
Copy-Number Evolution Problems:
Complexity and Algorithms

Mohammed El-Kebir1, Benjamin J. Raphael1�, Ron Shamir2�, Roded
Sharan2, Simone Zaccaria1,3, Meirav Zehavi2, and Ron Zeira2

1 Department of Computer Science, Center for Computational Molecular Biology,
Brown University, Providence, RI, USA

{braphael,melkebir,szaccari}@cs.brown.edu
2 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

{rshamir,roded,meizeh,ronzeira}@post.tau.ac.il
3 Dipartimento di Informatica Sistemistica e Comunicazione (DISCo), Univ. degli

Studi di Milano-Bicocca, Milan, Italy

Abstract. Cancer is an evolutionary process characterized by the accu-
mulation of somatic mutations in a population of cells that form a tumor.
One frequent type of mutations are copy number aberrations, which alter
the number of copies of genomic regions. The number of copies of each
position along a chromosome constitutes the chromosome’s copy-number
profile. Understanding how such profiles evolve in cancer can assist in
both diagnosis and prognosis. We model the evolution of a tumor by
segmental deletions and amplifications, and gauge distance from profile
a to b by the minimum number of events needed to transform a into
b. Given two profiles, our first problem aims to find a parental profile
that minimizes the sum of distances to its children. Given k profiles,
the second, more general problem, seeks a phylogenetic tree, whose k
leaves are labeled by the k given profiles and whose internal vertices
are labeled by ancestral profiles such that the sum of edge distances is
minimum. For the former problem we give a pseudo-polynomial dynamic
programming algorithm that is linear in the profile length, and an integer
linear program formulation. For the latter problem we show it is NP-hard
and give an integer linear program formulation. We assess the efficiency
and quality of our algorithms on simulated instances.

1 Introduction

The clonal theory of cancer posits that cancer results from an evolutionary
process where somatic mutations that arise during the lifetime of an individual
accumulate in a population of cells that form a tumor [9]. Consequently, a tumor
consists of clones, which are subpopulations of cells sharing a unique combination
of somatic mutations. The evolutionary history of the clones can be described by
a phylogenetic tree whose leaves correspond to extant clones and whose edges
are labeled by mutations. Computational inference of phylogenetic trees is a
fundamental problem in species evolution [4], and has recently been studied
extensively for tumor evolution in the case where mutations are single-nucleotide

2 2 2 2 2 2

2 1 0 1 2 2

4 3 0 3 3 2 4 0 0 0 3 4

1 1 2 3 3 2

1 4 4 5 5 3 2 0 2 3 4 2

Fig. 1: Copy-Number Tree Problem. As input we are given the copy-number
profiles of four leaves, each profile is an integer vector that is inferred from data;
e.g. the coverage of mapped reads (blue segments). The tree topology and profiles
at internal vertices are found to minimize the total number of amplifications
(green bars) and deletions (red bars). The displayed scenario has 14 total events.

variants [3,7,8,10,15]. Here, we study the problem of constructing a phylogenetic
tree of a tumor in the case where mutations are copy number aberrations.

Copy number aberrations include segmental deletions and amplifications that
affect large genomic regions, and are common in many cancer types [2]. As a
result of these events, the number of copies of genomic regions (positions) along
a chromosome can deviate from the diploid, two-copy state of each position in a
normal chromosome. Understanding these events and the underlying evolutionary
tree that relates them is important in predicting disease progression and the
outcome of medical interventions [5].

Several methods have been introduced to infer trees from copy number
aberrations in cancer. In [1, 16] the authors use fluorescent in situ hybridisation
data to analyze gain and loss of whole chromosomes and single genes. However,
due to technical limitations, this technology does not scale to a large number
of positions. In addition, common deletions and amplifications that affect only
a subset of the positions of a chromosome are not supported by the model.
In another work, Schwartz et al. [12] introduced MEDICC, an algorithm that
analyzes amplifications and deletions of contiguous segments. The input to
MEDICC is a set of copy-number profiles, vectors of integers defining the copy-
number state of each position. These profiles are measured for multiple samples
from a tumor using DNA microarrays or DNA sequencing. The edit distance
from profile a to b was defined as the minimum number of amplifications and
deletions of segments required to transform a into b. Note that this distance is
not symmetric. Using this distance measure, the authors applied heuristics to
reconstruct phylogenetic trees. However, the complexity of their methods was
not analyzed. Recently, Shamir et al. [13] analyzed some combinatorial aspects
of this amplification/deletion distance model and proved that the distance from
one profile to another can be computed in linear time.

2

In this work, we consider two problems in the evolutionary analysis of copy-
number profiles: the Copy-Number Triplet (CN3) and Copy-Number Tree (CNT)
problems. Given two profiles, the CN3 problem aims to find a parental profile
that minimizes the sum of distances to its children. The CNT problem asks to
construct a phylogenetic tree whose k leaves are labeled by the k given profiles,
and to assign profiles to the internal vertices so that the sum of distances over
all edges is minimum; such a tree describes the evolutionary history under a
maximum parsimony assumption (Fig. 1). For the CN3 problem we give a pseudo-
polynomial time algorithm that is linear in n, the number of positions in the
profiles, along with an integer linear program (ILP) formulation whose number
of variables and constraints is linear in n. We show that the CNT problem is
NP-hard and present an ILP formulation that scales to practical problem instance
sizes. Finally, we use simulations to test our algorithms. Due to space constraints,
some details are omitted.

2 Preliminaries

Profiles and Events. We represent a reference chromosome as a sequence of
intervals that we call positions, numbered from 1 to n in left to right order. We
consider mutations that amplify or delete contiguous positions. The copy-number
profile, or profile for short, of a clone specifies the number of copies of each of
the n positions. Formally, a profile yi = [yi,s] is a vector of length n. An entry
yi,s ∈ N indicates the number of copies of position s in clone i. For simplicity,
we consider a single chromosome only. The results can be easily extended to the
case of multiple chromosomes.

An operation, or event, acting on profile yi increases or decreases copy-
numbers in a contiguous segment of yi. Formally, an event is a triple (s, t, b)
where s ≤ t and b ∈ Z. If b is positive then profile-valued positions s, . . . , t are
incremented by b, whereas for negative b the positions s, . . . , t are decremented
by at most |b|. That is, applying event (s, t, b) to yi results in a new profile y′i
such that

y′i,` =

{
max{yi,` + b, 0}, if s ≤ ` ≤ t and yi,` 6= 0,

yi,`, otherwise.
(1)

As indicated by the condition above, once a position ` has been lost, i.e. yi,` = 0,
it can never be regained (or deleted). Therefore, for a pair of profiles, there might
not be any sequence of events that transform one into the other.

The Copy-Number Tree Problem. We describe the evolutionary process
that led to the tumor clones by a copy-number tree T , which is a rooted full
binary tree. As such, each vertex of T has either zero or two children. We denote
the vertex set of T by V (T), root vertex by r(T), leaf set by L(T) and edge set
by E(T). The vertices of T correspond to clones. Thus, each vertex vi ∈ V (T) is
labeled by a profile yi. The root vertex r(T) corresponds to the normal clone,
which we assume to be diploid. As such, we have for the corresponding profile

3

that yr,s = 2 for all positions s. Note that we do not require vertices to be labeled
by a unique profile.

Each edge (vi, vj) ∈ E(T) relates a parent clone vi to its child vj , and is
labeled by a sequence σ(i, j) = (s1, t1, b1), . . . , (sq, tq, bq) (where q = |σ(i, j)|) of
events that yielded yi from yj . These events are applied in order from 1 to q.
Since events in σ(i, j) may overlap, i.e. affect the same position, the order as
specified by σ(i, j) matters. The cost of an event (s, t, b) is the number of changes
and is thus equal to |b|. Therefore, the cost δσ(i, j) of an edge (vi, vj) is the total
cost of the events in σ(i, j), i.e.

δσ(i, j) =
∑

(s,t,b)∈σ(i,j)

|b|. (2)

Note that the cost is not symmetric. The cost ∆(T) of the tree T is the sum of
the costs of all edges.

