
 
 
 

Thesis for the degree     חבור לשם קבלת התואר 
Master of Science     מוסמך למדעים 

 
 
By           מאת 
Tamar Barzuza       תמר ברזוזה 

 
 

 הסקה ותיוג של הפלוטיפים בעלי פילוגנזה מושלמת
Computational Resolution and Tagging of 

Perfect Phylogeny Haplotypes 
 
 
 

Advisors         מנחים 
Prof. Ron Shamir      רון שמיר' פרופ  
Prof. Jacques S. Beckmann    ק בקמן'ז' פרופ  

 
 
 
 

February 2004        ד"תשס'שבט ה  
 
 
 

Submitted to the Scientific Council of the    מוגש למועצה המדעית של 
Weizmann Institute of Science       למדעמכון ויצמן  
Rehovot, Israel       ישראל, רחובות  

 



 1

Acknowledgments 
 
I wish to thank all those people who taught me, listened to me, accompanied me, inspired 
me and distracted me during these two years of Msc.  
 
Thank you Itsik Pe'er 
Itsik has guided me through this work, being the ultimate guide one can possibly hope 
for. He has the passion of 10 men, the creativity of 100 men, and the brilliance of 1000 
men; but the goodness and kindness that only few men have, and I am proud to call him 
my teacher and my friend. A great deal of what I have learned during this thesis, Itsik 
was the one to teach me.  
 
Thank you Ron Shamir 
Ron is the Dr. Dolittle of sciences; speaks fluently Biology, Computer Science, 
Mathematics and Statistics, and I hear that he can even speak Physics. On top of that, he 
is a generous man with a strong drive to teach, and will be happy to share his knowledge 
and understanding in any occasion. Being Ron�s student was therefore a fortunate 
privilege. He has been supportive, patient and reassuring. 
 
Thank you Jacqui Beckmann 
Jacqui has Genetics running through his veins, and I don't mean that in the sense that we 
all do. He gave the Biology spirit to this work; constantly asking the right questions and 
checking the right angles. He has been passionate, creative, encouraging and trusting. 
 
Thank you Ron's group and Jacqui's group: Nili, Iris, Yudit, Daniela, Clara, Tzvika, 
Noga, Adi, Amos, Irit, Gadi, Chaim and Israel. Thank you for your teaching and for your 
listening. You were all very kind, and it was a pleasure spending this time with you. 
Special thanks to Orna who is my computer guru and my friend. 
 
Thank you to the friends who accompanied me through my Msc: Michal, Libi and Lena. 
It was inspiring and fun. 
 
Thank you to the friends who distracted me from my Msc (lists may overlap): Michal, 
Libi, Lena, Shiri, Tzvika, Tal, Orna, Noga, Adi, Sally, Bari and Lili. It was pure fun. 
 
Thank you ima Dalya and aba Itsik for all the help and support. Thank you to the rest of 
my family, especially Michal, Inbar, Efrat, Edna, Mazal, Menash and Ezra, for constant 
encouragement. 
 
Thank you my beloved Harel, for making everything better.



 2

Table of Contents 
 
1. Introduction and Summary……………………………………...4 

1.1 Introduction………………………………………………………...4 
1.2 Summary of thesis results…………………………………….........6 

2. Preliminaries and Background�������������..7 
2.1 Basic Concepts in Genotyping……………………………………..7 
2.2 Haplotyping…………………………………………………….......8 
2.3 Block partitioning…………………………………………………..9 
2.4 The perfect phylogeny model……………………………………....9 
2.5 Our contribution - XOR perfect phylogeny haplotyping……….....13 
2.6 Informative SNPs………………………………………………….15 

3. Xor-Haplotyping………………………………………………..17 
3.1 XPPH……………………………………………………………....17 
3.2 Concrete XPPH…………………………………………………….22 

4. Implementation and Results…………………………………….27 
4.1 GREAL…………………………………………………………….27 
4.2 Simulated data……………………………………………………...28 
4.3 Real data…………………………………………………………....34 

5. Informative SNPs……………………………………………….38 
5.1 Problem Formulation………………………………………………38 
5.2 Algorithmic solution…………………………………………….....39 
5.3 Tag SNPs from genotypes…………………………………………44 

6. Summary and Discussion……………………………………….46 



 3

Abstract 
 
The perfect phylogeny model for haplotype evolution has been 
successfully applied to haplotype resolution from genotype data. In this 
study we explore the application of the perfect phylogeny model to other 
problems in the design and analysis of genetic studies. We consider a 
novel type of data, xor-genotypes, which distinguish heterozygote from 
homozygote sites without identifying the homozygote alleles. We show 
how to resolve xor-genotypes under a perfect phylogeny model, and study 
the degrees of freedom in such resolutions. Interestingly, given xor-
genotypes that produce a single possible resolution, we show that the full 
genotypes of at most three individuals suffice in order to determine all 
haplotypes across the phylogeny. Our experiments with xor-genotyping 
data indicate that the approach requires a number of individuals only 
slightly larger than full genotyping, at potentially reduced typing costs. 
We also consider selection of minimum-cost sets of tag SNPs, i.e., 
polymorphisms whose alleles suffice to recover the haplotype diversity. 
We show that this problem lends itself to divide-and-conquer linear-time 
solution. Finally, we study genotype tags, i.e., genotype calls that suffice 
to recover those of all other SNPs. Since most genetic studies are 
genotype-based, such tags are more relevant in such studies than the 
haplotype tags. We show that under the perfect phylogeny model a subset 
of SNPs is a set of haplotype tags, if and only if it also tags the genotypes. 
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Chapter 1. Introduction and Summary 
 
In this chapter we briefly introduce the biological background of the problems addressed 
here, and outline the problems. Fuller details and exact formulations are deferred to the 
next chapter. We also summarize the thesis results. 
 

1.1. Introduction 
 
1.1.1. Basic concepts 
Genetic information in nature is usually stored as a linear sequence, written in a 
molecular DNA alphabet of four letters (nucleotides), A, C, G and T. Higher organisms 
are diploid, i.e., have two near-identical copies of their genetic material arranged in 
paired molecules called chromosomes, one originating from each parent. Such 
chromosomes are homologous, that is, contain essentially the same genes or altered 
variants thereof. Differences between variants comprise mainly of Single Nucleotide 
Polymorphisms (SNPs), i.e., sequence sites where one of two letters may appear 
(Sachidanandam et al., 2001). These SNPs are numerous and it is estimated that any two 
homologous human chromosomes sampled at random from the population differ on 
average once in every thousand letters, accounting thus for a few million such differences 
along the entire genome. The variants of a SNP are called alleles. An individual is said to 
be homozygous for a SNP if both homologous chromosomes bear the same allele for this 
SNP and heterozygous otherwise. The sequence of alleles along a chromosome is called a 
haplotype. At first approximation a chromosome can be considered as a patchwork of 
haplotypes along its length. A genotype along homologous chromosomes lists the 
conflated (unordered pair of) alleles for each SNP (see Fig 1).  
 

Figure 1 An example of 6 SNPs along two 
homologous chromosomes of an individual. 
(a) This individual’s haplotypes. (b) This 
individual’s genotype. Here the Xor-
genotype (set of heterozygous SNPs) would 
be {2,5}. (c) Another potential haplotype 
pair giving rise to the same genotype. 

Note that only SNPs are presented here. 
Every two SNPs can be separated by several 
hundred monomorphic base pairs. 

A G T G A C

A A T G T C
A  G/A T  G  T/A C

a) b) c) A A T G A C

A G T G T C

1       2       3      4       5       6A G T G A C

A A T G T C
A  G/A T  G  T/A C

a) b) c) A A T G A C

A G T G T C

A G T G A C

A A T G T C
A  G/A T  G  T/A C

a) b) c) A A T G A C

A G T G T C

1       2       3      4       5       6

 
Both genotype and haplotype data are used in genetic studies. Haplotypes are often more 
informative (Gabriel et al., 2002). Unfortunately, current experimental methods for 
haplotype determination are technically complicated and cost prohibitive. In contrast, a 
variety of current technologies offer practical tools for genotype determination (Kwok, 
2001). Given genotype data, however, haplotypes can be inferred computationally, in a 
process called resolving, phasing or haplotyping (Clark, 1990; Excoffier and Slatkin, 
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1995; Gusfield, 2002; Bafna et al., 2002; Eskin et al., 2003; Pe'er and Beckmann, 2003).  
A single genotype may be resolved by different, equally-plausible haplotype pairs (see 
Fig 1), but the joint inference of a set of genotypes may favor one haplotype pair over the 
others for each individual. Such inference is usually based on a model for the data.   
Informally, most models rely on the observed phenomenon that over relatively short 
genomic regions, different human genotypes tend to share the same small set of 
haplotypes (Patil et al., 2001; Daly et al., 2001).  
 
1.1.2. The Perfect Phylogeny Model 
During sexual reproduction, only one homologous copy of each chromosome is 
transmitted to the offspring. Moreover, that copy has alternating segments from the two 
homologous chromosomes of the parent - the grandpaternal and grandmaternal copies, 
due to a segmental exchange process called (meiotic) recombination.  Studies have 
shown that recombination occurs mainly in narrow regions called hotspots. The genomic 
segments between hotspots are called blocks. Such blocks show essentially no 
recombination (Jeffreys et al., 2001) and their haplotype diversity is limited (Patil et al., 
2001; Daly et al., 2001). Within blocks, haplotypes evolve by mutations, i.e., replacement 
of one nucleotide by another at particular sites (other mutation types are not discussed 
here). Since mutations are relatively rare (Nachman and Crowell, 2000), it is often 
assumed, as we do here, that at most one mutation occurs in each site.  The perfect 
phylogeny model for haplotype block evolution assumes that all haplotypes in the 
population descended from a common ancestor, with no recombination and no recurrent 
mutation events.  
The Perfect Phylogeny Haplotyping problem (PPH) seeks to infer haplotypes that satisfy 
the perfect phylogeny model (we defer formal definitions to chapter 2). PPH was first 
introduced by Gusfield (2002), who presented an almost linear solution by reducing PPH 
to the classical Graph Realization problem. Simpler, direct solutions were later given 
(Bafna et al., 2002; Eskin et al., 2003), which take O(nm2) for n haplotypes and m SNPs.  
 
1.1.3. Informative SNPs 
Many medical genetics studies first determine the haplotypes for a set of individuals and 
then use these results to efficiently type a larger population. Having identified the 
restricted set of possible haplotypes for a region, the identity of a subset of the SNPs in 
the region may suffice to determine the complete haplotype of an individual. Such SNPs 
are called tag SNPs, and typing them alone would lose no information on the haplotypes. 
More generally, given a subset S of interesting SNPs, an informative SNP set is a subset 
disjoint from S that captures all the information on S (see Fig 2). Hence, the identification 
of few informative SNPs may lead to substantial saving in typing costs. For this reason, 
the computational problems of finding a minimal tag (or informative) set have been 
studied (Patil et al., 2001; Bafna et al., 2003; Zhang et al. 2002).  

Figure 2 Tag SNPs and informative SNPs. The set {1, 2} is a tag 
SNP set. If {9,10,11} is the interesting SNP set, then {1,2} and 
{6,8} are both informative SNPs sets but {4,5} and {2,3} are not. 
Notice that the same  genotype A/C T/A is obtained for the tag 
SNP set {1,2} from the two pairs of haplotypes {1,2} and {3,4}. 
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Finding the minimum set of tag SNPs within an unconstrained block is NP-hard (Garey 
and Johnson, 1979). When the perfect phylogeny model is assumed, in the special case of 
a single interesting SNP, a minimal set of informative SNPs was shown to be detectable 
in O(nm) time, for n haplotypes and m SNPs (Bafna et al., 2003). 
 

1.2. Summary of thesis results 
 
We study in this thesis several problems arising under the perfect phylogeny model 
during genetic analysis of a region, along the process from haplotype determination 
toward their utilization in a genetic study. Our analysis focuses on a single block. 
 
Experimental methods such as DHPLC (Xiao and Oefner, 2001) can determine whether 
an individual is homozygous or heterozygous for each SNP, but cannot distinguish 
between the two homozygous states. Typing SNPs in such manner will provide, for each 
individual, a list of the heterozygous sites, which we refer to as the individual's xor-
genotype. Xor-genotypes are less informative than regular ("full") genotypes; but their 
generation may be less costly. Therefore, it is of interest to examine if it is possible to 
infer the haplotypes based primarily on xor-genotypes instead of full genotypes.  
 
In chapter 3 we introduce the Xor Perfect Phylogeny Haplotyping problem (XPPH), 
study the limitations of using only xor-genotypes, and the additional genotype 
information required. Section 3.1 presents an efficient solution to XPPH based on the 
graph realization problem (Bixby and Wagner, 1988).  
 
We implemented our solution and evaluated the XPPH strategy in chapter 4. Our tests 
show that the method compares favorably with standard genotyping.  
 
