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ABSTRACT

Motivation: Novel technologies can generate large sets of short

double-stranded DNA sequences that can be used to measure their

regulatory effects. Microarrays can measure in vitro the binding inten-

sity of a protein to thousands of probes. Synthetic enhancer se-

quences inserted into an organism’s genome allow us to measure

in vivo the effect of such sequences on the phenotype. In both appli-

cations, by using sequence probes that cover all k-mers, a compre-

hensive picture of the effect of all possible short sequences on gene

regulation is obtained. The value of k that can be used in practice is,

however, severely limited by cost and space considerations. A key

challenge is, therefore, to cover all k-mers with a minimal number of

probes. The standard way to do this uses the de Bruijn sequence of

length 4k. However, as probes are double stranded, when a k-mer is

included in a probe, its reverse complement k-mer is accounted for as

well.

Results: Here, we show how to efficiently create a shortest possible

sequence with the property that it contains each k-mer or its reverse

complement, but not necessarily both. The length of the resulting se-

quence approaches half that of the de Bruijn sequence as k increases

resulting in a more efficient array, which allows covering more longer

sequences; alternatively, additional sequences with redundant k-mers

of interest can be added.

Availability: The software is freely available from our website http://

acgt.cs.tau.ac.il/shortcake/.

Contact: rshamir@tau.ac.il

1 INTRODUCTION

Gene regulation is a central focus of biological research. The

main factors that regulate gene expression are transcription fac-

tors (TFs). These proteins bind to short DNA sequences, either

in promoters or enhancers, and by that encourage or impede

gene transcription. TFs bind to different DNA sequences with

different affinity and specificity. Understanding TF-binding spe-

cificity and its effect on gene expression and the final phenotype

is a fundamental goal in the study of gene regulation.

Recent technologies measure the binding intensity of a TF to

many DNA sequences [e.g. protein-binding microarray (PBM)

(Berger et al., 2006) and MITOMI [Fordyce et al., 2010)]. These

technologies synthesize a large set of DNA sequences and meas-

ure the binding intensity of the TF to each of those sequences.

Some technologies use random DNA sequences (Nutiu et al.,

2011). Others use sequences that cover all possible DNA

k-mers, as they provide a complete picture of the binding

spectrum (Berger et al., 2006; Fordyce et al., 2010). A similar

approach was also used to test binding in vivo. A recent study

used synthesized enhancer oligomers designed to cover all 6mers

to test their effect on limb formation in zebrafish (Smith and

Ahituv, 2012).

De Bruijn sequences are the most compact sequences that cover

all k-mers (Berger et al., 2006; Fordyce et al., 2010). The length

of a de Bruijn sequence of order k over alphabet j�j is j�jk,

where the DNA alphabet is � ¼ fA,C,G,Tg. Because of the

exponential dependency on k and small space on the experimen-

tal device, these technologies are limited to a small value of k.

The most popular technology, PBM, was used in hundreds of

experiments to date using arrays with k¼ 10. To create p-long

probe sequences, the sequence is split into intervals of length p

with k� 1 overlap (p¼ 36 is used in PBMs).
Despite the universal and high-throughput nature of these

technologies, the data produced are still limited. For many

TFs, binding depends on410 DNA positions, usually with six

to eight core positions and additional side positions that have a

significant contribution (Nutiu et al., 2011; Orenstein et al.,

2013). A recent study from the Taipale Laboratory using HT-

Selex showed that many TFs have longer motifs that are not

covered well by an all 10mer array (Jolma et al., 2013). The

RankMotifþþ algorithm for PBM data also generates motifs

of length 410 in most cases (Chen et al., 2007). Covering all

k-mers for a greater value of k will lead to improved understand-

ing of TF binding.
As the probes are double-stranded DNA segments, one can

save by using the reverse complementarity of DNA: whenever a

k-mer is included, its reverse complement is included as well, and

there is no need to cover it again. This brings up the following

question: a sequence S is called a reverse complementary complete

sequence of order k (RC complete sequence for short) if for each

k-mer either the k-mer or its reverse complement are included in

S. Can we construct an optimal (minimum length) RC complete

sequence? Theoretically, if for each k-mer T the sequence S in-

cludes either T or its reverse complement but not both, one could

save a factor of nearly 2 compared with the length of a de Bruijn

sequence.
Ministeris and Eisen (2006) and Philippakis et al. (2008) pro-

posed the use of (regular) de Bruijn sequences for designing

probes for PBMs. Philippakis et al. used linear feedback shift

registers to generate a de Bruijn sequence with good coverage

of gapped k-mers. This approach was used for constructing two

microarrays that are in use today with k¼ 10 (Berger et al.,

2006). The idea of exploiting reverse complementarity was

raised byMinisteris and Eisen (2006), who sketched an algorithm

for it without proof. In fact, as we shall show, the algorithm of*To whom correspondence should be addressed.
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Mintseris and Eisen (2006) does not provide an optimal solution
for even values of k. In the context of sequence assembly,
Medvedev et al. (Medvedev and Brudno, 2009; Medvedev

et al., 2007) solved the problem of constructing a minimum
length sequence that covers a given set of k-mers, using reverse
complementarity. Although their algorithm can be applied to

solve the problem raised in this study, they do not address it
directly. When applied to our problem, their algorithm requires
Oðk2 log2ðj�jÞj�j2kÞ time. As we shall see, our algorithm is much

faster.
In this study, we address the problem of constructing an op-

timal RC complete sequence. We first give a lower bound for the

length of such a sequence. We prove that for odd k, there exists a
sequence that achieves the lower bound and show how to con-
struct it in time complexity that is linear in the output sequence

length. For odd k, the algorithm constructs two tours that are
reverse complementary to each other and together cover all edges

of the de Bruijn graph and is identical to Mintseris and Eisen
(2006). Then, we show how to adjust the algorithm to handle the
case of even k, achieving a saving factor approaching 2 as k

increases. We give two solutions: a simple near-optimal one
requiring linear time and a more complex (Oðkj�j5k=4 logðj�jÞÞ
time) solution that guarantees optimality of the resulting se-

quence. In particular, this implies that the lower bound is not
tight for even k. We implemented the algorithm and we demon-
strate the saving it achieves. The produced sequences are nearly

half the length compared with a regular de Bruijn sequence.
The article is organized as follows. We first provide for-

mal definitions and preliminaries. We then present a lower

bound for the length of an optimal sequence based on k-mer
counts. Then, we present an algorithm that works in linear time
on the de Bruijn graph and prove that it solves the problem for

odd k. We conclude by describing the two possible solutions for
even k and report on experimental results with all the algorithms.

