
Tel-Aviv University
Raymond and Beverly Sackler

Faculty of Exact Sciences
The Blavatnik School of Computer Science

Prior Knowledge Integration of Gene Networks
Data into Gene Expression Analysis

Thesis submitted in partial fulfillment of the requirements for the M.Sc. degree
in the School of Computer Science, Tel Aviv University

By

Ofer Lavi

The research work for this thesis has been carried out at Tel Aviv University
under the supervision of Prof. Ron Shamir and Prof. Gideon Dror

August 2010

Acknowledgements

When I started my studies in Tel-Aviv University towards my M.Sc. degree, I believed
it would take a while until I focus on a specific research subject or even on a general
research field. Having no biological background, I was lucky enough to take two of
my first year’s classes with my advisor, Prof. Ron Shamir, who introduced me to the
exciting world of computational biology and allowed me to hop on the research train in
his wonderful laboratory in Tel-Aviv. I would like to thank him for the giving me the
opportunity, trust and guidance through the hills and valleys we shared during the time. I
would also like to thank my co-advisor, Prof. Gideon Dror, for his enlightening insights
on machine learning, gluing together learning theory and computational biology in a way
that was crucial for the success of this work.

Throughout the time, I was surrounded by a group of great people, who constitute
the amazing DNA of Ron Shamir’s Algorithms in Computational Genomics in Tel-Aviv
university. I thank Igor Ulitsky for teaching me most of what I know about the practical
side of computational biology, Chaim Linhart for his wonderful methodological advices,
Gal Romano for introducing me to real biological experiments, and Michael Gotkin and
Didi Amar for sharing with me the work on the GenePark Project. I would also like to
thank Sharon Bruckner, Falk Hüffner, Yonit Halperin, Adi Maron-Katz, Seagull Shavit,
Michal Ozery-Flato, Renana Meller, Guy Karlebach, Guy Harari, Mukul Bansal, Roye
Rozov, Arnon Paz, Eyal David and Akshay Krishnamurthy for always being available to
listen, brain-storm together and put in their 2-cents.

I would also like to thank a few people outside of the laboratory, who gave me from
their time and contributed in their field of expertise - Prof. Martin Kupiec for guiding us
at Gal Romano’s yeast QTL project, Jonathan Rosenblatt and Dr. Ronny Luss for their
help in statistics and SVM, Haim Avron for linear algebra remarks, and TaeHyun Hwang
(University of Minnesota) and Han-Yu Chuang (University of California, San Diego) for
the permission and help in running their code for the research purposes. I would also like
to thank Gilit Zohar-Oren and Ruth Friedberg for all their administrative and moral help.

Conducting research is only part of the whole story. This work is dedicated to my
beloved wife, Keren, who courageously found the strength to push and support me before,
and during my studies, sharing a great deal in completing this thesis, and to my wonderful
daughters, Sha’ked and Libby. I would like to thank my parents, Yehezkeal and Shlomit
for seeding me with the passion for learning, and my in-laws, Yehoshua and Paula for
their endless support throughout the time.

i

This research was supported in part by the GENEPARK project which is funded by
the European Commission within its FP6 Programme (contract number EU-LSHB-CT-
2006-037544).

ii

Abstract

Analysis of gene expression using microarrays went into clinical use in the recent
years using gene signatures as biomarkers for disease prognosis in various cancers. Pre-
diction methods that are based on a small computationally selected set of genes show
significantly higher accuracy compared to previous, more traditional methods.

In spite of their higher accuracy, these methods have drawn critique from both biomed-
ical and computational scientists. For the life-scientists, the fact that treatment decisions
are made in a ”black box” fashion, treating genes as numbers, and lacking any biological
and cellular rationale, is dissatisfying. From a computational perspective, these methods
suffer from shortage of training data: thousands of expression values were measured for
each patient, but only in a few hundred patients.

In this thesis, we propose to use additional information to overcome the shortcom-
ings of the current methods for selecting diagnostic markers. By collecting published and
experimental information, many biological systems can be summarized as signaling and
interactions networks. Exploiting the finding that close genes in the network tend to have
a similar contribution to learned classification models, we combine expression profiles of
cases and controls with large scale protein-interaction networks in order to improve clas-
sification results. Our method is based on using SVM with a kernel tailored to integrate
expression as well as network topology data. We demonstrate our method on a number of
case-control studies from the literature.

iii

iv

Contents

1 Introduction and Summary 3

1.1 Classification and Supervised Learning 3

1.2 Learning with Prior Knowledge . 4

1.2.1 Summary of our Results . 6

2 Background 7

2.1 Computational Background . 7

2.1.1 Problem Setting . 7

2.1.1.1 The Binary Case . 8

2.1.1.2 Linear Discriminant Functions 8

2.1.2 Support Vector Machines . 9

2.1.2.1 Primal Form . 11

2.1.2.2 Dual Form . 11

2.1.2.3 Soft Margin . 12

2.1.2.4 Non-Linear SVM . 13

2.1.3 Performance Measurements . 14

2.1.3.1 AUC - Area Under Receiver Operating Characteristic

Curve . 15

2.1.3.2 Assessment of Generalization Performance 17

1

2.1.3.3 K-fold Cross Validation 17

2.1.4 Dimensionality Reduction and Feature Selection 18

2.1.4.1 Filters . 19

2.1.4.2 Student’s t-Test . 19

2.1.4.3 Embedded Selection 20

2.1.4.4 L1-norm SVM . 21

2.1.4.5 L2-AROM SVM . 21

2.1.4.6 SVM RFE . 22

2.2 Biological Background . 22

2.2.1 Proteins . 22

2.2.2 Protein synthesis . 23

2.2.3 DNA microarrays . 24

2.2.4 Next Generation Sequencing . 24

2.2.5 Classification of Gene Expression Profiles 25

3 Integration of Prior Knowledge 27

3.1 Motivation . 27

3.2 Limitations of Current Methods . 29

3.3 Analysis Tasks and Integration Model 31

3.3.1 Downstream research . 31

3.3.2 Use of Statistical Modeling . 32

3.4 Available prior knowledge . 33

3.4.1 Annotation based repositories 33

3.4.2 Network data . 34

3.4.2.1 Large-scale networks 34

2

3.4.2.2 Small-scale networks 35

3.5 Basic Integration Assumptions . 38

3.6 Prior Work . 40

3.6.1 Greedy Search for Subnetworks as Markers 40

3.6.2 Direct Optimization using a Network Loss Function 42

3.6.2.1 Classification and feature selection using HyperGene . 44

3.6.3 Network Guided SVM Regularization 45

3.6.4 A Spectral Approach . 46

3.6.5 Disease Genes Discovery by Network Analysis of Differential

Expression . 47

3.6.6 Statistical Hypothesis Testing Frameworks 48

3.7 Algorithms Taxonomy . 52

4 Results on Network Impact 55

4.1 Informativeness of Integrated Network Data 55

4.1.1 Distribution of Correlation Between Pairs 57

4.2 Does the Network Make a Difference? 59

4.3 Derivation of Working Assumption . 62

5 A New Network-Based Kernel and Transformation 65

5.1 SVM Regularization via Feature Similarity 66

5.2 Transformation Analysis . 68

5.2.1 Cholesky decomposition of Q 70

5.2.1.1 Dominance of Pivot Feature 70

5.3 Dimension Reduction . 72

5.3.1 Early Selection . 73

3

5.3.2 Embedded Selection . 74

6 Experimental Results 77

6.1 Data . 77

6.2 Testing for Improvement . 77

6.2.1 Improvement Significance . 81

6.2.2 Choice of β . 84

6.2.3 Network Randomization . 84

6.3 Comparison to Other Methods . 84

7 Conclusions and Future Work 93

7.1 The Advantages of the Method . 93

7.2 Limitations of the Method . 94

7.3 Influence of the Network on Feature Selection 95

7.4 When is the Network Informative? . 96

7.5 Performance Improvement . 97

7.6 Possible Extensions and Applications to Other Areas 98

Bibliography 101

4

1
Introduction and Summary

This work focuses on methods for incorporating prior knowledge regarding the rela-

tions between variables for the purpose of data classification. In particular, we study ways

to improve generalization of supervised learning algorithms by exploiting pairwise rela-

tions between features as defined by a given network encapsulating prior knowledge in

the field of interest. Our main application is in the field of microarray analysis, and more

specifically in classification of gene expression profiles with the help of gene networks.

In this chapter we give an overview of this work’s topics, informally introduce the

problem we tackle, and explain our motivation and the general path we chose towards a

solution. The reader should be aware that some of the concepts we present here will only

be defined formally later on, as we would like this introduction to be short and concise.

1.1 Classification and Supervised Learning

Classification is a common task in everyday life, as well as in many scientific fields.

Consider an office administrator sorting documents by their subjects into corresponding

folders, a physician diagnosing a patient’s disease or a little kid grouping objects by shape

or color. In this framework, we have a set of samples, each belongs to one of a set of

known classes. The task is then, given a new sample, to assign a class (or a label - a name

tag corresponding to the class) to it. A computer is a natural candidate for performing

various classification tasks. It can process large amounts of data in a fraction of the time

required for a human for the same task. However, it lacks the knowledge required for

taking the decision upon the actual class of a sample.

Supervised learning aims to overcome this lack of knowledge by dividing the task into

5

two phases. In the first phase, the learning (or training) phase, the computer is taught by

a supervisor. The supervisor presents a set of samples to the computer, coupled with the

right class of every sample. During this phase, the computer builds a model that will later

aid it in taking the right decision. In the second phase, the prediction (or test) phase, the

computer is presented with a new unseen sample, this time without any class associated

with it, and its task is to utilize the model in predicting the right class for this sample.

One of the most important roles of the designer of such a framework, is to represent

the samples in a form that is readable by the computer, keeping as much of the meaning

of the original sample. Usually, one designs a set of features, which are individual mea-

surable properties of the samples, allowing for representing each sample as a list of values

corresponding to the designed set of features. From that point on, the actual features are

meaningless to the computer, as it only treats the measured values.

For instance, in the documents example, one can design a set of features that includes

a large number of words, and represent each document as a list of values, one value per

word. The value might be 0 if the word does not appear in the document and 1 if it does.

The computer now deals with an ordered list of 0’s and 1’s, regardless of the meaning of

the original words. However, it can learn to associate certain features’ values with certain

classes, as the supervisor also presents it with the right class for every such list of 0’s

and 1’s. For the doctor’s example, features can be different clinical measurements results

(blood, urine etc.) or different fitness levels in tests conducted by the physician.

1.2 Learning with Prior Knowledge

In some cases, today’s technology offers us vast amounts of data, which can hardly be

analyzed by humans. DNA Microarrays are one such technology, which will be described

in the biological background section hereafter. They are capable of providing thousands

to millions of measurements called gene expression levels, corresponding to gene activity

levels within a living cell or tissue. These measurements have been successfully used

as features for the supervised learning task, aiding physicians in diagnosis and treatment

selection. Once again, even if a gene’s biological function is known, this knowledge is

ignored when only the gene expression level is used.

6

Gene expression analysis poses a set of computational challenges, which are cascaded

in turn to the classification task. Some of the reasons for difficulty in microarray analysis

include:

1. Noisy data - the biochemical measurement process of gene expression levels is

known to be inaccurate.

2. Dimensionality ratio - the number of samples used in the learning phase is far

smaller than number of features.

3. Feature dependencies - biologically, genes are known to work together, but these

known dependencies are not used if the analysis is based only on a list of indepen-

dent expression values.

In order to help overcome these challenges, it might be advisable to incorporate prior

knowledge regarding the features, instead of discarding information that is available about

them. For genes, such information was gathered by curators from the literature and is

available in various forms. One available resource is functional annotation of genes.

Such resource describes the functions of each gene, thus grouping genes according to

their function.

Other forms of biological information include small but detailed gene regulatory

pathways describing pairwise interrelations among a focused group of genes. Such group

typically contains dozens to hundreds of genes. Large scale protein-protein interaction

networks can cover thousands of genes, describing in less detail general interactions or

other relations among pairs of genes.

Various methods use such prior knowledge when analyzing gene expression data,

and we shall review some of them later in this study. We chose to use the latter large-

scale networks as sources for prior knowledge regarding relations between pairs of genes.

We employed such networks as an additional input while building the model during the

supervised learning process. The rationale for utilizing this information in classification

is that neighbor genes in the network tend to work together (or co-express), and hence

their joint effect can lead to better classification.

7

1.2.1 Summary of our Results

Our main contribution is a simple modification to the commonly used SVM learn-

ing and classification algorithm [74]. We reformulate the SVM problem to take prior

knowledge of similarity between features into account. Algorithmically speaking, this

modification amounts to running SVM on the result of a linear transformation of the orig-

inal expression data, a transformation that is based on the network encapsulating the prior

knowledge.

This thesis is organized as follows: in Chapter 2 we will briefly review the necessary

computational and biological background for this work. In Chapter 3 we map and analyze

some extant integration methods of network data to gene expression analysis, and present

some results regarding network integration assumptions and its contribution. In Chapter

5 we present a novel algorithm for gene expression classification using network data, and

in Chapter 6 we report results of applying the algorithm to a few case-control datasets

from the literature. We discuss the results and suggest some future research directions in

Chapter 7.

8

2
Background

This chapter is devoted to laying the background and definitions required for the rest

of this thesis. In Section 2.1.1 we will briefly define the problem of supervised learning

of a classifier. The SVM algorithm will be described in detail in Section 2.1.2, empha-

sizing the building blocks used later in this work. In Section 2.2 we will present a short

biological background, followed by introduction to DNA microarray analysis in the con-

text of classification. We will end this chapter with a review of the problems in DNA

microarray analysis that can benefit from incorporating prior knowledge in the form of

gene networks.

2.1 Computational Background

In this section we introduce basic background on classification. For much more on

the topics see [76, 51].

2.1.1 Problem Setting

In this section we shall describe the problem of learning a classifier in a supervised

manner, and define the notation that will be used throughout this work. As mentioned in

the previous section, a classifier should be able to correctly assign a sample to one (or

more) predefined classes. Regardless of the specific classification task, we assume that

the data are already represented in a format readable by a computer.

A sample x ∈ Rp is a p-dimensional vector of values, one for each feature. Let C be

a set of class labels. A classifier is a function h : Rp → C that takes as input a sample

and outputs a prediction regarding the class this sample belongs to.

9

In a supervised learning setting, the task is to build a classifier using a set of labeled

training samples. The input is then a set of pairs (xi, yi), i = 1, . . . , n where yi ∈ C is

the label of sample xi, and the output is h. The set of training samples is often called a

training set and the assumption is that these are uniformly sampled from the true pop-

ulation of all samples. The resulting classifier then should fit the true population in its

predictions. To this end, a loss function L : C × C → R+ is defined, which punishes

each misclassification. If a sample belonging to class y ∈ C is assigned by the classifier

to class z ∈ C, z 6= y, then L assigns a positive cost to such an error. If the classification

of the sample is correct, the cost is 0. The objective is to minimize the expected cost over

the true population. This expectation is often called the risk, and the target of a learning

algorithm is to use the given samples in order to build a classifier that minimizes the risk.

2.1.1.1 The Binary Case

In the most common case, the number of possible classes is 2. The task in this case is

referred to as binary classification. We shall limit our discussion here to the binary case.

We shall use C = {−1,+1} as the set of labels for the possible classes. Many methods

are available for generalization of binary classification to multiclass classification.

2.1.1.2 Linear Discriminant Functions

One family of binary classifiers is based on linear discriminant functions. This family

of functions include all the functions that are a linear combination of the values of x.

That is, they are of the form g(x) = wtx + w0, where w is a called weight vector and w0

can be considered as a threshold. A binary classifier that outputs 1 for a sample x where

g(x) > 0 and −1 otherwise is called a linear classifier.

Geometrically, each sample can be seen as a point in a p-dimensional space. The

discriminant function associated with a linear classifier defines a decision boundary which

is a surface that separates samples that are assigned by the classifier to one class from

those that are assigned to the other class. Since the function is linear, this surface is

actually a (p − 1)-dimensional hyperplane, and the sample points from different classes

reside on different sides of the hyperplane. (Compare Figure 2.1 for an example)

The task of learning a linear classifier narrows down to learning a weight vector w =

10

w0, w1, . . . , wp . Since each component wj , 1 ≤ j ≤ p corresponds to a single feature,

a simple interpretation of the weights indicates that |wj| corresponds to the importance

of feature j as a predictor for one of the classes and against the other. The sign of wj

indicates positive values of feature j contribute to deciding towards the first class or the

second class.

2.1.2 Support Vector Machines

Support Vector Machines (SVMs) [74] are among the most popular supervised learn-

ing algorithms. Before introducing SVM we need to consider two more simple notions -

linearly separable data and margin.

Linearly Separable Data

In the binary setting, if there exists a hyperplane (corresponding to a linear classifier)

that correctly separates the samples into two classes, residing from the two sides of the

hyperplane, then the data are termed linearly separable. This is not always the case, and

in fact, most real world data isn’t at all linearly separable. Figure 2.1 shows an example

of linearly separated data, with two proposed linear separators.

Margin

If the data are linearly separable, then there could be many hyperplanes that correctly

separate the samples into two sets. Let H be one such hyperplane. The classifier’s margin

is defined as the largest distance between two hyperplanes parallel toH that do not contain

any sample points between them. Intuitively, we would like to have as large margin

as possible on the training samples. This will give us a larger buffer for future unseen

samples, which can fall within the margin. Indeed, the margin has been proven to be

tightly coupled with the expected generalization error [13]. In Figure 2.1 we can see an

example of a separator that maximizes the margin.

While training the classifier, SVM, in its simplest form, finds a linear discriminant

function that maximizes the margin. Consider a hyperplane wTx+w∗0 = 0 that is indeed a

separating hyperplane. The vector w is perpendicular to this hyperplane, and we can have

11

Figure 2.1: Two linear separators of the same 2-class data. Each dot is a sample,
with features corresponding to its x and y coordinates. The class label in indicated as
the dot color. With only two features, the separating hyperplane is actually a line in the
2-dimensional space. (a) Linearly Separable Data: The black line is a linear separator
between the two classes. This is only one of many possible linear separators of the points
in the example. (b) Max Margin Classifier: The same data as in (a), this time sepa-
rated by another line that maximizes the margin between the data points. w is the vector
perpendicular to the separator, and 2

‖w‖ is the margin’s width.

12

new hyperplanes that are parallel to our separating hyperplane by sliding the separating

hyperplane along this vector w until the point the hyperplane reaches one of the sample

points. Looking at the two such hyperplanes, one touching a positive point and the other

touching a negative point, we can pickw0 for a hyperplane wTx+w0 = 0 that is exactly in

the middle in between these two hyperplanes. The two hyperplanes are then wTx+w0 =

−b and wTx + w0 = b. We can scale w, w0 and b while still keeping the very same two

hyperplanes, so w.l.o.g. we can omit b as a parameter and have the two hyperplanes be

written now as wTx + w0 = −1 and wTx + w0 = 1.

We seek two parallel hyperplanes that maximize the margin, that is, the distance

between them, 2
||w|| , is maximal. At the same time we want to constrain the hyperplanes

such that no sample point resides between them, meaning that the margin region between

them is empty. We add then a constraint wTxi + w0 ≥ 1 for each point xi of the first

class, and wTxi + w0 ≤ −1 for each point xi of the second. As mentioned, we have two

classes C = {−1,+1}, so these constraints can be rewritten as (wxi + w0) · yi ≥ 1.

2.1.2.1 Primal Form

The problem is formulated then, as a Quadratic Programming optimization problem:

min
w,w0

{
1

2
‖w‖2

}
subject to

(wTxi + w0) · yi ≥ 1 for each i = 1, . . . , n

The substitution of ‖w‖ with 1
2
‖w‖2 is allowed because both functions reach their

minimum at the same vector w. The factor 1
2

is there merely for mathematical conve-

nience.

2.1.2.2 Dual Form

By introducing new variables, the Lagrange Multipliers, it is possible to express the

optimization problem with an alternative objective function under different constraints.

13

As we have n original constraints, we need n Lagrange multipliers, denoted αi for i =

1, . . . , n.

The dual form of the SVM optimization problem is:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
l xj

subject to

αi ≥ 0 for each i = 1, . . . , n
n∑
i=1

αiyi = 0

Note that in this formulation the input points xi only appear as pairwise dot-products

xTi xj

2.1.2.3 Soft Margin

In most cases, the data are not linearly separable. For these cases, the SVM formu-

lation does not have a feasible solution, as no separating hyperplane exists. Suppose we

allow some points to fall on the wrong side of some hyperplane with respect to their real

class. If we ignore them, this hyperplane cleanly separates the rest of data. However, we

do not want to have too many such points, so we penalize every such point according to

how deep it is in the wrong side of the hyperplane - how bad the misclassification level of

the sample is.

