 -

30 1

20 1

10

i | | | | |
i 5 10 15 20 25 an

Thousand

SCore

number of beads

Figure 7.6: Impact of the number of beads on performance. The graph summarizes the results of the lookahead
algorithm with different number of beads on real data sets of 96 strings. The average (dot), minimum and

maximum (bars) are shown for each number of beads.

From the above results, it is clear that increasing either the width or the
number of beads improves the obtained results. The effect of increasing the
number of beads is sublinear, while increasing the width first causes a rapid
exponential-like rise of the score, and then a slow, sublinear rise. The rapid
rise continues until the alphabet size is reached, as each new letter which is
added for the first time accommodates many of the target sequences. After
all the letters are present, the effect of additional copies of the same letters
is more modest. In Figures 6.7 and 6.8 we explore the tradeoff between
those two parameters. Such plots allow the experimentalist to make the
most convenient choice of the two parameters in order to achieve a desired

number of target strings.

Finally, as our algorithm is deterministic and greedy, we explored its
stability by trying different starting points of the algorithm. In order to
achieve this goal, we ran the algorithm using subsets of the large sets of
real data as input. Each subset contained 900 strings that were randomly
chosen out of the full set of 1000 strings. Note that the solution of the
algorithm on the full set of 1000 strings had no more than 400 strings, thus
taking only 900 strings as input does not necessarily imply a decrease in the
obtained result. The initialization according to each subset gives a different
initial graph, and hence a different order of arc deletions, which results in
a different output. This experiment was repeated for each of the first 10
large data sets with 950 different randomly chosen subsets of 900 strings.
The results of those experiments show that our algorithm is very stable, at
it always performed better than all other initializations. A summary of the

results is presented in Table 6.9 and Figure 6.9.

In order to test the utility of using the similarity score, we compared the
success of our algorithm on randomly chosen subsets of the given data sets
and on the subsets chosen by their high similarity. The results of this test
are presented in Table 6.9 and Figure 6.9. We can see that subsets chosen
by their similarity always performed better than randomly chosen subsets;
and more surprisingly, in 8 out of 10 cases, they also give better results than
the algorithm on the full set of 1000 strings.

101

100

score B -

10000
10 177 8000

6000
4000

2000

num beads

mo-10 m10-20 O20-30 O3040 m40-50 m@m50-60 m6E0-70
O70-80 m80-90 m90-100

Figure 7.7: Tradeoff between the width and the number of beads. Perfor-

mance of the lookahead algorithm with different widths and different number
of beads on 96 strings real data sets.

102

sScore

=
=
=
=
(]

num beads

70000
50000
20000
10000

@ o0-100 W 100-200 0O2Z00-300 0O300-400 m400-500
O s00-600 m®EOO-700 O 700-800 m8O0O0-800 E@H00-1000

Figure 7.8: Tradeoff between the width and the number of beads. Perfor-
mance of the lookahead algorithm with different widths and different number

of beads on 1000 strings real data sets.

103

average | max | min | 1000 | similarity
1000 real datal | 349.59 | 366 | 337 | 377 381
1000 real data2 | 344.01 | 362 | 330 | 368 375
1000 real datad | 326.18 | 340 | 313 | 350 349
1000 real datad | 341.76 | 358 | 327 | 371 373
1000 real datad | 329.08 | 342 | 314 | 357 354
1000 real data6 | 333.47 | 347 | 316 | 360 364
1000 real data7 | 345.65 | 358 | 328 | 373 376
1000 real data8 | 336.98 | 350 | 322 | 368 369
1000 real data9 | 325.39 | 339 | 309 | 341 355
1000 real datalO | 323.39 | 337 | 309 | 347 352

Table 7.9: Impact of partial sets. In order to achieve different starting points,
the algorithm was applied to 950 different subsets of 900 target strings,
which were chosen out of each 1000 strings real data set, and statistics
were collected. Columns 2,3,4 give the average, maximum and minimum
score obtained. Column 5 repeats for comparison the result on the full set.