2 PRELIMINARIES

We start with some basic definitions of graphs and sequences.

For more details see, e.g. West et al. (2001).
A directed graph (digraph or simply a graph) G ¼ ðV,EÞ is a

set of vertices V ¼ fv1, v2, . . . , vng and a set of edges

E ¼ fe1, e2, . . . , emg. Each edge is an ordered pair of vertices
ðvi, vjÞ, and we say the edge is directed from vi to vj. The indegree
of vertex v is the number of edges entering v. Similarly, the out-

degree is the number of edges outgoing from v. A vertex is
balanced if its indegree equals its outdegree. A path in a digraph

is a sequence of vertices, vi1 , . . . , vik , such that for each 1 � j5k
there is an edge ðvij , vijþ1 Þ. A cycle is a path where i1 ¼ ik. A
digraph is strongly connected if for every pair of vertices u, v

there exists a path from u to v and a path from v to u. A strongly
connected component in a digraph is a maximal set of vertices that
induces a strongly connected subgraph.

An Eulerian tour through a digraph G is a cycle that traverses
all edges in G, such that each edge is traversed exactly once. If a
digraph contains an Eulerian tour, we call it Eulerian. A digraph

is Eulerian if and only if it is strongly connected and all vertices
are balanced (West et al., 2001).
A de Bruijn sequence of order k over alphabet � is a minimum

length sequence that covers each k-mer over � exactly once. For

convenience, we define the length of the sequence as the number

of k-mers in it. Hence, a sequence of length t contains tþ k� 1

characters. A de Bruijn sequence has length j�jk, which is the

minimum possible for covering all k-mers.
Given sequences a, b over alphabet �, the overlap between a

and b, denoted ovða, bÞ, is the largest suffix of a that is also a

prefix of b.

A de Bruijn graph of order k is a digraph in which for every

possible k-mer x1, . . . , xk there is a vertex denoted by

½x1, . . . , xk�. There is an edge from u to v if and only if

u ¼ ½x1, . . . , xk� and v ¼ ½x2, . . . , xkþ1�, that is,

jovðu, vÞj ¼ k� 1. Each edge represents a unique ðkþ 1Þ-mer.

For example, the edge ðu, vÞ above represents ðx1, . . . , xkþ1Þ.

To distinguish vertices from edges, we will use square brackets

for vertices. Hence, ðx1, . . . , xkþ1Þ is the edge between

½x1, . . . , xk� and ½x2, . . . , xkþ1�. Obviously, for each vertex v the

indegree and outdegree are j�j, and the graph is strongly con-

nected. Thus, a de Bruijn graph is Eulerian. Any Eulerian tour

represents a de Bruijn sequence of order kþ 1. Each edge and

vertex in the graph is represented by Oðk logðj�jÞÞ bits.

Throughout the article, we assume this number of bits is con-

tained in one computer word; hence, we deduce that it takes O(1)

time to find an edge or a vertex.
A complementarity relation between characters is a symmetric

non-reflexive one-to-one relation. The alphabet of DNA is

� ¼ fA,C,G,Tg with the complementarity relation �A ¼ T and
�C ¼ G. By symmetry also �T ¼ A and �G ¼ C. The reverse com-

plement of sequence ðx1, . . . , xkÞ, denoted RCðx1, . . . , xkÞ, is

defined as the sequence obtained by reversing the original se-

quence and replacing each character by its complement, i.e.

RCðx1, . . . , xkÞ ¼ ð �xk, . . . , �x1Þ. For example, RCðCGAAÞ ¼

TTCG . A sequence s is called a palindromic reverse complemen-

tary sequence or in short a palindrome, if s ¼ RCðsÞ. For ex-

ample, ACGT is a palindrome. We define a reverse

complementary complete sequence of order k over alphabet �

(RC complete sequence for short) as a sequence such that for

each k-mer s, at least one of s and RC(s) are in the sequence.

Note that unlike a regular de Bruijn sequence, the definition of

an RC complete sequence does not require minimality. An RC

complete sequence is optimal if it is of minimum length.

3 RESULTS

3.1 A lower bound for the length of an RC complete

sequence

First, we derive a lower bound for the length of an RC complete

sequence from k-mer counts.

PROPOSITION 1. Denote by n�ðkÞ the length of an optimal RC

complete sequence of order k.

n�ðkÞ �
j�jk

2 , if k is odd
j�jkþj�jk=2

2 , if k is even

(
ð1Þ

PROOF. We consider separately the cases of odd and even k. For

odd k, there are no palindromes, as the middle position in a

k-mer differs from its reverse complement. Each k-mer must be

represented in the sequence by itself or its reverse complement.
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Thus, a lower bound for the minimum length is half the number
of unique k-mers, which is j�jk=2. For even k, some k-mers are
palindromes. For palindromes, the first k=2 characters define the

last k=2 characters. Hence, there are exactly j�jk=2 different pal-
indromes. All palindromes must appear at least once in any RC
complete sequence, whereas for the non-palindromic k-mers,
either they or their reverse complement must appear in the

sequence. Thus, for even k, n�ðkÞ � j�j
k�j�jk=2

2 þ j�jk=2. g
We shall show later that n�ðkÞ is tight for odd k, but not for

even k.

