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ABSTRACT

While it has been established that microRNAs
(miRNAs) play key roles throughout development
and are dysregulated in many human pathologies,
the specific processes and pathways regulated by
individual miRNAs are mostly unknown. Here, we
use computational target predictions in order to
automatically infer the processes affected by
human miRNAs. Our approach improves upon
standard statistical tools by addressing specific
characteristics of miRNA regulation. Our analysis
is based on a novel compendium of experimentally
verified miRNA-pathway and miRNA-process asso-
ciations that we constructed, which can be a useful
resource by itself. Our method also predicts
novel miRNA-regulated pathways, refines the anno-
tation of miRNAs for which only crude functions
are known, and assigns differential functions to
miRNAs with closely related sequences. Applying
our approach to groups of co-expressed genes
allows us to identify miRNAs and genomic miRNA
clusters with functional importance in specific
stages of early human development. A full list
of the predicted mRNA functions is available at
http://acgt.cs.tau.ac.il/fame/.

INTRODUCTION

MicroRNAs (miRNAs) are small (19–25 nt), non-coding
RNAs that can reduce the abundance and translational
efficiency of mRNAs, and play a major role in regulatory
networks, influencing diverse biological phenomena (1). In
metazoans, this repression is generally conferred by the
binding of miRNAs to the 30 UTRs of their targets.

Some miRNAs were shown to repress translation of
anywhere from tens to hundreds of mRNAs (2,3).
Several miRNAs have been shown to affect multiple
members of the same pathway (4–7). Determining the
role of individual miRNAs in cellular regulatory processes
poses a major challenge. The function of the vast majority
of miRNAs is currently unknown, and even for relatively
well studied miRNAs, only a handful of targets have been
rigorously characterized. Knock-out studies in model
organisms have had only limited success in delineating
miRNA function, possibly because redundant miRNAs
exist at saturating levels in wild-type cells, or because
of compensatory effects in downstream signaling
pathways (8).
Analyzing properties of miRNA targets is a promising

approach to predicting miRNA function. A large number
of algorithms for sequence-based prediction of miRNA
targets have been described in the literature [reviewed in
(9)]. As the number of validated targets is currently
limited, methods for target-based inference of miRNA
function must rely on these predictions. If the targets of
a specific miRNA are enriched with genes annotated with
some biological process or pathway, it is reasonable to
infer that the miRNA is involved in the same process.
This suggests the following simple algorithm for
genome-wide inference of miRNA function: Predict that
a miRNA is involved in every process/pathway for which
the number of miRNA targets taking part in the process is
statistically significant. Several studies used this approach.
Gaidatzis et al. (10) applied a log-likelihood test to look
for enrichment or depletion of targets of specific miRNAs
in KEGG pathways. Similar algorithms using Gene
ontology (GO), KEGG and BioCarta pathways were
implemented in miRgator (11) and SigTerms (12), both
of which evaluate statistical significance using a
hypergeometric (HG) test.
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The previously described methods for target-based
miRNA function prediction have three limitations. First,
none of them was systematically tested for its ability to
recover known miRNA functions. Second, they treat
equally all predicted miRNA targets. Several recent
studies have shown that, in fact, numerous factors, such
as the local context within the 30 UTR and the relative
distance from the stop codon, influence the efficacy of in-
dividual miRNA target sites (13,14). These studies also
offered ‘context scores’ for ranking the predicted targets
of each miRNA. Third, existing methods do not take into
account the very uneven distribution of 30 UTR lengths;
for example, the 30 UTRs of genes expressed in brain and
neural systems are almost twice as long as those of other
genes (Figure 1B), and proliferating cells express genes
with relatively short 30 UTRs (15). Accordingly, genes
highly expressed in the neural lineage harbor more pre-
dicted miRNA target sites (Figure 1B). It is not surprising,
therefore, that the pathway most commonly predicted by
Gaidatzis et al. (10) was ‘axon guidance’; and that many
seemingly unrelated miRNA families, such as mir-17,
known to be primarily involved in cell-cycle regulation
(6), and myeloid cell differentiation (16), were predicted
by them to be related to neuronal pathways.
miRNAs frequently appear as co-localized clusters that

are also co-expressed, and even transcribed as a single
polycistron. Therefore, it is likely that co-localized
miRNAs share similar functions, which may be revealed

by a joint analysis of their targets. Xu and Wong (17) used
the HG test followed by random resampling to look for
over-representation of miRNA cluster targets in BioCarta
pathways. Their analysis identified the mouse miR-183–
96–182 cluster as a regulator of the insulin-signaling
pathway. However, their method did not take into
account how many of the miRNAs in the cluster
regulate each pathway member.

Here we introduce FAME (functional assignment of
miRNAs via enrichment), a new permutation-based stat-
istical method that tests for over- or under-representation
of miRNA targets in a designated set of target genes
(Figure 1A). Unlike previous studies, FAME utilizes
weights (confidence values) for miRNA-target pairs,
accounts for the number of miRNAs regulating each
target, and can be used for analysis of any group of
miRNAs. Here, we focus on three main applications
of FAME: direct inference of miRNA function using
sets of genes sharing a common annotation, indirect infer-
ence of miRNA function using matched miRNA/mRNA
expression data, and prediction of function for genomic
clusters of miRNAs.

In order to compare our method to other methods and
to test its ability to recover known miRNA functions, we
assembled a compendium of 83 experimentally validated
miRNA-function associations. We show that our method
is superior to the currently used HG test. We describe the
novel functions suggested by FAME for several miRNA

Figure 1. (A) FAME outline. A bipartite graph is constructed with edges corresponding to miRNA–target predicted pairs and edge weights
determined by TargetScan context scores. Degree-preserving graph randomization is used to evaluate the significance of the total weight of the
edges connecting a designated set of miRNAs to a designated set of targets, by computing an empirical P-value. (B) UTR lengths and the average
number of miRNA regulators for genes highly expressed in various stem cell-related cell lines. See methods for the description of the mRNA dataset.
The numbers are averages over the 200 genes with the highest average expression levels in each group of cell lines.
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families, and show how it can be used to refine miRNA
function in cases where only a relatively general miRNA
function is known. We focus in particular on two families
with similar seed sequences, mir-17 and mir-106/302, and
demonstrate that they are likely to have both shared and
unique functions.