Chapter 5 studies informative SNPs under the perfect phylogeny model. We generalize 
the minimum informative set (and tag set) problems by introducing a cost function for 
SNPs, and seek minimum cost sets. The cost is motivated by the facts that typing some 
SNPs may be technically harder (e.g., those in repetitive or high GC regions), and that 
some SNPs are more attractive for direct typing (e.g., protein-coding SNPs, due to prior 
assumptions on their functionality). In section 5.2 we find minimal cost informative SNP 
sets in O(m) time for any number of interesting SNPs, when the perfect phylogeny tree is 
given. This generalizes the result of (Bafna et al., 2003).  
 
Section 5.3 discusses a practical variant of the tag SNPs set, i.e., the phasing tag SNPs 
set: As we usually have only genotypic (conflated) information on the SNPs, a practical 
goal would be to find a set of SNPs that give the same information as tag SNPs, but 
instead of knowing their haplotype we only know their genotype. We prove that under 
the perfect phylogeny model, the set of tag SNPs formed based on genotype data is the 
same as the set of tag SNPs formed based on haplotype data. 
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Chapter 2. Preliminaries and Background 
 
 
This chapter gives a detailed presentation of the problems that were addressed in this 
thesis. The Biological background that is required to understanding these problems is 
thoroughly described throughout this section. Each problem description is preceded by 
the biological motivation to it, and by a short description of the previous work that is 
related to this problem. 
 

2.1. Basic Concepts in Genotyping 
 
DNA is the component of living organisms that encodes hereditary information. It is 
organized in linear molecules, called chromosomes, along which trait-determining 
segments, called genes, are arranged, interspersed with other DNA segments.  
 
A chromosome is composed of two winding polymer strands that form a double helix. 
Each strand is a chain of individual units called bases, and each base is one of four 
chemicals - Adenine, Cytosine, Guanine, or Thymine - linked to a phosphate molecule. 
The bases are abbreviated as A, C, G and T, respectively. The sequence of bases along 
the DNA molecule encodes the genetic information content of this molecule. The 
sequence of one of the strands is fully determined by its counterpart, due to a principle 
called sequence complementarity, and therefore we refer only to one of the strands 
hereafter.  
 
Most cells of sexually reproducing organisms are diploid, i.e., have a duplicate set of 
genetic material consisting of paired chromosomes, one from each parent. Such paired 
chromosomes are homologous, that is, they are essentially identical, containing the same 
linear order of gene segments with minor differences in contents. In other words, 
homologous chromosomes contain the same genes in occasionally different variants. The 
alternative variants are referred to as the alleles of the gene or of a given DNA segment 
or locus.  
 
The human genome contains a little more than 3.2 billion bases. Variation along this 
sequence comprises primarily of Single Nucleotide Polymorphisms (SNPs), i.e., two or 
more possible bases at a certain position in the sequence. SNPs occur once every several 
hundred base pairs, and they usually have two alleles only (Sachidanandam, 2001). While 
independent homologous chromosomes have almost identical sequence content, they 
differ from each other here and there, mainly at SNP sites. A site with more than one 
sequence alternative is considered a polymorphism if the alternative allele has an 
abundance of at least 1% in the general population. 
 



 8

An individual is said to be homozygous for a SNP if both homologous chromosomes bear 
the same allele for this SNP, and heterozygous otherwise. 
The genetic information given by homologous segments can be presented in two levels of 
detail: 

(a) The information in each SNP is described independently of the other SNPs. The 
description of a SNP with two possible alleles A and T, would be either A, T or 
A/T, for homozygote A, homozygote T, and heterozygote respectively. An 
independent description for a collection of SNPs is called a genotype. 

(b) The sequence of alleles in each chromosome is presented separately. The allele 
combination along one chromosome is called a haplotype. 

For an example of the connection between genotypes and haplotypes consider Fig 1. 
 

2.2. Haplotyping 
 
2.2.1. Biological Background 
Experimental methods for haplotype determination often require extracting single 
chromosomes independently or large fragments thereof (Patil et al., 2001). Such 
approaches are technically complicated and cost prohibitive. Current technologies offer a 
variety of practical molecular techniques for genotype determination (Kwok, 2001). 
However, the identity of haplotypes is not readily available when diploid individuals are 
heterozygous at more than one locus. For example, the genotype in Fig 1b can be 
comprised of four distinct haplotypes (divided into two distinct pairs), shown in Figs 1a 
and 1c. 
 
Both genotype and haplotype data are used in a variety of genetic studies. In certain 
situations, it is much more informative to rely on haplotype data than on genotype data 
(Gabriel, 2002). Building a haplotype map of the human genome has thus become a 
central goal of the genetics community. The goal of this project is to develop a genome-
wide haplotype map by identifying the haplotype block boundaries and the common 
haplotypes along the entire human genome. Several institutes and centers have joined an 
international consortium for this purpose. The haplotype map is expected to be a key 
resource for finding genes affecting health, disease, and response to drugs and 
environmental factors, as well as for improving our understanding of the pattern of 
human genetic variation and evolution (NIH, 2002). 
 
2.2.2. The haplotyping problem 
The experimental difficulty in direct measurement of haplotypes motivated the study of 
computational haplotype inference from genotype data. The process of computationally 
determining the haplotypes from the genotypes is called resolving, phasing and also 
haplotyping. It is defined as follows: 
 
Problem 1: The haplotyping problem: 
Input: Genotypes of sampled population. 
Goal: Infer the haplotypes. 
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While for a single genotype different haplotype configurations are equally plausible (Fig 
1); a collection of genotypes together with additional modeling assumptions may give 
information that will lead to favoring one inference over the other. One such modeling 
assumption is that there are few distinct haplotypes in the population, and therefore 
resolving the genotypes so that many haplotypes will reoccur is desirable. This informal 
goal of haplotype inference may be formulated in several computational optimization 
criteria, for example: minimizing the number of distinct haplotypes in the inferred 
population, or requiring each haplotype to appear in at least α-fraction of the population. 
 
2.2.3. Previous work 
The first significant algorithm for inferring haplotypes from diploid population samples 
was introduced by Clark (1990). This algorithm is a heuristic effort to infer the genotypes 
using the fewest possible haplotypes. A different class of algorithms is based on the EM 
(expectation-maximization) paradigm, and seeks maximum-likelihood estimates of 
haplotypes and their frequencies. The first EM approach for haplotyping was introduced 
by Excoffier and Slatkin (1995). Both classes of algorithms may take exponential time, 
and are not guaranteed to solve the problem optimally. In fact, up until recently there has 
been no efficient solution to the haplotyping problem under any model. More recent 
approaches and improvements are described in (Gusfield, 2002; Bafna et al., 2002; Eskin 
et al., 2003). 
 

2.3. Block partitioning 
 
Several extensive studies have been conducted to map the structure of human haplotype 
diversity (Patil et al., 2001; Daly et al., 2001). These studies showed that the human 
genome can be divided into blocks of limited haplotype diversity. For example, Daly et 
al. (2001) examined the haplotypic structure of 500 kilobases on chromosome 5q31, 
where they found a partition into 11 blocks with 2-4 haplotypes each, in other words each 
block is represented by a limited number of haplotypes.  
 
Due to the potential utility of block haplotypes for association studies, dividing the 
chromosome into blocks became an important goal. Some works such as Daly et al. 
(2001) aim at blocks of low diversity; while others such as Patil et al. (2001) aim at 
blocks where there is a relatively small subset of the SNPs that gives complete 
information on the block (namely tag SNPs that will be described in detail later).  These 
two studies used heuristic algorithms which were computationally inefficient. Zhang et 
al. (2002) introduced an exact algorithm for dividing a chromosome into blocks, with the 
goals of minimizing the number of tag SNPs that gives complete information on all 
blocks.  
 

2.4. The perfect phylogeny model 
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2.4.1. Biological background 
A cell is called haploid if it has one chromosome out of each homologous pair. A special 
type of cells, germ cells (sperm and egg cells and their precursors), have a haploid set of 
chromosomes. These cells are obtained from diploid cells by two consecutive cell 
divisions (that follow a single replication), in a process called meiosis. Before diploid 
cells divide, the complete set of chromosomes is replicated, and each of the daughter cells 
has one identical copy of the duplicate set. During meiosis, homologous segments are 
exchanged between homologous chromosomes in a process called recombination. Thus, 
although the haploid set of chromosomes has one chromosome for each pair of 
homologous chromosomes in the diploid cell, this one chromosome is never one of the 
paired chromosomes, but rather a mosaic thereof. This way, each progeny receives a 
different combination of genes from that of either parent. Some parts of the genetic 
material, e.g., mitochondrial genome and most of the Y chromosome, do not undergo 
recombination (Cummins, 2001). 
 
Studies have shown that recombination events are not uniformly distributed across the 
genome. Instead, there are recombination hotspots, leading to block structure of the 
genome where recombination within blocks is relatively rare (Jeffreys, 2001). Indeed, as 
mentioned above, it has been shown that the human genome can be divided into blocks of 
limited haplotype diversity (Patil et al., 2001; Daly et al., 2001). Such blocks may 
indicate that during the recent expansion of the human race from a small founder 
population, no significant recombination occurred within the block.  
 
Within blocks, haplotypes evolve by mutations. A mutation occurs when the allele of a 
single nucleotide changes, leading to single nucleotide polymorphisms. The average 
mutation rate was estimated to be ~2.5×10-8 mutations per nucleotide site per generation 
(Nachman and Crowell, 2000); which is 1:1000 per nucleotide site along the lineages 
between two contemporary chromosomes since their common ancestor (an average of 
40,000 generations). Therefore the chance of a recurrent mutation is negligible. 
 
These insights promote the perfect phylogeny model for haplotype block evolution. This 
model suggests that all the haplotypes in the current population have a common ancestor, 
such that the following two conditions are satisfied:  
• No-Recombination: Every haplotype in the population has originated from the 

common ancestor haplotype through a series of site-specific mutations; hence none of 
the observed haplotypes is a recombinant of two predecessor haplotypes. 

• The Infinite-Site assumption: During this process of accumulating mutations in time, 
at most one mutation occurred at each site. 

 
The no-recombination and infinite-site assumptions are only an approximation, and 
therefore should be used with care when handling real data. First, the limited diversity of 
haplotypes in a block does not preclude the possibility that the haplotypes of our 
founding ancestors were recombinants of one another. For the haplotypes of a population 
to fit the perfect phylogeny model, there must not be any recombinant haplotype in the 
population (Gusfield, 2000). This means that ever since our common ancestor (one 
ancestral haplotype) there has been no recombination event within a block. This 
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requirement is much stricter than the conditions required for limited diversity and does 
not always hold when it comes to real data, even for groups of very close markers. Both 
Patil et al. (2001) as well as Daly et al. (2001) report blocks of limited haplotype diversity 
that do not satisfy the perfect phylogeny model. 
 
As for the infinite site assumption, it has been shown that human mutation rates vary 
among different sites and different types of mutation. In fact, there are mutation hotspots 
in the human genome (Nachman and Crowell, 2000) and recurrent mutations are 
occasionally observed.  
 
2.4.2. Perfect Phylogeny Haplotyping 
In principle, SNPs could have between two to four alleles. However, SNPs with three or 
four alleles are rare enough to be neglected (Sachidanandam, 2001). It is common to refer 
to SNPs as bi-allelic, arbitrarily denoting one allele by 0 and the other by 1. Hereafter, a 
haplotype will be denoted by a binary vector, and a genotype will be denoted by an 
{0,1,2}-vector, with heterozygote denoted by 2. 
 
The perfect phylogeny model yields a tree of ancestry describing the relation between 
different haplotypes. This tree is the perfect phylogeny for these haplotypes, formally 
defined as follows: 
 
Definition: Let Hn×m be a binary matrix of n distinct haplotypes over m SNPs. A perfect 
phylogeny for H is a pair (T,f) where T=(V,E) is a tree with {1,�,n}⊆ V and 
f:{1,�,m}→E is an assignment of SNPs to edges such that: 
(1) every edge of T is labeled at least once (i.e., the mapping f is onto E).  
(2) for any two rows k, l, Hkj≠Hlj iff the edge f(j) lies on the unique path from node k to 

node l in T.  
 
Definition: We say that a collection of haplotypes is coalescent if there exists a perfect 
phylogeny for these haplotypes. 
 
Non-recombinant, infinite-site haplotypes have a well known characterization: H has a 
perfect phylogeny iff there are no two columns of H that include all four possible row 
combinations 00, 01, 10 and 11. This forbidden submatrix is called a four-gamete.  The 
fact that this condition is necessary is obvious. Sufficiency is proved in (Gusfield, 1997). 
 
The problem of phasing genotypes under the perfect phylogeny model can be formulated 
as follows: 
 
Problem 2: Perfect phylogeny haplotyping (PPH):  
Input: Genotypes of sampled population, which is assumed to be generated under the 
perfect phylogeny model. 
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Goal: Infer the haplotypes and the perfect phylogeny, or determine that no solution 
exists1. 
 
2.4.3. Previous work 
The definition of PPH and the first algorithm for the problem were introduced by 
Gusfield (2002). Gusfield showed that when the haplotypes are coalescent, inferring them 
could be done in O(α(m,n)mn), where α(m,n) is the inverse Ackerman function, by 
reducing PPH to a problem known as the graph realization problem (details will follow). 
Bafna et al. (2002) and Eskin et al. (2003) later solved PPH directly. Their solutions have 
worse running time of O(m2n); however, they are simpler to understand, modify and 
implement than the solutions to the graph realization problem.  
 