On one hand, we would like to minimize the number of misclassified samples. On

the other hand, we might find a better hyperplane in terms of the margin, if we allow

for more misclassified samples. This tradeoff is translated to the following soft margin

SVM formulation due to [18]. For every point we add a non-negative slack variable

ξi which is 0 if the sample is correctly classified. For the cases where the sample is

incorrectly classified, the larger its absolute value, the further away the point is from the

hyperplane. In addition, we introduce another regularization parameter C, which sets the

tradeoff between a large margin and a small total misclassification. The problem is now

formulated as:

14

min
w,w0,ξ

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}

subject to

(wTxi + w0) · yi ≥ 1− ξi for each i = 1, . . . , n

ξi ≥ 0 for each i = 1, . . . , n

If a training point xi falls on the wrong side of the hyperplane (misclassified), its

corresponding ξi must be larger than 0, and the total number of misclassifications is bound

by
∑n

i=1 ξi. Thus, the larger C is, the higher the cost for total misclassifications in the

training set.

This problem can also be expressed in a dual form, with the advantage that all the

slack variables vanish, and we are left only with the regularization term C:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
l xj

subject to

C ≥ αi ≥ 0 for each i = 1, . . . , n
n∑
i=1

αiyi = 0

2.1.2.4 Non-Linear SVM

Often the data are not separable in the original space. Before applying SVM, one can

transform the sample points to a space of (possibly) higher dimension using some trans-

formation Φ, where the data might be linearly separable. Then, we can find a maximum

margin linear classifier in the transformed space using SVM, and classify every new point

by first applying the transformation to it, and then using the classifier. However, the com-

plexity of learning a classifier is now higher, as it depends on the space dimension, which

is now higher.

As mentioned, the dual form never takes into account a single sample by itself, but

rather a dot product of two samples. This means that instead of considering a single trans-

15

formed sample point Φ(xi), we only have to look at dot product pairs of two transformed

samples Φ(xi) · Φ(xj). If there was a way to efficiently compute such a dot product in

the original space (which is of a lower dimension) without going through transforming

the points themselves, we could avoid the transformation and the dot product computa-

tion in the transformed space. In [12], the authors introduce non linear kernel functions

K(xi,xj) = Φ(xi) · Φ(xj) that allow for computing the dot product of the transformed

sample points in some higher dimensional space, given only the two original points.

Now, given such a kernel function, all we have to do in order to get a non-linear

classifier, is to replace the computation of dot products xTi xj with that of one of these

kernel functions k(xi,xj).

Two of the kernel functions used in the literature:

Polynomial kernels k(xi,xj) = (xTi xj)
d or k(xi,xj) = (xTi xj + 1)d

Radial Basis Function k(xi,xj) = exp(−γ‖xi − xj‖2)

The space corresponding to the kernel function can even be of infinite dimension. In

this case a straight forward transformation is not applicable at all, but a use of such a

space is possible thanks to the kernel functions.

2.1.3 Performance Measurements

Recall that our intention is to improve classification performance by integrating prior

knowledge into the learning process. In order to measure such an improvement, we need

a way to compare the classification performance of the different models with and without

the prior knowledge. Throughout this work we used the standard area under the ROC

curve score for estimating a classifier’s performance. In the binary case, each sample is

labeled as positive or negative. The classifier can classify a sample as either positive or

negative, and its decision can be either True (right) or False (wrong). We now can partition

the classifier’s decision as for the classes of a given set of samples into four disjoint sets:

True Positives (TP) positive samples correctly classified as positive by the classifier.

False Positives (FP) negative samples incorrectly classified as positive by the classifier.

16

True Negatives (TN) negative samples correctly classified as negative by the classifier.

False Negatives (FN) positive samples incorrectly classified as negative by the classifier.

There are several common aggregate measures for classification quality. sensitivity

is defined as the ratio |TP |
|TP |+|FN | . A classifier with 100% sensitivity classifies all positive

samples as positive (i.e. it has no false negatives). However, one can easily build such a

classifier by classifying every sample as positive, regardless of the sample itself, which

would create many FP errors. A complementary measure is specificity, |TN |
|TN |+|FP | . We

seek for a classifier with high performance in both measures.

2.1.3.1 AUC - Area Under Receiver Operating Characteristic Curve

Often, classification algorithms return some score for a given sample. By setting a

threshold, the score is turned into binary classification of the sample. Every possible

threshold, ranging from the minimal to the maximal score, determines the sensitivity and

specificity of the classifier. Increased sensitivity comes at the expense of decreased speci-

ficity, and vice versa.

The Receiver Operating Characteristic (ROC) curve is a 2D chart reflecting the clas-

sifier’s behavior on two chosen axes. The y axis measures sensitivity, also termed TPR -

True Positive Rate, and the y axis measures the FPR - False Positive Rate. Similar to TPR

for the true positives, FPR is defined as |FP |
|FP |+|TN | for the false positives, which is equiv-

alent to 1−specificity. The curve represents specificity and sensitivity values of different

classifiers obtained by using different thresholds. Regardless of a specific threshold, we

can measure the quality of a classifier by the way it ranks the samples. We can do this

by looking at pairs of samples, where one sample is negative and the other is positive.

Ideally, the classifier would rank the negative sample lower than the positive sample for

every such pair. In practice we can look at the probability that for a random pair, the

classifier would rank the pair’s negative sample lower than its positive sample. The area

under the ROC curve (a value ranging from 0 to 1) measures exactly this - it is the prob-

ability that the classifier would correctly rank samples from a random positive:negative

pair. The larger the area under the curve is, the better the classifier is, and thus the AUC

- area under curve can be used as a measure for the performance of a given classifier as

shown in Figure 2.2.

17

Figure 2.2: AUC Example. The curve presents the tradeoff between sensitivity and speci-
ficity (increasing sensitivity will be followed by a possible decrease in specificity). The
blue diagonal (marked with triangles) serves as a lower bound to the AUC curve - an av-
erage behavior of a random classifier. The red curve (marked with rectangles) represents
the performance of some classifier, reaching 70% true positives at 20% false positives
and 90% true positives while maintaining under 40% false positive. The area under the
random lower bound is 0.5. The area under the red curve integrates over the different
tradeoffs of TPR and FPR to produce a comparable average performance measure. The
closer the curve to the top left corner of the chart, the more accurate the classifier. The
closer the curve to the diagonal, the less accurate the classifier.

18

2.1.3.2 Assessment of Generalization Performance

In order to assess how the results of a classifier will generalize to an independent

data set, one needs first to train a classifier on some data. The trained classifier cannot

be tested on the same data as its parameters were fitted using this data and may fail to

generalize to new datasets while perfectly fitting the original data. This problem is known

as overfitting.

Ideally, we would like to build a model by training a classifier on one dataset - a

training set, and test its performance on another - a test set. However, due to shortage

of data, one does not always have an independent data set on top of the original training

data set. To overcome this shortage while still avoiding the bias, it is possible to resample

the data - create multiple partitions of the samples. Each partition divides the samples

into two subsets, one serving as a training set for the current partition, and the other as

a test set for the current partition. Performance measures are taken for each partition

independently, and the values are averaged over all partitions to produce a final value.

A number of strategies may be used for creating the different partitions. In Leave-

One-Out (LOO) cross validation, the number of partitions is equal to the number of sam-

ples, and at each partition, one sample is left out for testing, while the rest of the samples

are used as a training set. Another strategy used, called bootstrapping, randomly samples

the dataset with replacement to partition the data, training on the sampled data and testing

on the complement. In this strategy, samples may be sampled multiple times, while oth-

ers might not be sampled at all. Throughout this work we used a strategy called K-fold

cross-validation [41], which is described in the next section.

2.1.3.3 K-fold Cross Validation

In K-fold Cross Validation samples are randomly partitioned into K (approximately

equally sized) subsets. Of the K subsets, one is set aside as the test set for testing the

model, and the remaining K−1 subsets are used as training data. The process is repeated

K times, where each time one of the K subsets is used as the testing data. Each run

corresponds to a fold, and in total each subset is used as a test set exactly once. The K

results are averaged to provide an unbiased performance measure for the classifier. 5 or

10-fold cross-validation are commonly used [48]. Eventually, estimation of AUC with

19

K-fold cross validation is used to estimate the performance.

2.1.4 Dimensionality Reduction and Feature Selection

Often, the data present a large number of features relative to a small number of sam-

ples. In these cases, it is difficult to build a good classifier that will generalize to an

independent dataset based on the whole set of features. One of the problems is that due to

the large number of features in such datasets one can find features that discriminate two

classes of samples in the dataset merely by chance. Such features will only fit the given

dataset, and will probably be worthless in other datasets.

In addition, real life data may include redundant features, and irrelevant features. It

might be advisable to remove redundant, irrelevant and noisy features prior to learning

a classifier, and rely only on a subset of the original features for the supervised learning

task. The process of filtering out those features is called Feature Selection. In turn, it

also reduces the dimension of the learning problem (Dimensionality Reduction) and helps

improve the performance of learning models.

Dimensionality reduction is usually obtained by one of two approaches:

1. Feature Selection - selecting a subset of relevant features as mentioned above.

2. Feature Extraction - constructing a new set of features, each of which constructed

from a combination of a number of original features.

Both approaches aim at solving some of the problems related to having a large number

of features while building a model using machine learning:

1. Generalization improvement - with a large number of features, it is possible to build

a model that is too tailored to the training samples, but performs poorly on newly

exhibited samples (overfitting).

2. Performance improvement - by removing irrelevant and/or noisy features, it is eas-

ier for algorithms to build a model that is more relevant and accurate.

3. Computational efficiency - by reducing the size of the input to the learning algo-

rithms, both time and space consumption can be reduced significantly.

20

Once a small number of features has been selected, only these features need to be

measured. This can also be helpful in two more aspects:

1. Intelligibility - A combination of values from thousands of features can hardly be

interpreted to give insight on the effect of each feature. On the other hand, a small

number of features can help us to acquire better understanding as for our data, and

serve as a good lead for downstream research by letting us know which are the

important features and how they relate to each other.

2. Cost - It is generally cheaper to collect and analyze a small number of features.

In the next subsections we will cover families of feature selection algorithms and

briefly describe a few methods that are used throughout our work.

2.1.4.1 Filters

Filters [28] comprise a family of feature selection methods where features are con-

sidered one by one, and based on a predefined criterion, a feature is either kept or filtered

out from the set of features. The criterion is often related to a feature’s relevance, and

thus only the most relevant features are selected. Filters are usually simple to implement

and employed prior to learning the classifier so they are independent of the classification

algorithm. They are often based on ranking the features by assigning each feature a score

independently of other features, and as such they are scalable in the number of features.

Their main downside is that they are univariate - that is, each feature is considered sep-

arately, independent of all other features, although such dependencies are possible. As a

result, they do not account for redundancy in the feature set, or for advantages of using

multiple features together, but merely for a single feature’s relevance.

2.1.4.2 Student’s t-Test

One of the simplest filters available for binary-class data tests for the difference be-

tween two means in the feature value in the populations. It is a statistical hypothesis test

where the null hypothesis is that the means of the feature values in the two populations is

equal. It is based on the assumptions that feature values follow a normal distribution with

21

equal variance in both populations, and that samples are independent from each other. For

a specific feature and two given vectors X1 and X2 corresponding to the feature values in

the two populations, the t-statistic is defined as:

t =
X̄1 − X̄2

SX1X2 ·
√

2
n

where

SX1X2 =

√
S2
X1

+ S2
X2

2

is an estimator of the common standard deviation of the samples, and S2
Xi

is the variance

of Xi.

The t-statistic values follow the Student’s t-distribution and so statistical significance

(p-value) can be calculated for each value. In classification, t-Test is only used to rank

the features, and one needs to choose a cutoff point in order to choose the highest scoring

features. This may be done either by setting a constant number, or using a p-value cutoff,

or determined based on the data using cross-validation techniques.

2.1.4.3 Embedded Selection

Embedded feature selection methods rely on a specific learning algorithm, and use

the model provided by it to reduce the original set of features. For example, any linear

discriminant function assigns a coefficient (or weight) to each feature during the learning

phase. Features that are assigned a near zero weight are meaningless to the classification,

and thus can be discarded.

Another family of methods, called wrapper methods, is characterized by an iterative

process, in which a subset of the features is selected, and a learning algorithm is utilized

as a black box to evaluate the selected subset and sometimes guide the selection of a better

subset for the next iteration. At each iteration one subset is evaluated, and the process may

stop with the current subset, or change it in order to try and improve the classification

performance. The selected subset of features, whether obtained by an embedded or a

wrapper method, is not limited to be used with the specific embedder or wrapped classifier

that created it.

22

We will now present two feature selection methods that are based on SVM. Later on,

we shall show an adaptation of one of these methods such that is uses prior knowledge

for the selection process.

2.1.4.4 L1-norm SVM

SVM can be formulated as an optimization problem with a single objective function,

incorporating a loss term and a penalty term (In Section 3.6.3 we shall see one method

that utilizes this type of formulation for network integration purposes). In the standard

(L2-norm) SVM, the penalty keeps the weight vector norm minimal, in order to minimize

the margin:

min
w,w0

{
n∑
i=1

[1− yi(xTi w + w0)]+ + λ‖w‖22

}

An alternative is offered by [82], where the L2-norm penalty is replaced by L1-norm

min
w,w0

{
n∑
i=1

[1− yi(xTi w + w0)]+ + λ‖w‖1

}

L1 loss is argued to outperform L2 when the underlying model is sparse - that is,

it only relies on a subset of the features, and in fact the result of the L1-norm SVM

optimization often sets the weights of uninformative features to 0, and can be considered

as a feature selection method.

2.1.4.5 L2-AROM SVM

It is possible to explicitly change the SVM objective function in order to minimize

the number of features with non-zero weight. This is termed zero-norm, and defined as

‖w‖00 = card{wi|wi 6= 0}. However, this problem is NP-Hard [4], and an alternative

problem that approximates it was offered by Weston et al. [79] together with a solution

they call AROM (L2 Approximation to zeRO norm Minimization). Instead of the original

SVM objective function

23

min
w,w0

{
1

2
‖w‖2

}
they use the objective function

min
w

{
p∑
i=1

ln(ε+ |wi|)

}

with 0 < ε� 1. This is solved by a simple iterative procedure wrapping the standard

L2-norm SVM.

2.1.4.6 SVM RFE

Guyon et al. [29] offer a simple wrapper method for SVM that uses Sequential Back-

wards Search (SBS) through the space of feature subsets. They iteratively train L2-SVM,

and use the weight vector to eliminate those features that exhibit the lowest weights ac-

cording to the model (one or more feature at each iteration). After this elimination,

the SVM is trained again, this time with the remaining features only, and the process

is repeated until a stopping criterion is met. They name the method Recursive Feature

Elimination, and compare the final set of features using different types of classifiers. One

of their results is that the set of selected features influences the final classification perfor-

mance more than the actual classifier used.

2.2 Biological Background

In this section we give basic biological background relevant to the classification of

gene expression profiles. For more on basic biological notions see, e.g [2]. For more

details on expression microarrays see, e.g. [8].

2.2.1 Proteins

Proteins are the main building blocks of cell components and molecular machinery

acting within the living cell, and are also used as communication means between and

24

within cells. At any given moment, proteins take care of maintaining cell form and activ-

ity, allowing the cell to cope with external environment, and some of them are used for

signaling, secreted outside and used within the cell upon demand. There are many types

of proteins, so cells of different tissues may hold different mixtures of proteins, and even

within the same cell, the protein types and amounts (or concentrations) may change from

one time to another, depending on its internal state and on outside conditions (or stresses).

This is the reason that snapshots of the state of proteins in a cell, such as the concentration

of each type of protein, can provide us with a lot of information about processes within

a cell and its environment. Even with incomplete understanding of the cell’s state and

behavior, such a snapshot could help us differentiate one type of cell from another, or, for

example, help us differentiate between cells with different levels of malignancy. Today’s

technologies allow only very partial snapshots of the proteins in a given tissue, ranging

from hundreds to a few thousand protein species [80]

From a biochemical point of view, each protein consists of a chain of basic molecules

called amino acids. The sequence of amino acids differentiates one type of protein from

another. The chain of a specific protein is folded into a unique structure, which gives the

protein the ability to function. It also sets the protein’s ability to bond to other proteins and

create complexes of proteins. One of the main complexes within a cell is the ribosome,

which is responsible for synthesis of new proteins when those are required.

2.2.2 Protein synthesis

In order to synthesize a protein, the ribosome uses a basic ”recipe” or ”blueprint”,

which tells the ribosome at each point which amino acid it should insert next into the

chain. This recipe is written as another chain of chemical units called nucleotides. There

are four such nucleotides: Adenine, Cytosine, Guanine, and Uracil, abbreviated as A, C,

G, and U. A sequence of three nucleotides encodes for exactly one amino acid and a chain

of nucleotides is called RNA. A messenger RNA, or mRNA, is a chain of nucleotides that

encodes a protein (the recipe of the protein) and the process of synthesizing a protein from

mRNA is called translation.

The source for RNAs is a much longer chain (or chains) of nucleotides, called DNA.

The DNA encodes all required RNAs and subsequently all required proteins of a species.

25

A gene is a part of the DNA chain that codes for a specific protein. Upon demand, parts of

the DNA chain are exposed and copied into RNA chains in a process called transcription.

Hence, a gene is transcribed to RNA and the (mature) RNA is translated into a protein. On

a first approximation, the DNA sequence uniquely determines the protein sequence. Like

other cellular processes, transcription is also governed by proteins, named transcription

factors, which regulate the process.

2.2.3 DNA microarrays

It is possible to estimate the concentration and type of proteins within a cell at a

given moment by looking at the mRNAs currently present inside the cell. While high-

throughput ways to measure and quantify all proteins within a cell are still under devel-

opment, it is already possible to measure the concentration of all RNA molecules in the

cell using DNA Microarrays, and use these measurements to estimate current activity of

all genes (and indirectly their protein products) in a given point of the cell’s life.

A DNA microarray is a small solid surface consisting of thousands to millions of

microscopic spots of DNA oligonucleotides called probes. Each probe can hybridize

(bind) to a specific RNA fragment, according to its nucleotide content. In a specific

design, the oligonucleotides of each probe are chosen so that they can hybridize to a

single gene’s mRNA. Extracting RNA material from the cell and creating physical contact

between this material and the surface of a microarray allows for the probes to hybridize

to the RNA that was present in the cell at the time of extraction. Later on, the microarray

is scanned, and the amount of RNA bound to each probe is measured. This allows for

measuring the activity levels of all genes within a living cell or tissue, and quantifies the

expression level of each gene. A gene expression profile is the set of all levels associated

with all genes. As mentioned before, the gene measurements are valuable for estimating

the levels of active proteins within the cell, providing a lot of information regarding the

cell’s state.

2.2.4 Next Generation Sequencing

Today, a new generation of DNA sequencing technologies called Next Generation

Sequencing (NGS) or Deep Sequencing is being developed. These methods read millions

26

of short DNA chains. These chains can be compared to a known sequence of a reference

genome that is close to the one being sequenced. For a short review of these methods and

additional references see [62]. Lately, these methods were applied also to RNA sequenc-

ing (a technique called RNA-Seq), allowing for high throughput measurement of gene

expression profiles. Producing such profiles is becoming cheaper and more accurate, but

the challenges of analyzing these profiles are the same as in microarrays. All methods

and algorithms covered throughout this work are also applicable to expression profiles

obtained by next generation sequencing.

2.2.5 Classification of Gene Expression Profiles

Using a gene expression profile, the genes (or probes) can be used as features for the

supervised learning task. Hence, the profile of an individual in a classification task will

be a vector of circa 25, 000 features (the number of genes in the human genome), or even

more if several probes per gene are used in the mircorarray. In a binary classification task,

two sets of such profiles correspond to samples from two populations (classes), a case

class and a control class. Each sample is labeled, i.e., is known to belong to one of the

classes. The objective is to create a model using supervised learning, such that given a

new unlabeled gene expression profile, it can predict whether its sample belongs to the

case class or to the control class.

Classification of gene expression profiles is already being used successfully for var-

ious clinical purposes. One of the most striking uses is for differentiating breast cancer

patients who may benefit from chemotherapy from those who are likely to overcome the

cancer following only surgical intervention. This is done by using tumor mRNAs from

databanks that follow patients for a long period after the tumor extraction, and dividing

the patients into two classes according to their prognosis, as measured by their survival

times. Since chemotherapy itself is very toxic, and has a lot of adverse effects, physicians

would like to treat with chemotherapy only patients whose state truly requires it.

Gene expression data that are related to good or poor prognosis actually differenti-

ate quite accurately tumors that are more aggressive from less aggressive ones. Vision-

ary researchers kept biopsies from tissues for years after they were taken. Eventually,

they could associate a specific person’s tissue with his or her condition months or years

27

after the biopsy. This way two sets of tissues were gathered, corresponding to two pa-

tient populations - those who survived after a given time, and those who, unfortunately,

did not. Tumors of those who were lucky enough to survive without being treated with

chemotherapy indicate that chemotherapy is not required for the body to eliminate them,

and a classifier based on these data can predict the need for chemotherapy based on a gene

expression profile of a patient’s tumor.