Analysis of enrichment or depletion of miRNA targets
in a set of co-expressed genes is an indirect yet potent way
of providing clues to miRNA function. Previous studies
used it to identify significant impact of miRNAs on
tissue-specific gene expression patterns (18). Motif
finding in 30 UTR sequences has also been used for this
task (19). We use our method to identify 68 miRNA
families and 27 genomic clusters regulating 21 gene
co-expression clusters in diverse human stem cell lines.
Clusters enriched with the targets of a specific miRNA
tend to be anti-correlated with the miRNA expression,
whereas clusters depleted of miRNA targets are
co-expressed with it. Finally, we use FAME’s results to
predict novel miRNA functions related to stem cell
biology. We hypothesize that two miRNAs of unknown
function, mir-499 and mir-544, play a pivotal role in early
development.

An implementation of FAME with a graphical user
interface is available as part of the Expander 5.0 micro-
array data analysis suite (60) (http://acgt.cs.tau.ac.il/ex
pander). This implementation supports analysis of over-
and under-representation of miRNA targets in gene sets
from human, mouse, fly and worm. In addition, a full list
of the GO ‘biological process’ terms and KEGG pathways
predicted to be targeted by each human miRNA appear in
http://acgt.cs.tau.ac.il/fame/. This website also allows the
display of the targeted genes as part of KEGG pathway
maps.

MATERIALS AND METHODS

miRNA target predictions and 30 UTR sequences

Human miRNA target predictions for conserved miRNA
families were taken from the TargetScan 5.0 database (21).
Following the suggestion in (20), conserved target sites
were used when testing for enrichment of miRNA
targets, and both conserved and non-conserved predicted
target sites were used when testing for depletion. Lengths
of 30 UTR sequences were taken from the TargetScan
website. Spurious enrichments were avoided by filtering
out targets with similar 30 UTRs. If two 30 UTRs shared
an identical subsequence of at least 75 nt, and >80% of
the miRNAs predicted to regulate them, only the gene
with the longer 30 UTR was retained in the target set. A
total of 101 genes were filtered out.

Construction and randomization of bipartite graphs

The bipartite graph G=(M,T,E,W) was constructed as
follows. The context scores for all miRNA-target sites in
the database were ranked and normalized to the range
(0,1). For each miRNA m and target t, for each target
site reported in TargetScan, an edge (m,t) was added to
E with a weight of 1+(bk�ac�b), where k is the relative
rank of the highest ranking conserved target site of m in

t, and a and b are two parameters. Using this weighting
scheme, the edge weights attain a discrete values w1,. . .,wa,
and the parameter b controls the relative contribution of
the context scores to the enrichment/depletion signifi-
cance. We used a=5 and b=3 throughout this study,
but got similar results when these parameters were
altered (Supplementary Figure S3). In particular these
tests showed that using context-score weights (b> 1)
improved the performance of FAME (Supplementary
Figure S3).
The random graphs are generated by performing, for

each possible edge weight wi, a long sequence of independ-
ent edge shuffle operations (22), which preserves the
number of edges with weight wi incident on each node.
Throughout the study, the total number of random edge
shuffles for each random graph was set to 5�|E|.

GO annotations

Human GO annotations were taken from the Entrez Gene
database. GO annotations from the ‘biological process’
namespace with between 10 and 2000 predicted miRNA
targets were used. In order to remove redundancy, we
filtered out terms that differed by less than four genes,
retaining in the dataset only the GO set that was
assigned to more genes. Applying these filters resulted in
1499 GO sets.

miRNA and mRNA expression data

The miRNA expression data are described in (23). A total
of 705 miRNAs were profiled using the Illumina human
miRNAs version 1 microarray. A total of 21 060 mRNAs
were profiled using Illumina human WG-6 version 1
microarrays. Briefly, the data compare gene expression
in 26 cell lines representing 16 cell types, including five
embryonic stem cell (ESC) lines, five fetal neural stem
cell (fNSC) lines, four adult surgery derived neural
stem (aNSC) lines, one extraembryonic endoderm-like
(XE) cell line differentiated from the WA09 hESC line,
two glial cell lines, three fibroblast cell lines, two mesen-
chymal stem cell (MSC) lines, two umbilical cord vein
(UCV) endothelial cell lines and two choriocarcinoma
cell lines. For each cell line, the same RNA preparations
were used to generate the mRNA and miRNA expression
data. miRNAs were profiled in quadruplicate, and
mRNAs were profiled in duplicate. All replicates were
averaged prior to subsequent analysis.

Identifying co-expression clusters

We extracted the 4000 genes with the highest variance
among the genes that had at least two samples with at
least 3-fold difference over the minimal level across the
profiles. These genes were clustered using CLICK (24),
which resulted in 21 clusters. Assignment of genes to
clusters is presented in Supplementary File S4.

Identifying genomic clusters of miRNAs

Following (23,25), we defined a genomic cluster of
miRNAs as a maximal segment such that every two con-
secutive miRNAs were separated by <50 000 bp. Genomic
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positions of miRNAs were taken from MiRBase (26). We
considered only clusters that contained representatives
from at least two different TargetScan families. Finally,
we united any pair of clusters that contained exactly the
same set of TargetScan families. This resulted in 27
clusters containing from 2 to 27 distinct TargetScan
families, with an average of 3.3 families per cluster
(Supplementary Table S1).