2.4.4. The graph realization problem 
The connection between graph realization and haplotyping was first introduced by 
Gusfield (2002). The graph realization problem turns out to be significant for this study 
as well. 
 
Throughout this study we shall denote by (T,f) a tree T=(V,E) with a labeling function 
f:{1,�,m}→E.  
 
Definition: We say that a pair (T,f) realizes Pi⊆ {1,�,m} if Pi is the union of edge labels 
that constitute a path in T. (T,f) is said to realize a collection P={P1,�,Pn} of subsets if 
each Pi is realized by (T,f). 
 
The graph realization problem is defined as follows (Bixby and Wagner, 1988): 
 
Problem 3: Graph realization (GR):  
Input: A collection P={P1,�,Pn} of subsets, Pi⊆ S.  
Goal: Find a pair (T,f) that realizes P. 
 
For an example see Fig 3. 

 
 

                                                
1 Throughout the study, we shall omit the term �or determine that no solution exists� from problem 
statements for brevity. This requirement is part of the goal of any algorithm. 

1,2,4
1,3
2,3

2,3,4
1 2

3

4

a) b)

1,2,4
1,3
2,3

2,3,4
1 2

3

4

1 2

3

4

a) b)

 
Figure 3 An example of a GR solution. (a) The input to GR. (b) A GR solution to the input in (a).
Notice that indeed {1,2,4}, {1,3}, {2,3} and {2,3,4} label paths in (b). 
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Algorithms for the graph realization problem were studied beginning in the 1950�s and 
until the 1980�s (Tutte, 1960; Gavril and Tamari, 1983; Bixby and Wagner, 1988). The 
problem was first defined and solved in matroid theory by Tutte (1960), who gave 
O(mn2) time solution. It was then solved in time O(m2n) by Gavril and Tamari (1983). 
Later Bixby and Wagner (1988) introduced an O(α(m,n)mn) time solution. Here α(m,n) 
is the inverse Ackermann function, which for all practical purposes is never bigger than 
4. All these algorithms require linear space.  
 

2.5. Our contribution - XOR perfect phylogeny 

haplotyping 
 
2.5.1. Biological Background 
One can consider a hierarchy of genetic information: The ultimate and most complex to 
derive, is the complete haplotyping, i.e., one determines the haploid phase of each 
parental chromosome; this in essence is equivalent to having the entire linear sequence of 
each chromosome. At a lower resolution level one has complete knowledge of an 
individual�s genotype, i.e., both alleles at each SNP are known, but not their parental 
origin. The next level only differentiates between homozygous and heterozygous states, 
and thus provides no information as to the exact allele content. 
 
Suppose we cannot distinguish between the two homozygous alleles but can only 
determine whether an individual is homozygous or heterozygous for each SNP. This is 
the case in several biological experimental methods such as DHPLC (Xiao and Oefner, 
2001). Examination of SNPs in such manner will provide a list of homozygous versus 
heterozygous sites. We call such information the XOR-genotype. Formally: 
 
Definition: The XOR-genotype of an individual is the list of SNPs for which that 
individual is heterozygote2.  
 
This information is, of course, less than what we know if we have that individual�s 
genotype.  In this study we are interested in the following question: what can be inferred 
from knowing the xor-genotypes of a sampled population? As we shall see, when the 
perfect phylogeny model is assumed, information of this type is sufficient to infer the 
haplotypes and their perfect phylogeny.  
 
2.5.2. Problem definition 
We present a new variant of the haplotyping problem: 
 
Problem 4: Xor perfect phylogeny haplotyping: 

                                                
2 The reason for the name is by analogy to the logic gate �exclusive or� (abbreviated xor) which satisfies 

00011 =⊕=⊕  but 101 =⊕ , and therefore does not distinguish between the inputs 00 and 11, just 
like our model. 



 14

Input: xor-genotypes from a population, which is assumed to satisfy the perfect 
phylogeny model. 
Goal: Infer the haplotypes and the perfect phylogeny. 
 
Denote by H the actual haplotypes in the population. There are two levels of accuracy in 
the inference of H.  
1. An inference of H up to bit flipping is inference of H� such that H� can be transformed 
to H by changing the roles of 0 and 1 in some of the SNPs of H�.  
2. A concrete inference of H results in obtaining H itself. 
 
Level 1 of accuracy leads us to the following reformulation of problem 4: 
 
Problem 4�: Xor perfect phylogeny haplotyping up to bit flipping (XPPH): 
Input: xor-genotypes from a population, which is assumed to satisfy the perfect 
phylogeny model. 
Goal: Infer the haplotypes up to bit flipping and the perfect phylogeny. 
 
Concrete inference, however, requires additional data of full genotypes: 
 
Problem 5: Concrete xor perfect phylogeny haplotyping (concrete XPPH): 
Input: (a) xor-genotypes from a population, which is assumed to satisfy the perfect 
phylogeny model. (b) Several genotypes of the individuals tested in (a). 
Goal: Concretely infer the haplotypes and the perfect phylogeny. 
 
For examples of XPPH and concrete XPPH solutions see Fig 4. 

 
2.5.3. Results 
In section 3.1 we prove that XPPH is equivalent to the graph realization problem.  
 
In order to implement a solution to XPPH we implemented (in C++) Gavril and Tamari�s 
algorithm for GR (1983). We tested our software on simulated data produced by a 
standard simulator (Hudson, 2002). We studied the quality of our solution by answering 
questions such as: How many individuals are required to get a single solution? How 

1,2,4
1,3
2,3

2,3,4
1 2

3

4

1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1

a) b) c) d) e)

Xo
r-

ge
no

ty
pe

s

H
ap

lo
ty

pe
s

1 
   

2 
   

3 
   

4

SNP
1  2  3  4

0 0 1 0
1 0 0 0
1 1 1 0
1 1 1 1H

ap
lo

ty
pe

s
1 

   
2 

   
3 

   
4

SNP
1  2  3  4

4 2

1

3

2 2 1 2
2 0 2 0
1 2 2 0
1 2 2 2G

en
ot

yp
es

1 
   

2 
   

3 
   

4
SNP

1  2  3  4

1,2,4
1,3
2,3

2,3,4
1 2

3

4

1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1

a) b) c) d) e)

Xo
r-

ge
no

ty
pe

s

H
ap

lo
ty

pe
s

1 
   

2 
   

3 
   

4

SNP
1  2  3  4

0 0 1 0
1 0 0 0
1 1 1 0
1 1 1 1H

ap
lo

ty
pe

s
1 

   
2 

   
3 

   
4

SNP
1  2  3  4

4 2

1

3

2 2 1 2
2 0 2 0
1 2 2 0
1 2 2 2G

en
ot

yp
es

1 
   

2 
   

3 
   

4
SNP

1  2  3  4

 
Figure 4 Examples of XPPH and concrete XPPH solutions. (a) The xor-genotypes that are given as 
input to XPPH and to concrete XPPH. (b) H � A solution to concrete XPPH. H are the (unknown) 
haplotypes that actually generated X. (c) H� � A solution to XPPH. Note that H can be obtained from H�
by flipping SNPs 1 and 3. (d) (T,f) - A perfect phylogeny for H and also for H�. (e) The genotypes that 
are given as input to concrete XPPH. Note that these genotype can only be generated by H and not by 
H�, hence they may be used to identify H from H�. 
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many solutions are there otherwise? What characterizes a large population with multiple 
solutions? One of our conclusions is that although xor-genotypes carry less information 
than regular genotypes, they often require only a few more individuals to resolve than 
complete-information genotypes would. 
 

2.6. Informative SNPs 
 
2.6.1. Biological background 
The collection of distinct haplotypes in a certain population, possibly along with their 
frequencies, is referred to as a haplotype map of the population. After such haplotype 
map is obtained by inferring the haplotypes of sampled individuals, we may wish to 
determine the haplotypes of other individuals from the same population. The knowledge 
of the haplotype map can be useful here, because it limits the possibilities of haplotypes 
for an individual. This is particularly true since, as mentioned earlier, it has been shown 
that the human genome contains blocks of limited haplotype diversity (Patil et al., 2001; 
Daly et al., 2001).  
 
Limited diversity of a block indicates that there is redundancy of information in its SNPs. 
Any subset of the SNPs that captures the complete information of the block is called a tag 
SNP set, i.e., knowledge of the alleles in these SNPs suffices to uniquely determine the 
haplotype. More generally, an informative SNP set is a subset that captures the 
information of a distinct, previously defined, set of interesting SNPs. For an example see 
Fig 2. Typing the informative SNPs set may suffice instead of the more laborious typing 
of all the interesting SNPs, which motivates the computational problem of finding a 
minimal informative set (Patil et al., 2001; Bafna et al, 2003; Zhang et al, 2002).  
 
2.6.2. Problem definition 
Definition: Given a set of haplotypes H={H1,�,Hn} over a set of SNPs S={s1,�,sm}, a 
set S�⊆ S is tag SNPs set if for each 1≤l≠k≤n there is s�∈ S� for which Hl and Hk have 
different alleles. 
 
Definition: Let S��⊆ S be a subset of the SNPs. S�� is called the set of interesting SNPs. 
S�⊆ S\S�� is informative on H w.r.t. S�� if for each 1≤l≠k≤n, whenever there is a SNP 
s��∈ S�� for which for which Hl and Hk have different alleles, there is a SNP s�∈ S� for 
which Hl and Hk have different alleles.  
 
The problem of finding the minimal informative SNPs set is defined as follows (Bafna et 
al., 2003): 
 
Problem: Block minimum informative SNP set (MIS): 
Input: (a) A set of coalescent haplotypes H={H1,�,Hn} over a set of SNPs S={s1,�,sm}. 
(b) An interesting set S��⊆ S. 
Goal: Find a minimal set of informative SNPs. 
 



 16

2.6.3. Previous work 
The problem of finding a minimum set of tag SNPs within a block with no special 
structure is equivalent to the MINIMUM TEST SET problem, which was proven to be 
NP-hard in (Garey and Johnson, 1979). However, since most blocks are relatively short 
(up to 30 SNPs), the problem can be solved to optimality in reasonable time for such 
blocks. 
 
For the special case where there is one interesting SNP and the haplotypes are coalescent, 
Bafna et al. (2003) find informative SNPs in O(mn) time. The problem of finding 
informative SNPs on coalescent haplotypes was posed as open, for more than one 
interesting SNP (Halldorsson et al., 2003).  
 
2.6.4. Our contribution – Diallelic informative SNPs of minimal cost 
We generalize the minimum informative set (and tag set) problems by introducing a cost 
function for SNPs, and looking for the minimal cost sets. This is motivated by the facts 
that (a) some SNPs are technically harder to type, e.g., those in repetitive or high GC 
regions, and (b) some SNPs, e.g. protein-coding SNPs, are more attractive for direct 
typing, as they are more likely to be causative. This gives rise to the following problem 
variant: 
 
Problem 6: Minimum-Cost Informative SNPs (MCIS): 
Input: (a) A set of coalescent haplotypes H={H1,�,Hn} over a of SNPs S={s1,�,sm}. (b) 
An interesting set S��⊆ S. (c) A cost function C:S→R+. 
Goal: Find an informative SNPs set of minimal cost. 
 
In Chapter 5 we present an efficient solution for Problem 6. Since this is a generalization 
of the tag SNPs problem, this also implies an efficient solution to the tag SNPs problem 
on coalescent haplotypes.  
 
Both the tag SNPs and the informative SNPs problems, as were defined by previous 
works, suggest that once we know the alleles for these SNPs we can determine the 
complete haplotype of an individual. However, as we usually have only genotypic 
(conflated) information on the SNPs, the alleles for this set of SNPs is not always readily 
available from the set�s genotype. In particular phasing the genotypes that are obtained 
for informative SNPs is not always unique. In Fig 2 for example, the genotype A/C T/A 
for the tag SNPs has two possible resolutions. This motivates the search for a phasing tag 
SNPs set: 
 
Definition: Given a set of haplotypes H={H1,�,Hn} over a set of SNPs S={s1,�,sm}, a 
set S�⊆ S is phasing tag SNPs set if each pair of haplotypes from H gives a distinct 
genotype on the set S�. 
 
This will be described in detail later; nevertheless, for coalescent haplotypes, we proved 
that tag SNPs are in fact equivalent to phasing tag SNPs. This result justifies the common 
use of tag SNPs and informative SNPs problems in genomic studies based on genotypes. 
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Chapter 3. Xor-Haplotyping 
 
Xor-haplotyping seeks to infer the haplotypes of a set of individuals given their xor-
genotypes. Formally: 
 
Problem 4: Xor perfect phylogeny haplotyping: 
Input: xor-genotypes from a population, which is assumed to satisfy the perfect 
phylogeny model. 
Goal: Infer the haplotypes and the perfect phylogeny. 
 
This goal can be achieved on two levels of accuracy: 
1. Infer the haplotypes up to bit flipping, i.e., infer the haplotypes such that the actual 

haplotypes can be obtained from the inferred haplotypes replacing the roles of 1 and 0 
for some SNPs. This type of inference determines the structure of haplotypes in the 
population (namely their perfect phylogeny) and may sometime suffice. 