Gene expression classification has been researched for more than a decade now for

various classification tasks. Some early examples are Alon et al [3], classifying colon

cancer types, and Golub et al, who used it to classify leukemia subtypes [27] in 1999.

Later, Singh et al [65] applied it for distinguishing prostate tumors from normal samples.

A large portion of the research was devoted to breast cancer, including pioneering

research by van ’t Veer [72], followed by van de Vijver [71], and Wang [75]. In most

cases, feature selection was employed, and often specific feature selection methods were

developed for the specific task. Prior to gene expression profiling, oncologists followed

consensus criteria based on tumor size, presence of hormonal receptors on the tumor cells’

surface, and patient age, for determining whether a patient required chemotherapy or not.

These are called St. Gallen criteria in Europe, and the US counterparts are called the NIH

criteria.

van ’t Veer et al. showed that while between 82% to 92% of the patients were eligible

for chemotherapy according to the consensus criteria, only 55% of them were eligible

according to their gene expression profile and the classifier criteria. That method cor-

rectly identified more than 91% of the poor prognosis women, a fraction comparable to

the consensus criteria. Still overall, the method had only 27% false positives, compared

to 70%− 90% false positives of the consensus criteria. The methods have been commer-

cialized and validated in a number of followup studies (see e.g. [56]).

28

3
Integration of Prior

Knowledge

During the recent years, several methods have been proposed for integration of prior

knowledge into gene expression analysis. In this chapter, we will review a couple of

them, trying to emphasize the basic differences between them. A number of preliminary

questions have to be answered before integrating prior knowledge into gene expression

analysis, and the different methods differ in the answers they provide to these questions.

Posing and answering these questions will help us in creating a taxonomy of the methods,

allowing us to select the integration method path we would like to take.

First, in Section 3.1 we will ask ourselves why should we try to integrate prior knowl-

edge at all. Following that, in Section 3.2 we will discuss the limitations of current meth-

ods. In Section 3.3 we will discuss the influence of analysis goals on choosing the basic

integration model. After that, we shall review different types of available prior knowledge

in Section 3.4. We shall cover the basic domain-specific assumptions of prior knowledge

integration in Section 3.5, followed by a review of a few extant methods that directly in-

fluence our work in Section 3.6. Section 3.7 presents a taxonomy of the properties of the

alternative approaches.

3.1 Motivation

Before the era of DNA micorarrays and high throughput gene expression analysis,

experts could measure quantities of only a small number of proteins in a cell in one ex-

periment. The expert would choose the proteins suitable for the experiment, and later

analyze the results. With high throughput experiments, we are being led by the data.

When designing experiments, no choice is made for individual genes will be measured.

29

With thousands of measurements for every sample, even an expert would find it difficult

to analyze the output of such an experiment without the aid of data mining methods.

The basic uses of data mining and machine learning for clustering and classification

of high throughput gene expression data, discard a lot of prior biological knowledge, e.g.,

the gene functions and the relations among them. Genes are treated merely as indices,

and no underlying structures known from biology are used. This is somewhat similar to

analyzing text as a long string of characters (or tokens) without using any knowledge of

the syntax and semantics of the language.

All this would not have bothered us if not for the frequent problematic results of such

an analysis. For example, when looking for differentially expressed genes, even follow-

ing established statistical analysis practices, one is often left with hundreds of genes, a

problem known as the ”gene list syndrome”. These genes might be suitable, up to a cer-

tain level, for classification, but the list is often too long, difficult to interpret even by an

expert, and contains too many candidate genes for downstream research.

The difficulty in finding meaning and interpreting such gene lists can be shown in the

differences among results of different classification studies. Although used on the same

type of data and the same disease, these studies often come up with a good set of genes in

terms of classification performance, but surprisingly, the overlap between the sets of genes

selected as features in different studies is very poor. For example, the overlap between

two breast cancer studies, each providing about 70 genes, was only 3 [20]. In addition,

the genes selected in one dataset do not perform well on the other datasets [17].

We would like then to find a list of genes that is more meaningful biologically, and

thus more useful for downstream biological research. These aspirations were also raised

by other researchers, aiming at integrating network data into gene expression analysis.

Rapaport et al. [59] state that their motivation is to achieve biologically significant classi-

fiers, and use network data for analysis purposes rather than for a more traditional purpose

of statistical validation of results. They also mention that gene expression data were used

for network inference in prior works, but there were not many works taking the other

direction, using network data for analysis of gene expression. Chuang et al. [17], the

authors try to find prognostic markers for cancer that are both more accurate in predicting

cancer metastasis, and more directly related to the disease.

30

The two incentives, namely finding genes that are more directly related to disease, and

finding genes that are more accurate in prediction, do not always go hand in hand. Hwang

et al [32] provide a list of four genes that are highly related to breast cancer, but were

not detected as differentially expressed by assays looking for breast cancer prognostic

markers such as van ’t Veer’s seminal work [72]. There are many biological reasons

why a disease’s causative gene may not necessarily be highly differentially expressed

between the control and case groups. It is possible that a relatively small change in the

expression of the gene cascades to larger changes in expression of a large number of genes

downstream of this gene. In other cases, a mutation in the gene might cause no production

of its protein, or the production of a defective protein. At the transcriptional level, high

levels or mRNA are detected both in the case and control groups, and malfunctioning of

the protein in the case group can not be detected.

Another reason for the poor overlap and reproducibility in differentially gene ex-

pression analysis, is the inherent noise in the basic measurements of mRNA levels using

microarrays. Expression levels are highly sensitive to specific probe affinities, and are

influenced by differences in platforms and protocols. Due to the large number of probes

and the relatively small number of samples it is difficult to eliminate the noise by known

methods for noise reduction. This point was demonstrated by Ein-Dor et al. [20] on the

same dataset of [72].

3.2 Limitations of Current Methods

Ein-Dor et al. [20] showed that statistically, even after eliminating possible repro-

ducibility difficulties such as different platforms and protocols, the number of genes that

correlate with desired phenotypes (such as breast cancer metastatic recurrence) is much

larger than the size of reported subsets. They did this by examining only a single dataset

[72], and analyzing different subsets of its samples. Of 5852 genes, they found 1234 to

be significantly correlated with the phenotype (FDR< 10%).

They ranked all genes by their correlation with the phenotype, and partitioned them

into subsets of 70 genes, where the first set contained genes ranked 1 to 70, the second

contained genes ranked 71 to 140, and so on. This way they obtained a large number of

disjoint subsets of genes which they used as features. They trained many classifiers by

31

the same classification algorithm, each time using a different subset of the samples, and

a different subset of 70 genes. Fluctuations in performance as measured by the number

of errors on a given test set were found to be mainly due to the different sample subsets

selected for training, and were less influenced by the subset of features. The performance

of the 10 classifiers resulting from training on the top 10 subsets of genes was also com-

parable.

In another test, they showed that some genes ranked low in their correlation with

the phenotype (with rank larger than 1000) had non negligible probability (> 0.05) to

be selected in the top 70 genes, given a random subset of the samples. Eventually, they

state that searching for one ”master gene” regulating the phenotype is impossible using

the current methods and only a few hundreds of samples, but prognostic tools used for

classification can reach fairly good results using many subsets of different genes. Their

suggestion is to overcome this problem by enlarging the sample size, or dividing the

sample size in advance into known homogenous subsets based on some prior knowledge,

and to analyze each subset separately (as done by [67]).

In a later paper, Ein-Dor et al. [21] calculated the number of samples required in

order to reach a desired overlap on two different studies using an analytic method. As

an example, they give two breast cancer studies, stating that thousands of patients are

required in ordet to achieve a typical overlap of 50% between two predictive lists of

genes.

Another limitation of many standard classification methods is the difficulty to inter-

pret the resulting classifier and its internal behavior. This limitation is presented and

tackled in various papers (e.g. [24]). A linear or non-linear combination of more than

a few features using feature weights fitted by some learning algorithm is hard to inter-

pret. Often, algorithms output weights of tens to hundreds of features, and although the

resulting classifiers may perform well, they are treated as black boxes and their internal

logic can not be followed. The problem also appears in other classifiers such as neural

networks, and ensembles of decision trees, where although one can follow each set of

decisions given a single tree, it is hard to justify the logic of this tree, not to mention the

case where voting is used among a large number of such trees. The solution as offered

by Geman et al. [24] is a new classification algorithm that is looking at pairs of genes,

and has some properties that make it suitable to underlying biology of gene expression

32

profiles, but do not include any prior external data in the learning process.

To sum up, the reasons for integrating prior knowledge into gene expression analy-

sis, and specifically into detection of differentially expressed genes, are to increase the

results’ relevance to disease and to improve prediction performance. This may lead to

better reproducibility of experiments and analysis, and thus to higher acceptance of such

methods by traditional biologists, and to the ability to intelligibly interpret the results and

use them for better downstream research.

3.3 Analysis Tasks and Integration Model

Common gene expression analysis tasks include discovery of differentially expressed

genes, model creation for gene expression profiles classification, clustering of genes or

profiles and bi-clustering of genes and samples. More basic tasks would be noise reduc-

tion and data normalization. Integrating prior knowledge into one of those basic tasks

usually results in transforming the data in a way that can later be used to solve any of the

more advanced tasks, such as classification or clustering. Alternatively, we can choose a

specific advanced task and integrate the prior knowledge in a way that is tailored for this

task. Among the basic tasks that may be considered as preprocessing steps, a large class

of tasks deal with dimension reduction, as. described in Section 2.1.4.

Advantages of knowledge integration in basic tasks could be integration simplicity,

and the use of the method for various advanced tasks. On the other hand, integration

tailored to one of the more advanced tasks could result with better performance in this

specific task. For example, general purpose noise reduction ignores the known samples’

classes in a classification task. This might mean that we put effort in noise reduction on

data that are irrelevant to our task.

3.3.1 Downstream research

In some cases, one of the research long-term goals is to find leads for deeper down-

stream research. While this task is important, the target here is somewhat vague, as it is

hard to quantify what is a good gene for downstream research. Often, genes that seem to

hold informative expression patterns related to the task in hand are also good candidates

33

for additional research. However, gene expression is only one manifestation of protein

activity. There are cases where proteins that are known to play a central role in some dis-

ease are not detectable based on their gene expression. Some works state the discovery of

disease-related genes as one of the motivations behind the classification task [32], while

others focus on forming an accurate classification regardless of the contribution of the

classification features in downstream research. There are also studies that explicitly seek

for disease-related genes based on gene expression regardless of their actual contribution

to the classification task [55, 73, 38].

3.3.2 Use of Statistical Modeling

When performing prior knowledge integration, one can assume an underlying distri-

bution of the data. One option is to assume a model generating the data, which includes

the prior knowledge as parameters. This option can fit in basic analysis tasks such as

noise reduction. Modeling, however, is not limited to the actual expression levels and

the basic tasks. It is also possible to assume an underlying model with hidden variables

corresponding to one of the advanced tasks, such as the cluster to which a gene belongs,

or the differential state of a gene. Such a model is used, for example, by Wei and Li

in [78]. Wei and Li extended a statistical model for the distribution of gene expression

values, by adding hidden binary variables for gene states that are either differentially ex-

pressed or equally expressed between two populations. This way, their model is suitable

for differential expression analysis or supervised classification.

The other integration option, without a statistical model, covers a large range of

heuristics. These include greedy search guided by the prior knowledge as performed,

for example by Chuang et al [17] and Lee et al [44], or direct optimization, using the prior

knowledge as constraints, as formulated by Hwang et al [32] and Tian et al. [70].

Although statistical modeling allows for more rigorous solutions, the model itself

often oversimplifies the real nature of data, and does not fit the real data distribution.

Inaccurate independence assumptions, binarization of states and bad choice of probability

density functions may lead to poor results, and the choice whether to use a model or not

should depend on the nature of our problem. In the scope of classification, there is a

common distinction between two types of classifiers. The first type includes classifiers

34

that learn a model that explains how to generate random samples conditioned on the target

class and use this model for classification (generative models). The second includes those

classifiers that learn the distribution of the classes given the training samples, or even learn

a distribution-free direct map from samples to their classes (discriminative classifiers).

The modeling question is somewhat similar to the choice of a generative model vs. use

of discriminative classifiers. In our case, the feature dimension is very high relative to the

number of samples, and it has been shown that generative models-based classifiers can

outperform discriminative classifiers in such situations [54].

The choice whether to use a statistical model or another integration approach is tightly

linked to the available prior knowledge, which will be covered in Section 3.4 and to the

assumptions regarding the linkage between this knowledge and the expression data, as

presented in Section 3.5

3.4 Available prior knowledge

Due to the requirement to automatically analyze the expression data, without manual

aid of an expert, we would like to use prior knowledge that is already encapsulated in data

that a computer can utilize. Such data should be simple enough so they could be used in

a broad manner, capturing biological facts and notions that are valid across domains, and

are not too specific. As our task is analysis of gene expression profiles, this data naturally

have to do with genes. With this respect, the data can either relate to specific genes, to

the relations between genes, or both. Luckily, today’s bioinformatics community offers a

number such resources, capturing years of biological research in a compact representation

that can be used by computers.

One can distinguish between annotation based repositories that annotate individual

genes, and network based repositories that link pairs of genes according to various types

of relations.

3.4.1 Annotation based repositories

The most widely used gene annotation database is the Gene Ontology, or GO [7].

Roughly speaking, it annotates genes by three categories: Biological Process, Cellular

35

Component, and Molecular Function. Each category holds thousands of terms, usually

grouped in a hierarchical tree structure. The more general the term, the higher it is in

the hierarchy. The terms and annotations are gathered by groups of professional curators

from published scientific papers. The GO annotation is a suitable candidate for automatic

integration of prior knowledge into gene expression analysis, as one can use the terms’

identifiers and their hierarchical relationships for her analysis.

GO is frequently used for statistical coherence validation of gene sets, e.g. in the

TANGO algorithm [64]. If a large fraction of the genes in a set share a common function,

it is a good indicator regarding the set’s coherence.

3.4.2 Network data

Network data represents relations between elements, such as genes or proteins. For-

mally, a network is a graph G = (V,E), where V is the set of nodes (e.g. genes) and E

is the set of edges (relations). Edges can be directed or undirected, they may be weighted

and it is possible to have different type of edges, corresponding to different types of re-

lations. We shall look at two types of biological networks that capture prior biological

knowledge: large scale networks, and pathways.

3.4.2.1 Large-scale networks

Large scale networks contain a large number of elements, with a good coverage of

most possible elements. They hold diverse elements, including many that were not deeply

researched, and thus, such networks usually contain many elements with few details, and

are not very accurate.

Protein-Protein Interaction networks Originally, protein-protein interaction (PPI) net-

works described physical relations between proteins [33, 68, 40, 5, 61]. That is, each node

in the networks represents a protein, and an edge connects two proteins if the two proteins

can physically interact. The physical interactions were obtained through a series of exper-

iments where each protein is tested for interactions with a large number of other proteins,

and observed interactions are assigned a confidence level. This way high coverage is ob-

tained, but the only available level of detail is the possibility of two proteins to interact.

36

Reasons for low accuracy include in-vitro experimental results that might differ from in-

vivo behavior, and the stochastic nature of protein interactions related to the wide range

of bonding affinities. The semantics of an edge can be phrased then as ”protein A and B

might interact”. It does not follow that they do interact, and if A and B might interact and

B and C might interact, it does not follow that the two interactions occur under the same

condition.

Later on, these networks were expanded using more sophisticated high throughput

methods, where each experiment tested for multiple proteins interactions. Next, other

types of relations were considered [36, 66], among them co-citations of proteins, where

an edge is drawn if two proteins are mentioned together in scientific texts, and functional

similarity, where an edge is drawn if two proteins putatively share the same function as

predicted by function prediction algorithms. STRING [36, 66] is an example for such

integrated network developed since 2000 that is also used throughout our work.

3.4.2.2 Small-scale networks

As seen, PPI networks semantics is pretty poor. In order to come closer to the cell’s

behavior at the genomic level, one needs a richer and more accurate representation model.

Gene Regulatory Networks (GRN) These include both genes and gene products as

their basic nodes, and describe signalling relations between these nodes, controlling the

production of proteins and protein complexes within the cell. Often they also include

external inputs that trigger specific signalling pathways. As these networks describe steps

in ongoing process, their edges are directed, and may describe a regulatory relation of

either repression (down-regulating) or induction (up-regulating) of the target proteins.

Gene regulatory networks are related to gene expression in a straightforward manner,

as gene expression microarrays measure a snapshot of gene levels within a cell, while a

GRN can provide for the relations between the different levels. Although this relation

is easy to understand, one should note that there are timing issues that such a relation

neglects. Since usually a microarray reflects a single time point in a cell’s lifecycle, it

might so happen that it catches high level of targets, while their regulators are already

back to their basal level. Nevertheless, for a steady-state regulatory system, when it is

37

relatively stable, it is possible to measure gene expression levels that reflect the underlying

regulatory network.

The timing issue is not the main drawback of such networks when planning to inte-

grate them in the analysis of large scale gene expression data. Because these networks

hold much more detail, they are usually much smaller than PPI networks, and often, if

not always, incomplete. There are small pathways (holding dozens to hundreds of genes)

that were deeply investigated, but as of today, a large-scale regulatory network for human

is not yet available. Instead, we have a good (but sparse) collection of small networks

covering specific processes, or such that all their genes relate to a specific subject, or dis-

ease. SPIKE [22] introduced by Elkon et al. includes such a database, together with data

manipulation, algorithmic analysis and visualization tools.

The KEGG pathways database [37] is a widely used example for such a collection of

small pathways, including many regulatory pathways. Among others, it holds pathways

related to human diseases such as various types of cancer, cellular processes such as

apoptosis (one type of programmatic cell death), and a pathway of the yeast cell cycle. See

Figure 3.1 for an example. KEGG also contains pathways of basic genetic information

processing units such as RNA polymerase, and also pathways related to metabolism and to

drug development. The database also contains genes annotation according to the various

pathways they belong to, and can be used is similar ways to the GO annotation mentioned

above.

Metabolic Networks. Similar to gene regulatory networks, metabolic networks are also

comprised of set of pathways. A pathways comprises of a sequence of chemical reactions

occurring within a cell, describing the step-by-step modification of a chemical to another,

by a set of reactions that involve some other molecules. As mentioned in the former para-

graph, the KEGG database includes metabolic pathways too, and some of the pathways

can include both regulatory and metabolic reactions.

It is worthwhile to note that some highly investigated species, such as the Saccha-

romyces Cerevisiae, already have a large number of both regulatory and metabolic path-

ways that together cover a large fraction of their genomes, and can be considered as a

large-scale network.

38

Figure 3.1: KEGG p53 signaling pathway. An example of a partly known regula-
tory network related to the p53 gene, playing a central role in DNA damage repair
taken from the KEGG pathway database [37]. Semantics include data about suppres-
sion and activation on the RNA and DNA level, external stimulus, and relation to other
cellular processes. Taken from http://www.genome.jp/kegg/pathway/hsa/
hsa04115.html.

39

http://www.genome.jp/kegg/pathway/hsa/hsa04115.html
http://www.genome.jp/kegg/pathway/hsa/hsa04115.html

So far, we have touched several aspects of prior knowledge integration into gene ex-

pression analysis: the analysis purpose, its influence on the modeling choice, and the

available knowledge source. We covered two types of available data - annotation sources

- ontologies, and relations sources - networks, and looked at two main categories of net-

works, namely simple large-scale networks, and more detailed small-scale pathways col-

lections. Next, we will try and link the prior knowledge to the expression data, focusing

on network based data from now on.

3.5 Basic Integration Assumptions

In this section we summarize the assumptions that we make regarding the relation be-

tween gene expression and the network. Our analysis will be based on these assumptions.

Close Genes co-Express

Our first assumption is that genes that are close on the network are likely to have

similar expression. This assumption is made for example by Rapaport et al [59], who

subsequently hypothesize that noisy measurements of gene expression can be denoised to

some extent using the network. They give PPI networks and metabolic networks as an

example, and use the Saccharomyces cerevisiae metabolic network in their experiments.

They justify their choice of a metabolic network, with data that show co-regulation (and

thus co-expression) of enzymes required for the same metabolic process.

Using the overall network topology they relax a more strict assumption used before,

regarding pathways. The stricter assumption states that genes that are members of the

same pathway tend to co-express, treating all genes of a pathway as equal, ignoring the

pathway’s intra-topology. Apart from adding topological consideration within a pathway,

the relaxation overcomes another limitation of the stricter assumption. Pathways may

overlap and by considering each pathway separately, the dependency due to this overlap

is ignored. The relaxed assumption is key to to analyzing large-scale networks and not

only individual pathways.

Although this assumption has been validated to some extent, for example by Jensen

et al in [35], it is questionable, especially regarding regulatory networks. Since regulatory

40

genes can either activate or suppress the transcription of other genes, overexpression of

one gene would not necessarily lead to overexpression of a neighboring gene if the former

is suppressor of the latter.