RESULTS

A novel framework for detection of enrichment or
depletion of miRNA targets

Our goal was to compute the significance of the overlap
between a given set of predicted miRNA targets and a
designated set of genes. Ideally, the computation should
account for the strength of each predicted miRNA-target
pair (or for our confidence in its biological relevance), and
for the number of miRNAs regulating each gene
(Figure 1A). FAME constructs a weighted directed bipart-
ite graph G=(M,T,E,W) in which miRNAs (M) are con-
nected with their predicted targets (T). An edge (m,t)
appears in E for every target site for m that appears in
the 30 UTR of t (hence, parallel edges between the same
pair are possible). We used TargetScan 5.0 for prediction
of miRNA targets, as it was recently shown to be superior
to other target predictors (2). miRNAs that belong to the
same TargetScan family (a set of miRNAs sharing the
same seed sequence) are grouped together into a single
node in M. T contains a node for each gene (represented
by an Entrez Gene entry) that is predicted to be targeted
by at least one miRNA. Edges in E are assigned discrete
edge weights based on the TargetScan context scores
(‘Materials and Methods’ section). Spurious enrichments
were avoided by excluding from T genes with similar 30

UTR sequences (‘Materials and Methods’ section). As
proposed in (18), we used only evolutionarily conserved
miRNA target sites when testing for over-representation,
and both conserved and non-conserved sites when testing
for under-representation.
Following the construction of G, we used

degree-preserving permutations to generate N random
graphs G1, . . . ,GN, in which, for each possible edge
weight w, the number of outgoing edges with weight w
from each miRNA and the number of incoming edges
with weight w for each target were the same as in
G (‘Materials and Methods’ section). We used
N=10000 throughout this study. These graphs were
used for evaluating the significance of the overlap
between the targets of a set M0 of miRNAs (in this
study, a TargetScan family or a set of families represented
in a genomic miRNA cluster) and a set of targets T0 (e.g.: a
set of genes sharing a GO annotation). Let WG(M

0,T0) be
the total weight of the edges connecting M0 and T0 in G.
We compared WG(M

0,T0) with all WGi(M
0,T0), and

computed an empirical P-value and a z-score for
(M0,T0). All the (M0,T0) pairs were then ranked by their
P-values, and FDR was assessed by the Benjamini–
Hochberg procedure (27).

A compendium of validated miRNA targets

Rigorous evaluation of any prediction algorithm requires
a ‘gold standard’: in our case a set of miRNAs with known
functions. As we know of no available resource describing
validated miRNA functions, we carried out an extensive
literature survey and constructed a compendium of
miRNAs with experimentally established functions in
mammals. We included in the compendium only cases in
which at least one target relevant to the pathway or
function was experimentally validated (i.e. functions sug-
gested based solely on phenotypes resulting from the per-
turbation of the miRNA were not included). In each case,
we manually assigned the KEGG pathway and GO anno-
tation that was closest to the reported function. The com-
pendium, with references to the original publications,
appears in Supplementary File S1. It contains a total of
31 miRNA–KEGG pathway associations and 52
miRNA–GO set associations.

Direct prediction of miRNA functions

Enrichment or depletion of miRNA targets in a set of
genes involved in a specific process or pathway is the
most direct clue to miRNA function prediction. We used
two data sets to test this approach, one based on pathways
taken from KEGG, and one based on GO. Each
TargetScan miRNA family m was tested for over-
representation of its targets in each KEGG pathway
or GO annotation set that contained at least three
targets of m.

We first describe the results on KEGG pathways. Using
the compendium, we compared FAME with the HG test,
and with the log-likelihood ratio (LLR) scores used by
Gaidatzis et al. (10). For each miRNA m associated
with a KEGG pathway P in the compendium, we
ranked all 140 tested KEGG pathways according to the
significance of their enrichment with the targets of m
(Figure 2A). The success of each method in predicting a
specific function was measured by the rank of P in this list.
Eighteen compendium miRNA–pathway pairs met the cri-
terion of at least three genes in P being predicted targets of
m, and they were ranked by each of the three methods. In
six cases the known pathway corresponded to the top
FAME prediction, compared to just four cases when the
HG test was applied, and three cases when the LLR test
was used (Figure 2A). The average position of the known
function across all the 18 pairs was higher for FAME than
for the HG and LLR tests (Figure 2B), although the dif-
ference was not statistically significant, perhaps due to the
small size of the compendium. Performance of the HG test
was similar when only the top 25, 50 or 75% of the
miRNA–target pairs (as determined by the context
score) were used (Supplementary Figure S1A), and it
never placed more than four correct pathways as top pre-
dictions (results not shown).

The top KEGG pathway predictions for each miRNA
family are shown in Table 1. This analysis allowed us to
predict novel functions for a number of miRNAs:

. mir-122 is a conserved liver-specific miRNA (28) im-
portant for normal metabolic function of the liver.
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mir-122 inhibition in mice led to reduced cholesterol
biosynthesis and stimulation of hepatic fatty-acid oxi-
dation (29); and mir-122 ablation led to decreased
plasma cholesterol levels in mice, suggesting that
mir-122 could be an effective therapeutic target (30).
However, no related targets or pathways affected by
mir-122 have been characterized. FAME predicted
that the ‘glycolysis/gluconeogenesis’ pathway is
regulated by mir-122 (P=5.5� 10�4, FDR< 0.05).
This suggests that the mir-122 regulation of cholesterol
biosynthesis is mediated by direct regulation of the
carbohydrate metabolism enzymes PKM2, G6PC and
ALDOA, which are predicted targets of mir-122
involved in glycolysis and gluconeogenesis.