Our observations correspond to the profiles c1, . . . , ck of k extant clones.
Under the assumption of parsimony, the goal is to find a copy-number tree T ∗ of
minimum cost whose leaves correspond to the extant clones. Furthermore, we
assume that the maximum copy-number in the phylogeny is bounded by e ∈ N.
We thus have the following problem.

Problem 1 (Copy-Number Tree (CNT)). Given profiles c1, . . . , ck on n positions
and an integer e ∈ N, find a copy-number tree T ∗, vertex labeling yi and edge
labeling σ(i, j) such that (1) T ∗ has k leaves labeled 1, . . . , k and yi = ci for all
i ∈ {1, . . . , k}, (2) yi,s ≤ e for all vi ∈ V (T ∗) and s ∈ {1, . . . , n}, and (3) ∆(T ∗)
is minimum.

Note that by definition the profile of the root vertex r(T) of any copy-number
tree T is the vector whose entries are all 2’s. As such, this must hold as well for
the minimum-cost tree T ∗ which always exists. Additionally, the requirement
of T being a binary tree can be made without loss of generality by splitting
high degree vertices. Furthermore, the assumption that T is a full binary tree
(i.e. each vertex has out-degree either 0 or 2) can also be made without loss of
generality by collapsing degree-2 internal non-root vertices. To account for the
case where r(T) has out-degree 1, given an instance (c1, . . . , ck, e) we solve a
second instance (c1, . . . , ck, ck+1, e) with an additional profile ck+1 consisting of
2’s. The result is the minimum-cost tree among the two instances.

The Copy-Number Triplet Problem. The special case where k = 2 is the
Copy-Number Triplet (CN3) problem. When discussing CN3, due to the fact
that we consider only two input profiles, it is not necessary to explicitly refer to
trees. Thus, we formulate CN3 as follows:

Problem 2 (Copy-Number Triplet (CN3)). Given profiles u and v on n positions,
find a profile m on n positions and sequences of events, σ(m,u) an σ(m,v),
such that (1) σ(m,u) yields u from m and σ(m,v) yields v from m, and (2)
δσ(m,u) + δσ(m,v) is minimum.

4

Instances to both CNT and CN3 always have a solution as the diploid profile is
an ancestor to any other profile. Next, we present definitions that will allow us to
describe results specific to CN3 in a compact manner. We denote the minimum
value δσ(m,u) + δσ(m,v) associated with a solution (m, σ(m,u), σ(m,v)) by
∆(u,v). We say that a triple (m, σ(m,u), σ(m,v)) is optimal if it realizes
∆(u,v). Note that ∆(u,v) is symmetric and finite. Moreover, if δσ(u,v) (resp.
δσ(v,u)) is finite then m← u (resp. m← v) gives a trivial solution to CN3. Let
N = max{maxni=1{ui},maxni=1{vi}} denote the maximum copy-number in the
input. Finally, given α ∈ {σ(m,u), σ(m,v)} and w ∈ {−,+}, we denote the cost
of deletions/amplifications affecting position i by

co(α,w, i) =
∑

(s, t, b) ∈ α : s ≤ i ≤ t, sign(b) = w

|b|.

Previous Results. We now turn to present three results incorporated in the
design of our dynamic programming and ILP algorithms for CN3 and CNT.
The first one relies on the observation that if ui = vi = 0, then ∆(u,v) =
∆((u1, . . . , ui−1, ui+1, . . . , un), (v1, . . . , vi−1, vi+1, . . . , vn)), i.e. it is safe to fix
mi = 0. Therefore, we have the following straightforward yet useful result.

Lemma 1. Without loss of generality, it can be assumed that for all 1 ≤ i ≤ n,
at least one value among ui and vi is positive.

This lemma also implies that we can assume that the profile m of any optimal
triple (m, σ(m,u), σ(m,v)) consists only of positive values (since for a position
i such that mi = 0, it holds that vi = ui = 0).

We say that a sequence of events where all of the deletions precede all of the
amplifications is sorted. Formally, let σ(p,q) be a sequence of events that yields
q from p. Then, if there exist a sequence α− of deletion events and a sequence α+

of amplification events such that σ(p,q) = α−α+, we say that σ(p,q) is sorted.
The following lemma states that we can focus on sorted sequences of events:

Lemma 2. [13] Given a sequence of events σ(p,q) that yields q from p, there
exists a sorted sequence of cost at most δσ(p,q) that yields q from p.

Shamir et al. [13] also showed that the minimum cost of a sequence yielding
q from p is computable by the recursive formula given below. Here, we let
G[i, d, a] be the minimum cost of a sequence of events σ that from the prefix
pi = (p1, . . . , pi) of p yields the prefix qi = (q1, . . . , qi) of q and which satisfies
co(σ,−, i) = d and co(σ,+, i) = a. In case such a sequence does not exist, we let
G[i, d, a] =∞.

Lemma 3. [13] Let p and q be two profiles, and let 0 ≤ d, a ≤ N . Then,

1. If qi > 0 and either d ≥ pi or qi 6= pi − d+ a: G[i, d, a] =∞.
2. Else if qi = 0 and d < pi: G[i, d, a] =∞.
3. Else if i = 1: G[i, d, a] = d+ a.
4. Else: G[i, d, a] = min

0≤d′,a′≤N
{G[i− 1, d′, a′] + max{d− d′, 0}+ max{a− a′, 0}}.

The minimum cost of a sequence yielding q from p is min0≤d,a≤N G[n, d, a].

5

3 Complexity

In this section we show that CNT is NP-hard by reduction from the Maximum
Parsimony Phylogeny (MPP) problem [6]. In MPP, we seek to find a binary
phylogeny T , which is a full binary tree whose vertices are labeled by binary
vectors of size n. The cost of a binary phylogeny T is defined as the sum of
the Hamming distances of the two binary vectors associated with each edge.
We are only given the leaves of an unknown binary phylogeny in the form of k
binary vectors b1, . . . ,bk of size n, and the task is to find a minimum-cost binary
phylogeny T with k leaves such that each leaf vi ∈ L(T) is labeled by bi and the
root is labeled by a vector of all 0s. We consider the decision version where we
are asked whether there exists a binary phylogeny T with cost at most h. This
problem is NP-complete [6].

We start by defining the transformation (Fig. 2). Let b1, . . . ,bk be an instance
of MPP such that |bi| = n. The corresponding CNT-instance has parameter
e = 2 and profiles c1, . . . , ck+1 of length n + (n − 1)nk. Each input profile ci,
where i ∈ {1, . . . , k}, is defined as

ci = φ(bi) =
(
φ(bi,1) Ω φ(bi,2) Ω · · · Ω φ(bi,k)

)
(3)

where

φ(bi,s) =

{
1, if bi,s = 1,

2, otherwise
(4)

and Ω, called a wall, is a vector of size nk such that for each j ∈ {1, . . . , nk}

Ωj =

{
2, if j is odd,

1, otherwise.
(5)

Informally, ci is defined as a vector consisting of true positions (which correspond
to the original values) that are separated by walls (which are vectors Ω of
alternating 2, 1 values of length nk). The purpose of wall positions Ω is to prevent
an event from spanning more than one true position. Profile ck+1 consists of only
2’s, and plays a role in initializing the wall elements Ω immediately from the all
2’s root. This transformation can be computed in polynomial time, and it is used
in the hardness proof (omitted).

Theorem 1. The CNT problem is NP-hard.

4 Algorithms

4.1 Copy-Number Triplet Problem: DP

In this section we develop a DP algorithm, called DP-Alg1, that solves the
CN3 problem in time O(nN10) and space O(nN5). We will assume w.l.o.g. that
sequences of events consist only of events of the form (s, t, b) where b ∈ {−1, 1}.
Events with |b| > 1 can be replaced by |b| events of that form, having the same
total cost. DP-Alg1 is based on Lemma 3 and the following claim.