Close Genes have Similar Differential Expression

A gene is called differentially expressed if its expression level varies markedly be-

tween two sets of samples. Two sample sets can differ, for example, in their phenotype,

(e.g. normal-disease, or case-control), the physiological or genetic state of the ces (e.g.

starvation or gene knock-out), or in the time they were sampled, (e.g. samples from the

same tissue taken in different times). The above assumption states that close genes tend to

have similar differential expression pattern: they tend to change or not to change together

among the two sets of samples.

Such an assumption, together with the criticism on Rapaport’s assumption is pre-

sented by Wei and Li at [78]. Although relaxing the co-expression assumption, the draw-

back of this assumption is that it requires labeled data, and thus is suitable for classifica-

tion or differential expression analysis, but not for basic tasks such as normalization or

noise reduction or for unsupervised tasks such as clustering.

Expression Data reflects Materializations of Interactions

This assumption states that a given regulatory pathway describes the possible inter-

actions among genes, but in a state reflected in real data, an interaction can either occur

or not. Efroni et al. [19] say that an iteraction materialized if it actually occurred in a s

specific sample or set of samples. Such an assumption is closely related to stating that

genes in a known pathway tend to change together, so it can capture differences between

pathway behavior among two sets of samples. However, this assumption captures more

than common change of genes in a pathway: a pathway can generally be active in one

state and inactive in another, or, depending on the state of a specific gene in a pathway,

the consistency level of the pathways with the expression data may differ among the two

sets of samples.

Looking only on the difference of the overall activity levels of genes in a pathway

41

among two states ignores the internal topology of the pathway, but Efroni et al. overcome

this by looking specifically at interactions, and also take into account the difference in

consistency levels of a pathway among the two states. However, since the method is tai-

lored to regulatory networks, and large regulatory networks are currently still incomplete,

it is currently applicable only for small-scale pathways.

3.6 Prior Work

The actual way the assumptions we reviewed in Section 3.5 are utilized vary from one

work to another. For example, the level of differential-expression of a gene can be treated

as a binary variable, or as a continuous one. Assumptions on pathways or subnetworks

can be formalized as a set of pairwise assumptions on all pairs of the pathway’s members,

or on neighboring pairs only. In the next subsections we will review several existing

methods that tackle this data integration task, emphasizing the differences between them.

3.6.1 Greedy Search for Subnetworks as Markers

Two works from the lab of Trey Ideker at UCSD, one by Chuang et al. [17] and one by

Lee et al. [44], offer to substitute the use of expression levels of individual genes with an

aggregate function of the expression levels of a set of genes. In their algorithm, pinnacleZ,

they offer to constraint such sets using network topology [17], or known pathways [44]

and provide a method for greedily searching for such subnetwork markers within the

network. They use cancer data, differentiating between tumors that eventually turned

metastatic, and those that did not, and show improvement in performance of classification

of such tumors using the subnetwork markers.

The authors offer a statistical analysis for determining the significance of the sub-

networks they discover, and show that individual genes that are known to take function

in cancer processes (or Hallmark genes) are included in part of significant subnetwork

markers, although they are not significantly differentially-expressed as individual mark-

ers. Finally, they show that network markers are more reproducible across datasets, and

offer new putative genes discovered in significant subnetworks as related to cancer.

The basic use of a subnetwork as a marker simply takes the normalized (µ = 0 and

42

σ = 1) expression levels of all the genes in the subnetwork, and averages it. Let zij be

the standardized expression level of the i’th gene in the j’th sample, where each gene is

normalized to have mean 0 and standard deviation 1 across the samples. Let M be a set

of gene indices representing a subnetwork of size n. they define the activity score of M

for the j’th sample to be

aj =

∑
i∈M zij√
n

The square root in the denominator is compensating for the fact that we use normal-

ized expression values rather than the actual expression values.

Chuang et al. search for subnetworks whose activity scores are highly correlated with

the labels (that is, have high activity score throughout the samples of one class, and low

activity score throughout those of the other class). They use either Studendt’s t-test or

the mutual information score for measuring this correlation, and call this correlation the

discriminative potential of the subnetwork. In order to find such subnetworks, they build

them by adding one gene at a time. Starting from an initial seed of a single gene, they

look at all its neighbors, and add the one that adds the most to the discriminative potential.

They continue doing so until a stop criterion is met, and repeat the process multiple times

starting from different seeds. This way, for each seed they end up with a subnetwork with

maximal discriminative potential. Next, they score the significance of each subnetwork,

using three different tests and only those networks that passed all three significance tests

are kept for later use.

Testing their method on the Wang [75] and van de Vijver [71] breast cancer datasets

they select a set of features using one dataset, and report AUC scores using cross vali-

dation on the other dataset. Selecting the top discriminative single-gene markers on the

Wang dataset by the method of [75] and testing on the van de Vijver dataset, they reach

AUC of 0.66. For their method, selecting subnetwork as markers, they report AUC of

0.72. For the reciprocal test (selecting on van de Vijver using the method of [71] and

testing on Wang) they improve from 0.59 to 0.62. They also increase the fraction of over-

lapping genes selected on the two datasets from 7% in individual genes, to 13% in genes

that are members of selected subnetwork markers.

In a similar manner, Lee et al. start by obtaining pathways known to be related to the

study from the MSigDB C2 curated gene sets [69], sort their gene members by their t-test

43

score, and greedily add the top ranked genes, one after another until the discriminative

potential of the subset no longer increases. They term their resulting sets as CORGs -

COnditionally Responsive Genes.

The authors report a significant improvement in AUC scores of pathway markers

over individual gene markers in 6 of 7 datasets tested. For example, in one lung cancer

dataset [9] they improve from 0.59 to 0.69, and in another [10], they improve from 0.5

to 0.52. Their improvement in the breast cancer datasets mentioned is comparable to the

one reported by Chuang et al.

Both processes are actually feature extraction methods, and the final subnetworks can

be used as features for various machine learning tasks. Given a gene expression profile,

one obtains a set of feature values corresponding to the extracted subnetworks activity

scores, and use the subnetworks as features instead of using individual genes. For every

sample we now have a subnetwork expression profile instead of a gene expression profile.

The two methods share a similar algorithmic approach. No model is assumed (apart

from normal distribution assumption for expression data and activity scores, as implied

from the use of t-test and the values standardization), and the methods mainly differ by the

choice of network type: large scale PPI network in Chuang’s work and known pathways

in Lee’s work. Both methods fit only labeled data and can be viewed as feature extraction

preprocessing before actual use for tasks such as clustering or classification.

3.6.2 Direct Optimization using a Network Loss Function

In an optimization framework, it is possible to formulate a loss function that tends

to grow as results deviate from the selected network integration assumption. Hwang et

al. [32] and Tian et al. [70] take this approach, using a global loss function for gene

expression profile classification.

For every gene, they group together the subset of samples where this gene is highly

expressed, and another subset of samples where this gene is lowly expressed. Using a

hypergraph terminology, they call such a subset a hyperedge.

Their target is to assign every sample u with a label −1 ≤ h(u) ≤ 1 corresponding

to the range between a negative class (−1) and a positive class (1), and assign every

44

hyperedge e with a weight 0 ≤ w(e) ≤ 1 corresponding to the importance of its gene

to the classification task. Labels and weights are assigned so to explicitly minimize the

weighted sum of three functions:

Misclassification error. Mean square error of h from the true labeling y, i.e.

σi(h(ui)− y(ui))
2

Label disagreement among highly similar samples. Mean square error between pair-

wise samples that are grouped together in the same set (weighted by the set’s

weight), i.e.
1

2

∑
e∈E

w(e)

d(e)

∑
u,v∈e

(
h(u)√
d(u)

− h(v)√
d(v)

)2

where d(e) is the degree of hyperedge e in the graph.

Weight disagreement among adjacent genes in the network. The third term assumes

that given an interaction network, neighbor genes should have a similar weight. Its

value directly uses the network:

1

2

|E|∑
i=1

δi,j

(
w(ei)√
σ(ei)

− w(ej)√
σ(ei)

)2

where δi,j is 1 if nodes ei and ej are close in the network and 0 otherwise, and σ(ei)

is the degree of node ei in the network.

The objective function is to be minimized subject to the following constraints that

constrain the genes’ weights and maintain the hypergraph’s structure:

w(e) ≥ 0 ∀e ∈ E∑
v∈e

w(e) = d(v) ∀v ∈ V

The non-linear optimization is solved using an iterative algorithm named HyperGene.

It alternates between finding an optimal weight function w for a given current labeling f

and finding an optimal labeling for the last resulted weight function.

45

3.6.2.1 Classification and feature selection using HyperGene

By assigning an initial value of 0 to an unlabeled expression profile, the algorithm

can classify it by assigning it with a number close to −1 or close to 1. In addition,

the algorithm also automatically selects features that are important for the classification

task, by assigning them with weights close to 1 and discards non-important features by

assigning them with weights close to 0.

In order to impose the network integration assumption that close genes in the network

should have similar contribution to the classification process, and thus similar weights, the

authors define two genes to be close if they are at most two genes away on the network.

They test their algorithm on three breast cancer prognosis datasets, one of van’t Veer et

al [72], one of van de Vijver et al [71], and one of [75], showing a better performance

than standard SVM methods, and than a label propagation algorithm without network

integration. Specifically, using initial 231 top correlated genes with labels from the breast

cancer dataset of van ’t Veer [72], they report AUC score of 0.893 using HyperGene vs.

0.845 using SVM classification. For an independent set of 325 cancer genes from [63]

on the van de Vijver breast cancer dataset [71] they report AUC score of 0.699 using

HyperGene vs. 0.679 using SVM.

In addition, they compare their gene weights to gene weights based on correlation

between the expression levels of a gene and the class label, showing that known breast

cancer related genes are ranked higher by their method than by mere correlation with

labels. For example, the BRCA1 gene is known to play a crucial role in DNA damage re-

pair, and to significantly increase the probability of a carrier of a mutated gene to develop

breast cancer. BRCA1 is ranked 629 in its correlation with the samples’ labels vector, and

14 in its weight as assigned by HyperGene.

In a more recent work [70], Tian and Hwang expand their work to other types of

data, and also offer an alternative network integration assumption, with an algorithm they

name HyperPrior. Instead of directly requiring pairwise similarity between two nodes in

the integrated network, they use a neighborhood constraint, requiring the weight of a node

to be close to the average weight of its neighbors:

46

1

2

|E|∑
i=1

w(ei)−
|E|∑
j=1

δi,j
σ(ei)

w(ej)

2

In addition, instead of using a binary δi,j as an indicator whether two nodes i and j

are close or not, they offer a continuous alternative, where δi,j is inversely proportional to

the distance between i and j in the network.

The authors compared their results to SVM as well as to the algorithm proposed by

Rapaport et al. [59] (see Section 3.6.4) and a net propagation algorithm without network

integration on two breast cancer gene expression datasets of van ’t Veer et al. [72] and

van de Vijver et al. [71]. On the van de Vijver dataset, Hyperprior achieved AUC aver-

age of 0.692 compared to 0.671 with linear SVM and 0.665 using the spectral approach

algorithm of Rapaport et al. On the van ’t Veer dataset, Hyperprior achieved AUC aver-

age of 0.881 comparing to 0.857 AUC with linear SVM and 0.869 with the algorithm of

Rapaport et al.

3.6.3 Network Guided SVM Regularization

Regularization refers to restricting the effective range of parameters. It is used in

order to solve ill-posed problems or fight overfitting. Zhu et al. [83] offer regularization

of SVM that is based on the network topology.

The soft-margin SVM (see Section 2.1.2) objective function can be re-formulated as:

min
w,w0

{
n∑
i=1

[1− yi(xi
Tw + w0)]+ + λ‖w‖22

}
(3.1)

Where the subscript ”+” denotes the positive part, i.e. z+ = max(z, 0), and ‖w‖22 =
p∑
j=1

(wj)
2. In this formulation, λ is the regularization parameter, and the regularization

term λ‖w‖22 forces the average of weights’ absolute value to be low, that is, close to 0.

Zhu et al. [83] take advantage of this formulation, to introduce an alternative regular-

ization term that takes the network into account. Let E be the set of edges in the network,

and wv be the component in the weight vector corresponding the node v ∈ V . Let us

define a normalization factor sv > 0 associated with every node v. The regularization

term they propose (replacing λ‖w‖22) is:

47

λ
∑

(u,v)∈E

max

{
|wu|
su

,
|wv|
sv

}

The basic idea is decreasing (or eliminating) the weights for neighboring genes. The

objective function pulls one gene toward zero if its neighbor’s weight is zero. According

to the authors, this formulation satisfies our assumption that neighboring genes tend to

contribute (or not contribute) to the same biological process at similar conditions. One

important property of this formulation is that not only it reduces the total weights, but

it does so by zeroing many non-useful features’ weights, and this way performs feature

selection, by taking into account only the non-zero weight features.

The authors tested the formulation on case-control Parkinson’s Disease gene expres-

sion data, using a network borrowed from [47], which combines 33 KEGG regulatory

pathways that are related to neuronal activity, and used the degree, or the square root de-

gree, of a node as the normalization factor sv. They obtained classification performance

comparable to the standard SVM, with more known disease related genes selected by their

network-based SVM than by the standard SVM.

3.6.4 A Spectral Approach

Rapaport et al. [59] present a linear transformation of original expression profiles

that essentially smoothes the expression values over the network. That is, if two genes are

near each other in the network, their expression values will be corrected so that they will

become more similar. They consider this correction as a noise reduction procedure over

the original expression profiles.

The method takes advantage of popular noise reduction techniques used in digital

signal processing based on Fourier transform. The idea is to take the signal, and rep-

resent it in another space, where each component corresponds to a different frequency.

The weight of each component is its coordinate’s value in the transformed vector. Now,

assuming most of the signal data are in the low frequencies and that high frequencies are

mostly noise, we can set the high frequencies’ weights in the transformed vector to zero,

and then use the inverse transformation to get back the original signal, this time without

the noise.

48

The authors argue that the method can be used with any large scale network, and

test it on a metabolic network comprised of KEGG pathways. As they use the pathways

from the well studied Saccharomyces cerevisiae, their network is quite large and relatively

complete. There are no model assumptions, and the method is actually a preprocessing

step that can be applied to data regardless of the subsequent goals, so it can be used on

both labeled and unlabeled data.

After applying the transformation to gene expression data, the authors cluster the

genes according to their transformed expression values and compare the coherence of the

resulting clusters to that of clusters obtained without the transformation. They define a

loss function that measures the ratio between the sum of pairwise distances of genes that

belong to the same KEGG class, and the total sum of pairwise distances, and show that the

loss dropped significantly from 0.444 to 0.43. In addition, they apply supervised binary

classification of the transformed data, and obtain slightly lower results for the transformed

data vs. the original data.

3.6.5 Disease Genes Discovery by Network Analysis of Differential
Expression

As mentioned before, one of our analysis goals is to find candidate genes that may

serve as strong leads for downstream research. In a differential expression context, where

we have labeled data, Nitsch et al. [55] offer to score a gene using its neighbors’ scores,

under the assumption that strong leads tend to be surrounded by differentially expressed

neighbors (sometimes regardless of their own differential expression level).

The authors define a soft neighborhood of a source gene where each gene is assigned

with a weight inversely proportional to its distance from the source gene. Given a differen-

tial expression score for every gene (e.g. based on t-test), the final differential expression

score of the source gene is a weighted average of the scores of all genes in its neighbor-

hood. They set the actual weights based on the Laplacian exponential diffusion kernel

[42]. The kernel allows for computation of a global distance function between every two

nodes that takes into account all the paths and the overall accessibility between the two

genes.

The Laplacian exponential diffusion kernel defines a similarity matrix K between

49

pairs of nodes, that is equivalent to an infinite simulation of a lazy random walk on the

graph, starting from a node v. The similarity between v and u, found in the matrix at Kuv

is the probability to end the random walk at u following an infinite number of steps. At

each step we stay at the the current node with probability β and if we do not stay at the

current node, we have an equal probability to take a step to each of the nodes adjacent to

the current node.

For a given neighborhood of a source gene v, the authors set ru to be the rank of the

distance between nodes v and u. The weight of node u required for the calculation of the

differential expression score of v is set to be e−β·ru , where β is a parameter that defines the

degree of diffusion. The differential expression score of v using its neighborhood N(v) is

then:

s(v) =
∑

u∈N(v)

e−β·ru

Nitsch et al. aim at finding what they term ”disease causing genes”, and do not

look at subsequent learning tasks such as classification or clustering. They present four

case studies, each of a different disease. For every disease they pick a single gene from

literature, and report the ranking and significance of that gene using their method on a

dataset related to the disease. For example, for Cystic Fibrosis they choose CFTR as their

disease gene. Using their method, it was ranked 7 out of 110 candidates. The method is

only applicable on labeled data and the authors do not assume any statistical model. They

use STRING [66] as their network resource.

3.6.6 Statistical Hypothesis Testing Frameworks

From a statistical hypothesis testing point of view, one formulates a null hypothesis

(implying an opposite alternative hypothesis), and tests for the probability that the null

hypothesis is false using standard statistical tools. If it is found to be false with high

probability, the alternative hypothesis is accepted. For example, a statistical test can be

conducted to see whether a gene is differentially expressed or not. In the standard setting,

the result of such a test is independent of the result of similar tests for other genes although

it is known that such dependencies do exist.

50

Wei and Pan [77] take a statistical approach built on a mixture model. The idea of

their mixture model is to provide a probability function that is actually a combination of

a number of basic probability functions that corresponds to a two-step sampling process:

first, pick among the different populations according to some distribution, then pick (or

generate) a sample from the chosen population according to a population-specific distri-

bution.

Under a mixture model assumption, it is possible to estimate the prior probabilities

and parameters for each of the populations given a set of samples. This may be done

using methods such as Expectation-Maximization (EM). Applying the standard mixture

model to differential expression of genes, we have two populations of genes - differen-

tially expressed (DE) and equally expressed (EE), each with its own probability density

function, f4 and f=, respectively. A gene has the prior probability π4 to belong to the

differentially expressed population and probability π= = 1− π4 to belong to the equally

expressed population. The marginal distribution function, or the probability that a gene i

will take the expression level zi is:

f(zi) = π4f4(zi) + (1− π4)f=(zi)

Here, all genes have the same prior probability to be differentially expressed. One

option for the actual function f= can be based on the hypothesis that all expression values

of the equally expressed genes come from a single population, and for f4, it can be based

on the hypothesis that expression values of the differentially expressed genes come from

two populations - either from the case population or the control population. Note that the

latter is also a mixture model (within the DE genes).

Wei and Pan propose that every gene will have its own prior probability that it is

differentially expressed. That is, instead of one π4 for all genes we now have for each

gene i = 1, . . . , p its own parameter πi,4. However these prior probabilities are not

independent, and Wei and Pan assume a simplifying Markovian assumption: the prior

probability that a gene is differentially expressed given the prior probabilities of all other

genes, depends only on the prior probabilities of its neighbor genes.

The network integration assumption they use is then that neighbor genes are more

likely to be in the same state - either both DE or both EE. They assume a full statistical

51

model for both the expression data (coming from a mixture of normal distributions), for

the prior probability of genes’ states, and for the relation between these prior probabilities

(the Markovian assumption). They fit the model parameters using Bayesian methods,

and based on the fitted parameters they can ultimately get the probability of a gene being

differentially expressed given the data, and used various thresholds on this value, for their

final decision.

The authors used ConfidentNet [46], a probabilistic functional Saccharomyces Cere-

visiae network, assembled by Lee et al. from various sources. Although they used dif-

ferential expression examples throughout they work, they eventually applied the data to a

different gene expression analysis task, transcription factor (TF) target prediction. They

focused on a single transcription factor and conducted a ChIP-chip experiment - an exper-

iment that uses microarray technology in order to quantify the occupancy of genome-wide

promoter regions by the selected TF. In the standard setting, the quantities obtained from

the ChIP-chip experiment are assigned with a statistical significance level based on their

assumed underlying distribution.

Wei and Pan collected from literature a set of genes that are known to be regulated

by the chosen TF and another set of genes that are unlikely to be regulated by it. Based

on the ChIP-chip results, they used their method to predict the set of genes regulated by

the chosen transcription factor, and compared their set to the control sets they collected,

measuring sensitivity and specificity of their prediction, and producing a ROC curve.

When the specificity ranged from 0.4 − 0.9 their spatial normal mixture model gave a

higher sensitivity than that of the standard normal mixture model.

Another statistical modeling approach is offered by Wei and Li [78]. Instead of using

prior probabilities for each gene to be either differentially expressed or equally expressed,

they assume that each gene has a true unknown binary state, either differentially expressed

(DE) or equally expressed (EE). They use a standard statistical hypothesis testing frame-

work for testing a gene for being differentially expressed, and integrate the network by

assuming that genes that are neighbors in some pathway are more likely to be in the same

state.