3.2 Constructing an optimal RC complete sequence

for odd k

In this section, we prove constructively that for odd k there exists

an RC complete sequence that achieves the lower bound of
Proposition 1 and is thus optimal. The proof modifies the
Euler tour algorithm (West et al., 2001). The modified algorithm
was presented without proof in Mintseris and Eisen (2006). The

algorithm for generating the sequence will work on the de Bruijn
graph of order k� 1. Every k-mer is represented in the graph as
an edge, the graph is strongly connected and all vertices are

balanced. As there are no palindromes of odd length, every
edge has a unique reverse complement counterpart that is differ-
ent from it. This defines a perfect matchingM on the edges of the

graph.
Given a directed path F in the graph, its reverse complement

path is defined as the path R in which each edge ðu, vÞ in F is

replaced by the edge ð �v, �uÞ. For example, for the path
ðACGÞ ! ðCGGÞ ! ðGGTÞ, its reverse complement is
ðACCÞ ! ðCCGÞ ! ðCGTÞ (Fig. 1). We will refer to F and R

as forward and reverse paths, respectively.
The following theorem provides a necessary and sufficient

condition for the existence of an RC complete sequence that

achieves the lower bound.

THEOREM 1. For odd k, an RC complete sequence s achieves

the lower bound (Proposition 1) if there exist two edge-disjoint
paths with no repeating edges, corresponding to s and RC(s), that
together cover all edges of the de Bruijn graph of order k� 1.

PROOF. ) Observe that the lower bound assumes one occur-

rence of either w or RC(w) but not both in the sequence for

each k-mer w. Assume an RC complete sequence s� achieves

the lower bound. Then, because of its minimality, it contains

no repeating k-mers; therefore, it must correspond to a path F

in the de Bruijn graph with no repeating edges. The ordered set

of k-mers in s� corresponds to consecutive edges in F. Note

that the reverse complement sequence t� ¼ RCðs�Þ is also a

path R in the graph: the k-mers in R are the reverse complement

of those in F; therefore, consecutive edges form a path in

the graph traversed in reverse order. As each k-mer or its re-

verse complement is covered in s�, it is also true that each

k-mer or its reverse complement is covered by t�, and the two

paths F and R, corresponding to the two sequences, together

cover all edges.

( Suppose there are two edge-disjoint paths F and R with no

repeated edges that together cover all edges. As they are reverse

complement of each other, and together cover all edges, for each

k-mer w, the sequence s (corresponding to path F) must contain

either w or RC(w) (otherwise, some edges would have been un-

covered). Hence, s is an RC complete sequence. The same argu-

ment holds for RC(s) (corresponding to path R). As each

contains exactly half the edges, the length of each of them

equals the lower bound g.

Before presenting the algorithm for finding an optimal RC

complete sequence, we remind the reader of the algorithm for

finding an Eulerian cycle in a digraph (Fleischner, 1990). The

algorithm starts from an arbitrary source vertex. Initially all

edges are unmarked. It traverses a path of unmarked edges in

arbitrary order. Each traversed edge is marked; therefore, no

edge is traversed more than once. The algorithm also maintains

a set A of the visited vertices that are still active, i.e. they have

outgoing unmarked edges. When the last unmarked edge outgo-

ing from a vertex is traversed, the vertex is removed from A. If

the algorithm reaches a dead end, it starts another traversal from

another vertex in A. A dead end can only be achieved when

closing a cycle (i.e. returning to the source vertex), as in any

other vertex there is always a free incoming edge and a free

outgoing edge (as for every vertex except the source the un-

marked outdegree and the unmarked indegree are equal). If

not all edges have been traversed,A is not empty, and the process

can start from a new source. In the end, as the graph is strongly

connected and all cycles start from visited vertices (except for the

initial vertex), the cycles can be joined to form one Eulerian

cycle. The running time of the algorithm is linear in the

number of vertices and edges.
Algorithm 1 finds an optimal RC complete sequence in a de

Bruijn graph of order k� 1 when k is odd. The algorithm imi-

tates the Euler path algorithm but maintains both a forward

sequence and a reverse complement sequence simultaneously.

The collection of cycles traversed so far is kept in F and the

corresponding reverse complement cycles set is R.

Algorithm 1. Find forward and reverse paths that cover all edges in a de

Bruijn graph G ¼ ðV,EÞ of even order k� 1.

(1) Initially all edges are unmarked, F ¼ R ¼ ;, and A ¼ fug,

an arbitrary vertex.

ACG
CGG

GGT

ACGG CGGT

CGT
CCG

ACC

CCGT ACCG

Fig. 1. An illustration of forward and reverse paths (top and bottom,

respectively). The forward path traverses the edges in their direction. The

corresponding reverse path traverses the reverse complementary edges in

reverse direction
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(2) Although A 6¼ ; do

(3) F ¼ R ¼ ;.

(4) Pick any starting vertex v ¼ ½x1, . . . , xk�1� from A.

(5) Although there exists an unmarked edge

e ¼ ðx1, . . . , xkÞ outgoing from v do

(6) Append e to F. Prepend RC(e) to R.

(7) Mark e and RC(e).

(8) Set v ¼ ½x2, . . . , xk�; A ¼ A [ fvg.

(9) Remove v from A.

(10) If F 6¼ ;, add F to F ; add R to R;

(11) Merge the cycles in F to obtain a single forward path.

Do the same for R.

THEOREM 2. For odd k, Algorithm 1 returns forward and reverse

paths that cover together all edges of the graph and represent

two optimal RC complete sequences. The algorithm runs in

OðjVjÞ time.