6

(0 0 0 0)

(1 0 0 1)

(1 0 0 1) (0 0 0 1)(1 0 0 0)

2

10

(0 1 1 0)

(1 0 0 0)

0

1

1

mpp instance and solution T with cost ∆(T) = 5

b1 b2 b3 b4

(2 Ω 2 Ω 2 Ω 2)

(1 Ω 2 Ω 2 Ω 1)

(1 Ω 2 Ω 2 Ω 2)

2

10

(1 Ω 2 Ω 2 Ω 2)

0

1

1

cnp instance and solution T ′ with cost ∆(T ′) = ∆(T) + W = 5 + W

c1 = φ(b1) c2 = φ(b2) c3 = φ(b3) c4 = φ(b4)

(2 2 2 2 2 2 2)

W

(2 2 2 2 2 2 2)

0

c5 = φ(b5)

⇒

Ω =
(
2 1 · · · 1 2

)

|Ω| = nk = 20

(2 Ω 1 Ω 1 Ω 2)(1 Ω 2 Ω 2 Ω 1) (2 Ω 2 Ω 2 Ω 1)

W = 30

Fig. 2: Transformation of an MPP instance and solution T (left) to a CNT
instance and solution T ′ (right). Edges are labeled by the cost of the associated
events and their affected positions are colored in blue.

? ? ? 2 ? ? L[4,2,1,2,0,3]: m

3 2 1 3 5 4 4 1 1 5 0 3 u v

1 deletion

2 amplifications

no deletion

3 amplifications

Fig. 3: Illustration of an item in the DP table: Given that the 4th position of
m is 2, one of the combinations considered is 1 deletion and 2 amplifications
on the path to u, and 3 amplifications on the path to v. The best cost of that
combination is computed by DP-Alg1 based on the L entries for position 3.

Lemma 4. Let u and v be two profiles. Then, there exists an optimal triple
(m, σ(m,u), σ(m,v)) where both σ(m,u) and σ(m,v) are sorted sequences of
events, and such that each position i of m has at most N copies and the cost of
amplifications/deletions affecting i (in both σ(m,u) and σ(m,v)) is at most N .

Let ui = (u1, . . . , ui) and vi = (v1, . . . , vi) be the prefixes consisting of the first
i positions of u and v, respectively. We will store costs corresponding to partial
solutions in a table L (see Figure 3). This table has an entry L[i,m, du, au, dv, av]
for all 1 ≤ i ≤ n, 0 ≤ m ≤ N and 0 ≤ du, au, dv, av ≤ N . At such an
entry, we will store the the minimum total cost, δσ(m,ui) + δσ(m,vi) of a
triple (m, σ(m,ui), σ(m,vi)) in the set S(i,m, du, au, dv, av), which is defined
as follows. This set contains all triples (m, σ(m,ui), σ(m,vi)) such the numbers of
deletions/amplifications affecting i are given by du, au, dv, av, where the notation
d/a and v/u indicate whether we consider amplifications or deletions as well as
σ(m,ui) or σ(m,vi), mi = m and for all j ∈ {1, . . . , n}, mj ≤ N .

By Lemma 4, ∆(u,v) is the minimum cost stored in an entry where i = n.
Thus, it remains to show how to correctly compute the entries of L efficiently.
We use the following base cases, whose correctness follows from Lemma 3:

1. If ui > 0, and du ≥ mi or ui 6= mi − du + au: L[i,m, du, au, dv, av] =∞.
2. Else if vi > 0, and dv ≥ mi or vi 6= mi − dv + av: L[i,m, du, au, dv, av] =∞.

7

3. Else if ui = 0 and du < mi: L[i,m, du, au, dv, av] =∞.
4. Else if vi = 0 and dv < mi: L[i,m, du, au, dv, av] =∞.
5. Else if i = 1: L[i,m, du, au, dv, av] = du + au + dv + av.

Now, consider entries L[i,m, du, au, dv, av] that are not filled by the base
cases. We compute them using the following formula:

L[i,m, du, au, dv, av] = min
0≤m′≤N

0≤du′,au′,dv′,av′≤N

{
L[i− 1,m′, du′, au′, dv′, av′]

+ max{du − du′, 0}+ max{au − au′, 0}
+ max{dv − dv′, 0}+ max{av − av′, 0}

}
.

The correctness of this formula follows from Lemma 3 and since in light of
Lemma 4, it exhaustively searches for the best choice for the previous value of
m. By computing the entries of L in an ascending order according to their first
argument i, we have that the computation of each entry relies only on entries
that are computed before it. The table L consists of O(nN5) entries, and each of
them can be computed in time O(nN5). Thus, we obtain the following lemma.

Lemma 5. DP-Alg1 solves CN3 in time O(nN10) and space O(nN5).

We can show that DP-Alg1 can be modified to obtain a DP algorithm, called
DP-Alg2, for which we prove the following result.

Theorem 2. DP-Alg2 solves CN3 in time O(nN7) and space O(nN4).

We also devised an ILP formulation for CN3 using only O(n) variables. Details
are omitted.

4.2 Copy-Number Tree Problem: ILP

In this section we describe an ILP for CNT consisting of O(k2n+kn log e) variables
and O(k2n+kn log e) constraints. Let (c1, . . . , ck, e) be an instance of CNT. Recall
that we seek to find a full binary tree with k leaves. We define a directed graph
G that contains any full binary tree with k leaves as a spanning tree. As such,
|V (G)| = 2k−1. The vertex set V (G) consists of a subset L(G) of leaves such that
|L(G)| = k. We denote by r(T) ∈ V (G)\L(G) the vertex that corresponds to the
root vertex. Throughout the following, we consider an order v1, . . . , vk, . . . , v2k−1

of the vertices in V (G) such that v1 = r(T) and {vk, . . . , v2k−1} = L(G). The
edge set E(G) has edges {(vi, vj) | 1 ≤ i < k, 1 ≤ i < j ≤ 2k − 1}. We denote by
N−(j) the set of vertices incident to an outgoing edge to j. Conversely, N+(i)
denotes the set of vertices incident to an incoming edge from i. We make the
following two observations.

Observation 1 G is a directed acyclic graph.

Observation 2 Any copy-number tree T is a spanning tree of G.

8

We now proceed to define the set of feasible solutions (X,Y) to a CNT
instance (c1, . . . , ck, e) by introducing constraints and variables modeling the
tree topology, and vertex labeling and edge costs. More specifically, variables
X = [xi,j] encode a spanning tree T of G and variables Y = [yi,s] encode the
profiles of each vertex such that X and Y combined induce edge costs. In the
following we provide more details.

Tree Topology. The goal is to enforce that we select a spanning tree T of G
that is a full binary tree. To do so, we introduce a binary variable xi,j ∈ {0, 1} for
each edge (vi, vj) ∈ E(G) indicating whether the corresponding edge (vi, vj) is in
T . Note that by construction i < j. We require that each vertex v ∈ V (G) \ {v1}
has exactly one incoming edge in T .∑

i∈N−(j)

xi,j = 1 1 < j ≤ 2k − 1 (6)

We require that each vertex v ∈ V (G) \ L(G) has two outgoing edges in T .∑
j∈N+(i)

xi,j = 2 1 ≤ i < k (7)

Vertex Labeling and Edge Costs. We introduce variables yi,s ∈ {0, . . . , e}
that encode the copy-number state of position s of vertex vi. Since the profiles of
each leaf as well as the root vertex are given, we have the following constraints.

y1,s = 2 1 ≤ s ≤ n (8)

yi,s = ci−k+1,s k ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (9)

Next, we encode a set σ(vi, vj) of events that transform the profile yi of vi
into profile yj of vj . Recall that an event is a triple (s, t, b) and corresponds
to an amplification if b > 0 and a deletion otherwise. We model the cost of
the amplifications and the cost of the deletions covering any position s with
two separate variables. Variables ai,j,s ∈ {0, . . . , e} correspond to the cost of
the amplifications in σ(vi, vj) covering position s. Variables di,j,s ∈ {0, . . . , e}
correspond to the cost of the deletions in σ(vi, vj) covering position s.