As for the expression data, they too assume that every expression of an EE gene is

sampled either from a single distribution that is valid for all the samples, and every DE

52

gene expression is sampled from one of two distributions - one for the case group and

another for the control group.

The network effect in the model makes it more likely that neighbor genes share the

same state, by using a Random Markov Field model: For a given vector of states s, let n4

and n= be, respectively, the numbers of differentially expressed and equally expressed

genes. The probability for getting this vector is a function of n4 and n=:

p(s) ∝ exp(γ4n4 + γ=n= + βn(4,=))

where n(4,=) is the number of edges in the network whose endpoint nodes are in

different states, and γ4, γ= and β > 0 are the model’s parameters.

Wei and Li use an iterative method for selecting the most likely vector of states s in

the following way:

1. Obtain an initial estimation ŝ of s using t-test

2. Estimate the set of parameters θ of the expression data distribution by finding θ̂ that

maximize the likelihood of the expression data given the state vector ŝ.

3. Estimate the parameters γ4, γ= and β that maximize the likelihood of the estimated

state vector given the network.

4. Obtain a new state vector by updating the gene states one gene after another, such

that the new states maximize the joint likelihood of this gene’s expression levels

given its state and the states of other genes in the network.

5. Go to step 2 until a stop criterion is met.

The authors used a network comprised of 33 human regulatory pathways from the

KEGG database, that contain both regulatory and PPI information. They applied their

method on two breast cancer prognosis datasets (Wang [75] and Müller [52]) assuming a

Gamma-Gamma model for the expression levels distribution [53, 39]. They show that at

the same significance level, their method is able to find 103 differential expressed genes,

while a standard Gamma-Gamma model without network integration finds 82 genes, and

a simple t-Test filter results with only 4 significant genes.

53

Both works initially aim at improved modeling of labeled gene expression data by

the integration of network data, under the assumption that the differential expression level

of two neighbor genes tend to be similar. Both algorithms do not try to solve a specific

classification or clustering task, and their output may be used as feature selection for sub-

sequent tasks. Both papers and models are conceptually similar, with a slight difference

at the basic assumptions - Wei and Li treat the differential expression trait as discrete (ei-

ther differentially expressed or not), while Wei and Pan assign a probability to it. Minor

differences are also found in the choice of distribution function for the expression data -

Normal vs. Gamma distribution. Finally, the algorithms used for parameter estimation

are different.

3.7 Algorithms Taxonomy

We chose to summarize the properties of the algorithms discussed above along the

axes that define the basic integration questions we asked earlier:

1. What is the analysis goal or task?

2. What type of prior knowledge (network) is used?

3. Does the method assume a statistical model or not?

4. Does the algorithm require labeled data (i.e. is it supervised) or not?

5. What is assumed regarding the influence of the network on the expression?

Table 3.7 provides a summary and allows comparison of the methods.

54

Task Network
N

oi
se

re
du

ct
io

n

Fe
at

ur
e

se
le

ct
io

n

Fe
at

ur
e

ex
tr

ac
tio

n

C
la

ss
ifi

ca
tio

n

C
lu

st
er

in
g

PP
I/

ST
R

IN
G

/F
un

ct
io

na
l

R
eg

ul
at

or
y

Pa
th

w
ay

s

St
at

is
tic

al
M

od
e

R
eq

ui
re

s
la

be
le

d
da

ta

In
te

gr
at

io
n

as
su

m
pt

io
n

Chuang Y Y Y Y 1, 2
Lee Y Y Y Y 1, 2

Rapaport Y Y Y Y Y 1
Wei and Li Y Y Y Y Y Y 3

Efroni Y Y Y Y Y Y 4
Wei and Pan Y Y Y Y 3

Zhu Y Y Y 3
Nitsch Y Y Y 5
Hwang Y Y Y 6

Tian Y Y Y 6

Table 3.1: Taxonomy of Network and Expression Data Integration Methods. The
table summarizes the different aspects of network and expression data integration in the
different methods. 1. Close genes co-express. 2. Expression of subnetworks is more
robust. 3. Close genes co-differentially-express. 4. Expression reflects materialization
of regulatory interactions. 5. Causative genes are surrounded by differentially expressed
neighbors. 6. Close genes contribute similarly to classification model.

55

56

4
Results on Network Impact

In this chapter we will present results on the relations between network data and

expression data. In Section 4.1 we carry out an analysis showing support for some of

the integration assumptions discussed in Chapter 3. In Section 4.2 we test for the actual

impact of network integration on two of the methods reviewed in Section 3.6. Both results

lead us to the choice of our working assumptions.

4.1 Informativeness of Integrated Network Data

In this work, we chose to focus on network data, and particularly on data that represent

relationship between pairs of genes or proteins. STRING [36], mentioned earlier, is such

a network, combining curated data to provide both physical and functional interactions

between proteins. We first tested whether the level of co-expression of gene pairs whose

corresponding proteins are close in the STRING network is higher than that of a random

pair of genes.

Let x and y be two vectors of expression measurements of two genes over a given

set of samples. To measure the level of co-expression of two genes we used the sample

correlation coefficient based on the Pearson correlation. Let xi and yi be expression mea-

surements of the two genes on the i’th sample. The sample correlation coefficient rxy is

defined as:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy

where x̄ and ȳ are the sample means of x and y, and sx and sy are the sample stan-

dard deviations of x and y. the Pearson correlation is 1 for positive linear dependency

57

Figure 4.1: Toy example of gene pair populations. Among the adjacent genes in the
network are: pair c, pair d and pair e. Pair a is 2 nodes away, pair b is not connected
at all and thus considered as 7+ nodes away. Pair c is considered more connected than
pair d, as it is also a member of a 3-clique formed by node g. This pair is described as
adjacent member in one 3-clique. Pair e has an even higher connectivity, and is described
as adjacent member in three 3-cliques, using the three 3-cliques formed by three nodes
marked f.

between the vectors and −1 for negative linear dependency. The further away the vectors

are from linear dependency, the closer the correlation is to 0. Although in some cases de-

pendency between expression vectors of two genes can be non-linear, we still expect high

correlation in many biological cases, such as between proteins levels of members of the

same complex, or those that share similar regulation factors. Even in the cases of other

monotonic non-linear dependency, such dependency can be still visible in the Pearson

correlation score, albeit with lower values.

In order to account for both negative and positive correlation we used the absolute

value of the Pearson correlation, comparing distributions of correlation values sampled

from various gene-pairs populations. As a baseline we sampled random pairs from the

population of all gene pairs that are neighbors in the network, comparing the distribution

of correlations to non-neighbors (distant) pairs. We also looked at more specific popula-

tions of pairs according to their distance - pairs that are 3, 4, 5, 6 nodes away, and pairs

that are 7 or more nodes away, including nodes that have no path between them.

Distance is a highly local measure, and does not take into account the existence of

multiple paths between nodes. We were also interested in a connectivity measure that

58

Pair population (# of pairs sampled) Mean correlation Significance
Adjacent-baseline (15340) 0.12302 N\A

Distant (19978) 0.11078 7.24× 10−31

2-nodes away (654) 0.11746 6.99× 10−2

3-nodes away (3171) 0.11527 1.33× 10−5

4-nodes away (7733) 0.11167 7.24× 10−18

5-nodes away (4453) 0.11115 1.68× 10−14

6-nodes away (1207) 0.11263 9.56× 10−5

7+ nodes away (2755) 0.10857 9.65× 10−15

Adjacent members in 1 3-clique (5625) 0.1303 1.53× 10−5

Adjacent members in 2 3-cliques (2683) 0.13555 1.84× 10−7

Adjacent members in 3 3-cliques (1485) 0.14518 3.13× 10−11

Adjacent members in 5 3-cliques (622) 0.15377 8.83× 10−9

Table 4.1: Mean correlation among different gene pairs populations. The right column
measures the probability that the samples of the population and of the baseline came from
the same distribution.

will take into account multiple connections, under the assumptions that due to the noisy

nature of large scale networks, multiple paths strengthen the confidence in the relation

between two nodes in the network. To this end, we looked at few additional gene-pairs

populations - adjacent genes to those that are also members in one or more 3-cliques. We

gathered those that are members in 2, 3, 4 and 5 3-cliques. A toy example illustrating the

different gene-pair populations samples can be seen in Figure 4.1.

4.1.1 Distribution of Correlation Between Pairs

We measured the gene expression correlation on the Wang [75] breast cancer dataset,

looking at the different gene-pair populations sampled from the STRING [66] network.

The STRING human network used has 6243 genes (nodes) and 19102 interactions (edges).

Overall, the mean correlation of adjacent genes is slightly higher than that of distant (non-

adjacent) genes with r̄ = 0.1107 for distant genes, and r̄ = 0.12302 for adjacent genes,

but this difference has high significance of p-value< 7.24× 10−31. As seen in Table 4.1,

the correlation is stronger among genes that are not only adjacent, but also members of

3-cliques, and the number of 3-cliques is a good indicator of the strength of correlation.

To evaluate the distribution of correlation for each pair category, we plotted their

distributions. Figure 4.2 summarizes the results. Looking at the high correlation range,

we can see that the percentage of adjacent genes that exhibit high correlation values, is

59

(a) (b)

Figure 4.2: Dependence of gene pair expression correlation on their physical close-
ness. Percentage of pairs exhibiting certain levels of correlation in selected pair popula-
tions compared to the percentage of pairs with the same correlation levels among adjacent
pairs. (a) The graph shows three levels of correlations (in their absolute values) in a num-
ber of gene-pair populations. For each level and selected population, the bar shows the
ratio between the percentage of gene pairs exhibiting the specified correlation level in the
selected population, and the percentage of gene pairs exhibiting that absolute correlation
value in the adjacent pairs population. At the low correlation level (|r| < 0.2) there are
relatively more distant pairs, and at the high range (|r| > 0.3) there are relatively more
adjacent pairs. For visualization, the adjacent pairs population is included as well. In
parentheses - the number of pairs sampled in each population. (b) The same presentation
for populations of gene-pairs that are also members of k 3-cliques, for different k’s. Here,
the opposite picture is obtained. For the low correlation range (|r| < 0.2), there are rela-
tively more adjacent pairs than 3-cliques pairs. For the high correlation range (|r| > 0.3),
the greater the number of 3-cliques the pair shares, the higher the percentage of highly
correlated pairs.

higher than that of distant genes, and this percentage decreases with gene distance (Figure

4.2(a)). The opposite is true for the low correlation range. Adjacent genes that are also

highly connected, as measured by their membership in multiple 3-cliques, show even

higher percentage in the high correlation range (Figure 4.2(b)).

60

4.2 Does the Network Make a Difference?

Although networks are indeed informative with regard to co-expression, it is not clear

whether their use in the different methods covered above in Section 3.6 is actually re-

sponsible for the improvement in results. In some cases, it is hard to compare results of

methods that do use network and those that do not. One example for these difficulties

can be seen in [78]: Searching for differentially expressed genes, at the same significance

level, Wei and Li find more genes with network data integration than without it. However,

computing the significance level for different methods might not be comparable, and one

can question the assumption that a longer list is better at all.

One more example can be seen in the work of Chuang et al. [17] (see Section 3.6.1).

There, the authors extract subnetworks as features, such that each feature is actually con-

structed of a number of genes. Performance of feature-selection methods should be com-

pared when all methods use a similar number of features. The question here is whether to

compare the performance based on the number of features (subnetworks), or based on the

number of genes constructing these subnetworks, which is an order of magnitude larger.

Last, many of the algorithms include improvement potential that is not only due to

the network integration. Chuang et al. introduce a greedy search that is guided (or con-

strained) by the network topology. Is the improvement they show due to the greedy search,

the network, or both? To answer this question, one needs to eliminate the network influ-

ence on the algorithm. One way to do it is to apply the algorithm on random networks,

and check whether the improvement of the true network is significant or not. Chuang et

al. tested whether their resulting features are significant by comparing the score of each

feature (subnetwork) seeded at node v to scores of features obtained by using three differ-

ent randomization procedures. At each procedure, they built a set of features that served

as the background set for estimating the significance of their real features:

1. Subnetworks that were extended randomly (i.e. not in a greedy manner) starting

from node v

2. Subnetworks that were extended randomly (i.e. not in a greedy manner) starting

from random nodes.

3. Subnetworks that were extended greedily, according to a a random permutation

61

labeling of the samples.

All of their significance tests were based on the true network, and they report im-

provement due to the network use.

We compared the performance of Chuang’s feature selection method with the STRING

[36] network to that of their method with the STRING network randomly permuted. Per-

mutation was done by renaming the network’s nodes, so that the topology of the network

is preserved, but any correlation between expression and network is removed. We report

the average of 50 different permutations, vs. 50 runs of the original algorithm, using the

same number of features (200). There are two elements of randomness in the algorithm

that required us to run the original algorithm multiple times for comparison. The first

includes the significance tests: Although the algorithm is deterministic, and will always

find the same subnetwork starting from a specific seed, the calculation of significance

level of the resulting subnetwork is based on sampling and hence may be different every

time. The second source of randomness is due to the different folds used to measure the

classification performance.

The test was conducted on two breast cancer datasets [75], [71] using two classifica-

tion algorithms. As a performance measure we used the AUC score. As seen in Figure 4.3,

there is no significant difference between the results using a real network, or a permuted

one.

We also conducted a single run comparison on eight more datasets, using two different

networks - STRING [36] and a PPI network from the IntAct database [40, 5]. The results

were similar (Figure 4.4).

We suspect then, that the improvement shown by Chuang et al. is due to the greedy

search the algorithm includes rather than due to the real network topology. The network

topology merely limits the subset of nodes (genes) that are reachable from every node. If

this subset is large enough, the greedy algorithm will find a combination of genes within

this subset that will improve the classification results, regardless of the actual content of

this subset.

A similar test on the HyperGene algorithm [32] (see Section 3.6.2), resulted with a

significant performance decrease when substituting the network with a permuted one. On

62

Figure 4.3: Algorithm performance is indifferent to the underlying network. The
figure presents the classification performance based on features selected by the PinnacleZ
algorithm - AUC average and standard deviation of 50 runs of the PinnacleZ algorithm
from Chuang et al [17] using the STRING network [36] and of 50 different permutations
of the network. Four results are shown from two different classification algorithms and
two different datasets.

63

Figure 4.4: Performance of PinnacleZ algorithm on the original and permuted net-
works. The figures present the classification performance of a Naive Bayes classifier,
based on top 200 features selected by t-Test and the PinnacleZ algorithm with the orig-
inal network and with a randomized network. The test was repeated using two differ-
ent networks (STRING [36] and human PPI network [40, 5]) on eight different datasets
([57, 60, 43, 30, 6, 45, 58])

the van’t Veer dataset [72], the HyperGene algorithm with 50 random networks resulted

with AUC scores ranging from 0.7024 to 0.8095. 5 fold CV score using a real network

resulted with an average AUC score of 0.845 for SVM and 0.893 for the HyperGene

algorithm. Figure 4.5 shows the results. In this case it seems that the topology of the

network does play a role in the improvement achieved. In Section 6.2.3 we show similar

results when conducting the same test on our new method presented in Chapter 5.

4.3 Derivation of Working Assumption

Encouraged by the validation of informativeness of relations between gene pairs to

expression values, we put together our working assumption for integrating network data

into the task of gene expression profiles classification.

First, since our problem is a supervised learning problem, we require that two genes

that have similar expression profiles also contribute similarly to the classification model.

Following the observation that highly connected genes are more likely to share similar

expression profiles, we concluded, based on the improvement observed in the HyperGene

64

Figure 4.5: Performance of HyperGene algorithm on the original and permuted net-
works. The figures present the classification performance of SVM classification, the
HyperGene algorithm with the original network supplied by [32] and the average and
standard deviation of 50 runs of the HyperGene algorithm with a randomized network.

algorithm, that neighboring genes should exhibit similar contribution to the classification

model.

Second, as shown by the 3-clique membership influence, the relation between two

genes should not be limited to their pairwise adjacency in the network. It should also take

into account connectivity as measured by alternative (short) paths between the genes,

rather than merely by their shortest-path distance. In chapter 5 we describe how we turn

these findings into a practical algorithm for supervised learning with prior knowledge

based on network data.

65

66

5
A New Network-Based

Kernel and Transformation

In Section 2.1.2 we introduced SVM classification. SVM explicitly minimizes the

norm of the features’ weight vector. Later on, in Section 3.6.3 we showed one method by

Zhu et al. [83] that regularizes SVM by optimizing the weight vector so that assigning

a low weight to one feature will push the algorithm to assign low weights also to its

neighbors. Instead of minimizing the norm of the features’ weight vector, the authors

construct a different weight vector, with one weight per edge in the network. The weight

corresponding to an edge is assigned to be the maximum among the normalized weights

its two endpoint features. This way, in an indirect manner, if the algorithm wishes to

assign a small or zero weight to one feature, the objective function will only benefit from

this if the feature’s neighbor’s weight will also be small or zero.

Hwang et al. [32] (see Section 3.6.2) explicitly minimize the mean square pairwise

difference of all pairs of neighbor genes’ weights in a non-SVM framework. We propose

here to explicitly add the mean square pairwise difference to the SVM objective function,

and directly minimize it while maximizing the margin. We would like to regularize the

weights so that adjacent nodes will be assigned with similar weights, and offer a tradeoff

between the maximal margin, and this regularization. In fact, our formulation is not

restricted to the use of a graph as a binary source of dependencies between features and

can use any non-negative gene-gene similarity matrix. The method, as will be shown

hereafter, reduces to a linear transformation of the original data that allows us to use

current SVM formulation, algorithms and implementations for building and testing our

classification model.

67

5.1 SVM Regularization via Feature Similarity

Recall SVM formulation for the linearly separable case:

min
w,w0

{
1

2
‖w‖2

}
subject to

(wTxi + w0) · yi ≥ 1 for any i = 1, . . . , n

let A be a symmetric p× p matrix with non-negative values, where Ai,j = Aj,i stands

for the similarity level between features i and j. In order for the weights to be closer for

features that are more similar, we wish to minimize the following mean square pairwise

difference expression:

1

2

∑
j>k

Aj,k(wj − wk)2

We add this expression to the objective function, introducing a non-negative tradeoff

parameter β ≥ 0:

min
w0,...,wp

{
1

2

p∑
i=1

w2
i +

1

2
β

p∑
j=1

p∑
k=j+1

Aj,k(wj − wk)2

}
(5.1)

Let Ã be a p×p diagonal matrix with the sum of row j ofA atAj,j , Ãj,k = δj,k
∑

lAj,l.

Here δj,k is the Kronecker delta with δj,k = 1 if j = k and δj,k = 0 otherwise. The matrix

notation of 5.1 is:

min
w,w0

{
1

2
wTw +

1

2
βwT (Ã− A)w

}
(5.2)

For simplicity, we denote B = Ã−A. Note that for a simple adjacency matrix based

on a graph, where Ai,j = 1 if i and j are adjacent and Ai,j = 0 if they are not, Ã is a

diagonal matrix with Ãi,i being the degree of node i, and B is known as the Laplacian

Matrix of the graph. The newly added term captures the assumption that close genes are

68

more probable to co-express and thus to similarly contribute to the learned classification

model.

Although constructed of many local relations between adjacent features only, the term

also gives room to a more global view of connectivity, as highly connected features, such

as those described in Section 4.3 have multiple short paths between them and in turn

have more local relations in the given summation, increasing their overall weight in the

objective function.

The solution to the original SVM quadratic programming problem is obtained by

transforming the optimization problem to the dual form. In order to get to the dual form,

we will introduce Lagrange multipliers α1, . . . , αn, αi ≥ 0, one for each constraint (cor-

responding to a single sample point).

The primal Lagrangian is:

LP =
1

2
wTw +

1

2
βwTBw −

n∑
i=1

αi((x
T
i w + w0)yi − 1)

LP =
1

2
wT (I + βB)w −

n∑
i=1

αi((x
T
i w + w0)yi − 1) (5.3)

In order to reach the same solution of 5.2, we need to find a saddlepoint of LP where

it is maximized with respect to w, w0 and minimized with respect to the Lagrange multi-

pliers α1, . . . , αn. We differentiate LP with respect to w0 to get:

∂LP
∂w0

=
n∑
i=1

αiyi

and set it equal to 0 to get:

n∑
i=1

αiyi = 0 (5.4)

We differentiate LP with respect to w to get:

∂LP
∂w

= (I + βB)w −
n∑
i=1

αiyixi

69

and also set it equal to 0 to get:

w = (I + βB)−1

n∑
i=1

αiyixi (5.5)

By substituting w into 5.3 we get the dual from of the Lagrangian:

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i (I + βB)−1xj (5.6)

Consider the matrix B. From the equivalence of 5.1 and 5.2 it follows that wTBw =∑
j>k Ajk(wj − wk)2 Since Ajk ≥ 0 for all j, k it follows that wTBw ≥ 0 for all w 6= 0

and hence B is positive semidefinite. Since β ≥ 0, I + βB is positive definite, and

therefore it is invertible, and the inverse matrix (I+βB)−1 is also positive definite. Since

I + βB is symmetric, (I + βB)−1 is also symmetric. Being both positive definite and

symmetric, (I + βB)−1 can be decomposed using Cholesky decomposition [26]: there

exists an lower-triangular matrix L such that (I + βB)−1 = LLT . Plugging LLT into 5.6

yields:

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(x
T
i L)(LTxj) (5.7)

It is possible, then, to transform the sample vectors xi using L as a linear transforma-

tion to obtain a set of transformed samples where xnewi = xiL. Now we can run the SVM

optimization procedure in order to learn a model of the transformed samples. In order to

classify a new unseen sample, we should first transform it in the same manner, using L

and then use the model to classify it.