. The well-studied mir-21 family is known to regulate
MAPK signaling through SPRY1 (31). FAME

predicted that mir-21 regulates three pathways:
‘cytokine-cytokine receptor interaction’, ‘Jak-STAT
signaling’ and ‘MAPK signaling’ (FDR< 0.05, listed
in decreasing order of statistical significance). Our
top prediction thus implicates mir-21 in cytokine sig-
naling. Consistent with this hypothesis, the expression
levels of mir-21 are upregulated following treatment
with LPS, which induces inflammation (32).

Using GO to predict miRNA-regulated processes

While the results with KEGG were promising, the speci-
ficity of KEGG pathways is rather limited, and some bio-
logical processes, such as development, are poorly
represented. A much more comprehensive repository of
gene sets in human is GO (http://www.geneontology

Figure 2. Comparison of methods for detection of enrichment of miRNA targets. (A) For each miRNA family, all the KEGG pathways were tested
for enrichment of miRNA targets and ranked in increasing order of P-value. In case of ties, annotations were ranked in decreasing order of z-score.
The chart shows the relative position of the compendium function in each list. (B) Average location of the known KEGG pathway in the ranked lists
obtained by using FAME and the HG and LLR tests. Error bars represent one standard error. (C) Average location of the known GO ‘biological
process’ annotation in the ranked lists of the three methods. (D) Same as C, but taking into account only annotations that were placed in the top
10% by at least one of the methods.
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Table 1. KEGG pathways predicted by FAME to be regulated by miRNAs

miRNA KEGG pathway Number of
targets

P-value Weight
enrichment
factor

let-7/98 Aminoacyl-tRNA biosynthesis 3 1.3� 10�3 9.73
mir-1/206 SNARE interactions in vesicular transport 6 6.5� 10�4 3.64
mir-103/107 Hedgehog-signaling pathway 8 2.0� 10�4 3.81
mir-122 Glycolysis / gluconeogenesis 3 5.0� 10�4 17.45
mir-124/506 Metabolic pathways 70 1.0� 10�4 1.54
mir-125/351 Tyrosine metabolism 3 8.0� 10�4 8.13
mir-125a-3p Cytokine–cytokine receptor interaction 4 6.3� 10�3 3.44
mir-129/129-5p Cardiac muscle contraction 6 1.0� 10�4 8.89
mir-132/212 TGF-beta-signaling pathway 10 5.5� 10�4 3.10
mir-138 Axon guidance 13 8.5� 10�4 2.34
mir-139-5p Purine metabolism 4 3.9� 10�3 3.60
mir-140/140-5p/876-3p Notch-signaling pathway 4 4.3� 10�3 4.49
mir-142-3p Regulation of actin cytoskeleton 12 2.5� 10�4 2.61
mir-143 Natural killer cell mediated cytotoxicity 4 4.1� 10�3 3.38
mir-145 Axon guidance 17 1.0� 10�4 2.55
mir-146 Toll-like receptor-signaling pathway 3 1.0� 10�4 10.47
mir-148/152 Basal transcription factors 4 4.5� 10�3 4.41
mir-15/16/195/424/497 Cell cycle 17 1.0� 10�4 2.19
mir-150 Wnt-signaling pathway 7 6.9� 10�3 2.80
mir-155 T cell receptor-signaling pathway 10 1.0� 10�3 3.17
mir-185/882 GnRH-signaling pathway 4 8.6� 10�3 3.28
mir-190 Cell adhesion molecules (CAMs) 5 3.1� 10�3 5.03
mir-194 TGF-beta-signaling pathway 9 4.3� 10�3 2.67
mir-202/202-3p ECM-receptor interaction 11 1.3� 10�3 2.69
mir-203 Insulin-signaling pathway 14 3.0� 10�3 1.98
mir-205 PPAR-signaling pathway 4 3.3� 10�3 4.84
mir-208/208ab Wnt-signaling pathway 6 7.3� 10�3 3.02
mir-21/590-5p Cytokine-cytokine receptor interaction 11 1.0� 10�4 4.33
mir-217 Gap junction 4 8.6� 10�3 2.98
mir-218 Heparan sulfate biosynthesis 6 1.0� 10�4 4.82
mir-219/219-5p Ether lipid metabolism 3 4.3� 10�3 7.21
mir-23ab Glycosphingolipid biosynthesis—lacto and neolacto series 6 2.0� 10�4 4.48
mir-24 Alanine and aspartate metabolism 3 1.4� 10�3 8.17
mir-27ab Neuroactive ligand-receptor interaction 16 1.2� 10�3 2.09
mir-28/28-5p/708 Jak-STAT-signaling pathway 4 2.4� 10�3 3.25
mir-299/299-3p Focal adhesion 3 5.9� 10�2 2.66
mir-29abc ECM-receptor interaction 21 1.0� 10�4 6.13
mir-324-5p TGF-beta-signaling pathway 4 2.5� 10�2 3.18
mir-326/330/330-5p Arachidonic acid metabolism 3 2.5� 10�4 17.91
mir-33/33ab Antigen processing and presentation 3 7.7� 10�3 5.98
mir-339-5p ErbB-signaling pathway 3 3.2� 10�2 3.03
mir-346 Wnt-signaling pathway 5 1.0� 10�2 3.32
mir-34a/34b-5p/34c/34c-5p/449/449abc/699 N-Glycan biosynthesis 4 1.3� 10�3 4.62
mir-361/361-5p Nucleotide excision repair 3 1.0� 10�4 23.84
mir-365 Apoptosis 4 2.2� 10�3 5.04
mir-374/374ab Retinol metabolism 4 1.0� 10�4 10.75
mir-375 Purine metabolism 4 9.3� 10�3 4.10
mir-376/376ab/376b-3p Neuroactive ligand-receptor interaction 4 5.8� 10�3 3.66
mir-377 Ubiquitin mediated proteolysis 9 3.1� 10�3 2.44
mir-378/422a Hedgehog-signaling pathway 4 2.0� 10�3 7.22
mir-379 Adherens junction 3 2.9� 10�2 3.92
mir-384/384-3p Lysine degradation 4 5.5� 10�4 8.32
mir-410 Heparan sulfate biosynthesis 4 1.6� 10�3 4.29
mir-411 Ubiquitin mediated proteolysis 3 3.6� 10�2 3.43
mir-431 Adherens junction 3 8.5� 10�2 2.37
mir-433 Cell cycle 7 6.0� 10�4 3.93
mir-485/485-5p Metabolic pathways 17 3.5� 10�4 2.49
mir-486/486-5p Focal adhesion 6 1.8� 10�3 3.28
mir-490/490-3p Adipocytokine-signaling pathway 3 1.9� 10�2 4.33
mir-496 CAMs 3 7.3� 10�3 5.05
mir-503 p53-signaling pathway 6 1.0� 10�4 5.85
mir-543 Circadian rhythm—mammal 4 8.0� 10�4 5.33
mir-592/599 mTOR-signaling pathway 3 7.5� 10�3 4.02
mir-7/7ab Purine metabolism 5 1.8� 10�3 3.55
mir-758 Toll-like receptor-signaling pathway 3 5.7� 10�3 5.31
mir-874 Calcium-signaling pathway 5 1.0� 10�2 2.99