Now, we consider the effect of amplifications and deletions on a position s. By
Lemma 2, we have that there exists an optimal solution such that for each edge
(vi, vj) there are two sets of events σ−(vi, vj) and σ+(vi, vj) that yield yj,s from
yi,s by first applying σ−(vi, vj) followed by σ+(vi, vj). If a subset of the events in
σ−(vi, vj) results in position s reaching value 0, the remaining amplifications and
deletions will not change the value of that position. We distinguish the following
four different cases.

(a) yi,s = 0 and yj,s = 0: Since both positions have value 0, the number of
amplifications ai,j,s and deletions di,j,s are between 0 and e.

(b) yi,s 6= 0 and yj,s 6= 0: Since yj,s > 0, the number of deletions di,j,s must be
strictly smaller than yi,s. Moreover, it must hold that yj,s+di,j,s = yi,s+ai,j,s.

9

(c) yi,s 6= 0 and yj,s = 0: Recall that by Lemma 2 deletions precede amplifications.
As such, the number of deletions di,j,s must be at least yi,s.

(d) yi,s = 0 and yj,s 6= 0: Once a position s has been lost it cannot be regained.
As such, this case is infeasible.

The full description of the constraints and variables that model these cases and
the objective function are omitted.

5 Experimental Evaluation

Copy-Number Triplet (CN3) Problem. We compared the running times of
our DP and ILP algorithms for the CN3 problem as a function of n and N . Our
results on simulations (omitted) show that while the running time of the DP
algorithm highly depends on the copy-number range N , the ILP time is almost
independent of N . With the exception of the case of N = 2, the ILP is faster.
Fig. S1 presents the average running times of the DP and ILP algorithms on
simulated instances.

Copy-Number Tree (CNT) Problem. To assess the performance of the ILP
for CNT, we simulated instances by randomly generating a full binary tree T
with k leaves. We randomly labeled edges by events according to a specified
maximum number m of events per edge with amplifications/deletions ratio ρ.
Specifically, we label an edge by d events where d is drawn uniformly from the
set {1, . . . ,m}. For each event (s, t, b) we uniformly at random draw an interval
s ≤ t and decide with probability ρ whether b = 1 (amplification) or b = −1
(deletion). The resulting instance of CNT is composed of the profiles c1, . . . , ck
of the k leaves of T and e is set to the maximum value of the input profiles.

We considered varying numbers of leaves k ∈ {4, 6, 8} and of segments n ∈
{5, 10, 15, 20, 30, 40}. In addition, we varied the number of events m ∈ {1, 2, 3} and
varied the ratio ρ ∈ {0.2, 0.4}. We generated three instances for each combination
of k, n, m and ρ, resulting in a total of 324 instances.

We implemented the ILP in C++ using CPLEX v12.6 (www.cplex.com). The
implementation is available upon request. We ran the simulated instances on a
compute cluster with 2.6 GHz processors (16 cores) and 32 GB of RAM each.
We solved 302 instances (93.2%) to optimality within the specified time limit of
5 hours. Computations exceeding this limit were aborted and the best identified
solution was considered. The instances that were not solved to optimality are a
subset of the larger instances with k = 8 and n ∈ {20, 30, 40}. For these cases, we
show in Fig. S2c the gap between the best identified solutions and their computed
upper bounds.

For 323 out of 324 instances (99.7%) the tree inferred by the ILP has a cost
that was at most the simulated tree cost. The only exception is an instance with
k = 8 leaves and n = 40 positions that was not solved to optimality, and where
the inferred cost was 15 vs. a simulated cost of 14. These results empirically
validate the correctness of our ILP implementation.

10

4 6 8

k

10−1

100

101

102

103

104

105

ti
m

e
(s

)
n

15

20

30

40

(a) Running time in seconds (log scale)

4 6 8

k

0.0

0.2

0.4

0.6

0.8

1.0

R
F

n

15

20

30

40

(b) Normalized Robinson-Foulds metric

Fig. 4: Violin plots of running time (a) and tree distance (b) for varying number
k of leaves and number n of positions. Median values are indicated by a white
dot in each plot. Results with n ∈ {5, 10} positions are shown in Fig. S2.

We observe that the running time increases with the number of leaves and to
a lesser extent with the number of positions (Fig. 4a). In addition, we assessed
the distance between topologies of the inferred and simulated trees using the
Robinson-Foulds (RF) metric [11]. To allow for a comparison across varying
number of leaves, we normalized by the total number of splits to the range [0,1]
such that a value of 0 corresponds to the same topology of both trees. For 264
instances (81.4%) the normalized RF was at most 0.35. For k = 4 leaves the
median RF value was 0, which indicates that for at least 50% of these instances
the simulated tree topology was recovered. Fig. 4b shows the distribution of
normalized RF values with varying numbers of leaves and positions. Given a fixed
number of leaves, the normalized RF value decreases with increasing number
of positions. This indicates that the maximum parsimony assumption becomes
more appropriate with larger number of positions, which is not surprising since
amplifications and deletions are less likely to overlap. In addition, we observed
(data not shown) that running time and RF values are not affected by varying
values of m and ρ. In summary, we have shown that our ILP scales to practical
problem instance sizes with k = 6 and up to n = 40 positions, which is a
reasonable size for applications to real data [12,14].

6 Discussion

In this paper we studied two problems in the evolution of copy-number profiles.
For the CN3 problem, we gave a pseudo-polynomial DP algorithm and an ILP
formulation, and compared their efficiency on simulated data. Determining the
computational complexity of CN3 remains an open problem. We showed that
the general CNT problem is NP-hard and gave an ILP solution. Finally, we
assessed the performance of our tree reconstruction on simulated data. While all
formulations describe copy-number profiles on a single chromosome, our results

11

readily generalize to multiple chromosomes. In addition, while our formulations
presently lack the phasing step performed in [12], both the DP algorithm and
the ILP formulations can be extended to support phasing.

We note that experiments on real cancer sample data are required to establish
the relevance of our formulations. To this end, several extensions to our models
might be required. These include handling fractional copy-number values that
are a result of most experiments and handling missing data for some positions.
Moreover, since tumor samples are often impure, each sample may actually
represent a mixture of several clones. In such situations, different objectives might
try to decompose the clone mixture in order to reconstruct the evolutionary tree
as has been investigated for single-nucleotide variants [3, 7, 8, 10,15].

Acknowledgments. B.J.R. is supported by a National Science Foundation CAREER Award CCF-

1053753, NIH RO1HG005690 a Career Award at the Scientific Interface from the Burroughs Wellcome

Fund, and an Alfred P Sloan Research Fellowship. R. Shamir is supported by the Israeli Science

Foundation (grant 317/13) and the Dotan Hemato-Oncology Research Center at Tel Aviv University.

R.Z. is supported by fellowships from the Edmond J. Safra Center for Bioinformatics at Tel Aviv

University and from the Israeli Center of Research Excellence (I-CORE) Gene Regulation in Complex

Human Disease (Center No 41/11). M.Z. is supported by a fellowship from the I-CORE in Algorithms

and the Simons Institute for the Theory of Computing in Berkeley and by the Postdoctoral Fellowship

for Women of Israel’s Council for Higher Education. Part of this work was done while M.E-K., B.J.R.,

R. Shamir, R. Sharan and M.Z. were visiting the Simons Institute for the Theory of Computing.

References

1. Chowdhury, S., et al.: Algorithms to model single gene, single chromosome, and
whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput
Biol 10(7) (2014)

2. Ciriello, G., et al.: Emerging landscape of oncogenic signatures across human cancers.
Nat Genet 45, 1127–1133 (2013)

3. El-Kebir, M., et al.: Reconstruction of clonal trees and tumor composition from
multi-sample sequencing data. Bioinformatics 31(12), i62–i70 (2015)

4. Felsenstein, J.: Inferring Phylogenies. Sinauer Assoc. (2004)
5. Fisher, R., et al.: Cancer heterogeneity: implications for targeted therapeutics. Brit

J Cancer 108(3), 479–485 (2013)
6. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete.