5.2 Transformation Analysis

The matrix Q = (I + βB)−1 defines a kernel replacing the default L2 norm with a

new norm that takes into account the graph structure and edge weights according to the

tradeoff parameter β. The matrix Q, which we analytically derived from our regularized

SVM formulation, was first introduced in [25] in the scope of electronic engineering and

chemistry. It has been investigated independently by [49] and in a series of papers by

70

Chebotarev et al. including [15]. It is a doubly-stochastic matrix - the sum of every row

and every column is 1. Articles [14, 15] provide two probabilistic interpretations for its

entries.

For sake of simplicity, we will consider the case where β = 1 and restrict A (the

initial similarity matrix) to be an adjacency matrix representing a simple graph. The first

interpretation relates to spanning forests of the underlying graph. A forest is a graph

without cycles. A spanning forest of a graph G is a subgraph of G that contains all of its

nodes, and some of its edges, and is a forest. A spanning rooted forest of G is a spanning

forest of G where at each connected component of the forest one node is marked as its

root. Note that each connected component of a spanning forest is a tree. Let Fi,j be the

number of spanning rooted forests of G where j is in a tree rooted at i. Let F be the total

number of spanning rooted forests of G, then Qi,j =
Fi,j

F
.

The second interpretation relates to random walks on G with p nodes. Define a ran-

dom walk with a random number of steps as the following process: Starting at node i, at

each step, one performs a Bernoulli experiment with success probability q = 1
p
. Upon

success, the random walk stops. Upon failure, the walker moves to an adjacent node with

equal probability for all neighbors, and the process is repeated. Qi,j is the probability to

stop at node j following a random walk as defined above, that started at node i.

Both interpretations give insight as for the entries of Q. Qi,j is a connectivity or

proximity measure between two vertices that takes into account both their distance and

their surrounding neighborhood. The closer the vertices are, the greater the probability

that they will fall in the same tree for a randomly selected forest. For the second inter-

pretation, the random walker is more likely to stop at nodes that are closer to the starting

node.

In the same manner, nodes with many paths between them have more trees that can

span them, and thus are more probable to reside in the same tree for a randomly selected

forest. For the same reason, the random walker has greater chance to reach (and eventually

stop) at a node that is connected to the starting node by multiple paths.

71

5.2.1 Cholesky decomposition of Q

As described, it is possible to decomposeQ into a product of a lower triangular matrix

L and its transpose.

Let L be a p × p lower triangular matrix, where Q = LLT . Since we use L as a

linear transformation on the original data samples, every column of L stands for a set of

coefficients in a linear combination of all values of a given data sample. The transfor-

mation constructs a new set of meta-features, such that the value of every meta-feature is

obtained as a weighted average of values of all original features. We would like to explore

the derivation of the set of weights from the underlying graph.

Let us look at the basics of the Cholesky decomposition:


Q1,1 Q1,2 . . . Q1,p

Q1,2 Q2,2
... . . .

Q1,p Qp,p

 =


L1,1 0 . . . 0

L2,1 L2,2 0
...

... . . . 0
Lp,1 . . . Lp,p



L1,1 L2,1 . . . Lp,1

0 L2,2
...

... 0
. . .

0 . . . 0 Lp,p


Since L is lower triangular, we can see that the first meta-feature, described by the

first column, is a combination of all features. Then, we discard the first feature, so that

the next column is a combination of all features but the one discarded in the previous

column. We will term the features corresponding to Qi,i as pivot features, so that every

column has a pivot that is discarded in the next row. See Figure 5.1 for a toy net example

that illustrates the derivation of L, and demonstrates its final structure and some of its

properties.

5.2.1.1 Dominance of Pivot Feature

The values on the diagonal ofQ hold some interesting properties due to [50] and [49]:

• Qi,j ≤ Qi,i

2
for every node i and j. Since the matrix is doubly stochastic it is also

true that Qi,j ≤ 1
2

for all i 6= j.

72

(a) Step 1: A toy net example with its corresponding
adjacency matrix. Ai,j = 1 ⇐⇒ (i, j) ∈ E(G).
Empty entries denote the value 0.

(b) Step 2: The matrix I + βB, (β = 1) of the same
graph, where B = Ã − A is the graph Laplacian (Ã
is a diagonal matrix, Ãi,i = di is the degree of node
i).

(c) Step 3: Q, the inverse of the matrix from step 2,
namely Q = (I + βB)−1. The matrix is symmetric,
and doubly stochastic - every row and every column
sum to 1. One can see the dominant values on the
diagonal, with decreasing values at each column as
the nodes are further away from the node associated
with the value on the diagonal. The value associated
with two nodes that reside in two different connected
components is 0. Values are multiplied by 103 for
clarity of presentation.

(d) Step 4: The transformation matrix L, obtained
by Cholesky decomposition of Q, Q = LLT . It
is not doubly stochastic, but keeps the dominance
property of the values on the diagonal (pivot nodes).
The columns are used to build linear combinations of
feature values. The first column represents a meta-
feature of the first pivot, and is a linear combina-
tion of all nodes (in the connected component). In
the next column, the previous pivot is discarded, and
does not play a role in the meta-feature of the second
pivot. Here too, values are multiplied by 103.

Figure 5.1: Illustration of features similarity transformation via a toy net example

73

• Qi,i ≥ 1
1+di

where di is the degree of node i.

These two properties show the dominance of the pivot feature for a given row in Q

when used as a kernel matrix: That the dominant part for every row is still the original

feature associated with this row, and if the pivot feature has a small number of neighbors

it is bound to be more dominant.

We conjecture that the transformation matrix L holds similar dominance properties

of the pivot feature, although L is not doubly stochastic. We observed the properties in all

the examples that we tested, but could not prove them.

5.3 Dimension Reduction

In the above setting, for a given sample, p original feature values are transformed into

pmeta-feature values, each of which is a weighted average of other features’ values. If we

generate the meta-features according to the order of the rows of L, the i’th meta-feature is

a linear combination of exactly p− i+ 1 features (due to the triangular form of L). Every

meta-feature is associated with a single original feature, the pivot feature.

In a scenario of gene expression data, where the dimension of p (the number of genes)

is much higher than n (the number of samples), many features are redundant or non-

informative, and can harm the analysis, as they introduce noise to the system. We expect

that relying on all p original genes would retain high level of noise, and thus we need

to reduce the number of genes we base the analysis upon, and adapt the transformation

accordingly.

Recall that dimensionality reduction can be obtained by either feature selection or

feature extraction, and that two of the advantages of a low number of features is inter-

pretability and cost. For practical purposes, we focus in this work on feature selection

methods that also contribute to those two aspects. For example, in order to produce a

diagnostic chip tailored for a specific disease, it is desirable to reduce the number of mea-

sured genes so that every measurement will be cheaper and more accurate. At the same

time, we would like the resulting set of features to be interpretable by experts and allow

for downstream research, which is bound to start from a small number of genes.

74

Adapting our method to the reduced dimension can be done in one of two approaches.

In early selection, we first select the subset of features to work with and then adapt the

method to use only a subset of the features. In embedded selection, we embed selection

of the features within the method. A third approach, late selection, would be to first

transform the data using our transformation matrix L, and then select meta-features by

using any feature selection method on the transformed data.

Each approach has its pros and cons: in early selection and late selection, we have

the advantage that any off-the-shelf method for feature selection can be used. The main

disadvantages of early selection are the requirement to adapt the method to work with a

small number of features, and the fact that the prior knowledge from the network data

does not influence the selection procedure. Embedded selection requires the development

of a tailor made method, and does not enable us to use proven and well established fea-

ture selection methods and choose the most suitable among them. Late selection results

with selection of meta-features, but essentially does not reduce the number of original

features we rely on. This is in contrast to our goal at the scenario of gene expression data

mentioned above, and thus late selection will not be discussed here.

5.3.1 Early Selection

In early selection, we first select a subset of the features of size m, based on the

feature values alone. We shall call that subset the initial feature set. A naive approach

would be to replace the graph G with a subgraph of G that contains the selected features

only and create the transformation matrix L based on the subgraph alone. Although it

requires no modifications in the algorithm, we lose almost all the graph data. Only edges

that connect two of the selected features will remain, and the global topology of the graph

will not be encoded into the transformation matrix. Therefore, this naive approach is not

acceptable.

Another option is to build the transformation matrix L based on the whole graph,

and adapt it to the selected features by keeping a submatrix that is related to the selected

features. Three simple available submatrices define three variants of our early selection:

Row subset Keeping all p columns, but only the m rows that represent the selected fea-

tures.

75

Column subset Keeping all p rows, but only the m columns that represent the selected

features.

Principal submatrix Keeping only the m columns and m rows that represent the se-

lected features.

Recall that column i in L stands for a the coefficients of a linear combination that will

construct a meta-feature associated with the pivot feature i. The first variant then, will

result with m meta-features, each of which is based on p original features. The second

variant will result with p meta-features, based on m original features only, and the third

variant will result with m meta-features based on m original features. All three variants

are illustrated in Figure 5.2. The column subset variant can be used for reducing the

number of measured features as the p meta-features actually rely only on the m features

of the initial feature set. However, it does not improve the complexity of the learning

algorithm, as the number of features is still p. On the contrary, the row subset variant

reduces the number of input features for the learning algorithm, but relies on all p original

features. Any difficulty associated with the large number of features that might influence

the classifier’s performance is expected to propagate to the algorithm when the row subset

variant is used.

The principal submatrix variant (selecting both row and column subset) is cheap both

in term of computational power and number of original features measured. However, if

the selected features are sparse over the network, the network will not come in hand since

every meta-feature will be highly similar to its pivot-feature and the weights of all other

features will be very small.

5.3.2 Embedded Selection

A generalization of SVM-RFE (see Section 2.1.4.6) is proposed in [29], dealing with

kernels other than the linear kernel. Using the SVM dual form, the authors offer to look

at the difference in the objective function resulting from removing the k’th feature. The

original objective function is:

J =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i Qxj

76

(a) Row subset variant. L is created based on the whole network (top left corner of the
figure), preserving all data encapsulated in the network. In parallel, feature selection is
applied to expression data alone selecting m features (A, C, G, N in the example, bottom
left corner of the figure). Then, columns and rows of L corresponding the features are
selected. The example illustrates the column subset variant, where all p (14) columns are
kept, yielding p (14) meta-features constructed of m (4) original features. Column C, for
example, produces a new meta-feature, associated with the original pivot feature C. It is
a combination of original features C and G, with weights 0.477 and 0.016, respectively.

(b) Column subset variant. Each of the
4 meta-features is associated with one se-
lected pivot features and is a linear combi-
nation of all features.

(c) Principal matrix variant. We con-
struct only 4 meta-features, based on the
4 selected features.

Figure 5.2: Illustration of early feature selection variants.

77

and the difference between the objective function and the one resulting from removing

the k’th feature is:

∆J(k) = −1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i Qxj +

1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i Q(−k)xj

= −1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i Q(+k)xj

where the ·(−k) notation denotes the removal of the k’th component, and ·(+k) notation

denotes the restriction of term (vector or matrix) to the k’th component only. Note that

Q(+k) is a symmetric p × p matrix with all zeros, except in the k’th row and the k’th

column (due to symmetry), with the k’th row (column) being the vector of coefficients

corresponding the k’th feature computed from the graph as described in Section 5.2.

78

6
Experimental Results

In this chapter we present experimental results of applying our algorithm on a number

of cancer datasets taken from literature.

6.1 Data

We collected nine labeled gene expression datasets, used for binary classification.

The datasets are listed in Table 6.1. All datasets relate to cancer prognosis, aiming at

differentiating tumors of patients with good prognosis from those with poor prognosis,

as reflected by survival time, or metastasis free progression of the disease. Six of the

datasets are taken from breast cancer tissues, and three from lung cancer. We aimed

at testing for improvement of our method over baseline classification performance, and

detecting whether the improvement indeed originates from prior knowledge, and is not an

artifact of the method, regardless of the integrated knowledge.

As a reference network, we used STRING [36] to be our prior knowledge source for

obtaining similarities between genes. The network we used includes 6243 genes (nodes)

and 19102 interactions (edges).

6.2 Testing for Improvement

Since our method is built on top of SVM, we realized that it would be best to take

SVM as our baseline method for comparison. Recall (Equation 5.2) that we added an

additional term to the SVM objective function, together with a tradeoff parameter β ≥ 0.

The larger β is, the more stress is put onto the prior knowledge, as reflected by proximity

79

Dataset Author Reference Details n

GSE5123 Larsen [43] Lung Cancer 51
GSE4573 Raponi [60] Lung Cancer 130
vant’ Veer vant’ Veer [72] Breast Cancer 117

E-TABM158 Chin [16] Breast Cancer 118
GSE2034 Wang [75] Breast Cancer 286
GSE3141 Nevins [11] Lung Cancer 111

VanDeVijver van de Vijver [71] Breast Cancer 295
GSE4922; GSE1456 Ivshina [34] Breast Cancer 99

Pawitan Pawitan [57] Breast Cancer 159

Table 6.1: The datasets used in the experimental results. ”Author” refers to the first author
of the study.

between features. Note that with β = 0, our formulation is equivalent to the standard

L2-SVM.

As a performance measure, we used the AUC criterion, using 5-fold cross validation.

Because of the large number of features, we also used early feature selection as described

in 5.3.1.

For each dataset, we first selected the 2000 genes with highest variance among the

samples, regardless of their labeling. We then chose G to be the subnetwork of our ref-

erence network, restricted to the proteins that are products of the selected 2000 genes.

This was done due to computational limitations, keeping in mind that the reduced net-

work should still be large enough to preserve enough of the original network’s topology,

and the genes’ relevance to the expression data. Using the transformation derived from

Equations 5.7 and 5.6 we obtained the transformation matrix L from G.

We used 5-fold cross validation to get an average AUC score for each tested value

of the parameter β: for each fold we selected one fifth of the data to serve as a test set,

and the remaining four fifths were used to train the classifier. For every training set, we

first selected 250 genes that best discriminate the two classes within the training set by

applying Student’s t-Test on every gene and keeping those 250 genes that obtained the

highest t-Test score.

We used the selected genes to restrict our transformation matrix L, as described in

Section 5.3.1 to get the submatrix L′ using all three variants, and transformed the original

training data using L′. We then trained a Linear SVM with the transformed training set to

80

get a SVM classifier. In the same manner, we transformed the original test data using L′,

and measured the AUC using the classifier obtained in the training phase.

After repeating the training and testing procedure for all five folds, we averaged the

AUC score. We repeated the whole folding procedure 20 times and obtained an average

of all AUC scores from all repeats as our final performance measure for the method on a

given dataset. We further tested whether the improvement is indeed statistically significant

based on those 20 repeats.

For every dataset, we repeated the measurements for β values of 0 (equivalent to

standard SVM), 0.05, 0.1, 0.5, 1, 2, 5 and 10. For every value of β we used exactly

the same folds in order to decrease the noise in the AUC results that is due to the random

choice of folds. We tested this way all three early selection variants as described in Section

5.3.1.

Overall, the row subset variant was the most successful early selection variant, show-

ing improvement in six of the nine datasets. The principal submatrix variant did not show

any change in performance, and the column subset variant showed a monotonic decrease

in performance for increasing values of β or did not show any change in performance.

Final results are shown in Figure 6.1 for the row subset variant and in Figure 6.2 for

the other two variants. Figure 6.3 shows a comparison of the improvement using the three

variants.

We also tested for the influence of the number of features on the performance of

the algorithm. As discussed in Section 5.3, feature selection is almost obligatory in the

context of gene expression profiles. However, if we want our method to benefit from

the network, we can not select a small number of features that will significantly decrease

the network’s connectivity. For example, on the Wang dataset [75], selecting the 50 top

genes using t-test results with only four genes whose nodes are not isolated. Figure 6.4

compares the performance of algorithm for different number of genes selected.

81

Figure 6.1: Classification performance comparison for the row subset variant. The
figure displays average Area Under ROC curve measurements for SVM classification of
different binary datasets, using our network kernel with different values of β, reflecting
different weights given to the prior knowledge as obtained from the STRING network.
β = 0 serves as a baseline and is equivalent to standard SVM.

82

(a) (b)

Figure 6.2: Classification performance comparison for column subset variant and
principal submatrix variant. The figure displays average area under ROC curve mea-
surements for the column subset early selection variant (a) and the principal submatrix
early selection variant (b).

6.2.1 Improvement Significance

There are two main sources of randomness in the above results. The first is due to the

random data stratification, which leads to different choices of actual folds. The second

is due to the method itself, and specifically due to creation of a submatrix of L, based

on features selected in the early selection phase, and the order of the adjacency matrix

representing the graph. Each row (and column) in the adjacency matrix corresponds to

a single node in the graph. Later on, when meta-features are created due to the resulted

transformation matrix, they are influenced by the ordering of these rows (and columns).

While mathematically, the objective function is indifferent to this ordering, the early

selection of features leads to an approximation of the original transformation matrix, (and

as a consequence also only approximates the original objective function), an approxima-

tion which is a function of the selected features and the order of nodes in the adjacency

matrix.

We looked for statistically significant improvement throughout the different choice of

folds, and different ordering of the nodes. To this end, we conducted a pairwise t-Test

to compare the mean AUC score of the baseline SVM result with that of other values of

β. Out of the nine dataset, six (Larsen [43], Raponi [60], van t’ Veer [72], Nevins [11],

83

Figure 6.3: Difference in AUC scores for the three early selection variants. The dif-
ference in average AUC scores between the baseline SVM (β = 0) and SVM using our
network kernel (β = 1) are shown for the nine datasets.

84

(a) (b)

Figure 6.4: The effect of the different number of features. The figure displays average
area under ROC curve measurements using no feature selection (with top 2000 genes
according to their variance), and for the row subset early selection variant using 100 and
250 features. Since the baseline for different number of features might be different, we
present both absolute AUC values with β = 1 (a) and difference between standard SVM
(β = 0) and our algorithm (β = 1) (b)

Van de Vijver [71] and Ivshina [34]) showed an improvement with all values of β, and

two (Chin [16] and Wang [75]) showed a mixed result, with an increased performance

for some values of β and decreased for others. A single dataset (Pawitan [57]) showed a

performance decrease for all values of β. However, none of the results for the mixed or

decreased performance datasets were significant (FDR<0.05) while the improvement in

two of the datasets (Ivshina [34] and Larsen [43]) that showed better results was found

to be significant. All significance tests were corrected for multiple testing, accounting for

the multiple datasets, and multiple values of β. We will discuss the selective improvement

of the algorithm and the fact that it did not significantly worsen the results in any of the

datasets later on in Section 7.4.

Based on these analyses, we chose to focus on the row subset early selection variant

with 250 features and will use it from now on.

85

6.2.2 Choice of β

Larger values of β smooth the distribution of weights of original features composing a

single meta-feature. As β →∞, a meta-feature turns into a simple average of all features

in its connected component. We observed that in cases that the algorithm indeed improve

the results, it did so as soon as a positive β was introduced, with mild changes as β was

further increased from β = 0.05 to β = 10. We therefore used β = 1 as the default value.

6.2.3 Network Randomization

In order to test whether the improvement is due to the network data, and not due

to other factors pertaining to the algorithm, we further tested the algorithm performance

with randomized networks. Randomization was done as described in Section 4.1 where

we tested for the network influence on two existing algorithms.

We generated 50 different random networks as described in Section 6.2 and ran the

algorithm using each network on three of the datasets that the algorithm showed improve-

ment on, van ’t Veer, van de Vijver and Ivshina. For every random network we ran the

algorithm 20 times, each time using 5-fold CV. We measured the average AUC score

for each of the runs, comparing it to the average AUC result obtained with the origi-

nal STRING network. Figure 6.5 summarizes the results. On all three datasets the AUC

score with the real network ranked above all AUC scores achieved with random networks,

a result that is similar to the one we achieved with the same test on the HyperGene algo-

rithm (see Section 3.6.2). The scores using the real network on van ’t Veer and Ivshina

datasets were 0.687 and 0.619 respectively, and the average scores of random networks

were 0.652 ± 0.0128 and 0.564 ± 0.022. For comparison, on the Wang [75] dataset, the

real network is ranked 35 among the 50 randomized networks.