PROOF. We prove the theorem using several lemmas. We first

show that if the forward path F reaches a dead end, then so

does the reverse path R, and in that case, a cycle is closed

(Lemma 1). Note that each pair F, R constructed in Steps 4–7

are reverse complementary paths by the way they are con-

structed. Then, we show that the cycles in F can be merged

into one cycle (Lemma 2). Third, we deduce that a strongly con-

nected component is covered by F and R (Lemma 3). Finally,

we conclude that F and R cover all edges, as there is only one

strongly connected component in any de Bruijn graph (Corollary

1). As each edge is traversed once, the paths are of length j�j
k

2

and, hence, optimal.

LEMMA 1. If the forward traversal reaches a dead end, then so

does the reverse. Both paths close a cycle in this case.

PROOF. Distinguish two cases in which the forward path reaches

a dead end:

CASE 1. F reaches a vertex v and R reaches a vertex u 6¼ v, and all

outgoing edges from v were already traversed. We prove that in

that case, F must close a cycle. Assume to the contrary that F

contains no edge outgoing from v. In that case, all outgoing

edges were traversed by R. Then, all incoming edges must have

been traversed by R as well, as each time R reached v, it must

have exited it as well. The only exception is if v is also the first

(last added) vertex u in R, contradicting our assumption that

u 6¼ v. Therefore, all incoming and outgoing edges were covered

by R, contradicting the fact that F just entered v. We conclude

that F has an edge outgoing from v and thus it closed a cycle.
Denote by ðx1, . . . , xkÞ the last edge traversed by F. All edges

of the form ðx2, . . . , xk, aÞ, where a 2 �, were traversed. Hence,

the reverse edges of the form ð �a, xk, . . . , x2Þ were traversed as

well. The last edge traversed by R was ðxk, . . . , x1Þ, outgoing

from the vertex ½xk, . . . , x2�. All incoming edges to this vertex

have already been traversed, as they are the reverse complements

of the edges outgoing from v, which were traversed by F. Thus, R

reaches a dead end as well. R closes a cycle because of a sym-

metrical argument to that made for F.

CASE 2. F and R reach the same vertex v simultaneously. Denote

the incoming edge used by F ðx1, x2, . . . , xkÞ. Then, the reverse

outgoing edge, which is traversed by R, is ðxk, . . . , x2, x1Þ. From

the fact that both reach the vertex simultaneously, we get that

½x2, . . . , xk� ¼ ½xk, . . . , x2�. Hence, in all previous traversals of

this vertex F and R also reached the vertex simultaneously.

Moreover, the forward and reverse paths reach a dead end to-

gether at v. Hence, all incoming and outgoing edges were already

traversed, and they are all of the form ða, x2, . . . , xnÞ and

ðxn, . . . , x2, �aÞ, for all a 2 �. Thus, both paths close a cycle g.

LEMMA 2. The cycles in F can be merged into one cycle.

PROOF. According to Lemma 1, when F is added to F , it is a

cycle in the graph. Thus, F is a set of cycles. The first cycle starts

from an arbitrary vertex, but all other cycles start from a vertex

of another cycle in F (denote encompassing cycle). Thus, each

inner cycle can be merged into its encompassing cycle, forming

one merged cycle. This is true to all cycles, except for the initial

cycle g.

LEMMA 3. The merged cycle of F and R either cover two

strongly connected components separately or one strongly con-

nected component together.

PROOF. Cycles are added to F and R as long as there are un-

marked edges. If there are no shared vertices between F and R,

then both sets cover edges of different components. As each set is

added edges until all are traversed, they cover two strongly con-

nected components separately. Else, there is at least one shared

vertex; thus, they cover the same component. The component is

strongly connected, as no edges are left to traverse g.

COROLLARY 1. F and R cover all edges of a de Bruijn graph.

PROOF. Following Lemma 3, as there is only one strongly con-

nected component in a de Bruijn graph, F and R cover it

together g.

This completes the proof of Theorem 2 g.

3.3 Two solutions for the case of even k

Algorithm 1 cannot be applied when k is even. A palindrome is

represented by one edge in the de Bruijn graph (like any other

k-mer). The algorithm must traverse both an edge and its reverse

complement edge on the forward and reverse paths; therefore,

for a palindromic edge, both paths should use the same edge,

which is impossible.

One possible way to rectify the problem is by adding one more

copy of each palindromic edge to the de Bruijn graph. Note that

in the resulting (multi-) graph, the number of edges is exactly

twice the lower bound. Adding the parallel edges would solve the

problem discussed earlier in the text, but it will make some ver-

tices unbalanced; therefore, the resulting graph is not Eulerian.

Such a graph cannot be represented as a union of two reverse

complementary edge-disjoint paths.
A more aggressive augmentation that overcomes this difficulty

is adding a cycle for every palindromic edge. This would preserve

the balance of all vertices and the strong connectivity as well. If,

in addition, the added non-palindromic edges have a perfect
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matching between reverse complementary edges, the algorithm

can be applied.
We present two possible augmentations. One is simple, based

on the ideas aforementioned, and near-optimal; the other is

optimal but requires a more complex augmentation.

3.3.1 A simple near-optimal augmentation In this approach, for
each palindromic edge, we add to the de Bruijn graph all possible

cyclic shifts of it. More formally, let k ¼ 2l. For the palindrome

e ¼ ðx1, . . . , xl, �xl, . . . , �x1Þ, we add k edges corresponding to

all possible cyclic shifts of e. Obviously, as these edges form a

cycle, all vertices remain balanced. In fact, this cycle contains two

edges that are palindromes, ðx1, . . . , xl, �xl, . . . , �x1Þ and

ð �xl, . . . , �x1, x1, . . . , xlÞ; therefore, only one cycle is added for

both, and the cycle doubles both palindromic edges. It is easy

to see that the remaining 2l� 2 edges are in fact l� 1 matching

pairs of reverse complementary edges. For each edge that repre-

sents the cyclic shift starting at position i, for 15i5k=2, the
matching edge starts at kþ 2� i. Hence, a perfect matching

exists after adding the new cycles. In total, during the edge aug-

mentation process, for each pair of palindromic k-mers, we add k

edges. For example, for the palindromes ACGT and GTAC, we

add ACGT, CGTA, GTAC and TACG (Fig. 2). The added

edges CGTA and TACG match each other. The added palin-

dromes match the original edges in the graph. The resulting aug-

mented graph contains j�jk þ k � j�j
k=2

2 edges, where the first term

is the number of edges in the original de Bruijn graph, and the

second is k for each pair of palindromes.