Adv Appl Math 3, 43–49 (1982)
7. Jiao, W., et al.: Inferring clonal evolution of tumors from single nucleotide somatic

mutations. BMC Bioinformatics 15 (2014)
8. Malikic, S., et al.: Clonality inference in multiple tumor samples using phylogeny.

Bioinformatics (2015)
9. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194 (1976)

10. Popic, V., et al.: Fast and scalable inference of multi-sample cancer lineages. Genome
Biol 16, 91 (2015)

11. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math Biosci 53,
131–147 (1981)

12. Schwarz, R., et al.: Phylogenetic quantification of intra-tumour heterogeneity. PLoS
Comput Biol 10(4) (2014)

12

13. Shamir, R., et al.: A linear-time algorithm for the copy number transformation
problem. In: CPM (2016)

14. Sottoriva, A., et al.: A Big Bang model of human colorectal tumor growth. Nat
Genet 47(3), 209–216 (2015)

15. Yuan, K., et al.: BitPhylogeny: a probabilistic framework for reconstructing intra-
tumor phylogenies. Genome Biol 16 (2015)

16. Zhou, J., et al.: Maximum Parsimony Analysis of Gene Copy Number Changes. In:
WABI. vol. 9289, p. 108 (2015)

13

Appendix

A Omitted Proofs

(Main Text) Theorem 1. The CNT problem is NP-hard.

Proof. We claim that MPP instance, composed of b1, . . . ,bk such that |bi| = n,
admits a binary phylogeny T with cost at most h if and only if the corresponding
CNT instance, composed of c1, . . . , ck+1 and e = 2 such that |ci| = n, admits
a copy-number tree T ′ with cost at most h+W where W = (n− 1)nk/2. Note
that (n − 1)nk is even, and thus W ∈ N. Intuitively, W represents the cost of
‘initializing’ the wall elements Ω.

(⇒) Let T be a binary phylogeny with cost ∆(T) ≤ h. We denote by bi
the binary vector of vertex vi ∈ V (T). For each true position s ∈ [n], the
corresponding position in the transformation is denoted by α(s). We show that
given T we can construct a copy-number tree T ′ such that ∆(T ′) = ∆(T) +W .
Tree T ′ is composed of a root vertex r(T ′) whose two children correspond to
tree T (rooted at r(T)) and an additional leaf w labeled by ck+1. The remaining
vertices v ∈ V (T ′) \ {w} are labeled by ci = φ(bi) (see (3)). The edge (r(T ′), w)
of T ′ relates two vertices with the same profile and thus has cost 0. The other
edge (r(T ′), r(T)) has cost W , which corresponds to the number of wall positions
that need to be initialized to 1 (these are common to all leaves c1, . . . , ck). Let’s
consider an edge (vi, vj) of T with Hamming distance ζ. First, observe that the
Hamming distance equals the number of flips required to transform bi into bj .
We describe how to obtain a sequence of events σ(i, j) on the corresponding edge
(vi, vj) in T ′ such that δ(i, j) = ζ. Consider position s ∈ [n]. A flip from 0 to 1
at position s corresponds to a deletion event (α(s), α(s),−1). Conversely, a flip
from 1 to 0 in position s corresponds to an amplification event (α(s), α(s),+1).
Recall that δ(i, j) =

∑
(s,t,b)∈σ(vi,vj) |b|. It thus follows that ∆(T ′) = ∆(T) +W .

Since ∆(T) ≤ h, we thus have ∆(T ′) ≤ h+W .
(⇐) Let T ′ be a copy-number tree with cost ∆(T ′) ≤ h+W . We denote by

ci the profile of vertex vi ∈ V (T ′). We show that T ′ can be transformed into a
binary phylogeny T such that ∆(T) ≤ h. We distinguish two cases h ≥ nk + 1
and h ≤ nk.

1. If h ≥ nk + 1, we can construct a naive binary phylogeny T whose internal
vertices are labeled with the same binary vector as the root (all 0s). The cost
of T is at most kn, and thus ∆(T) ≤ nk + 1 ≤ h.

2. Now let’s consider the case where h ≤ nk. We assume without loss of generality
that n ≥ 4. Now, h < W since nk < W for n ≥ 4. Hence, ∆(T ′) < 2W .
Recall that the root vertex r(T ′) has 2’s at every position including the walls.
We claim that r(T ′) has two children one of which is a leaf labeled by ck+1.
Assume for a contradiction that this is not the case and that the two children
split L(T ′) into two sets L1 and L2 such that |L1| > 1 and |L2| > 1. Thus
there exist distinct leaves v1 ∈ L1 and v2 ∈ L2 such that for the respective
profiles it holds that y1 6= ck+1 and y2 6= ck+1. Now the cost to initialize the
wall elements of y1 and y2 is at least 2W , which yields a contradiction. It

14

thus follows that tree T ′ must be composed of a root vertex r(T ′) whose first
child corresponds to tree T ′′ (rooted at r(T ′′)) and second child is a leaf w
labeled by ck+1. We focus our attention on T ′′.
We claim that there is no event in T ′′ that covers more than one true position.
Assume for a contradiction that such an event (s, t, b) exists. By construction,
positions s and t span at least one wall Ω. In our restricted setting where
e = 2 and where the leaves of T ′′ do not contain 0s, the event (s, t, b) can
only be applied if all positions from s to t have the same value. As such,
this event must be preceded by at least nk other events (which is the length
of a wall Ω). These events may be on the same edge or any ancestral edge.
Therefore, ∆(T ′′) ≥ nk + 1, which is a contradiction. Hence, events in T ′′

where ∆(T ′′) ≤ nk span at most one true position.
Finally, we show how to construct a binary phylogeny T from T ′′ such
that ∆(T) ≤ h ≤ nk. T has the same topology of T ′′. Moreover, each vertex
vi ∈ V (T) is labeled by a binary vector bi such that ci = φ(bi). Let’s consider
an edge (vi, vj) of T ′′ labeled by events σ(i, j) and with cost δ(i, j) = ζ. Each
event (s, t, b) ∈ σ(i, j) spans at most one true position (but may contain parts
of a wall Ω). Let X ⊆ [n] be the set of true positions spanned by events in
σ(i, j). Observe that |X| ≤ ζ. Therefore, the Hamming distance between bi
and bj is at most |X|. Hence, ∆(T) ≤ ∆(T ′′) ≤ h.

ut

(Main Text) Lemma 4. Let u and v be two profiles. Then, there exists an
optimal triple (m, σ(m,u), σ(m,v)) such that the following conditions hold.

– Both σ(m,u) and σ(m,v) are sorted sequences of events.
– For all 1 ≤ i ≤ n, mi ≤ N . Thus, for all 1 ≤ i ≤ n, mi ≤ min{N, e}.
– For all 1 ≤ i ≤ n, c ∈ {u,v} and w ∈ {−,+}, co(σ(c), w, i) ≤ N .

Proof. First, observe that in the formulas given in Lemma 3, one only examines
parameters a and d of value at most N . Thus, by Lemmas 2 and 3, if there exists
an optimal triple (m, σ′(m,u), σ′(m,v)) such that for all 1 ≤ i ≤ n, mi ≤ N ,
then there also exists an optimal triple (m, σ(m,u), σ(m,v)) such that σ(m,u)
and σ(m,v) are sorted, and for all 1 ≤ i ≤ n, c ∈ {u,v} and w ∈ {−,+},
co(σ(m, c), w, i) ≤ N . Thus, if is sufficient to show that there exists an optimal
triple (m, σ(m,u), σ(m,v)) such that for all 1 ≤ i ≤ n, mi ≤ N .

Let (m, σ(m,u), σ(m,v)) be an optimal triple where σ(m,u) and σ(m,v)
are sorted, which among all such triples minimizes

∑n
i=1mi. By Lemma 2, there

exists such a triple, and therefore (m, σ(m,u), σ(m,v)) is well-defined. We will
show that our choice of (m, σ(m,u), σ(m,v)) necessarily implies that for all
1 ≤ i ≤ n, mi ≤ N . Suppose, by way of contradiction, that this is not true. Now,
let 1 ≤ i ≤ n be an index such that mi > N . Then, σ(m,u) contains at least
one deletion, cu = (`u, hu,−1), such that `u ≤ i ≤ hu, and also σ(m,v) contains
at least one deletion, cv = (`v, hv,−1), such that `v ≤ i ≤ hv. Consider the
following cases.