(continued)
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.org). Since sets of genes sharing a GO annotation (hence-
forth referred to as GO sets) frequently overlap, and can
be very general or very specific, we focused on 1499 non-
redundant GO sets, containing between 10 and 2000 genes
(Supplementary File S2, see ‘Supplementary Methods’ for
details). The predictions of GO annotations for miRNA
families appear in Supplementary File S3. For 36 compen-
dium miRNA–GO set pairs, the GO set contained at least
three predicted miRNA targets, and these pairs where
used further (Supplementary File S1). The average
ranking of the known miRNA–GO set pairs was higher
when using FAME than when using the HG or the LLR
tests (Figure 2C, Supplementary Figure S2). When we
considered only pairs for which the known function was
ranked in the top 10%: FAME significantly outperformed
the HG test and the LLR test (P=0.015 and 0.002 re-
spectively, Figure 2D). Once again, performance of the
HG test was not altered by using only the top 25, 50 or
75% of the predictions (Supplementary Figure S1B–C).

Since our compendium consisted of relatively broad and
non-specific functions, representing the current limited
knowledge of miRNA functions, its precision for the
evaluation of the performance of FAME is limited. It is
possible that related, but more specific, functional terms
that correspond to the real function of the miRNA were
ranked higher than the compendium functions. Indeed,
manual inspection of the results suggested several such
cases (Table 2). For example, mir-146 was shown to be
involved in the innate immune response (33,34), and there-
fore labeled ‘immune response’ in our compendium.
However, only two genes annotated in GO with
‘immune response’ are predicted by TargetScan to be
regulated by mir-146. One of the top FAME predictions
for mir-146 is ‘I-kB kinase/NF-kB cascade’, a pathway
that contains three mir-146 targets (CARD10,IRAK1
and TRAF6). Indeed, mir-146 was shown to affect the
activity of the NF-kB pathway (35). Interestingly, the ex-
pression of mir-146 was also shown to be regulated by
NF-kB (34), suggesting that mir-146’s function in
immune response is regulated by a feedback loop. In
another example, mir-205 was shown to regulate
epithelial-to-mesenchymal transition (EMT) by targeting
the transcription factors ZEB1 and ZEB2 (36). FAME
predicts that mir-205 regulates ‘establishment or mainten-
ance of cell polarity’ (ranked 12th). Loss of apical-basal
polarity is one of the key steps in EMT (37). Notably,
ZEB1 and ZEB2 are not annotated with this term in
GO, despite the fact that several polarity-related genes,
such as CRB3, PATJ and LGL2, are known ZEB1

targets (38). FAME prediction thus suggests that
mir-205 regulates EMT mainly through regulation of
apical-basal polarity genes, both by direct repression and
via ZEB1 and ZEB2.

FAME analysis highlights the differences between
miRNAs with similar seed sequences

miRNA genes tend to appear in multiple copies in the
genome, and can be grouped into families sharing
similar mature sequences. According to the currently
accepted model, the ‘seed sequence’, nucleotides 2–8 of
the mature miRNA sequence, is the main determinant of
miRNA targeting specificity (2,21,39). Several miRNA
families share similar, but not identical, seed sequences.
We previously observed that at least 18 different
miRNAs that have the AAGUGC hexamer in their seed
sequence are highly expressed in ESCs, (23). These
miRNAs belong to two TargetScan 5.0 families:
mir-17-5p/20/93.mr/106/519.d (henceforth referred to as
mir-17, seed sequence AAAGUGC), and mir-106/302
(seed sequence AAGUGCU). Since TargetScan predic-
tions are based on the conservation of seed matches, and
these seeds overlap, TargetScan predicted numerous
common targets for both families. However, the
question of whether these two groups have entirely iden-
tical functions has not been resolved. Several members of
both families have been studied and some evidence exists
on their function. Members of both the mir-17 and
mir-302 families were found to regulate the G1/S cell-cycle
checkpoint (6,40–45) and the TGFb-signaling pathway
(46). Deletion of mir-17 in mice led to inhibited B cell
development (16), and mir-17 was shown to control
monocytopoiesis by targeting RUNX1 (47). Recently,
the mir-302 family was shown to regulate the
mesendodermal cellular fate specification, and repression
of this family in human ESCs inhibited the formation of
neuroectoderm during embryogenesis (48).
FAME predictions for the two families appear in