In some cases, the number of added edges can be reduced.

If the palindrome ðx1, . . . , xkÞ is periodic, then the number of

cyclic shifts needed to return to the original k-mer is the length of

the period. For example, the period of (ATAT . . .T) and

(TATA . . .A) is 2. Only two edges suffice in this case, the

edges (ATAT . . .T) and (TATA . . .A). This also applies to

(CGCG . . .G) and (GCGC . . .C). Therefore, each two periodic

palindromes that are a cyclic shift of each other require an add-

ition of a number of edges equal to the length of their period.

Hence, a smaller augmented graph and a shorter RC complete

sequence can be obtained by considering the different possible

periods, which can only be of even length, as each period is a

palindrome.

Denote by ’ðkÞ the set of even integers that divide k, and by

�ðkÞ the exact number of additional edges.

THEOREM 3.

�ðkÞ ¼
X
i2’ðkÞ

i

2
� j�ji=2 � max

j2’ði=2Þ
j�jj=2

� �
ð2Þ

PROOF. All k-mer palindromes are divided to pairs, which are

cyclic shifts of each other. For each pair, all distinct cyclic shifts

are added. The number of shifts is equal to the length of the

period of the k-mer. The periods can only be even, as the periodic

sequences are palindromes by themselves. The number of i-peri-

odic palindromes is j�ji=2. These contain shorter periods, for

which edges have already been counted. Thus, j�jj=2 is sub-

tracted, where j is the maximum even integer that divides i=2.
The number of edges added for each pair of i-periodic palin-

dromes is i g.

THEOREM 4. Running Algorithm 1 on the augmented graph pro-

duces forward and reverse paths that together cover all edges of

the graph and represent two RC complete sequences.

PROOF. Algorithm 1 can be run on graphs that satisfy the fol-

lowing properties:

(i) The graph is strongly connected.
(ii) All vertices are balanced.

(iii) There exists a perfect matching of the edges, such that each

pair of edges represent a k-mer and its reverse

complement.

The original de Bruijn graph of order k satisfies (1) and (2),

and there exists a perfect matching for all non-palindromic

k-mers in it. Added edges cannot disturb the connectivity. The

addition of cycles preserves the balance. Each added palindromic

k-mer matched the edge representing the same k-mer in the ori-

ginal graph. As discussed earlier in the text, the added non-pal-

indromic edges form a perfect matching. Thus, Algorithm 1 can

be run on the augmented graph. According to Theorem 2, it

produces a forward and reverse path that together covers all

edges of the augmented graph.
Each k-mer is represented in the augmented graph as an edge.

All edges are covered together by the forward and reverse paths.

For each path and for each k-mer, either it or its reverse com-

plement is covered by the path. Thus, the paths represent RC

complete sequences g.

Algorithm 1 produces two sequences, forward and reverse,

each of which is an RC complete sequence (Fig. 3). The length

of the produced sequences is the number of edges divided by two.

For each pair of palindromic edges, at most k edges were added,

ACG CGT

GTATAC

ACGT

GTAC

C
G

T
A

G
C

A
T

Fig. 2. A cycle and edge matching. For the pair of palindromes ACGT

and GTAC, all cyclic shifts of these palindromes are added once (dashed

edges). In the matching, palindromic edges in the original cycle are paired

with their added copies (encircled by small red ovals). Other non-palin-

dromic added edges are paired (encircled by a large red oval)
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and by Theorem 3 exactly �ðkÞ edges were added in total. Hence,
the length of the sequence is ðj�jk þ �ðkÞÞ=2, which is bounded by

ðj�jk þ j�j
k=2

2 � kÞ=2. This is an addition of �ð
ffiffiffiffi
L
p

logðLÞÞ charac-

ters, where L denotes the lower bound in Proposition 1 for an

RC complete sequence of even order k.

3.3.2 An optimal augmentation We now present another aug-

mentation that has higher time complexity but leads to an opti-
mal RC complete sequence. As before, starting from the de

Bruijn graph G ¼ ðV,EÞ, all palindromic edges are doubled, re-

sulting in a graph G0 ¼ ðV,E [ E0Þ. We temporarily disregard the

reverse complementarity matching constraints. As a result of the
edge doubling, there are unbalanced vertices in G0. We rectify

this by adding short paths between unbalanced vertices. By

adding paths of minimum total length, we will obtain a third

graph G2 ¼ ðV,E [ E0 [ E00Þ in which all degrees are balanced
and it has minimum number of edges. Finding an optimal set

of edges E00 can be done by solving a maximum weight-matching

problem on a related graph. In fact the problem is equivalent to

the Chinese postman problem (Edmonds and Johnson, 1973)
[the Chinese postman problem is used in Medvedev and