2. Concretely infer the haplotypes, i.e., infer the exact haplotype sequences of the 
individuals. This type of inference gives the complete information on the inferred 
haplotypes. 

 
Xor-genotype data can only resolve the haplotypes up to bit flipping, as we explain 
below. Then, in order to concretely infer the haplotypes, we augment the data by up to 
three genotypes from the population. 
 
Notation: Hereafter, a set of haplotypes is represented by a binary matrix H, where each 
row is a haplotype vector and each column is the vector of SNP alleles. We denote the 
allele of haplotype i for SNP j by Hij or by hj for the haplotype h=Hi.  
 

3.1. XPPH 
 
In this section we resolve the haplotypes up to bit flipping.  
 
Recall the definition of xor-genotype from section 2.5.1: 
Definition: A xor-genotype of a haplotype pair {h,h�} is the set of their heterozygote 
SNPs, i.e., {s|hs≠h�s} (see Fig 1). A set of haplotypes H explains a set of xor-genotypes X 
if for each xor-genotype in X there is a pair of haplotypes in H that gives rise to it. 
 
We assume hereafter, w.l.o.g., that xor-genotypes are not empty. 
 
Definition: Two haplotype matrices Hn×m and H�n×m are equivalent up to bit flipping 
(denoted H↔H�) if for any two rows k, l, Hk,j≠Hl,j ⇔ H�k,j≠H�l,j. H↔H� iff one can be 
obtained from the other by exchanging the roles of 1 and 0 for some columns. Notice that 
↔ is a set-theoretic equivalence relation. 
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Observation 1: If H↔H� then X can be explained by H iff it can be explained by H�. 
 
Observation 1 implies that XPPH can only be solved up to bit flipping based on the data 
given by X. This leads to the following definition of XPPH up to bit flipping: 
 
Problem 4′: XPPH: 
Input: A set X={X1,�,Xn} of xor-genotypes over SNPs S={s1,�,sm}, such that 
X1∪ �∪ Xn =S. 
Goal: Find a haplotype matrix H and a perfect phylogeny (T,f) for H, such that H 
explains X. (See Fig 4) . 
 
In some cases, however, there may be several alternative sets of haplotypes that explain X 
and are not ↔-equivalent. In that case, we will not be able to determine which of those 
sets is the one that really generated X. Our next goal is to identify when the solution 
obtained is guaranteed to be the correct one. We will next show that this is guaranteed by 
the uniqueness of the solution.  
 
Key property: The definition of a perfect phylogeny implies the following: Let (T,f) be a 
perfect phylogeny for H. If Hij=0 then for all k, Hkj=0 iff nodes i and k are in the same 
component of T\f(j).   
 
Definition: (T,f) is a perfect phylogeny for X if (T,f) is a perfect phylogeny for some H 
that explains X.  
 
Proposition 1: When X has a unique perfect phylogeny then there is a unique matrix H 
(up to ↔-equivalence) that explains it. 
Proof: 
It suffices to prove that if (T,f) is a perfect phylogeny for H then there is no H� such that 
(T,f) is a perfect phylogeny for H� and ¬ (H↔H�). Assume w.l.o.g. that |H|>2, otherwise 
H↔H� is always true assuming each SNP has two alleles in H. Consider some leaf v of T 
which corresponds to some unknown h∈ H. Let s∈ S be a label of the edge incident on v. h 
is the only haplotype with one of the alleles of s, while all the other haplotypes have the 
other allele. Therefore we can identify that allele and h. The key property now uniquely 
determines all the other haplotypes that correspond to nodes of T, and in particular all H. 
Consider now the same leaf v in T  and determine the corresponding h�∈ H�. As before, 
the haplotypes at all the other nodes are uniquely determined. By the key property, the 
possible differences between H and H� are bit flips of the bits on which h and h� differ. ! 
 
Proposition 1 motivates a new formulation of Problem 4�: 
 
Problem 4″: XPPH: 
Input: The same input as in Problem 4′. 
Goal: Find a unique perfect phylogeny (T,f) for X, or determine that there are multiple 
perfect phylogenies for X. 
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Proposition 1 implies that a solution to Problem 4″ (if unique) is guaranteed to be a 
perfect phylogeny for the correct set of haplotypes, i.e., the haplotypes that actually 
generated X. 
 
We will next discuss the connection between Problem 4″ and the graph realization 
problem. 
 
Recall the definition of realization from section 2.4.4: 
Definition: We say that a pair (T,f) realizes Xi⊆ S if Xi is the union of edge labels that 
constitute a path in T. (T,f) is said to realize a collection X of subsets if each Xi∈ X is 
realized by (T,f). For example: in Fig 4, (T,f) realizes X. (T,f) also realizes the sets {2,4} 
and {1,2} which are not part of X. 
 
Lemma 1: (T,f) is a perfect phylogeny for X iff X is realized by (T,f). 
Proof: 
Assume (T,f) is a perfect phylogeny for X. Let i1,i2 indicate the haplotypes of individual i. 
Then by the key property, the path between i1 and i2 in T is labeled by exactly those SNPs 
that are heterozygous for the pair of haplotypes i1 and i2, therefore it is labeled exactly by 
Xi. For the opposite direction, assume X is realized by (T,f). Obtain a matrix H by labeling 
an arbitrary node of T with an all-0 haplotype, then applying the key property to infer the 
remaining haplotypes that correspond to T. Then Xi can be obtained from H by taking the 
pair of haplotypes in H that correspond to the end nodes of the path labeled by Xi.! 
 
The following formulation for XPPH is finally obtained: 
 
Problem 4″′ : XPPH: 
Input: The same input as in Problem 4′. 
Goal: Find a unique realization (T,f) for X, or determine that there are multiple 
realizations for X. 
 
Observation 2: Problem 4″′  is reducible to the graph realization problem.  
 
The existing theory for the classical graph realization problem (see introduction) provide 
efficient algorithms for determining the existence of a graph realization and also the 
uniqueness of such a solution. Hence, these algorithms can be applied to solve XPPH. 
 
Occasionally however, X has multiple realizations even when it is highly informative. 
That is the case when there are xor-equivalent SNPs in the data: 
 
Definition: We say that s1,s2∈ S are xor-equivalent w.r.t. X and write s1≈Xs2 if for all i: 
s1∈ Xi⇔s2∈ Xi. Note that this is an equivalence relation. 
 
Fortunately, xor-equivalent SNPs may be redundant. That is the case when they are 
haplotype-equivalent: 
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Definition: We say that s1,s2∈ S are haplotype-equivalent w.r.t. H and write s1≈Hs2 if for 
all i,j: 

2211 jsisjsis HHHH ≠⇔≠  (See Fig 5). Notice that s1≈Hs2 iff (1) s1 is equivalent to 
s2 or (2) s1 can be obtained from s2 by changing the roles of 0 and 1. Note that ≈H is an 
equivalence relation.  

 
Observation 3: Haplotype-equivalence implies xor-equivalence but not vice versa. (See 
Fig 6). 
 

 
We next show that haplotype-equivalent SNPs are redundant. 
 
Notation: Denote by SH⊆ S the set that is obtained by taking one representative from each 
haplotype-equivalence class. Denote by HS the haplotype matrix that is obtained by 
restricting H to SH. 
 
Observation 4: To obtain a perfect phylogeny (T,f) for H, one can obtain a perfect 
phylogeny (T,f�) for HS and then for each s∈ S take f(s)=f�(sH) for the sH∈ SH that is 
haplotye-equivalent to s. 
 
Observation 4 implies that haplotype-equivalent SNPs are redundant, hence may be 
merged to label a single edge in (T,f) (See Fig 5). By doing so, we discard the degrees of 
freedom that comes with having haploype-equivalent SNPs, as proven by Proposition 2: 
 
Proposition 2: If H is coalescent and it contains no haplotype-equivalent SNPs then H 
has a unique perfect phylogeny. 
Proof: 
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Figure 5 An example of haplotype-equivalent SNPs. (a) H - The haplotypes matrix. SNPs 1, 2 and 3 are
haplotype-equivalent. (b-d) Three different perfect phylogenies H. 

1,3,4
2,3

1 2

3 4
a) b) c) d)

Xo
r-g

en
ot

yp
es

4 2

1

3

1 0 1 1
0 0 0 1
0 1 1 1
0 0 0 0H

ap
lo

ty
pe

s
1 

   
2 

   
3 

   
4

SNP
1  2  3  4

1,4 2

3
1,3,4
2,3

1 2

3 4
a) b) c) d)

Xo
r-g

en
ot

yp
es

4 2

1

3

1 0 1 1
0 0 0 1
0 1 1 1
0 0 0 0H

ap
lo

ty
pe

s
1 

   
2 

   
3 

   
4

SNP
1  2  3  4

1,4 2

3

 
Figure 6 An example of SNPs that are xor-equivalent but not haplotype-equivalent. (a) X � The xor-
genotypes. SNPs 1 and 4 are xor-equivalent. (b) H � The haplotypes matrix. There are no haplotype-
equivalent SNPs. (c) (T,f) � A realization for X that is a perfect phylogeny for H. (d) (T�,f�) � Another 
realization for X that is not a perfect phylogeny for H. 
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Arbitrarily choose one of the haplotypes, i, and bit flip the SNPs so that i will become an 
all-0 haplotype. Denote by (s)1 the set of rows for which s∈ S has the 1 allele. Then for a 
pair of SNPs s1,s2∈ S, w.l.o.g., either (s1)1⊂ (s2)1 or (s1)1∩(s2)1=∅  (Gusfield, 1997). Since 
there are no SNPs s1,s2 such that (s1)1=(s2)1, every edge is labeled by exactly one SNP. 
Moreover, along the path from i to each node the edge labels correspond to SNPs with 
increasing number of 1-s (i.e., s1 is closer to i than s2 on the path iff (s1)1⊂ (s2)1) (Gusfield, 
2002). Therefore, a BFS run that is originated at i is completely defined by the increasing 
order of SNPs. Hence the tree is unique.! 
 
Identifying haplotype-equivalent SNPs is not trivial when we only have xor-genotype 
information, and as Observation 3 implies it may not suffice. In other words, in order to 
merge haploype-equivalent SNPs, we must merge the xor-equivalent SNPs, which by 
Observation 3 may lead to information loss (See Fig 6).  
 
Definition: Denote by SX⊆ S the set that is obtained by taking one representative from 
each xor-equivalence class. Denote by XS the xor-genotypes that are obtained by 
restricting X to SX. XS is called the canonic version of X. 
 
We show next that when the canonic version of X has a unique realization, then there was 
no information loss in merging xor-equivalent SNPs, since xor-equivalence implies 
haplotype-equivalence in this particular case. 
 
Theorem 1: Let (T,f�) be a realization for XS. Extent the mapping f� to S by setting 
f(s)=f�(sX) for every s that is xor-equivalent to sX. Then (T,f) is a perfect phylogeny for X 
Proof: 
Since (T,f�) is a realization for XS then it is a perfect phylogeny for XS. We will next show 
that xor-equivalence implies haplotype-equivalence for the data set X of xor-genotypes. 
Therefore by observation 4, (T,f) is a perfect phylogeny for the correct haplotype matrix 
that generated X.  
Assume to the contrary that SNPs s1,s2∈ S are xor-equivalent but not haplotype 
equivalent. Consider the unique perfect phylogeny (TS,fS) of HS. Since s1 and s2 are not 
haplotype-equivalent they label distinct edges, e1 and e2 respectively, in TS. By definition, 
the SNPs in f -1(e1)∪  f -1(e2) form a xor-equivalence class. Let (TS

1,fS
1) be obtained from 

(TS,fS) by contracting e1 (identifying e1�s nodes), and by taking fS
1(s)=e2 for s∈ f -1(e1). 

(TS
2,fS

2) is similarly obtained from (TS,fS) by contracting e2. Since f -1(e1)∪ f -1(e2) are xor-
equivalent, both (TS

1,fS
1) and (TS

2,fS
2) realize X. It remains to see that (TS

1,fS
1)≠(TS

2,fS
2). 

Assume to the contrary that (TS
1,fS

1)=(TS
2,fS

2). Fig 7 shows all possible structures of 
(TS,fS). Consider 8a: Since s1 and s2 are not haplotype-equivalent then ν must correspond 
to a haplotype from H. However, each haplotype of H participates in at least one xor-
genotype, in contradiction to the assumption that s1 and s2 are xor-equivalent. The proof 
for 8b is similar to 8a, since either υ or ω must correspond to a haplotype from H. 
Consider 8c: A path from η can go either through e1 or through e2 but not both. Since XS 

has a unique realization, there must be a xor-genotype that realizes such a path, in 
contradiction to s1 and s2 being xor-equivalent. ! 
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Theorem 1 leads to the following algorithm for XPPH: 
 
1. Identify xor-equivalent SNPs and generate a canonic version XS of X. 
2. Solve GR on XS 

a. If the solution is unique report the corresponding perfect phylogeny of X 
(Theorem 1). 

b. If the solution is not unique � find all possible GR solutions on the original 
data X. 

 
The computing of SX is done as follows: Let Mn×m be the incidence matrix of X, i.e., Mij=1 
iff sj∈ Xi. SX is computed in O(nm) bitwise operations by radix sort of the columns of M. 
After sorting, equivalent SNPs are adjacent. 
 