1. `u ≤ `v ≤ hu ≤ hv: Let m′ be the profile obtained from m by decre-
menting by 1 the value of each entry between `v and hu. That is, m′ =

15

(m1, . . . ,m`v−1,m`v − 1, . . . ,mhu − 1,mhu+1, . . . ,mn). Now, in σ(m,u) re-
place cu by the event (`u, `v−1,−1), while in σ(m,v) replace cv by the event
(hu + 1, hv,−1). Let σ′(m′,u) and σ′(m′,v) denote the resulting sequences
of events.

Since σ(m,u) and σ(m,v) are sorted, so do σ′(m′,u) and σ′(m′,v). More-
over, since σ(m,u) and σ′(m′,u) are sorted, for all 1 ≤ j ≤ n, the
value of the jth entry of the profile yielded by σ(m,u) from m is 0 if
mj − co(σ(m,u),−, j) ≤ 0 and mj − co(σ(m,u),−, j) + co(σ(m,u),+, j)
otherwise, while the value of the jth entry of the profile yielded by σ′(m′,u)
from m′ is 0 if m′j − co(σ′(m′,u),−, j) ≤ 0 and m′j − co(σ′(m′,u),−,
j) + co(σ′(m′,u),+, j) otherwise. Because σ(m,u) yields u from m, we have
that uj = 0 if mj − co(σ(m,u),−, j) ≤ 0, and uj = mj − co(σ(m,u),−, j) +
co(σ(m,u),+, j) otherwise. By our definition of m′ and σ′(m′,u), if `v ≤
j ≤ hu then m′j = mj − 1, co(σ′(m′,u),−, j) = co(σ(m,u),−, j) − 1 and
co(σ′(m′,u),+, j) = co(σ(m,u),+, j), and otherwise m′j = mj , co(σ

′(m′,u),
−, j) = co(σ(m,u),−, j) and co(σ′(m′,u),+, j) = co(σ(m,u),+, j). There-
fore, if m′j − co(σ′(m′,u),−, j) ≤ 0 then uj = 0, and uj = m′j −
co(σ′(m′,u),−, j)+co(σ′(m′,u),+, j) otherwise. Since the choice of j was ar-
bitrary, we have that σ′(m′,u) yields u from m′. Symmetrically, we have that
σ′(m′,v) yields v from m′. We thus conclude that (m′, σ(m,u), σ′(m′,v))
is an optimal triple. However,

∑n
i=1m

′
i <

∑n
i=1mi, which contradicts the

choice of m.

2. `v ≤ `u ≤ hv ≤ hu: This case is symmetric to the previous one, and therefore
also leads to a contradiction.

3. `u ≤ `v ≤ hv ≤ hu: Let m′ be the CNP obtained from m by decre-
menting by 1 the value of each entry between `v and hv. That is, m′ =
(m1, . . . ,m`v−1,m`v − 1, . . . ,mhv − 1,mhv+1, . . . ,mn). Now, in σ(m,u) re-
place cu by the events (`u, `v − 1,−1) and (hv + 1, hu,−1), while in σ(m,v)
remove cv. Let σ′(m′,u) and σ′(m′,v) denote the resulting sequences of
events.

Since σ(m,u) and σ(m,v) are sorted, so do σ′(m′,u) and σ′(m′,v). More-
over, since σ(m,u) and σ′(m′,u) are sorted, for all 1 ≤ j ≤ n, the
value of the jst entry of the profile yielded by σ(m,u) from m is 0 if
mj − co(σ(m,u),−, j) ≤ 0 and mj − co(σ(m,u),−, j) + co(σ(m,u),+, j)
otherwise, while the value of the jst entry of the profile yielded by σ′(m′,u)
from m′ is 0 if m′j − co(σ′(m′,u),−, j) ≤ 0 and m′j − co(σ′(m′,u),−,
j) + co(σ′(m′,u),+, j) otherwise. Because σ(m,u) yields u from m, we have
that uj = 0 if mj − co(σ(m,u),−, j) ≤ 0, and uj = mj − co(σ(m,u),−, j) +
co(σ(m,u),+, j) otherwise. By our definition of m′ and σ′(m′,u), if `v ≤
j ≤ hv then m′j = mj − 1, co(σ′(m′,u),−, j) = co(σ(m,u),−, j) − 1 and
co(σ′(m′,u),+, j) = co(σ(m,u),+, j), and otherwise m′j = mj , co(σ

′(m′,u),
−, j) = co(σ(m,u),−, j) and co(σ′(m′,u),+, j) = co(σ(m,u),+, j). There-
fore, if m′j − co(σ′(m′,u),−, j) ≤ 0 then uj = 0, and uj = m′j −
co(σ′(m′,u),−, j) + co(σ′(m′,u),+, j) otherwise. Since the choice of j was
arbitrary, we have that σ′(m′,u) yields u from m′. Replacing u and u′ by v
and v′, respectively, in the arguments above shows also that σ(m,v)′ yields

16

v from m′. We thus conclude that (m′, σ′(m′,u), σ′(m′,v)) is an optimal
triple. However,

∑n
i=1m

′
i <

∑n
i=1mi, which contradicts the choice of m.

4. `v ≤ `u ≤ hu ≤ hv: This case is symmetric to the previous one, and therefore
also leads to a contradiction.

Since the case analysis is exhaustive, and each case leads to a contradiction,
we conclude that the lemma is correct. ut

B Copy-Number Triplet Problem: DP

In this section we show how to modify DP-Alg1 in order to obtain the algorithm
DP-Alg2 for which Theorem 2 holds. Recall that Lemma 1 states that we can
assume that for all 1 ≤ i ≤ n, either ui > 0 or vi > 0 (or both). Now, by the
formulas given in the previous subsection, for all 1 ≤ i ≤ n, if ui > 0 then we only
need to explicitly store the entries L[i,m, du, au, dv, av] where au = ui −m+ du;
if one accesses an entry L[i,m, du, au, dv, av] where au 6= ui −m+ du, we simply
return ∞. The symmetric argument holds for all 1 ≤ i ≤ n such that vi > 0.
Now, for all 1 ≤ i ≤ n, the number of entries is bounded by O(N4) rather than
O(N5), and therefore the space complexity is bounded by O(nN4).

Consider an entry L[i,m, du, au, dv, av] computed by the recursive formula of
the previous subsection. In case ui−1 > 0, we need only consider the value au′ =
ui−1−m′+du′, since if au′ 6= ui−1−mi−1+du′ then L[i−1,m′, du′, au′, dv′, av′] =
∞. Symmetrically, in case vi−1 > 0, we need only consider the value av′ =
vi−1−m′+dv′. That is, we have that each entry can be computed in time O(N4)
rather than O(N5), and therefore the time complexity is bounded by O(nN8).
We thus obtain an algorithm that solves CN3 in time O(nN8) and space O(nN4).

Note that the only entries that this algorithm computes in time O(N4) rather
than O(N3) are those where either ui−1 = 0 or vi−1 = 0. However, the following
lemmas state that these entries can in fact be computed in time O(N2). Thus,
we obtain the desired algorithm DP-Alg2.

Lemma 6. Each entry of the form L[i,m, du, au, dv, av] where i ≥ 2 and ui−1 =
0 can be computed in time O(N2).