Column 6 gives the result on a set chosen according to the similarity score.

104

G0t

——average
—B_max
——min
—x—1000

—— zim ilarity

4010
390
3&0
3o
360
Fal
J40
330
20
0
3an

—

Figure 7.9: Impact of partial sets — graphical summary. The setup is as for Table 6.9. The x axis gives the ten

large data sets in arbitrary order. The y axis gives the number of produced target strings.

106

Chapter 8

Future Work

In this chapter we suggest two directions for future work. One is combining
library selection with the design of a synthesis graph producing it; and the
other is establishing tight upper bounds for the solutions to the various

problems we explored.

8.1 Combining Diverse Library Selection with Syn-
thesis Graph Design

As discussed in Section 3.6 there are many target sets which represent the
parent library equally well. However, these target sets may vary greatly
in their synthesis complexity. Hence, we suggest exploring possibilities of
combining library selection with the design of a synthesis graph producing
it. That is, choosing a library that not only represents the parent library,

but can also be efficiently synthesized.

107

8.2 Upper Bounds

Another important issue is the establishment of tight upper bounds for the

solutions to the various problems we explored.

Worst case upper bounds are easily obtained in some cases. Consider
a target set S in which the letters in each of the strings’ positions are dis-
tinct. In the applications we address this is indeed a realistic example: For
example, when the alphabet is composed of unnatural amino acids its size
can reach a few thousands. Clearly the strings in S must be synthesized
individually, i.e., by parallel synthesis. Therefore, the minimum solution to
MNES is of size (i.e., a number of internal nodes) (I —2) - |S|, where [is the
length of the strings in S. Likewise, a maximum solution to MSS produces
w strings out of S, where w is the constraint on the width of the solution

graph (assuming w is at most |S]).

A more interesting question is the establishment of average case upper
bounds. However, even identifying the average case is a difficult problem.
The target set which is an input to the problems we explored is designed to
represent some parent library. It is definitely not a random set. In fact the

properties of such a set are still the subject of extensive research.

The ultimate goal is the establishment of specific tight upper bounds.
That is, for each target set S bounding its synthesis requirements: in terms
of the number of required nodes for MNES, and in terms of the number of

strings which can possibly be synthesized for MSS.

108

Bibliography

[1]

F. Balkenhohl, C. von dem Bussche-Hunnefeld, A. Lansky, and
C. Zechel. Kombinatorische synthese. Angrew. Chem. Int. Ed. Engl.,
35:2288 2337, 1996.

D.P. Bertsekas and J.N. Tsitsiklis. Gradient convergence in gradient
methods with errors. SIAM Journal in Optimization., 10(3):627-642,
2000.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Oxford, England, 1995.

T. Brants. Estimating HMM topologies. In Proceedings of the Tbilisi
Symposium on Language, Logic, and Computation. Tbilisi, Georgia.,
1995.

R.D. Brown. Descriptors for diversity analysis. Perspect. Drug Discov-
ery, 7-8:31 49, 1997.

R.D. Brown and Y.C. Martin. Use of structure-activity data to compare
structure based clustering methods and descriptors for use in compound
selection. J. Chem. Inf. Comput, 36:572 584, 1996.

R.D. Brown and Y.C. Martin. The information content of 2D and 3D
structural descriptors relevant to Ligand-Receptor binding. .J. Chem.
Inf. Comput, 37:1 9, 1997.

I.C. Choong and J.A. Ellman. Solid-phase synthesis: Application of
combinatorial libraries. Annu. Rep. Med. Chem., 31:309-318, 1996.

109

[9]

[10]

[11]

[12]

[13]

[14]

[17]

18]

B. Cohen and S. Skiena. Efficient split synthesis for targeted libraries.
J. Comb. Chem., 2(1):10-18, 2000.

J.A. Ellman. Strategy and tactics in combinatorial organic synthesis.
applications to drug discovery. Acc. Chem. Res., 29:132 143, 1996.