Since haplotype-equivalent SNPs are merged, a unique solution (2a) can often be 
obtained when the data of xor-genotypes are sufficiently enriched. Sometimes, however, 
one does not have the resources needed in order to enrich the data. In that case, Lemma 1 
implies that the true perfect phylogeny of X is found among the realizations of X (2b). 
Hence, if possible, one can choose among the realizations of X one that according to 
other considerations is more likely to be a perfect phylogeny for X. A method for 
choosing a realization among all possible is described in (Gusfield, 2002). 
 

3.2. Concrete XPPH 
 
As implied by Observation 1, XPPH can only be solved up to bit flipping based on the 
data given by X. Here a concrete inference is pursued: 
 
Definition: A set of haplotypes H concretely explains the sets X={X1,�,Xn} and 
G={G1,�,Gn} of xor-genotypes and genotypes respectively, if for each {Xi,Gi} there is a 
pair of haplotypes in H that gives rise to them. 
 
Problem 5: Concrete XPPH: 
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Figure 7 All possible tree structures where merging e1 to e2 yields the same result as merging e2 to e1.   
Notice that τ, µ and η may be empty.  
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Input: (a) A set X={X1,�,Xn} of xor-genotypes over SNPs S={s1,�,sm}, such that 
X1∪ �∪ Xn =S. (b) The genotypes 

pii GG ,...,
1

 of individuals {i1,�,ip}⊆ {1,�,n}. 
Goal: Find a unique haplotype matrix H and a perfect phylogeny (T,f) for H, such that H 
explains X\{

pii GG ,...,
1

} and concretely explains 
pii XX ,...,

1
 and 

pii GG ,...,
1

; or determine 
that H is not unique. 
 
Problem 5 is solved in two steps. First we solve XPPH for the xor-genotypes of the input 
and obtain a perfect phylogeny. Then, for some (two or three) specifically selected 
individuals that were xor-genotyped, we obtain full genotypes. Using these genotypes 
and the tree obtained in the first step, we infer the full haplotypes of all individuals. By 
the reasoning of section 3.1 we assume here that there is a single realization to the 
canonic version of X. If not, the second step may be tried for each realization. 
 
Let (T,f) be the perfect phylogeny for X as was computed by solving XPPH. 
 
3.2.1. A solution to concrete XPPH 
Proposition 3: Concrete XPPH can be solved iff φ=∩∩

pii XX ...
1

. 
Proof: 
Let j1,j2 indicate the haplotypes of individual ij. If 

jiG  is homozygous for SNP k, then we 
know the allele of SNP k for the haplotypes j1 and j2, and the key property gives the 
identity of SNP k for all haplotypes. Consequently, for each SNP 

jiXSs \∈ , its value is 

resolved by 
jiG  and the bit-flip degree of freedom is removed. Hence, all degrees of 

freedom are removed and the concrete XPPH is solved when φ=∩∩
pii XX ...

1
.! 

 
The proof of Proposition 3 is constructive. In order to solve concrete XPPH we do the 
following: 
(a) Identify j1 and j2 for each genotyped individual ij, and determine their alleles for 

jiXSs \∈ .  
(b) Infer the haplotypes by applying the key property to all SNPs. 
 
Step (a) is done by DFS on (T,f) for individuals {i1,�,ip}, in O(pm) time. 
In step (b), first label arbitrarily one node of (T,f) by the all-0 haplotype and apply the key 
property to infer all haplotypes accordingly. Then for each individual ij and the 
corresponding nodes j1 and j2, determine whether the inference that you obtained for each 

jiXSs \∈  is correct or opposite. Finally, bit-flip the opposite arbitrary inferences. This is 
done in O(m) time. 
Since in the next section we show that p≤3, the total time complexity is O(m). 
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3.2.2. Finding which individuals to genotype 

3.2.2.1 Problem definition 

As mentioned earlier, concrete XPPH is solved in two steps. First a perfect phylogeny 
(T,f) for X  is found, and then the genotypes of individuals {i1,�,ip} are applied to (T,f) in 
order to infer the haplotypes. In light of that, the problem can be broken into three steps 
as well:  

(1) The xor-genotypes are used in order to find (T,f). 
(2) The set {i1,�,ip} is identified based on both X and (T,f), and their genotypes are 

exposed.  
(3) The haplotypes are inferred. 

This reasoning motivates the following set-selection problem: 
 
Problem: Minimum tree intersection set (MTI): 
Input: A collection of sets X={X1,�,Xn} and a perfect phylogeny (T,f) for X. 
Goal: Find a minimum subset of X whose intersection is empty. 
 

3.2.2.2 Three genotypes suffice 

It remains to show how to choose a minimum set {i1,�,ip} such that φ=∩∩
pii XX ...

1
. 

Without the condition that each Xi is a path in the tree, the problem is equivalent to the 
NP-hard set-cover problem (Arkin and Hassin, 1992). In contrast, when each Xi is a path 
in the tree, one gets the interesting result that only three individuals suffice, and they can 
be efficiently identify as shown next. 
 
Theorem 2: If {X1,�,Xn} are tree paths such that X1∩�∩Xn=∅ , then there is a 
minimum tree intersection set of size at most 3. 
Proof:  
Consider the path X1, and w.l.o.g. label the SNPs according to their order along that path 
as (1,�,k).  For each i, the set X1∩Xi defines an interval in that order. If X1∩Xi=∅  for 
some i then {X1,Xi} are a solution. Otherwise all intervals overlap X1. Denote these 
intervals by [lj,rj] for j=2,...,n. Take an interval that ends first and an interval that begins 
last, i.e., L=argminj(rj) and R=argmaxj(lj). Since X1∩�∩Xn=∅  then 
[l2,r2]∩�∩[ln,rn]=∅ , hence it follows that [lL,rL]∩[lR,rR]=∅ . We get 
(X1∩XL)∩(X1∩XR)=∅  and thus (X1∩XL∩XR)=∅ .! 
 
Corollary 1: Let Y= X1∩�∩Xn. There are at most three individuals whose genotypes 
can resolve all the haplotypes on the SNP set S\Y. In case Y≠∅ , the SNPs in Y can be 
inferred up to bit flipping. 
 
The proof for theorem 2 is constructive, and implies an O(n2m) algorithm for MTI. With 
slight modifications two individuals instead of three can be found more efficiently when 
possible. 
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3.2.2.3 A solution to MTI 

Notation: For T=(V,E) and v∈ V denote by E(v)⊆ E the set of edges that are incident on v. 
We assume hereafter, w.l.o.g., that every edge of E(v) participates in a path of some 
Xi∈ X.  
 
We next present a linear algorithm for MTI. We begin with a concise outline of the 
algorithm:  
 
If jR- jL>1 then an interval that ends at jL and an interval that begins at jR correspond to 
paths that do not intersect. The interesting cases are therefore when jR- jL=1. We consider 
the vertex v, which is incident to the two edges that are labeled by jR and jL. The 
interesting case now is when the degree of v is larger than three; otherwise we can easily 
determine a minimum set of paths that do not intersect. When the degree is larger than 
three, we prove that there is another edge e incident to v, such that: there is an interval 
X1∩Xi that ends at jL for which the path Xi goes through e, and there is an interval X1∩Xj 
that begins at jR

 for which the path Xj does not go through e; or vice versa. In both cases 
we get Xj∩Xi. 
 
The algorithm 
1) Go over 2≤i≤n; if X1∩Xi=∅ , return {X1,Xi}. 
2) Label the SNPs according to their order along X1 as (1,�,k). Find jL and jR as in 

Theorem 2; take XL={Xi| X1∩Xi ends at jL} and XR={Xi| X1∩Xi starts at jR}.  
3) If jR≤ jL return FALSE. 
4) If jR- jL>1 return any choice of x∈ XL and x′∈ XR. 
5) We remain with jR- jL=1.  

a) Let eL=f(jL) and eR=f(jR). Since jR>jL, eL≠eR. Since jR- jL=1, eL and eR are 
connected by a vertex v∈ V.  

b) For j=2,�,n take Ej={e|f-1(e)⊆ Xj}∩E(v). Notice that 1≤|Ej|≤2.  
c) For each Xi∈ XL∪ XR, if |Ei|=1 mark Xi as completed. If there is x∈ XR that is 

completed take any x′∈ XL and return {x,x′}. If there is x′∈ XL that is completed 
take any x∈ XR and return {x,x′}.  

d) By now |E(v)|≥3. 
e) If |E(v)|=3 there are no x∈ XR and x′∈ XL such that x∩x′=∅ . Take any choice of 

x∈ XR and x′∈ XL and return {x,x′,X1}. 
f) If |E(v)|>3, take any e∈ E(v)\{eR,eL}. There are x∈ XR and x′∈ XL such that 

either (1) f-1(e)⊆ x but f-1(e)∩x′=∅  or (2) f-1(e)⊆ x′ but f-1(e)∩x=∅ . Find and 
return {x,x′}.  

 
Proof of correctness 
Most of the proof of correctness was given by the proof of Theorem 2. We complete it by 
the following. 
If x∈ XR is completed then it ends at eR therefore x∩x′=∅  for any x′∈ XL, and vice versa. 
If no path is completed then obviously |E(v)|≥3. If |E(v)|=3 then all paths but X1 go 
through the edge E(v)\{eR,eL}, therefore there are no two disjoint paths.  
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Assume |E(v)|>3 and take any e∈ E(v)\{eR,eL}. Since every edge of E(v) participates in at 
least one path, f-1(e)⊆ x for some x∈ XL∪ XR. Assume w.l.o.g. that x∈ XR. If there is x′∈ XL 
such that f-1(e)∩x′=∅  we are done. Otherwise, f-1(e)⊆ x′ for all x′∈ XL. If all paths in 
XL∪ XR go through e then |E(v)|=3, therefore there exists x∈ XR such that f-1(e)∩x=∅ .■ 
 
Algorithm complexity 
To execute this algorithm we go over the elements of X for a constant number of times. 
Therefore the time and space complexity are O(mn). 
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Chapter 4. Implementation and Results 
 

4.1. GREAL 

 
We implemented Gavril and Tamari�s (1983) algorithm for Graph Realization. We chose 
it since it is simpler to implement and modify than the asymptotically fastest algorithm 
(Bixby and Wagner, 1988). Moreover, as the block size is usually bounded in practice by 
m<30, the difference in the complexity between the best know algorithm (Bixby and 
Wagner, 1988) which requires O(mnα(m,n)) and O(nm2) complexity of Gavril and 
Tamari�s algorithm is not significant, and the quadratic dependence of the algorithm on m 
is not a handicap.  
 
We call our software GREAL. For an example of a run of GREAL, input and output, see 
Fig 8. GREAL freely available for academic use and can be downloaded from 
http://www.cs.tau.ac.il/~rshamir/greal/. GREAL was written in C++, and executables are 
available for Windows, Linux and SunOS. It was written with great care on time and 
space performance, and the executable is rather small to download (~400KB for 
Windows). The code contains about ~4500 lines. We believe the software to be precise 
and stable after performing massive testing. The running time of GREAL on a standard 
1.6GHz P4, 256MB RAM machine is about one second, for a problem of 40 SNPs and 
200 individuals3.  
 
 
 

                                                
3 When we embarled on this implementation, no other public implementation was available. Gusfield 
(2002) discussed such an implementation but it was not available to us. A short while before making 
GREAL available on the web, another implementation due to Chung and Gusfield has been announced 
(2003), but we have been unable to operate it. Recently, a new implementation of Bixby and Wagner 
(1988) has been completed (Ohto and Iwata 2004, private communication). 
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4.2. Simulated data 
 
We used a standard population genetics simulator due to Hudson (2002) to generate data 
samples under the perfect phylogeny model. In each run we generated 2400 
chromosomes with a prescribed number of SNPs, preserving the default values for all 
other simulation parameters in the simulator. An important parameter in the experiments 
was the minor allele frequency cutoff, denoted by α: For a given value of α, only SNPs 
whose less frequent allele among the haplotypes had frequency > α were used. The 
resulting haplotypes were randomly paired to generate xor-genotypes of individuals. 
 
4.2.1. Results 

4.2.1.1. How many individuals are required to get a single solution? 

A practical measure of performance is the number of individuals required for a single 
solution, for a given number of SNPs (the size of a block). We evaluated this measure by 
adding individuals one by one (starting with 5 individuals) and reapplying GREAL till 
the solution is unique. The results (Fig 9) show that for α≥0.03, the number of individuals 
required to obtain a single solution is roughly constant, irrespective of the number of 

   
  a)    b) 

 

0 1 1 1 1
1 0 1 1 0
1 1 0 0 0    

actual vertices:
0 = 0 
1 = 1 
2 = 2 3 
3 = 4 
realization:
-1 1 -1 0 2
1 -1 -1 -1 -1
-1 -1 -1 -1 3
0 -1 -1 -1 -1
2 -1 3 -1 -1  

 
c) 

 
 

Figure 8 GREAL input and output. (a) An example of an incidence matrix M, the input to the GREAL 
software. M shows three xor-genotypes over 5 SNPs. The xor-genotypes (with SNPs numbered from 0 
up) are {1,2,3,4}, {0,2,3} and {0,1}. (b) The output (T,f) of GREAL for the input in (a). The 
�realization� matrix is the adjacency matrix of T=(V,E). It indicates that V={0,�,4} and that E consists 
of the edges (0,1),(2,4),(0,3),(0,4) with initial labeling of 1,3,0,2 respectively. The �actual vertices� list 
indicates that the labeling function is the following: f(0)=(0,3), f(1)=(0,1), f(2)= (0,4), f(3)= (0,4) and 
f(4)= (2,4). (c) The output of GREAL as is presented by neato, a software for graph drawing 
(http://www.research.att.com/sw/tools/graphviz/ ). In order to obtain this tree drawing GREAL 
automatically produces output in the format of the input to neato. 
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SNPs, and is practically bounded by 70. When rare alleles (α=0.01) are present, the 
behavior is less predictable and the variance is very large.  