Proof. Consider an entry L[i,m, du, au, dv, av] where i ≥ 2 and ui−1 = 0. It is
sufficient to show that the calculation of this entry can be modified to depend only
on O(N2) entries of the form L[i− 1,m′, du′, au′, dv′, av′]. First, note that since
ui−1 = 0, by Lemma 1 we have that vi−1 > 0, and therefore we can fix av′ = vi−1−
m′ + dv′. We now claim that we can also fix du′ = max{du,m′} and au′ = au,
which will imply that the lemma is correct. To show this, we need to show that
there is a triple (m, σ(m,ui), σ(m,vi)) ∈ S(i,m, du, au, dv, av) that minimizes
δσ(m,ui)+δσ(m,vi) and satisfies max{du,m′} = co(σ(m,ui),−, i−1) and au =
co(σ(m,ui),+, i− 1). Since ui−1 = 0, it is clear that m′ ≤ co(σ(m,ui),−, i− 1).
Moreover, since ui−1 = 0, each event in σ(m,u) whose segment includes i can
be elongated to include i − 1 as well while maintaining optimality (as we do
not introduce new events) and that σ(m,ui) yields ui from m. Therefore, we

17

can assume that du ≤ co(σ(m,ui),−, i − 1) and au ≤ co(σ(m,ui),+, i − 1).
Furthermore, since ui−1 = 0, each event in σ(m,ui) whose segment includes
i − 1 but not i can be modified to exclude i − 1 as well, as long as it still
holds that m′ ≤ co(σ(m,ui),−, i − 1), while maintaining optimality and that
σ(m,ui) yields ui from m. Therefore, max{du,m′} = co(σ(m,ui),−, i− 1) and
au = co(σ(m,ui),+, i− 1). ut

Lemma 7. Each entry of the form L[i,m, du, au, dv, av] where i ≥ 2 and vi−1 =
0 can be computed in time O(N2).

Proof. The proof is symmetric to the proof of Lemma 6. ut

C Copy-Number Triplet Problem: ILP

In this section we give an ILP formulation for CN3 that consists of only O(n)
variables and O(n) constraints. For every 1 ≤ i ≤ n and w ∈ {u,v}, we introduce
the integer variables 1 ≤ mi ≤ min{N, e} and 0 ≤ dwi , a

w
i , s

w
i , t

w
i ≤ N . The mi

variables correspond to the copy numbers of the parent profile of u and v. The
number of deletions (resp. amplifications) transforming mi to wi ∈ {ui,vi} is
represented by the variables dwi (resp. awi). The variables swi (resp. twi) capture
the number of deletions (resp. amplifications) that start at position i in the
sequence from mi to wi ∈ {ui,vi}.

Here we have the restriction 1 ≤ mi ≤ N since by Lemma 4 we can assume
that each position of the profile m is upper-bounded by N , while by Lemma 1 we
can assume it is lower-bounded by 1. For every w ∈ {u,v}, denote aw0 = dw0 = 0.

For every 1 ≤ i ≤ n and w ∈ {u,v}, we have the following constraints:

mi ≤ dwi wi = 0 (10)

dwi ≤ mi − 1 wi > 0 (11)

mi − dwi + awi = wi wi > 0 (12)

swi ≥ dwi − dwi−1 (13)

twi ≥ awi − awi−1 (14)

Constraints 10, 11 and 12 ensure that the amplification/deletion variables
represent a valid transformation of m into w. Constraints 13 and 14 capture
the additional cost of new deletions/amplifications starting at index i. That is,
dwi−1 deletions (resp. awi−1 amplifications) can be extended to position i at no
additional cost.

The objective function is:

F (u,v) = min
∑

w∈{u,v}

n∑
i=1

(swi + twi) (15)

Lemma 8. For two profiles u and v, F (u,v) = ∆(u,v).

18

Proof. On the one hand, let (m̂, σ(m̂,u), σ(m̂,v)) be an optimal triple. We
assign values to the ILP variables as follows. First, for every 1 ≤ i ≤ n, let
mi = m̂i. Now, for every 1 ≤ i ≤ n and w ∈ {u,v}, let dwi = co(σ(m̂,w),−, i),
awi = co(σ(m̂,w),+, i), swi = max{co(σ(m̂,w),−, i)− co(σ(m̂,w),−, i− 1), 0}
and twi = max{co(σ(m̂,w),+, i)− co(σ(m̂,w),+, i− 1), 0}.

Since (m̂, σ(m̂,u), σ(m̂,u)) is an optimal triple, we have that for every 1 ≤
i ≤ n and w ∈ {u,v}, if wi = 0 then m̂i ≤ co(σ(m̂,w),−, i), and if wi > 0 then
co(σ(m̂,w),−, i) ≤ m̂i − 1 and m̂i − co(σ(m̂,w),−, i) + co(σ(m̂,w),+, i) = wi.
Thus, by our assignment, all of the constraints are satisfied.

We now claim that under our assignment, for all w ∈ {u,v}, δσ(m̂,w) =∑n
i=1 s

w
i +twi , and therefore F (u, v) ≤ ∆(u,v). Indeed, by Lemma 3, δσ(m̂,w) =

G[n, dwn , a
w
n] = G[n−1, dwn−1, a

w
n−1] + max{dwn −dwn−1, 0}+ max{awn −awn−1, 0} =

. . . =
∑n
i=1(max{dwi − dwi−1, 0}+ max{awi − awi−1, 0}).

On the other hand, let m,d,a, s, t be a solution to the ILP. Without loss of
generality, we assume that for every 1 ≤ i ≤ n and w ∈ {u,v}, swi = max{dwi −
dwi−1, 0} and twi = max{awi −awi−1, 0}. We construct a solution (m̂, σ(m̂,u), σ(m̂,
u)) to the input instance of CN3 as follows. For every 1 ≤ i ≤ n, let m̂i = mi.
For every w ∈ {u,v}, to construct σ(m̂,w), consider the following process. Start
with σ(m̂,w) = () and an empty queue Q. For every 1 ≤ i ≤ n, if swi > 0 push
the index i into Q swi times. Conversely, if dwi − dwi−1 < 0, pop dwi−1 − dwi indices
from Q, and for each popped index j append (j, i,−1) to σ(m̂,w). For each
index j remaining in Q in the end, append (j, n,−1) to σ(m̂,w). Similarly, add
amplifications to σ(m̂,w) using the twi ’s and awi ’s.

By our construction, the number of deletions (resp. amplifications) affecting
each index i is exactly dwi (resp. awi), and by the first three constraints in the
ILP formulation, σ(m̂,w) yields w from m. To conclude the proof, we show
that δσ(m̂,w) =

∑n
i=1 s

w
i + twi , and therefore ∆(u,v) ≤ F (u,v). Indeed, by our

construction, swi deletions (resp. twi amplifications) are added to σ(m̂,w) for
each i such that swi > 0 (resp. twi > 0). ut

Next we show that not all variables must be explicitly restricted to be integers
in our ILP formulation.

Lemma 9. If the mi variables are integers, then there is a solution where all
variables are integers.

Proof. Let m,d,a, s, t be a solution to the ILP such that mi is an integer for
every 1 ≤ i ≤ n. We consider the following rounding process for any profile
w ∈ {u,v} and for every i starting from i = n down to i = 1.

If wi = 0, set awi
′ = bawi c and twi = max{awi ′ − awi−1, 0}. Then, set dwi

′ =

max{bdwi c,mi} ≤ dwi and swi = max{dwi ′− dwi−1, 0}. Both adjustments satisfy all
the constraints and can only improve the objective function.

If wi > 0 then mi − wi = dwi − awi is an integer and the remainder of dwi , a
w
i

from an integer is the same. We round down dwi , a
w
i to the next smallest integer

thus keeping the difference dwi − awi and satisfying bdwi c ≤ mi − 1. Next, we
update swi = max{bdwi c−dwi−1, 0} and twi = max{bawi c−awi−1, 0}. Again, we have
that all values are integers and the objective function can only be improved. ut

19

Table S1: Case analysis on the values of variables yi,s and yj,s

ai,j,s di,j,s additional

(a) yi,s = 0 ∧ yj,s = 0 ≤ e ≤ e

(b) yi,s 6= 0 ∧ yj,s 6= 0 ≤ e < yi,s
yj,s + di,j,s =

yi,s + ai,j,s

(c) yi,s 6= 0 ∧ yj,s = 0 ≤ e
≥ yi,s
≤ e

(d) yi,s = 0 ∧ yj,s 6= 0 infeasible infeasible infeasible

From Lemma 9, we have that only the mi variables must be restricted to
be integers and all of the other variables can be relaxed. We note that in the
majority of our simulation, a fully relaxed LP formulation gave an integral
solution. Moreover, a gap between the ILP solution and the relaxed LP solution
was seldom observed. We further hypothesize (according to our experiments) that
the relaxed LP has an half-integral solution. We also note that our formulation
can be naturally extended to handle more than two profiles. That is, given a set
of profiles Y , we can find a “median” profile m, i.e. profile m that minimizes the
sum of costs

∑
y∈Y δσ(m,y).