Brudno (2009) and Medvedev et al. (2007) and is also mentioned

in Mintseris and Eisen (2006) as a solution on the original de

Bruijn graph]. We shall later show that G2 can be modified to
satisfy the reverse complementarity matching requirement with-

out losing optimality. Hence, applying Algorithm 1 on it will

produce an optimal RC complete sequence.
Finding an optimal set of edges E00 is done by solving a max-

imum weight-matching problem in a bipartite graph, where ver-

tices with greater indegree than outdegree constitute one part,
and the vertices with greater outdegree than indegree are the

other. The edge weights are k minus the number of characters

on the path from one vertex to the other. More formally, let

V� (Vþ) be the set of vertices with indegree greater (smaller)

than outdegree in G0. For k ¼ 2l, there are j�jk=2 � j�j

vertices in V� of the form u ¼ ½x2, . . . , xl, �xl, . . . , �x1� and the

same number of vertices in Vþ of the form

v ¼ ½x1, . . . , xl, �xl, . . . , �x2� [note that j�j palindromes of period

2 are already balanced (e.g. ATA . . .T)]. We define a complete

bipartite graph H ¼ ðV�,Vþ,FÞ, where the weight of edge ðu, vÞ

is the maximum overlap between the suffix of u and the prefix of

v (i.e. jovðu, vÞj). The length of the shortest path pðu, vÞ between u

and v is k� jovðu, vÞj (Fig. 4). We are looking for a maximum

weight matching in H. The procedure is summarized in

Algorithm 2, Steps 1–5.

Algorithm 2. Find an optimal augmentation for a de Bruijn graph

G ¼ ðV,EÞ of odd order.

1. Add to G the set E0 of palindromic edges.

The resulting (multi-)graph is G0 ¼ ðV,E [ E0Þ.

2. Define Vþ ¼ fv 2 Vjðv, uÞ 2 E0 ^ ðu, vÞ=2E0 for some ug

V� ¼ fu 2 Vjðv, uÞ 2 E0 ^ ðu, vÞ=2E0 for some vg:

3. Define a complete bipartite graph H ¼ ðV�,Vþ,FÞ

with edge weights wðx, yÞ ¼ jovðx, yÞj.

4. Find a maximum weight-matching M in H.

5. Define G2 ¼ ðV,E [ E0 [ E00Þ

where E00 ¼ fðu, vÞ 2 pðx, yÞjðx, yÞ 2Mg.

6. Modify M, so that each cycle in the graph ðV,E0 [ E00Þ

contains exactly two palindromic edges (Lemma 6).

The graph G2 produced in Step 5 of Algorithm 2 is strongly

connected with all vertices balanced, but it is not guaranteed to

satisfy the third property of Theorem 4, i.e. having a perfect

matching among reverse complementary edges, which is needed

to apply Algorithm 1. We now prove that it can be modified to

satisfy this property without losing optimality. In fact, as E [ E0

has a perfect matching, we only need to prove this property on

the added edges E00. Once this is done, Algorithm 1 can be

applied to produce two reverse complementary paths that

cover all edges.
To establish Algorithm 2, we prove several lemmas:

LEMMA 4. The shortest path from palindrome A to the palin-

drome B is the reverse complementary of the shortest path from

B to A.

PROOF. Denote A ¼ ðx1, . . . , xkÞ and B ¼ ðy1, . . . , ykÞ two pal-

indromes. Let ðxi, . . . xk, y1, . . . , yi�1Þ for any 2 � i � k be an

edge in the shortest path from A to B. Its reverse complement

is ðyi�1, . . . , y1, xk, . . . , xiÞ, which, as A,B are palindromes,

which is the same as ðyk�iþ2, . . . , yk, x1, . . . , xk�iþ1Þ, an edge in

the shortest path from B to A g.

LEMMA 5. No cycle in ðV,E0 [ E00Þ contains a single palindrome.

PROOF. Suppose there exists a cycle containing only one palin-

drome. The shortest path to return to the palindrome is t cyclic

shifts of the palindrome where t is the length of its period. Let

ðx1, . . . , xl, xl, . . . , x1Þ be the palindrome. Its cyclic shift

ðxl, . . . , x1, x1, . . . , xlÞ is another palindrome. Thus, the cycle

includes more than one palindrome g.

A C

GT

A
A

G
G

CC

TT

AC

CA

GT

TG

AG

G
A

CT
TC

C
G

G
C

T
A

A
T

1
2

34

5

6

7

8910

Fig. 3. An augmented de Bruijn graph of order 1 and an example of

forward and reverse paths in it. The dashed edges are added edges. The

blue and brown paths represent the forward and reverse paths, respect-

ively. Numbers on edges are the order of the edges in the forward path.

The sequences are ACCGAATGCT and AGCATTCGGT for forward

and reverse paths, respectively
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LEMMA 6. Every cycle in ðV,E0 [ E00Þ can be decomposed into

cycles containing exactly two palindromes each, without decreas-

ing the total weight of the matching.

PROOF. The proof is by induction on n, the number of palin-

dromes in the cycle. For the induction base, n¼ 1 is impossible

by Lemma 5, and n¼ 2 is trivially true. Induction step, for n � 3,

denote by X, Y, Z and W palindromes in the cycle, where W, X,

Y and Z appear in this order in the cycle. Let x ¼ jovðW,XÞj,

y ¼ jovðX,YÞj, z ¼ jovðY,ZÞj and let w be the sum of overlaps of

all palindromes between Z and W (inclusive). In case n¼ 3,

Z¼W and w¼ 0. Without loss of generality, let y be a maximum

overlap. The total sum of overlaps is xþ yþ zþ w (Fig. 5).

Remove X and Y and form a cycle of these two palindromes.

As X,Y are palindromes, ovðX,YÞ ¼ ovðY,XÞ; therefore, the

contribution of this cycle to the matching is 2y. The total overlap

of the remaining cycle is w plus the overlap between W and Z,

which is at least minðx, zÞ. To see this, denote by PrefðX, iÞ the

i-long prefix of string X, and denote by SufðX, iÞ the i-long suffix

of X. If x � z, SufðW, xÞ ¼ PrefðX, xÞ ¼ PrefðY, xÞ ¼ SufðY, xÞ

¼ PrefðZ, xÞ, where the first, second and fourth equalities

follow from the overlap assumptions and the second, third

and fourth use the palindrome property. If z � x, simi-

larly SufðW, zÞ ¼ PrefðZ, zÞ. Hence, jovðW,ZÞj � minðz, xÞ.