 

4.2.1.2. How many xor-equivalence classes are there? 

As described in section 3.1, the GR algorithm is applied to the canonic version of the data 
after computing SX, and not to the entire S. We tested the number of equivalence classes 
as a function of the number of SNPs. The number of equivalence classes is a more 
appropriate measure for the complexity of the problem, as it determines the chance of 
uniqueness, the number of distinct haplotypes, and the running time of GREAL.  
 
 

Figure 9 Conditions for solution uniqueness. The plots show the number of xor-genotypes (y-axis)
needed for obtaining a single solution for a given number of SNPs (x-axis). Different lines correspond
to different thresholds on the minor allele frequency cutoff α. 
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Fig 10 shows the relation between the size of a block and the number of xor-equivalence 
classes within it. The results show that α is the key factor in determining the number of 
classes for a given number of SNPs. The larger α is, the fewest classes there are. For a 
range of 20-40 SNPs and α=0.03, for example, the number of classes is less than half the 
number of SNPs. 
 

4.2.1.3. How many individuals does XPPH require compared to PPH? 

Since xor-genotypes contain less information than regular (full) genotypes, they may 
have a potential economic advantage over full genotypes. However, the number of 
individuals required for obtaining the haplotypes is larger. We compared the number of 
individuals needed by XPPH and by PPH. Chung and Gusfield (2003) evaluated 
experimentally the number of individuals required for obtaining a unique solution to PPH 
(their haplotypes were also generated using Hudson�s simulator). We computed the same 
statistic for XPPH (Fig 11).  
 
For 50 SNPs, 50 xor-genotypes guarantee ~90% chance of uniqueness, and increasing the 
number of individuals has only a minor effect. Essentially the same results hold for 100 
SNPs. In comparison to (Chung and Gusfield, 2003), the chance for a unique XPPH 
solution with > 50 xor-genotypes is only a few percent lower than for PPH data with the 
same number of full genotypes.  
 
Consider the following simplified example: suppose that xor-genotyping an individual 
costs 1, and genotyping an individual costs β. A method for haplotype inference can be 
the following: Randomly choose 50 individuals to xor-genotype and apply XPPH. If the 

Figure 10 The number of xor-equivalence classes. The plots show the number of xor-equivalence classes
(y-axis) obtained for a given number of SNPs (x-axis). Different lines correspond to different thresholds
on the minor allele frequency cutoff α. 
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solution is unique we are done. Otherwise, randomly choose another 50 individuals to 
genotype and apply PPH. Then by the probability of a unique solution for 50 individuals 
(Fig 11), the cost expectation is: 0.9⋅50+0.1(50+50β). If however, we decide to use PPH 
exclusively choosing 50 individuals to genotype, the cost expectation is 50β. Therefore, 
if β>1/0.9∼ 1.1 then XPPH improves the expected cost. 
 

 

4.2.1.4. How many solutions are there? 

We further focused on outlier ambiguous datasets, i.e., those that have multiple solutions 
despite the examination of many individuals. For such datasets, the number of possible 
solutions is of much practical interest: If this number is limited, each solution may be 
tested separately. Indeed, the results (Fig 12) show that for α≥0.03, when the solution is 
not unique, there are only a handful of solutions.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 The chance of a unique solution. The plots show the frequency of a unique solution (y-axis) versus the
number of individuals tested (x-axis). XPPH statistics are based on 5000 runs for 50 or 100 SNPs after filtering
with α=0.05. PPH statistics from (Chung and Gusfield, 2003) are plotted for comparison. 
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4.2.1.5. Observing the full haplotype diversity in the population 

Up until now, we were interested in inferring the haplotypes of a small set of sampled 
individuals. Specifically, we sampled at random 10-100 individuals out of a simulated 
population of 1200 individuals, and then attempted to infer their haplotypes. This is 
indeed the situation in real genetic study: when studying the haplotype variation of a 
population, one would decide on a threshold on the probability of the rarest haplotype, 
and then would estimate the number of individuals that should be sampled in order to 
find (with good probability) all the haplotypes that have larger frequency in the 
population. Then methods such as regular genotyping or XPPH are used to determine the 
haplotypes of the sample.  
 
Here we consider a different perspective: How many individuals are required in order to 
observe all the haplotypes in the population and to obtain a single XPPH solution for 
them? This is a stricter requirement than the earlier one, but it ensures that the entire 
diversity of haplotypes is observed.  
 
 
 
 
 
 
 
 
 
 

 
Figure 12 The distribution of the number non-unique solutions in deep coverage studies. We focused 
here only on instances with multiple solutions. Each bin indicates the frequency (y-axis) of a possible 
number of solutions (x-axis) for an α-threshold on the minor allele frequency (z-axis). Statistics were 
collected for varying combinations of the number of SNPs (100-2000) and the number of individuals, 
where the number of individuals was at least 10 times the number of xor-equivalence classes.  
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We plotted this measure in comparison to the block size, and observed a large variance 
for it (Fig 13a). Comparing these results to the earlier analysis (Fig 9) we found that the 
number of individuals required is roughly doubled. In Fig 13b we plotted the number of 
individuals needed versus the frequency γ of the rarest haplotype in a population of 2400 
haplotypes. The plots show markedly lower variance than in Fig 13a, and a linear 
dependence on 1/γ (note that γ is the frequency of the complete haplotype and is different 
from α which is the cutoff for each individual SNP. 
 
Since in these tests we used two criteria for determining the number of individuals 
needed, a natural question is which of the two criteria is the more demanding. More 
specifically, which requirement is fulfilled last, when finally the sufficient number of 
individuals has been reached? We call that requirement �the last straw�.  
 
The results in Fig 14 show that for α≥0.03 usually a rare haplotype that was missing 
causes the delay. In contrast, for α=0.01, it was the non-uniqueness of the XPPH solution 
that required more data. Note that for α=0.01 the number of xor-genotypes needed is 
much larger (Fig 9), since many haplotypes are rare. Thus, by the time we have sampled 

a) 

 
b)       

 
Figure 13 Conditions for solution uniqueness and complete haplotypes sampling. The plots show the number of
xor-genotypes (y-axis) needed to observe all the haplotypes in the population and to obtain a single solution (a) for
a given number of SNPs (x-axis) and (b) for varying frequencies of the rarest haplotypes (x-axis is the inverse of
these frequencies). Different lines correspond to different thresholds on the minor allele frequency cutoff . 
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enough haplotype pairs to have a unique solution, typically all haplotypes have already 
been observed.  
 

 
In conclusion, for practical threshold values (α=0.05), the use of XPPH does not cause an 
increase in the needed sample for finding all haplotypes. 
 

4.3. Real data 
 
We applied XPPH on real genetic data to appreciate its qualities in a practical setting. We 
used mitochondrial DNA (mtDNA), which is the genetic material present in the 
mitochondria (the organelles that generate energy for the cell). mtDNA is maternally 
inherited without any recombination; therefore it is appropriate for a study under the 
perfect phylogeny model. (On the other hand, it is admittedly still not a fully realistic test 
case, since the haplotypes are not generated by paternal and maternal contributions). 
 
We studied 560 complete European, Asian, and African mtDNA coding-region sequences 
from unrelated individuals, as were published by (Herrnstadt et al, 2002) and made 
available on http://www.mitokor.com/science/560mtdnas.php. These sequences were 
given unaligned and are about 16,000 base pairs long. We took the following 
preprocessing steps on the data: 
1. We aligned the data using ClustalX (Thompson et al., 1994). In the aligned sequences 

we identified 1395 aligned positions (columns) with differences, and isolated the 
polymorphisms among them. This resulted in 1352 substitutions (43 of the 
differences were due to insertions/deletions, which are mutation types that were not 
handled by this work).  

2. We removed 23 tri-allelic polymorphisms, leaving 1329 biallelic SNPs. 

 
Figure 14 �The last straw�. The frequency in which each of the stopping conditions was fulfilled last. 
Statistics were collected for varying combinations of the number of SNPs (100-2000) and the number of 
individuals, where the number of individuals was at least 10 times the number of xor-equivalence 
classes. Different bins correspond to different thresholds on the minor allele frequency cutoff α 
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3. We removed the SNPs with minor allele frequency of less than 0.05 among the 560 
haplotypes, which left us with 54 SNPs (0.05 is a standard threshold). See Fig 15. 

4. We heuristically removed possible recurrent-mutations; by applying a greedy 
approach that iteratively discards a SNP that participates in the largest number of 
four-gametes; that led to the final removing of 33 SNPs. 

 

 
After applying the preprocessing steps we were left with 21 SNPs, for which there are 10 
distinct haplotypes among the population of 560 sequences; their perfect phylogeny can 
be observed in Fig 16. Note that the sharp reduction in the data was due to rare 
differences (which may be due to sequencing errors, misalignments or truly rare SNPs). 
The same type of errors as well as solution suboptimality may account for the reduction 
in the number of SNPs needed to obtain a coalescent data. (The complexity of reducing 
the least number of SNPs is open, though reducing the least number of individuals is 
known to be NP-hard for genotype data (Eskin et al., 2003)). 

Figure 15 The distribution of minor allele frequencies in the mtDNA data. Each bin indicates the
number of SNPs (y-axis) that bear a minor allele frequency within a 0.005 range (x-axis). Note that the
vast majority of the SNPs have very rare alleles: some 700 had minor allele frequency < 0.005, and only
54 SNPs out of 1329 had minor allele frequency > 0.05 (the vertical dotted line). 
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4.3.1. XPPH 
 
Even though mtDNA does not appear as diploid in our genome, we can create virtual 
diploids from pairs of mtDNA haplotypes to obtain a sample that mimics real data. We 
used the processed 560 mtDNA sequences for pairing random choices to generate xor-
genotypes of individuals, thereby maintaining haplotype frequencies. We evaluated 
experimentally the number of individuals required for obtaining a unique solution (Fig 
17) and found that 70 individuals guarantee ~90% chance of uniqueness, and increasing 
the number of individuals has only a minor effect. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16 The perfect phylogeny of mtDNA data post processing. This is a perfect phylogeny of 10 
observed haplotypes over 21 SNPs, while n3 corresponds to the ancestral haplotype. The distribution of 
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Figure 17 The chance for a unique solution for xor-genotypes from mtDNA data. The plots show the frequency of 
a unique solution (y-axis) versus the number of individuals tested (x-axis). XPPH statistics are based on 2000 runs. 
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Chapter 5. Informative SNPs 
 

5.1. Problem Formulation 
 
5.1.1. Informative SNPs 
This section first describes the work of Bafna et al. (2003), where informative SNPs are 
introduced and handled, and then an equivalent formulation that we shall use later. 
 
Let Ds

ij be the event that haplotypes i and j have different alleles for SNP s. 
The informativeness of SNP s with respect to SNP t is defined by I(s,t)=Pri≠j(Ds

ij|Dt
ij), 

where i,j are drawn uniformly from the set of all distinct haplotype pairs. 
For S′⊆ S let DS′

ij be the event that haplotypes i and j have different alleles for some SNP 
s∈ S�. Define I(S′,t)=Pri≠j(DS′

ij|Dt
ij). 

Finally, for S′,S″⊆ S, define I(S′,S″)=∑t∈ S″I(S′,t). 
 
The following problems arise: 
• Minimum informative SNPs (MIS) 

Input: A set H={H1,�,Hn} of haplotypes over a set S={s1,�,sm} of SNPs, a subset 
S″⊆ S and an integer k. 
Goal: Find if there exists a subset S′⊆ S\S″ such that I(S′,S″)=|S″| and |S′ |≤k. 

• Block MIS (blMIS): MIS restricted to inputs where S is a complete LD block, i.e., the 
haplotypes on S are coalescent. 
 

Bafna et al. show that MIS is NP-complete in the general case. They give an O(nm) 
algorithm for blMIS in the special case where |S″|=1. The problem blMIS is left open for 
the general case where |S″|=1, in (Bafna et al. 2003; Halldorsson et al., 2003).  
 
Now we give an equivalent definition for informative SNPs, which we find more direct. 
In addition, we introduce the notion of cost for individual SNPs, so that one can add more 
considerations to the choice of informative SNPs. 
 