D Copy-Number Tree Problem: ILP

Recall that we distinguish four different cases that capture the effect of amplifi-
cations and deletions on a position s.

(a) yi,s = 0 and yj,s = 0: Since both positions have value 0, the number of
amplifications ai,j,s and deletions di,j,s are between 0 and e.

(b) yi,s 6= 0 and yj,s 6= 0: Since yj,s > 0, the number of deletions di,j,s must be
strictly smaller than yi,s. Moreover, it must hold that yj,s+di,j,s = yi,s+ai,j,s.

(c) yi,s 6= 0 and yj,s = 0: Recall that by Lemma 2 deletions precede amplifications.
As such, the number of deletions di,j,s must be at least yi,s.

(d) yi,s = 0 and yj,s 6= 0: Once a position s has been lost it cannot be regained.
As such, this case is infeasible.

These cases are described in Table S1. To capture the conditions of the four cases,
we introduce binary variables ȳi,s ∈ {0, 1} and constraints such that ȳi,s = 1 iff
yi,s 6= 0.

yi,s =

blog2(e)c+1∑
q=0

2q · zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (16)

ȳi,s ≤
blog2(e)c+1∑

q=0

zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (17)

20

ȳi,s ≥ zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n, 0 ≤ q ≤ blog2(e)c+ 1 (18)

zi,s,q ∈ {0, 1} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n, 0 ≤ q ≤ blog2(e)c+ 1 (19)

Since ai,j,s, di,j,s ∈ {0, . . . , e}, the upper bound constraints involving e are covered.
In particular, case (a) is captured in its entirety. We capture case (b) with the
following constraints.

yj,s ≤ yi,s − di,j,s + ai,j,s + 2e(2− ȳi,s − ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (20)

yj,s + 2e(2− ȳi,s − ȳj,s) ≥ yi,s − di,j,s + ai,j,s 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (21)

di,j,s ≤ yi,s − 1 + (e+ 1)(2− ȳi,s − ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (22)

In the case of ȳi,s = 1 and ȳj,s = 1, constraints (20) and (21) model the equation
yj,s + di,j,s = yi,s + ai,j,s, whereas constraints (22) ensure that di,j,s < yi,s. Next,
we model case (c) using the following constraints.

yi,s ≤ di,j,s + e(1− ȳi,s + ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (23)

Finally, the following constraints, which encode that if xi,j = 1 then ȳi,s = 0
implies ȳj,s = 0, prevent case (d) from happening.

(1− xi,j) + ȳi,s ≥ ȳj,s 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (24)

The cost of a tree T is the sum of the costs of the events associated to
each edge (vi, vj) ∈ E(T). We model the cost of an edge (vi, vj) as the sum
of the number of amplifications and deletions that start at each position s.
Variables āi,j,s ∈ {0, . . . , e} and d̄i,j,s ∈ {0, . . . , e} represent the number of new
amplifications and deletions, respectively, that start at position s. We model this
using the following constraints.

āi,j,s ≥ ai,j,s − ai,j,s−1 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (25)

d̄i,j,s ≥ di,j,s − di,j,s−1 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (26)

ai,j,0 = 0 (vi, vj) ∈ E(G) (27)

di,j,0 = 0 (vi, vj) ∈ E(G) (28)

The objective is to minimize the cost of the events of the selected tree T ,
which corresponds to

min
∑

(vi,vj)∈E(G)

∑
1≤s≤n

xi,j · (āi,j,s + d̄i,j,s) (29)

We model the product using the following constraint.

wi,j,s ≥ āi,j,s + d̄i,j,s − (1− xi,j) · 2e 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (30)

We define M = blog2(e)c+1. The ILP formulation is reproduced in its entirety
below.

21

min
∑

(vi,vj)∈E(G)

∑
1≤s≤n

wi,j,s (31)

∑
i∈N−(j)

xi,j = 1 1 < j ≤ 2k − 1 (32)

∑
j∈N+(i)

xi,j = 2 1 ≤ i < k (33)

y1,s = 2 1 ≤ s ≤ n (34)

yi,s = ci−k+1,s k ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (35)

yi,s =

M∑
q=0

2
q · zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (36)

ȳi,s ≤
M∑

q=0

zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (37)

ȳi,s ≥ zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n, 0 ≤ q ≤M (38)

yj,s ≤ yi,s − di,j,s + ai,j,s + 2e(2− ȳi,s − ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (39)

yj,s + 2e(2− ȳi,s − ȳj,s) ≥ yi,s − di,j,s + ai,j,s 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (40)

di,j,s ≤ yi,s − 1 + (e+ 1)(2− ȳi,s − ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (41)

yi,s ≤ di,j,s + e(1− ȳi,s + ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (42)

(1− xi,j) + ȳi,s ≥ ȳj,s 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (43)

āi,j,s ≥ ai,j,s − ai,j,s−1 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (44)

d̄i,j,s ≥ di,j,s − di,j,s−1 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (45)

ai,j,0 = 0 (vi, vj) ∈ E(G) (46)

di,j,0 = 0 (vi, vj) ∈ E(G) (47)

wi,j,s ≥ āi,j,s + d̄i,j,s − (1− xi,j) · 2e 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (48)

xi,j ∈ {0, 1} (vi, vj) ∈ E(G) (49)

yi,s ∈ {0, . . . , e} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (50)

ȳi,s ∈ {0, 1} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (51)

zi,s,q ∈ {0, 1} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n, 0 ≤ q ≤M (52)

ai,j,s, di,j,s ∈ {0, . . . , e} 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (53)

āi,j,s, d̄i,j,s ∈ {0, . . . , e} 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (54)

wi,j,s ∈ {0, . . . , 2e} 1 ≤ s ≤ n, (vi, vj) ∈ E(G) (55)

E Results

We show in Fig. S1 average running times of the DP and ILP algorithms for
simulated CN3 instances as a function of n and N . Fig. S2 shows violin plots of
running time, tree distance and optimality gap for simulated CNT instances.

22

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

lo
g 1

0(s
ec
)

n

Average	Running	Times:	DP	vs.	ILP

DP	N=8

DP	N=7

DP	N=6

DP	N=5

DP	N=4

DP	N=3

DP	N=2

ILP	N=8

ILP	N=7

ILP	N=6

ILP	N=5

ILP	N=4

ILP	N=3

ILP	N=2

Fig. S1: Average running times of the DP and ILP algorithms for CN3 as a
function of n and N . DP algorithms are represented by dashed lines while ILP
algorithms are represented by straight lines. All algorithms were implemented in
Python and the ILP was solved using GUROBI v6.0.5 (www.gurobi.com). We
ran the simulated instances on a server with 16 2.6 GHz CPUs and 128 GB of
RAM.

23

4 6 8

k

10−2

10−1

100

101

102

103

104

105
ti

m
e

(s
)

n

5

10

15

20

30

40

(a) Running time in seconds (log scale)

4 6 8

k

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
F

n

5

10

15

20

30

40

(b) Normalized Robinson-Foulds (RF) metric

8

k

−50

0

50

100

150

200

250

300

ga
p

n

5

10

15

20

30

40

(c) Gap is defined as (UB - LB) / LB * 100% where LB and UB are the lower and
upper bound, respectively. All instances with k ∈ {4, 6} leaves, as well as all instances
with k = 8 leaves and n ∈ {5, 10, 15} positions, were solved to optimality.

Fig. S2: Violin plots of running time (a), tree distance (b) and optimality gap
(c) for varying number k of leaves and number n of positions. Median values are
indicated by a white dot in each plot.

24