The total weight of the two cycles in the new matching is

at least 2yþ wþminðx, zÞ. Hence, the difference between

the new matching and the previous one is at least

2yþ wþminðx, zÞ � x� y� z� w ¼ yþminðx, zÞ � x� z ¼ y

�maxðx, zÞ � 0, where the last inequality follows by the choice of
y as a maximum overlap.
The remaining cycle has n� 2 palindromes, and by the induc-

tion step, it is breakable to cycles of size two g.

PROPOSITION 2. There exists a maximum weight matching in
which all the added edges form reverse complementary pairs.

Any maximum weight matching can be modified to such
matching.

PROOF. Consider the graph G2 produced in Step 5 of Algorithm

2. If E0 [ E00 contains cycles of more than two palindromes, by
Lemma 6, they can be decomposed into cycles of two palin-

dromes. The new matching is of the same size, and for each
cycle with exactly two palindromic edges, the remaining edges

match in reverse complementary pairs (Lemma 4) g.
The maximum weight-matching problem, also known as the

assignment problem (West et al., 2001), can be solved by the
Hungarian method in OðjVj2logjVj þ jVjjEjÞ time (Kuhn,

2006). As jVj ¼ �ðj�jk=2Þ and jEj ¼ �ðjVj2Þ ¼ �ðj�jkÞ, the run-
ning time is Oðj�j3k=2Þ. An improvement to this algorithm (Kao

et al., 1997), when the edge weights are integers, runs in
Oð

ffiffiffiffiffiffiffi
jVj
p
jEjlogðjVjNÞÞ time, where N is the largest edge weight.

In our case N¼ k, which gives Oðkj�j5k=4 logðj�jÞÞ running time.
The post-processing of the matching (Lemma 6) requires finding

two palindromes with maximum overlap. This can be done in

total time linear in the number of palindromes, as overlap lengths
are integers in the range of 0 to k, and thus can be sorted using

count sort. Hence, we conclude

GCT ATG CGG TAG ATC GCC TAC CGA GCA TAACGTATT

AGCCATCCGCTAGATGGCGTATCGTGCTTA ACG AAT

00200011100
0

Fig. 4. The bipartite graph for matching unbalanced vertices (Algorithm 2). On the top are the vertices with greater indegree, and on the bottom are the

vertices with greater outdegree. Weights on the edges are the maximum overlap between the vertices’ sequences. Only the edges out of one vertex are

drawn (the graph is a complete bipartite graph). Note that only unbalanced vertices corresponding to ðk� 1Þ-long prefixes and suffixes of palindromes

are included

x y

y z

w x

z w

y y

y y

w t

t w

X:

Y:

Z:

W:

X:

Y:

Z:

W:

Fig. 5. Breaking down cycles with more than two palindromes. Left: Palindrome overlaps in a cycle found by the maximum matching. The rectangles at

the ends indicate overlap between contiguous palindromes. Right: Partition into two cycles, one containing only the palindromes X and Y with a

maximum overlap y. As t � minðx, zÞ, the partition does not decrease the total contribution of the cycles to the weighted matching (Lemma 6)
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THEOREM 5. An optimal RC complete sequence for even k can be

produced in time Oðkj�j5k=4 logðj�jÞÞ.
Summarizing Theorems 2 and 5 we obtain

THEOREM 6. For every value of k, an optimal RC complete se-

quence can be obtained in time polynomial in the size of a de

Bruijn graph of order k� 1.

4 EXPERIMENTAL RESULTS

Table 1 shows the results of the two algorithms for even k. As we

can see, the sequence obtained by the algorithm is of length

nearly half that of the original de Bruijn sequence. For example,

for k¼ 12, the minimum length is within 0.15 per cent of 412=2
and within 10, 116 characters from the theoretical lower bound.
Table 2 lists the number of probes of length p needed to cover

all k-mers, by cutting an optimal RC complete sequence to

p-long probes with overlaps of k� 1. As we can see, the saved

factor in using the RC complete sequence is roughly 2.

A comparison to the Table 1 of (Mintseris and Eisen, 2006)

shows that the sequence produced in (Mintseris and Eisen,

2006) is sub-optimal.
Running times: The simple near-optimal algorithm runs in

time roughly linear in j�jk. For example, for k¼ 8, 10 and 12

the running times are 1.5, 26 and 445 s, respectively. The optimal

algorithm requires 5, 126 and 2937 s, respectively.

5 SUMMARY AND DISCUSSION

In this article, we studied the problem of constructing a min-

imum length sequence that covers each k-mer or its reverse com-
plement at least once. The problem has applications in

construction of dense double-stranded probe arrays for in vitro

measuring of protein–DNA binding (Berger et al., 2006; Fordyce
et al., 2010), and for design of synthetic enhancers for in vivo

developmental studies (Smith and Ahituv, 2012). For the case of
odd k, we provided a proof that a simple modification of the

Eulerian tour algorithm applied to the de Bruijn graph of order

k� 1 gives an optimal solution. The algorithm requires linear
time in the output sequence length, and it cuts the sequence

length in half compared with using a regular de Bruijn sequence.
The problem is a bit more involved for even k, and here we

provided two algorithms, a linear time near-optimal algorithm
and a more complex polynomial algorithm that produces an

optimal sequence. The length of the sequence produced by the

optimal algorithm is slightly shorter, and both algorithms nearly
halve the total length of the sequence.