An alternative definition of informative SNPs is the following (recall previous definition 
from section 2.6.2): 
 
Definition: Let H={H1,�,Hn} be a set of haplotypes over a SNP set S={s1,�,sm}. Let 
S"⊆ S be a given subset of interesting SNPs. The set S'⊆ S\S" is informative on H w.r.t. S" 
if for each 1≤k,l≤n, whenever there is a SNP s"∈ S" for which Hks"≠Hls", there is a SNP 
s'∈ S' for which Hks'≠Hls' (see Fig 2). 
 
Intuitively, by knowing the alleles of the informative SNPs one can uniquely determine 
the alleles of the interesting SNPs.  
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We define the cost of a SNP set by a cost function as follows: 
 
Definition: A cost function is a function of type C:S→R+. For a cost function C:S→R+ we 
define the cost of a subset S'⊆ S by C(S')=∑s∈ S'C(s). 
 
We generalize the MIS problem as follows: 
 
Problem 6: Minimum-Cost Informative SNPs (MCIS):  
Input: (a) A set of haplotypes H={H1,�,Hn} over a SNP set S={s1,�,sm} along with a 
perfect phylogeny (T,f) for H.  

(b) A set of interesting SNPs S"⊆ S.  
(c) A cost function C. 

Goal: Find a set S'⊆ S\S" of minimum total cost that is informative w.r.t. S". 
 
(T,f) may already be known if H was found by solving XPPH. Alternatively, it can be 
computed in O(mn) time from haplotypes (Gusfield, 1997).  
 
A common task which is related to picking an informative SNP set is to describe all of 
the haplotype variation in the region (Johnson et al., 2001). Formally, we seek a tag SNPs 
set S'⊆ S s.t. for each 1≤l,k≤n, there is t∈ S� for which Hkt≠Hlt (see Fig 2). In order to find 
tag SNPs of minimum cost, one could duplicate the SNP set S and define one of the 
copies as interesting. A solution to MCIS on the duplicated instance is a tag SNP set of 
minimum cost. Hence we shall focus on the more general MCIS problem. 
 

5.2. Algorithmic solution 
 
We present here a dynamic programming solution to MCIS, which works in O(m) time 
and space. We decompose (T,f) into components and solve MCIS independently for each 
component.   
 
5.2.1. Reducing MCIS to an Ancestral component 
 
Recall that if T=(V,E) is a perfect phylogeny for Hn×m then {1,�,n}⊆ V, i.e., the 
haplotypes of H label nodes in the perfect phylogeny.  
 
Definition: If a node of T is labeled by a haplotype from H we say it is observed. 
Otherwise we say it is ancestral.  
 
Ancestral nodes represent haplotypes that have been intermediate stages in evolution but 
did not survive to the present, or were not collected in the sample. 
Notice that informative SNPs need to distinguish the observed haplotypes but needn�t 
distinguish the ancestral haplotypes. 
 
Proposition 4: The leaves of T are observed. 
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Proof: 
Take (v,u)∈ E such that u is a leaf of T, and take s∈ f -1(v,u). There are 1≤i,j≤n such that 
His bears the 0-allele for s and Hjs bears the 1-allele, hence by the key property, the path 
from i to j in T must go through (v,u). But since u is a leaf, either u=i or u=j, therefore u is 
observed.! 
 
Definition: An ancestral component is a subtree of T in which all the internal nodes are 
ancestral and all the leaves are observed. 
 
Since the leaves of T are observed, T can be represented as a union of edge-disjoint 
ancestral components, where each union step merges two components by identifying two 
copies of the same observed node. Two different components can share at most one 
observed haplotype, but do not share ancestral haplotypes. Partitioning T into ancestral 
components is straightforward, e.g. by DFS. 
 
We now show that in order to find informative SNPs we can divide the tree into ancestral 
components and find informative SNPs for each single component separately. The 
subproblem on a component is defined as follows:  
 
Denote an instance of MCIS by the input tuple I=(H,S,C,T,f,S"). Let T1,�,Tp be T�s 
ancestral components where Ti=(Vi,Ei). Denote by Si⊆ S the SNPs that label Ei. The input 
tuple for Ti is Ii=(Hi,Si,Ci,Ti,fi,Si")  where the sets and function are the restriction of the 
original sets and function to Si. 
 
Theorem 3: Suppose for every i, IS(Ii) is a minimum cost informative SNPs set for the 
instance Ii. Then IS(I)=IS(I1)∪ �∪ IS(Ip) is a minimum cost informative SNPs set for I. 
Proof:  
We shall show that IS(I) is informative w.r.t. S" iff IS(Ii) is informative w.r.t. Si" for all i; 
The theorem then will follow by the additivity of the cost function.  
Assume IS(I) is informative w.r.t. S". If haplotypes k,l belong to the same observed 
component Ti, and there is a SNP s∈ IS(I) such that Hks≠Hls, then by the key property it 
must be that s∈ Si hence s∈ IS(Ii). Therefore IS(Ii) is informative w.r.t. Si" for all i.  
Assume IS(Ii) is informative w.r.t. Si" for all i. Suppose there are t∈ S" and 1≤l,k≤n such 
that Hkt≠Hlt. Let Ti be the subtree which contains the edge with label t (i.e., t∈ Si). Then by 
the key property, there are l�,k� in Ti such that Hk�t≠Hl�t (specifically, l�,k� are the observed 
nodes of Ti that are on the path from k to l in T). But then there is s�∈ IS(Ii)⊆ IS(I) such 
that Hk�s�≠Hl�s� hence by the key property Hks�≠Hls�.! 
 
5.2.2. Informative SNPs for ancestral component 

5.2.2.1. Problem definition 

The reduction of MCIS to an ancestral component results in the following formulation: 
 
Problem 6�: MCIS for ancestral components (acMCIS):  
Input: The same input as in MCIS with the requirement that all the internal nodes of (T,f) 
are ancestral and all the leaves are observed.  
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Goal: Find a set S'⊆ S\S" of minimum total cost that is informative w.r.t. S". 
 
First we reformulate acMCIS in terms of the tree edges.  
Notation:  (1) Edges labeled by interesting SNPs are called target edges. The set of 
target edges is τ={e|f -1(e)∩S"≠∅ }. It specifies the interesting information in terms of tree 
edges. (2) An edge is allowed if it is labeled by some non-interesting SNP. The set of 
allowed edges is α={e|f -1(e)∩(S\S")≠∅ }. These are the edge-analogs of potentially 
informative SNPs. (3) Edges in τ\α are called forbidden. Forbidden edges cannot be used 
as informative.  
 
We now expand the definition of the cost function to edges.  
Definition: The cost of an edge e, denoted C(e), is the minimum cost of a non-interesting 
SNP that labels e. For e∈ τ\α define C(e)=∞.  
 
This allows us to provide an equivalent formulation for acMCIS: 
Problem 7: Minimum Cost Separating Set (acMCSS)  
Input: The same input as for acMCIS.  
Goal: Find E'⊆ E of minimum cost, such that in G=(V,E\E') there are no two observed 
nodes that are connected by a path containing a target edge. 
 
Proposition 5: acMCIS and acMCSS are equivalent. 
Proof: It suffices to show that an informative set for H w.r.t. S" separates those observed 
nodes that are connected by a path containing edges from τ, and vice versa. Assume that 
S′ is an informative set for H w.r.t. S". If the observed nodes k,l are connected by e∈ τ, 
then by the key property t∈ f-1(e)∩S" is such that Hkt≠Hlt. But then there is s∈ S′ such that 
Hks≠Hls, therefore S′ separates k,l. 
Assume that S′ separates those observed nodes that are connected by a path containing 
edges from τ. If for the observed haplotypes k,l there is t∈ S" such that Hkt≠Hlt, then by 
the key property k,l are connected by  f(t) and by definition f(t) is a target edge. Therefore 
S′ separates k,l.! 

5.2.2.2. A solution to acMCSS 

We are now ready to outline a dynamic programming algorithm for acMCSS.  W.l.o.g. 
assume |V|>2. Take some internal node r∈ V and root T at r. For v∈ V denote by 
Tv=(Vv,Ev) the subtree of T that is rooted at v. For a solution Sv⊆ Ev of the induced sub 
instance I(Tv), denote by Rv the connected component which contains v in Gv=(Vv,Ev\Sv). 
The algorithm will scan T from the leaves up and at each node v form an optimal solution 
for the subtree Tv based on the optimal solutions for the subtrees of its children. When 
combining such children solutions, we have to take into consideration the possibility that 
the combination will generate new paths between observed haplotypes, with or without 
target edges on them.  To do this, we distinguish three types of solutions: Sv is called 
empty if there are no observed haplotypes in Rv. It is called connected if some observed 
haplotypes in Gv are connected to v in Rv by a path containing a target edge. Sv is called 
disconnected otherwise, i.e., if there are observed haplotypes in Rv but there is no path 
connecting an observed haplotype to v via target edges.  
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The algorithm  
Let Nv, Pv and Av denote the best empty, connected, or disconnected solutions 
respectively on Tv. We define recursive formulae for their costs as follows: 
• For a leaf node v∈ V we initialize: C(Nv)=∞, C(Pv)= ∞, C(Av)=0. 
• For an internal node v∈ V with children {u1,…,uk(v)} we write: 
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Denote by Tv

i the subtree that consists of v, the edge (v,ui) and 
iuT . Note that Tv is the 

union of Tv
i, i=1,�,k(v), that is obtained by identifying all copies of v. 

The auxiliary value Tear(i) measures the cost of an empty solution for Tv
i.  

In computing C(Nv) we must take an empty solution for all Tv
i, i=1,�,k(v). 

In computing C(Pv) we must pick one Tv
j to have a connected solution and all the 

remaining solutions for Tv
i, i≠j, must be empty. A connected solution for Tv

j can be 
obtained in one of two ways: (a) A connected solution for 

juT  (first term in 3) or (b) a 

disconnected solution for 
juT  when (v,uj) is a target edge (second term). 

In computing C(Av) we must pick one Tv
j to have a disconnected solution and the 

remaining solutions for Tv
i, i≠j, may either be disconnected or empty. A disconnected 

solution for Tv
i is possible only when (v,uj)∉τ , and in that case it is obtained by taking the 

disconnected solution for 
juT . 

 
These formulae are implemented in a dynamic program as follows: (1) Visit the nodes in 
postorder, computing C(Nv), C(Pv) and C(Av) for each v∈ V. Upon reaching the root r, 
compute the minimal cost min{C(Nr),C(Pr),C(Ar)}. (2) Compute Nv, Pv and Av by 
following the traceback pointers to get all those edges (v,uj) that were chosen by the 
minimal cost while taking ( ) ( )iu uvCPC

i
,+  or ( ) ( )iu uvCAC

i
,+ .  

 
Proof of correctness 
We need to prove that the formulae for C(Nv), C(Pv) and C(Av) satisfy our definitions. 
The correctness will then follow because any solution is either empty, connected or 
disconnected. 
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To prove the correctness of the formulae we need to prove the following: (a) A solution 
for Tv of finite minimal cost implies a solution for each 

iuT , which is either empty, 
connected or disconnected of minimal cost. (b) Empty, connected and disconnected 
solutions for 

iuT  with minimal score, can be combined optimally into a solution for Tv by 
the above formulae. 
(a) If k,l are observed nodes in 

iuT  then the path between k and l is completely in 
iuT , 

therefore if they need to be separated then it would have to be by edges from 
iuT . 

Hence a solution for Tv must induce also a solution for every 
iuT  (i.e., if E� is a 

solution on Tv then the induced edge set on 
iuT , 

iuTE ∩′ , solves 
iuT ). Moreover, if a 

solution for Tv induces an empty solution on 
iuT , then any empty solution for 

iuT  can 
be used instead. This is also true for connected and disconnected solutions. Therefore 
the induced solution on 

iuT  must be the minimum of its type. 
(b) Proof by induction on the distance of v from the leaves.  

Base: For v∈ V that is a leaf of T, Tv is a disconnected component, hence C(Nv)=∞, 
C(Pv)= ∞ and C(Av)=0.  
Step: Assume correctness for ( ) ( ) ( )

iii uuu ACPCNC ,, , i=1,�,k(v).  
1. Disconnecting all the leaves of 

iuT  from v is done either by disconnecting all 
those leaves from ui or by disconnecting (v,ui). Tear(i) is the minimal cost of 
such action. Hence C(Nv) is indeed the minimal cost of disconnecting all 
leaves from v.  

2. If there is a leaf of 
iuT  that is connected to v via a target edge, then only the 

leaves of 
iuT  can be connected to v, otherwise two leaves would have been 

connected trough v via target edge. A leaf of 
iuT  is connected to v via a target 

edge if either it is connected to ui via a target edge or (v,ui) is a target edge. 
C(Pv) is indeed the minimal cost of connecting the leaves of one 

iuT  to v via 
target edges, and disconnecting all other leaves. 

3. For leaves to be connected to v not through target edges, there must be at least 
one subtree 

juT  where leaves are connected to uj not through target edges, and 

(v,uj)∉τ  must hold. Leaves of other 
iuT  with (v,ui)∉τ  may remain connected 

or may be disconnected from v, while leaves of 
iuT  with (v,ui)∈τ  must be 

disconnected from v. C(Av) is indeed the minimal cost of forcing one subtree 
to be disconnected and allowing the rest to be either disconnected or empty. 
Notice that if ( ) ( )

iuACiTear >  for all (v,ui)∉τ , then by taking ( )
juAC  instead 

of Tear(j), we reduce the cost by ( ) ( )iTearAC
iu − , hence this factor needs to 

be minimized in order to find j.! 
 