Supplementary File S3. FAME predicted that both
families regulate cell-cycle progression: ‘regulation of cell
cycle’ was enriched in both target sets (P=0.5.0� 10�4

for mir-17 and P=0.00465 for mir-106/302). mir-17
targets were more significantly enriched for ‘negative regu-
lation of progression through cell cycle’ (P=4.5� 10�4),
concordant with the role mir-17 plays in accelerating pro-
gression through cell cycle (6). However, additional
FAME predictions point to differences in the developmen-
tal functions of the two families. The targets of mir-17 but
not mir-106/302 were enriched for ‘regulation of myeloid

Table 1. Continued

miRNA KEGG pathway Number of
targets

P-value Weight
enrichment
factor

mir-875-5p Cytokine–cytokine receptor interaction 3 3.7� 10�2 3.32
mir-96/1271 Glycosphingolipid biosynthesis—ganglio series 4 5.0� 10�4 5.86
mir-99ab/100 Melanogenesis 3 1.1� 10�3 8.65

Only the top prediction for each miRNA family and with FDR< 0.1 are shown. ‘Weight enrichment factor’ is the ratio between the total weight of
the edges between the miRNA and the pathway genes in the bipartite graph G, and the average weight of such edges in 10 000 random graphs.
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leukocyte differentiation’ (P=0.0799 versus P=0.503),
with five mir-17 targets annotated with this GO term. In
contrast, only the targets of mir-106/302 were enriched
with ‘central nervous system neuron differentiation’
(P=0.011 versus P=0.25 for mir-17). These findings
suggest that in addition to their common role in cell-cycle
regulation, the two families have distinct roles in cell dif-
ferentiation: mir-17 regulates development of leukocytes
while mir-106/302 regulates development of the nervous
system.

Using matched miRNA and mRNA expression for
detection of miRNA regulation

Identifying over- or under-representation of miRNA
targets in a set of co-expressed genes is an indirect but
powerful method for studying miRNA function (18).
Here, we utilized this approach to study a collection of
�130 simultaneous miRNA and mRNA expression
profiles from cell lines designed to identify regulatory
pathways critical for self-renewal, pluripotency and differ-
entiation of human stem cells (‘Materials and Methods’
section) (49). We refer to this collection as the stem cell
data set (SCD). SCD contained expression profiles of
ESCs, fNSCs, aNSCs, glia cells, fibroblasts, MSCs, umbil-
ical vein endothelial cells, and two choriocarcinoma cell
lines. We clustered the mRNA expression patterns in SCD
using CLICK (24) and obtained 21 clusters of
co-expressed genes (‘Materials and Methods’ section,
Supplementary File S4). We tested each cluster and each
miRNA for enrichment and depletion of miRNA targets
using FAME and the HG test.
According to the currently accepted model, miRNAs

function as repressors of gene expression, and thus their
expression patterns are expected to be anti-correlated with
those of their targets (50,51) and correlated with their
anti-targets [genes depleted of miRNA target sites (18)].
However, it is often difficult to identify such effects in
matched miRNA/mRNA expression datasets. For
example, in the SCD, the average Pearson correlation
between expression of miRNAs and their TargetScan
targets is 0.009. The uneven 30 UTR lengths of genes
highly expressed in different stem cell types (Figure 1B)
could be one of the reasons for this observation. In order
to test this, we analyzed the results of FAME and the HG

test using the miRNA expression data in SCD. When we
detected over-representation of miRNA targets in a
cluster, we tested whether the miRNA expression pattern
and the average expression pattern of the mRNA cluster
were significantly anti-correlated (Figure 2C). Similarly,
we tested cases of miRNA target depletion for a significant
positive correlation. In cases where the miRNA family
contained more than one miRNA with expression data
in SCD, we chose as a representative the miRNA that
had the highest absolute value of expression correlation
with the cluster. We found that the most significant en-
richments identified by FAME were consistently better
supported by the miRNA expression data (Figure 3):
FAME yielded evidence of a significant positive correl-
ation of miRNAs and sets of genes depleted of their
targets in 23% of the cases, and evidence of a negative
correlation of miRNAs and their targets in 18% of the
cases. These results suggest that miRNA target depletion
is more effective than enrichment in identifying function-
ally relevant miRNAs using co-expression data. Indeed, as
described below, for several miRNAs with a known
function in specific differentiation-related processes, we
found evidence of depletion of target sites in genes ex-
pressed during the same developmental stage, but no
evidence of enrichment of target sites in genes expressed
at other stages.

In addition, we evaluated the correlation between the
enrichment of miRNA targets in a cluster and the similar-
ity of the expression patterns of the miRNA and the
cluster. To this end, we used the P-values computed
using FAME and the HG test to assign every miRNA–
cluster pair with a relative rank of their enrichment
P-value (highest ranks were assigned to pairs in which
the targets of the miRNA were most significantly
enriched in the cluster). Using FAME, we found a
strong negative correlation between the enrichment rank
and the similarity of the gene expression patterns
(evaluated using Pearson correlation, r=�0.27). The
same correlation was significantly weaker when using the
HG-test (r=�0.065, P=0.026 for the difference between
the two correlation coefficients). Similarly, the correlation
between the significance of the depletion of miRNA
targets and the similarity of gene expression profiles was
significantly higher when using FAME compared to the

Table 2. Refinement of known miRNA functions

miRNA family Known function (rank) Proposed refined function (rank)

mir-146 Immune response (�) I-kB kinase/NF-kB cascade (2)
miR-21/590-5p Protein kinase cascade (178) Negative regulation of MAP kinase activity (9)
mir-192/215 Regulation of cell cycle (15) Regulation of progression through cell cycle (13)
mir-17-5p/20/93.mr/106/519.d Regulation of cell cycle (2) Negative regulation of progression through cell cycle (1)
mir-205 Epithelial cell differentiation (�) Establishment or maintenance of cell polarity (12)
mir-141/200a Epithelial cell differentiation (62) Morphogenesis of embryonic epithelium (4)
mir-1/206 Glucose metabolism (40) Glucose catabolic process (8)
mir-1/206 Regulation of apoptosis (52) Anti-apoptosis (7)
mir-9 Neuron development (26) Peripheral nervous system development (12)
mir-130/301 Angiogenesis (26) Blood vessel morphogenesis (6)
mir-29abc Regulation of apoptosis (377) Apoptotic program (23)