The following related problem was studied by Medvedev et al.
(Medvedev and Brudno, 2009; Medvedev et al., 2007): what is

the minimum length sequence that contains a given set of

k-mers? Their solution is based on bidirected graphs, which are
similar to de Bruijn graphs, with the difference that a k-mer and

its reverse complement are represented by the same vertex, and
the edges represent the possible ways that double-stranded

Table 2. Number of probes needed to cover all k-mers as a function of probe length and k

k 6 7 8 9 10 11 12 13 14 14-DB

25 107 432 1848 7711 32926 139 811 600 056 2581 111 11189 571 22 369 622

30 86 342 1447 5958 25087 104 858 442 146 1864 136 7898 521 15 790 321

35 72 283 1188 4855 20263 83 887 350 033 1458 889 6103 402 12 201 612

40 62 241 1008 4096 16995 69 906 289 682 1198 373 4973 143 9 942 054

45 54 211 876 3543 14634 59 919 247 082 1016 801 4196 089 8 388 608

50 48 187 774 3121 12850 52 429 215 405 883 012 3629 050 7 255 013

55 43 168 693 2789 11453 46 604 190 927 780 336 3197 021 6 391 321

60 39 152 628 2521 10330 41 944 171 445 699 051 2856 912 5 711 393

65 36 139 574 2300 9408 38 131 155 570 633 103 2582 209 5 162 221

70 33 128 528 2115 8637 34 953 142 386 578 525 2355 700 4 709 394

Note: The table contains the number of probes obtained by cutting an optimal RC complete sequence to short segments with overlaps. Left column: probe length; top row: k.

Right column: number of probes needed when using a regular de Bruijn sequence for k¼ 14.

Table 1. Length of reverse complementary de Bruijn sequences produced by the two algorithms for even k

k 2 4 6 8 10 12 14

Original 16 256 4096 65 536 1 048576 16 777 216 268 435 456

Lower bound 10 136 2080 32 896 524800 8 390 656 134 225 920

Algorithm 1 10 142 2140 33 262 526840 8 400 808 134 275 060

Optimal 10 142 2140 33 262 526816 8 400 772 134 274 844

Saving factor 1.6 1.8 1.91 1.97 1.990 1.997 1.999

Note: The top row is the length of a regular de Bruijn sequence that does not exploit complementarity. The next row contains the theoretical lower bound on RC complete

sequence length (Proposition 1). The next two rows are the lengths of the sequence computed by the two algorithms of Section 3.3.1 and 3.3.2. The saving factor is the ratio

between the original sequence length and length of the optimal RC complete sequence. Note that the lower bound is not tight.
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strings can overlap. These graphs were originally conceived by
Kececioglu and Myers (1995) and actually discovered earlier by
Edmonds (1967). Medvedev et al. stated, without proof, that an
Eulerian path can be found in a bidirected graph in the same way

as in a regular de Bruijn graph (Lemma 1), but they did not
consider explicitly the problem of covering all k-mers and
did not make the distinction between even and odd k. In fact,

some vertices in a bidirected graph of odd order (when edges
represent k-mers of even length) are unbalanced, and thus an
Eulerian tour does not exist. Although their method can be

applied to our problem, it is slower than ours: they require
Oðk2 log2ðj�jÞj�j2kÞ, whereas our algorithms requires Oðj�jkÞ
for odd k and Oðkj�j5k=4logðj�jÞÞ for even k.

Beyond the theoretical interest, our results are applicable to
current (Berger et al., 2006; Fordyce et al., 2010; Smith and
Ahituv, 2012) and future technologies that require complete
coverage of double-stranded DNA k-mers. In PBM, although

it is desirable to have redundancy in covering k-mers, space on
the arrays is limited. By essentially halving the needed sequence
length, space is freed on the array to select additional redundant

probes with desired properties. Similarly, in designing synthetic
enhancer sequences, by using shorter sequences, experiments can
be simplified.

In current technologies, the de Bruijn (or RC complete) se-
quence is cut into probes of length p with overlap k� 1 (Table 2).
There is no constraint that forces these probes to come from a
single sequence. A variant of the problem we studied is as fol-

lows: what is the minimum number of double-stranded DNA
probe sequences of length p that together cover all k-mers? As
our solution for an RC complete sequence of even k covers, a few

k-mers more than once and direct design of probe sequences of
length p might reduce the number of probes needed to cover all
k-mers.

A heuristic solution to that problem was recently proposed by
Riesenfeld and Pollard (Riesenfeld and Pollard, 2012). They stu-
died the following problem: given k and m, design a set of m

double-stranded DNA probes (of equal or almost equal length,
denoted as ‘) that together cover all k-mers. Their algorithm
repeatedly searches for disjoint ‘-long paths between unbalanced
vertices. After removal of all such paths, it finds two reverse-

complementary cycles. One cycle is cut into probes (with over-
laps of k� 1) of length ‘ or ‘þ 1. If the program terminates, an
optimal set of oligomers is found; however, there is no theoretical

guarantee that it will terminate. In our tests, for k¼ 6, their
program terminates in a few seconds, whereas for k¼ 8, it
takes41h and for k¼ 1042 weeks. For some values of m, the

produced probes are not of equal length. A modest reduction in
the number of oligomers is obtainable compared with our design:
for example, for k¼ 6 and probe length 15, the algorithm of
Riesenfeld and Pollard produced 208 oligomers compared with

210 in our design. For greater values of k, the running time was
already prohibitive (for k¼ 12, it kept running for41 month),
and thus we could not test the performance for these values. Our

algorithm, on the other hand, produces an output for values of
k � 10 in just a few seconds, whereas for k¼ 12, the linear algo-
rithm takes510min and the optimal51h. The time is polyno-

mial (or even linear) in the output sequence size, independent of
probe length or the number of oligomers.

Our study raises several additional open questions. First, fol-

lowing (Philippakis et al., 2008), can one design an optimal RC

complete sequence with improved coverage of gapped k-mers?

Second, it is known that the number of distinct de Bruijn se-

quences is ðk!Þk
n�1

=kn. What is the number of different optimal

RC complete sequences? Third, can one construct an optimal RC

complete sequence for even k in linear time? Fourth, is there a

closed formula for the length of an optimal RC complete of even

order?
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