6.3 Comparison to Other Methods

In Section 3.6 we reviewed several methods that integrate network data into gene

expression analysis, and briefly summarized the results of each method. In order to com-

86

(a) (b)

(c) (d)

Figure 6.5: Distribution of AUC scores in random networks vs. real network. Results
for the van ’t Veer (a), Ivshina (b), van de Vijver (c) and Wang (d) datasets. Each plot
shows a histogram of AUC scores obtained by running the algorithm with 50 different
randomized STRING networks. The red arrow denotes the average AUC obtained by
running the algorithm with the real network. (a), (b) and (c) show datasets that the method
exhibited improvement on. In these cases, the real network is ranked above all randomized
network runs. In (d), on a dataset where the method did not show improvement, the real
network is ranked 35 among the 50 randomized networks.

87

pare our results with those of previous methods, we focus on those methods that use the

network for classification and use a standard performance measure for the task. Differ-

ent methods report different performance measures, on various data, and utilize different

methods of preprocessing the data.

For example, Hwang et al. [32] test the performance of the HyperGene algorithm

(see Section 3.6.2) when starting from a small number of genes, either by measuring the

feature correlation with the labels, or by using predefined sets from the literature. Chuang

et al. [17], emphasizing the robustness of their feature extraction method, report reciprocal

performance of their algorithm: They construct a set of features based on one dataset, and

test its performance on another. In addition, they use performance measures other than

AUC. We noticed large differences in the performance reported by authors of the different

methods, even when using the same performance measure on the same dataset using the

same classification algorithm. We attribute the gaps mainly to the preprocessing step and

further discuss this point in Section 7.5.

Among the classification methods reviewed, HyperGene achieved the best results on

a number of datasets, and as shown in Section 4.2 the network indeed plays a part in its

improvement over other methods. We compared the performance of our algorithm with

that of HyperGene using HyperGene’s MATLAB R© implementation kindly provided to us

by the authors. For comparison, we used four breast cancer datasets - van ’t Veer [72],

van de Vijver [71], Ivshina [34] and Wang [75]. In order to compare our method to Hy-

perGene, we used the same data, network and preprocessing steps, and implemented our

method in MATLAB so we could also compare running times. On one dataset (van ’t

Veer) we used the data and network preprocessed by Hwang et al., and for the three other

datasets we used the STRING network and preprocessed the data ourselves. Preprocess-

ing included standardization of the data (with mean 0 and standard deviation 1 for every

gene) for the Wang and Ivshina datasets attaining, to conform the requirements of the

HyperGene algorithm, and filtering the data, keeping 2, 000 most variable genes.

Due to the large computational requirements of using quadratic programming in Hy-

perGene, its authors limited the size of the network: They first selected a sub-network

of 1, 000 nodes that correspond to the genes most correlated with the labels, and then se-

lected a subset of these genes to reduce the feature dimension of the data used for learning.

This subnetwork may lose a lot of the connectivity of the original network, and in order

88

to preserve more of the topology of the original network outside of these 1, 000 nodes, the

authors added edges among these 1, 000 nodes, connecting two nodes by an edge if there

exists a path of length 1 or 2 between them in the original network. For the van ’t Veer

comparison we used this network, and for the other three datasets, we used a STRING

sub-network of size 2, 000 based on the 2, 000 genes with the highest variance without the

added edges.

Throughout our experiments described in Section 6.2 we first filtered the data by

selecting the top 2, 000 genes with highest variance. Such a filter is unsupervised as it

does not rely on the samples’ labels. Hwang et. al correlation-based filter does rely on the

labels, and thus calculating an average AUC based on cross validation would be biased,

and their method of choice here was testing the AUC score on an independent test set

based on the original paper by van ’t Veer et al. Once again, for sake of comparison on

the van ’t Veer dataset, we also followed this choice here. On the three other datasets we

used 5-fold cross validation selecting the top correlated features separately for each fold

based on the training data alone.

Hwang et. al reported their results for 500 top correlated genes, while we chose 250

as the feature set size during our experiments. We compared the algorithms with sets of

different sizes ranging from 25 to 500. We also compared the two methods with their

baselines - SVM for the network kernel, and network propagation classification [81] (the

term network in this algorithm refers to an internal representation of the samples and fea-

tures within the algorithm, and not to the PPI network integration). Table 6.2 and Figure

6.6 summarize the comparison results. In some cases, the quadratic programming solver

failed during runs of the HyperGene algorithms before optimization process was finished.

The HyperGene score in these cases could be low due to the incomplete optimization.

Our net-based kernel SVM ranks first in 7 of the 20 cases tested, the net propagation

algorithm ranks first in 7 others, SVM ranks first in 4 cases, and HyperGene ranks first

in two cases. HyperGene ranks last in 15 of the 20 cases. While the gaps between the

best and second best scores are sometimes very small, the gap between the best and worst

scores is often quite large.

89

Dataset # features Classifier
NetProp HyperGene SVM SVM+Net Kernel

Ivshina

25 0.6289 0 .4893 0.6336 0.6665
50 0.6756 0 .5352 0.6725 0.6327

100 0.6238 0 .6015 * 0.6366 0.6103
250 0.6034 0.6114 * 0.6098 0 .5904
500 0.6184 0 .5606 * 0.6084 0.6266

Wang

25 0.6466 0 .6456 0.6592 0.6562
50 0.6398 0 .6123 0.6713 0.6732

100 0.6609 0 .5958 0.6886 0.6918
250 0.6782 0 .6007 0.6937 0.6861
500 0.6792 0 .5805 * 0.6584 0.6623

van de Vivjer

25 0.7225 0.7224 0 .7186 0.7257
50 0.7268 0.7196 0.7114 0 .6788

100 0.7316 0 .6977 0.7262 0.7208
250 0.743 0 .6757 0.755 0.7564
500 0.7456 0 .7023 0.7508 0.7578

van ’t Veer

25 0.8452 0.7738 0 .7381 0.7857
50 0.8333 0 .7976 0.8095 0.8214

100 0.8452 0 .7143 0.8214 0.8333
250 0.8214 0 .8095 0.8333 0.8214
500 0 .8214 0.869 0.8333 0.8333

Table 6.2: Performance Comparison. Area under ROC curve results of four algorithms
with four breast cancer datasets. The table shows the AUC average of 5-fold cross val-
idation for Ivshina, Wang and van de Vijver datasets, and an AUC for a single run on
the original training and test set from van ’t Veer based on data compiled by Hwang
et al. The table compares HyperGene and SVM with our network-based kernel, with
their corresponding baseline algorithm (algorithms that do not use PPI network data) -
net propagation as HyperGene’s baseline and linear kernel SVM as the baseline to our
kernel. Numbers in bold (italics) indicate the highest (lowest) score among the four al-
gorithms in each row. The * mark denotes incomplete runs of the HyperGene algorithm
aborted by the quadratic programming solver.

90

(a) (b)

(c) (d)

Figure 6.6: Performance Comparison. The figure presents the data in Table 6.2 compar-
ing four different algorithms on four breast cancer datasets - (a) van ’t Veer. (b) Ivshina.
(c) van de Vijver. (d) Wang. See Table 6.2 for full details.

91

We ran the four algorithms on a 2-quad core intel Xeon 5160 at 2.33 Ghz with 16GB

memory running 64 bit Linux using MathWorks MATLAB ver. 7.2. The process only

utilized a single core. Figure 6.7 shows a comparison of running times. Times include

preprocessing and training on a single fold times. Both HyperGene and our net-based

kernel SVM require some preprocessing of the data using matrix operations. However,

while following this preprocessing we simply run plain linear SVM, HyperGene runs

an iterative process solving a number of quadratic programming problems. For example,

using 500 features on the Ivshina dataset, with a network of 2, 000 nodes and 9, 914 edges,

our net-based kernel SVM takes less than 5 seconds to run a single fold, which is about

250 times faster than HyperGene. Note that our algorithm and SVM take roughly constant

time, while HyperGene and NetProp show running times growing exponentially with the

feature set size.

92

(a) (b)

(c)

Figure 6.7: Running Time Comparison. The figure shows running times of the four al-
gorithms on different datasets with different number of features. For c clear presentation,
time is displayed in log scale (seconds). (a) Ivshina. (b) van de Vijver. (c) Wang.

93

94

7
Conclusions and Future

Work

We started this work investigating a number of extant methods used for integrating

biological knowledge encapsulated in biological networks into gene expression data anal-

ysis. Following a systematic categorization of the different methods we ended up de-

veloping a novel method for integrating knowledge regarding pairwise relations between

features into the process of learning a classifier based on these features. We applied the

method to gene expression based classification with large-scale protein interaction net-

work as our prior-knowledge resource under the assumption that close and highly con-

nected proteins in the network should have similar contribution of their corresponding

genes to the classification model.

In Sections 7.1 and 7.2 we will go over the advantages and limitations of our proposed

method. In Section 7.3 we will discuss the influence of the network in the scope of feature

selection, and in Section 7.4 we will try to point out factors that make the use of PPI

network valuable in the scope of gene expression classifications. We will conclude by

describing promising directions for future work.

7.1 The Advantages of the Method

A major advantage of the method is its simplicity, due to the new kernel and trans-

formation introduced. Given a graph (or any non-negative similarity matrix), obtaining

the kernel matrix Q is straightforward. The presented decomposition of the kernel matrix

allows for reducing the original problem to the standard SVM problem by first transform-

ing the data using the transformation matrix L. After the transformation any current SVM

machinery can be used - solvers, implementations etc. As seen in Section 6.3 the method

95

does not involve any search procedure over the network, and is thus fast, and scales well

with the network size and the number of features.

Although SVM is a supervised classification algorithm, and the kernel and transfor-

mation were derived based on labeled data, eventually the kernel and the transformation

are not label-dependent. In fact, they depend only on the network itself, while the data

and labels information is moved to the constraints. Interpretation of the transformation

matrix is quite straightforward. It is very clear how a meta-feature is constructed from

its neighbor features, and the network topology is directly reflected in the weights of

original features in the meta-feature. Since the matrices are independent of the data, the

transformation and kernel can be applied to unsupervised methods such as clustering or

unsupervised feature selection and extraction as well. In particular, methods that use

‖w‖22 regularization, such as Ridge regression [31] can justifiably use our regularization

term or kernel.

7.2 Limitations of the Method

One of the goals of applying the data to gene expression data using protein interaction

networks, was to reduce the inherent noise in gene expression data. However, by doing so,

we introduce a new source of noise to the system, in the form of the network data itself.

PPI networks are known to have both false positives - i.e. include false edges, and false

negatives - i.e. miss some true edges. In addition, they are constructed by and large by

in-vitro experiments that can not mimic the exact in-vivo conditions. Also, semantically,

they are constructed of pairwise relations, and it is hard to interpret paths and topology of

the whole network, as different conditions may yield different sets of edges, and the PPI

networks exhibit all the edges together. All of these limitations are also true for of other

algorithms that use PPI network data.

In addition, one may doubt the assumption that close genes should contribute simi-

larly to the classification model. In the extreme case the opposite may be true, e.g. when

one protein suppresses the function of another protein. Also, the leap from mRNA levels

in gene expression to protein interactions in the network level is not trivial, and as we

have shown in Section 4.1.1 the signal is not very strong.

96

Although the transformation matrix directly reflects the network topology, it has some

limitations. The first is due to the global nature of the transformation. A single meta-

feature can be a weighted average of all features in a single connected component. That

means that even the most distant features contribute to the meta-feature’s value, albeit

in very small weights. One can argue that this fact is not supported by biology. Also,

recall that the transformation matrix is a triangular matrix, which poses two problems in

interpreting it. The first is that the meta-feature corresponding to the first column includes

all original features in a given connected component, and as we advance in the columns

of the matrix, meta-features corresponding to the columns include less and less features.

Such a set contains highly overlapping meta-features (in terms of original features they

contain) with a large variability in size. These meta-features can not directly correspond

to biological pathways or complexes, which are disjoint by and large. This makes ev-

ery feature by itself hard to interpret biologically. In addition, every permutation of the

nodes in the initial adjacency matrix will produce a different transformation matrix, which

makes such an interpretation even harder.

The transformation also does not reduce the dimension of the data, neither by se-

lecting a subset of the original features, nor by extracting a small number of new meta-

features. The number of meta-features is identical to the number of original features.

Finally, derivation of the method is tightly coupled with SVM and thus the obtained

transformation that is based on the network is meaningful in the scope of SVM. However,

it is not clear whether it is possible to use it as a general transformation that smoothes data

according to the network topology in other frameworks. Although the obtained kernel

is applicable in other kernel methods, its exact meaning and interpretation may not be

transferrable as is from the SVM formulation, and thus such an application may not be

justified.

7.3 Influence of the Network on Feature Selection

At the initial steps of this research, we asked ourselves a major question regarding

networks and feature selection in the scope of gene expression profiles: Will the network

push the feature selection algorithm towards selecting neighbor genes or distant genes?

The assumptions underlying the question were:

97

• Close genes tend to operate together.

• A similar biological phenotype can be a result of a few different biological pro-

cesses.

Even the first assumption alone can lead us to opposite conclusions: On the one hand,

if indeed close genes tend to work together, maybe a single gene is enough for represent-

ing a specific neighborhood of genes, as its neighbors are redundant after selecting it. On

the other hand, due to the noisy data, it might be justified to select more than one gene

from a given neighborhood and increase the statistical robustness this way.

The second assumption suggests that we might want to force the algorithm to select

genes from distant neighborhoods. Assume a disease with multiple causes, where the ma-

jor cause is responsible for the vast majority of cases. Although we could have identified

the other cases by looking at genes related to their (rare) cause, the genes related to the

major cause would obscure the effect of the rest of the genes, at least when using a simple

ranking algorithm based on differential expression based on t-test or mere correlations

with labels.

One can try direct graph-based approaches for optimizing some density function re-

lated to the genes over the network, explicitly requiring to select sparse genes, or sparse

sub-networks. Eventually, our method avoids the question by utilizing the assumption as

is, without explicitly directing the algorithm towards selecting neither close nor distant

genes. The decision is left for the algorithm itself, with the assumption integrated into its

objective function.

7.4 When is the Network Informative?

In section 4.2 we compared two cases of algorithms that use network data for classi-

fication purposes. In the algorithm of Chuang et al. [17] (pinnacleZ, see Section 3.6.1)

the network did not seem to improve the classification results, while in the algorithm of

Hwang et al. [32] (HyperGene, see Section 3.6.2) it did. We would like to note a number

of differences that may be the cause for the difference.

Network size While pinnacleZ uses the whole network, HyperGene, due to complexity

98

and performance issues, uses subnetworks of size 300 − 1000 of genes selected in

advance. These sets can be selected based on ranking of gene absolute correlation

with the labels. Alternatively, they can be chosen manually by experts based on the

specific disease under study.

Pairwise relation The subnetwork used by HyperGene is highy disconnected. To over-

come this, Hwang et al. treated every pair of genes that are 1 or 2 nodes away in

the original full network as adjacent. In contrast, the standard adjacency definition

was used in pinnacleZ by Chuang et al.

Integration assumption HyperGene uses only pairwise relation among genes, minimiz-

ing the total difference between weights assigned to neighbor genes. In contrast,

pinnacleZ greedily maximizes the correlation of a whole subnetwork to be used as

a meta-feature with the labels as an indication for high discriminative potential.

Looking at our algorithm, it exhibited improvement in performance only in some

datasets we used, while leaving the performance comparable in the rest. The performance

improvement did not require high values of β - in cases the network indeed helped, it did

so even when the network component weight was modest. We think that in some cases,

and for some datasets, the relevant sections in the network are richer (i.e. have less false

negative edges), while in other cases they are still very incomplete. The reason for this

may be a bias towards more researched areas (this is especially true for edges based on

co-citations). However, in datasets that did not exhibit improvement the network did not

worsen the results, as missing edges simply leave the original data intact.

7.5 Performance Improvement

We showed that the method can improve results over a baseline classifier that does not

use network prior information. However, the work would be incomplete without referring

to the fact that a large variability in the measured performance is found in different works,

even using the same dataset. This variability can be attributed to preprocessing of the

data; the difference such preprocessing can make is sometimes much higher than the

improvement obtained by incorporating prior knowledge. Specifically, we noticed this

difference when looking at SVM results reported by Hwang et al. compared to those we

99

obtained on the same dataset. Using the same preprocessing canceled this difference and

allowed us to perform a fair comparison between the methods. Nevertheless, it seems

that a lot of research should still take place regarding the preprocessing steps of gene

expression data - normalization, noise reduction and dimension reduction before going

on to apply any specific classification algorithm or integrating more data such as network

data into the process.

7.6 Possible Extensions and Applications to Other Areas

We think that integration of biological networks into analysis of expression data will

continue to be an important research topic for improving the analysis. Even if more accu-

rate gene expression data are provided by next generation sequencing (NGS) methods, the

gap between the feature and sample dimensions will not be closed soon. However, gene

expression analysis can greatly benefit from more refined networks, such as condition-

dependant PPI networks, networks containing more accurate information regarding the

in-vivo behavior of proteins, and large scale regulatory networks, when these become

available.

Our method uses the network but does not perform feature selection. Other methods

have used the network to detect disease causing genes [38, 73] but have not gone ahead

to use these genes as classification biomarkers. We believe that the classification perfor-

mance may benefit from integrating the network during a preliminary feature selection

step as described in Section 5.3.2.

One problem that we raised has to do with the difficulty to interpret the transformation

obtained from the original network and the possible redundancy of the resulting meta-

features. It is possible to modify the Cholesky decomposition to account for a-priory

dependencies among the meta-features. According to this modification [1], during the

Cholesky decomposition, we eliminate a row and a column associated with a pivot-feature

if the value of the pivot feature is smaller than some threshold. The resulting rows are

closer to be linearly independent, and the overlap among the meta-features is reduced.

It is also possible to integrate networks of more than one type to create a combined,

possibly weighted kernel. Such networks can encapsulate different types of prior knowl-

100

edge. In the scope of genomic data, we can integrate both protein interaction networks,

metabolic networks, regulatory networks and functional similarity networks that are built

using different annotations such as GO [7].

The kernel matrix Q can be used to partition the graph in a soft manner. For the

problem of clustering a graph merely according to its topology, it is possible to apply

to Q clustering algorithms that operate on similarity matrices. This way, the clustering

algorithms can benefit from the similarity measure defined by Q.

In addition, there are many kernel methods that can use Q as a network-based kernel.

Although the derivation of Q started from a supervised framework, obtaining Q from

a given graph does not require labeled data. For this reason, Q can be used for both

supervised and unsupervised learning.

Network data are being used in machine learning tasks in many other fields where our

algorithm may be applied. Often, network data are used to link between samples, while

our method links between features. In some cases the assumption that close features

on the network exhibit similar behavior is more straightforward than in the case of PPI

networks and gene expression. We propose a number of such fields that can utilize our

algorithm:

1. Brain imaging - physical distance network. In brain imaging, a 3-dimensional

matrix of datapoints is created from brain scanning in a number of conditions. The

matrix represents spatial data such that each datapoint (named voxel) corresponds

to a specific location in the brain and gives the level of activity of that location under

the given condition. In one setting, one wishes to find regions in the brain that are

responsible for specific functions. It is possible to create a network of the voxels

such that adjacent voxels in the space would have an edge connecting them in the

network. This would form some kind of a grid, where the assumptions that close

voxels function together is applicable.

2. Social networks - the trivia team example. Suppose one wishes to form a trivia

team out of a set of candidates. One way to do it is to create questionnaires, and

select people according to their answers to the questionnaire. Here again, it is

likely that friends are similar in some way, and share the same fields of interest and

knowledge. To this end, one can represent binary friendship relations by a network,

101

and integrate the friendship network might help us to select a better team.

3. Document classification - using words network. Using a standard ”bag of words”

setting, where features correspond to word occurrences, one can use an ontology

network where the nodes are words e.g. WordNet [23], and edges represent seman-

tic or syntactic relations between the words (e.g. synonyms), under the assumption

that similar words are linked in the network.

Finally, the World Wide Web (WWW) is also a good candidate network that might be

suitable for the similarity assumption between a page and the pages it links to. However,

in this case the application of our method is not straightforward and must be developed,

both because the WWW forms a directed graph and because the pages in our formulations

should serve as features for learning on other types of samples. One example could be

the classification of a visitor based on the set of pages she visited, under the assumption

that linked pages are more likely to suggest the same class for the user. Classes can

differentiate between different user interests, age group, potential for repeating visits etc.

102

Bibliography

[1] S. Abe. Support Vector Machines for Pattern Classification. Springer Publishing
Company, Incorporated, 2010.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, 5 edition, November 2007.

[3] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and nor-
mal colon tissues probed by oligonucleotide arrays. Proceedings of the National
Academy of Sciences of the United States of America, 96(12):6745–6750, 1999.

[4] E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems. Theor. Comput. Sci., 209(1-2):237–260,
1998.