Relative ranks of known non-specific miRNA functions and proposed specific functions. (�) in the ‘Known function’ column indicates that the GO
set corresponding to that function contained less than three miRNA targets, and thus this function was not ranked.

e160 Nucleic Acids Research, 2010, Vol. 38, No. 15 PAGE 8 OF 13

 at T
E

L A
V

IV
 U

N
IV

E
R

S
IT

Y
 on January 24, 2011

nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


HG test (r=0.037 versus r=�0.019, P=0.0377 for the
difference between the two correlation coefficients).

Individual miRNAs and genomic clusters involved in stem
cell biology

By combining weak signals coming from individual
miRNAs in a genomic cluster, one can uncover the
function of the whole cluster (17). To test this concept
we identified genomic clusters of miRNAs in the human
genome (Supplementary Table S1; ‘Materials and
Methods’ section) and repeated the analysis of the 21
SCD co-expression clusters using the genomic miRNA
clusters.

Overall, at FDR< 0.1, we identified enrichment or de-
pletion of targets of 68 miRNA families and 27 genomic
clusters in 21 co-expression clusters (Figure 4A). Of the 68
miRNA families, 16 are known to be related to stem cell
biology [out of 25 stem cell-related families taken from
(52), P=0.027], indicating that our cluster-based
analysis is capable of revealing functionally relevant
miRNAs. In comparison at FDR< 0.1, the HG test
reported significant enrichment or depletion for 77
miRNA families, but the overlap with the stem cell-related
families was not significant (P=0.344).

Analysis with FAME revealed several known miRNA
regulations that are supported by miRNA expression
data: miR-9 and miR-124 targets are enriched in cluster
2, which is downregulated in fNSCs (and also in ESCs),
and miR-9 targets are depleted in cluster 3 (Figure 4B).
Targets of miR-17 family were enriched in clusters 7 and
8, which show low expression in ESCs, and depleted in
clusters 1 and 13, which are upregulated in
ESCs (Figure 4C). Targets of mir-106/302, which share
the AAGUGC hexamer with mir-17 (see below), were
also enriched in clusters 7 and 8, albeit less significantly

(P=0.0603 and P=0.0056, respectively, FDR< 0.1).
Accordingly, miR-9 and miR-124 miRNAs were
upregulated in fNSCs, and miR-17 and related miRNAs
were strongly upregulated in ES cells [Figure 4B and C,
(23)]. Interestingly, we identified more significant enrich-
ment (compared to using individual miRNA families) with
the four genomic clusters that contain members of the
miR-17 and miR-106/320 families: gc:17-92a, gc:371-527,
gc:106b-93 and gc:302a-367 (Figure 4C). These findings
underscore the power of analyzing genomic clusters of
miRNAs in addition to analyzing individual miRNAs.
miR-145 was recently shown to be an important regu-

lator of differentiation by repressing the key ESC tran-
scription factors OCT4, SOX2 and KLF4 (53). Increased
miR-145 expression inhibited hESC self-renewal and
induced lineage-restricted differentiation (53). In our
data, the expression of miR-145 was strongly induced in
differentiated cells, but also in two of the ESC lines
(H1 and HSF6, Figure 4D), which may reflect their het-
erogeneity. FAME identified a significant depletion of
miR-145 targets in cluster 8, which is upregulated in
ESCs and in fNSCs (P=0.0091). In addition, the
targets of the gc:143-145 cluster, which contains
miR-145 along with miR-143, were even more significantly
depleted in cluster 8, which contains genes downregulated
in ESCs (and therefore upregulated following ESC differ-
entiation, P=3.0� 10�4). This suggests that mir-143 is
also likely to be related to ESC differentiation. We
found similar depletions for mir-499 and mir-544
families (P=0.0023 and P< 1.0� 10�4, respectively),
both of which are also downregulated in ESCs
(Figure 4D), suggesting that these families play an import-
ant role during ESC differentiation and early human
development.
FAME identified significant depletion of the targets of

let-7, mir-125 and genomic clusters containing these
miRNAs, in cluster 3, which contains genes upregulated
in fNSCs. Depletion of let-7 targets in brain-specific genes
was reported earlier (18). Interestingly, members of the
let-7 family were expressed at similar levels in the
various non-ESC lines in our data set, but significant de-
pletion of their targets was observed only in the cluster
upregulated in fNSCs. We also identified significant en-
richment of let-7 targets (but not of mir-125 targets) in
cluster 5, which is upregulated in one of the choriocarcin-
oma lines (BEWO). Consistently, all members of the let-7
family were strongly downregulated in this cell line
(Figure 4E). let-7 miRNAs are known tumor suppressors
downregulated in various cancers (54). As members of the
let-7 family appear in multiple genomic locations, our
results suggest that their repression, either through
coordinated events of transcriptional regulation or
post-transcriptionally, leads to upregulation of their
targets, which may contribute to malignancy in
choriocarcinoma.
gc:134-758 is a large miRNA cluster of unknown

function (55) located on chromosome 14, and is signifi-
cantly downregulated in ESCs (23) (Figure 4F). We
identified significant depletion of the targets of
gc:134-758 in cluster 2, upregulated in differentiated
cells, and in particular in aNCSs. The targets of two

Figure 3. Performance of methods for enrichment detection on
co-expression clusters. Out of the 1323 possible miRNA–cluster pairs,
those with a correlation of r> 0.5 or r<�0.5 between the miRNA and
the average mRNA expression were marked as ‘high’ (�10% for each
direction). The plots show the fraction of the 100 most significant
miRNA–cluster pairs found by FAME and the HG test that fell into
the ‘high’ category.
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additional miRNA clusters, gc:181c-27a and gc:23b-27b,
which were also downregulated in ESCs (Figure 4F), were
also significantly depleted in this cluster. These results
suggest that the main function of all three clusters takes
place in differentiated cells and in aNSCs (rather than in
fNSCs).