Algorithm complexity 
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The time complexity is O(m): To compute C(Nv), C(Pv) and C(Av) we visit v�s children 
for a constant number of times, spending O(1) time for each child (due to visiting the tree 
in postorder). The same hand holds for following the traceback pointers. 
The space complexity is O(m): To compute C(Nr),C(Pr) and C(Ar) we visit the tree in 
postorder, maintaining three costs for each vertex, which totally require O(m) space. 
Then to compute Nr, Pr and Ar we follow the traceback pointers to get the optimal set of 
edges, which is of size O(m). 
 

5.3. Tag SNPs from genotypes 
 
Up until now we have followed the standard assumption in the computational literature 
(Bafna et al., 2003; Sebastiani et al. 2003; Chapman et al. 2003) that tag SNPs need to 
reconstruct the full binary haplotypes from binary haplotypes of the tag set. As 
experiments that provide haplotypes are expensive, most studies seek to obtain 
experimentally only genotypes. For such data, the problem of finding tag SNPs should be 
reformulated to reflect the fact that the input consists of genotypes, rather than 
haplotypes: Find a subset of SNPs that given their genotype calls, i.e., 0 or 1 for 
homozygote and 2 for heterozygote, one can completely identify the pair of haplotypes of 
an individual. We call such subset phasing tag SNPs. 
 
Notation: Let H be a set of haplotypes over a set S of SNPs. Denote by g(k,l) the 
genotype formed from Hk and Hl. Denote by g(k,l)S� the restriction of this genotype to the 
SNP set S ′⊆ S. 
 
Definition: We say that the haplotype pairs {i1,i2} and {j1,j2} are distinct with respect to 
S if there is s∈ S  such that g(i1,i2)s≠g(j1,j2)s. Note that we could distinguish {i1,i2} from 
{j1,j2} given their genotypes. 
 
We now give a formal definition to a phasing tag SNP set (recall previous definition from 
section 2.6.4): 
 
Definition: S�⊆ S is a set of phasing tag SNPs w.r.t. a set of haplotypes H if every two 
haplotype pairs from H are distinct with respect to S�.  
 
Intuitively, from the genotype calls of an individual for the set S�, one can uniquely 
determine the exact sequence of the complete set S for each of its two haplotypes.  
 
Problem 8: Phasing tag SNPs: 
Input: A set of haplotype H over a set of SNPs S. 
Goal: Find a minimum set S�⊆ S of phasing tag SNPs. 
 
We can define analogously informative and minimum cost informative sets. 
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In general, the definitions of phasing tag SNPs and tag SNPs differ (see Fig 2). The 
former is stronger: 
 
Proposition 6: If S�⊆ S are phasing tag SNPs then they are also tag SNPs. 
Proof:  
All homozygous genotype-call vectors are distinct w.r.t. S�: since S� is a phasing tag 
SNPs set, for each i≠j, g(i,i)S�≠g(j,j)S� . Hence for every i≠j there is s∈ S� such that 
His≠Hjs.! 
 
We now show that, surprisingly, under the perfect phylogeny model, tag SNPs and 
phasing tag SNPs are equivalent.  
 
Theorem 4: Suppose that the haplotypes in H satisfy the perfect phylogeny model on S. 
A set S�⊆ S is a tag SNPs set if and only if S� is a phasing tag SNPs set.  
Proof:  
By Proposition 6, it suffices to prove the �only if� direction. Suppose to the contrary that 
S� are tag SNPs but not phasing tag SNPs. Let Gi={H1,H2} and Gj={H3,H4} be distinct 
haplotype pairs with the same genotype call vector for S�, i.e., g(1,2)S�=g(3,4)S�. Notice 
that being distinct pairs implies that H1, H2, H3, and H4 are distinct because Gi and H1 
determine H2 etc. Since S' is a tag SNP set, it distinguishes H1 and H3, so there must be 
s′∈ S′ such that Gi and Gj are heterozygous to s1, and H1 and H3 have different alleles for 
s1. If w.l.o.g. H1s′=1 then H2s′=0, H3s′=0 and H4s′=1. Similarly, there must be s″∈ S′ such 
that Gi and Gj are heterozygous to s″, and H1 and H4 have different alleles for s″. Note 
that s′≠s″ since H1s′=H4s′. If w.l.o.g. H1s″=1 then H2s″=0, H3s″=1 and H4s″=0. Therefore Gi 
and Gj are oppositely phased on s′ and s″, violating the 4 gamete rule, in contradiction to 
the perfect phylogeny model.! 
Notice that Theorem 4 can be applied to informative SNPs as well. 
 
Theorem 4 justifies the use of tag SNPs on genotype data, which until now was only 
heuristically argued. Assuming the perfect phylogeny model, we can now apply the ideas 
and algorithms developed for tag SNPs (in this study and in (Bafna et al., 2003)) on 
genotypes and actually obtain phasing tag SNPs. 
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6. Summary and Discussion 
 
We studied here several questions arising in haplotype inference under the perfect 
phylogeny model. Solutions to these problems contribute to the genetic analysis of a 
region, along the process from haplotype determination toward their utilization in a 
genetic study.  
 
We introduced the model of xor-genotypes, and presented the computational foundation 
for the use of such data: (i) Inference of the sample haplotypes (up to bit-flipping) by 
adapting graph realization algorithms (ii) Concrete inference of the sample haplotypes by 
only two or three additional full genotypes.  
 
We argued for the potential economical advantage of xor-genotypes over the full 
genotypes common today. We showed that both simulated and real genetic data indicate 
that xor-genotypes are nearly as informative as full genotypes, at a fraction of the cost. 
Hence, genotyping methods that distinguish only between heterozygotes and 
homozygotes are competitive and cost-effective, and could potentially be applied to large 
scale genetic studies. 
 
We provided software for graph realization (and for the xor perfect phylogeny 
haplotyping), which can hopefully contribute to genetic studies and possibly to other 
applications as well. 
 
In case the haplotype set is available, we went on to select a small informative SNPs set 
that fully describes an interesting portion of the sample haplotypes. We introduced per-
SNP costs in the selection, which allows picking a set of minimal cost. Typing the set of 
informative SNPs would then be the most economical method for determining an 
individual�s haplotype. We provided an efficient algorithm for this problem. This extends 
previous results that could handle only a single interesting SNP and resolves an open 
problem stated in the literature. 
 
Finally, we have shown how to find tag SNPs for genotype data. We have shown that the 
set of tag SNPs for haplotype data is equivalent to the set of tag SNPs for genotype data. 
This result allows the adopting of previous variant methods (including our own) for 
finding tag SNPs for haplotype data. 
 
This work is an example of how computer science theory can be applied to several 
practical aspects of a genetic study. The ability to understand and formulate biological 
needs was combined here with graph theoretical methodology and theory. The result is a 
set of algorithms and theoretical results that are interesting from the computer science 
theoretic point of view and are significant from the practical and economical points of 
view.  
 
This work leaves many interesting problems for further studying. A significant question 
is with regard to the perfect phylogeny assumption. This assumption has the advantage of 
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using powerful theoretical mechanisms to take care of many practical peculiarities of the 
data. The shortcoming of our approach is that perfect phylogeny is only a local 
approximation to the observed biological reality. Extending our work to incorporate noisy 
variants of this highly constrained model is desirable. In particular, handling �small 
deviations� from perfect phylogeny, data errors and missing data, are all open issues. 
 



 48

References  
 
Glossaries: 
http://helios.bto.ed.ac.uk/bto/glossary/ 
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/ 
http://www.weihenstephan.de/~schlind/genglos.html 
 
Arkin EM and Hassin R. Multiple-choice minimum diameter problems. Unpublished manuscript, 1992. 
 
Bafna V, Gusfield D, Lancia G, and Yooseph S. Haplotyping as Perfect Phylogenty: A direct approach. 

Technical Report U.C. Davis CSE-2002-21, 2002. 
 
Bafna V, Halldórsson BV, Schwartz R, Clark AG and Istrail S. Haplotypes and informative SNP selection 

algorithms: don't block out information. Proceedings of the Seventh Annual International Conference on 
Computational Biology 2003 (RECOMB '03):19-27. 

 
Bixby R.E and Wagner D.K. An almost linear-time algorithm for graph realization, Mathematics of 

Operations Research, 1988; 13, 99-123. 
 
Chapman JM, Cooper JD, Todd JA, Clayton DG. Detecting disease associations due to linkage 

disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Human 
Heredity, 2003; 56(1-3):18-31. 

 
Chung RH and Gusfield D. Perfect Phylogeny Haplotyper: Haplotype Inferral Using a Tree Model. 

Bioinformatics, 2002; 19(6):780-781. 
 
Chung RH and Gusfield D. Empirical Exploration of Perfect Phylogeny Haplotyping and Haplotypers. 

Proceedings of the 2003 Cocoon Conference. 
 
Clark AG. Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology 

and Evolution, 1990; 7(2):111-22 
 
Cummins J. Mitochondrial DNA and the Y chromosome: parallels and paradoxes. Reproduction, Fertility 

and Development, 2001; 13(7-8):533-42. 
 
Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High resolution haplotype structure in the 

human genome. Nature Genetics, 2001; 29(2):229-32. 
 
Eskin E, Halperin E and Karp RM. Efficient reconstruction of haplotype structure via perfect phylogeny. 

To appear in the Journal of Bioinformatics and Computational Biology (JBCB), 2003. 
 
Excoffier L and Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a 

diploid population. Molecular Biology and Evolution, 1995; 12(5):921-7. 
 
Gabriel SB, et al.  The structure of haplotype blocks in human genome. Science, 2002; 296: 2225-9. 
 
Garey M.R. and Johnson D.S. Computers and Intractability, p. 222 Freeman, New York, 1979. 
 
Gavril F and Tamari R. An algorithm for constructing edge-trees from hypergraphs, Networks 1983; 13, 

377-388.  
 
Gusfield D. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. 

Cambridge University Press 1997 
 
Gusfield D. Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions. 

Proceedings of the Sixth Annual International Conference on Computational Biology 2002 (RECOMB 
'02):166-75. 



 49

 
Halldorsson B.V, Bafna V, Edwards N, Lippert R, Yooseph S, Istrail S. Combinatorial Problems Arising in 

SNP and Haplotype Analysis. Discrete Mathematics and Theoretical Computer Science, 2003; (DMTCS 
’03): 26-47. 

 
Herrnstadt C, Elson J.L, Fahy E, Preston G, Turnbull D.M, Anderson C, Ghosh S.S, Olefsky J.M, Beal 

M.F, Davis R.E and Howell N. Reduced-Median-Network Analysis of Complete Mitochondrial DNA 
Coding Region Sequences for the Major African, Asian, and European Haplogroups. American Journal 
of Human Genetics, 2002; 70:1152-1171. 

 
Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 

2002; 18:337-38. 
 
Jeffreys AJ, Kauppi L and Neumann R. Intensely punctate meiotic recombination in the class II region of 

the major histocompatibility complex. Nature Genetics, 2001; 29:217–22. 
 
Johnson GC, et al. Haplotype tagging for the identification of common disease genes. Nature Genetics. 

2001 Oct; 29(2): 233-7. 
 
Kwok PY. Genetic association by whole-genome analysis. Science, 2001; 294(5547):1669-70. 
 
Nachman MW and Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genetics, 2000; 

156: 297-304. 
 
NIH RFA HG-02-005 (2002) Large-scale genotyping for the haplotype map of the human genome. 
 
Patil N, et al. Blocks of Limited Haplotype Diversity Revealed by High Resolution Scanning of Human 

Chromosome 21. Science, 2001; 294(5547):1719-23 
 
Pe'er I and Beckmann JS. Resolution of haplotypes and haplotype frequencies from SNP genotypes of 

pooled samples. Proceedings of the Seventh Annual International Conference on Computational Biology 
2003; (RECOMB '03): 237-246 

 
Sachidanandam R, et al. (International SNP Map Working Group). A map of human genome sequence 

variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001; 409(6822): 928-33. 
 
Sebastiani P, Lazarus R, Weiss ST, Kunkel LM, Kohane IS, Ramoni MF. Minimal haplotype tagging. 

Proceedings of the National Academy of Sciences of the USA, 2003; 100(17):9900-5. 
 
Thompson JD, Higgins DG and Gibson TJ. CLUSTAL W: improving the sensitivity of progressive 

multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight 
matrix choice.  Nucleic Acids Research, 1994; 22:4673-4680. 

  
Tutte WT. An Algorithm for determining whether a given binary matroid is graphic. Proceedings of 

American Mathematical Society, 1960; 11:905-917. 
 
Xiao W and Oefner PJ, Denaturing high-performance liquid chromatography: A review. Human Mutation, 

2001; 17(6):439-74. 
 
Zhang K, Deng M, Chen T, Waterman MS and Sun F. (2002) A dynamic programming algorithm for 

haplotype block partitioning. Proceedings of the National Academy of Sciences, 99(11):7335-9.  
 