[5] B. Aranda, P. Achuthan, Y. Alam-Faruque, I. Armean, A. Bridge, C. Derow,
M. Feuermann, A. T. Ghanbarian, S. Kerrien, J. Khadake, J. Kerssemakers, C. Leroy,
M. Menden, M. Michaut, L. Montecchi-Palazzi, S. N. Neuhauser, S. Orchard, V. Per-
reau, B. Roechert, K. van Eijk, and H. Hermjakob. The intact molecular interaction
database in 2010. Nucl. Acids Res., page gkp878, 2009.

[6] S. Asgharzadeh, R. Pique-Regi, R. Sposto, H. Wang, Y. Yang, H. Shimada,
K. Matthay, J. Buckley, A. Ortega, and R. C. Seeger. Prognostic Significance of
Gene Expression Profiles of Metastatic Neuroblastomas Lacking MYCN Gene Am-
plification. J. Natl. Cancer Inst., 98(17):1193–1203, 2006.

[7] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. Nat
Genet, 25(1):25–29, May 2000.

[8] P. Baldi and G. W. Hatfield. DNA Microarrays and Gene Expression. Cambridge
University Press, Cambridge, UK, 2002.

[9] D. Beer, S. Kardia, C. Huang, T. Giordano, A. Levin, D. Misek, L. Lin, G. Chen,
T. Gharib, and D. Thomas. Gene-expression profiles predict survival of patients with
lung adenocarcinoma. Nat Med, 8(8):816–824, 2002.

103

104 Bibliography

[10] A. Bhattacharjee, W. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Be-
heshti, R. Bueno, and M. Gillette. Classification of human lung carcinomas by mrna
expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci
USA, 98(24):13790–13795, 2001.

[11] A. H. Bild, G. Yao, J. T. Chang, Q. Wang, A. Potti, D. Chasse, M.-B. B. Joshi,
D. Harpole, J. M. Lancaster, A. Berchuck, J. A. Olson, J. R. Marks, H. K. Dressman,
M. West, and J. R. Nevins. Oncogenic pathway signatures in human cancers as a
guide to targeted therapies. Nature, 439(7074):353–357, January 2006.

[12] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In COLT ’92: Proceedings of the fifth annual workshop on Computa-
tional learning theory, pages 144–152, New York, NY, USA, 1992. ACM.

[13] C. J. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121–167, 1998.

[14] P. Chebotarev. Spanning forests and the golden ratio. Discrete Appl. Math.,
156(5):813–821, 2008.

[15] P. Chebotarev and E. Shamis. The matrix-forest theorem and measuring relations in
small social groups. CoRR, abs/math/0602070, 2006.

[16] K. Chin, S. DeVries, J. Fridlyand, P. T. Spellman, R. Roydasgupta, W.-L. Kuo,
A. Lapuk, R. M. Neve, Z. Qian, T. Ryder, F. Chen, H. Feiler, T. Tokuyasu, C. Kings-
ley, S. Dairkee, Z. Meng, K. Chew, D. Pinkel, A. Jain, B. M. Ljung, L. Esserman,
D. G. Albertson, F. M. Waldman, and J. W. Gray. Genomic and transcriptional aber-
rations linked to breast cancer pathophysiologies. Cancer Cell, 10(6):529 – 541,
2006.

[17] H.-Y. Y. Chuang, E. Lee, Y.-T. T. Liu, D. Lee, and T. Ideker. Network-based classi-
fication of breast cancer metastasis. Molecular systems biology, 3, October 2007.

[18] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
1995.

[19] S. Efroni, C. F. Schaefer, and K. H. Buetow. Identification of key processes under-
lying cancer phenotypes using biologic pathway analysis. PLoS ONE, 2(5):e425,
2007.

[20] L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature genes in
breast cancer: is there a unique set? Bioinformatics, 21(2):171–178, 2005.

[21] L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a
robust gene list for predicting outcome in cancer. PNAS, 103(15):5923–5928, 2006.

[22] R. Elkon, R. Vesterman, N. Amit, I. Ulitsky, I. Zohar, M. Weisz, G. Mass, N. Orlev,
G. Sternberg, R. Blekhman, J. Assa, Y. Shiloh, and R. Shamir. Spike - a database,
visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics,
9(1):110, 2008.

104

Bibliography 105

[23] C. Fellbaum, editor. WordNet: An Electronic Lexical Database (ISBN: 0-262-06197-
X). MIT Press, first edition, 1998.

[24] D. Geman, C. d’Avignon, D. Q. Naiman, and R. L. Winslow. Classifying gene
expression profiles from pairwise mrna comparisons. Statistical Applications in
Genetics and Molecular Biology, 3(1):19, 2004.

[25] V. E. Golender, V. V. Drboglav, and A. B. Rosenblit. Graph potentials method and its
application for chemical information processing. Journal of Chemical Information
and Computer Sciences, 21(4):196–204, 1981.

[26] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[27] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science, 286(5439):531–537, October 1999.

[28] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J.
Mach. Learn. Res., 3:1157–1182, 2003.

[29] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn., 46(1-3):389–422, 2002.

[30] J. Herschkowitz, K. Simin, V. Weigman, I. Mikaelian, J. Usary, Z. Hu, K. Ras-
mussen, L. Jones, S. Assefnia, S. Chandrasekharan, M. Backlund, Y. Yin,
A. Khramtsov, R. Bastein, J. Quackenbush, R. Glazer, P. Brown, J. Green,
L. Kopelovich, P. Furth, J. Palazzo, O. Olopade, P. Bernard, G. Churchill,
T. Van Dyke, and C. Perou. Identification of conserved gene expression features
between murine mammary carcinoma models and human breast tumors. Genome
Biology, 8(5):R76, 2007.

[31] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55–67, 1970.

[32] T. Hwang, Z. Tian, R. Kuang, and J.-P. Kocher. Learning on weighted hypergraphs to
integrate protein interactions and gene expressions for cancer outcome prediction. In
ICDM ’08: Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, pages 293–302, Washington, DC, USA, 2008. IEEE Computer Society.

[33] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive
two-hybrid analysis to explore the yeast protein interactome. Proceedings of the
National Academy of Sciences of the United States of America, 98(8):4569–4574,
2001.

[34] A. V. Ivshina, J. George, O. Senko, B. Mow, T. C. Putti, J. Smeds, T. Lindahl,
Y. Pawitan, P. Hall, H. Nordgren, J. E. Wong, E. T. Liu, J. Bergh, V. A. Kuznetsov,
and L. D. Miller. Genetic Reclassification of Histologic Grade Delineates New Clin-
ical Subtypes of Breast Cancer. Cancer Res, 66(21):10292–10301, 2006.

105

106 Bibliography

[35] R. Jansen, D. Greenbaum, and M. Gerstein. Relating Whole-Genome Expression
Data with Protein-Protein Interactions. Genome Research, 12(1):37–46, 2002.

[36] L. J. Jensen, M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Doerks,
P. Julien, A. Roth, M. Simonovic, P. Bork, and C. von Mering. String 8–a global
view on proteins and their functional interactions in 630 organisms. Nucl. Acids
Res., 37(1):D412–416, 2009.

[37] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucl. Acids Res., 28(1):27–30, 2000.

[38] S. Karni, H. Soreq, and R. Sharan. A network-based method for predicting disease-
causing genes. Journal of Computational Biology, 16(2):181–189, 2009.

[39] C. M. Kendziorski, M. A. Newton, H. Lan, and M. N. Gould. On parametric empir-
ical bayes methods for comparing multiple groups using replicated gene expression
profiles. Stat Med, 22(24):3899–3914, December 2003.

[40] S. Kerrien, Y. Alam-Faruque, B. Aranda, I. Bancarz, A. Bridge, C. Derow, E. Dim-
mer, M. Feuermann, A. Friedrichsen, R. P. Huntley, C. Kohler, J. Khadake, C. Leroy,
A. Liban, C. Lieftink, L. Montecchi-Palazzi, S. E. Orchard, J. Risse, K. Robbe,
B. Roechert, D. Thorneycroft, Y. Zhang, R. Apweiler, and H. Hermjakob. Intact
- open source resource for molecular interaction data. Nucleic Acids Research,
35(Database-Issue):561–565, 2007.

[41] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In IJCAI, pages 1137–1143. Morgan Kaufmann, 1995.

[42] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete struc-
tures. In In Proceedings of the ICML, pages 315–322, 2002.

[43] J. E. Larsen, S. J. Pavey, L. H. Passmore, R. Bowman, B. E. Clarke, N. K. Hay-
ward, and K. M. Fong. Expression profiling defines a recurrence signature in lung
squamous cell carcinoma. Carcinogenesis, 28(3):760–766, 2007.

[44] E. Lee, H.-Y. Chuang, J.-W. Kim, T. Ideker, and D. Lee. Inferring pathway activity
toward precise disease classification. PLoS Comput Biol, 4(11):e1000217, 11 2008.

[45] E.-S. Lee, D.-S. Son, S.-H. Kim, J. Lee, J. Jo, J. Han, H. Kim, H. J. Lee, H. Y. Choi,
Y. Jung, M. Park, Y. S. Lim, K. Kim, Y. M. Shim, B. C. Kim, K. Lee, N. Huh, C. Ko,
K. Park, J. W. Lee, Y. S. Choi, and J. Kim. Prediction of Recurrence-Free Survival in
Postoperative Non Small Cell Lung Cancer Patients by Using an Integrated Model of
Clinical Information and Gene Expression. Clinical Cancer Research, 14(22):7397–
7404, 2008.

[46] I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A Probabilistic Functional
Network of Yeast Genes. Science, 306(5701):1555–1558, 2004.

[47] C. Li and H. Li. Network-constrained regularization and variable selection for anal-
ysis of genomic data. Bioinformatics, 24(9):1175–1182, 2008.

106

Bibliography 107

[48] G. J. McLachlan, K.-A. Do, and C. Ambroise. Analyzing microarray gene expres-
sion data / Geoffrey J. McLachlan, Kim-Anh Do, Christopher Ambroise. Wiley-
Interscience, Hoboken, N.J. :, 2004.

[49] R. Merris. Doubly stochastic graph matrices. Publ. Elektrotech. Fak. Univ. Beograd,
1997.

[50] R. Merris. Doubly stochastic graph matrices ii. Linear and Multilinear Algebra,
45(2):275–285, 1998.

[51] T. Mitchell. Machine Learning (Mcgraw-Hill International Edit). McGraw-Hill
Education (ISE Editions), 1st edition, October 1997.

[52] A. Müller, B. Homey, H. Soto, N. Ge, D. Catron, M. E. Buchanan, T. Mcclanahan,
E. Murphy, W. Yuan, S. N. Wagner, J. L. Barrera, A. Mohar, E. Verástegui, and
A. Zlotnik. Involvement of chemokine receptors in breast cancer metastasis. Nature,
410:50–56, March 2001.

[53] M. A. Newton, C. M. Kendziorski, C. S. Richmond, and F. R. Blattner. On dif-
ferential variability of expression ratios: Improving statistical inference about gene
expression changes from microarray data. Journal of Computational Biology, 8:37–
52, 2001.

[54] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A compari-
son of logistic regression and naive bayes. In T. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems (NIPS), vol-
ume 14, 2001.

[55] D. Nitsch, L.-C. Tranchevent, B. Thienpont, L. Thorrez, H. Van Esch, K. Devriendt,
and Y. Moreau. Network analysis of differential expression for the identification of
disease-causing genes. PLoS ONE, 4(5):e5526, 05 2009.

[56] S. Paik, G. Tang, S. Shak, C. Kim, J. Baker, W. Kim, M. Cronin, F. L. Baehner,
D. Watson, J. Bryant, J. P. Costantino, C. E. Geyer, D. L. Wickerham, and N. Wol-
mark. Gene expression and benefit of chemotherapy in women with node-negative,
estrogen receptor-positive breast cancer. J Clin Oncol, 24(23):3726–3734, August
2006.

[57] Y. Pawitan, J. Bjohle, L. Amler, A.-L. Borg, S. Egyhazi, P. Hall, X. Han, L. Holm-
berg, F. Huang, S. Klaar, E. Liu, L. Miller, H. Nordgren, A. Ploner, K. Sandelin,
P. Shaw, J. Smeds, L. Skoog, S. Wedren, and J. Bergh. Gene expression profiling
spares early breast cancer patients from adjuvant therapy: derived and validated in
two population-based cohorts. Breast Cancer Research, 7(6):R953–R964, 2005.

[58] H. S. Phillips, S. Kharbanda, R. Chen, W. F. Forrest, R. H. Soriano, T. D. Wu,
A. Misra, J. M. Nigro, H. Colman, and L. Soroceanu. Molecular subclasses of
high-grade glioma predict prognosis, delineate a pattern of disease progression, and
resemble stages in neurogenesis. Cancer Cell, 9(3):157–173, March 2006.

107

108 Bibliography

[59] F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot, and J. Vert. Classification of
microarray data using gene networks. BMC Bioinformatics, 8(1):35, 2007.

[60] M. Raponi, Y. Zhang, J. Yu, G. Chen, G. Lee, J. M. Taylor, J. MacDonald,
D. Thomas, C. Moskaluk, Y. Wang, and D. G. Beer. Gene Expression Signatures for
Predicting Prognosis of Squamous Cell and Adenocarcinomas of the Lung. Cancer
Res, 66(15):7466–7472, 2006.

[61] J. F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G. F.
Berriz, F. D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Simon,
M. Boxem, S. Milstein, J. Rosenberg, D. S. Goldberg, L. V. Zhang, S. L. Wong,
G. Franklin, S. Li, J. S. Albala, J. Lim, C. Fraughton, E. Llamosas, S. Cevik, C. Bex,
P. Lamesch, R. S. Sikorski, J. Vandenhaute, H. Y. Zoghbi, A. Smolyar, S. Bosak,
R. Sequerra, L. Doucette-Stamm, M. E. Cusick, D. E. Hill, F. P. Roth, and M. Vidal.
Towards a proteome-scale map of the human protein–protein interaction network.
Nature, 437(7062):1173–1178, September 2005.

[62] S. C. Schuster. Next-generation sequencing transforms todayś biology. Nat Methods,
5(1):8–16, 2008.

[63] A. Seth, R. Kitching, G. Landberg, J. Xu, J. Zubovits, and A. Burger. Gene expres-
sion profiling of ductal carcinomas in situ and invasive breast tumors. Anticancer
Res, 23:2043–2051, 2003.

[64] R. Shamir, A. Maron-Katz, A. Tanay, C. Linhart, I. Steinfeld, R. Sharan, Y. Shiloh,
and R. Elkon. Expander - an integrative program suite for microarray data analysis.
BMC Bioinformatics, 6(1):232, 2005.

[65] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A.
Renshaw, A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R.
Golub, and W. R. Sellers. Gene expression correlates of clinical prostate cancer
behavior. Cancer Cell, 1(2):203 – 209, 2002.

[66] B. Snel, G. Lehmann, P. Bork, and M. A. Huynen. String: a web-server to retrieve
and display the repeatedly occurring neighbourhood of a gene. Nucl. Acids Res.,
28(18):3442–3444, 2000.

[67] T. Sørlie, R. Tibshirani, J. Parker, T. Hastie, J. S. Marron, A. Nobel, S. Deng,
H. Johnsen, R. Pesich, S. Geisler, J. Demeter, C. M. Perou, P. E. Lønning, P. O.
Brown, A.-L. Børresen-Dale, and D. Botstein. Repeated observation of breast tu-
mor subtypes in independent gene expression data sets. Proceedings of the National
Academy of Sciences of the United States of America, 100(14):8418–8423, 2003.

[68] U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck, H. Goehler,
M. Stroedicke, M. Zenkner, A. Schoenherr, S. Koeppen, J. Timm, S. Mintzlaff,
C. Abraham, N. Bock, S. Kietzmann, A. Goedde, E. Toks?z, A. Droege, S. Kro-
bitsch, B. Korn, W. Birchmeier, H. Lehrach, and E. E. Wanker. A human
protein-protein interaction network: A resource for annotating the proteome. Cell,
122(6):957 – 968, 2005.

108

Bibliography 109

[69] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.
Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.
Mesirov. Gene set enrichment analysis: A knowledge-based approach for inter-
preting genome-wide expression profiles. Proceedings of the National Academy of
Sciences of the United States of America, 102(43):15545–15550, 2005.

[70] Z. Tian, T. Hwang, and R. Kuang. A hypergraph-based learning algorithm for clas-
sifying gene expression and arraycgh data with prior knowledge. Bioinformatics,
pages btp467+, July 2009.

[71] M. J. van de Vijver, Y. D. He, L. J. van ’t Veer, H. Dai, A. A. Hart, D. W. Voskuil,
G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma,
A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis,
E. T. Rutgers, S. H. Friend, and R. Bernards. A Gene-Expression Signature as a
Predictor of Survival in Breast Cancer. N Engl J Med, 347(25):1999–2009, 2002.

[72] L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, H. L.
Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M.
Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression
profiling predicts clinical outcome of breast cancer. Nature, 415(6871):530–536,
January 2002.

[73] O. Vanunu, O. Magger, E. Ruppin, T. Shlomi, and R. Sharan. Associating genes
and protein complexes with disease via network propagation. PLoS computational
biology, 6(1):e1000641+, January 2010.

[74] V. Vapnik. The Nature of Statistical Learning Theory (Information Science and
Statistics). Springer, 2nd edition, November 1999.

[75] Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov,
M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins,
and J. A. Foekens. Gene-expression profiles to predict distant metastasis of lymph-
node-negative primary breast cancer. Lancet, 365(9460):671–679, 2005.

[76] A. R. Webb. Statistical Pattern Recognition, 2nd Edition. John Wiley & Sons,
October 2002.

[77] P. Wei and W. Pan. Incorporating gene networks into statistical tests for genomic
data via a spatially correlated mixture model. Bioinformatics, 24(3):404–411, 2008.

[78] Z. Wei and H. Li. A Markov random field model for network-based analysis of
genomic data. Bioinformatics, 23(12):1537–1544, 2007.

[79] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero norm with
linear models and kernel methods. J. Mach. Learn. Res., 3:1439–1461, 2003.

[80] J. R. Yates, C. I. Ruse, and A. Nakorchevsky. Proteomics by mass spectrometry:
Approaches, advances, and applications. Annual Review of Biomedical Engineering,
11(1):49–79, 2009.

109

110 Bibliography

[81] D. Zhou, J. Huang, and B. Sch?lkopf. Learning with hypergraphs: Clustering, clas-
sification, and embedding. In Advances in Neural Information Processing Systems
(NIPS) 19, page 2006. MIT Press, 2006.

[82] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In
Neural Information Processing Systems, page 16. MIT Press, 2003.

[83] Y. Zhu, X. Shen, and W. Pan. Network-based support vector machine for classifica-
tion of microarray samples. BMC Bioinformatics, 10(Suppl 1):S21, 2009.

110

	Introduction and Summary
	Classification and Supervised Learning
	Learning with Prior Knowledge
	Summary of our Results

	Background
	Computational Background
	Problem Setting
	The Binary Case
	Linear Discriminant Functions

	Support Vector Machines
	Primal Form
	Dual Form
	Soft Margin
	Non-Linear SVM

	Performance Measurements
	AUC - Area Under Receiver Operating Characteristic Curve
	Assessment of Generalization Performance
	K-fold Cross Validation

	Dimensionality Reduction and Feature Selection
	Filters
	Student's t-Test
	Embedded Selection
	L1-norm SVM
	L2-AROM SVM
	SVM RFE

	Biological Background
	Proteins
	Protein synthesis
	DNA microarrays
	Next Generation Sequencing
	Classification of Gene Expression Profiles

	Integration of Prior Knowledge
	Motivation
	Limitations of Current Methods
	Analysis Tasks and Integration Model
	Downstream research
	Use of Statistical Modeling

	Available prior knowledge
	Annotation based repositories
	Network data
	Large-scale networks
	Small-scale networks

	Basic Integration Assumptions
	Prior Work
	Greedy Search for Subnetworks as Markers
	Direct Optimization using a Network Loss Function
	Classification and feature selection using HyperGene

	Network Guided SVM Regularization
	A Spectral Approach
	Disease Genes Discovery by Network Analysis of Differential Expression
	Statistical Hypothesis Testing Frameworks

	Algorithms Taxonomy

	Results on Network Impact
	Informativeness of Integrated Network Data
	Distribution of Correlation Between Pairs

	Does the Network Make a Difference?
	Derivation of Working Assumption

	A New Network-Based Kernel and Transformation
	SVM Regularization via Feature Similarity
	Transformation Analysis
	Cholesky decomposition of Q
	Dominance of Pivot Feature

	Dimension Reduction
	Early Selection
	Embedded Selection

	Experimental Results
	Data
	Testing for Improvement
	Improvement Significance
	Choice of
	Network Randomization

	Comparison to Other Methods

	Conclusions and Future Work
	The Advantages of the Method
	Limitations of the Method
	Influence of the Network on Feature Selection
	When is the Network Informative?
	Performance Improvement
	Possible Extensions and Applications to Other Areas

	Bibliography