Molecular Simulations Inc., Cerius2 Modeling Environment, 1999, Re-

lease 4.0, San Diego.

J.S. Fruchtel and G. Jung. Organic chemistry on solid supports. An-
grew. Chem. Int. Ed. Engl., 35(1):17-42, 1996.

A. Furka, F. Sebestyen, M. Asgedom, and G. Dibo. General method
for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept.
Protein Res., 37:487 493, 1991.

M.A. Gallop, R.W. Barrett, W.J. Dower, S.P.A. Fodor, and E.M. Gor-
don. Applications of combinatorial technologies to drug discovery.
1. background and peptide combinatorial libraries. J. Med. Chem.,
37:1233-1251, 1994.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Co., San Fran-
cisco, 1979.

E.M. Gordon, R.W. Barrett, W.J. Dower, S.P.A. Fodor, and M.A. Gal-
lop. Applications of combinatorial technologies to drug discovery. 2.
combinatorial organic synthesis, library screening strategies, and future
directions. J. Med. Chem., 37:1385 1399, 1994.

E.M. Gordon, M.A. Gallop, and D.V. Patel. Strategy and tactics in
combinatorial organic synthesis. applications to drug discovery. Ac-
count. Chem. Res., 29:144 154, 1996.

E.M. Gordon and J.F. Jr. Kerwin. Combinatorial Chemistry and Molec-
ular Diversity in Drug Discovery. Wiley, Ney York, 1998.

110

[19]

[20]

[21]

[22]

23]

[24]

J. Herbst. An inductive approach to the acquisition and adaptation
of workflow models. 16th International Joint Conference on Artificial
Intelligence, (IJCAI ’99), Stockholm, July 31 - August 6 1999.

G. Jung. Combinatorial Peptide and Nonpeptide Libraries. Wiley, Ku-
rope, 1996.

K.S. Lam, S.E. Salmon, E.M. Hersh, V.J. Hruby, W.M. Kazmierski,
and R.J. Knapp. A new type of synthetic peptide library for identifying
ligand- binding activity. Nature, 354:82 84, 1991.

D. Madden, V. Krchnak, and M. Lebl. Synthetic combinatorial li-
braries: Views on techniques and their application. Persp. Drug Dis-
covery and Design, 29:269-285, 1995.

G.M. Maggiora and M.A. Johnson. Concepts and Applications of Molec-
ular Similarity. Wiley, Ney York, 1990.

E.J. Martin, J.M. Blaney, M.A. Siani, D.C. Spellmeyer, A.K. Wong and,
and H. Moos. Measuring diversity: experimental design of combinato-
rial libraries for drug discovery. J. Med. Chem., 38:1431 1436, 1995.

A. Nefzi, J.M. Ostresh, and R.A. Houghten. The current status of
heterocyclic combinatorial libraries. Chem. Rew., 97:449 472, 1997.

M.R. Pavia, T.K. Sawyer, and W.H. Moos. The generation of molecular
diversity. Bioorg.Med.Chem. Lett., 3:387 396, 1993.

A. Stolcke and S. M. Omohundro. Best-first model merging for hid-
den Markov model induction. Technical Report TR-94-003, Computer
Science Division, University of California at Berkeley and International

Computer Science Institute, 1994.

L.A. Thompson and J.A. Ellman. Synthesis and applications of small
molecule libraries. Chem. Rewv., pages 555—-600, 1996.

D. Woelk, P. Attie, P. Cannata, G. Meredith, A. Sheth, M. Singh, and
C. Tomlinson. Task scheduling using intertask dependencies in Carnot.
pages 491-494, 1993.

111

[30] P. Zhao, R. Zambias, J.A. Bolognese, D. Boulton, and K. Chapman.
Sample size determination in combinatorial chemistry. Proc. Natl. Acad.
Sci USA, 92:10212 10216, 1995.

112