FAME reduces the 30 UTR length bias

One of our goals in designing FAME was to overcome
the bias introduced by the variability in 30 UTR lengths.
The average 30 UTR lengths in the SCD varied greatly: the
average 30 UTR length of genes in cluster 2 (genes up
regulated in fNSCs) was 2342, compared to just 1160 in
cluster 2. In order to test whether FAME was able to
alleviate this bias, we divided the 21 clusters into four
bins based on average 30 UTR length and compared the
total number of significant enrichments (FDR< 0.1) in
each bin (Figure 5). The number of significant enrichments
found with the HG test was correlated with UTR length
(r=0.59); this correlation was significantly reduced with
FAME (r=0.18).

DISCUSSION

We have presented FAME, a novel method for detecting
enrichment or depletion of miRNA targets in sets of

genes. This method has two main applications at the
present time: direct inference of miRNA functions using
sets of co-annotated genes, and prediction of miRNA-
based regulation using mRNA expression data. To allow
rigorous evaluation of FAME in the first task, we
assembled a compendium of 83 miRNA–pathway and
miRNA–process pairs. To the best of our knowledge,
this is the first time the performance of such a method
has been rigorously validated against experimentally
tested functions. While it is still quite modest, this com-
pendium can also be useful for evaluating future
approaches to miRNA function prediction, and will
improve as experimental evidence on miRNA function ac-
cumulates. Our compendium complements an existing
database that lists the involvement of miRNAs in
human disease (56).

The use of functional annotations of predicted targets
for inference of miRNA function is a promising concept,
but algorithms for this problem must cope with numerous
obstacles, including the limited accuracy of miRNA target
prediction methods, biases in 30UTR length and compos-
ition, limitations in the existing systems for functional
annotations, and the fact that most miRNAs have only
a limited effect on the expression levels of their targets
(2,3). A wealth of methods have been developed for
cis-regulatory motif finding, typically applied to

Figure 4. mRNA co-expression clusters and miRNA regulation in stem cell lines. (A) Enrichment and depletion of miRNA targets in co-expression
clusters. Purple (green) squares indicate over- (under-) representation of miRNA targets in a cluster. Names of genomic clusters of miRNAs
(Supplementary Table S1) are written in red. Only clusters with at least 30 genes that were enriched with targets of at least one miRNA with
P< 3� 10�3 and FDR< 0.1 are shown. Cluster-miRNA pairs with P > 0.05 are not shown (white squares). (B–F) Average expression levels of the
mRNAs in co-expression clusters and of miRNAs in different families. The top rows in each subfigure show average mRNA expression of the
co-expression clusters and the matrices below them show the expression of the miRNA families under the same conditions. The expression pattern of
each miRNA and each mRNA were normalized to mean 0 and SD of 1. Fib., fibroblasts; CC, choriocarcinoma (placental cancer).
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promoter sequences of co-expressed genes (19,57,58), but
more recently also to 30 UTRs (19,59). Some of these
methods address key issues affecting transcription factor
and miRNA binding, such as GC-content and distance
from the transcription start site. However, they do not
address key in miRNA target analysis, such as the
number of miRNAs targeting each 30 UTR and the influ-
ence of the 30 UTR context around the miRNA target site.
The results described here suggest that our statistical
analysis is capable of overcoming some of these difficulties
as it correctly infers the miRNA function in many cases.
Such analysis can be improved further in the future by
directly addressing differences in the composition of the
30 UTRs.

Prediction of relatively low-resolution functions (e.g. on
the level of KEGG pathways) seems to be easier
than prediction of the precise biological process affected
by each miRNA (represented by a GO term). However,
assessment of the success of FAME on the latter task
is limited by the currently crude knowledge of miRNA
functions. Our analysis is also limited by the quality
of the target prediction algorithms. The most successful
predictors use information about target site conservation,
but they miss targets (and therefore functions) that
are less well conserved. In addition, it is currently diffi-
cult to efficiently predict functional miRNA target
sites in coding sequence, even though a considerable
fraction of them is estimated to regulate gene
expression (2,3).

Data describing miRNA and mRNA expression in the
same samples are now collected in multiple systems. We
suggest the following three-step strategy for analysis of
such data: (i) clustering of mRNA expression, (ii) detec-
tion of over- and under-representation of miRNA targets
in clusters using FAME and (iii) analysis of the correlation
between the expression patterns of the miRNAs and of the

mRNA clusters in which they are implicated. As we show,
this analysis recovers a significant number of miRNAs
with key roles in the studied system. If the expression
data describe a comparison between two biological condi-
tions, differential expression analysis (e.g. using t-test) can
substitute for the clustering of the mRNA patterns. Both
types of analysis are made possible by our implementation
of FAME as part of the Expander 5.0 microarray data
analysis suite (http://acgt.cs.tau.ac.il/expander/). Using
Expander, which contains pre-compiled TargetScan 5.0
target predictions, it is possible to load expression data,
identify co-expressed or differentially expressed genes, and
use FAME to detect over- or under-representation
of miRNA targets [see the guidelines for using FAME
in Expander in (60)]. Our implementation is quite
efficient and analysis of 21 co-expression clusters with
1000 random iterations (including over 150 million
network rewiring operations) takes 20min on a standard
laptop PC with 2.6GHz processor and 2GB of RAM.
We believe that this type of analysis will be of im-
mense value for future joint mRNA/miRNA expression
studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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